SQLite

Check-in [c44fb4d065]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge the latest trunk enhancements into the wal-shm-exceptions branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | wal-shm-exceptions
Files: files | file ages | folders
SHA3-256: c44fb4d06591ef4872f015aa9e81ce8b93a38bd9143cf20db38cbe5c77a0d71f
User & Date: drh 2023-07-28 19:07:25.753
Context
2023-08-10
17:07
Merge latest trunk changes into this branch. (Leaf check-in: 3ed89c344f user: dan tags: wal-shm-exceptions)
2023-07-28
19:07
Merge the latest trunk enhancements into the wal-shm-exceptions branch. (check-in: c44fb4d065 user: drh tags: wal-shm-exceptions)
18:37
Add the sqlite3_stmt_explain() API. (check-in: 0443c0ef85 user: drh tags: trunk)
2023-07-26
18:34
Add a comment describing the contents of the ExceptionInformation[] array for win32 EXCEPTION_IN_PAGE_ERROR exceptions. No changes to code. (check-in: 8e20354242 user: dan tags: wal-shm-exceptions)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/fts5/fts5Int.h.
150
151
152
153
154
155
156




157
158
159
160
161
162
163
** And all information loaded from the %_config table.
**
** nAutomerge:
**   The minimum number of segments that an auto-merge operation should
**   attempt to merge together. A value of 1 sets the object to use the 
**   compile time default. Zero disables auto-merge altogether.
**




** zContent:
**
** zContentRowid:
**   The value of the content_rowid= option, if one was specified. Or 
**   the string "rowid" otherwise. This text is not quoted - if it is
**   used as part of an SQL statement it needs to be quoted appropriately.
**







>
>
>
>







150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
** And all information loaded from the %_config table.
**
** nAutomerge:
**   The minimum number of segments that an auto-merge operation should
**   attempt to merge together. A value of 1 sets the object to use the 
**   compile time default. Zero disables auto-merge altogether.
**
** bContentlessDelete:
**   True if the contentless_delete option was present in the CREATE 
**   VIRTUAL TABLE statement.
**
** zContent:
**
** zContentRowid:
**   The value of the content_rowid= option, if one was specified. Or 
**   the string "rowid" otherwise. This text is not quoted - if it is
**   used as part of an SQL statement it needs to be quoted appropriately.
**
184
185
186
187
188
189
190

191
192
193
194
195
196
197
  char *zName;                    /* Name of FTS index */
  int nCol;                       /* Number of columns */
  char **azCol;                   /* Column names */
  u8 *abUnindexed;                /* True for unindexed columns */
  int nPrefix;                    /* Number of prefix indexes */
  int *aPrefix;                   /* Sizes in bytes of nPrefix prefix indexes */
  int eContent;                   /* An FTS5_CONTENT value */

  char *zContent;                 /* content table */ 
  char *zContentRowid;            /* "content_rowid=" option value */ 
  int bColumnsize;                /* "columnsize=" option value (dflt==1) */
  int eDetail;                    /* FTS5_DETAIL_XXX value */
  char *zContentExprlist;
  Fts5Tokenizer *pTok;
  fts5_tokenizer *pTokApi;







>







188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  char *zName;                    /* Name of FTS index */
  int nCol;                       /* Number of columns */
  char **azCol;                   /* Column names */
  u8 *abUnindexed;                /* True for unindexed columns */
  int nPrefix;                    /* Number of prefix indexes */
  int *aPrefix;                   /* Sizes in bytes of nPrefix prefix indexes */
  int eContent;                   /* An FTS5_CONTENT value */
  int bContentlessDelete;         /* "contentless_delete=" option (dflt==0) */
  char *zContent;                 /* content table */ 
  char *zContentRowid;            /* "content_rowid=" option value */ 
  int bColumnsize;                /* "columnsize=" option value (dflt==1) */
  int eDetail;                    /* FTS5_DETAIL_XXX value */
  char *zContentExprlist;
  Fts5Tokenizer *pTok;
  fts5_tokenizer *pTokApi;
205
206
207
208
209
210
211

212
213
214
215
216
217
218
  int nAutomerge;                 /* 'automerge' setting */
  int nCrisisMerge;               /* Maximum allowed segments per level */
  int nUsermerge;                 /* 'usermerge' setting */
  int nHashSize;                  /* Bytes of memory for in-memory hash */
  char *zRank;                    /* Name of rank function */
  char *zRankArgs;                /* Arguments to rank function */
  int bSecureDelete;              /* 'secure-delete' */


  /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */
  char **pzErrmsg;

#ifdef SQLITE_DEBUG
  int bPrefixIndex;               /* True to use prefix-indexes */
#endif







>







210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
  int nAutomerge;                 /* 'automerge' setting */
  int nCrisisMerge;               /* Maximum allowed segments per level */
  int nUsermerge;                 /* 'usermerge' setting */
  int nHashSize;                  /* Bytes of memory for in-memory hash */
  char *zRank;                    /* Name of rank function */
  char *zRankArgs;                /* Arguments to rank function */
  int bSecureDelete;              /* 'secure-delete' */
  int nDeleteMerge;           /* 'deletemerge' */

  /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */
  char **pzErrmsg;

#ifdef SQLITE_DEBUG
  int bPrefixIndex;               /* True to use prefix-indexes */
#endif
527
528
529
530
531
532
533



534
535
536
537
538
539
540
int sqlite3Fts5IndexReinit(Fts5Index *p);
int sqlite3Fts5IndexOptimize(Fts5Index *p);
int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge);
int sqlite3Fts5IndexReset(Fts5Index *p);

int sqlite3Fts5IndexLoadConfig(Fts5Index *p);




/*
** End of interface to code in fts5_index.c.
**************************************************************************/

/**************************************************************************
** Interface to code in fts5_varint.c. 
*/







>
>
>







533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
int sqlite3Fts5IndexReinit(Fts5Index *p);
int sqlite3Fts5IndexOptimize(Fts5Index *p);
int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge);
int sqlite3Fts5IndexReset(Fts5Index *p);

int sqlite3Fts5IndexLoadConfig(Fts5Index *p);

int sqlite3Fts5IndexGetOrigin(Fts5Index *p, i64 *piOrigin);
int sqlite3Fts5IndexContentlessDelete(Fts5Index *p, i64 iOrigin, i64 iRowid);

/*
** End of interface to code in fts5_index.c.
**************************************************************************/

/**************************************************************************
** Interface to code in fts5_varint.c. 
*/
611
612
613
614
615
616
617





618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

637
638
639
640
641
642
643
);

/*
** Empty (but do not delete) a hash table.
*/
void sqlite3Fts5HashClear(Fts5Hash*);






int sqlite3Fts5HashQuery(
  Fts5Hash*,                      /* Hash table to query */
  int nPre,
  const char *pTerm, int nTerm,   /* Query term */
  void **ppObj,                   /* OUT: Pointer to doclist for pTerm */
  int *pnDoclist                  /* OUT: Size of doclist in bytes */
);

int sqlite3Fts5HashScanInit(
  Fts5Hash*,                      /* Hash table to query */
  const char *pTerm, int nTerm    /* Query prefix */
);
void sqlite3Fts5HashScanNext(Fts5Hash*);
int sqlite3Fts5HashScanEof(Fts5Hash*);
void sqlite3Fts5HashScanEntry(Fts5Hash *,
  const char **pzTerm,            /* OUT: term (nul-terminated) */
  const u8 **ppDoclist,           /* OUT: pointer to doclist */
  int *pnDoclist                  /* OUT: size of doclist in bytes */
);



/*
** End of interface to code in fts5_hash.c.
**************************************************************************/

/**************************************************************************







>
>
>
>
>



















>







620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
);

/*
** Empty (but do not delete) a hash table.
*/
void sqlite3Fts5HashClear(Fts5Hash*);

/*
** Return true if the hash is empty, false otherwise.
*/
int sqlite3Fts5HashIsEmpty(Fts5Hash*);

int sqlite3Fts5HashQuery(
  Fts5Hash*,                      /* Hash table to query */
  int nPre,
  const char *pTerm, int nTerm,   /* Query term */
  void **ppObj,                   /* OUT: Pointer to doclist for pTerm */
  int *pnDoclist                  /* OUT: Size of doclist in bytes */
);

int sqlite3Fts5HashScanInit(
  Fts5Hash*,                      /* Hash table to query */
  const char *pTerm, int nTerm    /* Query prefix */
);
void sqlite3Fts5HashScanNext(Fts5Hash*);
int sqlite3Fts5HashScanEof(Fts5Hash*);
void sqlite3Fts5HashScanEntry(Fts5Hash *,
  const char **pzTerm,            /* OUT: term (nul-terminated) */
  const u8 **ppDoclist,           /* OUT: pointer to doclist */
  int *pnDoclist                  /* OUT: size of doclist in bytes */
);



/*
** End of interface to code in fts5_hash.c.
**************************************************************************/

/**************************************************************************
Changes to ext/fts5/fts5_config.c.
18
19
20
21
22
23
24


25
26
27
28
29
30
31

#define FTS5_DEFAULT_PAGE_SIZE   4050
#define FTS5_DEFAULT_AUTOMERGE      4
#define FTS5_DEFAULT_USERMERGE      4
#define FTS5_DEFAULT_CRISISMERGE   16
#define FTS5_DEFAULT_HASHSIZE    (1024*1024)



/* Maximum allowed page size */
#define FTS5_MAX_PAGE_SIZE (64*1024)

static int fts5_iswhitespace(char x){
  return (x==' ');
}








>
>







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

#define FTS5_DEFAULT_PAGE_SIZE   4050
#define FTS5_DEFAULT_AUTOMERGE      4
#define FTS5_DEFAULT_USERMERGE      4
#define FTS5_DEFAULT_CRISISMERGE   16
#define FTS5_DEFAULT_HASHSIZE    (1024*1024)

#define FTS5_DEFAULT_DELETE_AUTOMERGE 10      /* default 10% */

/* Maximum allowed page size */
#define FTS5_MAX_PAGE_SIZE (64*1024)

static int fts5_iswhitespace(char x){
  return (x==' ');
}

347
348
349
350
351
352
353










354
355
356
357
358
359
360
        pConfig->zContent = sqlite3Fts5Mprintf(&rc, "%Q.%Q", pConfig->zDb,zArg);
      }else{
        pConfig->eContent = FTS5_CONTENT_NONE;
      }
    }
    return rc;
  }











  if( sqlite3_strnicmp("content_rowid", zCmd, nCmd)==0 ){
    if( pConfig->zContentRowid ){
      *pzErr = sqlite3_mprintf("multiple content_rowid=... directives");
      rc = SQLITE_ERROR;
    }else{
      pConfig->zContentRowid = sqlite3Fts5Strndup(&rc, zArg, -1);







>
>
>
>
>
>
>
>
>
>







349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        pConfig->zContent = sqlite3Fts5Mprintf(&rc, "%Q.%Q", pConfig->zDb,zArg);
      }else{
        pConfig->eContent = FTS5_CONTENT_NONE;
      }
    }
    return rc;
  }

  if( sqlite3_strnicmp("contentless_delete", zCmd, nCmd)==0 ){
    if( (zArg[0]!='0' && zArg[0]!='1') || zArg[1]!='\0' ){
      *pzErr = sqlite3_mprintf("malformed contentless_delete=... directive");
      rc = SQLITE_ERROR;
    }else{
      pConfig->bContentlessDelete = (zArg[0]=='1');
    }
    return rc;
  }

  if( sqlite3_strnicmp("content_rowid", zCmd, nCmd)==0 ){
    if( pConfig->zContentRowid ){
      *pzErr = sqlite3_mprintf("multiple content_rowid=... directives");
      rc = SQLITE_ERROR;
    }else{
      pConfig->zContentRowid = sqlite3Fts5Strndup(&rc, zArg, -1);
591
592
593
594
595
596
597






















598
599
600
601
602
603
604
        }
      }
    }

    sqlite3_free(zOne);
    sqlite3_free(zTwo);
  }























  /* If a tokenizer= option was successfully parsed, the tokenizer has
  ** already been allocated. Otherwise, allocate an instance of the default
  ** tokenizer (unicode61) now.  */
  if( rc==SQLITE_OK && pRet->pTok==0 ){
    rc = fts5ConfigDefaultTokenizer(pGlobal, pRet);
  }







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        }
      }
    }

    sqlite3_free(zOne);
    sqlite3_free(zTwo);
  }

  /* We only allow contentless_delete=1 if the table is indeed contentless. */
  if( rc==SQLITE_OK 
   && pRet->bContentlessDelete 
   && pRet->eContent!=FTS5_CONTENT_NONE 
  ){
    *pzErr = sqlite3_mprintf(
        "contentless_delete=1 requires a contentless table"
    );
    rc = SQLITE_ERROR;
  }

  /* We only allow contentless_delete=1 if columnsize=0 is not present. 
  **
  ** This restriction may be removed at some point. 
  */
  if( rc==SQLITE_OK && pRet->bContentlessDelete && pRet->bColumnsize==0 ){
    *pzErr = sqlite3_mprintf(
        "contentless_delete=1 is incompatible with columnsize=0"
    );
    rc = SQLITE_ERROR;
  }

  /* If a tokenizer= option was successfully parsed, the tokenizer has
  ** already been allocated. Otherwise, allocate an instance of the default
  ** tokenizer (unicode61) now.  */
  if( rc==SQLITE_OK && pRet->pTok==0 ){
    rc = fts5ConfigDefaultTokenizer(pGlobal, pRet);
  }
885
886
887
888
889
890
891












892
893
894
895
896
897
898
      *pbBadkey = 1;
    }else{
      if( nCrisisMerge<=1 ) nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
      if( nCrisisMerge>=FTS5_MAX_SEGMENT ) nCrisisMerge = FTS5_MAX_SEGMENT-1;
      pConfig->nCrisisMerge = nCrisisMerge;
    }
  }













  else if( 0==sqlite3_stricmp(zKey, "rank") ){
    const char *zIn = (const char*)sqlite3_value_text(pVal);
    char *zRank;
    char *zRankArgs;
    rc = sqlite3Fts5ConfigParseRank(zIn, &zRank, &zRankArgs);
    if( rc==SQLITE_OK ){







>
>
>
>
>
>
>
>
>
>
>
>







919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
      *pbBadkey = 1;
    }else{
      if( nCrisisMerge<=1 ) nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
      if( nCrisisMerge>=FTS5_MAX_SEGMENT ) nCrisisMerge = FTS5_MAX_SEGMENT-1;
      pConfig->nCrisisMerge = nCrisisMerge;
    }
  }

  else if( 0==sqlite3_stricmp(zKey, "deletemerge") ){
    int nVal = -1;
    if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
      nVal = sqlite3_value_int(pVal);
    }else{
      *pbBadkey = 1;
    }
    if( nVal<0 ) nVal = FTS5_DEFAULT_DELETE_AUTOMERGE;
    if( nVal>100 ) nVal = 0;
    pConfig->nDeleteMerge = nVal;
  }

  else if( 0==sqlite3_stricmp(zKey, "rank") ){
    const char *zIn = (const char*)sqlite3_value_text(pVal);
    char *zRank;
    char *zRankArgs;
    rc = sqlite3Fts5ConfigParseRank(zIn, &zRank, &zRankArgs);
    if( rc==SQLITE_OK ){
934
935
936
937
938
939
940

941
942
943
944
945
946
947

  /* Set default values */
  pConfig->pgsz = FTS5_DEFAULT_PAGE_SIZE;
  pConfig->nAutomerge = FTS5_DEFAULT_AUTOMERGE;
  pConfig->nUsermerge = FTS5_DEFAULT_USERMERGE;
  pConfig->nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
  pConfig->nHashSize = FTS5_DEFAULT_HASHSIZE;


  zSql = sqlite3Fts5Mprintf(&rc, zSelect, pConfig->zDb, pConfig->zName);
  if( zSql ){
    rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p, 0);
    sqlite3_free(zSql);
  }








>







980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

  /* Set default values */
  pConfig->pgsz = FTS5_DEFAULT_PAGE_SIZE;
  pConfig->nAutomerge = FTS5_DEFAULT_AUTOMERGE;
  pConfig->nUsermerge = FTS5_DEFAULT_USERMERGE;
  pConfig->nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
  pConfig->nHashSize = FTS5_DEFAULT_HASHSIZE;
  pConfig->nDeleteMerge = FTS5_DEFAULT_DELETE_AUTOMERGE;

  zSql = sqlite3Fts5Mprintf(&rc, zSelect, pConfig->zDb, pConfig->zName);
  if( zSql ){
    rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p, 0);
    sqlite3_free(zSql);
  }

Changes to ext/fts5/fts5_expr.c.
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
      pRet = sqlite3Fts5ParseNode(pParse, FTS5_AND, pLeft, pRight, 0);
    }
  }

  return pRet;
}

#ifdef SQLITE_TEST
static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){
  sqlite3_int64 nByte = 0;
  Fts5ExprTerm *p;
  char *zQuoted;

  /* Determine the maximum amount of space required. */
  for(p=pTerm; p; p=p->pSynonym){







|







2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
      pRet = sqlite3Fts5ParseNode(pParse, FTS5_AND, pLeft, pRight, 0);
    }
  }

  return pRet;
}

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){
  sqlite3_int64 nByte = 0;
  Fts5ExprTerm *p;
  char *zQuoted;

  /* Determine the maximum amount of space required. */
  for(p=pTerm; p; p=p->pSynonym){
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
    int iCode;
    int bRemoveDiacritics = 0;
    iCode = sqlite3_value_int(apVal[0]);
    if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]);
    sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics));
  }
}
#endif /* ifdef SQLITE_TEST */

/*
** This is called during initialization to register the fts5_expr() scalar
** UDF with the SQLite handle passed as the only argument.
*/
int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){
#ifdef SQLITE_TEST
  struct Fts5ExprFunc {
    const char *z;
    void (*x)(sqlite3_context*,int,sqlite3_value**);
  } aFunc[] = {
    { "fts5_expr",     fts5ExprFunctionHr },
    { "fts5_expr_tcl", fts5ExprFunctionTcl },
    { "fts5_isalnum",  fts5ExprIsAlnum },







|






|







2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
    int iCode;
    int bRemoveDiacritics = 0;
    iCode = sqlite3_value_int(apVal[0]);
    if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]);
    sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics));
  }
}
#endif /* if SQLITE_TEST || SQLITE_FTS5_DEBUG */

/*
** This is called during initialization to register the fts5_expr() scalar
** UDF with the SQLite handle passed as the only argument.
*/
int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){
#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
  struct Fts5ExprFunc {
    const char *z;
    void (*x)(sqlite3_context*,int,sqlite3_value**);
  } aFunc[] = {
    { "fts5_expr",     fts5ExprFunctionHr },
    { "fts5_expr_tcl", fts5ExprFunctionTcl },
    { "fts5_isalnum",  fts5ExprIsAlnum },
Changes to ext/fts5/fts5_hash.c.
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
  }

  pList = 0;
  for(i=0; i<nMergeSlot; i++){
    pList = fts5HashEntryMerge(pList, ap[i]);
  }

  pHash->nEntry = 0;
  sqlite3_free(ap);
  *ppSorted = pList;
  return SQLITE_OK;
}

/*
** Query the hash table for a doclist associated with term pTerm/nTerm.







<







471
472
473
474
475
476
477

478
479
480
481
482
483
484
  }

  pList = 0;
  for(i=0; i<nMergeSlot; i++){
    pList = fts5HashEntryMerge(pList, ap[i]);
  }


  sqlite3_free(ap);
  *ppSorted = pList;
  return SQLITE_OK;
}

/*
** Query the hash table for a doclist associated with term pTerm/nTerm.
524
525
526
527
528
529
530






















531
532
533
534
535
536
537

int sqlite3Fts5HashScanInit(
  Fts5Hash *p,                    /* Hash table to query */
  const char *pTerm, int nTerm    /* Query prefix */
){
  return fts5HashEntrySort(p, pTerm, nTerm, &p->pScan);
}























void sqlite3Fts5HashScanNext(Fts5Hash *p){
  assert( !sqlite3Fts5HashScanEof(p) );
  p->pScan = p->pScan->pScanNext;
}

int sqlite3Fts5HashScanEof(Fts5Hash *p){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

int sqlite3Fts5HashScanInit(
  Fts5Hash *p,                    /* Hash table to query */
  const char *pTerm, int nTerm    /* Query prefix */
){
  return fts5HashEntrySort(p, pTerm, nTerm, &p->pScan);
}

#ifdef SQLITE_DEBUG
static int fts5HashCount(Fts5Hash *pHash){
  int nEntry = 0;
  int ii;
  for(ii=0; ii<pHash->nSlot; ii++){
    Fts5HashEntry *p = 0;
    for(p=pHash->aSlot[ii]; p; p=p->pHashNext){
      nEntry++;
    }
  }
  return nEntry;
}
#endif

/*
** Return true if the hash table is empty, false otherwise.
*/
int sqlite3Fts5HashIsEmpty(Fts5Hash *pHash){
  assert( pHash->nEntry==fts5HashCount(pHash) );
  return pHash->nEntry==0;
}

void sqlite3Fts5HashScanNext(Fts5Hash *p){
  assert( !sqlite3Fts5HashScanEof(p) );
  p->pScan = p->pScan->pScanNext;
}

int sqlite3Fts5HashScanEof(Fts5Hash *p){
Changes to ext/fts5/fts5_index.c.
52
53
54
55
56
57
58


















59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79


80
81
82
83
84
85
86
87
88
89
90
91
92
93
94






95
96
97
98
99
100
101

#if FTS5_MAX_PREFIX_INDEXES > 31
# error "FTS5_MAX_PREFIX_INDEXES is too large"
#endif

#define FTS5_MAX_LEVEL 64



















/*
** Details:
**
** The %_data table managed by this module,
**
**     CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
**
** , contains the following 5 types of records. See the comments surrounding
** the FTS5_*_ROWID macros below for a description of how %_data rowids are 
** assigned to each fo them.
**
** 1. Structure Records:
**
**   The set of segments that make up an index - the index structure - are
**   recorded in a single record within the %_data table. The record consists
**   of a single 32-bit configuration cookie value followed by a list of 
**   SQLite varints. If the FTS table features more than one index (because
**   there are one or more prefix indexes), it is guaranteed that all share
**   the same cookie value.
**
**   Immediately following the configuration cookie, the record begins with


**   three varints:
**
**     + number of levels,
**     + total number of segments on all levels,
**     + value of write counter.
**
**   Then, for each level from 0 to nMax:
**
**     + number of input segments in ongoing merge.
**     + total number of segments in level.
**     + for each segment from oldest to newest:
**         + segment id (always > 0)
**         + first leaf page number (often 1, always greater than 0)
**         + final leaf page number
**






** 2. The Averages Record:
**
**   A single record within the %_data table. The data is a list of varints.
**   The first value is the number of rows in the index. Then, for each column
**   from left to right, the total number of tokens in the column for all
**   rows of the table.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







|







|
|
<
<

|
>
>
|














>
>
>
>
>
>







52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93


94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

#if FTS5_MAX_PREFIX_INDEXES > 31
# error "FTS5_MAX_PREFIX_INDEXES is too large"
#endif

#define FTS5_MAX_LEVEL 64

/*
** There are two versions of the format used for the structure record:
**
**   1. the legacy format, that may be read by all fts5 versions, and
**
**   2. the V2 format, which is used by contentless_delete=1 databases.
**
** Both begin with a 4-byte "configuration cookie" value. Then, a legacy
** format structure record contains a varint - the number of levels in
** the structure. Whereas a V2 structure record contains the constant
** 4 bytes [0xff 0x00 0x00 0x01]. This is unambiguous as the value of a
** varint has to be at least 16256 to begin with "0xFF". And the default
** maximum number of levels is 64. 
**
** See below for more on structure record formats.
*/
#define FTS5_STRUCTURE_V2 "\xFF\x00\x00\x01"

/*
** Details:
**
** The %_data table managed by this module,
**
**     CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
**
** , contains the following 6 types of records. See the comments surrounding
** the FTS5_*_ROWID macros below for a description of how %_data rowids are 
** assigned to each fo them.
**
** 1. Structure Records:
**
**   The set of segments that make up an index - the index structure - are
**   recorded in a single record within the %_data table. The record consists
**   of a single 32-bit configuration cookie value followed by a list of
**   SQLite varints. 


**
**   If the structure record is a V2 record, the configuration cookie is 
**   followed by the following 4 bytes: [0xFF 0x00 0x00 0x01]. 
**
**   Next, the record continues with three varints:
**
**     + number of levels,
**     + total number of segments on all levels,
**     + value of write counter.
**
**   Then, for each level from 0 to nMax:
**
**     + number of input segments in ongoing merge.
**     + total number of segments in level.
**     + for each segment from oldest to newest:
**         + segment id (always > 0)
**         + first leaf page number (often 1, always greater than 0)
**         + final leaf page number
**
**      Then, for V2 structures only:
**
**         + lower origin counter value,
**         + upper origin counter value,
**         + the number of tombstone hash pages.
**
** 2. The Averages Record:
**
**   A single record within the %_data table. The data is a list of varints.
**   The first value is the number of rows in the index. Then, for each column
**   from left to right, the total number of tokens in the column for all
**   rows of the table.
**
203
204
205
206
207
208
209
































210
211
212
213
214
215
216
**     * Page number of first child page. As a varint.
**
**     * Copy of first rowid on page indicated by previous field. As a varint.
**
**     * A list of delta-encoded varints - the first rowid on each subsequent
**       child page. 
**
































*/

/*
** Rowids for the averages and structure records in the %_data table.
*/
#define FTS5_AVERAGES_ROWID     1    /* Rowid used for the averages record */
#define FTS5_STRUCTURE_ROWID   10    /* The structure record */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
**     * Page number of first child page. As a varint.
**
**     * Copy of first rowid on page indicated by previous field. As a varint.
**
**     * A list of delta-encoded varints - the first rowid on each subsequent
**       child page. 
**
** 6. Tombstone Hash Page
**
**   These records are only ever present in contentless_delete=1 tables. 
**   There are zero or more of these associated with each segment. They
**   are used to store the tombstone rowids for rows contained in the
**   associated segments.
**
**   The set of nHashPg tombstone hash pages associated with a single 
**   segment together form a single hash table containing tombstone rowids.
**   To find the page of the hash on which a key might be stored:
**
**       iPg = (rowid % nHashPg)
**
**   Then, within page iPg, which has nSlot slots:
**
**       iSlot = (rowid / nHashPg) % nSlot
**
**   Each tombstone hash page begins with an 8 byte header: 
**
**     1-byte:  Key-size (the size in bytes of each slot). Either 4 or 8.
**     1-byte:  rowid-0-tombstone flag. This flag is only valid on the 
**              first tombstone hash page for each segment (iPg=0). If set,
**              the hash table contains rowid 0. If clear, it does not.
**              Rowid 0 is handled specially.
**     2-bytes: unused.
**     4-bytes: Big-endian integer containing number of entries on page.
**
**   Following this are nSlot 4 or 8 byte slots (depending on the key-size
**   in the first byte of the page header). The number of slots may be
**   determined based on the size of the page record and the key-size:
**
**     nSlot = (nByte - 8) / key-size
*/

/*
** Rowids for the averages and structure records in the %_data table.
*/
#define FTS5_AVERAGES_ROWID     1    /* Rowid used for the averages record */
#define FTS5_STRUCTURE_ROWID   10    /* The structure record */
236
237
238
239
240
241
242

243
244
245
246
247
248
249
 ((i64)(dlidx)  << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) +                  \
 ((i64)(height) << (FTS5_DATA_PAGE_B)) +                                       \
 ((i64)(pgno))                                                                 \
)

#define FTS5_SEGMENT_ROWID(segid, pgno)       fts5_dri(segid, 0, 0, pgno)
#define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno)


#ifdef SQLITE_DEBUG
int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB; }
#endif


/*







>







292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
 ((i64)(dlidx)  << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) +                  \
 ((i64)(height) << (FTS5_DATA_PAGE_B)) +                                       \
 ((i64)(pgno))                                                                 \
)

#define FTS5_SEGMENT_ROWID(segid, pgno)       fts5_dri(segid, 0, 0, pgno)
#define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno)
#define FTS5_TOMBSTONE_ROWID(segid,ipg)       fts5_dri(segid+(1<<16), 0, 0, ipg)

#ifdef SQLITE_DEBUG
int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB; }
#endif


/*
271
272
273
274
275
276
277






278
279
280
281
282
283
284
285
286
287
288
289
290
291


292
293
294
295
296
297
298
  u8 *p;                          /* Pointer to buffer containing record */
  int nn;                         /* Size of record in bytes */
  int szLeaf;                     /* Size of leaf without page-index */
};

/*
** One object per %_data table.






*/
struct Fts5Index {
  Fts5Config *pConfig;            /* Virtual table configuration */
  char *zDataTbl;                 /* Name of %_data table */
  int nWorkUnit;                  /* Leaf pages in a "unit" of work */

  /*
  ** Variables related to the accumulation of tokens and doclists within the
  ** in-memory hash tables before they are flushed to disk.
  */
  Fts5Hash *pHash;                /* Hash table for in-memory data */
  int nPendingData;               /* Current bytes of pending data */
  i64 iWriteRowid;                /* Rowid for current doc being written */
  int bDelete;                    /* Current write is a delete */



  /* Error state. */
  int rc;                         /* Current error code */

  /* State used by the fts5DataXXX() functions. */
  sqlite3_blob *pReader;          /* RO incr-blob open on %_data table */
  sqlite3_stmt *pWriter;          /* "INSERT ... %_data VALUES(?,?)" */







>
>
>
>
>
>














>
>







328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
  u8 *p;                          /* Pointer to buffer containing record */
  int nn;                         /* Size of record in bytes */
  int szLeaf;                     /* Size of leaf without page-index */
};

/*
** One object per %_data table.
**
** nContentlessDelete:
**   The number of contentless delete operations since the most recent
**   call to fts5IndexFlush() or fts5IndexDiscardData(). This is tracked
**   so that extra auto-merge work can be done by fts5IndexFlush() to
**   account for the delete operations.
*/
struct Fts5Index {
  Fts5Config *pConfig;            /* Virtual table configuration */
  char *zDataTbl;                 /* Name of %_data table */
  int nWorkUnit;                  /* Leaf pages in a "unit" of work */

  /*
  ** Variables related to the accumulation of tokens and doclists within the
  ** in-memory hash tables before they are flushed to disk.
  */
  Fts5Hash *pHash;                /* Hash table for in-memory data */
  int nPendingData;               /* Current bytes of pending data */
  i64 iWriteRowid;                /* Rowid for current doc being written */
  int bDelete;                    /* Current write is a delete */
  int nContentlessDelete;         /* Number of contentless delete ops */
  int nPendingRow;                /* Number of INSERT in hash table */

  /* Error state. */
  int rc;                         /* Current error code */

  /* State used by the fts5DataXXX() functions. */
  sqlite3_blob *pReader;          /* RO incr-blob open on %_data table */
  sqlite3_stmt *pWriter;          /* "INSERT ... %_data VALUES(?,?)" */
319
320
321
322
323
324
325





326
327
328
329
330







331
332
333
334
335
336
337
338
339

340
341
342
343
344
345
346
  int nSize;
};

/*
** The contents of the "structure" record for each index are represented
** using an Fts5Structure record in memory. Which uses instances of the 
** other Fts5StructureXXX types as components.





*/
struct Fts5StructureSegment {
  int iSegid;                     /* Segment id */
  int pgnoFirst;                  /* First leaf page number in segment */
  int pgnoLast;                   /* Last leaf page number in segment */







};
struct Fts5StructureLevel {
  int nMerge;                     /* Number of segments in incr-merge */
  int nSeg;                       /* Total number of segments on level */
  Fts5StructureSegment *aSeg;     /* Array of segments. aSeg[0] is oldest. */
};
struct Fts5Structure {
  int nRef;                       /* Object reference count */
  u64 nWriteCounter;              /* Total leaves written to level 0 */

  int nSegment;                   /* Total segments in this structure */
  int nLevel;                     /* Number of levels in this index */
  Fts5StructureLevel aLevel[1];   /* Array of nLevel level objects */
};

/*
** An object of type Fts5SegWriter is used to write to segments.







>
>
>
>
>





>
>
>
>
>
>
>









>







384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
  int nSize;
};

/*
** The contents of the "structure" record for each index are represented
** using an Fts5Structure record in memory. Which uses instances of the 
** other Fts5StructureXXX types as components.
**
** nOriginCntr:
**   This value is set to non-zero for structure records created for
**   contentlessdelete=1 tables only. In that case it represents the
**   origin value to apply to the next top-level segment created.
*/
struct Fts5StructureSegment {
  int iSegid;                     /* Segment id */
  int pgnoFirst;                  /* First leaf page number in segment */
  int pgnoLast;                   /* Last leaf page number in segment */

  /* contentlessdelete=1 tables only: */
  u64 iOrigin1;
  u64 iOrigin2;
  int nPgTombstone;               /* Number of tombstone hash table pages */
  u64 nEntryTombstone;            /* Number of tombstone entries that "count" */
  u64 nEntry;                     /* Number of rows in this segment */
};
struct Fts5StructureLevel {
  int nMerge;                     /* Number of segments in incr-merge */
  int nSeg;                       /* Total number of segments on level */
  Fts5StructureSegment *aSeg;     /* Array of segments. aSeg[0] is oldest. */
};
struct Fts5Structure {
  int nRef;                       /* Object reference count */
  u64 nWriteCounter;              /* Total leaves written to level 0 */
  u64 nOriginCntr;                /* Origin value for next top-level segment */
  int nSegment;                   /* Total segments in this structure */
  int nLevel;                     /* Number of levels in this index */
  Fts5StructureLevel aLevel[1];   /* Array of nLevel level objects */
};

/*
** An object of type Fts5SegWriter is used to write to segments.
421
422
423
424
425
426
427







428
429
430
431
432
433
434
435


436
437
438
439
440
441
442
**
**     For each rowid on the page corresponding to the current term, the
**     corresponding aRowidOffset[] entry is set to the byte offset of the
**     start of the "position-list-size" field within the page.
**
** iTermIdx:
**     Index of current term on iTermLeafPgno.







*/
struct Fts5SegIter {
  Fts5StructureSegment *pSeg;     /* Segment to iterate through */
  int flags;                      /* Mask of configuration flags */
  int iLeafPgno;                  /* Current leaf page number */
  Fts5Data *pLeaf;                /* Current leaf data */
  Fts5Data *pNextLeaf;            /* Leaf page (iLeafPgno+1) */
  i64 iLeafOffset;                /* Byte offset within current leaf */



  /* Next method */
  void (*xNext)(Fts5Index*, Fts5SegIter*, int*);

  /* The page and offset from which the current term was read. The offset 
  ** is the offset of the first rowid in the current doclist.  */
  int iTermLeafPgno;







>
>
>
>
>
>
>








>
>







499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
**
**     For each rowid on the page corresponding to the current term, the
**     corresponding aRowidOffset[] entry is set to the byte offset of the
**     start of the "position-list-size" field within the page.
**
** iTermIdx:
**     Index of current term on iTermLeafPgno.
**
** apTombstone/nTombstone:
**     These are used for contentless_delete=1 tables only. When the cursor
**     is first allocated, the apTombstone[] array is allocated so that it
**     is large enough for all tombstones hash pages associated with the
**     segment. The pages themselves are loaded lazily from the database as
**     they are required.
*/
struct Fts5SegIter {
  Fts5StructureSegment *pSeg;     /* Segment to iterate through */
  int flags;                      /* Mask of configuration flags */
  int iLeafPgno;                  /* Current leaf page number */
  Fts5Data *pLeaf;                /* Current leaf data */
  Fts5Data *pNextLeaf;            /* Leaf page (iLeafPgno+1) */
  i64 iLeafOffset;                /* Byte offset within current leaf */
  Fts5Data **apTombstone;         /* Array of tombstone pages */
  int nTombstone;

  /* Next method */
  void (*xNext)(Fts5Index*, Fts5SegIter*, int*);

  /* The page and offset from which the current term was read. The offset 
  ** is the offset of the first rowid in the current doclist.  */
  int iTermLeafPgno;
557
558
559
560
561
562
563






















































564
565
566
567
568
569
570
  aOut[0] = (iVal>>8);
  aOut[1] = (iVal&0xFF);
}

static u16 fts5GetU16(const u8 *aIn){
  return ((u16)aIn[0] << 8) + aIn[1];
} 























































/*
** Allocate and return a buffer at least nByte bytes in size.
**
** If an OOM error is encountered, return NULL and set the error code in
** the Fts5Index handle passed as the first argument.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
  aOut[0] = (iVal>>8);
  aOut[1] = (iVal&0xFF);
}

static u16 fts5GetU16(const u8 *aIn){
  return ((u16)aIn[0] << 8) + aIn[1];
} 

/*
** The only argument points to a buffer at least 8 bytes in size. This
** function interprets the first 8 bytes of the buffer as a 64-bit big-endian
** unsigned integer and returns the result.
*/
static u64 fts5GetU64(u8 *a){
  return ((u64)a[0] << 56)
       + ((u64)a[1] << 48)
       + ((u64)a[2] << 40)
       + ((u64)a[3] << 32)
       + ((u64)a[4] << 24)
       + ((u64)a[5] << 16)
       + ((u64)a[6] << 8)
       + ((u64)a[7] << 0);
}

/*
** The only argument points to a buffer at least 4 bytes in size. This
** function interprets the first 4 bytes of the buffer as a 32-bit big-endian
** unsigned integer and returns the result.
*/
static u32 fts5GetU32(const u8 *a){
  return ((u32)a[0] << 24)
       + ((u32)a[1] << 16)
       + ((u32)a[2] << 8)
       + ((u32)a[3] << 0);
} 

/*
** Write iVal, formated as a 64-bit big-endian unsigned integer, to the
** buffer indicated by the first argument.
*/
static void fts5PutU64(u8 *a, u64 iVal){
  a[0] = ((iVal >> 56) & 0xFF);
  a[1] = ((iVal >> 48) & 0xFF);
  a[2] = ((iVal >> 40) & 0xFF);
  a[3] = ((iVal >> 32) & 0xFF);
  a[4] = ((iVal >> 24) & 0xFF);
  a[5] = ((iVal >> 16) & 0xFF);
  a[6] = ((iVal >>  8) & 0xFF);
  a[7] = ((iVal >>  0) & 0xFF);
}

/*
** Write iVal, formated as a 32-bit big-endian unsigned integer, to the
** buffer indicated by the first argument.
*/
static void fts5PutU32(u8 *a, u32 iVal){
  a[0] = ((iVal >> 24) & 0xFF);
  a[1] = ((iVal >> 16) & 0xFF);
  a[2] = ((iVal >>  8) & 0xFF);
  a[3] = ((iVal >>  0) & 0xFF);
}

/*
** Allocate and return a buffer at least nByte bytes in size.
**
** If an OOM error is encountered, return NULL and set the error code in
** the Fts5Index handle passed as the first argument.
*/
785
786
787
788
789
790
791
792

793
794
795






796
797
798
799
800
801
802
  sqlite3_step(p->pDeleter);
  p->rc = sqlite3_reset(p->pDeleter);
}

/*
** Remove all records associated with segment iSegid.
*/
static void fts5DataRemoveSegment(Fts5Index *p, int iSegid){

  i64 iFirst = FTS5_SEGMENT_ROWID(iSegid, 0);
  i64 iLast = FTS5_SEGMENT_ROWID(iSegid+1, 0)-1;
  fts5DataDelete(p, iFirst, iLast);






  if( p->pIdxDeleter==0 ){
    Fts5Config *pConfig = p->pConfig;
    fts5IndexPrepareStmt(p, &p->pIdxDeleter, sqlite3_mprintf(
          "DELETE FROM '%q'.'%q_idx' WHERE segid=?",
          pConfig->zDb, pConfig->zName
    ));
  }







|
>



>
>
>
>
>
>







926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
  sqlite3_step(p->pDeleter);
  p->rc = sqlite3_reset(p->pDeleter);
}

/*
** Remove all records associated with segment iSegid.
*/
static void fts5DataRemoveSegment(Fts5Index *p, Fts5StructureSegment *pSeg){
  int iSegid = pSeg->iSegid;
  i64 iFirst = FTS5_SEGMENT_ROWID(iSegid, 0);
  i64 iLast = FTS5_SEGMENT_ROWID(iSegid+1, 0)-1;
  fts5DataDelete(p, iFirst, iLast);

  if( pSeg->nPgTombstone ){
    i64 iTomb1 = FTS5_TOMBSTONE_ROWID(iSegid, 0);
    i64 iTomb2 = FTS5_TOMBSTONE_ROWID(iSegid, pSeg->nPgTombstone-1);
    fts5DataDelete(p, iTomb1, iTomb2);
  }
  if( p->pIdxDeleter==0 ){
    Fts5Config *pConfig = p->pConfig;
    fts5IndexPrepareStmt(p, &p->pIdxDeleter, sqlite3_mprintf(
          "DELETE FROM '%q'.'%q_idx' WHERE segid=?",
          pConfig->zDb, pConfig->zName
    ));
  }
899
900
901
902
903
904
905


906
907
908
909






910
911
912
913
914
915
916
  int rc = SQLITE_OK;
  int i = 0;
  int iLvl;
  int nLevel = 0;
  int nSegment = 0;
  sqlite3_int64 nByte;            /* Bytes of space to allocate at pRet */
  Fts5Structure *pRet = 0;        /* Structure object to return */



  /* Grab the cookie value */
  if( piCookie ) *piCookie = sqlite3Fts5Get32(pData);
  i = 4;







  /* Read the total number of levels and segments from the start of the
  ** structure record.  */
  i += fts5GetVarint32(&pData[i], nLevel);
  i += fts5GetVarint32(&pData[i], nSegment);
  if( nLevel>FTS5_MAX_SEGMENT   || nLevel<0
   || nSegment>FTS5_MAX_SEGMENT || nSegment<0







>
>




>
>
>
>
>
>







1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
  int rc = SQLITE_OK;
  int i = 0;
  int iLvl;
  int nLevel = 0;
  int nSegment = 0;
  sqlite3_int64 nByte;            /* Bytes of space to allocate at pRet */
  Fts5Structure *pRet = 0;        /* Structure object to return */
  int bStructureV2 = 0;           /* True for FTS5_STRUCTURE_V2 */
  u64 nOriginCntr = 0;            /* Largest origin value seen so far */

  /* Grab the cookie value */
  if( piCookie ) *piCookie = sqlite3Fts5Get32(pData);
  i = 4;

  /* Check if this is a V2 structure record. Set bStructureV2 if it is. */
  if( 0==memcmp(&pData[i], FTS5_STRUCTURE_V2, 4) ){
    i += 4;
    bStructureV2 = 1;
  }

  /* Read the total number of levels and segments from the start of the
  ** structure record.  */
  i += fts5GetVarint32(&pData[i], nLevel);
  i += fts5GetVarint32(&pData[i], nSegment);
  if( nLevel>FTS5_MAX_SEGMENT   || nLevel<0
   || nSegment>FTS5_MAX_SEGMENT || nSegment<0
954
955
956
957
958
959
960








961
962
963
964
965
966
967
968
969
970



971
972
973
974
975
976
977
            rc = FTS5_CORRUPT;
            break;
          }
          assert( pSeg!=0 );
          i += fts5GetVarint32(&pData[i], pSeg->iSegid);
          i += fts5GetVarint32(&pData[i], pSeg->pgnoFirst);
          i += fts5GetVarint32(&pData[i], pSeg->pgnoLast);








          if( pSeg->pgnoLast<pSeg->pgnoFirst ){
            rc = FTS5_CORRUPT;
            break;
          }
        }
        if( iLvl>0 && pLvl[-1].nMerge && nTotal==0 ) rc = FTS5_CORRUPT;
        if( iLvl==nLevel-1 && pLvl->nMerge ) rc = FTS5_CORRUPT;
      }
    }
    if( nSegment!=0 && rc==SQLITE_OK ) rc = FTS5_CORRUPT;




    if( rc!=SQLITE_OK ){
      fts5StructureRelease(pRet);
      pRet = 0;
    }
  }








>
>
>
>
>
>
>
>










>
>
>







1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
            rc = FTS5_CORRUPT;
            break;
          }
          assert( pSeg!=0 );
          i += fts5GetVarint32(&pData[i], pSeg->iSegid);
          i += fts5GetVarint32(&pData[i], pSeg->pgnoFirst);
          i += fts5GetVarint32(&pData[i], pSeg->pgnoLast);
          if( bStructureV2 ){
            i += fts5GetVarint(&pData[i], &pSeg->iOrigin1);
            i += fts5GetVarint(&pData[i], &pSeg->iOrigin2);
            i += fts5GetVarint32(&pData[i], pSeg->nPgTombstone);
            i += fts5GetVarint(&pData[i], &pSeg->nEntryTombstone);
            i += fts5GetVarint(&pData[i], &pSeg->nEntry);
            nOriginCntr = MAX(nOriginCntr, pSeg->iOrigin2);
          }
          if( pSeg->pgnoLast<pSeg->pgnoFirst ){
            rc = FTS5_CORRUPT;
            break;
          }
        }
        if( iLvl>0 && pLvl[-1].nMerge && nTotal==0 ) rc = FTS5_CORRUPT;
        if( iLvl==nLevel-1 && pLvl->nMerge ) rc = FTS5_CORRUPT;
      }
    }
    if( nSegment!=0 && rc==SQLITE_OK ) rc = FTS5_CORRUPT;
    if( bStructureV2 ){
      pRet->nOriginCntr = nOriginCntr+1;
    }

    if( rc!=SQLITE_OK ){
      fts5StructureRelease(pRet);
      pRet = 0;
    }
  }

1176
1177
1178
1179
1180
1181
1182

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193



1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206

1207
1208
1209







1210
1211
1212
1213
1214
1215
1216
** error has already occurred, this function is a no-op.
*/
static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){
  if( p->rc==SQLITE_OK ){
    Fts5Buffer buf;               /* Buffer to serialize record into */
    int iLvl;                     /* Used to iterate through levels */
    int iCookie;                  /* Cookie value to store */


    assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
    memset(&buf, 0, sizeof(Fts5Buffer));

    /* Append the current configuration cookie */
    iCookie = p->pConfig->iCookie;
    if( iCookie<0 ) iCookie = 0;

    if( 0==sqlite3Fts5BufferSize(&p->rc, &buf, 4+9+9+9) ){
      sqlite3Fts5Put32(buf.p, iCookie);
      buf.n = 4;



      fts5BufferSafeAppendVarint(&buf, pStruct->nLevel);
      fts5BufferSafeAppendVarint(&buf, pStruct->nSegment);
      fts5BufferSafeAppendVarint(&buf, (i64)pStruct->nWriteCounter);
    }

    for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
      int iSeg;                     /* Used to iterate through segments */
      Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
      assert( pLvl->nMerge<=pLvl->nSeg );

      for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){

        fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].iSegid);
        fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoFirst);
        fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoLast);







      }
    }

    fts5DataWrite(p, FTS5_STRUCTURE_ROWID, buf.p, buf.n);
    fts5BufferFree(&buf);
  }
}







>








|


>
>
>













>
|
|
|
>
>
>
>
>
>
>







1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
** error has already occurred, this function is a no-op.
*/
static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){
  if( p->rc==SQLITE_OK ){
    Fts5Buffer buf;               /* Buffer to serialize record into */
    int iLvl;                     /* Used to iterate through levels */
    int iCookie;                  /* Cookie value to store */
    int nHdr = (pStruct->nOriginCntr>0 ? (4+4+9+9+9) : (4+9+9));

    assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
    memset(&buf, 0, sizeof(Fts5Buffer));

    /* Append the current configuration cookie */
    iCookie = p->pConfig->iCookie;
    if( iCookie<0 ) iCookie = 0;

    if( 0==sqlite3Fts5BufferSize(&p->rc, &buf, nHdr) ){
      sqlite3Fts5Put32(buf.p, iCookie);
      buf.n = 4;
      if( pStruct->nOriginCntr>0 ){
        fts5BufferSafeAppendBlob(&buf, FTS5_STRUCTURE_V2, 4);
      }
      fts5BufferSafeAppendVarint(&buf, pStruct->nLevel);
      fts5BufferSafeAppendVarint(&buf, pStruct->nSegment);
      fts5BufferSafeAppendVarint(&buf, (i64)pStruct->nWriteCounter);
    }

    for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
      int iSeg;                     /* Used to iterate through segments */
      Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
      assert( pLvl->nMerge<=pLvl->nSeg );

      for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
        Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
        fts5BufferAppendVarint(&p->rc, &buf, pSeg->iSegid);
        fts5BufferAppendVarint(&p->rc, &buf, pSeg->pgnoFirst);
        fts5BufferAppendVarint(&p->rc, &buf, pSeg->pgnoLast);
        if( pStruct->nOriginCntr>0 ){
          fts5BufferAppendVarint(&p->rc, &buf, pSeg->iOrigin1);
          fts5BufferAppendVarint(&p->rc, &buf, pSeg->iOrigin2);
          fts5BufferAppendVarint(&p->rc, &buf, pSeg->nPgTombstone);
          fts5BufferAppendVarint(&p->rc, &buf, pSeg->nEntryTombstone);
          fts5BufferAppendVarint(&p->rc, &buf, pSeg->nEntry);
        }
      }
    }

    fts5DataWrite(p, FTS5_STRUCTURE_ROWID, buf.p, buf.n);
    fts5BufferFree(&buf);
  }
}
1724
1725
1726
1727
1728
1729
1730

















1731
1732
1733
1734
1735
1736
1737
    pIter->xNext = fts5SegIterNext_Reverse;
  }else if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
    pIter->xNext = fts5SegIterNext_None;
  }else{
    pIter->xNext = fts5SegIterNext;
  }
}


















/*
** Initialize the iterator object pIter to iterate through the entries in
** segment pSeg. The iterator is left pointing to the first entry when 
** this function returns.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
    pIter->xNext = fts5SegIterNext_Reverse;
  }else if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
    pIter->xNext = fts5SegIterNext_None;
  }else{
    pIter->xNext = fts5SegIterNext;
  }
}

/*
** Allocate a tombstone hash page array (pIter->apTombstone) for the 
** iterator passed as the second argument. If an OOM error occurs, leave
** an error in the Fts5Index object.
*/
static void fts5SegIterAllocTombstone(Fts5Index *p, Fts5SegIter *pIter){
  const int nTomb = pIter->pSeg->nPgTombstone;
  if( nTomb>0 ){
    Fts5Data **apTomb = 0;
    apTomb = (Fts5Data**)sqlite3Fts5MallocZero(&p->rc, sizeof(Fts5Data)*nTomb);
    if( apTomb ){
      pIter->apTombstone = apTomb;
      pIter->nTombstone = nTomb;
    }
  }
}

/*
** Initialize the iterator object pIter to iterate through the entries in
** segment pSeg. The iterator is left pointing to the first entry when 
** this function returns.
**
** If an error occurs, Fts5Index.rc is set to an appropriate error code. If 
1766
1767
1768
1769
1770
1771
1772

1773
1774
1775
1776
1777
1778
1779
    pIter->iLeafOffset = 4;
    assert( pIter->pLeaf!=0 );
    assert_nc( pIter->pLeaf->nn>4 );
    assert_nc( fts5LeafFirstTermOff(pIter->pLeaf)==4 );
    pIter->iPgidxOff = pIter->pLeaf->szLeaf+1;
    fts5SegIterLoadTerm(p, pIter, 0);
    fts5SegIterLoadNPos(p, pIter);

  }
}

/*
** This function is only ever called on iterators created by calls to
** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set.
**







>







1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
    pIter->iLeafOffset = 4;
    assert( pIter->pLeaf!=0 );
    assert_nc( pIter->pLeaf->nn>4 );
    assert_nc( fts5LeafFirstTermOff(pIter->pLeaf)==4 );
    pIter->iPgidxOff = pIter->pLeaf->szLeaf+1;
    fts5SegIterLoadTerm(p, pIter, 0);
    fts5SegIterLoadNPos(p, pIter);
    fts5SegIterAllocTombstone(p, pIter);
  }
}

/*
** This function is only ever called on iterators created by calls to
** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set.
**
2467
2468
2469
2470
2471
2472
2473

2474
2475
2476
2477
2478
2479
2480
      if( flags & FTS5INDEX_QUERY_DESC ){
        fts5SegIterReverse(p, pIter);
      }
    }
  }

  fts5SegIterSetNext(p, pIter);


  /* Either:
  **
  **   1) an error has occurred, or
  **   2) the iterator points to EOF, or
  **   3) the iterator points to an entry with term (pTerm/nTerm), or
  **   4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points







>







2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
      if( flags & FTS5INDEX_QUERY_DESC ){
        fts5SegIterReverse(p, pIter);
      }
    }
  }

  fts5SegIterSetNext(p, pIter);
  fts5SegIterAllocTombstone(p, pIter);

  /* Either:
  **
  **   1) an error has occurred, or
  **   2) the iterator points to EOF, or
  **   3) the iterator points to an entry with term (pTerm/nTerm), or
  **   4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points
2546
2547
2548
2549
2550
2551
2552














2553
2554
2555
2556
2557
2558
2559
2560

2561
2562
2563
2564
2565
2566
2567
    }else{
      fts5SegIterLoadNPos(p, pIter);
    }
  }

  fts5SegIterSetNext(p, pIter);
}















/*
** Zero the iterator passed as the only argument.
*/
static void fts5SegIterClear(Fts5SegIter *pIter){
  fts5BufferFree(&pIter->term);
  fts5DataRelease(pIter->pLeaf);
  fts5DataRelease(pIter->pNextLeaf);

  fts5DlidxIterFree(pIter->pDlidx);
  sqlite3_free(pIter->aRowidOffset);
  memset(pIter, 0, sizeof(Fts5SegIter));
}

#ifdef SQLITE_DEBUG








>
>
>
>
>
>
>
>
>
>
>
>
>
>








>







2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
    }else{
      fts5SegIterLoadNPos(p, pIter);
    }
  }

  fts5SegIterSetNext(p, pIter);
}

/*
** Array ap[] contains n elements. Release each of these elements using
** fts5DataRelease(). Then free the array itself using sqlite3_free().
*/
static void fts5IndexFreeArray(Fts5Data **ap, int n){
  if( ap ){
    int ii;
    for(ii=0; ii<n; ii++){
      fts5DataRelease(ap[ii]);
    }
    sqlite3_free(ap);
  }
}

/*
** Zero the iterator passed as the only argument.
*/
static void fts5SegIterClear(Fts5SegIter *pIter){
  fts5BufferFree(&pIter->term);
  fts5DataRelease(pIter->pLeaf);
  fts5DataRelease(pIter->pNextLeaf);
  fts5IndexFreeArray(pIter->apTombstone, pIter->nTombstone);
  fts5DlidxIterFree(pIter->pDlidx);
  sqlite3_free(pIter->aRowidOffset);
  memset(pIter, 0, sizeof(Fts5SegIter));
}

#ifdef SQLITE_DEBUG

2890
2891
2892
2893
2894
2895
2896














































































2897
2898
2899
2900
2901
2902
2903
** Set the pIter->bEof variable based on the state of the sub-iterators.
*/
static void fts5MultiIterSetEof(Fts5Iter *pIter){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  pIter->base.bEof = pSeg->pLeaf==0;
  pIter->iSwitchRowid = pSeg->iRowid;
}















































































/*
** Move the iterator to the next entry. 
**
** If an error occurs, an error code is left in Fts5Index.rc. It is not 
** considered an error if the iterator reaches EOF, or if it is already at 
** EOF when this function is called.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
** Set the pIter->bEof variable based on the state of the sub-iterators.
*/
static void fts5MultiIterSetEof(Fts5Iter *pIter){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  pIter->base.bEof = pSeg->pLeaf==0;
  pIter->iSwitchRowid = pSeg->iRowid;
}

/*
** The argument to this macro must be an Fts5Data structure containing a
** tombstone hash page. This macro returns the key-size of the hash-page.
*/
#define TOMBSTONE_KEYSIZE(pPg) (pPg->p[0]==4 ? 4 : 8)

#define TOMBSTONE_NSLOT(pPg)   \
  ((pPg->nn > 16) ? ((pPg->nn-8) / TOMBSTONE_KEYSIZE(pPg)) : 1)

/*
** Query a single tombstone hash table for rowid iRowid. Return true if
** it is found or false otherwise. The tombstone hash table is one of
** nHashTable tables.
*/
static int fts5IndexTombstoneQuery(
  Fts5Data *pHash,                /* Hash table page to query */
  int nHashTable,                 /* Number of pages attached to segment */
  u64 iRowid                      /* Rowid to query hash for */
){
  const int szKey = TOMBSTONE_KEYSIZE(pHash);
  const int nSlot = TOMBSTONE_NSLOT(pHash);
  int iSlot = (iRowid / nHashTable) % nSlot;
  int nCollide = nSlot;

  if( iRowid==0 ){
    return pHash->p[1];
  }else if( szKey==4 ){
    u32 *aSlot = (u32*)&pHash->p[8];
    while( aSlot[iSlot] ){
      if( fts5GetU32((u8*)&aSlot[iSlot])==iRowid ) return 1;
      if( nCollide--==0 ) break;
      iSlot = (iSlot+1)%nSlot;
    }
  }else{
    u64 *aSlot = (u64*)&pHash->p[8];
    while( aSlot[iSlot] ){
      if( fts5GetU64((u8*)&aSlot[iSlot])==iRowid ) return 1;
      if( nCollide--==0 ) break;
      iSlot = (iSlot+1)%nSlot;
    }
  }

  return 0;
}

/*
** Return true if the iterator passed as the only argument points
** to an segment entry for which there is a tombstone. Return false
** if there is no tombstone or if the iterator is already at EOF.
*/
static int fts5MultiIterIsDeleted(Fts5Iter *pIter){
  int iFirst = pIter->aFirst[1].iFirst;
  Fts5SegIter *pSeg = &pIter->aSeg[iFirst];

  if( pSeg->pLeaf && pSeg->nTombstone ){
    /* Figure out which page the rowid might be present on. */
    int iPg = ((u64)pSeg->iRowid) % pSeg->nTombstone;
    assert( iPg>=0 );

    /* If tombstone hash page iPg has not yet been loaded from the 
    ** database, load it now. */
    if( pSeg->apTombstone[iPg]==0 ){
      pSeg->apTombstone[iPg] = fts5DataRead(pIter->pIndex,
          FTS5_TOMBSTONE_ROWID(pSeg->pSeg->iSegid, iPg)
      );
      if( pSeg->apTombstone[iPg]==0 ) return 0;
    }

    return fts5IndexTombstoneQuery(
        pSeg->apTombstone[iPg],
        pSeg->nTombstone,
        pSeg->iRowid
    );
  }

  return 0;
}

/*
** Move the iterator to the next entry. 
**
** If an error occurs, an error code is left in Fts5Index.rc. It is not 
** considered an error if the iterator reaches EOF, or if it is already at 
** EOF when this function is called.
2928
2929
2930
2931
2932
2933
2934
2935


2936
2937
2938
2939
2940
2941
2942
      fts5MultiIterSetEof(pIter);
      pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
      if( pSeg->pLeaf==0 ) return;
    }

    fts5AssertMultiIterSetup(p, pIter);
    assert( pSeg==&pIter->aSeg[pIter->aFirst[1].iFirst] && pSeg->pLeaf );
    if( pIter->bSkipEmpty==0 || pSeg->nPos ){


      pIter->xSetOutputs(pIter, pSeg);
      return;
    }
    bUseFrom = 0;
  }
}








|
>
>







3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
      fts5MultiIterSetEof(pIter);
      pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
      if( pSeg->pLeaf==0 ) return;
    }

    fts5AssertMultiIterSetup(p, pIter);
    assert( pSeg==&pIter->aSeg[pIter->aFirst[1].iFirst] && pSeg->pLeaf );
    if( (pIter->bSkipEmpty==0 || pSeg->nPos) 
      && 0==fts5MultiIterIsDeleted(pIter)
    ){
      pIter->xSetOutputs(pIter, pSeg);
      return;
    }
    bUseFrom = 0;
  }
}

2960
2961
2962
2963
2964
2965
2966
2967


2968
2969
2970
2971
2972
2973
2974
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;
      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( fts5MultiIterIsEmpty(p, pIter) );


  }
}

static void fts5IterSetOutputs_Noop(Fts5Iter *pUnused1, Fts5SegIter *pUnused2){
  UNUSED_PARAM2(pUnused1, pUnused2);
}








|
>
>







3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;
      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( (fts5MultiIterIsEmpty(p, pIter) || fts5MultiIterIsDeleted(pIter)) 
         && (p->rc==SQLITE_OK)
    );
  }
}

static void fts5IterSetOutputs_Noop(Fts5Iter *pUnused1, Fts5SegIter *pUnused2){
  UNUSED_PARAM2(pUnused1, pUnused2);
}

3515
3516
3517
3518
3519
3520
3521
3522


3523
3524
3525
3526
3527
3528
3529
        if( p->rc==SQLITE_OK ) pSeg->xNext(p, pSeg, 0);
        fts5MultiIterAdvanced(p, pNew, iEq, iIter);
      }
    }
    fts5MultiIterSetEof(pNew);
    fts5AssertMultiIterSetup(p, pNew);

    if( pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew) ){


      fts5MultiIterNext(p, pNew, 0, 0);
    }else if( pNew->base.bEof==0 ){
      Fts5SegIter *pSeg = &pNew->aSeg[pNew->aFirst[1].iFirst];
      pNew->xSetOutputs(pNew, pSeg);
    }

  }else{







|
>
>







3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
        if( p->rc==SQLITE_OK ) pSeg->xNext(p, pSeg, 0);
        fts5MultiIterAdvanced(p, pNew, iEq, iIter);
      }
    }
    fts5MultiIterSetEof(pNew);
    fts5AssertMultiIterSetup(p, pNew);

    if( (pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew))
     || fts5MultiIterIsDeleted(pNew)
    ){
      fts5MultiIterNext(p, pNew, 0, 0);
    }else if( pNew->base.bEof==0 ){
      Fts5SegIter *pSeg = &pNew->aSeg[pNew->aFirst[1].iFirst];
      pNew->xSetOutputs(pNew, pSeg);
    }

  }else{
3693
3694
3695
3696
3697
3698
3699

3700

3701
3702
3703
3704
3705
3706
3707
** Discard all data currently cached in the hash-tables.
*/
static void fts5IndexDiscardData(Fts5Index *p){
  assert( p->pHash || p->nPendingData==0 );
  if( p->pHash ){
    sqlite3Fts5HashClear(p->pHash);
    p->nPendingData = 0;

  }

}

/*
** Return the size of the prefix, in bytes, that buffer 
** (pNew/<length-unknown>) shares with buffer (pOld/nOld).
**
** Buffer (pNew/<length-unknown>) is guaranteed to be greater 







>

>







3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
** Discard all data currently cached in the hash-tables.
*/
static void fts5IndexDiscardData(Fts5Index *p){
  assert( p->pHash || p->nPendingData==0 );
  if( p->pHash ){
    sqlite3Fts5HashClear(p->pHash);
    p->nPendingData = 0;
    p->nPendingRow = 0;
  }
  p->nContentlessDelete = 0;
}

/*
** Return the size of the prefix, in bytes, that buffer 
** (pNew/<length-unknown>) shares with buffer (pOld/nOld).
**
** Buffer (pNew/<length-unknown>) is guaranteed to be greater 
4330
4331
4332
4333
4334
4335
4336






4337
4338
4339
4340
4341
4342
4343
    pLvlOut->nSeg++;
    pSeg->pgnoFirst = 1;
    pSeg->iSegid = iSegid;
    pStruct->nSegment++;

    /* Read input from all segments in the input level */
    nInput = pLvl->nSeg;






  }
  bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);

  assert( iLvl>=0 );
  for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, iLvl, nInput, &pIter);
      fts5MultiIterEof(p, pIter)==0;
      fts5MultiIterNext(p, pIter, 0, 0)







>
>
>
>
>
>







4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
    pLvlOut->nSeg++;
    pSeg->pgnoFirst = 1;
    pSeg->iSegid = iSegid;
    pStruct->nSegment++;

    /* Read input from all segments in the input level */
    nInput = pLvl->nSeg;

    /* Set the range of origins that will go into the output segment. */
    if( pStruct->nOriginCntr>0 ){
      pSeg->iOrigin1 = pLvl->aSeg[0].iOrigin1;
      pSeg->iOrigin2 = pLvl->aSeg[pLvl->nSeg-1].iOrigin2;
    }
  }
  bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);

  assert( iLvl>=0 );
  for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, iLvl, nInput, &pIter);
      fts5MultiIterEof(p, pIter)==0;
      fts5MultiIterNext(p, pIter, 0, 0)
4389
4390
4391
4392
4393
4394
4395

4396


4397
4398
4399
4400
4401
4402
4403
4404
  fts5WriteFinish(p, &writer, &pSeg->pgnoLast);

  assert( pIter!=0 || p->rc!=SQLITE_OK );
  if( fts5MultiIterEof(p, pIter) ){
    int i;

    /* Remove the redundant segments from the %_data table */

    for(i=0; i<nInput; i++){


      fts5DataRemoveSegment(p, pLvl->aSeg[i].iSegid);
    }

    /* Remove the redundant segments from the input level */
    if( pLvl->nSeg!=nInput ){
      int nMove = (pLvl->nSeg - nInput) * sizeof(Fts5StructureSegment);
      memmove(pLvl->aSeg, &pLvl->aSeg[nInput], nMove);
    }







>

>
>
|







4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
  fts5WriteFinish(p, &writer, &pSeg->pgnoLast);

  assert( pIter!=0 || p->rc!=SQLITE_OK );
  if( fts5MultiIterEof(p, pIter) ){
    int i;

    /* Remove the redundant segments from the %_data table */
    assert( pSeg->nEntry==0 );
    for(i=0; i<nInput; i++){
      Fts5StructureSegment *pOld = &pLvl->aSeg[i];
      pSeg->nEntry += (pOld->nEntry - pOld->nEntryTombstone);
      fts5DataRemoveSegment(p, pOld);
    }

    /* Remove the redundant segments from the input level */
    if( pLvl->nSeg!=nInput ){
      int nMove = (pLvl->nSeg - nInput) * sizeof(Fts5StructureSegment);
      memmove(pLvl->aSeg, &pLvl->aSeg[nInput], nMove);
    }
4415
4416
4417
4418
4419
4420
4421





































4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442

4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473


4474
4475
4476
4477
4478
4479
4480
    pLvl->nMerge = nInput;
  }

  fts5MultiIterFree(pIter);
  fts5BufferFree(&term);
  if( pnRem ) *pnRem -= writer.nLeafWritten;
}






































/*
** Do up to nPg pages of automerge work on the index.
**
** Return true if any changes were actually made, or false otherwise.
*/
static int fts5IndexMerge(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5Structure **ppStruct,       /* IN/OUT: Current structure of index */
  int nPg,                        /* Pages of work to do */
  int nMin                        /* Minimum number of segments to merge */
){
  int nRem = nPg;
  int bRet = 0;
  Fts5Structure *pStruct = *ppStruct;
  while( nRem>0 && p->rc==SQLITE_OK ){
    int iLvl;                   /* To iterate through levels */
    int iBestLvl = 0;           /* Level offering the most input segments */
    int nBest = 0;              /* Number of input segments on best level */

    /* Set iBestLvl to the level to read input segments from. */

    assert( pStruct->nLevel>0 );
    for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
      Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
      if( pLvl->nMerge ){
        if( pLvl->nMerge>nBest ){
          iBestLvl = iLvl;
          nBest = pLvl->nMerge;
        }
        break;
      }
      if( pLvl->nSeg>nBest ){
        nBest = pLvl->nSeg;
        iBestLvl = iLvl;
      }
    }

    /* If nBest is still 0, then the index must be empty. */
#ifdef SQLITE_DEBUG
    for(iLvl=0; nBest==0 && iLvl<pStruct->nLevel; iLvl++){
      assert( pStruct->aLevel[iLvl].nSeg==0 );
    }
#endif

    if( nBest<nMin && pStruct->aLevel[iBestLvl].nMerge==0 ){
      break;
    }
    bRet = 1;
    fts5IndexMergeLevel(p, &pStruct, iBestLvl, &nRem);
    if( p->rc==SQLITE_OK && pStruct->aLevel[iBestLvl].nMerge==0 ){
      fts5StructurePromote(p, iBestLvl+1, pStruct);
    }


  }
  *ppStruct = pStruct;
  return bRet;
}

/*
** A total of nLeaf leaf pages of data has just been flushed to a level-0







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




















|
>






|








|
<
<
<
|

<

<
|
<





>
>







4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804



4805
4806

4807

4808

4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
    pLvl->nMerge = nInput;
  }

  fts5MultiIterFree(pIter);
  fts5BufferFree(&term);
  if( pnRem ) *pnRem -= writer.nLeafWritten;
}

/*
** If this is not a contentless_delete=1 table, or if the 'deletemerge'
** configuration option is set to 0, then this function always returns -1.
** Otherwise, it searches the structure object passed as the second argument
** for a level suitable for merging due to having a large number of 
** tombstones in the tombstone hash. If one is found, its index is returned.
** Otherwise, if there is no suitable level, -1.
*/
static int fts5IndexFindDeleteMerge(Fts5Index *p, Fts5Structure *pStruct){
  Fts5Config *pConfig = p->pConfig;
  int iRet = -1;
  if( pConfig->bContentlessDelete && pConfig->nDeleteMerge>0 ){
    int ii;
    int nBest = 0;

    for(ii=0; ii<pStruct->nLevel; ii++){
      Fts5StructureLevel *pLvl = &pStruct->aLevel[ii];
      i64 nEntry = 0;
      i64 nTomb = 0;
      int iSeg;
      for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
        nEntry += pLvl->aSeg[iSeg].nEntry;
        nTomb += pLvl->aSeg[iSeg].nEntryTombstone;
      }
      assert( nEntry>0 || pLvl->nSeg==0 );
      if( nEntry>0 ){
        int nPercent = (nTomb * 100) / nEntry;
        if( nPercent>=pConfig->nDeleteMerge && nPercent>nBest ){
          iRet = ii;
          nBest = nPercent;
        }
      }
    }
  }
  return iRet;
}

/*
** Do up to nPg pages of automerge work on the index.
**
** Return true if any changes were actually made, or false otherwise.
*/
static int fts5IndexMerge(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5Structure **ppStruct,       /* IN/OUT: Current structure of index */
  int nPg,                        /* Pages of work to do */
  int nMin                        /* Minimum number of segments to merge */
){
  int nRem = nPg;
  int bRet = 0;
  Fts5Structure *pStruct = *ppStruct;
  while( nRem>0 && p->rc==SQLITE_OK ){
    int iLvl;                   /* To iterate through levels */
    int iBestLvl = 0;           /* Level offering the most input segments */
    int nBest = 0;              /* Number of input segments on best level */

    /* Set iBestLvl to the level to read input segments from. Or to -1 if
    ** there is no level suitable to merge segments from.  */
    assert( pStruct->nLevel>0 );
    for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
      Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
      if( pLvl->nMerge ){
        if( pLvl->nMerge>nBest ){
          iBestLvl = iLvl;
          nBest = nMin;
        }
        break;
      }
      if( pLvl->nSeg>nBest ){
        nBest = pLvl->nSeg;
        iBestLvl = iLvl;
      }
    }
    if( nBest<nMin ){



      iBestLvl = fts5IndexFindDeleteMerge(p, pStruct);
    }



    if( iBestLvl<0 ) break;

    bRet = 1;
    fts5IndexMergeLevel(p, &pStruct, iBestLvl, &nRem);
    if( p->rc==SQLITE_OK && pStruct->aLevel[iBestLvl].nMerge==0 ){
      fts5StructurePromote(p, iBestLvl+1, pStruct);
    }

    if( nMin==1 ) nMin = 2;
  }
  *ppStruct = pStruct;
  return bRet;
}

/*
** A total of nLeaf leaf pages of data has just been flushed to a level-0
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988


4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156






5157
5158
5159
5160
5161
5162

5163
5164
5165
5166

5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177


5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196

5197
5198
5199
5200
5201
5202
5203




5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218

5219
5220
5221
5222
5223
5224
5225
  Fts5Structure *pStruct;
  int iSegid;
  int pgnoLast = 0;                 /* Last leaf page number in segment */

  /* Obtain a reference to the index structure and allocate a new segment-id
  ** for the new level-0 segment.  */
  pStruct = fts5StructureRead(p);
  iSegid = fts5AllocateSegid(p, pStruct);
  fts5StructureInvalidate(p);



  if( iSegid ){
    const int pgsz = p->pConfig->pgsz;
    int eDetail = p->pConfig->eDetail;
    int bSecureDelete = p->pConfig->bSecureDelete;
    Fts5StructureSegment *pSeg;   /* New segment within pStruct */
    Fts5Buffer *pBuf;             /* Buffer in which to assemble leaf page */
    Fts5Buffer *pPgidx;           /* Buffer in which to assemble pgidx */

    Fts5SegWriter writer;
    fts5WriteInit(p, &writer, iSegid);

    pBuf = &writer.writer.buf;
    pPgidx = &writer.writer.pgidx;

    /* fts5WriteInit() should have initialized the buffers to (most likely)
    ** the maximum space required. */
    assert( p->rc || pBuf->nSpace>=(pgsz + FTS5_DATA_PADDING) );
    assert( p->rc || pPgidx->nSpace>=(pgsz + FTS5_DATA_PADDING) );

    /* Begin scanning through hash table entries. This loop runs once for each
    ** term/doclist currently stored within the hash table. */
    if( p->rc==SQLITE_OK ){
      p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0);
    }
    while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
      const char *zTerm;          /* Buffer containing term */
      int nTerm;                  /* Size of zTerm in bytes */
      const u8 *pDoclist;         /* Pointer to doclist for this term */
      int nDoclist;               /* Size of doclist in bytes */

      /* Get the term and doclist for this entry. */
      sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);
      nTerm = (int)strlen(zTerm);
      if( bSecureDelete==0 ){
        fts5WriteAppendTerm(p, &writer, nTerm, (const u8*)zTerm);
        if( p->rc!=SQLITE_OK ) break;
        assert( writer.bFirstRowidInPage==0 );
      }

      if( !bSecureDelete && pgsz>=(pBuf->n + pPgidx->n + nDoclist + 1) ){
        /* The entire doclist will fit on the current leaf. */
        fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
      }else{
        int bTermWritten = !bSecureDelete;
        i64 iRowid = 0;
        i64 iPrev = 0;
        int iOff = 0;

        /* The entire doclist will not fit on this leaf. The following 
        ** loop iterates through the poslists that make up the current 
        ** doclist.  */
        while( p->rc==SQLITE_OK && iOff<nDoclist ){
          u64 iDelta = 0;
          iOff += fts5GetVarint(&pDoclist[iOff], &iDelta);
          iRowid += iDelta;

          /* If in secure delete mode, and if this entry in the poslist is
          ** in fact a delete, then edit the existing segments directly
          ** using fts5FlushSecureDelete().  */
          if( bSecureDelete ){
            if( eDetail==FTS5_DETAIL_NONE ){
              if( iOff<nDoclist && pDoclist[iOff]==0x00 ){
                fts5FlushSecureDelete(p, pStruct, zTerm, iRowid);
                iOff++;
                if( iOff<nDoclist && pDoclist[iOff]==0x00 ){
                  iOff++;
                  nDoclist = 0;
                }else{
                  continue;
                }
              }
            }else if( (pDoclist[iOff] & 0x01) ){
              fts5FlushSecureDelete(p, pStruct, zTerm, iRowid);
              if( p->rc!=SQLITE_OK || pDoclist[iOff]==0x01 ){
                iOff++;
                continue;
              }
            }
          }

          if( p->rc==SQLITE_OK && bTermWritten==0 ){
            fts5WriteAppendTerm(p, &writer, nTerm, (const u8*)zTerm);
            bTermWritten = 1;
            assert( p->rc!=SQLITE_OK || writer.bFirstRowidInPage==0 );
          }
          
          if( writer.bFirstRowidInPage ){
            fts5PutU16(&pBuf->p[0], (u16)pBuf->n);   /* first rowid on page */
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
            writer.bFirstRowidInPage = 0;
            fts5WriteDlidxAppend(p, &writer, iRowid);
          }else{
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid-iPrev);
          }
          if( p->rc!=SQLITE_OK ) break;
          assert( pBuf->n<=pBuf->nSpace );
          iPrev = iRowid;

          if( eDetail==FTS5_DETAIL_NONE ){
            if( iOff<nDoclist && pDoclist[iOff]==0 ){
              pBuf->p[pBuf->n++] = 0;
              iOff++;
              if( iOff<nDoclist && pDoclist[iOff]==0 ){
                pBuf->p[pBuf->n++] = 0;
                iOff++;
              }
            }
            if( (pBuf->n + pPgidx->n)>=pgsz ){
              fts5WriteFlushLeaf(p, &writer);
            }
          }else{
            int bDummy;
            int nPos;
            int nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
            nCopy += nPos;
            if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){
              /* The entire poslist will fit on the current leaf. So copy
              ** it in one go. */
              fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
            }else{
              /* The entire poslist will not fit on this leaf. So it needs
              ** to be broken into sections. The only qualification being
              ** that each varint must be stored contiguously.  */
              const u8 *pPoslist = &pDoclist[iOff];
              int iPos = 0;
              while( p->rc==SQLITE_OK ){
                int nSpace = pgsz - pBuf->n - pPgidx->n;
                int n = 0;
                if( (nCopy - iPos)<=nSpace ){
                  n = nCopy - iPos;
                }else{
                  n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
                }
                assert( n>0 );
                fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
                iPos += n;
                if( (pBuf->n + pPgidx->n)>=pgsz ){
                  fts5WriteFlushLeaf(p, &writer);
                }
                if( iPos>=nCopy ) break;
              }
            }
            iOff += nCopy;
          }
        }
      }

      /* TODO2: Doclist terminator written here. */
      /* pBuf->p[pBuf->n++] = '\0'; */
      assert( pBuf->n<=pBuf->nSpace );
      if( p->rc==SQLITE_OK ) sqlite3Fts5HashScanNext(pHash);
    }
    sqlite3Fts5HashClear(pHash);
    fts5WriteFinish(p, &writer, &pgnoLast);

    assert( p->rc!=SQLITE_OK || bSecureDelete || pgnoLast>0 );
    if( pgnoLast>0 ){
      /* Update the Fts5Structure. It is written back to the database by the
      ** fts5StructureRelease() call below.  */
      if( pStruct->nLevel==0 ){
        fts5StructureAddLevel(&p->rc, &pStruct);
      }
      fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0);
      if( p->rc==SQLITE_OK ){
        pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ];
        pSeg->iSegid = iSegid;
        pSeg->pgnoFirst = 1;
        pSeg->pgnoLast = pgnoLast;






        pStruct->nSegment++;
      }
      fts5StructurePromote(p, 0, pStruct);
    }
  }


  fts5IndexAutomerge(p, &pStruct, pgnoLast);
  fts5IndexCrisismerge(p, &pStruct);
  fts5StructureWrite(p, pStruct);
  fts5StructureRelease(pStruct);

}

/*
** Flush any data stored in the in-memory hash tables to the database.
*/
static void fts5IndexFlush(Fts5Index *p){
  /* Unless it is empty, flush the hash table to disk */
  if( p->nPendingData ){
    assert( p->pHash );
    p->nPendingData = 0;
    fts5FlushOneHash(p);


  }
}

static Fts5Structure *fts5IndexOptimizeStruct(
  Fts5Index *p, 
  Fts5Structure *pStruct
){
  Fts5Structure *pNew = 0;
  sqlite3_int64 nByte = sizeof(Fts5Structure);
  int nSeg = pStruct->nSegment;
  int i;

  /* Figure out if this structure requires optimization. A structure does
  ** not require optimization if either:
  **
  **  + it consists of fewer than two segments, or 
  **  + all segments are on the same level, or
  **  + all segments except one are currently inputs to a merge operation.
  **

  ** In the first case, return NULL. In the second, increment the ref-count
  ** on *pStruct and return a copy of the pointer to it.
  */
  if( nSeg<2 ) return 0;
  for(i=0; i<pStruct->nLevel; i++){
    int nThis = pStruct->aLevel[i].nSeg;
    if( nThis==nSeg || (nThis==nSeg-1 && pStruct->aLevel[i].nMerge==nThis) ){




      fts5StructureRef(pStruct);
      return pStruct;
    }
    assert( pStruct->aLevel[i].nMerge<=nThis );
  }

  nByte += (pStruct->nLevel+1) * sizeof(Fts5StructureLevel);
  pNew = (Fts5Structure*)sqlite3Fts5MallocZero(&p->rc, nByte);

  if( pNew ){
    Fts5StructureLevel *pLvl;
    nByte = nSeg * sizeof(Fts5StructureSegment);
    pNew->nLevel = MIN(pStruct->nLevel+1, FTS5_MAX_LEVEL);
    pNew->nRef = 1;
    pNew->nWriteCounter = pStruct->nWriteCounter;

    pLvl = &pNew->aLevel[pNew->nLevel-1];
    pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&p->rc, nByte);
    if( pLvl->aSeg ){
      int iLvl, iSeg;
      int iSegOut = 0;
      /* Iterate through all segments, from oldest to newest. Add them to
      ** the new Fts5Level object so that pLvl->aSeg[0] is the oldest







<


>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
|
|
|
|
|
|
>
|



>







|

<

>
>















|
|
|

>
|
|

|


|
>
>
>
>















>







5321
5322
5323
5324
5325
5326
5327

5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526

5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
  Fts5Structure *pStruct;
  int iSegid;
  int pgnoLast = 0;                 /* Last leaf page number in segment */

  /* Obtain a reference to the index structure and allocate a new segment-id
  ** for the new level-0 segment.  */
  pStruct = fts5StructureRead(p);

  fts5StructureInvalidate(p);

  if( sqlite3Fts5HashIsEmpty(pHash)==0 ){
    iSegid = fts5AllocateSegid(p, pStruct);
    if( iSegid ){
      const int pgsz = p->pConfig->pgsz;
      int eDetail = p->pConfig->eDetail;
      int bSecureDelete = p->pConfig->bSecureDelete;
      Fts5StructureSegment *pSeg; /* New segment within pStruct */
      Fts5Buffer *pBuf;           /* Buffer in which to assemble leaf page */
      Fts5Buffer *pPgidx;         /* Buffer in which to assemble pgidx */
  
      Fts5SegWriter writer;
      fts5WriteInit(p, &writer, iSegid);
  
      pBuf = &writer.writer.buf;
      pPgidx = &writer.writer.pgidx;
  
      /* fts5WriteInit() should have initialized the buffers to (most likely)
      ** the maximum space required. */
      assert( p->rc || pBuf->nSpace>=(pgsz + FTS5_DATA_PADDING) );
      assert( p->rc || pPgidx->nSpace>=(pgsz + FTS5_DATA_PADDING) );
  
      /* Begin scanning through hash table entries. This loop runs once for each
      ** term/doclist currently stored within the hash table. */
      if( p->rc==SQLITE_OK ){
        p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0);
      }
      while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
        const char *zTerm;        /* Buffer containing term */
        int nTerm;                /* Size of zTerm in bytes */
        const u8 *pDoclist;       /* Pointer to doclist for this term */
        int nDoclist;             /* Size of doclist in bytes */
  
        /* Get the term and doclist for this entry. */
        sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);
        nTerm = (int)strlen(zTerm);
        if( bSecureDelete==0 ){
          fts5WriteAppendTerm(p, &writer, nTerm, (const u8*)zTerm);
          if( p->rc!=SQLITE_OK ) break;
          assert( writer.bFirstRowidInPage==0 );
        }
  
        if( !bSecureDelete && pgsz>=(pBuf->n + pPgidx->n + nDoclist + 1) ){
          /* The entire doclist will fit on the current leaf. */
          fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
        }else{
          int bTermWritten = !bSecureDelete;
          i64 iRowid = 0;
          i64 iPrev = 0;
          int iOff = 0;
  
          /* The entire doclist will not fit on this leaf. The following 
          ** loop iterates through the poslists that make up the current 
          ** doclist.  */
          while( p->rc==SQLITE_OK && iOff<nDoclist ){
            u64 iDelta = 0;
            iOff += fts5GetVarint(&pDoclist[iOff], &iDelta);
            iRowid += iDelta;
  
            /* If in secure delete mode, and if this entry in the poslist is
            ** in fact a delete, then edit the existing segments directly
            ** using fts5FlushSecureDelete().  */
            if( bSecureDelete ){
              if( eDetail==FTS5_DETAIL_NONE ){
                if( iOff<nDoclist && pDoclist[iOff]==0x00 ){
                  fts5FlushSecureDelete(p, pStruct, zTerm, iRowid);
                  iOff++;
                  if( iOff<nDoclist && pDoclist[iOff]==0x00 ){
                    iOff++;
                    nDoclist = 0;
                  }else{
                    continue;
                  }
                }
              }else if( (pDoclist[iOff] & 0x01) ){
                fts5FlushSecureDelete(p, pStruct, zTerm, iRowid);
                if( p->rc!=SQLITE_OK || pDoclist[iOff]==0x01 ){
                  iOff++;
                  continue;
                }
              }
            }
  
            if( p->rc==SQLITE_OK && bTermWritten==0 ){
              fts5WriteAppendTerm(p, &writer, nTerm, (const u8*)zTerm);
              bTermWritten = 1;
              assert( p->rc!=SQLITE_OK || writer.bFirstRowidInPage==0 );
            }
            
            if( writer.bFirstRowidInPage ){
              fts5PutU16(&pBuf->p[0], (u16)pBuf->n);   /* first rowid on page */
              pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
              writer.bFirstRowidInPage = 0;
              fts5WriteDlidxAppend(p, &writer, iRowid);
            }else{
              pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid-iPrev);
            }
            if( p->rc!=SQLITE_OK ) break;
            assert( pBuf->n<=pBuf->nSpace );
            iPrev = iRowid;
  
            if( eDetail==FTS5_DETAIL_NONE ){
              if( iOff<nDoclist && pDoclist[iOff]==0 ){
                pBuf->p[pBuf->n++] = 0;
                iOff++;
                if( iOff<nDoclist && pDoclist[iOff]==0 ){
                  pBuf->p[pBuf->n++] = 0;
                  iOff++;
                }
              }
              if( (pBuf->n + pPgidx->n)>=pgsz ){
                fts5WriteFlushLeaf(p, &writer);
              }
            }else{
              int bDummy;
              int nPos;
              int nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
              nCopy += nPos;
              if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){
                /* The entire poslist will fit on the current leaf. So copy
                ** it in one go. */
                fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
              }else{
                /* The entire poslist will not fit on this leaf. So it needs
                ** to be broken into sections. The only qualification being
                ** that each varint must be stored contiguously.  */
                const u8 *pPoslist = &pDoclist[iOff];
                int iPos = 0;
                while( p->rc==SQLITE_OK ){
                  int nSpace = pgsz - pBuf->n - pPgidx->n;
                  int n = 0;
                  if( (nCopy - iPos)<=nSpace ){
                    n = nCopy - iPos;
                  }else{
                    n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
                  }
                  assert( n>0 );
                  fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
                  iPos += n;
                  if( (pBuf->n + pPgidx->n)>=pgsz ){
                    fts5WriteFlushLeaf(p, &writer);
                  }
                  if( iPos>=nCopy ) break;
                }
              }
              iOff += nCopy;
            }
          }
        }
  
        /* TODO2: Doclist terminator written here. */
        /* pBuf->p[pBuf->n++] = '\0'; */
        assert( pBuf->n<=pBuf->nSpace );
        if( p->rc==SQLITE_OK ) sqlite3Fts5HashScanNext(pHash);
      }
      sqlite3Fts5HashClear(pHash);
      fts5WriteFinish(p, &writer, &pgnoLast);
  
      assert( p->rc!=SQLITE_OK || bSecureDelete || pgnoLast>0 );
      if( pgnoLast>0 ){
        /* Update the Fts5Structure. It is written back to the database by the
        ** fts5StructureRelease() call below.  */
        if( pStruct->nLevel==0 ){
          fts5StructureAddLevel(&p->rc, &pStruct);
        }
        fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0);
        if( p->rc==SQLITE_OK ){
          pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ];
          pSeg->iSegid = iSegid;
          pSeg->pgnoFirst = 1;
          pSeg->pgnoLast = pgnoLast;
          if( pStruct->nOriginCntr>0 ){
            pSeg->iOrigin1 = pStruct->nOriginCntr;
            pSeg->iOrigin2 = pStruct->nOriginCntr;
            pSeg->nEntry = p->nPendingRow;
            pStruct->nOriginCntr++;
          }
          pStruct->nSegment++;
        }
        fts5StructurePromote(p, 0, pStruct);
      }
    }
  }

  fts5IndexAutomerge(p, &pStruct, pgnoLast + p->nContentlessDelete);
  fts5IndexCrisismerge(p, &pStruct);
  fts5StructureWrite(p, pStruct);
  fts5StructureRelease(pStruct);
  p->nContentlessDelete = 0;
}

/*
** Flush any data stored in the in-memory hash tables to the database.
*/
static void fts5IndexFlush(Fts5Index *p){
  /* Unless it is empty, flush the hash table to disk */
  if( p->nPendingData || p->nContentlessDelete ){
    assert( p->pHash );

    fts5FlushOneHash(p);
    p->nPendingData = 0;
    p->nPendingRow = 0;
  }
}

static Fts5Structure *fts5IndexOptimizeStruct(
  Fts5Index *p, 
  Fts5Structure *pStruct
){
  Fts5Structure *pNew = 0;
  sqlite3_int64 nByte = sizeof(Fts5Structure);
  int nSeg = pStruct->nSegment;
  int i;

  /* Figure out if this structure requires optimization. A structure does
  ** not require optimization if either:
  **
  **  1. it consists of fewer than two segments, or 
  **  2. all segments are on the same level, or
  **  3. all segments except one are currently inputs to a merge operation.
  **
  ** In the first case, if there are no tombstone hash pages, return NULL. In
  ** the second, increment the ref-count on *pStruct and return a copy of the
  ** pointer to it.
  */
  if( nSeg==0 ) return 0;
  for(i=0; i<pStruct->nLevel; i++){
    int nThis = pStruct->aLevel[i].nSeg;
    int nMerge = pStruct->aLevel[i].nMerge;
    if( nThis>0 && (nThis==nSeg || (nThis==nSeg-1 && nMerge==nThis)) ){
      if( nSeg==1 && nThis==1 && pStruct->aLevel[i].aSeg[0].nPgTombstone==0 ){
        return 0;
      }
      fts5StructureRef(pStruct);
      return pStruct;
    }
    assert( pStruct->aLevel[i].nMerge<=nThis );
  }

  nByte += (pStruct->nLevel+1) * sizeof(Fts5StructureLevel);
  pNew = (Fts5Structure*)sqlite3Fts5MallocZero(&p->rc, nByte);

  if( pNew ){
    Fts5StructureLevel *pLvl;
    nByte = nSeg * sizeof(Fts5StructureSegment);
    pNew->nLevel = MIN(pStruct->nLevel+1, FTS5_MAX_LEVEL);
    pNew->nRef = 1;
    pNew->nWriteCounter = pStruct->nWriteCounter;
    pNew->nOriginCntr = pStruct->nOriginCntr;
    pLvl = &pNew->aLevel[pNew->nLevel-1];
    pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&p->rc, nByte);
    if( pLvl->aSeg ){
      int iLvl, iSeg;
      int iSegOut = 0;
      /* Iterate through all segments, from oldest to newest. Add them to
      ** the new Fts5Level object so that pLvl->aSeg[0] is the oldest
5242
5243
5244
5245
5246
5247
5248

5249
5250
5251
5252
5253
5254
5255

int sqlite3Fts5IndexOptimize(Fts5Index *p){
  Fts5Structure *pStruct;
  Fts5Structure *pNew = 0;

  assert( p->rc==SQLITE_OK );
  fts5IndexFlush(p);

  pStruct = fts5StructureRead(p);
  fts5StructureInvalidate(p);

  if( pStruct ){
    pNew = fts5IndexOptimizeStruct(p, pStruct);
  }
  fts5StructureRelease(pStruct);







>







5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614

int sqlite3Fts5IndexOptimize(Fts5Index *p){
  Fts5Structure *pStruct;
  Fts5Structure *pNew = 0;

  assert( p->rc==SQLITE_OK );
  fts5IndexFlush(p);
  assert( p->nContentlessDelete==0 );
  pStruct = fts5StructureRead(p);
  fts5StructureInvalidate(p);

  if( pStruct ){
    pNew = fts5IndexOptimizeStruct(p, pStruct);
  }
  fts5StructureRelease(pStruct);
5271
5272
5273
5274
5275
5276
5277
5278



5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
}

/*
** This is called to implement the special "VALUES('merge', $nMerge)"
** INSERT command.
*/
int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge){
  Fts5Structure *pStruct = fts5StructureRead(p);



  if( pStruct ){
    int nMin = p->pConfig->nUsermerge;
    fts5StructureInvalidate(p);
    if( nMerge<0 ){
      Fts5Structure *pNew = fts5IndexOptimizeStruct(p, pStruct);
      fts5StructureRelease(pStruct);
      pStruct = pNew;
      nMin = 2;
      nMerge = nMerge*-1;
    }
    if( pStruct && pStruct->nLevel ){
      if( fts5IndexMerge(p, &pStruct, nMerge, nMin) ){
        fts5StructureWrite(p, pStruct);
      }
    }







|
>
>
>







|







5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
}

/*
** This is called to implement the special "VALUES('merge', $nMerge)"
** INSERT command.
*/
int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge){
  Fts5Structure *pStruct = 0;

  fts5IndexFlush(p);
  pStruct = fts5StructureRead(p);
  if( pStruct ){
    int nMin = p->pConfig->nUsermerge;
    fts5StructureInvalidate(p);
    if( nMerge<0 ){
      Fts5Structure *pNew = fts5IndexOptimizeStruct(p, pStruct);
      fts5StructureRelease(pStruct);
      pStruct = pNew;
      nMin = 1;
      nMerge = nMerge*-1;
    }
    if( pStruct && pStruct->nLevel ){
      if( fts5IndexMerge(p, &pStruct, nMerge, nMin) ){
        fts5StructureWrite(p, pStruct);
      }
    }
5793
5794
5795
5796
5797
5798
5799



5800
5801
5802
5803
5804
5805
5806
   || (p->nPendingData > p->pConfig->nHashSize) 
  ){
    fts5IndexFlush(p);
  }

  p->iWriteRowid = iRowid;
  p->bDelete = bDelete;



  return fts5IndexReturn(p);
}

/*
** Commit data to disk.
*/
int sqlite3Fts5IndexSync(Fts5Index *p){







>
>
>







6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
   || (p->nPendingData > p->pConfig->nHashSize) 
  ){
    fts5IndexFlush(p);
  }

  p->iWriteRowid = iRowid;
  p->bDelete = bDelete;
  if( bDelete==0 ){
    p->nPendingRow++;
  }
  return fts5IndexReturn(p);
}

/*
** Commit data to disk.
*/
int sqlite3Fts5IndexSync(Fts5Index *p){
5830
5831
5832
5833
5834
5835
5836



5837
5838
5839
5840
5841
5842
5843
** and the initial version of the "averages" record (a zero-byte blob).
*/
int sqlite3Fts5IndexReinit(Fts5Index *p){
  Fts5Structure s;
  fts5StructureInvalidate(p);
  fts5IndexDiscardData(p);
  memset(&s, 0, sizeof(Fts5Structure));



  fts5DataWrite(p, FTS5_AVERAGES_ROWID, (const u8*)"", 0);
  fts5StructureWrite(p, &s);
  return fts5IndexReturn(p);
}

/*
** Open a new Fts5Index handle. If the bCreate argument is true, create







>
>
>







6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
** and the initial version of the "averages" record (a zero-byte blob).
*/
int sqlite3Fts5IndexReinit(Fts5Index *p){
  Fts5Structure s;
  fts5StructureInvalidate(p);
  fts5IndexDiscardData(p);
  memset(&s, 0, sizeof(Fts5Structure));
  if( p->pConfig->bContentlessDelete ){
    s.nOriginCntr = 1;
  }
  fts5DataWrite(p, FTS5_AVERAGES_ROWID, (const u8*)"", 0);
  fts5StructureWrite(p, &s);
  return fts5IndexReturn(p);
}

/*
** Open a new Fts5Index handle. If the bCreate argument is true, create
6221
6222
6223
6224
6225
6226
6227





















































































































































































































































































































































6228
6229
6230
6231
6232
6233
6234
int sqlite3Fts5IndexLoadConfig(Fts5Index *p){
  Fts5Structure *pStruct;
  pStruct = fts5StructureRead(p);
  fts5StructureRelease(pStruct);
  return fts5IndexReturn(p);
}























































































































































































































































































































































/*************************************************************************
**************************************************************************
** Below this point is the implementation of the integrity-check 
** functionality.
*/








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
int sqlite3Fts5IndexLoadConfig(Fts5Index *p){
  Fts5Structure *pStruct;
  pStruct = fts5StructureRead(p);
  fts5StructureRelease(pStruct);
  return fts5IndexReturn(p);
}

/*
** Retrieve the origin value that will be used for the segment currently
** being accumulated in the in-memory hash table when it is flushed to
** disk. If successful, SQLITE_OK is returned and (*piOrigin) set to
** the queried value. Or, if an error occurs, an error code is returned
** and the final value of (*piOrigin) is undefined.
*/
int sqlite3Fts5IndexGetOrigin(Fts5Index *p, i64 *piOrigin){
  Fts5Structure *pStruct;
  pStruct = fts5StructureRead(p);
  if( pStruct ){
    *piOrigin = pStruct->nOriginCntr;
    fts5StructureRelease(pStruct);
  }
  return fts5IndexReturn(p);
}

/*
** Buffer pPg contains a page of a tombstone hash table - one of nPg pages
** associated with the same segment. This function adds rowid iRowid to
** the hash table. The caller is required to guarantee that there is at
** least one free slot on the page.
**
** If parameter bForce is false and the hash table is deemed to be full
** (more than half of the slots are occupied), then non-zero is returned
** and iRowid not inserted. Or, if bForce is true or if the hash table page
** is not full, iRowid is inserted and zero returned.
*/
static int fts5IndexTombstoneAddToPage(
  Fts5Data *pPg, 
  int bForce,
  int nPg, 
  u64 iRowid
){
  const int szKey = TOMBSTONE_KEYSIZE(pPg);
  const int nSlot = TOMBSTONE_NSLOT(pPg);
  const int nElem = fts5GetU32(&pPg->p[4]);
  int iSlot = (iRowid / nPg) % nSlot;
  int nCollide = nSlot;

  if( szKey==4 && iRowid>0xFFFFFFFF ) return 2;
  if( iRowid==0 ){
    pPg->p[1] = 0x01;
    return 0;
  }

  if( bForce==0 && nElem>=(nSlot/2) ){
    return 1;
  }

  fts5PutU32(&pPg->p[4], nElem+1);
  if( szKey==4 ){
    u32 *aSlot = (u32*)&pPg->p[8];
    while( aSlot[iSlot] ){
      iSlot = (iSlot + 1) % nSlot;
      if( nCollide--==0 ) return 0;
    }
    fts5PutU32((u8*)&aSlot[iSlot], (u32)iRowid);
  }else{
    u64 *aSlot = (u64*)&pPg->p[8];
    while( aSlot[iSlot] ){
      iSlot = (iSlot + 1) % nSlot;
      if( nCollide--==0 ) return 0;
    }
    fts5PutU64((u8*)&aSlot[iSlot], iRowid);
  }

  return 0;
}

/*
** This function attempts to build a new hash containing all the keys 
** currently in the tombstone hash table for segment pSeg. The new
** hash will be stored in the nOut buffers passed in array apOut[].
** All pages of the new hash use key-size szKey (4 or 8).
**
** Return 0 if the hash is successfully rebuilt into the nOut pages. 
** Or non-zero if it is not (because one page became overfull). In this 
** case the caller should retry with a larger nOut parameter.
**
** Parameter pData1 is page iPg1 of the hash table being rebuilt.
*/
static int fts5IndexTombstoneRehash(
  Fts5Index *p,
  Fts5StructureSegment *pSeg,     /* Segment to rebuild hash of */
  Fts5Data *pData1,               /* One page of current hash - or NULL */
  int iPg1,                       /* Which page of the current hash is pData1 */
  int szKey,                      /* 4 or 8, the keysize */
  int nOut,                       /* Number of output pages */
  Fts5Data **apOut                /* Array of output hash pages */
){
  int ii;
  int res = 0;

  /* Initialize the headers of all the output pages */
  for(ii=0; ii<nOut; ii++){
    apOut[ii]->p[0] = szKey;
    fts5PutU32(&apOut[ii]->p[4], 0);
  }

  /* Loop through the current pages of the hash table. */ 
  for(ii=0; res==0 && ii<pSeg->nPgTombstone; ii++){
    Fts5Data *pData = 0;          /* Page ii of the current hash table */
    Fts5Data *pFree = 0;          /* Free this at the end of the loop */

    if( iPg1==ii ){
      pData = pData1;
    }else{
      pFree = pData = fts5DataRead(p, FTS5_TOMBSTONE_ROWID(pSeg->iSegid, ii));
    }

    if( pData ){
      int szKeyIn = TOMBSTONE_KEYSIZE(pData);
      int nSlotIn = (pData->nn - 8) / szKeyIn;
      int iIn;
      for(iIn=0; iIn<nSlotIn; iIn++){
        u64 iVal = 0;

        /* Read the value from slot iIn of the input page into iVal. */
        if( szKeyIn==4 ){
          u32 *aSlot = (u32*)&pData->p[8];
          if( aSlot[iIn] ) iVal = fts5GetU32((u8*)&aSlot[iIn]);
        }else{
          u64 *aSlot = (u64*)&pData->p[8];
          if( aSlot[iIn] ) iVal = fts5GetU64((u8*)&aSlot[iIn]);
        }

        /* If iVal is not 0 at this point, insert it into the new hash table */
        if( iVal ){
          Fts5Data *pPg = apOut[(iVal % nOut)];
          res = fts5IndexTombstoneAddToPage(pPg, 0, nOut, iVal);
          if( res ) break;
        }
      }

      /* If this is page 0 of the old hash, copy the rowid-0-flag from the
      ** old hash to the new.  */
      if( ii==0 ){
        apOut[0]->p[1] = pData->p[1];
      }
    }
    fts5DataRelease(pFree);
  }

  return res;
}

/*
** This is called to rebuild the hash table belonging to segment pSeg.
** If parameter pData1 is not NULL, then one page of the existing hash table
** has already been loaded - pData1, which is page iPg1. The key-size for
** the new hash table is szKey (4 or 8).
**
** If successful, the new hash table is not written to disk. Instead, 
** output parameter (*pnOut) is set to the number of pages in the new
** hash table, and (*papOut) to point to an array of buffers containing
** the new page data.
**
** If an error occurs, an error code is left in the Fts5Index object and
** both output parameters set to 0 before returning.
*/
static void fts5IndexTombstoneRebuild(
  Fts5Index *p,
  Fts5StructureSegment *pSeg,     /* Segment to rebuild hash of */
  Fts5Data *pData1,               /* One page of current hash - or NULL */
  int iPg1,                       /* Which page of the current hash is pData1 */
  int szKey,                      /* 4 or 8, the keysize */
  int *pnOut,                     /* OUT: Number of output pages */
  Fts5Data ***papOut              /* OUT: Output hash pages */
){
  const int MINSLOT = 32;
  int nSlotPerPage = MAX(MINSLOT, (p->pConfig->pgsz - 8) / szKey);
  int nSlot = 0;                  /* Number of slots in each output page */
  int nOut = 0;

  /* Figure out how many output pages (nOut) and how many slots per 
  ** page (nSlot).  There are three possibilities: 
  **
  **   1. The hash table does not yet exist. In this case the new hash
  **      table will consist of a single page with MINSLOT slots.
  **
  **   2. The hash table exists but is currently a single page. In this
  **      case an attempt is made to grow the page to accommodate the new
  **      entry. The page is allowed to grow up to nSlotPerPage (see above)
  **      slots.
  **
  **   3. The hash table already consists of more than one page, or of
  **      a single page already so large that it cannot be grown. In this
  **      case the new hash consists of (nPg*2+1) pages of nSlotPerPage
  **      slots each, where nPg is the current number of pages in the 
  **      hash table.
  */
  if( pSeg->nPgTombstone==0 ){
    /* Case 1. */
    nOut = 1;
    nSlot = MINSLOT;
  }else if( pSeg->nPgTombstone==1 ){
    /* Case 2. */
    int nElem = (int)fts5GetU32(&pData1->p[4]);
    assert( pData1 && iPg1==0 );
    nOut = 1;
    nSlot = MAX(nElem*4, MINSLOT);
    if( nSlot>nSlotPerPage ) nOut = 0; 
  }
  if( nOut==0 ){
    /* Case 3. */
    nOut = (pSeg->nPgTombstone * 2 + 1);
    nSlot = nSlotPerPage;
  }

  /* Allocate the required array and output pages */
  while( 1 ){
    int res = 0;
    int ii = 0;
    int szPage = 0;
    Fts5Data **apOut = 0;

    /* Allocate space for the new hash table */
    assert( nSlot>=MINSLOT );
    apOut = (Fts5Data**)sqlite3Fts5MallocZero(&p->rc, sizeof(Fts5Data*) * nOut);
    szPage = 8 + nSlot*szKey;
    for(ii=0; ii<nOut; ii++){
      Fts5Data *pNew = (Fts5Data*)sqlite3Fts5MallocZero(&p->rc, 
          sizeof(Fts5Data)+szPage
      );
      if( pNew ){
        pNew->nn = szPage;
        pNew->p = (u8*)&pNew[1];
        apOut[ii] = pNew;
      }
    }

    /* Rebuild the hash table. */
    if( p->rc==SQLITE_OK ){
      res = fts5IndexTombstoneRehash(p, pSeg, pData1, iPg1, szKey, nOut, apOut);
    }
    if( res==0 ){
      if( p->rc ){
        fts5IndexFreeArray(apOut, nOut);
        apOut = 0;
        nOut = 0;
      }
      *pnOut = nOut;
      *papOut = apOut;
      break;
    }
    
    /* If control flows to here, it was not possible to rebuild the hash
    ** table. Free all buffers and then try again with more pages. */
    assert( p->rc==SQLITE_OK );
    fts5IndexFreeArray(apOut, nOut);
    nSlot = nSlotPerPage;
    nOut = nOut*2 + 1;
  }
}


/*
** Add a tombstone for rowid iRowid to segment pSeg.
*/
static void fts5IndexTombstoneAdd(
  Fts5Index *p, 
  Fts5StructureSegment *pSeg, 
  u64 iRowid
){
  Fts5Data *pPg = 0;
  int iPg = -1;
  int szKey = 0;
  int nHash = 0;
  Fts5Data **apHash = 0;

  p->nContentlessDelete++;

  if( pSeg->nPgTombstone>0 ){
    iPg = iRowid % pSeg->nPgTombstone;
    pPg = fts5DataRead(p, FTS5_TOMBSTONE_ROWID(pSeg->iSegid,iPg));
    if( pPg==0 ){
      assert( p->rc!=SQLITE_OK );
      return;
    }

    if( 0==fts5IndexTombstoneAddToPage(pPg, 0, pSeg->nPgTombstone, iRowid) ){
      fts5DataWrite(p, FTS5_TOMBSTONE_ROWID(pSeg->iSegid,iPg), pPg->p, pPg->nn);
      fts5DataRelease(pPg);
      return;
    }
  }

  /* Have to rebuild the hash table. First figure out the key-size (4 or 8). */
  szKey = pPg ? TOMBSTONE_KEYSIZE(pPg) : 4;
  if( iRowid>0xFFFFFFFF ) szKey = 8;

  /* Rebuild the hash table */
  fts5IndexTombstoneRebuild(p, pSeg, pPg, iPg, szKey, &nHash, &apHash);
  assert( p->rc==SQLITE_OK || (nHash==0 && apHash==0) );

  /* If all has succeeded, write the new rowid into one of the new hash
  ** table pages, then write them all out to disk. */
  if( nHash ){
    int ii = 0;
    fts5IndexTombstoneAddToPage(apHash[iRowid % nHash], 1, nHash, iRowid);
    for(ii=0; ii<nHash; ii++){
      i64 iTombstoneRowid = FTS5_TOMBSTONE_ROWID(pSeg->iSegid, ii);
      fts5DataWrite(p, iTombstoneRowid, apHash[ii]->p, apHash[ii]->nn);
    }
    pSeg->nPgTombstone = nHash;
    fts5StructureWrite(p, p->pStruct);
  }

  fts5DataRelease(pPg);
  fts5IndexFreeArray(apHash, nHash);
}

/*
** Add iRowid to the tombstone list of the segment or segments that contain
** rows from origin iOrigin. Return SQLITE_OK if successful, or an SQLite
** error code otherwise.
*/
int sqlite3Fts5IndexContentlessDelete(Fts5Index *p, i64 iOrigin, i64 iRowid){
  Fts5Structure *pStruct;
  pStruct = fts5StructureRead(p);
  if( pStruct ){
    int bFound = 0;               /* True after pSeg->nEntryTombstone incr. */
    int iLvl;
    for(iLvl=pStruct->nLevel-1; iLvl>=0; iLvl--){
      int iSeg;
      for(iSeg=pStruct->aLevel[iLvl].nSeg-1; iSeg>=0; iSeg--){
        Fts5StructureSegment *pSeg = &pStruct->aLevel[iLvl].aSeg[iSeg];
        if( pSeg->iOrigin1<=(u64)iOrigin && pSeg->iOrigin2>=(u64)iOrigin ){
          if( bFound==0 ){
            pSeg->nEntryTombstone++;
            bFound = 1;
          }
          fts5IndexTombstoneAdd(p, pSeg, iRowid);
        }
      }
    }
    fts5StructureRelease(pStruct);
  }
  return fts5IndexReturn(p);
}

/*************************************************************************
**************************************************************************
** Below this point is the implementation of the integrity-check 
** functionality.
*/

6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785

6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800

6801


6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818


6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841






6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855

/*************************************************************************
**************************************************************************
** Below this point is the implementation of the fts5_decode() scalar
** function only.
*/

#ifdef SQLITE_TEST
/*
** Decode a segment-data rowid from the %_data table. This function is
** the opposite of macro FTS5_SEGMENT_ROWID().
*/
static void fts5DecodeRowid(
  i64 iRowid,                     /* Rowid from %_data table */

  int *piSegid,                   /* OUT: Segment id */
  int *pbDlidx,                   /* OUT: Dlidx flag */
  int *piHeight,                  /* OUT: Height */
  int *piPgno                     /* OUT: Page number */
){
  *piPgno = (int)(iRowid & (((i64)1 << FTS5_DATA_PAGE_B) - 1));
  iRowid >>= FTS5_DATA_PAGE_B;

  *piHeight = (int)(iRowid & (((i64)1 << FTS5_DATA_HEIGHT_B) - 1));
  iRowid >>= FTS5_DATA_HEIGHT_B;

  *pbDlidx = (int)(iRowid & 0x0001);
  iRowid >>= FTS5_DATA_DLI_B;

  *piSegid = (int)(iRowid & (((i64)1 << FTS5_DATA_ID_B) - 1));

}


#endif /* SQLITE_TEST */

#ifdef SQLITE_TEST
static void fts5DebugRowid(int *pRc, Fts5Buffer *pBuf, i64 iKey){
  int iSegid, iHeight, iPgno, bDlidx;       /* Rowid compenents */
  fts5DecodeRowid(iKey, &iSegid, &bDlidx, &iHeight, &iPgno);

  if( iSegid==0 ){
    if( iKey==FTS5_AVERAGES_ROWID ){
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{averages} ");
    }else{
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{structure}");
    }
  }
  else{
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{%ssegid=%d h=%d pgno=%d}",
        bDlidx ? "dlidx " : "", iSegid, iHeight, iPgno


    );
  }
}
#endif /* SQLITE_TEST */

#ifdef SQLITE_TEST
static void fts5DebugStructure(
  int *pRc,                       /* IN/OUT: error code */
  Fts5Buffer *pBuf,
  Fts5Structure *p
){
  int iLvl, iSeg;                 /* Iterate through levels, segments */

  for(iLvl=0; iLvl<p->nLevel; iLvl++){
    Fts5StructureLevel *pLvl = &p->aLevel[iLvl];
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, 
        " {lvl=%d nMerge=%d nSeg=%d", iLvl, pLvl->nMerge, pLvl->nSeg
    );
    for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
      Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " {id=%d leaves=%d..%d}", 
          pSeg->iSegid, pSeg->pgnoFirst, pSeg->pgnoLast
      );






    }
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
  }
}
#endif /* SQLITE_TEST */

#ifdef SQLITE_TEST
/*
** This is part of the fts5_decode() debugging aid.
**
** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This
** function appends a human-readable representation of the same object
** to the buffer passed as the second argument. 
*/







|






>















>
|
>
>
|

|

|
|









|
|
>
>



|

|














|


>
>
>
>
>
>




|

|







7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576

/*************************************************************************
**************************************************************************
** Below this point is the implementation of the fts5_decode() scalar
** function only.
*/

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
/*
** Decode a segment-data rowid from the %_data table. This function is
** the opposite of macro FTS5_SEGMENT_ROWID().
*/
static void fts5DecodeRowid(
  i64 iRowid,                     /* Rowid from %_data table */
  int *pbTombstone,               /* OUT: Tombstone hash flag */
  int *piSegid,                   /* OUT: Segment id */
  int *pbDlidx,                   /* OUT: Dlidx flag */
  int *piHeight,                  /* OUT: Height */
  int *piPgno                     /* OUT: Page number */
){
  *piPgno = (int)(iRowid & (((i64)1 << FTS5_DATA_PAGE_B) - 1));
  iRowid >>= FTS5_DATA_PAGE_B;

  *piHeight = (int)(iRowid & (((i64)1 << FTS5_DATA_HEIGHT_B) - 1));
  iRowid >>= FTS5_DATA_HEIGHT_B;

  *pbDlidx = (int)(iRowid & 0x0001);
  iRowid >>= FTS5_DATA_DLI_B;

  *piSegid = (int)(iRowid & (((i64)1 << FTS5_DATA_ID_B) - 1));
  iRowid >>= FTS5_DATA_ID_B;

  *pbTombstone = (int)(iRowid & 0x0001);
}
#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
static void fts5DebugRowid(int *pRc, Fts5Buffer *pBuf, i64 iKey){
  int iSegid, iHeight, iPgno, bDlidx, bTomb;     /* Rowid compenents */
  fts5DecodeRowid(iKey, &bTomb, &iSegid, &bDlidx, &iHeight, &iPgno);

  if( iSegid==0 ){
    if( iKey==FTS5_AVERAGES_ROWID ){
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{averages} ");
    }else{
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{structure}");
    }
  }
  else{
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{%s%ssegid=%d h=%d pgno=%d}",
        bDlidx ? "dlidx " : "", 
        bTomb ? "tombstone " : "", 
        iSegid, iHeight, iPgno
    );
  }
}
#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
static void fts5DebugStructure(
  int *pRc,                       /* IN/OUT: error code */
  Fts5Buffer *pBuf,
  Fts5Structure *p
){
  int iLvl, iSeg;                 /* Iterate through levels, segments */

  for(iLvl=0; iLvl<p->nLevel; iLvl++){
    Fts5StructureLevel *pLvl = &p->aLevel[iLvl];
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, 
        " {lvl=%d nMerge=%d nSeg=%d", iLvl, pLvl->nMerge, pLvl->nSeg
    );
    for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
      Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " {id=%d leaves=%d..%d",
          pSeg->iSegid, pSeg->pgnoFirst, pSeg->pgnoLast
      );
      if( pSeg->iOrigin1>0 ){
        sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " origin=%lld..%lld",
            pSeg->iOrigin1, pSeg->iOrigin2
        );
      }
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
    }
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
  }
}
#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
/*
** This is part of the fts5_decode() debugging aid.
**
** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This
** function appends a human-readable representation of the same object
** to the buffer passed as the second argument. 
*/
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
    *pRc = rc;
    return;
  }

  fts5DebugStructure(pRc, pBuf, p);
  fts5StructureRelease(p);
}
#endif /* SQLITE_TEST */

#ifdef SQLITE_TEST
/*
** This is part of the fts5_decode() debugging aid.
**
** Arguments pBlob/nBlob contain an "averages" record. This function 
** appends a human-readable representation of record to the buffer passed 
** as the second argument. 
*/







|

|







7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
    *pRc = rc;
    return;
  }

  fts5DebugStructure(pRc, pBuf, p);
  fts5StructureRelease(p);
}
#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
/*
** This is part of the fts5_decode() debugging aid.
**
** Arguments pBlob/nBlob contain an "averages" record. This function 
** appends a human-readable representation of record to the buffer passed 
** as the second argument. 
*/
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
  while( i<nBlob ){
    u64 iVal;
    i += sqlite3Fts5GetVarint(&pBlob[i], &iVal);
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "%s%d", zSpace, (int)iVal);
    zSpace = " ";
  }
}
#endif /* SQLITE_TEST */

#ifdef SQLITE_TEST
/*
** Buffer (a/n) is assumed to contain a list of serialized varints. Read
** each varint and append its string representation to buffer pBuf. Return
** after either the input buffer is exhausted or a 0 value is read.
**
** The return value is the number of bytes read from the input buffer.
*/
static int fts5DecodePoslist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
  int iOff = 0;
  while( iOff<n ){
    int iVal;
    iOff += fts5GetVarint32(&a[iOff], iVal);
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %d", iVal);
  }
  return iOff;
}
#endif /* SQLITE_TEST */

#ifdef SQLITE_TEST
/*
** The start of buffer (a/n) contains the start of a doclist. The doclist
** may or may not finish within the buffer. This function appends a text
** representation of the part of the doclist that is present to buffer
** pBuf. 
**
** The return value is the number of bytes read from the input buffer.







|

|
















|

|







7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
  while( i<nBlob ){
    u64 iVal;
    i += sqlite3Fts5GetVarint(&pBlob[i], &iVal);
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "%s%d", zSpace, (int)iVal);
    zSpace = " ";
  }
}
#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
/*
** Buffer (a/n) is assumed to contain a list of serialized varints. Read
** each varint and append its string representation to buffer pBuf. Return
** after either the input buffer is exhausted or a 0 value is read.
**
** The return value is the number of bytes read from the input buffer.
*/
static int fts5DecodePoslist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
  int iOff = 0;
  while( iOff<n ){
    int iVal;
    iOff += fts5GetVarint32(&a[iOff], iVal);
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %d", iVal);
  }
  return iOff;
}
#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
/*
** The start of buffer (a/n) contains the start of a doclist. The doclist
** may or may not finish within the buffer. This function appends a text
** representation of the part of the doclist that is present to buffer
** pBuf. 
**
** The return value is the number of bytes read from the input buffer.
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
      iDocid += iDelta;
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
    }
  }

  return iOff;
}
#endif /* SQLITE_TEST */

#ifdef SQLITE_TEST
/*
** This function is part of the fts5_decode() debugging function. It is 
** only ever used with detail=none tables.
**
** Buffer (pData/nData) contains a doclist in the format used by detail=none
** tables. This function appends a human-readable version of that list to
** buffer pBuf.







|

|







7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
      iDocid += iDelta;
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
    }
  }

  return iOff;
}
#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
/*
** This function is part of the fts5_decode() debugging function. It is 
** only ever used with detail=none tables.
**
** Buffer (pData/nData) contains a doclist in the format used by detail=none
** tables. This function appends a human-readable version of that list to
** buffer pBuf.
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007

7008
7009
7010
7011
7012
7013
7014
        zApp = "*";
      }
    }

    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %lld%s", iRowid, zApp);
  }
}
#endif /* SQLITE_TEST */

#ifdef SQLITE_TEST
/*
** The implementation of user-defined scalar function fts5_decode().
*/
static void fts5DecodeFunction(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args (always 2) */
  sqlite3_value **apVal           /* Function arguments */
){
  i64 iRowid;                     /* Rowid for record being decoded */
  int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */

  const u8 *aBlob; int n;         /* Record to decode */
  u8 *a = 0;
  Fts5Buffer s;                   /* Build up text to return here */
  int rc = SQLITE_OK;             /* Return code */
  sqlite3_int64 nSpace = 0;
  int eDetailNone = (sqlite3_user_data(pCtx)!=0);








|

|










>







7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
        zApp = "*";
      }
    }

    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %lld%s", iRowid, zApp);
  }
}
#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
/*
** The implementation of user-defined scalar function fts5_decode().
*/
static void fts5DecodeFunction(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args (always 2) */
  sqlite3_value **apVal           /* Function arguments */
){
  i64 iRowid;                     /* Rowid for record being decoded */
  int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */
  int bTomb;
  const u8 *aBlob; int n;         /* Record to decode */
  u8 *a = 0;
  Fts5Buffer s;                   /* Build up text to return here */
  int rc = SQLITE_OK;             /* Return code */
  sqlite3_int64 nSpace = 0;
  int eDetailNone = (sqlite3_user_data(pCtx)!=0);

7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047






















7048
7049
7050
7051
7052
7053
7054
  n = sqlite3_value_bytes(apVal[1]);
  aBlob = sqlite3_value_blob(apVal[1]);
  nSpace = n + FTS5_DATA_ZERO_PADDING;
  a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace);
  if( a==0 ) goto decode_out;
  if( n>0 ) memcpy(a, aBlob, n);

  fts5DecodeRowid(iRowid, &iSegid, &bDlidx, &iHeight, &iPgno);

  fts5DebugRowid(&rc, &s, iRowid);
  if( bDlidx ){
    Fts5Data dlidx;
    Fts5DlidxLvl lvl;

    dlidx.p = a;
    dlidx.nn = n;

    memset(&lvl, 0, sizeof(Fts5DlidxLvl));
    lvl.pData = &dlidx;
    lvl.iLeafPgno = iPgno;

    for(fts5DlidxLvlNext(&lvl); lvl.bEof==0; fts5DlidxLvlNext(&lvl)){
      sqlite3Fts5BufferAppendPrintf(&rc, &s, 
          " %d(%lld)", lvl.iLeafPgno, lvl.iRowid
      );






















    }
  }else if( iSegid==0 ){
    if( iRowid==FTS5_AVERAGES_ROWID ){
      fts5DecodeAverages(&rc, &s, a, n);
    }else{
      fts5DecodeStructure(&rc, &s, a, n);
    }







|

















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
  n = sqlite3_value_bytes(apVal[1]);
  aBlob = sqlite3_value_blob(apVal[1]);
  nSpace = n + FTS5_DATA_ZERO_PADDING;
  a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace);
  if( a==0 ) goto decode_out;
  if( n>0 ) memcpy(a, aBlob, n);

  fts5DecodeRowid(iRowid, &bTomb, &iSegid, &bDlidx, &iHeight, &iPgno);

  fts5DebugRowid(&rc, &s, iRowid);
  if( bDlidx ){
    Fts5Data dlidx;
    Fts5DlidxLvl lvl;

    dlidx.p = a;
    dlidx.nn = n;

    memset(&lvl, 0, sizeof(Fts5DlidxLvl));
    lvl.pData = &dlidx;
    lvl.iLeafPgno = iPgno;

    for(fts5DlidxLvlNext(&lvl); lvl.bEof==0; fts5DlidxLvlNext(&lvl)){
      sqlite3Fts5BufferAppendPrintf(&rc, &s, 
          " %d(%lld)", lvl.iLeafPgno, lvl.iRowid
      );
    }
  }else if( bTomb ){
    u32 nElem  = fts5GetU32(&a[4]);
    int szKey = (aBlob[0]==4 || aBlob[0]==8) ? aBlob[0] : 8;
    int nSlot = (n - 8) / szKey;
    int ii;
    sqlite3Fts5BufferAppendPrintf(&rc, &s, " nElem=%d", (int)nElem);
    if( aBlob[1] ){
      sqlite3Fts5BufferAppendPrintf(&rc, &s, " 0");
    }
    for(ii=0; ii<nSlot; ii++){
      u64 iVal = 0;
      if( szKey==4 ){
        u32 *aSlot = (u32*)&aBlob[8];
        if( aSlot[ii] ) iVal = fts5GetU32((u8*)&aSlot[ii]);
      }else{
        u64 *aSlot = (u64*)&aBlob[8];
        if( aSlot[ii] ) iVal = fts5GetU64((u8*)&aSlot[ii]);
      }
      if( iVal!=0 ){
        sqlite3Fts5BufferAppendPrintf(&rc, &s, " %lld", (i64)iVal);
      }
    }
  }else if( iSegid==0 ){
    if( iRowid==FTS5_AVERAGES_ROWID ){
      fts5DecodeAverages(&rc, &s, a, n);
    }else{
      fts5DecodeStructure(&rc, &s, a, n);
    }
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
  if( rc==SQLITE_OK ){
    sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT);
  }else{
    sqlite3_result_error_code(pCtx, rc);
  }
  fts5BufferFree(&s);
}
#endif /* SQLITE_TEST */

#ifdef SQLITE_TEST 
/*
** The implementation of user-defined scalar function fts5_rowid().
*/
static void fts5RowidFunction(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args (always 2) */
  sqlite3_value **apVal           /* Function arguments */







|

|







7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
  if( rc==SQLITE_OK ){
    sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT);
  }else{
    sqlite3_result_error_code(pCtx, rc);
  }
  fts5BufferFree(&s);
}
#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG) 
/*
** The implementation of user-defined scalar function fts5_rowid().
*/
static void fts5RowidFunction(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args (always 2) */
  sqlite3_value **apVal           /* Function arguments */
7235
7236
7237
7238
7239
7240
7241
7242



































































































































































































































7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269






























7270
7271
7272
7273
7274
7275
7276
    }else{
      sqlite3_result_error(pCtx, 
        "first arg to fts5_rowid() must be 'segment'" , -1
      );
    }
  }
}
#endif /* SQLITE_TEST */




































































































































































































































/*
** This is called as part of registering the FTS5 module with database
** connection db. It registers several user-defined scalar functions useful
** with FTS5.
**
** If successful, SQLITE_OK is returned. If an error occurs, some other
** SQLite error code is returned instead.
*/
int sqlite3Fts5IndexInit(sqlite3 *db){
#ifdef SQLITE_TEST
  int rc = sqlite3_create_function(
      db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
  );

  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(
        db, "fts5_decode_none", 2, 
        SQLITE_UTF8, (void*)db, fts5DecodeFunction, 0, 0
    );
  }

  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(
        db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
    );
  }






























  return rc;
#else
  return SQLITE_OK;
  UNUSED_PARAM(db);
#endif
}








|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










|
















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
    }else{
      sqlite3_result_error(pCtx, 
        "first arg to fts5_rowid() must be 'segment'" , -1
      );
    }
  }
}
#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)

typedef struct Fts5StructVtab Fts5StructVtab;
struct Fts5StructVtab {
  sqlite3_vtab base;
};

typedef struct Fts5StructVcsr Fts5StructVcsr;
struct Fts5StructVcsr {
  sqlite3_vtab_cursor base;
  Fts5Structure *pStruct;
  int iLevel;
  int iSeg;
  int iRowid;
};

/*
** Create a new fts5_structure() table-valued function.
*/
static int fts5structConnectMethod(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  Fts5StructVtab *pNew = 0;
  int rc = SQLITE_OK;

  rc = sqlite3_declare_vtab(db, 
      "CREATE TABLE xyz("
          "level, segment, merge, segid, leaf1, leaf2, loc1, loc2, "
          "npgtombstone, nentrytombstone, nentry, struct HIDDEN);"
  );
  if( rc==SQLITE_OK ){
    pNew = sqlite3Fts5MallocZero(&rc, sizeof(*pNew));
  }

  *ppVtab = (sqlite3_vtab*)pNew;
  return rc;
}

/*
** We must have a single struct=? constraint that will be passed through
** into the xFilter method.  If there is no valid stmt=? constraint,
** then return an SQLITE_CONSTRAINT error.
*/
static int fts5structBestIndexMethod(
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  int i;
  int rc = SQLITE_CONSTRAINT;
  struct sqlite3_index_constraint *p;
  pIdxInfo->estimatedCost = (double)100;
  pIdxInfo->estimatedRows = 100;
  pIdxInfo->idxNum = 0;
  for(i=0, p=pIdxInfo->aConstraint; i<pIdxInfo->nConstraint; i++, p++){
    if( p->usable==0 ) continue;
    if( p->op==SQLITE_INDEX_CONSTRAINT_EQ && p->iColumn==11 ){
      rc = SQLITE_OK;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
      break;
    }
  }
  return rc;
}

/*
** This method is the destructor for bytecodevtab objects.
*/
static int fts5structDisconnectMethod(sqlite3_vtab *pVtab){
  Fts5StructVtab *p = (Fts5StructVtab*)pVtab;
  sqlite3_free(p);
  return SQLITE_OK;
}

/*
** Constructor for a new bytecodevtab_cursor object.
*/
static int fts5structOpenMethod(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCsr){
  int rc = SQLITE_OK;
  Fts5StructVcsr *pNew = 0;

  pNew = sqlite3Fts5MallocZero(&rc, sizeof(*pNew));
  *ppCsr = (sqlite3_vtab_cursor*)pNew;

  return SQLITE_OK;
}

/*
** Destructor for a bytecodevtab_cursor.
*/
static int fts5structCloseMethod(sqlite3_vtab_cursor *cur){
  Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur;
  fts5StructureRelease(pCsr->pStruct);
  sqlite3_free(pCsr);
  return SQLITE_OK;
}


/*
** Advance a bytecodevtab_cursor to its next row of output.
*/
static int fts5structNextMethod(sqlite3_vtab_cursor *cur){
  Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur;

  assert( pCsr->pStruct );
  pCsr->iSeg++;
  pCsr->iRowid++;
  while( pCsr->iSeg>=pCsr->pStruct->aLevel[pCsr->iLevel].nSeg ){
    pCsr->iLevel++;
    pCsr->iSeg = 0;
  }
  if( pCsr->iLevel>=pCsr->pStruct->nLevel ){
    fts5StructureRelease(pCsr->pStruct);
    pCsr->pStruct = 0;
  }
  return SQLITE_OK;
}

/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int fts5structEofMethod(sqlite3_vtab_cursor *cur){
  Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur;
  return pCsr->pStruct==0;
}

static int fts5structRowidMethod(
  sqlite3_vtab_cursor *cur, 
  sqlite_int64 *piRowid
){
  Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur;
  *piRowid = pCsr->iRowid;
  return SQLITE_OK;
}

/*
** Return values of columns for the row at which the bytecodevtab_cursor
** is currently pointing.
*/
static int fts5structColumnMethod(
  sqlite3_vtab_cursor *cur,   /* The cursor */
  sqlite3_context *ctx,       /* First argument to sqlite3_result_...() */
  int i                       /* Which column to return */
){
  Fts5StructVcsr *pCsr = (Fts5StructVcsr*)cur;
  Fts5Structure *p = pCsr->pStruct;
  Fts5StructureSegment *pSeg = &p->aLevel[pCsr->iLevel].aSeg[pCsr->iSeg];

  switch( i ){
    case 0: /* level */
      sqlite3_result_int(ctx, pCsr->iLevel);
      break;
    case 1: /* segment */
      sqlite3_result_int(ctx, pCsr->iSeg);
      break;
    case 2: /* merge */
      sqlite3_result_int(ctx, pCsr->iSeg < p->aLevel[pCsr->iLevel].nMerge);
      break;
    case 3: /* segid */
      sqlite3_result_int(ctx, pSeg->iSegid);
      break;
    case 4: /* leaf1 */
      sqlite3_result_int(ctx, pSeg->pgnoFirst);
      break;
    case 5: /* leaf2 */
      sqlite3_result_int(ctx, pSeg->pgnoLast);
      break;
    case 6: /* origin1 */
      sqlite3_result_int64(ctx, pSeg->iOrigin1);
      break;
    case 7: /* origin2 */
      sqlite3_result_int64(ctx, pSeg->iOrigin2);
      break;
    case 8: /* npgtombstone */
      sqlite3_result_int(ctx, pSeg->nPgTombstone);
      break;
    case 9: /* nentrytombstone */
      sqlite3_result_int64(ctx, pSeg->nEntryTombstone);
      break;
    case 10: /* nentry */
      sqlite3_result_int64(ctx, pSeg->nEntry);
      break;
  }
  return SQLITE_OK;
}

/*
** Initialize a cursor.
**
**    idxNum==0     means show all subprograms
**    idxNum==1     means show only the main bytecode and omit subprograms.
*/
static int fts5structFilterMethod(
  sqlite3_vtab_cursor *pVtabCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  Fts5StructVcsr *pCsr = (Fts5StructVcsr *)pVtabCursor;
  int rc = SQLITE_OK;

  const u8 *aBlob = 0;
  int nBlob = 0;

  assert( argc==1 );
  fts5StructureRelease(pCsr->pStruct);
  pCsr->pStruct = 0;

  nBlob = sqlite3_value_bytes(argv[0]);
  aBlob = (const u8*)sqlite3_value_blob(argv[0]);
  rc = fts5StructureDecode(aBlob, nBlob, 0, &pCsr->pStruct);
  if( rc==SQLITE_OK ){
    pCsr->iLevel = 0;
    pCsr->iRowid = 0;
    pCsr->iSeg = -1;
    rc = fts5structNextMethod(pVtabCursor);
  }

  return rc;
}

#endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */

/*
** This is called as part of registering the FTS5 module with database
** connection db. It registers several user-defined scalar functions useful
** with FTS5.
**
** If successful, SQLITE_OK is returned. If an error occurs, some other
** SQLite error code is returned instead.
*/
int sqlite3Fts5IndexInit(sqlite3 *db){
#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
  int rc = sqlite3_create_function(
      db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
  );

  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(
        db, "fts5_decode_none", 2, 
        SQLITE_UTF8, (void*)db, fts5DecodeFunction, 0, 0
    );
  }

  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(
        db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
    );
  }

  if( rc==SQLITE_OK ){
    static const sqlite3_module fts5structure_module = {
      0,                           /* iVersion      */
      0,                           /* xCreate       */
      fts5structConnectMethod,     /* xConnect      */
      fts5structBestIndexMethod,   /* xBestIndex    */
      fts5structDisconnectMethod,  /* xDisconnect   */
      0,                           /* xDestroy      */
      fts5structOpenMethod,        /* xOpen         */
      fts5structCloseMethod,       /* xClose        */
      fts5structFilterMethod,      /* xFilter       */
      fts5structNextMethod,        /* xNext         */
      fts5structEofMethod,         /* xEof          */
      fts5structColumnMethod,      /* xColumn       */
      fts5structRowidMethod,       /* xRowid        */
      0,                           /* xUpdate       */
      0,                           /* xBegin        */
      0,                           /* xSync         */
      0,                           /* xCommit       */
      0,                           /* xRollback     */
      0,                           /* xFindFunction */
      0,                           /* xRename       */
      0,                           /* xSavepoint    */
      0,                           /* xRelease      */
      0,                           /* xRollbackTo   */
      0                            /* xShadowName   */
    };
    rc = sqlite3_create_module(db, "fts5_structure", &fts5structure_module, 0);
  }
  return rc;
#else
  return SQLITE_OK;
  UNUSED_PARAM(db);
#endif
}

Changes to ext/fts5/fts5_main.c.
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
  sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
){
  Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
  Fts5Config *pConfig = pTab->p.pConfig;
  int eType0;                     /* value_type() of apVal[0] */
  int rc = SQLITE_OK;             /* Return code */
  int bUpdateOrDelete = 0;
  

  /* A transaction must be open when this is called. */
  assert( pTab->ts.eState==1 || pTab->ts.eState==2 );

  assert( pVtab->zErrMsg==0 );
  assert( nArg==1 || nArg==(2+pConfig->nCol+2) );
  assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER 







<







1620
1621
1622
1623
1624
1625
1626

1627
1628
1629
1630
1631
1632
1633
  sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
){
  Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
  Fts5Config *pConfig = pTab->p.pConfig;
  int eType0;                     /* value_type() of apVal[0] */
  int rc = SQLITE_OK;             /* Return code */
  int bUpdateOrDelete = 0;


  /* A transaction must be open when this is called. */
  assert( pTab->ts.eState==1 || pTab->ts.eState==2 );

  assert( pVtab->zErrMsg==0 );
  assert( nArg==1 || nArg==(2+pConfig->nCol+2) );
  assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER 
1650
1651
1652
1653
1654
1655
1656






1657

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682

1683



1684
1685
1686
1687
1688
1689
1690
   && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL 
  ){
    /* A "special" INSERT op. These are handled separately. */
    const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]);
    if( pConfig->eContent!=FTS5_CONTENT_NORMAL 
      && 0==sqlite3_stricmp("delete", z) 
    ){






      rc = fts5SpecialDelete(pTab, apVal);

    }else{
      rc = fts5SpecialInsert(pTab, z, apVal[2 + pConfig->nCol + 1]);
    }
  }else{
    /* A regular INSERT, UPDATE or DELETE statement. The trick here is that
    ** any conflict on the rowid value must be detected before any 
    ** modifications are made to the database file. There are 4 cases:
    **
    **   1) DELETE
    **   2) UPDATE (rowid not modified)
    **   3) UPDATE (rowid modified)
    **   4) INSERT
    **
    ** Cases 3 and 4 may violate the rowid constraint.
    */
    int eConflict = SQLITE_ABORT;
    if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
      eConflict = sqlite3_vtab_on_conflict(pConfig->db);
    }

    assert( eType0==SQLITE_INTEGER || eType0==SQLITE_NULL );
    assert( nArg!=1 || eType0==SQLITE_INTEGER );

    /* Filter out attempts to run UPDATE or DELETE on contentless tables.
    ** This is not suported.  */

    if( eType0==SQLITE_INTEGER && fts5IsContentless(pTab) ){



      pTab->p.base.zErrMsg = sqlite3_mprintf(
          "cannot %s contentless fts5 table: %s", 
          (nArg>1 ? "UPDATE" : "DELETE from"), pConfig->zName
      );
      rc = SQLITE_ERROR;
    }








>
>
>
>
>
>
|
>
















|







|
>
|
>
>
>







1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
   && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL 
  ){
    /* A "special" INSERT op. These are handled separately. */
    const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]);
    if( pConfig->eContent!=FTS5_CONTENT_NORMAL 
      && 0==sqlite3_stricmp("delete", z) 
    ){
      if( pConfig->bContentlessDelete ){
        fts5SetVtabError(pTab, 
            "'delete' may not be used with a contentless_delete=1 table"
        );
        rc = SQLITE_ERROR;
      }else{
        rc = fts5SpecialDelete(pTab, apVal);
      }
    }else{
      rc = fts5SpecialInsert(pTab, z, apVal[2 + pConfig->nCol + 1]);
    }
  }else{
    /* A regular INSERT, UPDATE or DELETE statement. The trick here is that
    ** any conflict on the rowid value must be detected before any 
    ** modifications are made to the database file. There are 4 cases:
    **
    **   1) DELETE
    **   2) UPDATE (rowid not modified)
    **   3) UPDATE (rowid modified)
    **   4) INSERT
    **
    ** Cases 3 and 4 may violate the rowid constraint.
    */
    int eConflict = SQLITE_ABORT;
    if( pConfig->eContent==FTS5_CONTENT_NORMAL || pConfig->bContentlessDelete ){
      eConflict = sqlite3_vtab_on_conflict(pConfig->db);
    }

    assert( eType0==SQLITE_INTEGER || eType0==SQLITE_NULL );
    assert( nArg!=1 || eType0==SQLITE_INTEGER );

    /* Filter out attempts to run UPDATE or DELETE on contentless tables.
    ** This is not suported. Except - DELETE is supported if the CREATE
    ** VIRTUAL TABLE statement contained "contentless_delete=1". */
    if( eType0==SQLITE_INTEGER 
     && pConfig->eContent==FTS5_CONTENT_NONE 
     && (nArg>1 || pConfig->bContentlessDelete==0)
    ){
      pTab->p.base.zErrMsg = sqlite3_mprintf(
          "cannot %s contentless fts5 table: %s", 
          (nArg>1 ? "UPDATE" : "DELETE from"), pConfig->zName
      );
      rc = SQLITE_ERROR;
    }

1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
** Implementation of xSync() method. 
*/
static int fts5SyncMethod(sqlite3_vtab *pVtab){
  int rc;
  Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
  fts5CheckTransactionState(pTab, FTS5_SYNC, 0);
  pTab->p.pConfig->pzErrmsg = &pTab->p.base.zErrMsg;
  fts5TripCursors(pTab);
  rc = sqlite3Fts5StorageSync(pTab->pStorage);
  pTab->p.pConfig->pzErrmsg = 0;
  return rc;
}

/*
** Implementation of xBegin() method. 
*/







<
|







1773
1774
1775
1776
1777
1778
1779

1780
1781
1782
1783
1784
1785
1786
1787
** Implementation of xSync() method. 
*/
static int fts5SyncMethod(sqlite3_vtab *pVtab){
  int rc;
  Fts5FullTable *pTab = (Fts5FullTable*)pVtab;
  fts5CheckTransactionState(pTab, FTS5_SYNC, 0);
  pTab->p.pConfig->pzErrmsg = &pTab->p.base.zErrMsg;

  rc = sqlite3Fts5FlushToDisk(&pTab->p);
  pTab->p.pConfig->pzErrmsg = 0;
  return rc;
}

/*
** Implementation of xBegin() method. 
*/
Changes to ext/fts5/fts5_storage.c.
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
      "SELECT %s FROM %s T WHERE T.%Q >= ? AND T.%Q <= ? ORDER BY T.%Q ASC",
      "SELECT %s FROM %s T WHERE T.%Q <= ? AND T.%Q >= ? ORDER BY T.%Q DESC",
      "SELECT %s FROM %s T WHERE T.%Q=?",               /* LOOKUP  */

      "INSERT INTO %Q.'%q_content' VALUES(%s)",         /* INSERT_CONTENT  */
      "REPLACE INTO %Q.'%q_content' VALUES(%s)",        /* REPLACE_CONTENT */
      "DELETE FROM %Q.'%q_content' WHERE id=?",         /* DELETE_CONTENT  */
      "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",       /* REPLACE_DOCSIZE  */
      "DELETE FROM %Q.'%q_docsize' WHERE id=?",         /* DELETE_DOCSIZE  */

      "SELECT sz FROM %Q.'%q_docsize' WHERE id=?",      /* LOOKUP_DOCSIZE  */

      "REPLACE INTO %Q.'%q_config' VALUES(?,?)",        /* REPLACE_CONFIG */
      "SELECT %s FROM %s AS T",                         /* SCAN */
    };
    Fts5Config *pC = p->pConfig;
    char *zSql = 0;








|


|







73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
      "SELECT %s FROM %s T WHERE T.%Q >= ? AND T.%Q <= ? ORDER BY T.%Q ASC",
      "SELECT %s FROM %s T WHERE T.%Q <= ? AND T.%Q >= ? ORDER BY T.%Q DESC",
      "SELECT %s FROM %s T WHERE T.%Q=?",               /* LOOKUP  */

      "INSERT INTO %Q.'%q_content' VALUES(%s)",         /* INSERT_CONTENT  */
      "REPLACE INTO %Q.'%q_content' VALUES(%s)",        /* REPLACE_CONTENT */
      "DELETE FROM %Q.'%q_content' WHERE id=?",         /* DELETE_CONTENT  */
      "REPLACE INTO %Q.'%q_docsize' VALUES(?,?%s)",     /* REPLACE_DOCSIZE  */
      "DELETE FROM %Q.'%q_docsize' WHERE id=?",         /* DELETE_DOCSIZE  */

      "SELECT sz%s FROM %Q.'%q_docsize' WHERE id=?",    /* LOOKUP_DOCSIZE  */

      "REPLACE INTO %Q.'%q_config' VALUES(?,?)",        /* REPLACE_CONFIG */
      "SELECT %s FROM %s AS T",                         /* SCAN */
    };
    Fts5Config *pC = p->pConfig;
    char *zSql = 0;

123
124
125
126
127
128
129













130
131
132
133
134
135
136
          }
          zBind[i*2-1] = '\0';
          zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName, zBind);
          sqlite3_free(zBind);
        }
        break;
      }














      default:
        zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName);
        break;
    }

    if( zSql==0 ){







>
>
>
>
>
>
>
>
>
>
>
>
>







123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
          }
          zBind[i*2-1] = '\0';
          zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName, zBind);
          sqlite3_free(zBind);
        }
        break;
      }

      case FTS5_STMT_REPLACE_DOCSIZE: 
        zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName,
          (pC->bContentlessDelete ? ",?" : "")
        );
        break;

      case FTS5_STMT_LOOKUP_DOCSIZE: 
        zSql = sqlite3_mprintf(azStmt[eStmt], 
            (pC->bContentlessDelete ? ",origin" : ""),
            pC->zDb, pC->zName
        );
        break;

      default:
        zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName);
        break;
    }

    if( zSql==0 ){
313
314
315
316
317
318
319




320
321
322
323
324
325
326
327
328
329
        }
        rc = sqlite3Fts5CreateTable(pConfig, "content", zDefn, 0, pzErr);
      }
      sqlite3_free(zDefn);
    }

    if( rc==SQLITE_OK && pConfig->bColumnsize ){




      rc = sqlite3Fts5CreateTable(
          pConfig, "docsize", "id INTEGER PRIMARY KEY, sz BLOB", 0, pzErr
      );
    }
    if( rc==SQLITE_OK ){
      rc = sqlite3Fts5CreateTable(
          pConfig, "config", "k PRIMARY KEY, v", 1, pzErr
      );
    }
    if( rc==SQLITE_OK ){







>
>
>
>
|
<
<







326
327
328
329
330
331
332
333
334
335
336
337


338
339
340
341
342
343
344
        }
        rc = sqlite3Fts5CreateTable(pConfig, "content", zDefn, 0, pzErr);
      }
      sqlite3_free(zDefn);
    }

    if( rc==SQLITE_OK && pConfig->bColumnsize ){
      const char *zCols = "id INTEGER PRIMARY KEY, sz BLOB";
      if( pConfig->bContentlessDelete ){
        zCols = "id INTEGER PRIMARY KEY, sz BLOB, origin INTEGER";
      }
      rc = sqlite3Fts5CreateTable(pConfig, "docsize", zCols, 0, pzErr);


    }
    if( rc==SQLITE_OK ){
      rc = sqlite3Fts5CreateTable(
          pConfig, "config", "k PRIMARY KEY, v", 1, pzErr
      );
    }
    if( rc==SQLITE_OK ){
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
static int fts5StorageDeleteFromIndex(
  Fts5Storage *p, 
  i64 iDel, 
  sqlite3_value **apVal
){
  Fts5Config *pConfig = p->pConfig;
  sqlite3_stmt *pSeek = 0;        /* SELECT to read row iDel from %_data */
  int rc;                         /* Return code */
  int rc2;                        /* sqlite3_reset() return code */
  int iCol;
  Fts5InsertCtx ctx;

  if( apVal==0 ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP, &pSeek, 0);
    if( rc!=SQLITE_OK ) return rc;
    sqlite3_bind_int64(pSeek, 1, iDel);
    if( sqlite3_step(pSeek)!=SQLITE_ROW ){
      return sqlite3_reset(pSeek);
    }
  }

  ctx.pStorage = p;
  ctx.iCol = -1;
  rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
  for(iCol=1; rc==SQLITE_OK && iCol<=pConfig->nCol; iCol++){
    if( pConfig->abUnindexed[iCol-1]==0 ){
      const char *zText;
      int nText;
      assert( pSeek==0 || apVal==0 );
      assert( pSeek!=0 || apVal!=0 );
      if( pSeek ){







|















<







407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

430
431
432
433
434
435
436
static int fts5StorageDeleteFromIndex(
  Fts5Storage *p, 
  i64 iDel, 
  sqlite3_value **apVal
){
  Fts5Config *pConfig = p->pConfig;
  sqlite3_stmt *pSeek = 0;        /* SELECT to read row iDel from %_data */
  int rc = SQLITE_OK;             /* Return code */
  int rc2;                        /* sqlite3_reset() return code */
  int iCol;
  Fts5InsertCtx ctx;

  if( apVal==0 ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP, &pSeek, 0);
    if( rc!=SQLITE_OK ) return rc;
    sqlite3_bind_int64(pSeek, 1, iDel);
    if( sqlite3_step(pSeek)!=SQLITE_ROW ){
      return sqlite3_reset(pSeek);
    }
  }

  ctx.pStorage = p;
  ctx.iCol = -1;

  for(iCol=1; rc==SQLITE_OK && iCol<=pConfig->nCol; iCol++){
    if( pConfig->abUnindexed[iCol-1]==0 ){
      const char *zText;
      int nText;
      assert( pSeek==0 || apVal==0 );
      assert( pSeek!=0 || apVal!=0 );
      if( pSeek ){
445
446
447
448
449
450
451































452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471






472
473
474
475

476
477
478
479
480
481
482
  }

  rc2 = sqlite3_reset(pSeek);
  if( rc==SQLITE_OK ) rc = rc2;
  return rc;
}

































/*
** Insert a record into the %_docsize table. Specifically, do:
**
**   INSERT OR REPLACE INTO %_docsize(id, sz) VALUES(iRowid, pBuf);
**
** If there is no %_docsize table (as happens if the columnsize=0 option
** is specified when the FTS5 table is created), this function is a no-op.
*/
static int fts5StorageInsertDocsize(
  Fts5Storage *p,                 /* Storage module to write to */
  i64 iRowid,                     /* id value */
  Fts5Buffer *pBuf                /* sz value */
){
  int rc = SQLITE_OK;
  if( p->pConfig->bColumnsize ){
    sqlite3_stmt *pReplace = 0;
    rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_DOCSIZE, &pReplace, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pReplace, 1, iRowid);






      sqlite3_bind_blob(pReplace, 2, pBuf->p, pBuf->n, SQLITE_STATIC);
      sqlite3_step(pReplace);
      rc = sqlite3_reset(pReplace);
      sqlite3_bind_null(pReplace, 2);

    }
  }
  return rc;
}

/*
** Load the contents of the "averages" record from disk into the 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




















>
>
>
>
>
>
|
|
|
|
>







459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
  }

  rc2 = sqlite3_reset(pSeek);
  if( rc==SQLITE_OK ) rc = rc2;
  return rc;
}

/*
** This function is called to process a DELETE on a contentless_delete=1
** table. It adds the tombstone required to delete the entry with rowid 
** iDel. If successful, SQLITE_OK is returned. Or, if an error occurs,
** an SQLite error code.
*/
static int fts5StorageContentlessDelete(Fts5Storage *p, i64 iDel){
  i64 iOrigin = 0;
  sqlite3_stmt *pLookup = 0;
  int rc = SQLITE_OK;

  assert( p->pConfig->bContentlessDelete );
  assert( p->pConfig->eContent==FTS5_CONTENT_NONE );

  /* Look up the origin of the document in the %_docsize table. Store
  ** this in stack variable iOrigin.  */
  rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP_DOCSIZE, &pLookup, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int64(pLookup, 1, iDel);
    if( SQLITE_ROW==sqlite3_step(pLookup) ){
      iOrigin = sqlite3_column_int64(pLookup, 1);
    }
    rc = sqlite3_reset(pLookup);
  }

  if( rc==SQLITE_OK && iOrigin!=0 ){
    rc = sqlite3Fts5IndexContentlessDelete(p->pIndex, iOrigin, iDel);
  }

  return rc;
}

/*
** Insert a record into the %_docsize table. Specifically, do:
**
**   INSERT OR REPLACE INTO %_docsize(id, sz) VALUES(iRowid, pBuf);
**
** If there is no %_docsize table (as happens if the columnsize=0 option
** is specified when the FTS5 table is created), this function is a no-op.
*/
static int fts5StorageInsertDocsize(
  Fts5Storage *p,                 /* Storage module to write to */
  i64 iRowid,                     /* id value */
  Fts5Buffer *pBuf                /* sz value */
){
  int rc = SQLITE_OK;
  if( p->pConfig->bColumnsize ){
    sqlite3_stmt *pReplace = 0;
    rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_DOCSIZE, &pReplace, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pReplace, 1, iRowid);
      if( p->pConfig->bContentlessDelete ){
        i64 iOrigin = 0;
        rc = sqlite3Fts5IndexGetOrigin(p->pIndex, &iOrigin);
        sqlite3_bind_int64(pReplace, 3, iOrigin);
      }
      if( rc==SQLITE_OK ){
        sqlite3_bind_blob(pReplace, 2, pBuf->p, pBuf->n, SQLITE_STATIC);
        sqlite3_step(pReplace);
        rc = sqlite3_reset(pReplace);
        sqlite3_bind_null(pReplace, 2);
      }
    }
  }
  return rc;
}

/*
** Load the contents of the "averages" record from disk into the 
532
533
534
535
536
537
538







539

540
541
542
543
544
545
546
  sqlite3_stmt *pDel = 0;

  assert( pConfig->eContent!=FTS5_CONTENT_NORMAL || apVal==0 );
  rc = fts5StorageLoadTotals(p, 1);

  /* Delete the index records */
  if( rc==SQLITE_OK ){







    rc = fts5StorageDeleteFromIndex(p, iDel, apVal);

  }

  /* Delete the %_docsize record */
  if( rc==SQLITE_OK && pConfig->bColumnsize ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);







>
>
>
>
>
>
>
|
>







584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
  sqlite3_stmt *pDel = 0;

  assert( pConfig->eContent!=FTS5_CONTENT_NORMAL || apVal==0 );
  rc = fts5StorageLoadTotals(p, 1);

  /* Delete the index records */
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
  }

  if( rc==SQLITE_OK ){
    if( p->pConfig->bContentlessDelete ){
      rc = fts5StorageContentlessDelete(p, iDel);
    }else{
      rc = fts5StorageDeleteFromIndex(p, iDel, apVal);
    }
  }

  /* Delete the %_docsize record */
  if( rc==SQLITE_OK && pConfig->bColumnsize ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
Added ext/fts5/test/fts5contentless.test.






























































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# 2014 Dec 20
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains tests for the content= and content_rowid= options.
#

source [file join [file dirname [info script]] fts5_common.tcl]
set testprefix fts5contentless

# If SQLITE_ENABLE_FTS5 is defined, omit this file.
ifcapable !fts5 {
  finish_test
  return
}

# Check that it is not possible to specify "contentless_delete=1" for 
# anything other than a contentless table.
#
set res(0) {0 {}}
set res(1) {1 {contentless_delete=1 requires a contentless table}}
foreach {tn sql bError} {
  1 "(a, b, contentless_delete=1)"              1
  2 "(a, b, contentless_delete=1, content=abc)" 1
  3 "(a, b, contentless_delete=1, content=)"    0
  4 "(content=, contentless_delete=1, a)"       0
  5 "(content='', contentless_delete=1, hello)" 0
} {
  execsql { BEGIN }
  do_catchsql_test 1.$tn "CREATE VIRTUAL TABLE t1 USING fts5 $sql" $res($bError)
  execsql { ROLLBACK }
}

# Check that it is not possible to specify "contentless_delete=1" 
# along with columnsize=1. 
#
set res(0) {0 {}}
set res(1) {1 {contentless_delete=1 is incompatible with columnsize=0}}
foreach {tn sql bError} {
  2 "(a, b, content='', contentless_delete=1, columnsize=0)" 1 
} {
  execsql { BEGIN }
  do_catchsql_test 1.$tn "CREATE VIRTUAL TABLE t1 USING fts5 $sql" $res($bError)
  execsql { ROLLBACK }
}

# Check that if contentless_delete=1 is specified, then the "origin" 
# column is added to the %_docsize table.
reset_db
do_execsql_test 3.0 {
  CREATE VIRTUAL TABLE x1 USING fts5(c, content='');
  CREATE VIRTUAL TABLE x2 USING fts5(c, content='', contentless_delete=1);
}
do_execsql_test 3.1 {
  SELECT sql FROM sqlite_schema WHERE name IN ('x1_docsize', 'x2_docsize');
} {
  {CREATE TABLE 'x1_docsize'(id INTEGER PRIMARY KEY, sz BLOB)} 
  {CREATE TABLE 'x2_docsize'(id INTEGER PRIMARY KEY, sz BLOB, origin INTEGER)}
}

do_execsql_test 3.2.1 {
  SELECT hex(block) FROM x1_data WHERE id=10
} {00000000000000}
do_execsql_test 3.2.2 {
  SELECT hex(block) FROM x2_data WHERE id=10
} {00000000FF000001000000}

do_execsql_test 3.3 {
  INSERT INTO x2 VALUES('first text');
  INSERT INTO x2 VALUES('second text');
}
do_execsql_test 3.4 {
  SELECT id, origin FROM x2_docsize
} {1 1 2 2}
do_execsql_test 3.5 {
  SELECT level, segment, loc1, loc2 FROM fts5_structure(
    (SELECT block FROM x2_data WHERE id=10)
  )
} {
  0 0   1 1
  0 1   2 2
}
do_execsql_test 3.6 {
  INSERT INTO x2(x2) VALUES('optimize');
}
do_execsql_test 3.7 {
  SELECT level, segment, loc1, loc2 FROM fts5_structure(
    (SELECT block FROM x2_data WHERE id=10)
  )
} {
  1 0   1 2
}

do_execsql_test 3.8 {
  DELETE FROM x2 WHERE rowid=2;
}

do_execsql_test 3.9 {
  SELECT rowid FROM x2('text')
} {1}

#--------------------------------------------------------------------------
reset_db
proc document {n} {
  set vocab [list A B C D E F G H I J K L M N O P Q R S T U V W X Y Z]
  set ret [list]
  for {set ii 0} {$ii < $n} {incr ii} {
    lappend ret [lindex $vocab [expr int(rand()*[llength $vocab])]]
  }
  set ret
}

set nRow 1000

do_execsql_test 4.0 {
  CREATE TABLE t1(x);
  CREATE VIRTUAL TABLE ft USING fts5(x, content='', contentless_delete=1);
  INSERT INTO ft(ft, rank) VALUES('pgsz', 100);
}
do_test 4.1 {
  for {set ii 0} {$ii < $nRow} {incr ii} {
    set doc [document 6]
    execsql {
      INSERT INTO t1 VALUES($doc);
      INSERT INTO ft VALUES($doc);
    }
  }
} {}

foreach v {A B C D E F G H I J K L M N O P Q R S T U V W X Y Z} {
  set L1 [execsql {SELECT rowid FROM t1 WHERE x LIKE '%'||$v||'%'}]
  set L2 [execsql {SELECT rowid FROM ft($v)}]
  do_test 4.2.$v { set L1 } $L2
}

do_test 4.3 {
  for {set ii 1} {$ii < $nRow} {incr ii 2} { 
    execsql {
       DELETE FROM ft WHERE rowid=$ii;
       DELETE FROM t1 WHERE rowid=$ii;
    }
  }
} {}

foreach v {A B C D E F G H I J K L M N O P Q R S T U V W X Y Z} {
  set L1 [execsql {SELECT rowid FROM t1 WHERE x LIKE '%'||$v||'%'}]
  set L2 [execsql {SELECT rowid FROM ft($v)}]
  do_test 4.4.$v { set L1 } $L2
}

do_execsql_test 4.5 {
  INSERT INTO ft(ft) VALUES('optimize');
} {}

foreach v {A B C D E F G H I J K L M N O P Q R S T U V W X Y Z} {
  set L1 [execsql {SELECT rowid FROM t1 WHERE x LIKE '%'||$v||'%'}]
  set L2 [execsql {SELECT rowid FROM ft($v)}]
  do_test 4.6.$v { set L1 } $L2
}

#execsql_pp { SELECT fts5_decode(id, block) FROM ft_data }

#-------------------------------------------------------------------------
reset_db
do_execsql_test 5.0 {
  CREATE VIRTUAL TABLE ft USING fts5(x, content='', contentless_delete=1);
  INSERT INTO ft(rowid, x) VALUES(1, 'one two three');
  INSERT INTO ft(rowid, x) VALUES(2, 'one two four');
  INSERT INTO ft(rowid, x) VALUES(3, 'one two five');
  INSERT INTO ft(rowid, x) VALUES(4, 'one two seven');
  INSERT INTO ft(rowid, x) VALUES(5, 'one two eight');
}

do_execsql_test 5.1 {
  DELETE FROM ft WHERE rowid=2
}

do_execsql_test 5.2 {
  SELECT rowid FROM ft
} {1 3 4 5}

do_catchsql_test 5.3 {
  UPDATE ft SET x='four six' WHERE rowid=3
} {1 {cannot UPDATE contentless fts5 table: ft}}

do_execsql_test 5.4 {
  SELECT rowid FROM ft('one');
} {1 3 4 5}

do_execsql_test 5.5 {
  REPLACE INTO ft(rowid, x) VALUES(3, 'four six');
  SELECT rowid FROM ft('one');
} {1 4 5}

do_execsql_test 5.6 {
  REPLACE INTO ft(rowid, x) VALUES(6, 'one two eleven');
  SELECT rowid FROM ft('one');
} {1 4 5 6}

#-------------------------------------------------------------------------
reset_db
do_execsql_test 6.0 {
  CREATE VIRTUAL TABLE ft USING fts5(x, content='', contentless_delete=1);
  INSERT INTO ft(rowid, x) VALUES(1, 'one two three');
  INSERT INTO ft(rowid, x) VALUES(2, 'one two four');
}

do_test 6.1 {
  db eval { SELECT rowid FROM ft('one two') } {
    if {$rowid==1} {
      db eval { INSERT INTO ft(rowid, x) VALUES(3, 'one two four') }
    }
  }
} {}

#-------------------------------------------------------------------------
reset_db
do_execsql_test 7.0 {
  CREATE VIRTUAL TABLE ft USING fts5(x, content='', contentless_delete=1);
}

set lRowid [list -450 0 1 2 42]

do_test 7.1 {
  execsql BEGIN
  foreach r $lRowid {
    execsql { INSERT INTO ft(rowid, x) VALUES($r, 'one one one'); }
  }
  execsql COMMIT
} {}

do_test 7.2 {
  execsql BEGIN
  foreach r $lRowid {
    execsql { REPLACE INTO ft(rowid, x) VALUES($r, 'two two two'); }
  }
  execsql COMMIT
} {}

do_execsql_test 7.3 { SELECT rowid FROM ft('one'); } {}
do_execsql_test 7.4 { SELECT rowid FROM ft('two'); } $lRowid

#-------------------------------------------------------------------------
reset_db
do_execsql_test 8.0 {
  CREATE VIRTUAL TABLE ft USING fts5(x, content='', contentless_delete=1);
  INSERT INTO ft VALUES('hello world');
  INSERT INTO ft VALUES('one two three');
}

do_catchsql_test 8.1 {
  INSERT INTO ft(ft, rowid, x) VALUES('delete', 1, 'hello world');
} {1 {'delete' may not be used with a contentless_delete=1 table}}

do_execsql_test 8.2 {
  BEGIN;
    INSERT INTO ft(rowid, x) VALUES(3, 'four four four');
    DELETE FROM ft WHERE rowid=3;
  COMMIT;
  SELECT rowid FROM ft('four');
} {}

finish_test

Added ext/fts5/test/fts5contentless2.test.
































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# 2023 July 19
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains tests for the content= and content_rowid= options.
#

source [file join [file dirname [info script]] fts5_common.tcl]
set testprefix fts5contentless2

# If SQLITE_ENABLE_FTS5 is defined, omit this file.
ifcapable !fts5 {
  finish_test
  return
}

proc vocab {} {
  list aaa bbb ccc ddd eee fff ggg hhh iii jjj kkk lll mmm nnn ooo ppp
}

proc document {nToken} {
  set doc [list]
  set vocab [vocab]
  for {set ii 0} {$ii < $nToken} {incr ii} {
    lappend doc [lindex $vocab [expr int(rand()*[llength $vocab])]]
  }
  set doc
}
db func document document

proc contains {doc token} {
  expr {[lsearch $doc $token]>=0}
}
db func contains contains

proc do_compare_tables_test {tn} {
  uplevel [list do_test $tn {
    foreach v [vocab] {
      set l1 [execsql { SELECT rowid FROM t1 WHERE contains(doc, $v) }]
      set l2 [execsql { SELECT rowid FROM t2($v) }]
      if {$l1!=$l2} { error "1: query mismatch ($l1) ($l2)" }

      set w "[string range $v 0 1]*"
      set l1 [execsql { SELECT rowid FROM t1 WHERE contains(doc, $w) }]
      set l2 [execsql { SELECT rowid FROM t2($w) }]
      if {$l1!=$l2} { error "2: query mismatch ($l1) ($l2)" }

      set w "[string range $v 0 0]*"
      set l1 [execsql { SELECT rowid FROM t1 WHERE contains(doc, $w) }]
      set l2 [execsql { SELECT rowid FROM t2($w) }]
      if {$l1!=$l2} { error "2: query mismatch ($l1) ($l2)" }

      set l1 [execsql { 
        SELECT rowid FROM t1 WHERE contains(doc, $v) ORDER BY rowid DESC 
      }]
      set l2 [execsql { SELECT rowid FROM t2($v) ORDER BY rowid DESC }]
      if {$l1!=$l2} { error "1: query mismatch ($l1) ($l2)" }
    }
    set {} {}
  } {}]
}

proc lshuffle {in} {
  set L [list]
  set ret [list]
  foreach elem $in { lappend L [list [expr rand()] $elem] }
  foreach pair [lsort -index 0 $L] { lappend ret [lindex $pair 1] }
  set ret
}

expr srand(0)

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t2 USING fts5(
      doc, prefix=2, content=, contentless_delete=1
  );

  CREATE TABLE t1(doc);
  CREATE TRIGGER tr1 AFTER DELETE ON t1 BEGIN
    DELETE FROM t2 WHERE rowid = old.rowid;
  END;
}

set SMALLEST64 -9223372036854775808
set LARGEST64   9223372036854775807

foreach {tn r1 r2} {
  1   0               50
  2   $SMALLEST64     $SMALLEST64+50
  3   $LARGEST64-50   $LARGEST64
  4   -50             -1
} {
  set r1 [expr $r1]
  set r2 [expr $r2]

  do_test 1.1.$tn {
    execsql BEGIN
    for {set ii $r1} {$ii <= $r2} {incr ii} {
      execsql { INSERT INTO t1(rowid, doc) VALUES ($ii, document(8)); }
    }
    execsql COMMIT
  } {}
}
do_test 1.2 {
  db eval { SELECT rowid, doc FROM t1 } {
    execsql { INSERT INTO t2(rowid, doc) VALUES($rowid, $doc) }
  }
} {}

foreach {tn rowid} {
  1  $SMALLEST64
  2  0
  3  -5
  4  -30
  5  $LARGEST64
  6  $LARGEST64-1
} {
  set rowid [expr $rowid]
  do_execsql_test 1.3.$tn.1 {
    DELETE FROM t1 WHERE rowid=$rowid
  }
  do_compare_tables_test 1.3.$tn.2
}

set iTest 1
foreach r [lshuffle [execsql {SELECT rowid FROM t1}]] {
  if {($iTest % 50)==0} {
    execsql { INSERT INTO t2(t2) VALUES('optimize') }
  }
  if {($iTest % 5)==0} {
    execsql { INSERT INTO t2(t2, rank) VALUES('merge', 5) }
  }
  do_execsql_test 1.4.$iTest.1($r) {
    DELETE FROM t1 WHERE rowid=$r
  }
  do_compare_tables_test 1.4.$iTest.2
  incr iTest
}

do_execsql_test 1.5 {
  SELECT * FROM t1
} {}

#-------------------------------------------------------------------------
reset_db
db func document document

do_execsql_test 2.0 {
  CREATE VIRTUAL TABLE t2 USING fts5(doc, content=, contentless_delete=1);
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<1000
  )
  INSERT INTO t2(rowid, doc) SELECT i, i || ' ' || i FROM s;
}

do_execsql_test 2.1 {
  BEGIN;
    DELETE FROM t2 WHERE rowid=32;
    DELETE FROM t2 WHERE rowid=64;
    DELETE FROM t2 WHERE rowid=96;
    DELETE FROM t2 WHERE rowid=128;
    DELETE FROM t2 WHERE rowid=160;
    DELETE FROM t2 WHERE rowid=192;
  COMMIT;
}

do_execsql_test 2.2 {
  SELECT * FROM t2('128');
} {}

#-------------------------------------------------------------------------

foreach {tn step} {
  1     3 
  2     7
  3     15
} {
  set step [expr $step]

  reset_db
  db func document document
  do_execsql_test 3.$tn.0 {
    CREATE VIRTUAL TABLE t2 USING fts5(doc, content=, contentless_delete=1);
    INSERT INTO t2(t2, rank) VALUES('pgsz', 100);
    WITH s(i) AS (
        SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<1000
    )
    INSERT INTO t2(rowid, doc) SELECT i, i || ' ' || i FROM s;
  }
  do_execsql_test 3.$tn.1 {
    DELETE FROM t2 WHERE (rowid % $step)==0
  }
  do_execsql_test 3.$tn.2 {
    SELECT * FROM t2( $step * 5 )
  } {}
}



finish_test

Added ext/fts5/test/fts5contentless3.test.








































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# 2023 July 21
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains tests for the content= and content_rowid= options.
#

source [file join [file dirname [info script]] fts5_common.tcl]
set testprefix fts5contentless3

# If SQLITE_ENABLE_FTS5 is defined, omit this file.
ifcapable !fts5 {
  finish_test
  return
}

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE ft USING fts5(x, content=, contentless_delete=1);
  BEGIN;
    INSERT INTO ft VALUES('one one one');
    INSERT INTO ft VALUES('two two two');
    INSERT INTO ft VALUES('three three three');
    INSERT INTO ft VALUES('four four four');
    INSERT INTO ft VALUES('five five five');
    INSERT INTO ft VALUES('six six six');
    INSERT INTO ft VALUES('seven seven seven');
    INSERT INTO ft VALUES('eight eight eight');
    INSERT INTO ft VALUES('nine nine nine');
  COMMIT;

  DELETE FROM ft WHERE rowid=3;
}

proc myhex {hex} { binary decode hex $hex }
db func myhex myhex

do_execsql_test 1.1 {
  UPDATE ft_data SET block = 
    myhex('04000000 00000001'                   ||
          '01020304 01020304 01020304 01020304' ||
          '01020304 01020304 01020304 01020304'
    )
  WHERE id = (SELECT max(id) FROM ft_data);
}

do_execsql_test 1.2 {
  DELETE FROM ft WHERE rowid=1
}

do_execsql_test 1.3 {
  SELECT rowid FROM ft('two');
} {2}

do_execsql_test 1.3 {
  UPDATE ft_data SET block = 
    myhex('08000000 00000001'                                               ||
      '0000000001020304 0000000001020304 0000000001020304 0000000001020304' ||
      '0000000001020304 0000000001020304 0000000001020304 0000000001020304'
    )
  WHERE id = (SELECT max(id) FROM ft_data);
}

do_execsql_test 1.4 {
  SELECT rowid FROM ft('two');
} {2}

do_execsql_test 1.5 {
  DELETE FROM ft WHERE rowid=4
}

do_execsql_test 1.6 {
  UPDATE ft_data SET block = myhex('04000000 00000000')
    WHERE id = (SELECT max(id) FROM ft_data);
}
do_execsql_test 1.7 {
  SELECT rowid FROM ft('two');
} {2}

do_execsql_test 1.8 {
  UPDATE ft_data SET block = myhex('04000000 00000000')
    WHERE id = (SELECT max(id) FROM ft_data);
}
do_execsql_test 1.9 {
  DELETE FROM ft WHERE rowid=8
} {}

#-------------------------------------------------------------------------
reset_db
do_execsql_test 2.0 {
  CREATE VIRTUAL TABLE ft USING fts5(x, content=, contentless_delete=1);
  INSERT INTO ft VALUES('one one one');
  INSERT INTO ft VALUES('two two two');
  INSERT INTO ft VALUES('three three three');
  INSERT INTO ft VALUES('four four four');
  INSERT INTO ft VALUES('five five five');
  INSERT INTO ft VALUES('six six six');
  INSERT INTO ft VALUES('seven seven seven');
  INSERT INTO ft VALUES('eight eight eight');
  INSERT INTO ft VALUES('nine nine nine');
}

do_execsql_test 2.1 {
  INSERT INTO ft(ft) VALUES('optimize');
}
do_execsql_test 2.2 {
  SELECT count(*) FROM ft_data
} {3}
do_execsql_test 2.3 {
  DELETE FROM ft WHERE rowid=5
}
do_execsql_test 2.4 {
  SELECT count(*) FROM ft_data
} {4}

# Check that an 'optimize' works (rewrites the index) if there is a single
# segment with one or more tombstone hash pages.
do_execsql_test 2.5 {
  INSERT INTO ft(ft) VALUES('optimize');
}
do_execsql_test 2.6 {
  SELECT count(*) FROM ft_data
} {3}

# Check that an 'optimize' is a no-op if there is a single segment
# and no tombstone hash pages.
do_execsql_test 2.7 {
  INSERT INTO ft(ft) VALUES('optimize');
  SELECT rowid FROM ft_data;
} [db eval {SELECT rowid FROM ft_data}]

#-------------------------------------------------------------------------
reset_db
do_execsql_test 3.0 {
  CREATE VIRTUAL TABLE ft USING fts5(x, content=, contentless_delete=1);
  INSERT INTO ft(ft, rank) VALUES('pgsz', 64);
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<1000
  )
  INSERT INTO ft(rowid, x) SELECT i, i||' '||i||' '||i||' '||i FROM s;
  INSERT INTO ft(ft) VALUES('optimize');
}

do_execsql_test 3.1 {
  SELECT count(*) FROM ft_data
} {200}

do_execsql_test 3.2 {
  DELETE FROM ft WHERE (rowid % 50)==0;
  SELECT count(*) FROM ft_data;
} {203}

do_execsql_test 3.3 {
  INSERT INTO ft(ft, rank) VALUES('merge', 500);
  SELECT rowid FROM ft_data;
} [db eval {SELECT rowid FROM ft_data}]

do_execsql_test 3.4 {
  INSERT INTO ft(ft, rank) VALUES('merge', -1000);
  SELECT count(*) FROM ft_data;
} {197}

do_execsql_test 3.5 {
  DELETE FROM ft WHERE (rowid % 50)==1;
  SELECT count(*) FROM ft_data;
} {200}

do_execsql_test 3.6 {
  SELECT level, segment, npgtombstone FROM fts5_structure(
    (SELECT block FROM ft_data WHERE id=10)
  )
} {1 0 3}

do_test 3.6 {
  while 1 {
    set nChange [db total_changes]
    execsql { INSERT INTO ft(ft, rank) VALUES('merge', -5) }
    if {([db total_changes] - $nChange)<2} break
  }
} {}

do_execsql_test 3.7 {
  SELECT level, segment, npgtombstone FROM fts5_structure(
    (SELECT block FROM ft_data WHERE id=10)
  )
} {2 0 0}


finish_test

Added ext/fts5/test/fts5contentless4.test.
















































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# 2023 July 21
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains tests for the content= and content_rowid= options.
#

source [file join [file dirname [info script]] fts5_common.tcl]
set testprefix fts5contentless4

# If SQLITE_ENABLE_FTS5 is defined, omit this file.
ifcapable !fts5 {
  finish_test
  return
}

proc document {n} {
  set vocab [list A B C D E F G H I J K L M N O P Q R S T U V W X Y Z]
  set ret [list]
  for {set ii 0} {$ii < $n} {incr ii} {
    lappend ret [lindex $vocab [expr int(rand()*[llength $vocab])]]
  }
  set ret
}
db func document document

do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE ft USING fts5(x, content='', contentless_delete=1);
  INSERT INTO ft(ft, rank) VALUES('pgsz', 240);
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<1000
  )
  INSERT INTO ft SELECT document(12) FROM s;
}

do_execsql_test 1.1 {
  INSERT INTO ft(ft) VALUES('optimize');
}

do_execsql_test 1.2 {
  SELECT level, segment, nentry, nentrytombstone FROM fts5_structure((
    SELECT block FROM ft_data WHERE id=10
  ))
} {0 0 1000 0}

do_execsql_test 1.3 {
  DELETE FROM ft WHERE rowid < 50
}

do_execsql_test 1.4 {
  SELECT level, segment, nentry, nentrytombstone FROM fts5_structure((
    SELECT block FROM ft_data WHERE id=10
  ))
} {0 0 1000 49}

do_execsql_test 1.5 {
  DELETE FROM ft WHERE rowid < 1000
}

do_execsql_test 1.6 {
  SELECT level, segment, nentry, nentrytombstone FROM fts5_structure((
    SELECT block FROM ft_data WHERE id=10
  ))
} {1 0 1 0}

#--------------------------------------------------------------------------
reset_db
db func document document

do_execsql_test 2.0 {
  CREATE VIRTUAL TABLE ft USING fts5(x, content='', contentless_delete=1);
}

do_test 2.1 {
  for {set ii 0} {$ii < 5000} {incr ii} {
    execsql { INSERT INTO ft VALUES( document(12) ) }
  }
} {}

do_execsql_test 2.2 {
  SELECT sum(nentry) - sum(nentrytombstone) FROM fts5_structure((
    SELECT block FROM ft_data WHERE id=10
  ))
} {5000}

for {set ii 5000} {$ii >= 0} {incr ii -100} {
  do_execsql_test 2.3.$ii {
    DELETE FROM ft WHERE rowid > $ii
  }
  do_execsql_test 2.3.$ii.2 {
    SELECT 
      CAST((total(nentry) - total(nentrytombstone)) AS integer) 
    FROM 
      fts5_structure( (SELECT block FROM ft_data WHERE id=10) )
  } $ii
}

execsql_pp {
  SELECT * FROM fts5_structure((
    SELECT block FROM ft_data WHERE id=10
  ))
}

do_test 2.4 {
  for {set ii 0} {$ii < 5000} {incr ii} {
    execsql { INSERT INTO ft VALUES( document(12) ) }
  }
} {}

for {set ii 1} {$ii <= 5000} {incr ii 10} {
  do_execsql_test 2.3.$ii {
    DELETE FROM ft WHERE rowid = $ii;
    INSERT INTO ft VALUES( document(12) );
    INSERT INTO ft(ft, rank) VALUES('merge', -10);
  }

  do_execsql_test 2.3.$ii.2 {
    SELECT 
      CAST((total(nentry) - total(nentrytombstone)) AS integer) 
    FROM 
      fts5_structure( (SELECT block FROM ft_data WHERE id=10) )
  } 5000
}

#-------------------------------------------------------------------------
reset_db
db func document document
do_execsql_test 3.0 {
  CREATE VIRTUAL TABLE ft USING fts5(x, content='', contentless_delete=1);
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<100
  )
  INSERT INTO ft SELECT document(12) FROM s;
}

do_catchsql_test 3.1 {
  INSERT INTO ft(ft, rank) VALUES('deletemerge', 'text');
} {1 {SQL logic error}}
do_catchsql_test 3.2 {
  INSERT INTO ft(ft, rank) VALUES('deletemerge', 50);
} {0 {}}
do_execsql_test 3.3 {
  SELECT * FROM ft_config WHERE k='deletemerge'
} {deletemerge 50}
do_catchsql_test 3.4 {
  INSERT INTO ft(ft, rank) VALUES('deletemerge', 101);
} {0 {}}
do_execsql_test 3.5 {
  SELECT * FROM ft_config WHERE k='deletemerge'
} {deletemerge 101}

do_execsql_test 3.6 {
  DELETE FROM ft WHERE rowid<95
}

do_execsql_test 3.7 {
  SELECT nentrytombstone, nentry FROM fts5_structure((
    SELECT block FROM ft_data WHERE id=10
  ))
} {94 100}

do_execsql_test 3.8 {
  DELETE FROM ft WHERE rowid=95
}

do_execsql_test 3.9 {
  SELECT nentrytombstone, nentry FROM fts5_structure((
    SELECT block FROM ft_data WHERE id=10
  ))
} {95 100}

do_execsql_test 3.10 {
  DELETE FROM ft;
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<100
  )
  INSERT INTO ft SELECT document(12) FROM s;
  INSERT INTO ft(ft, rank) VALUES('deletemerge', 50);
}

do_execsql_test 3.11 {
  DELETE FROM ft WHERE rowid<95
}

do_execsql_test 3.12 {
  SELECT nentrytombstone, nentry FROM fts5_structure((
    SELECT block FROM ft_data WHERE id=10
  ))
} {0 6}

#-------------------------------------------------------------------------
reset_db
db func document document
do_execsql_test 4.0 {
  CREATE VIRTUAL TABLE x1 USING fts5(x, content='', contentless_delete=1);
  INSERT INTO x1(x1, rank) VALUES('usermerge', 16);
  INSERT INTO x1(x1, rank) VALUES('deletemerge', 40);
  INSERT INTO x1 VALUES('one');
  INSERT INTO x1 VALUES('two');
  INSERT INTO x1 VALUES('three');
  INSERT INTO x1 VALUES('four');
  INSERT INTO x1 VALUES('five');
  INSERT INTO x1 VALUES('six');
  INSERT INTO x1 VALUES('seven');
  INSERT INTO x1 VALUES('eight');
  INSERT INTO x1 VALUES('nine');
  INSERT INTO x1 VALUES('ten');
}

do_execsql_test 4.1 {
  SELECT level, segment FROM fts5_structure((
    SELECT block FROM x1_data WHERE id=10
  ))
} {
  0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9
}

for {set ii 1} {$ii < 4} {incr ii} {
  do_execsql_test 4.2.$ii {
    DELETE FROM x1 WHERE rowid = $ii;
    INSERT INTO x1(x1, rank) VALUES('merge', 5);
    SELECT level, segment FROM fts5_structure((
          SELECT block FROM x1_data WHERE id=10
    ))
  } {
    0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9
  }
}

do_execsql_test 4.3 {
  DELETE FROM x1 WHERE rowid = $ii;
  INSERT INTO x1(x1, rank) VALUES('merge', 5);
  SELECT level, segment, nentry FROM fts5_structure((
        SELECT block FROM x1_data WHERE id=10
  ))
} {
  1 0   6
}

finish_test

Added ext/fts5/test/fts5faultF.test.






























































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# 2023 July 20
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#*************************************************************************
#
# This file is focused on OOM errors. Particularly those that may occur
# when using contentless_delete=1 databases.
#

source [file join [file dirname [info script]] fts5_common.tcl]
source $testdir/malloc_common.tcl
set testprefix fts5faultF

# If SQLITE_ENABLE_FTS5 is not defined, omit this file.
ifcapable !fts5 {
  finish_test
  return
}

faultsim_save_and_close
do_faultsim_test 1 -prep {
  faultsim_restore_and_reopen
} -body {
  execsql { 
    CREATE VIRTUAL TABLE t1 USING fts5(x, y, content=, contentless_delete=1) 
  }
} -test {
  faultsim_test_result {0 {}} {1 {vtable constructor failed: t1}} 
}

reset_db
do_execsql_test 2.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(doc, content=, contentless_delete=1);
  BEGIN;
    INSERT INTO t1(rowid, doc) VALUES(1, 'a b c d');
    INSERT INTO t1(rowid, doc) VALUES(2, 'a b c d');
    INSERT INTO t1(rowid, doc) VALUES(3, 'a b c d');
    INSERT INTO t1(rowid, doc) VALUES(4, 'a b c d');
  COMMIT;
  DELETE FROM t1 WHERE rowid IN (2, 4);
}

do_faultsim_test 2 -prep {
  sqlite3 db test.db
  execsql { SELECT rowid FROM t1 }
} -body {
  execsql { 
    SELECT rowid FROM t1('b c');
  }
} -test {
  faultsim_test_result {0 {1 3}}
}

#-------------------------------------------------------------------------
reset_db
do_execsql_test 3.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(doc, content=, contentless_delete=1);
  BEGIN;
    INSERT INTO t1(rowid, doc) VALUES(1, 'a b c d');
    INSERT INTO t1(rowid, doc) VALUES(2, 'a b c d');
    INSERT INTO t1(rowid, doc) VALUES(3, 'a b c d');
    INSERT INTO t1(rowid, doc) VALUES(4, 'a b c d');
  COMMIT;
}

faultsim_save_and_close
do_faultsim_test 3 -prep {
  faultsim_restore_and_reopen
  execsql { SELECT rowid FROM t1 }
} -body {
  execsql { 
    INSERT INTO t1(rowid, doc) VALUES(5, 'a b c d');
  }
} -test {
  faultsim_test_result {0 {}}
}

#-------------------------------------------------------------------------
reset_db
do_execsql_test 4.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(doc, content=, contentless_delete=1);
  INSERT INTO t1(t1, rank) VALUES('pgsz', 64);
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<1000
  )
  INSERT INTO t1(rowid, doc) SELECT i, 'a b c d' FROM s;
}

do_execsql_test 4.1 { DELETE FROM t1 WHERE rowid <= 25 }

faultsim_save_and_close
do_faultsim_test 4 -faults oom-t* -prep {
  faultsim_restore_and_reopen
  execsql { SELECT rowid FROM t1 }
} -body {
  execsql { 
    DELETE FROM t1 WHERE rowid < 100
  }
} -test {
  faultsim_test_result {0 {}}
}


finish_test

Changes to ext/session/sqlite3session.c.
887
888
889
890
891
892
893

894
895
896
897
898
899
900
        /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */
        rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal);
      }else{
        /* assert( db->pPreUpdate->pUnpacked ); */
        rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal);
      }
      assert( rc==SQLITE_OK );

      if( sqlite3_value_type(pVal)!=eType ) return 0;

      /* A SessionChange object never has a NULL value in a PK column */
      assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
           || eType==SQLITE_BLOB    || eType==SQLITE_TEXT
      );








>







887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
        /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */
        rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal);
      }else{
        /* assert( db->pPreUpdate->pUnpacked ); */
        rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal);
      }
      assert( rc==SQLITE_OK );
      (void)rc;                   /* Suppress warning about unused variable */
      if( sqlite3_value_type(pVal)!=eType ) return 0;

      /* A SessionChange object never has a NULL value in a PK column */
      assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
           || eType==SQLITE_BLOB    || eType==SQLITE_TEXT
      );

Changes to ext/wasm/GNUmakefile.
447
448
449
450
451
452
453







454
455
456
457
458
459
460
emcc.jsflags += -sEXPORTED_FUNCTIONS=@$(EXPORTED_FUNCTIONS.api)
emcc.exportedRuntimeMethods := \
    -sEXPORTED_RUNTIME_METHODS=wasmMemory
    # wasmMemory ==> required by our code for use with -sIMPORTED_MEMORY
emcc.jsflags += $(emcc.exportedRuntimeMethods)
emcc.jsflags += -sUSE_CLOSURE_COMPILER=0
emcc.jsflags += -sIMPORTED_MEMORY







emcc.jsflags += -sSTRICT_JS=0
# STRICT_JS disabled due to:
#   https://github.com/emscripten-core/emscripten/issues/18610
# TL;DR: does not work with MODULARIZE or EXPORT_ES6 as of version 3.1.31.

# -sENVIRONMENT values for the various build modes:
emcc.environment.vanilla := web,worker







>
>
>
>
>
>
>







447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
emcc.jsflags += -sEXPORTED_FUNCTIONS=@$(EXPORTED_FUNCTIONS.api)
emcc.exportedRuntimeMethods := \
    -sEXPORTED_RUNTIME_METHODS=wasmMemory
    # wasmMemory ==> required by our code for use with -sIMPORTED_MEMORY
emcc.jsflags += $(emcc.exportedRuntimeMethods)
emcc.jsflags += -sUSE_CLOSURE_COMPILER=0
emcc.jsflags += -sIMPORTED_MEMORY
#emcc.jsflags += -sASYNCIFY=2
# ^^^ ASYNCIFY=2 is for experimental JSPI support
# (https://v8.dev/blog/jspi), but enabling it causes the lib-level
# init code to throw inexplicable complaints about C-level function
# signatures not matching what we expect them to be. JSPI requires, as of
# this writing, requires an experimental Chrome flag:
# chrome://flags/#enable-experimental-webassembly-stack-switching
emcc.jsflags += -sSTRICT_JS=0
# STRICT_JS disabled due to:
#   https://github.com/emscripten-core/emscripten/issues/18610
# TL;DR: does not work with MODULARIZE or EXPORT_ES6 as of version 3.1.31.

# -sENVIRONMENT values for the various build modes:
emcc.environment.vanilla := web,worker
673
674
675
676
677
678
679



680
681
682


683
684
685
686
687
688
689
690
# when building *.mjs, which is bad because we need to export an
# overwritten version of that function and cannot "export default"
# twice. Because of this, we have to sed *.mjs to remove the _first_
# instance (only) of /^export default/.
#
# Upstream RFE:
# https://github.com/emscripten-core/emscripten/issues/18237



define SQLITE3.xJS.ESM-EXPORT-DEFAULT
if [ x1 = x$(1) ]; then \
		echo "Fragile workaround for emscripten/issues/18237. See SQLITE3.xJS.RECIPE."; \


		sed -i -e '0,/^export default/{/^export default/d;}' $@ || exit $$?; \
		if [ x != x$(2) ]; then \
			if ! grep -q '^export default' $@; then \
				echo "Cannot find export default." 1>&2; \
				exit 1; \
			fi; \
		fi; \
fi







>
>
>



>
>
|







680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
# when building *.mjs, which is bad because we need to export an
# overwritten version of that function and cannot "export default"
# twice. Because of this, we have to sed *.mjs to remove the _first_
# instance (only) of /^export default/.
#
# Upstream RFE:
# https://github.com/emscripten-core/emscripten/issues/18237
#
# Maintenance reminder: Mac sed works differently than GNU sed, so
# don't use sed for this.
define SQLITE3.xJS.ESM-EXPORT-DEFAULT
if [ x1 = x$(1) ]; then \
		echo "Fragile workaround for emscripten/issues/18237. See SQLITE3.xJS.RECIPE."; \
		{\
			awk '/^export default/ && !f{f=1; next} 1' $@ > $@.tmp && mv $@.tmp $@; \
		} || exit $$?; \
		if [ x != x$(2) ]; then \
			if ! grep -q '^export default' $@; then \
				echo "Cannot find export default." 1>&2; \
				exit 1; \
			fi; \
		fi; \
fi
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
	ls -1 $(dir.sql)/*.sql | grep -v speedtest1.sql | sort > $@
clean-batch:
	rm -f batch-runner.list $(dir.sql)/speedtest1*.sql
# ^^^ we don't do this along with 'clean' because we clean/rebuild on
# a regular basis with different -Ox flags and rebuilding the batch
# pieces each time is an unnecessary time sink.
batch: batch-runner.list
all: batch
# end batch-runner.js
########################################################################
# Wasmified speedtest1 is our primary benchmarking tool.
#
# emcc.speedtest1.common = emcc flags used by multiple builds of speedtest1
# emcc.speedtest1 = emcc flags used by main build of speedtest1
emcc.speedtest1.common := $(emcc_opt_full)







|







866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
	ls -1 $(dir.sql)/*.sql | grep -v speedtest1.sql | sort > $@
clean-batch:
	rm -f batch-runner.list $(dir.sql)/speedtest1*.sql
# ^^^ we don't do this along with 'clean' because we clean/rebuild on
# a regular basis with different -Ox flags and rebuilding the batch
# pieces each time is an unnecessary time sink.
batch: batch-runner.list
#all: batch
# end batch-runner.js
########################################################################
# Wasmified speedtest1 is our primary benchmarking tool.
#
# emcc.speedtest1.common = emcc flags used by multiple builds of speedtest1
# emcc.speedtest1 = emcc flags used by main build of speedtest1
emcc.speedtest1.common := $(emcc_opt_full)
Changes to ext/wasm/README.md.
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

  *  Remote: Install git, emsdk, and althttpd
     *  Use a [version of althttpd][althttpd] from
        September 26, 2022 or newer.
  *  Remote: Install the SQLite source tree.  CD to ext/wasm
  *  Remote: "`make`" to build WASM
  *  Remote: `althttpd --enable-sab --port 8080 --popup`
  *  Local:  `ssh -L 8180:remote:8080 remote`
  *  Local:  Point your web-browser at http://localhost:8180/index.html

In order to enable [SharedArrayBuffer][], the web-browser requires
that the two extra Cross-Origin lines be present in HTTP reply headers
and that the request must come from "localhost" (_or_ over an SSL
connection).  Since the web-server is on a different machine from the
web-broser, the localhost requirement means that the connection must







|







86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

  *  Remote: Install git, emsdk, and althttpd
     *  Use a [version of althttpd][althttpd] from
        September 26, 2022 or newer.
  *  Remote: Install the SQLite source tree.  CD to ext/wasm
  *  Remote: "`make`" to build WASM
  *  Remote: `althttpd --enable-sab --port 8080 --popup`
  *  Local:  `ssh -L 8180:localhost:8080 remote`
  *  Local:  Point your web-browser at http://localhost:8180/index.html

In order to enable [SharedArrayBuffer][], the web-browser requires
that the two extra Cross-Origin lines be present in HTTP reply headers
and that the request must come from "localhost" (_or_ over an SSL
connection).  Since the web-server is on a different machine from the
web-broser, the localhost requirement means that the connection must
Changes to ext/wasm/api/extern-post-js.c-pp.js.
115
116
117
118
119
120
121
122

123
  }
  /* AMD modules get injected in a way we cannot override,
     so we can't handle those here. */
//#endif // !target=es6-module
  return globalThis.sqlite3InitModule /* required for ESM */;
})();
//#if target=es6-module
export { toExportForESM as default, toExportForESM as sqlite3InitModule }

//#endif







|
>

115
116
117
118
119
120
121
122
123
124
  }
  /* AMD modules get injected in a way we cannot override,
     so we can't handle those here. */
//#endif // !target=es6-module
  return globalThis.sqlite3InitModule /* required for ESM */;
})();
//#if target=es6-module
sqlite3InitModule = toExportForESM;
export default sqlite3InitModule;
//#endif
Changes to ext/wasm/api/sqlite3-api-cleanup.js.
18
19
20
21
22
23
24

25

26
27
28
29
30
31
32
'use strict';
if('undefined' !== typeof Module){ // presumably an Emscripten build
  /**
     Install a suitable default configuration for sqlite3ApiBootstrap().
  */
  const SABC = Object.assign(
    Object.create(null), {

      exports: Module['asm'],

      memory: Module.wasmMemory /* gets set if built with -sIMPORTED_MEMORY */
    },
    globalThis.sqlite3ApiConfig || {}
  );

  /**
     For current (2022-08-22) purposes, automatically call







>
|
>







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
'use strict';
if('undefined' !== typeof Module){ // presumably an Emscripten build
  /**
     Install a suitable default configuration for sqlite3ApiBootstrap().
  */
  const SABC = Object.assign(
    Object.create(null), {
      exports: ('undefined'===typeof wasmExports)
        ? Module['asm']/* emscripten <=3.1.43 */
        : wasmExports  /* emscripten >=3.1.44 */,
      memory: Module.wasmMemory /* gets set if built with -sIMPORTED_MEMORY */
    },
    globalThis.sqlite3ApiConfig || {}
  );

  /**
     For current (2022-08-22) purposes, automatically call
Changes to ext/wasm/api/sqlite3-api-glue.js.
724
725
726
727
728
729
730









731
732
733
734
735
736
737
    ('sqlite3_vfs*', __xRcPtr)
    ('void*', __xRcPtr);

    /**
       Populate api object with sqlite3_...() by binding the "raw" wasm
       exports into type-converting proxies using wasm.xWrap().
    */









    for(const e of wasm.bindingSignatures){
      capi[e[0]] = wasm.xWrap.apply(null, e);
    }
    for(const e of wasm.bindingSignatures.wasm){
      wasm[e[0]] = wasm.xWrap.apply(null, e);
    }








>
>
>
>
>
>
>
>
>







724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
    ('sqlite3_vfs*', __xRcPtr)
    ('void*', __xRcPtr);

    /**
       Populate api object with sqlite3_...() by binding the "raw" wasm
       exports into type-converting proxies using wasm.xWrap().
    */
    if(0 === wasm.exports.sqlite3_step.length){
      /* This environment wraps exports in nullary functions, which means
         we must disable the arg-count validation we otherwise perform
         on the wrappers. */
      wasm.xWrap.doArgcCheck = false;
      sqlite3.config.warn(
        "Disabling sqlite3.wasm.xWrap.doArgcCheck due to environmental quirks."
      );
    }
    for(const e of wasm.bindingSignatures){
      capi[e[0]] = wasm.xWrap.apply(null, e);
    }
    for(const e of wasm.bindingSignatures.wasm){
      wasm[e[0]] = wasm.xWrap.apply(null, e);
    }

Changes to ext/wasm/api/sqlite3-vfs-opfs-sahpool.c-pp.js.
496
497
498
499
500
501
502









503
504
505
506
507
508
509
    getVfs(){return this.#cVfs}

    /* Current pool capacity. */
    getCapacity(){return this.#mapSAHToName.size}

    /* Current number of in-use files from pool. */
    getFileCount(){return this.#mapFilenameToSAH.size}










//    #createFileObject(sah,clientName,opaqueName){
//      const f = Object.assign(Object.create(null),{
//        clientName, opaqueName
//      });
//      this.#mapSAHToMeta.set(sah, f);
//      return f;







>
>
>
>
>
>
>
>
>







496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    getVfs(){return this.#cVfs}

    /* Current pool capacity. */
    getCapacity(){return this.#mapSAHToName.size}

    /* Current number of in-use files from pool. */
    getFileCount(){return this.#mapFilenameToSAH.size}

    /* Returns an array of the names of all
       currently-opened client-specified filenames. */
    getFileNames(){
      const rc = [];
      const iter = this.#mapFilenameToSAH.keys();
      for(const n of iter) rc.push(n);
      return rc;
    }

//    #createFileObject(sah,clientName,opaqueName){
//      const f = Object.assign(Object.create(null),{
//        clientName, opaqueName
//      });
//      this.#mapSAHToMeta.set(sah, f);
//      return f;
897
898
899
900
901
902
903

904
905
906
907
908
909
910
    async addCapacity(n){ return this.#p.addCapacity(n) }

    async reduceCapacity(n){ return this.#p.reduceCapacity(n) }

    getCapacity(){ return this.#p.getCapacity(this.#p) }

    getFileCount(){ return this.#p.getFileCount() }


    async reserveMinimumCapacity(min){
      const c = this.#p.getCapacity();
      return (c < min) ? this.#p.addCapacity(min - c) : c;
    }

    exportFile(name){ return this.#p.exportFile(name) }







>







906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    async addCapacity(n){ return this.#p.addCapacity(n) }

    async reduceCapacity(n){ return this.#p.reduceCapacity(n) }

    getCapacity(){ return this.#p.getCapacity(this.#p) }

    getFileCount(){ return this.#p.getFileCount() }
    getFileNames(){ return this.#p.getFileNames() }

    async reserveMinimumCapacity(min){
      const c = this.#p.getCapacity();
      return (c < min) ? this.#p.addCapacity(min - c) : c;
    }

    exportFile(name){ return this.#p.exportFile(name) }
1055
1056
1057
1058
1059
1060
1061





1062
1063
1064
1065
1066
1067
1068
     or two databases and their associated temp files.

     - number getFileCount()

     Returns the number of files from the pool currently allocated to
     slots. This is not the same as the files being "opened".






     - void importDb(name, byteArray)

     Imports the contents of an SQLite database, provided as a byte
     array, under the given name, overwriting any existing
     content. Throws if the pool has no available file slots, on I/O
     error, or if the input does not appear to be a database. In the
     latter case, only a cursory examination is made.  Note that this







>
>
>
>
>







1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
     or two databases and their associated temp files.

     - number getFileCount()

     Returns the number of files from the pool currently allocated to
     slots. This is not the same as the files being "opened".

     - array getFileNames()

     Returns an array of the names of the files currently allocated to
     slots. This list is the same length as getFileCount().

     - void importDb(name, byteArray)

     Imports the contents of an SQLite database, provided as a byte
     array, under the given name, overwriting any existing
     content. Throws if the pool has no available file slots, on I/O
     error, or if the input does not appear to be a database. In the
     latter case, only a cursory examination is made.  Note that this
Changes to ext/wasm/common/whwasmutil.js.
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
   time one of the installed APIs is used (as opposed to when this
   function is called) except where explicitly noted:

   - `exports` must be a property of the target object OR a property
     of `target.instance` (a WebAssembly.Module instance) and it must
     contain the symbols exported by the WASM module associated with
     this code. In an Enscripten environment it must be set to

     `Module['asm']`. The exports object must contain a minimum of the
     following symbols:

     - `memory`: a WebAssembly.Memory object representing the WASM
       memory. _Alternately_, the `memory` property can be set as
       `target.memory`, in particular if the WASM heap memory is
       initialized in JS an _imported_ into WASM, as opposed to being
       initialized in WASM and exported to JS.







>
|







107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
   time one of the installed APIs is used (as opposed to when this
   function is called) except where explicitly noted:

   - `exports` must be a property of the target object OR a property
     of `target.instance` (a WebAssembly.Module instance) and it must
     contain the symbols exported by the WASM module associated with
     this code. In an Enscripten environment it must be set to
     `Module['asm']` (versions <=3.1.43) or `wasmExports` (versions
     >=3.1.44). The exports object must contain a minimum of the
     following symbols:

     - `memory`: a WebAssembly.Memory object representing the WASM
       memory. _Alternately_, the `memory` property can be set as
       `target.memory`, in particular if the WASM heap memory is
       initialized in JS an _imported_ into WASM, as opposed to being
       initialized in WASM and exported to JS.
Changes to ext/wasm/demo-123.js.
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    log("That's all, folks!");

    /**
       Some of the features of the OO API not demonstrated above...

       - get change count (total or statement-local, 32- or 64-bit)
       - get a DB's file name
    
       Misc. Stmt features:

       - Various forms of bind() 
       - clearBindings()
       - reset()
       - Various forms of step()
       - Variants of get() for explicit type treatment/conversion,
         e.g. getInt(), getFloat(), getBlob(), getJSON()
       - getColumnName(ndx), getColumnNames()
       - getParamIndex(name)







|


|







231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    log("That's all, folks!");

    /**
       Some of the features of the OO API not demonstrated above...

       - get change count (total or statement-local, 32- or 64-bit)
       - get a DB's file name

       Misc. Stmt features:

       - Various forms of bind()
       - clearBindings()
       - reset()
       - Various forms of step()
       - Variants of get() for explicit type treatment/conversion,
         e.g. getInt(), getFloat(), getBlob(), getJSON()
       - getColumnName(ndx), getColumnNames()
       - getParamIndex(name)
Changes to ext/wasm/index.html.
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
          </ul>
        </li>
        <li>The obligatory "misc." category...
          <ul>
            <li><a href='module-symbols.html'>module-symbols</a> gives
              a high-level overview of the symbols exposed by the JS
              module.</li>
            <li><a href='batch-runner.html'>batch-runner</a>: runs batches of SQL exported from speedtest1.</li>

            <li><a href='test-opfs-vfs.html'>test-opfs-vfs</a>
              (<a href='test-opfs-vfs.html?opfs-sanity-check&opfs-verbose'>same
              with verbose output and sanity-checking tests</a>) is an
              sqlite3_vfs OPFS proxy using SharedArrayBuffer and the
              Atomics APIs to regulate communication between the
              synchronous sqlite3_vfs interface and the async OPFS
              impl.







|
>







103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
          </ul>
        </li>
        <li>The obligatory "misc." category...
          <ul>
            <li><a href='module-symbols.html'>module-symbols</a> gives
              a high-level overview of the symbols exposed by the JS
              module.</li>
            <!--li><a href='batch-runner.html'>batch-runner</a>: runs batches of
                SQL exported from speedtest1.</li-->
            <li><a href='test-opfs-vfs.html'>test-opfs-vfs</a>
              (<a href='test-opfs-vfs.html?opfs-sanity-check&opfs-verbose'>same
              with verbose output and sanity-checking tests</a>) is an
              sqlite3_vfs OPFS proxy using SharedArrayBuffer and the
              Atomics APIs to regulate communication between the
              synchronous sqlite3_vfs interface and the async OPFS
              impl.
Changes to ext/wasm/tester1.c-pp.js.
3068
3069
3070
3071
3072
3073
3074



3075
3076
3077
3078










3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
        T.assert(1 === u1.getFileCount());
        T.assert(3 === db.selectValue('select count(*) from t'));
        db.close();
        T.assert(1 === u1.getFileCount());
        db = new u2.OpfsSAHPoolDb(dbName);
        T.assert(1 === u1.getFileCount());
        db.close();



        T.assert(1 === u1.getFileCount())
          .assert(true === u1.unlink(dbName))
          .assert(false === u1.unlink(dbName))
          .assert(0 === u1.getFileCount());










        if(0){
           /* Enable this block to inspect vfs's contents via the dev
              console or OPFS Explorer browser extension.  The
              following bits will remove them. */
          return;
        }
        T.assert(true === await u2.removeVfs())
          .assert(false === await u1.removeVfs())
          .assert(!sqlite3.capi.sqlite3_vfs_find(sahPoolConfig.name));

        let cErr, u3;
        const conf2 = JSON.parse(JSON.stringify(sahPoolConfig));
        conf2.$testThrowInInit = new Error("Testing throwing during init.");
        conf2.name = sahPoolConfig.name+'-err';
        const P3 = await inst(conf2).then(u=>u3 = u).catch((e)=>cErr=e);
        T.assert(P3 === conf2.$testThrowInInit)
          .assert(cErr === P3)
          .assert(undefined === u3)
          .assert(!sqlite3.capi.sqlite3_vfs_find(conf2.name));







>
>
>
|


|
>
>
>
>
>
>
>
>
>
>











<







3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102

3103
3104
3105
3106
3107
3108
3109
        T.assert(1 === u1.getFileCount());
        T.assert(3 === db.selectValue('select count(*) from t'));
        db.close();
        T.assert(1 === u1.getFileCount());
        db = new u2.OpfsSAHPoolDb(dbName);
        T.assert(1 === u1.getFileCount());
        db.close();
        const fileNames = u1.getFileNames();
        T.assert(1 === fileNames.length)
          .assert(dbName === fileNames[0])
          .assert(1 === u1.getFileCount())
          .assert(true === u1.unlink(dbName))
          .assert(false === u1.unlink(dbName))
          .assert(0 === u1.getFileCount())
          .assert(0 === u1.getFileNames().length);

        // Demonstrate that two SAH pools can coexist so long as
        // they have different names.
        const conf2 = JSON.parse(JSON.stringify(sahPoolConfig));
        conf2.name += '-test2';
        const POther = await inst(conf2);
        log("Installed second SAH instance as",conf2.name);
        T.assert(0 === POther.getFileCount())
          .assert(true === await POther.removeVfs());
        if(0){
           /* Enable this block to inspect vfs's contents via the dev
              console or OPFS Explorer browser extension.  The
              following bits will remove them. */
          return;
        }
        T.assert(true === await u2.removeVfs())
          .assert(false === await u1.removeVfs())
          .assert(!sqlite3.capi.sqlite3_vfs_find(sahPoolConfig.name));

        let cErr, u3;

        conf2.$testThrowInInit = new Error("Testing throwing during init.");
        conf2.name = sahPoolConfig.name+'-err';
        const P3 = await inst(conf2).then(u=>u3 = u).catch((e)=>cErr=e);
        T.assert(P3 === conf2.$testThrowInInit)
          .assert(cErr === P3)
          .assert(undefined === u3)
          .assert(!sqlite3.capi.sqlite3_vfs_find(conf2.name));
Changes to src/btree.c.
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
  pCur->curFlags |= BTCF_Pinned;
}
void sqlite3BtreeCursorUnpin(BtCursor *pCur){
  assert( (pCur->curFlags & BTCF_Pinned)!=0 );
  pCur->curFlags &= ~BTCF_Pinned;
}

#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
/*
** Return the offset into the database file for the start of the
** payload to which the cursor is pointing.
*/
i64 sqlite3BtreeOffset(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  getCellInfo(pCur);
  return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
         (i64)(pCur->info.pPayload - pCur->pPage->aData);
}
#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */

/*
** Return the number of bytes of payload for the entry that pCur is
** currently pointing to.  For table btrees, this will be the amount
** of data.  For index btrees, this will be the size of the key.
**
** The caller must guarantee that the cursor is pointing to a non-NULL







<











<







4822
4823
4824
4825
4826
4827
4828

4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839

4840
4841
4842
4843
4844
4845
4846
  pCur->curFlags |= BTCF_Pinned;
}
void sqlite3BtreeCursorUnpin(BtCursor *pCur){
  assert( (pCur->curFlags & BTCF_Pinned)!=0 );
  pCur->curFlags &= ~BTCF_Pinned;
}


/*
** Return the offset into the database file for the start of the
** payload to which the cursor is pointing.
*/
i64 sqlite3BtreeOffset(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  getCellInfo(pCur);
  return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
         (i64)(pCur->info.pPayload - pCur->pPage->aData);
}


/*
** Return the number of bytes of payload for the entry that pCur is
** currently pointing to.  For table btrees, this will be the amount
** of data.  For index btrees, this will be the size of the key.
**
** The caller must guarantee that the cursor is pointing to a non-NULL
Changes to src/btree.h.
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
int sqlite3BtreeLast(BtCursor*, int *pRes);
int sqlite3BtreeNext(BtCursor*, int flags);
int sqlite3BtreeEof(BtCursor*);
int sqlite3BtreePrevious(BtCursor*, int flags);
i64 sqlite3BtreeIntegerKey(BtCursor*);
void sqlite3BtreeCursorPin(BtCursor*);
void sqlite3BtreeCursorUnpin(BtCursor*);
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
i64 sqlite3BtreeOffset(BtCursor*);
#endif
int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*);
const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt);
u32 sqlite3BtreePayloadSize(BtCursor*);
sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*);

int sqlite3BtreeIntegrityCheck(
  sqlite3 *db,  /* Database connection that is running the check */







<

<







317
318
319
320
321
322
323

324

325
326
327
328
329
330
331
int sqlite3BtreeLast(BtCursor*, int *pRes);
int sqlite3BtreeNext(BtCursor*, int flags);
int sqlite3BtreeEof(BtCursor*);
int sqlite3BtreePrevious(BtCursor*, int flags);
i64 sqlite3BtreeIntegerKey(BtCursor*);
void sqlite3BtreeCursorPin(BtCursor*);
void sqlite3BtreeCursorUnpin(BtCursor*);

i64 sqlite3BtreeOffset(BtCursor*);

int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*);
const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt);
u32 sqlite3BtreePayloadSize(BtCursor*);
sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*);

int sqlite3BtreeIntegrityCheck(
  sqlite3 *db,  /* Database connection that is running the check */
Changes to src/json.c.
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76









77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110





111
112
113
114
115
116


117
118
119
120
121
122
123
124
125
126





















127
128
129
130
131
132

133

134
135
136

137



138

139

140
141
142
143
144
145
146
147
#  define VVA(X) X
#endif

/* Objects */
typedef struct JsonString JsonString;
typedef struct JsonNode JsonNode;
typedef struct JsonParse JsonParse;


/* An instance of this object represents a JSON string
** under construction.  Really, this is a generic string accumulator
** that can be and is used to create strings other than JSON.
*/
struct JsonString {
  sqlite3_context *pCtx;   /* Function context - put error messages here */
  char *zBuf;              /* Append JSON content here */
  u64 nAlloc;              /* Bytes of storage available in zBuf[] */
  u64 nUsed;               /* Bytes of zBuf[] currently used */
  u8 bStatic;              /* True if zBuf is static space */
  u8 bErr;                 /* True if an error has been encountered */
  char zSpace[100];        /* Initial static space */
};










/* JSON type values
*/

#define JSON_NULL     0
#define JSON_TRUE     1
#define JSON_FALSE    2
#define JSON_INT      3
#define JSON_REAL     4
#define JSON_STRING   5
#define JSON_ARRAY    6
#define JSON_OBJECT   7

/* The "subtype" set for JSON values */
#define JSON_SUBTYPE  74    /* Ascii for "J" */

/*
** Names of the various JSON types:
*/
static const char * const jsonType[] = {

  "null", "true", "false", "integer", "real", "text", "array", "object"
};

/* Bit values for the JsonNode.jnFlag field
*/
#define JNODE_RAW     0x01         /* Content is raw, not JSON encoded */
#define JNODE_ESCAPE  0x02         /* Content is text with \ escapes */
#define JNODE_REMOVE  0x04         /* Do not output */
#define JNODE_REPLACE 0x08         /* Replace with JsonNode.u.iReplace */
#define JNODE_PATCH   0x10         /* Patch with JsonNode.u.pPatch */
#define JNODE_APPEND  0x20         /* More ARRAY/OBJECT entries at u.iAppend */
#define JNODE_LABEL   0x40         /* Is a label of an object */
#define JNODE_JSON5   0x80         /* Node contains JSON5 enhancements */


/* A single node of parsed JSON





*/
struct JsonNode {
  u8 eType;              /* One of the JSON_ type values */
  u8 jnFlags;            /* JNODE flags */
  u8 eU;                 /* Which union element to use */
  u32 n;                 /* Bytes of content, or number of sub-nodes */


  union {
    const char *zJContent; /* 1: Content for INT, REAL, and STRING */
    u32 iAppend;           /* 2: More terms for ARRAY and OBJECT */
    u32 iKey;              /* 3: Key for ARRAY objects in json_tree() */
    u32 iReplace;          /* 4: Replacement content for JNODE_REPLACE */
    JsonNode *pPatch;      /* 5: Node chain of patch for JNODE_PATCH */
  } u;
};

/* A completely parsed JSON string





















*/
struct JsonParse {
  u32 nNode;         /* Number of slots of aNode[] used */
  u32 nAlloc;        /* Number of slots of aNode[] allocated */
  JsonNode *aNode;   /* Array of nodes containing the parse */
  const char *zJson; /* Original JSON string */

  u32 *aUp;          /* Index of parent of each node */

  u16 iDepth;        /* Nesting depth */
  u8 nErr;           /* Number of errors seen */
  u8 oom;            /* Set to true if out of memory */

  u8 hasNonstd;      /* True if input uses non-standard features like JSON5 */



  int nJson;         /* Length of the zJson string in bytes */

  u32 iErr;          /* Error location in zJson[] */

  u32 iHold;         /* Replace cache line with the lowest iHold value */
};

/*
** Maximum nesting depth of JSON for this implementation.
**
** This limit is needed to avoid a stack overflow in the recursive
** descent parser.  A depth of 1000 is far deeper than any sane JSON







>















>
>
>
>
>
>
>
>
>


>
|
|
|
|
|
|
|
|








>





|
|
|
|
<
|
|
|


|
>
>
>
>
>





|
>
>




|
<



|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





|
>

>



>

>
>
>

>

>
|







55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#  define VVA(X) X
#endif

/* Objects */
typedef struct JsonString JsonString;
typedef struct JsonNode JsonNode;
typedef struct JsonParse JsonParse;
typedef struct JsonCleanup JsonCleanup;

/* An instance of this object represents a JSON string
** under construction.  Really, this is a generic string accumulator
** that can be and is used to create strings other than JSON.
*/
struct JsonString {
  sqlite3_context *pCtx;   /* Function context - put error messages here */
  char *zBuf;              /* Append JSON content here */
  u64 nAlloc;              /* Bytes of storage available in zBuf[] */
  u64 nUsed;               /* Bytes of zBuf[] currently used */
  u8 bStatic;              /* True if zBuf is static space */
  u8 bErr;                 /* True if an error has been encountered */
  char zSpace[100];        /* Initial static space */
};

/* A deferred cleanup task.  A list of JsonCleanup objects might be
** run when the JsonParse object is destroyed.
*/
struct JsonCleanup {
  JsonCleanup *pJCNext;    /* Next in a list */
  void (*xOp)(void*);      /* Routine to run */
  void *pArg;              /* Argument to xOp() */
};

/* JSON type values
*/
#define JSON_SUBST    0    /* Special edit node.  Uses u.iPrev */
#define JSON_NULL     1
#define JSON_TRUE     2
#define JSON_FALSE    3
#define JSON_INT      4
#define JSON_REAL     5
#define JSON_STRING   6
#define JSON_ARRAY    7
#define JSON_OBJECT   8

/* The "subtype" set for JSON values */
#define JSON_SUBTYPE  74    /* Ascii for "J" */

/*
** Names of the various JSON types:
*/
static const char * const jsonType[] = {
  "subst",
  "null", "true", "false", "integer", "real", "text", "array", "object"
};

/* Bit values for the JsonNode.jnFlag field
*/
#define JNODE_RAW     0x01  /* Content is raw, not JSON encoded */
#define JNODE_ESCAPE  0x02  /* Content is text with \ escapes */
#define JNODE_REMOVE  0x04  /* Do not output */
#define JNODE_REPLACE 0x08  /* Target of a JSON_SUBST node */

#define JNODE_APPEND  0x10  /* More ARRAY/OBJECT entries at u.iAppend */
#define JNODE_LABEL   0x20  /* Is a label of an object */
#define JNODE_JSON5   0x40  /* Node contains JSON5 enhancements */


/* A single node of parsed JSON.  An array of these nodes describes
** a parse of JSON + edits.
**
** Use the json_parse() SQL function (available when compiled with
** -DSQLITE_DEBUG) to see a dump of complete JsonParse objects, including
** a complete listing and decoding of the array of JsonNodes.
*/
struct JsonNode {
  u8 eType;              /* One of the JSON_ type values */
  u8 jnFlags;            /* JNODE flags */
  u8 eU;                 /* Which union element to use */
  u32 n;                 /* Bytes of content for INT, REAL or STRING
                         ** Number of sub-nodes for ARRAY and OBJECT
                         ** Node that SUBST applies to */
  union {
    const char *zJContent; /* 1: Content for INT, REAL, and STRING */
    u32 iAppend;           /* 2: More terms for ARRAY and OBJECT */
    u32 iKey;              /* 3: Key for ARRAY objects in json_tree() */
    u32 iPrev;             /* 4: Previous SUBST node, or 0 */

  } u;
};


/* A parsed and possibly edited JSON string.  Lifecycle:
**
**   1.  JSON comes in and is parsed into an array aNode[].  The original
**       JSON text is stored in zJson.
**
**   2.  Zero or more changes are made (via json_remove() or json_replace()
**       or similar) to the aNode[] array.
**
**   3.  A new, edited and mimified JSON string is generated from aNode
**       and stored in zAlt.  The JsonParse object always owns zAlt.
**
** Step 1 always happens.  Step 2 and 3 may or may not happen, depending
** on the operation.
**
** aNode[].u.zJContent entries typically point into zJson.  Hence zJson
** must remain valid for the lifespan of the parse.  For edits,
** aNode[].u.zJContent might point to malloced space other than zJson.
** Entries in pClup are responsible for freeing that extra malloced space.
**
** When walking the parse tree in aNode[], edits are ignored if useMod is
** false.
*/
struct JsonParse {
  u32 nNode;         /* Number of slots of aNode[] used */
  u32 nAlloc;        /* Number of slots of aNode[] allocated */
  JsonNode *aNode;   /* Array of nodes containing the parse */
  char *zJson;       /* Original JSON string (before edits) */
  char *zAlt;        /* Revised and/or mimified JSON */
  u32 *aUp;          /* Index of parent of each node */
  JsonCleanup *pClup;/* Cleanup operations prior to freeing this object */
  u16 iDepth;        /* Nesting depth */
  u8 nErr;           /* Number of errors seen */
  u8 oom;            /* Set to true if out of memory */
  u8 bJsonIsRCStr;   /* True if zJson is an RCStr */
  u8 hasNonstd;      /* True if input uses non-standard features like JSON5 */
  u8 useMod;         /* Actually use the edits contain inside aNode */
  u8 hasMod;         /* aNode contains edits from the original zJson */
  u32 nJPRef;        /* Number of references to this object */
  int nJson;         /* Length of the zJson string in bytes */
  int nAlt;          /* Length of alternative JSON string zAlt, in bytes */
  u32 iErr;          /* Error location in zJson[] */
  u32 iSubst;        /* Last JSON_SUBST entry in aNode[] */
  u32 iHold;         /* Age of this entry in the cache for LRU replacement */
};

/*
** Maximum nesting depth of JSON for this implementation.
**
** This limit is needed to avoid a stack overflow in the recursive
** descent parser.  A depth of 1000 is far deeper than any sane JSON
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

210
211
212
213
214
215
216
217
218
219
220
*/
static void jsonInit(JsonString *p, sqlite3_context *pCtx){
  p->pCtx = pCtx;
  p->bErr = 0;
  jsonZero(p);
}


/* Free all allocated memory and reset the JsonString object back to its
** initial state.
*/
static void jsonReset(JsonString *p){
  if( !p->bStatic ) sqlite3_free(p->zBuf);
  jsonZero(p);
}


/* Report an out-of-memory (OOM) condition 
*/
static void jsonOom(JsonString *p){
  p->bErr = 1;
  sqlite3_result_error_nomem(p->pCtx);
  jsonReset(p);
}

/* Enlarge pJson->zBuf so that it can hold at least N more bytes.
** Return zero on success.  Return non-zero on an OOM error
*/
static int jsonGrow(JsonString *p, u32 N){
  u64 nTotal = N<p->nAlloc ? p->nAlloc*2 : p->nAlloc+N+10;
  char *zNew;
  if( p->bStatic ){
    if( p->bErr ) return 1;
    zNew = sqlite3_malloc64(nTotal);
    if( zNew==0 ){
      jsonOom(p);
      return SQLITE_NOMEM;
    }
    memcpy(zNew, p->zBuf, (size_t)p->nUsed);
    p->zBuf = zNew;
    p->bStatic = 0;
  }else{
    zNew = sqlite3_realloc64(p->zBuf, nTotal);
    if( zNew==0 ){

      jsonOom(p);
      return SQLITE_NOMEM;
    }
    p->zBuf = zNew;
  }
  p->nAlloc = nTotal;
  return SQLITE_OK;
}

/* Append N bytes from zIn onto the end of the JsonString string.
*/







<




|



<
|















|








|
|
>
|


<







212
213
214
215
216
217
218

219
220
221
222
223
224
225
226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

258
259
260
261
262
263
264
*/
static void jsonInit(JsonString *p, sqlite3_context *pCtx){
  p->pCtx = pCtx;
  p->bErr = 0;
  jsonZero(p);
}


/* Free all allocated memory and reset the JsonString object back to its
** initial state.
*/
static void jsonReset(JsonString *p){
  if( !p->bStatic ) sqlite3RCStrUnref(p->zBuf);
  jsonZero(p);
}


/* Report an out-of-memory (OOM) condition
*/
static void jsonOom(JsonString *p){
  p->bErr = 1;
  sqlite3_result_error_nomem(p->pCtx);
  jsonReset(p);
}

/* Enlarge pJson->zBuf so that it can hold at least N more bytes.
** Return zero on success.  Return non-zero on an OOM error
*/
static int jsonGrow(JsonString *p, u32 N){
  u64 nTotal = N<p->nAlloc ? p->nAlloc*2 : p->nAlloc+N+10;
  char *zNew;
  if( p->bStatic ){
    if( p->bErr ) return 1;
    zNew = sqlite3RCStrNew(nTotal);
    if( zNew==0 ){
      jsonOom(p);
      return SQLITE_NOMEM;
    }
    memcpy(zNew, p->zBuf, (size_t)p->nUsed);
    p->zBuf = zNew;
    p->bStatic = 0;
  }else{
    p->zBuf = sqlite3RCStrResize(p->zBuf, nTotal);
    if( p->zBuf==0 ){
      p->bErr = 1;
      jsonZero(p);
      return SQLITE_NOMEM;
    }

  }
  p->nAlloc = nTotal;
  return SQLITE_OK;
}

/* Append N bytes from zIn onto the end of the JsonString string.
*/
268
269
270
271
272
273
274


















275
276
277
278
279
280
281
static void jsonAppendChar(JsonString *p, char c){
  if( p->nUsed>=p->nAlloc ){
    jsonAppendCharExpand(p,c);
  }else{
    p->zBuf[p->nUsed++] = c;
  }
}



















/* Append a comma separator to the output buffer, if the previous
** character is not '[' or '{'.
*/
static void jsonAppendSeparator(JsonString *p){
  char c;
  if( p->nUsed==0 ) return;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
static void jsonAppendChar(JsonString *p, char c){
  if( p->nUsed>=p->nAlloc ){
    jsonAppendCharExpand(p,c);
  }else{
    p->zBuf[p->nUsed++] = c;
  }
}

/* Try to force the string to be a zero-terminated RCStr string.
**
** Return true on success.  Return false if an OOM prevents this
** from happening.
*/
static int jsonForceRCStr(JsonString *p){
  jsonAppendChar(p, 0);
  if( p->bErr ) return 0;
  p->nUsed--;
  if( p->bStatic==0 ) return 1;
  p->nAlloc = 0;
  p->nUsed++;
  jsonGrow(p, p->nUsed);
  p->nUsed--;
  return p->bStatic==0;
}


/* Append a comma separator to the output buffer, if the previous
** character is not '[' or '{'.
*/
static void jsonAppendSeparator(JsonString *p){
  char c;
  if( p->nUsed==0 ) return;
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
  N -= 2;
  while( N>0 ){
    for(i=0; i<N && zIn[i]!='\\'; i++){}
    if( i>0 ){
      jsonAppendRawNZ(p, zIn, i);
      zIn += i;
      N -= i;
      if( N==0 ) break;     
    }
    assert( zIn[0]=='\\' );
    switch( (u8)zIn[1] ){
      case '\'':
        jsonAppendChar(p, '\'');
        break;
      case 'v':







|







402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
  N -= 2;
  while( N>0 ){
    for(i=0; i<N && zIn[i]!='\\'; i++){}
    if( i>0 ){
      jsonAppendRawNZ(p, zIn, i);
      zIn += i;
      N -= i;
      if( N==0 ) break;
    }
    assert( zIn[0]=='\\' );
    switch( (u8)zIn[1] ){
      case '\'':
        jsonAppendChar(p, '\'');
        break;
      case 'v':
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    jsonAppendRawNZ(p, zIn, N);
  }
}



/*
** Append a function parameter value to the JSON string under 
** construction.
*/
static void jsonAppendValue(
  JsonString *p,                 /* Append to this JSON string */
  sqlite3_value *pValue          /* Value to append */
){
  switch( sqlite3_value_type(pValue) ){







|







511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    jsonAppendRawNZ(p, zIn, N);
  }
}



/*
** Append a function parameter value to the JSON string under
** construction.
*/
static void jsonAppendValue(
  JsonString *p,                 /* Append to this JSON string */
  sqlite3_value *pValue          /* Value to append */
){
  switch( sqlite3_value_type(pValue) ){
494
495
496
497
498
499
500


501
502
503
504
505
506




507
508
509

510



511
512
513
514
515
516
517
      break;
    }
  }
}


/* Make the JSON in p the result of the SQL function.


*/
static void jsonResult(JsonString *p){
  if( p->bErr==0 ){
    jsonAppendChar(p, 0);
    sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed-1,
                          p->bStatic ? SQLITE_TRANSIENT : sqlite3_free,




                          SQLITE_UTF8);
    jsonZero(p);
  }

  assert( p->bStatic );



}

/**************************************************************************
** Utility routines for dealing with JsonNode and JsonParse objects
**************************************************************************/

/*







>
>



|
|
|
>
>
>
>
|
<
|
>
|
>
>
>







556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

576
577
578
579
580
581
582
583
584
585
586
587
588
      break;
    }
  }
}


/* Make the JSON in p the result of the SQL function.
**
** The JSON string is reset.
*/
static void jsonResult(JsonString *p){
  if( p->bErr==0 ){
    if( p->bStatic ){
      sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed,
                            SQLITE_TRANSIENT, SQLITE_UTF8);
    }else if( jsonForceRCStr(p) ){
      sqlite3RCStrRef(p->zBuf);
      sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed,
                            (void(*)(void*))sqlite3RCStrUnref,
                            SQLITE_UTF8);

    }
  }
  if( p->bErr==1 ){
    sqlite3_result_error_nomem(p->pCtx);
  }
  jsonReset(p);
}

/**************************************************************************
** Utility routines for dealing with JsonNode and JsonParse objects
**************************************************************************/

/*
528
529
530
531
532
533
534








535
536

537
538

539
540










541
542
543
544





545
546



547
548

























549
550
551
552
553
554
555
556

557
558
559
560
561
562
563



564




565
566
567
568
569

570
571
572
573
574
575
576
}

/*
** Reclaim all memory allocated by a JsonParse object.  But do not
** delete the JsonParse object itself.
*/
static void jsonParseReset(JsonParse *pParse){








  sqlite3_free(pParse->aNode);
  pParse->aNode = 0;

  pParse->nNode = 0;
  pParse->nAlloc = 0;

  sqlite3_free(pParse->aUp);
  pParse->aUp = 0;










}

/*
** Free a JsonParse object that was obtained from sqlite3_malloc().





*/
static void jsonParseFree(JsonParse *pParse){



  jsonParseReset(pParse);
  sqlite3_free(pParse);

























}

/*
** Convert the JsonNode pNode into a pure JSON string and
** append to pOut.  Subsubstructure is also included.  Return
** the number of JsonNode objects that are encoded.
*/
static void jsonRenderNode(

  JsonNode *pNode,               /* The node to render */
  JsonString *pOut,              /* Write JSON here */
  sqlite3_value **aReplace       /* Replacement values */
){
  assert( pNode!=0 );
  if( pNode->jnFlags & (JNODE_REPLACE|JNODE_PATCH) ){
    if( (pNode->jnFlags & JNODE_REPLACE)!=0 && ALWAYS(aReplace!=0) ){



      assert( pNode->eU==4 );




      jsonAppendValue(pOut, aReplace[pNode->u.iReplace]);
      return;
    }
    assert( pNode->eU==5 );
    pNode = pNode->u.pPatch;

  }
  switch( pNode->eType ){
    default: {
      assert( pNode->eType==JSON_NULL );
      jsonAppendRawNZ(pOut, "null", 4);
      break;
    }







>
>
>
>
>
>
>
>
|
|
>


>
|
|
>
>
>
>
>
>
>
>
>
>




>
>
>
>
>


>
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








>

|
<


<
|
>
>
>
|
>
>
>
>
|
|
|
|
<
>







599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

684
685

686
687
688
689
690
691
692
693
694
695
696
697
698

699
700
701
702
703
704
705
706
}

/*
** Reclaim all memory allocated by a JsonParse object.  But do not
** delete the JsonParse object itself.
*/
static void jsonParseReset(JsonParse *pParse){
  while( pParse->pClup ){
    JsonCleanup *pTask = pParse->pClup;
    pParse->pClup = pTask->pJCNext;
    pTask->xOp(pTask->pArg);
    sqlite3_free(pTask);
  }
  assert( pParse->nJPRef<=1 );
  if( pParse->aNode ){
    sqlite3_free(pParse->aNode);
    pParse->aNode = 0;
  }
  pParse->nNode = 0;
  pParse->nAlloc = 0;
  if( pParse->aUp ){
    sqlite3_free(pParse->aUp);
    pParse->aUp = 0;
  }
  if( pParse->bJsonIsRCStr ){
    sqlite3RCStrUnref(pParse->zJson);
    pParse->zJson = 0;
    pParse->bJsonIsRCStr = 0;
  }
  if( pParse->zAlt ){
    sqlite3RCStrUnref(pParse->zAlt);
    pParse->zAlt = 0;
  }
}

/*
** Free a JsonParse object that was obtained from sqlite3_malloc().
**
** Note that destroying JsonParse might call sqlite3RCStrUnref() to
** destroy the zJson value.  The RCStr object might recursively invoke
** JsonParse to destroy this pParse object again.  Take care to ensure
** that this recursive destructor sequence terminates harmlessly.
*/
static void jsonParseFree(JsonParse *pParse){
  if( pParse->nJPRef>1 ){
    pParse->nJPRef--;
  }else{
    jsonParseReset(pParse);
    sqlite3_free(pParse);
  }
}

/*
** Add a cleanup task to the JsonParse object.
**
** If an OOM occurs, the cleanup operation happens immediately
** and this function returns SQLITE_NOMEM.
*/
static int jsonParseAddCleanup(
  JsonParse *pParse,          /* Add the cleanup task to this parser */
  void(*xOp)(void*),          /* The cleanup task */
  void *pArg                  /* Argument to the cleanup */
){
  JsonCleanup *pTask = sqlite3_malloc64( sizeof(*pTask) );
  if( pTask==0 ){
    pParse->oom = 1;
    xOp(pArg);
    return SQLITE_ERROR;
  }
  pTask->pJCNext = pParse->pClup;
  pParse->pClup = pTask;
  pTask->xOp = xOp;
  pTask->pArg = pArg;
  return SQLITE_OK;
}

/*
** Convert the JsonNode pNode into a pure JSON string and
** append to pOut.  Subsubstructure is also included.  Return
** the number of JsonNode objects that are encoded.
*/
static void jsonRenderNode(
  JsonParse *pParse,             /* the complete parse of the JSON */
  JsonNode *pNode,               /* The node to render */
  JsonString *pOut               /* Write JSON here */

){
  assert( pNode!=0 );

  while( (pNode->jnFlags & JNODE_REPLACE)!=0 && pParse->useMod ){
    u32 idx = (u32)(pNode - pParse->aNode);
    u32 i = pParse->iSubst;
    while( 1 /*exit-by-break*/ ){
      assert( i<pParse->nNode );
      assert( pParse->aNode[i].eType==JSON_SUBST );
      assert( pParse->aNode[i].eU==4 );
      assert( pParse->aNode[i].u.iPrev<i );
      if( pParse->aNode[i].n==idx ){
        pNode = &pParse->aNode[i+1];
        break;
      }
      i = pParse->aNode[i].u.iPrev;

    }
  }
  switch( pNode->eType ){
    default: {
      assert( pNode->eType==JSON_NULL );
      jsonAppendRawNZ(pOut, "null", 4);
      break;
    }
621
622
623
624
625
626
627
628
629
630
631
632
633
634

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

656
657
658
659
660
661
662
663
664
665
666
667
668
669

670
671
672

673
674





675
676




677
678

679
680
681
682
683
684
685
      break;
    }
    case JSON_ARRAY: {
      u32 j = 1;
      jsonAppendChar(pOut, '[');
      for(;;){
        while( j<=pNode->n ){
          if( (pNode[j].jnFlags & JNODE_REMOVE)==0 ){
            jsonAppendSeparator(pOut);
            jsonRenderNode(&pNode[j], pOut, aReplace);
          }
          j += jsonNodeSize(&pNode[j]);
        }
        if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;

        assert( pNode->eU==2 );
        pNode = &pNode[pNode->u.iAppend];
        j = 1;
      }
      jsonAppendChar(pOut, ']');
      break;
    }
    case JSON_OBJECT: {
      u32 j = 1;
      jsonAppendChar(pOut, '{');
      for(;;){
        while( j<=pNode->n ){
          if( (pNode[j+1].jnFlags & JNODE_REMOVE)==0 ){
            jsonAppendSeparator(pOut);
            jsonRenderNode(&pNode[j], pOut, aReplace);
            jsonAppendChar(pOut, ':');
            jsonRenderNode(&pNode[j+1], pOut, aReplace);
          }
          j += 1 + jsonNodeSize(&pNode[j+1]);
        }
        if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;

        assert( pNode->eU==2 );
        pNode = &pNode[pNode->u.iAppend];
        j = 1;
      }
      jsonAppendChar(pOut, '}');
      break;
    }
  }
}

/*
** Return a JsonNode and all its descendants as a JSON string.
*/
static void jsonReturnJson(

  JsonNode *pNode,            /* Node to return */
  sqlite3_context *pCtx,      /* Return value for this function */
  sqlite3_value **aReplace    /* Array of replacement values */

){
  JsonString s;





  jsonInit(&s, pCtx);
  jsonRenderNode(pNode, &s, aReplace);




  jsonResult(&s);
  sqlite3_result_subtype(pCtx, JSON_SUBTYPE);

}

/*
** Translate a single byte of Hex into an integer.
** This routine only works if h really is a valid hexadecimal
** character:  0..9a..fA..F
*/







|

|




>

|










|

|

|




>

|












>


<
>


>
>
>
>
>
|
|
>
>
>
>
|
|
>







751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
      break;
    }
    case JSON_ARRAY: {
      u32 j = 1;
      jsonAppendChar(pOut, '[');
      for(;;){
        while( j<=pNode->n ){
          if( (pNode[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ){
            jsonAppendSeparator(pOut);
            jsonRenderNode(pParse, &pNode[j], pOut);
          }
          j += jsonNodeSize(&pNode[j]);
        }
        if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;
        if( pParse->useMod==0 ) break;
        assert( pNode->eU==2 );
        pNode = &pParse->aNode[pNode->u.iAppend];
        j = 1;
      }
      jsonAppendChar(pOut, ']');
      break;
    }
    case JSON_OBJECT: {
      u32 j = 1;
      jsonAppendChar(pOut, '{');
      for(;;){
        while( j<=pNode->n ){
          if( (pNode[j+1].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ){
            jsonAppendSeparator(pOut);
            jsonRenderNode(pParse, &pNode[j], pOut);
            jsonAppendChar(pOut, ':');
            jsonRenderNode(pParse, &pNode[j+1], pOut);
          }
          j += 1 + jsonNodeSize(&pNode[j+1]);
        }
        if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;
        if( pParse->useMod==0 ) break;
        assert( pNode->eU==2 );
        pNode = &pParse->aNode[pNode->u.iAppend];
        j = 1;
      }
      jsonAppendChar(pOut, '}');
      break;
    }
  }
}

/*
** Return a JsonNode and all its descendants as a JSON string.
*/
static void jsonReturnJson(
  JsonParse *pParse,          /* The complete JSON */
  JsonNode *pNode,            /* Node to return */
  sqlite3_context *pCtx,      /* Return value for this function */

  int bGenerateAlt            /* Also store the rendered text in zAlt */
){
  JsonString s;
  if( pParse->oom ){
    sqlite3_result_error_nomem(pCtx);
    return;
  }
  if( pParse->nErr==0 ){
    jsonInit(&s, pCtx);
    jsonRenderNode(pParse, pNode, &s);
    if( bGenerateAlt && pParse->zAlt==0 && jsonForceRCStr(&s) ){
      pParse->zAlt = sqlite3RCStrRef(s.zBuf);
      pParse->nAlt = s.nUsed;
    }
    jsonResult(&s);
    sqlite3_result_subtype(pCtx, JSON_SUBTYPE);
  }
}

/*
** Translate a single byte of Hex into an integer.
** This routine only works if h really is a valid hexadecimal
** character:  0..9a..fA..F
*/
709
710
711
712
713
714
715

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
  return v;
}

/*
** Make the JsonNode the return value of the function.
*/
static void jsonReturn(

  JsonNode *pNode,            /* Node to return */
  sqlite3_context *pCtx,      /* Return value for this function */
  sqlite3_value **aReplace    /* Array of replacement values */
){
  switch( pNode->eType ){
    default: {
      assert( pNode->eType==JSON_NULL );
      sqlite3_result_null(pCtx);
      break;
    }
    case JSON_TRUE: {
      sqlite3_result_int(pCtx, 1);
      break;
    }
    case JSON_FALSE: {
      sqlite3_result_int(pCtx, 0);
      break;
    }
    case JSON_INT: {
      sqlite3_int64 i = 0;
      int rc;
      int bNeg = 0;
      const char *z;
     
   
      assert( pNode->eU==1 );
      z = pNode->u.zJContent;
      if( z[0]=='-' ){ z++; bNeg = 1; }
      else if( z[0]=='+' ){ z++; }
      rc = sqlite3DecOrHexToI64(z, &i);
      if( rc<=1 ){
        sqlite3_result_int64(pCtx, bNeg ? -i : i);







>

|
<




















|
<







852
853
854
855
856
857
858
859
860
861

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

883
884
885
886
887
888
889
  return v;
}

/*
** Make the JsonNode the return value of the function.
*/
static void jsonReturn(
  JsonParse *pParse,          /* Complete JSON parse tree */
  JsonNode *pNode,            /* Node to return */
  sqlite3_context *pCtx       /* Return value for this function */

){
  switch( pNode->eType ){
    default: {
      assert( pNode->eType==JSON_NULL );
      sqlite3_result_null(pCtx);
      break;
    }
    case JSON_TRUE: {
      sqlite3_result_int(pCtx, 1);
      break;
    }
    case JSON_FALSE: {
      sqlite3_result_int(pCtx, 0);
      break;
    }
    case JSON_INT: {
      sqlite3_int64 i = 0;
      int rc;
      int bNeg = 0;
      const char *z;


      assert( pNode->eU==1 );
      z = pNode->u.zJContent;
      if( z[0]=='-' ){ z++; bNeg = 1; }
      else if( z[0]=='+' ){ z++; }
      rc = sqlite3DecOrHexToI64(z, &i);
      if( rc<=1 ){
        sqlite3_result_int64(pCtx, bNeg ? -i : i);
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
        zOut[j] = 0;
        sqlite3_result_text(pCtx, zOut, j, sqlite3_free);
      }
      break;
    }
    case JSON_ARRAY:
    case JSON_OBJECT: {
      jsonReturnJson(pNode, pCtx, aReplace);
      break;
    }
  }
}

/* Forward reference */
static int jsonParseAddNode(JsonParse*,u32,u32,const char*);







|







1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
        zOut[j] = 0;
        sqlite3_result_text(pCtx, zOut, j, sqlite3_free);
      }
      break;
    }
    case JSON_ARRAY:
    case JSON_OBJECT: {
      jsonReturnJson(pParse, pNode, pCtx, 0);
      break;
    }
  }
}

/* Forward reference */
static int jsonParseAddNode(JsonParse*,u32,u32,const char*);
880
881
882
883
884
885
886






887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
#elif defined(_MSC_VER) && _MSC_VER>=1310
#  define JSON_NOINLINE  __declspec(noinline)
#else
#  define JSON_NOINLINE
#endif








static JSON_NOINLINE int jsonParseAddNodeExpand(
  JsonParse *pParse,        /* Append the node to this object */
  u32 eType,                /* Node type */
  u32 n,                    /* Content size or sub-node count */
  const char *zContent      /* Content */
){
  u32 nNew;
  JsonNode *pNew;
  assert( pParse->nNode>=pParse->nAlloc );
  if( pParse->oom ) return -1;
  nNew = pParse->nAlloc*2 + 10;
  pNew = sqlite3_realloc64(pParse->aNode, sizeof(JsonNode)*nNew);
  if( pNew==0 ){
    pParse->oom = 1;
    return -1;
  }
  pParse->nAlloc = nNew;
  pParse->aNode = pNew;
  assert( pParse->nNode<pParse->nAlloc );
  return jsonParseAddNode(pParse, eType, n, zContent);
}

/*
** Create a new JsonNode instance based on the arguments and append that







>
>
>
>
>
>
















|







1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
#elif defined(_MSC_VER) && _MSC_VER>=1310
#  define JSON_NOINLINE  __declspec(noinline)
#else
#  define JSON_NOINLINE
#endif


/*
** Add a single node to pParse->aNode after first expanding the
** size of the aNode array.  Return the index of the new node.
**
** If an OOM error occurs, set pParse->oom and return -1.
*/
static JSON_NOINLINE int jsonParseAddNodeExpand(
  JsonParse *pParse,        /* Append the node to this object */
  u32 eType,                /* Node type */
  u32 n,                    /* Content size or sub-node count */
  const char *zContent      /* Content */
){
  u32 nNew;
  JsonNode *pNew;
  assert( pParse->nNode>=pParse->nAlloc );
  if( pParse->oom ) return -1;
  nNew = pParse->nAlloc*2 + 10;
  pNew = sqlite3_realloc64(pParse->aNode, sizeof(JsonNode)*nNew);
  if( pNew==0 ){
    pParse->oom = 1;
    return -1;
  }
  pParse->nAlloc = sqlite3_msize(pNew)/sizeof(JsonNode);
  pParse->aNode = pNew;
  assert( pParse->nNode<pParse->nAlloc );
  return jsonParseAddNode(pParse, eType, n, zContent);
}

/*
** Create a new JsonNode instance based on the arguments and append that
926
927
928
929
930
931
932












































933
934
935
936
937
938
939
  p->eType = (u8)(eType & 0xff);
  p->jnFlags = (u8)(eType >> 8);
  VVA( p->eU = zContent ? 1 : 0 );
  p->n = n;
  p->u.zJContent = zContent;
  return pParse->nNode++;
}













































/*
** Return true if z[] begins with 2 (or more) hexadecimal digits
*/
static int jsonIs2Hex(const char *z){
  return sqlite3Isxdigit(z[0]) && sqlite3Isxdigit(z[1]);
}







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
  p->eType = (u8)(eType & 0xff);
  p->jnFlags = (u8)(eType >> 8);
  VVA( p->eU = zContent ? 1 : 0 );
  p->n = n;
  p->u.zJContent = zContent;
  return pParse->nNode++;
}

/*
** Add an array of new nodes to the current pParse->aNode array.
** Return the index of the first node added.
**
** If an OOM error occurs, set pParse->oom.
*/
static void jsonParseAddNodeArray(
  JsonParse *pParse,        /* Append the node to this object */
  JsonNode *aNode,          /* Array of nodes to add */
  u32 nNode                 /* Number of elements in aNew */
){
  if( pParse->nNode + nNode > pParse->nAlloc ){
    u32 nNew = pParse->nNode + nNode;
    JsonNode *aNew = sqlite3_realloc64(pParse->aNode, nNew*sizeof(JsonNode));
    if( aNew==0 ){
      pParse->oom = 1;
      return;
    }
    pParse->nAlloc = sqlite3_msize(aNew)/sizeof(JsonNode);
    pParse->aNode = aNew;
  }
  memcpy(&pParse->aNode[pParse->nNode], aNode, nNode*sizeof(JsonNode));
  pParse->nNode += nNode;
}

/*
** Add a new JSON_SUBST node.  The node immediately following
** this new node will be the substitute content for iNode.
*/
static int jsonParseAddSubstNode(
  JsonParse *pParse,       /* Add the JSON_SUBST here */
  u32 iNode                /* References this node */
){
  int idx = jsonParseAddNode(pParse, JSON_SUBST, iNode, 0);
  if( pParse->oom ) return -1;
  pParse->aNode[iNode].jnFlags |= JNODE_REPLACE;
  pParse->aNode[idx].eU = 4;
  pParse->aNode[idx].u.iPrev = pParse->iSubst;
  pParse->iSubst = idx;
  pParse->hasMod = 1;
  pParse->useMod = 1;
  return idx;
}

/*
** Return true if z[] begins with 2 (or more) hexadecimal digits
*/
static int jsonIs2Hex(const char *z){
  return sqlite3Isxdigit(z[0]) && sqlite3Isxdigit(z[1]);
}
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

/*
** Parse a single JSON value which begins at pParse->zJson[i].  Return the
** index of the first character past the end of the value parsed.
**
** Special return values:
**
**      0    End if input
**     -1    Syntax error
**     -2    '}' seen
**     -3    ']' seen
**     -4    ',' seen
**     -5    ':' seen
*/
static int jsonParseValue(JsonParse *pParse, u32 i){







|







1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

/*
** Parse a single JSON value which begins at pParse->zJson[i].  Return the
** index of the first character past the end of the value parsed.
**
** Special return values:
**
**      0    End of input
**     -1    Syntax error
**     -2    '}' seen
**     -3    ']' seen
**     -4    ',' seen
**     -5    ':' seen
*/
static int jsonParseValue(JsonParse *pParse, u32 i){
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
  case '"':
    /* Parse string */
    jnFlags = 0;
  parse_string:
    cDelim = z[i];
    for(j=i+1; 1; j++){
      static const char aOk[256] = {
      	  0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0,
      	  0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0,
      	  1, 1, 0, 1, 1, 1, 1, 0,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 0, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,

      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      	  1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1
      };
      if( aOk[(unsigned char)z[j]] ) continue;
      c = z[j];
      if( c==cDelim ){
        break;
      }else if( c=='\\' ){
        c = z[++j];







|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|







1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
  case '"':
    /* Parse string */
    jnFlags = 0;
  parse_string:
    cDelim = z[i];
    for(j=i+1; 1; j++){
      static const char aOk[256] = {
          0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0,
          1, 1, 0, 1, 1, 1, 1, 0,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 0, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,

          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1,
      };
      if( aOk[(unsigned char)z[j]] ) continue;
      c = z[j];
      if( c==cDelim ){
        break;
      }else if( c=='\\' ){
        c = z[++j];
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561

1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
    return -1;  /* Syntax error */
  }
  } /* End switch(z[i]) */
}

/*
** Parse a complete JSON string.  Return 0 on success or non-zero if there
** are any errors.  If an error occurs, free all memory associated with
** pParse.
**

** pParse is uninitialized when this routine is called.
*/
static int jsonParse(
  JsonParse *pParse,           /* Initialize and fill this JsonParse object */
  sqlite3_context *pCtx,       /* Report errors here */
  const char *zJson            /* Input JSON text to be parsed */
){
  int i;
  memset(pParse, 0, sizeof(*pParse));
  if( zJson==0 ) return 1;
  pParse->zJson = zJson;
  i = jsonParseValue(pParse, 0);
  if( pParse->oom ) i = -1;
  if( i>0 ){
    assert( pParse->iDepth==0 );
    while( fast_isspace(zJson[i]) ) i++;
    if( zJson[i] ){
      i += json5Whitespace(&zJson[i]);







|
|

>
|



|
<


<
<
|







1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

1760
1761


1762
1763
1764
1765
1766
1767
1768
1769
    return -1;  /* Syntax error */
  }
  } /* End switch(z[i]) */
}

/*
** Parse a complete JSON string.  Return 0 on success or non-zero if there
** are any errors.  If an error occurs, free all memory held by pParse,
** but not pParse itself.
**
** pParse must be initialized to an empty parse object prior to calling
** this routine.
*/
static int jsonParse(
  JsonParse *pParse,           /* Initialize and fill this JsonParse object */
  sqlite3_context *pCtx        /* Report errors here */

){
  int i;


  const char *zJson = pParse->zJson;
  i = jsonParseValue(pParse, 0);
  if( pParse->oom ) i = -1;
  if( i>0 ){
    assert( pParse->iDepth==0 );
    while( fast_isspace(zJson[i]) ) i++;
    if( zJson[i] ){
      i += json5Whitespace(&zJson[i]);
1593
1594
1595
1596
1597
1598
1599

1600
1601
1602
1603
1604
1605
1606
      }
    }
    jsonParseReset(pParse);
    return 1;
  }
  return 0;
}


/* Mark node i of pParse as being a child of iParent.  Call recursively
** to fill in all the descendants of node i.
*/
static void jsonParseFillInParentage(JsonParse *pParse, u32 i, u32 iParent){
  JsonNode *pNode = &pParse->aNode[i];
  u32 j;







>







1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
      }
    }
    jsonParseReset(pParse);
    return 1;
  }
  return 0;
}


/* Mark node i of pParse as being a child of iParent.  Call recursively
** to fill in all the descendants of node i.
*/
static void jsonParseFillInParentage(JsonParse *pParse, u32 i, u32 iParent){
  JsonNode *pNode = &pParse->aNode[i];
  u32 j;
1643
1644
1645
1646
1647
1648
1649
1650

1651
1652
1653
1654
1655
1656
1657
1658
1659




1660
1661
1662
1663
1664







1665
1666
1667
1668
1669

1670
1671
1672
1673
1674
1675
1676
1677
1678


1679
1680
1681
1682
1683
1684
1685
1686
1687

1688
1689
1690











1691
1692
1693
1694
1695
1696
1697
1698
1699
1700


1701
1702

1703
1704





1705
1706
1707
1708
1709
1710




1711
1712


1713
1714
1715

1716
1717
1718
1719
1720
1721
1722

1723
1724
1725
1726
1727
1728
1729
/*
** Magic number used for the JSON parse cache in sqlite3_get_auxdata()
*/
#define JSON_CACHE_ID  (-429938)  /* First cache entry */
#define JSON_CACHE_SZ  4          /* Max number of cache entries */

/*
** Obtain a complete parse of the JSON found in the first argument

** of the argv array.  Use the sqlite3_get_auxdata() cache for this
** parse if it is available.  If the cache is not available or if it
** is no longer valid, parse the JSON again and return the new parse,
** and also register the new parse so that it will be available for
** future sqlite3_get_auxdata() calls.
**
** If an error occurs and pErrCtx!=0 then report the error on pErrCtx
** and return NULL.
**




** If an error occurs and pErrCtx==0 then return the Parse object with
** JsonParse.nErr non-zero.  If the caller invokes this routine with
** pErrCtx==0 and it gets back a JsonParse with nErr!=0, then the caller
** is responsible for invoking jsonParseFree() on the returned value.
** But the caller may invoke jsonParseFree() *only* if pParse->nErr!=0.







*/
static JsonParse *jsonParseCached(
  sqlite3_context *pCtx,
  sqlite3_value **argv,
  sqlite3_context *pErrCtx

){
  const char *zJson = (const char*)sqlite3_value_text(argv[0]);
  int nJson = sqlite3_value_bytes(argv[0]);
  JsonParse *p;
  JsonParse *pMatch = 0;
  int iKey;
  int iMinKey = 0;
  u32 iMinHold = 0xffffffff;
  u32 iMaxHold = 0;


  if( zJson==0 ) return 0;
  for(iKey=0; iKey<JSON_CACHE_SZ; iKey++){
    p = (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iKey);
    if( p==0 ){
      iMinKey = iKey;
      break;
    }
    if( pMatch==0
     && p->nJson==nJson

     && memcmp(p->zJson,zJson,nJson)==0
    ){
      p->nErr = 0;











      pMatch = p;
    }else if( p->iHold<iMinHold ){
      iMinHold = p->iHold;
      iMinKey = iKey;
    }
    if( p->iHold>iMaxHold ){
      iMaxHold = p->iHold;
    }
  }
  if( pMatch ){


    pMatch->nErr = 0;
    pMatch->iHold = iMaxHold+1;

    return pMatch;
  }





  p = sqlite3_malloc64( sizeof(*p) + nJson + 1 );
  if( p==0 ){
    sqlite3_result_error_nomem(pCtx);
    return 0;
  }
  memset(p, 0, sizeof(*p));




  p->zJson = (char*)&p[1];
  memcpy((char*)p->zJson, zJson, nJson+1);


  if( jsonParse(p, pErrCtx, p->zJson) ){
    if( pErrCtx==0 ){
      p->nErr = 1;

      return p;
    }
    sqlite3_free(p);
    return 0;
  }
  p->nJson = nJson;
  p->iHold = iMaxHold+1;

  sqlite3_set_auxdata(pCtx, JSON_CACHE_ID+iMinKey, p,
                      (void(*)(void*))jsonParseFree);
  return (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iMinKey);
}

/*
** Compare the OBJECT label at pNode against zKey,nKey.  Return true on







|
>
|
|
|
|





>
>
>
>
|
|
<
|
|
>
>
>
>
>
>
>


|
|
|
>

|
|






>
>









>
|


>
>
>
>
>
>
>
>
>
>
>










>
>


>


>
>
>
>
>
|





>
>
>
>
|
|
>
>
|


>


|




>







1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857

1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
/*
** Magic number used for the JSON parse cache in sqlite3_get_auxdata()
*/
#define JSON_CACHE_ID  (-429938)  /* First cache entry */
#define JSON_CACHE_SZ  4          /* Max number of cache entries */

/*
** Obtain a complete parse of the JSON found in the pJson argument
**
** Use the sqlite3_get_auxdata() cache to find a preexisting parse
** if it is available.  If the cache is not available or if it
** is no longer valid, parse the JSON again and return the new parse.
** Also register the new parse so that it will be available for
** future sqlite3_get_auxdata() calls.
**
** If an error occurs and pErrCtx!=0 then report the error on pErrCtx
** and return NULL.
**
** The returned pointer (if it is not NULL) is owned by the cache in
** most cases, not the caller.  The caller does NOT need to invoke
** jsonParseFree(), in most cases.
**
** Except, if an error occurs and pErrCtx==0 then return the JsonParse
** object with JsonParse.nErr non-zero and the caller will own the JsonParse

** object.  In that case, it will be the responsibility of the caller to
** invoke jsonParseFree().  To summarize:
**
**   pErrCtx!=0 || p->nErr==0      ==>   Return value p is owned by the
**                                       cache.  Call does not need to
**                                       free it.
**
**   pErrCtx==0 && p->nErr!=0      ==>   Return value is owned by the caller
**                                       and so the caller must free it.
*/
static JsonParse *jsonParseCached(
  sqlite3_context *pCtx,         /* Context to use for cache search */
  sqlite3_value *pJson,          /* Function param containing JSON text */
  sqlite3_context *pErrCtx,      /* Write parse errors here if not NULL */
  int bUnedited                  /* No prior edits allowed */
){
  char *zJson = (char*)sqlite3_value_text(pJson);
  int nJson = sqlite3_value_bytes(pJson);
  JsonParse *p;
  JsonParse *pMatch = 0;
  int iKey;
  int iMinKey = 0;
  u32 iMinHold = 0xffffffff;
  u32 iMaxHold = 0;
  int bJsonRCStr;

  if( zJson==0 ) return 0;
  for(iKey=0; iKey<JSON_CACHE_SZ; iKey++){
    p = (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iKey);
    if( p==0 ){
      iMinKey = iKey;
      break;
    }
    if( pMatch==0
     && p->nJson==nJson
     && (p->hasMod==0 || bUnedited==0)
     && (p->zJson==zJson || memcmp(p->zJson,zJson,nJson)==0)
    ){
      p->nErr = 0;
      p->useMod = 0;
      pMatch = p;
    }else
    if( pMatch==0
     && p->zAlt!=0
     && bUnedited==0
     && p->nAlt==nJson
     && memcmp(p->zAlt, zJson, nJson)==0
    ){
      p->nErr = 0;
      p->useMod = 1;
      pMatch = p;
    }else if( p->iHold<iMinHold ){
      iMinHold = p->iHold;
      iMinKey = iKey;
    }
    if( p->iHold>iMaxHold ){
      iMaxHold = p->iHold;
    }
  }
  if( pMatch ){
    /* The input JSON text was found in the cache.  Use the preexisting
    ** parse of this JSON */
    pMatch->nErr = 0;
    pMatch->iHold = iMaxHold+1;
    assert( pMatch->nJPRef>0 ); /* pMatch is owned by the cache */
    return pMatch;
  }

  /* The input JSON was not found anywhere in the cache.  We will need
  ** to parse it ourselves and generate a new JsonParse object.
  */
  bJsonRCStr = sqlite3ValueIsOfClass(pJson,(void(*)(void*))sqlite3RCStrUnref);
  p = sqlite3_malloc64( sizeof(*p) + (bJsonRCStr ? 0 : nJson+1) );
  if( p==0 ){
    sqlite3_result_error_nomem(pCtx);
    return 0;
  }
  memset(p, 0, sizeof(*p));
  if( bJsonRCStr ){
    p->zJson = sqlite3RCStrRef(zJson);
    p->bJsonIsRCStr = 1;
  }else{
    p->zJson = (char*)&p[1];
    memcpy(p->zJson, zJson, nJson+1);
  }
  p->nJPRef = 1;
  if( jsonParse(p, pErrCtx) ){
    if( pErrCtx==0 ){
      p->nErr = 1;
      assert( p->nJPRef==1 ); /* Caller will own the new JsonParse object p */
      return p;
    }
    jsonParseFree(p);
    return 0;
  }
  p->nJson = nJson;
  p->iHold = iMaxHold+1;
  /* Transfer ownership of the new JsonParse to the cache */
  sqlite3_set_auxdata(pCtx, JSON_CACHE_ID+iMinKey, p,
                      (void(*)(void*))jsonParseFree);
  return (JsonParse*)sqlite3_get_auxdata(pCtx, JSON_CACHE_ID+iMinKey);
}

/*
** Compare the OBJECT label at pNode against zKey,nKey.  Return true on
1766
1767
1768
1769
1770
1771
1772


1773
















1774
1775
1776
1777
1778
1779
1780
1781
1782
  u32 iRoot,              /* Begin the search at this node */
  const char *zPath,      /* The path to search */
  int *pApnd,             /* Append nodes to complete path if not NULL */
  const char **pzErr      /* Make *pzErr point to any syntax error in zPath */
){
  u32 i, j, nKey;
  const char *zKey;


  JsonNode *pRoot = &pParse->aNode[iRoot];
















  if( zPath[0]==0 ) return pRoot;
  if( pRoot->jnFlags & JNODE_REPLACE ) return 0;
  if( zPath[0]=='.' ){
    if( pRoot->eType!=JSON_OBJECT ) return 0;
    zPath++;
    if( zPath[0]=='"' ){
      zKey = zPath + 1;
      for(i=1; zPath[i] && zPath[i]!='"'; i++){}
      nKey = i-1;







>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

<







1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

2026
2027
2028
2029
2030
2031
2032
  u32 iRoot,              /* Begin the search at this node */
  const char *zPath,      /* The path to search */
  int *pApnd,             /* Append nodes to complete path if not NULL */
  const char **pzErr      /* Make *pzErr point to any syntax error in zPath */
){
  u32 i, j, nKey;
  const char *zKey;
  JsonNode *pRoot;
  if( pParse->oom ) return 0;
  pRoot = &pParse->aNode[iRoot];
  while( (pRoot->jnFlags & JNODE_REPLACE)!=0 && pParse->useMod ){
    u32 idx = (u32)(pRoot - pParse->aNode);
    i = pParse->iSubst;
    while( 1 /*exit-by-break*/ ){
      assert( i<pParse->nNode );
      assert( pParse->aNode[i].eType==JSON_SUBST );
      assert( pParse->aNode[i].eU==4 );
      assert( pParse->aNode[i].u.iPrev<i );
      if( pParse->aNode[i].n==idx ){
        pRoot = &pParse->aNode[i+1];
        iRoot = i+1;
        break;
      }
      i = pParse->aNode[i].u.iPrev;
    }
  }
  if( zPath[0]==0 ) return pRoot;

  if( zPath[0]=='.' ){
    if( pRoot->eType!=JSON_OBJECT ) return 0;
    zPath++;
    if( zPath[0]=='"' ){
      zKey = zPath + 1;
      for(i=1; zPath[i] && zPath[i]!='"'; i++){}
      nKey = i-1;
1802
1803
1804
1805
1806
1807
1808

1809
1810
1811
1812
1813
1814
1815
1816

1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849

1850
1851
1852
1853
1854
1855
1856
1857
1858
        if( jsonLabelCompare(pRoot+j, zKey, nKey) ){
          return jsonLookupStep(pParse, iRoot+j+1, &zPath[i], pApnd, pzErr);
        }
        j++;
        j += jsonNodeSize(&pRoot[j]);
      }
      if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break;

      assert( pRoot->eU==2 );
      iRoot += pRoot->u.iAppend;
      pRoot = &pParse->aNode[iRoot];
      j = 1;
    }
    if( pApnd ){
      u32 iStart, iLabel;
      JsonNode *pNode;

      iStart = jsonParseAddNode(pParse, JSON_OBJECT, 2, 0);
      iLabel = jsonParseAddNode(pParse, JSON_STRING, nKey, zKey);
      zPath += i;
      pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr);
      if( pParse->oom ) return 0;
      if( pNode ){
        pRoot = &pParse->aNode[iRoot];
        assert( pRoot->eU==0 );
        pRoot->u.iAppend = iStart - iRoot;
        pRoot->jnFlags |= JNODE_APPEND;
        VVA( pRoot->eU = 2 );
        pParse->aNode[iLabel].jnFlags |= JNODE_RAW;
      }
      return pNode;
    }
  }else if( zPath[0]=='[' ){
    i = 0;
    j = 1;
    while( sqlite3Isdigit(zPath[j]) ){
      i = i*10 + zPath[j] - '0';
      j++;
    }
    if( j<2 || zPath[j]!=']' ){
      if( zPath[1]=='#' ){
        JsonNode *pBase = pRoot;
        int iBase = iRoot;
        if( pRoot->eType!=JSON_ARRAY ) return 0;
        for(;;){
          while( j<=pBase->n ){
            if( (pBase[j].jnFlags & JNODE_REMOVE)==0 ) i++;
            j += jsonNodeSize(&pBase[j]);
          }
          if( (pBase->jnFlags & JNODE_APPEND)==0 ) break;

          assert( pBase->eU==2 );
          iBase += pBase->u.iAppend;
          pBase = &pParse->aNode[iBase];
          j = 1;
        }
        j = 2;
        if( zPath[2]=='-' && sqlite3Isdigit(zPath[3]) ){
          unsigned int x = 0;
          j = 3;







>

|






>








|




















|



>

|







2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
        if( jsonLabelCompare(pRoot+j, zKey, nKey) ){
          return jsonLookupStep(pParse, iRoot+j+1, &zPath[i], pApnd, pzErr);
        }
        j++;
        j += jsonNodeSize(&pRoot[j]);
      }
      if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break;
      if( pParse->useMod==0 ) break;
      assert( pRoot->eU==2 );
      iRoot = pRoot->u.iAppend;
      pRoot = &pParse->aNode[iRoot];
      j = 1;
    }
    if( pApnd ){
      u32 iStart, iLabel;
      JsonNode *pNode;
      assert( pParse->useMod );
      iStart = jsonParseAddNode(pParse, JSON_OBJECT, 2, 0);
      iLabel = jsonParseAddNode(pParse, JSON_STRING, nKey, zKey);
      zPath += i;
      pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr);
      if( pParse->oom ) return 0;
      if( pNode ){
        pRoot = &pParse->aNode[iRoot];
        assert( pRoot->eU==0 );
        pRoot->u.iAppend = iStart;
        pRoot->jnFlags |= JNODE_APPEND;
        VVA( pRoot->eU = 2 );
        pParse->aNode[iLabel].jnFlags |= JNODE_RAW;
      }
      return pNode;
    }
  }else if( zPath[0]=='[' ){
    i = 0;
    j = 1;
    while( sqlite3Isdigit(zPath[j]) ){
      i = i*10 + zPath[j] - '0';
      j++;
    }
    if( j<2 || zPath[j]!=']' ){
      if( zPath[1]=='#' ){
        JsonNode *pBase = pRoot;
        int iBase = iRoot;
        if( pRoot->eType!=JSON_ARRAY ) return 0;
        for(;;){
          while( j<=pBase->n ){
            if( (pBase[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ) i++;
            j += jsonNodeSize(&pBase[j]);
          }
          if( (pBase->jnFlags & JNODE_APPEND)==0 ) break;
          if( pParse->useMod==0 ) break;
          assert( pBase->eU==2 );
          iBase = pBase->u.iAppend;
          pBase = &pParse->aNode[iBase];
          j = 1;
        }
        j = 2;
        if( zPath[2]=='-' && sqlite3Isdigit(zPath[3]) ){
          unsigned int x = 0;
          j = 3;
1872
1873
1874
1875
1876
1877
1878
1879


1880
1881
1882
1883

1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894

1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
        return 0;
      }
    }
    if( pRoot->eType!=JSON_ARRAY ) return 0;
    zPath += j + 1;
    j = 1;
    for(;;){
      while( j<=pRoot->n && (i>0 || (pRoot[j].jnFlags & JNODE_REMOVE)!=0) ){


        if( (pRoot[j].jnFlags & JNODE_REMOVE)==0 ) i--;
        j += jsonNodeSize(&pRoot[j]);
      }
      if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break;

      assert( pRoot->eU==2 );
      iRoot += pRoot->u.iAppend;
      pRoot = &pParse->aNode[iRoot];
      j = 1;
    }
    if( j<=pRoot->n ){
      return jsonLookupStep(pParse, iRoot+j, zPath, pApnd, pzErr);
    }
    if( i==0 && pApnd ){
      u32 iStart;
      JsonNode *pNode;

      iStart = jsonParseAddNode(pParse, JSON_ARRAY, 1, 0);
      pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr);
      if( pParse->oom ) return 0;
      if( pNode ){
        pRoot = &pParse->aNode[iRoot];
        assert( pRoot->eU==0 );
        pRoot->u.iAppend = iStart - iRoot;
        pRoot->jnFlags |= JNODE_APPEND;
        VVA( pRoot->eU = 2 );
      }
      return pNode;
    }
  }else{
    *pzErr = zPath;







|
>
>
|



>

|









>






|







2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
        return 0;
      }
    }
    if( pRoot->eType!=JSON_ARRAY ) return 0;
    zPath += j + 1;
    j = 1;
    for(;;){
      while( j<=pRoot->n
         && (i>0 || ((pRoot[j].jnFlags & JNODE_REMOVE)!=0 && pParse->useMod))
      ){
        if( (pRoot[j].jnFlags & JNODE_REMOVE)==0 || pParse->useMod==0 ) i--;
        j += jsonNodeSize(&pRoot[j]);
      }
      if( (pRoot->jnFlags & JNODE_APPEND)==0 ) break;
      if( pParse->useMod==0 ) break;
      assert( pRoot->eU==2 );
      iRoot = pRoot->u.iAppend;
      pRoot = &pParse->aNode[iRoot];
      j = 1;
    }
    if( j<=pRoot->n ){
      return jsonLookupStep(pParse, iRoot+j, zPath, pApnd, pzErr);
    }
    if( i==0 && pApnd ){
      u32 iStart;
      JsonNode *pNode;
      assert( pParse->useMod );
      iStart = jsonParseAddNode(pParse, JSON_ARRAY, 1, 0);
      pNode = jsonLookupAppend(pParse, zPath, pApnd, pzErr);
      if( pParse->oom ) return 0;
      if( pNode ){
        pRoot = &pParse->aNode[iRoot];
        assert( pRoot->eU==0 );
        pRoot->u.iAppend = iStart;
        pRoot->jnFlags |= JNODE_APPEND;
        VVA( pRoot->eU = 2 );
      }
      return pNode;
    }
  }else{
    *pzErr = zPath;
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
static void jsonWrongNumArgs(
  sqlite3_context *pCtx,
  const char *zFuncName
){
  char *zMsg = sqlite3_mprintf("json_%s() needs an odd number of arguments",
                               zFuncName);
  sqlite3_result_error(pCtx, zMsg, -1);
  sqlite3_free(zMsg);     
}

/*
** Mark all NULL entries in the Object passed in as JNODE_REMOVE.
*/
static void jsonRemoveAllNulls(JsonNode *pNode){
  int i, n;







|







2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
static void jsonWrongNumArgs(
  sqlite3_context *pCtx,
  const char *zFuncName
){
  char *zMsg = sqlite3_mprintf("json_%s() needs an odd number of arguments",
                               zFuncName);
  sqlite3_result_error(pCtx, zMsg, -1);
  sqlite3_free(zMsg);
}

/*
** Mark all NULL entries in the Object passed in as JNODE_REMOVE.
*/
static void jsonRemoveAllNulls(JsonNode *pNode){
  int i, n;
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029



































2030
2031












2032







2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047



2048
2049
2050
2051
2052
2053
2054

2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
  }
}


/****************************************************************************
** SQL functions used for testing and debugging
****************************************************************************/

#ifdef SQLITE_DEBUG
/*



































** The json_parse(JSON) function returns a string which describes
** a parse of the JSON provided.  Or it returns NULL if JSON is not












** well-formed.







*/
static void jsonParseFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString s;       /* Output string - not real JSON */
  JsonParse x;        /* The parse */
  u32 i;

  assert( argc==1 );
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  jsonParseFindParents(&x);
  jsonInit(&s, ctx);
  for(i=0; i<x.nNode; i++){



    const char *zType;
    if( x.aNode[i].jnFlags & JNODE_LABEL ){
      assert( x.aNode[i].eType==JSON_STRING );
      zType = "label";
    }else{
      zType = jsonType[x.aNode[i].eType];
    }

    jsonPrintf(100, &s,"node %3u: %7s n=%-4d up=%-4d",
               i, zType, x.aNode[i].n, x.aUp[i]);
    assert( x.aNode[i].eU==0 || x.aNode[i].eU==1 );
    if( x.aNode[i].u.zJContent!=0 ){
      assert( x.aNode[i].eU==1 );
      jsonAppendChar(&s, ' ');
      jsonAppendRaw(&s, x.aNode[i].u.zJContent, x.aNode[i].n);
    }else{
      assert( x.aNode[i].eU==0 );
    }
    jsonAppendChar(&s, '\n');
  }
  jsonParseReset(&x);
  jsonResult(&s);
}

/*
** The json_test1(JSON) function return true (1) if the input is JSON
** text generated by another json function.  It returns (0) if the input
** is not known to be JSON.
*/








|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>






<
|
<


|
|
<
|
>
>
>
|
|
|
|
|
|
<
>
|
<
<
<
|
<
<
<
<
<
<
<
<
|







2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349

2350

2351
2352
2353
2354

2355
2356
2357
2358
2359
2360
2361
2362
2363
2364

2365
2366



2367








2368
2369
2370
2371
2372
2373
2374
2375
  }
}


/****************************************************************************
** SQL functions used for testing and debugging
****************************************************************************/

#if SQLITE_DEBUG
/*
** Print N node entries.
*/
static void jsonDebugPrintNodeEntries(
  JsonNode *aNode,  /* First node entry to print */
  int N             /* Number of node entries to print */
){
  int i;
  for(i=0; i<N; i++){
    const char *zType;
    if( aNode[i].jnFlags & JNODE_LABEL ){
      zType = "label";
    }else{
      zType = jsonType[aNode[i].eType];
    }
    printf("node %4u: %-7s n=%-5d", i, zType, aNode[i].n);
    if( (aNode[i].jnFlags & ~JNODE_LABEL)!=0 ){
      u8 f = aNode[i].jnFlags;
      if( f & JNODE_RAW )     printf(" RAW");
      if( f & JNODE_ESCAPE )  printf(" ESCAPE");
      if( f & JNODE_REMOVE )  printf(" REMOVE");
      if( f & JNODE_REPLACE ) printf(" REPLACE");
      if( f & JNODE_APPEND )  printf(" APPEND");
      if( f & JNODE_JSON5 )   printf(" JSON5");
    }
    switch( aNode[i].eU ){
      case 1:  printf(" zJContent=[%.*s]\n",
                      aNode[i].n, aNode[i].u.zJContent);           break;
      case 2:  printf(" iAppend=%u\n", aNode[i].u.iAppend);        break;
      case 3:  printf(" iKey=%u\n", aNode[i].u.iKey);              break;
      case 4:  printf(" iPrev=%u\n", aNode[i].u.iPrev);            break;
      default: printf("\n");
    }
  }
}
#endif /* SQLITE_DEBUG */


#if 0  /* 1 for debugging.  0 normally.  Requires -DSQLITE_DEBUG too */
static void jsonDebugPrintParse(JsonParse *p){
  jsonDebugPrintNodeEntries(p->aNode, p->nNode);
}
static void jsonDebugPrintNode(JsonNode *pNode){
  jsonDebugPrintNodeEntries(pNode, jsonNodeSize(pNode));
}
#else
   /* The usual case */
# define jsonDebugPrintNode(X)
# define jsonDebugPrintParse(X)
#endif

#ifdef SQLITE_DEBUG
/*
** SQL function:   json_parse(JSON)
**
** Parse JSON using jsonParseCached().  Then print a dump of that
** parse on standard output.  Return the mimified JSON result, just
** like the json() function.
*/
static void jsonParseFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){

  JsonParse *p;        /* The parse */


  assert( argc==1 );
  p = jsonParseCached(ctx, argv[0], ctx, 0);
  if( p==0 ) return;

  printf("nNode     = %u\n", p->nNode);
  printf("nAlloc    = %u\n", p->nAlloc);
  printf("nJson     = %d\n", p->nJson);
  printf("nAlt      = %d\n", p->nAlt);
  printf("nErr      = %u\n", p->nErr);
  printf("oom       = %u\n", p->oom);
  printf("hasNonstd = %u\n", p->hasNonstd);
  printf("useMod    = %u\n", p->useMod);
  printf("hasMod    = %u\n", p->hasMod);
  printf("nJPRef    = %u\n", p->nJPRef);

  printf("iSubst    = %u\n", p->iSubst);
  printf("iHold     = %u\n", p->iHold);



  jsonDebugPrintNodeEntries(p->aNode, p->nNode);








  jsonReturnJson(p, p->aNode, ctx, 1);
}

/*
** The json_test1(JSON) function return true (1) if the input is JSON
** text generated by another json function.  It returns (0) if the input
** is not known to be JSON.
*/
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099

/****************************************************************************
** Scalar SQL function implementations
****************************************************************************/

/*
** Implementation of the json_QUOTE(VALUE) function.  Return a JSON value
** corresponding to the SQL value input.  Mostly this means putting 
** double-quotes around strings and returning the unquoted string "null"
** when given a NULL input.
*/
static void jsonQuoteFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv







|







2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399

/****************************************************************************
** Scalar SQL function implementations
****************************************************************************/

/*
** Implementation of the json_QUOTE(VALUE) function.  Return a JSON value
** corresponding to the SQL value input.  Mostly this means putting
** double-quotes around strings and returning the unquoted string "null"
** when given a NULL input.
*/
static void jsonQuoteFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167





2168
2169
2170
2171
2172
2173
2174
}


/*
** json_array_length(JSON)
** json_array_length(JSON, PATH)
**
** Return the number of elements in the top-level JSON array.  
** Return 0 if the input is not a well-formed JSON array.
*/
static void jsonArrayLengthFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *p;          /* The parse */
  sqlite3_int64 n = 0;
  u32 i;
  JsonNode *pNode;

  p = jsonParseCached(ctx, argv, ctx);
  if( p==0 ) return;
  assert( p->nNode );
  if( argc==2 ){
    const char *zPath = (const char*)sqlite3_value_text(argv[1]);
    pNode = jsonLookup(p, zPath, 0, ctx);
  }else{
    pNode = p->aNode;
  }
  if( pNode==0 ){
    return;
  }
  if( pNode->eType==JSON_ARRAY ){
    assert( (pNode->jnFlags & JNODE_APPEND)==0 );
    for(i=1; i<=pNode->n; n++){
      i += jsonNodeSize(&pNode[i]);





    }
  }
  sqlite3_result_int64(ctx, n);
}

/*
** Bit values for the flags passed into jsonExtractFunc() or







|












|












|
|
|
>
>
>
>
>







2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
}


/*
** json_array_length(JSON)
** json_array_length(JSON, PATH)
**
** Return the number of elements in the top-level JSON array.
** Return 0 if the input is not a well-formed JSON array.
*/
static void jsonArrayLengthFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *p;          /* The parse */
  sqlite3_int64 n = 0;
  u32 i;
  JsonNode *pNode;

  p = jsonParseCached(ctx, argv[0], ctx, 0);
  if( p==0 ) return;
  assert( p->nNode );
  if( argc==2 ){
    const char *zPath = (const char*)sqlite3_value_text(argv[1]);
    pNode = jsonLookup(p, zPath, 0, ctx);
  }else{
    pNode = p->aNode;
  }
  if( pNode==0 ){
    return;
  }
  if( pNode->eType==JSON_ARRAY ){
    while( 1 /*exit-by-break*/ ){
      for(i=1; i<=pNode->n; n++){
        i += jsonNodeSize(&pNode[i]);
      }
      if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;
      if( p->useMod==0 ) break;
      assert( pNode->eU==2 );
      pNode = &p->aNode[pNode->u.iAppend];
    }
  }
  sqlite3_result_int64(ctx, n);
}

/*
** Bit values for the flags passed into jsonExtractFunc() or
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
  JsonParse *p;          /* The parse */
  JsonNode *pNode;
  const char *zPath;
  int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx));
  JsonString jx;

  if( argc<2 ) return;
  p = jsonParseCached(ctx, argv, ctx);
  if( p==0 ) return;
  if( argc==2 ){
    /* With a single PATH argument */
    zPath = (const char*)sqlite3_value_text(argv[1]);
    if( zPath==0 ) return;
    if( flags & JSON_ABPATH ){
      if( zPath[0]!='$' || (zPath[1]!='.' && zPath[1]!='[' && zPath[1]!=0) ){







|







2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
  JsonParse *p;          /* The parse */
  JsonNode *pNode;
  const char *zPath;
  int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx));
  JsonString jx;

  if( argc<2 ) return;
  p = jsonParseCached(ctx, argv[0], ctx, 0);
  if( p==0 ) return;
  if( argc==2 ){
    /* With a single PATH argument */
    zPath = (const char*)sqlite3_value_text(argv[1]);
    if( zPath==0 ) return;
    if( flags & JSON_ABPATH ){
      if( zPath[0]!='$' || (zPath[1]!='.' && zPath[1]!='[' && zPath[1]!=0) ){
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
        pNode = jx.bErr ? 0 : jsonLookup(p, jx.zBuf, 0, ctx);
        jsonReset(&jx);
      }else{
        pNode = jsonLookup(p, zPath, 0, ctx);
      }
      if( pNode ){
        if( flags & JSON_JSON ){
          jsonReturnJson(pNode, ctx, 0);
        }else{
          jsonReturn(pNode, ctx, 0);
          sqlite3_result_subtype(ctx, 0);
        }
      }
    }else{
      pNode = jsonLookup(p, zPath, 0, ctx);
      if( p->nErr==0 && pNode ) jsonReturn(pNode, ctx, 0);
    }
  }else{
    /* Two or more PATH arguments results in a JSON array with each
    ** element of the array being the value selected by one of the PATHs */
    int i;
    jsonInit(&jx, ctx);
    jsonAppendChar(&jx, '[');
    for(i=1; i<argc; i++){
      zPath = (const char*)sqlite3_value_text(argv[i]);
      pNode = jsonLookup(p, zPath, 0, ctx);
      if( p->nErr ) break;
      jsonAppendSeparator(&jx);
      if( pNode ){
        jsonRenderNode(pNode, &jx, 0);
      }else{
        jsonAppendRawNZ(&jx, "null", 4);
      }
    }
    if( i==argc ){
      jsonAppendChar(&jx, ']');
      jsonResult(&jx);







|

|





|













|







2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
        pNode = jx.bErr ? 0 : jsonLookup(p, jx.zBuf, 0, ctx);
        jsonReset(&jx);
      }else{
        pNode = jsonLookup(p, zPath, 0, ctx);
      }
      if( pNode ){
        if( flags & JSON_JSON ){
          jsonReturnJson(p, pNode, ctx, 0);
        }else{
          jsonReturn(p, pNode, ctx);
          sqlite3_result_subtype(ctx, 0);
        }
      }
    }else{
      pNode = jsonLookup(p, zPath, 0, ctx);
      if( p->nErr==0 && pNode ) jsonReturn(p, pNode, ctx);
    }
  }else{
    /* Two or more PATH arguments results in a JSON array with each
    ** element of the array being the value selected by one of the PATHs */
    int i;
    jsonInit(&jx, ctx);
    jsonAppendChar(&jx, '[');
    for(i=1; i<argc; i++){
      zPath = (const char*)sqlite3_value_text(argv[i]);
      pNode = jsonLookup(p, zPath, 0, ctx);
      if( p->nErr ) break;
      jsonAppendSeparator(&jx);
      if( pNode ){
        jsonRenderNode(p, pNode, &jx);
      }else{
        jsonAppendRawNZ(&jx, "null", 4);
      }
    }
    if( i==argc ){
      jsonAppendChar(&jx, ']');
      jsonResult(&jx);
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332

2333
2334
2335
2336
2337
2338


2339
2340



2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379



2380
2381
2382


2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
    assert( pPatch[i].eU==1 );
    nKey = pPatch[i].n;
    zKey = pPatch[i].u.zJContent;
    for(j=1; j<pTarget->n; j += jsonNodeSize(&pTarget[j+1])+1 ){
      assert( pTarget[j].eType==JSON_STRING );
      assert( pTarget[j].jnFlags & JNODE_LABEL );
      if( jsonSameLabel(&pPatch[i], &pTarget[j]) ){
        if( pTarget[j+1].jnFlags & (JNODE_REMOVE|JNODE_PATCH) ) break;
        if( pPatch[i+1].eType==JSON_NULL ){
          pTarget[j+1].jnFlags |= JNODE_REMOVE;
        }else{
          JsonNode *pNew = jsonMergePatch(pParse, iTarget+j+1, &pPatch[i+1]);
          if( pNew==0 ) return 0;
          pTarget = &pParse->aNode[iTarget];
          if( pNew!=&pTarget[j+1] ){
            assert( pTarget[j+1].eU==0
                 || pTarget[j+1].eU==1
                 || pTarget[j+1].eU==2 );
            testcase( pTarget[j+1].eU==1 );
            testcase( pTarget[j+1].eU==2 );
            VVA( pTarget[j+1].eU = 5 );
            pTarget[j+1].u.pPatch = pNew;
            pTarget[j+1].jnFlags |= JNODE_PATCH;
          }

        }
        break;
      }
    }
    if( j>=pTarget->n && pPatch[i+1].eType!=JSON_NULL ){
      int iStart, iPatch;


      iStart = jsonParseAddNode(pParse, JSON_OBJECT, 2, 0);
      jsonParseAddNode(pParse, JSON_STRING, nKey, zKey);



      iPatch = jsonParseAddNode(pParse, JSON_TRUE, 0, 0);
      if( pParse->oom ) return 0;
      jsonRemoveAllNulls(pPatch);
      pTarget = &pParse->aNode[iTarget];
      assert( pParse->aNode[iRoot].eU==0 || pParse->aNode[iRoot].eU==2 );
      testcase( pParse->aNode[iRoot].eU==2 );
      pParse->aNode[iRoot].jnFlags |= JNODE_APPEND;
      VVA( pParse->aNode[iRoot].eU = 2 );
      pParse->aNode[iRoot].u.iAppend = iStart - iRoot;
      iRoot = iStart;
      assert( pParse->aNode[iPatch].eU==0 );
      VVA( pParse->aNode[iPatch].eU = 5 );
      pParse->aNode[iPatch].jnFlags |= JNODE_PATCH;
      pParse->aNode[iPatch].u.pPatch = &pPatch[i+1];
    }
  }
  return pTarget;
}

/*
** Implementation of the json_mergepatch(JSON1,JSON2) function.  Return a JSON
** object that is the result of running the RFC 7396 MergePatch() algorithm
** on the two arguments.
*/
static void jsonPatchFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse x;     /* The JSON that is being patched */
  JsonParse y;     /* The patch */
  JsonNode *pResult;   /* The result of the merge */

  UNUSED_PARAMETER(argc);
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( jsonParse(&y, ctx, (const char*)sqlite3_value_text(argv[1])) ){
    jsonParseReset(&x);
    return;
  }



  pResult = jsonMergePatch(&x, 0, y.aNode);
  assert( pResult!=0 || x.oom );
  if( pResult ){


    jsonReturnJson(pResult, ctx, 0);
  }else{
    sqlite3_result_error_nomem(ctx);
  }
  jsonParseReset(&x);
  jsonParseReset(&y);
}


/*
** Implementation of the json_object(NAME,VALUE,...) function.  Return a JSON
** object that contains all name/value given in arguments.  Or if any name
** is not a string or if any value is a BLOB, throw an error.







|





|
<
<
|
<
<
<
<
|
<

>





|
>
>
|

>
>
>
|

<
|
<
|
|

<

<
|
<
<















|
|



|
|
|
|
<
>
>
>
|
|
|
>
>
|



<
<







2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627


2628




2629

2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646

2647

2648
2649
2650

2651

2652


2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676

2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688


2689
2690
2691
2692
2693
2694
2695
    assert( pPatch[i].eU==1 );
    nKey = pPatch[i].n;
    zKey = pPatch[i].u.zJContent;
    for(j=1; j<pTarget->n; j += jsonNodeSize(&pTarget[j+1])+1 ){
      assert( pTarget[j].eType==JSON_STRING );
      assert( pTarget[j].jnFlags & JNODE_LABEL );
      if( jsonSameLabel(&pPatch[i], &pTarget[j]) ){
        if( pTarget[j+1].jnFlags & (JNODE_REMOVE|JNODE_REPLACE) ) break;
        if( pPatch[i+1].eType==JSON_NULL ){
          pTarget[j+1].jnFlags |= JNODE_REMOVE;
        }else{
          JsonNode *pNew = jsonMergePatch(pParse, iTarget+j+1, &pPatch[i+1]);
          if( pNew==0 ) return 0;
          if( pNew!=&pParse->aNode[iTarget+j+1] ){


            jsonParseAddSubstNode(pParse, iTarget+j+1);




            jsonParseAddNodeArray(pParse, pNew, jsonNodeSize(pNew));

          }
          pTarget = &pParse->aNode[iTarget];
        }
        break;
      }
    }
    if( j>=pTarget->n && pPatch[i+1].eType!=JSON_NULL ){
      int iStart;
      JsonNode *pApnd;
      u32 nApnd;
      iStart = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
      jsonParseAddNode(pParse, JSON_STRING, nKey, zKey);
      pApnd = &pPatch[i+1];
      if( pApnd->eType==JSON_OBJECT ) jsonRemoveAllNulls(pApnd);
      nApnd = jsonNodeSize(pApnd);
      jsonParseAddNodeArray(pParse, pApnd, jsonNodeSize(pApnd));
      if( pParse->oom ) return 0;

      pParse->aNode[iStart].n = 1+nApnd;

      pParse->aNode[iRoot].jnFlags |= JNODE_APPEND;
      pParse->aNode[iRoot].u.iAppend = iStart;
      VVA( pParse->aNode[iRoot].eU = 2 );

      iRoot = iStart;

      pTarget = &pParse->aNode[iTarget];


    }
  }
  return pTarget;
}

/*
** Implementation of the json_mergepatch(JSON1,JSON2) function.  Return a JSON
** object that is the result of running the RFC 7396 MergePatch() algorithm
** on the two arguments.
*/
static void jsonPatchFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *pX;     /* The JSON that is being patched */
  JsonParse *pY;     /* The patch */
  JsonNode *pResult;   /* The result of the merge */

  UNUSED_PARAMETER(argc);
  pX = jsonParseCached(ctx, argv[0], ctx, 1);
  if( pX==0 ) return;
  pY = jsonParseCached(ctx, argv[1], ctx, 1);
  if( pY==0 ) return;

  pX->useMod = 1;
  pX->hasMod = 1;
  pY->useMod = 1;
  pResult = jsonMergePatch(pX, 0, pY->aNode);
  assert( pResult!=0 || pX->oom );
  if( pResult && pX->oom==0 ){
    jsonDebugPrintParse(pX);
    jsonDebugPrintNode(pResult);
    jsonReturnJson(pX, pResult, ctx, 0);
  }else{
    sqlite3_result_error_nomem(ctx);
  }


}


/*
** Implementation of the json_object(NAME,VALUE,...) function.  Return a JSON
** object that contains all name/value given in arguments.  Or if any name
** is not a string or if any value is a BLOB, throw an error.
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456

2457


2458

2459
2460
2461
2462








2463
















































































2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490

2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545

2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567

2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
** JSON or PATH arguments result in an error.
*/
static void jsonRemoveFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse x;          /* The parse */
  JsonNode *pNode;
  const char *zPath;
  u32 i;

  if( argc<1 ) return;
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  assert( x.nNode );
  for(i=1; i<(u32)argc; i++){
    zPath = (const char*)sqlite3_value_text(argv[i]);
    if( zPath==0 ) goto remove_done;
    pNode = jsonLookup(&x, zPath, 0, ctx);
    if( x.nErr ) goto remove_done;

    if( pNode ) pNode->jnFlags |= JNODE_REMOVE;


  }

  if( (x.aNode[0].jnFlags & JNODE_REMOVE)==0 ){
    jsonReturnJson(x.aNode, ctx, 0);
  }
remove_done:








  jsonParseReset(&x);
















































































}

/*
** json_replace(JSON, PATH, VALUE, ...)
**
** Replace the value at PATH with VALUE.  If PATH does not already exist,
** this routine is a no-op.  If JSON or PATH is malformed, throw an error.
*/
static void jsonReplaceFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse x;          /* The parse */
  JsonNode *pNode;
  const char *zPath;
  u32 i;

  if( argc<1 ) return;
  if( (argc&1)==0 ) {
    jsonWrongNumArgs(ctx, "replace");
    return;
  }
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  assert( x.nNode );
  for(i=1; i<(u32)argc; i+=2){
    zPath = (const char*)sqlite3_value_text(argv[i]);

    pNode = jsonLookup(&x, zPath, 0, ctx);
    if( x.nErr ) goto replace_err;
    if( pNode ){
      assert( pNode->eU==0 || pNode->eU==1 || pNode->eU==4 );
      testcase( pNode->eU!=0 && pNode->eU!=1 );
      pNode->jnFlags |= (u8)JNODE_REPLACE;
      VVA( pNode->eU =  4 );
      pNode->u.iReplace = i + 1;
    }
  }
  if( x.aNode[0].jnFlags & JNODE_REPLACE ){
    assert( x.aNode[0].eU==4 );
    sqlite3_result_value(ctx, argv[x.aNode[0].u.iReplace]);
  }else{
    jsonReturnJson(x.aNode, ctx, argv);
  }
replace_err:
  jsonParseReset(&x);
}


/*
** json_set(JSON, PATH, VALUE, ...)
**
** Set the value at PATH to VALUE.  Create the PATH if it does not already
** exist.  Overwrite existing values that do exist.
** If JSON or PATH is malformed, throw an error.
**
** json_insert(JSON, PATH, VALUE, ...)
**
** Create PATH and initialize it to VALUE.  If PATH already exists, this
** routine is a no-op.  If JSON or PATH is malformed, throw an error.
*/
static void jsonSetFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse x;          /* The parse */
  JsonNode *pNode;
  const char *zPath;
  u32 i;
  int bApnd;
  int bIsSet = sqlite3_user_data(ctx)!=0;

  if( argc<1 ) return;
  if( (argc&1)==0 ) {
    jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert");
    return;
  }
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  assert( x.nNode );
  for(i=1; i<(u32)argc; i+=2){
    zPath = (const char*)sqlite3_value_text(argv[i]);
    bApnd = 0;

    pNode = jsonLookup(&x, zPath, &bApnd, ctx);
    if( x.oom ){
      sqlite3_result_error_nomem(ctx);
      goto jsonSetDone;
    }else if( x.nErr ){
      goto jsonSetDone;
    }else if( pNode && (bApnd || bIsSet) ){
      testcase( pNode->eU!=0 && pNode->eU!=1 );
      assert( pNode->eU!=3 && pNode->eU!=5 );
      VVA( pNode->eU = 4 );
      pNode->jnFlags |= (u8)JNODE_REPLACE;
      pNode->u.iReplace = i + 1;
    }
  }
  if( x.aNode[0].jnFlags & JNODE_REPLACE ){
    assert( x.aNode[0].eU==4 );
    sqlite3_result_value(ctx, argv[x.aNode[0].u.iReplace]);
  }else{
    jsonReturnJson(x.aNode, ctx, argv);
  }
jsonSetDone:
  jsonParseReset(&x);

}

/*
** json_type(JSON)
** json_type(JSON, PATH)
**
** Return the top-level "type" of a JSON string.  json_type() raises an
** error if either the JSON or PATH inputs are not well-formed.
*/
static void jsonTypeFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *p;          /* The parse */
  const char *zPath;
  JsonNode *pNode;

  p = jsonParseCached(ctx, argv, ctx);
  if( p==0 ) return;
  if( argc==2 ){
    zPath = (const char*)sqlite3_value_text(argv[1]);
    pNode = jsonLookup(p, zPath, 0, ctx);
  }else{
    pNode = p->aNode;
  }







|





|
|



|
|
>
|
>
>
|
>
|
|


>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>













|









|
|


>
|
|

<
<
<
<
|


<
<
<
<
|
<

|




















|











|
|



>
|
|


|


<
<
<
<
|


<
<
<
|
|
|

<
>


















|







2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886




2887
2888
2889




2890

2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937




2938
2939
2940



2941
2942
2943
2944

2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
** JSON or PATH arguments result in an error.
*/
static void jsonRemoveFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *pParse;          /* The parse */
  JsonNode *pNode;
  const char *zPath;
  u32 i;

  if( argc<1 ) return;
  pParse = jsonParseCached(ctx, argv[0], ctx, argc>1);
  if( pParse==0 ) return;
  for(i=1; i<(u32)argc; i++){
    zPath = (const char*)sqlite3_value_text(argv[i]);
    if( zPath==0 ) goto remove_done;
    pNode = jsonLookup(pParse, zPath, 0, ctx);
    if( pParse->nErr ) goto remove_done;
    if( pNode ){
      pNode->jnFlags |= JNODE_REMOVE;
      pParse->hasMod = 1;
      pParse->useMod = 1;
    }
  }
  if( (pParse->aNode[0].jnFlags & JNODE_REMOVE)==0 ){
    jsonReturnJson(pParse, pParse->aNode, ctx, 1);
  }
remove_done:
  jsonDebugPrintParse(p);
}

/*
** Substitute the value at iNode with the pValue parameter.
*/
static void jsonReplaceNode(
  sqlite3_context *pCtx,
  JsonParse *p,
  int iNode,
  sqlite3_value *pValue
){
  int idx = jsonParseAddSubstNode(p, iNode);
  if( idx<=0 ){
    assert( p->oom );
    return;
  }
  switch( sqlite3_value_type(pValue) ){
    case SQLITE_NULL: {
      jsonParseAddNode(p, JSON_NULL, 0, 0);
      break;
    }
    case SQLITE_FLOAT: {
      char *z = sqlite3_mprintf("%!0.15g", sqlite3_value_double(pValue));
      int n;
      if( z==0 ){
        p->oom = 1;
        break;
      }
      n = sqlite3Strlen30(z);
      jsonParseAddNode(p, JSON_REAL, n, z);
      jsonParseAddCleanup(p, sqlite3_free, z);
      break;
    }
    case SQLITE_INTEGER: {
      char *z = sqlite3_mprintf("%lld", sqlite3_value_int64(pValue));
      int n;
      if( z==0 ){
        p->oom = 1;
        break;
      }
      n = sqlite3Strlen30(z);
      jsonParseAddNode(p, JSON_INT, n, z);
      jsonParseAddCleanup(p, sqlite3_free, z);

      break;
    }
    case SQLITE_TEXT: {
      const char *z = (const char*)sqlite3_value_text(pValue);
      u32 n = (u32)sqlite3_value_bytes(pValue);
      if( z==0 ){
         p->oom = 1;
         break;
      }
      if( sqlite3_value_subtype(pValue)!=JSON_SUBTYPE ){
        char *zCopy = sqlite3DbStrDup(0, z);
        int k;
        if( zCopy ){
          jsonParseAddCleanup(p, sqlite3_free, zCopy);
       }else{
          p->oom = 1;
          sqlite3_result_error_nomem(pCtx);
        }
        k = jsonParseAddNode(p, JSON_STRING, n, zCopy);
        assert( k>0 || p->oom );
        if( p->oom==0 ) p->aNode[k].jnFlags |= JNODE_RAW;
      }else{
        JsonParse *pPatch = jsonParseCached(pCtx, pValue, pCtx, 1);
        if( pPatch==0 ){
          p->oom = 1;
          break;
        }
        jsonParseAddNodeArray(p, pPatch->aNode, pPatch->nNode);
        /* The nodes copied out of pPatch and into p likely contain
        ** u.zJContent pointers into pPatch->zJson.  So preserve the
        ** content of pPatch until p is destroyed. */
        assert( pPatch->nJPRef>=1 );
        pPatch->nJPRef++;
        jsonParseAddCleanup(p, (void(*)(void*))jsonParseFree, pPatch);
      }
      break;
    }
    default: {
      jsonParseAddNode(p, JSON_NULL, 0, 0);
      sqlite3_result_error(pCtx, "JSON cannot hold BLOB values", -1);
      p->nErr++;
      break;
    }
  }
}

/*
** json_replace(JSON, PATH, VALUE, ...)
**
** Replace the value at PATH with VALUE.  If PATH does not already exist,
** this routine is a no-op.  If JSON or PATH is malformed, throw an error.
*/
static void jsonReplaceFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *pParse;          /* The parse */
  JsonNode *pNode;
  const char *zPath;
  u32 i;

  if( argc<1 ) return;
  if( (argc&1)==0 ) {
    jsonWrongNumArgs(ctx, "replace");
    return;
  }
  pParse = jsonParseCached(ctx, argv[0], ctx, argc>1);
  if( pParse==0 ) return;
  for(i=1; i<(u32)argc; i+=2){
    zPath = (const char*)sqlite3_value_text(argv[i]);
    pParse->useMod = 1;
    pNode = jsonLookup(pParse, zPath, 0, ctx);
    if( pParse->nErr ) goto replace_err;
    if( pNode ){




      jsonReplaceNode(ctx, pParse, (u32)(pNode - pParse->aNode), argv[i+1]);
    }
  }




  jsonReturnJson(pParse, pParse->aNode, ctx, 1);

replace_err:
  jsonDebugPrintParse(pParse);
}


/*
** json_set(JSON, PATH, VALUE, ...)
**
** Set the value at PATH to VALUE.  Create the PATH if it does not already
** exist.  Overwrite existing values that do exist.
** If JSON or PATH is malformed, throw an error.
**
** json_insert(JSON, PATH, VALUE, ...)
**
** Create PATH and initialize it to VALUE.  If PATH already exists, this
** routine is a no-op.  If JSON or PATH is malformed, throw an error.
*/
static void jsonSetFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *pParse;       /* The parse */
  JsonNode *pNode;
  const char *zPath;
  u32 i;
  int bApnd;
  int bIsSet = sqlite3_user_data(ctx)!=0;

  if( argc<1 ) return;
  if( (argc&1)==0 ) {
    jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert");
    return;
  }
  pParse = jsonParseCached(ctx, argv[0], ctx, argc>1);
  if( pParse==0 ) return;
  for(i=1; i<(u32)argc; i+=2){
    zPath = (const char*)sqlite3_value_text(argv[i]);
    bApnd = 0;
    pParse->useMod = 1;
    pNode = jsonLookup(pParse, zPath, &bApnd, ctx);
    if( pParse->oom ){
      sqlite3_result_error_nomem(ctx);
      goto jsonSetDone;
    }else if( pParse->nErr ){
      goto jsonSetDone;
    }else if( pNode && (bApnd || bIsSet) ){




      jsonReplaceNode(ctx, pParse, (u32)(pNode - pParse->aNode), argv[i+1]);
    }
  }



  jsonDebugPrintParse(pParse);
  jsonReturnJson(pParse, pParse->aNode, ctx, 1);

jsonSetDone:

  /* no cleanup required */;
}

/*
** json_type(JSON)
** json_type(JSON, PATH)
**
** Return the top-level "type" of a JSON string.  json_type() raises an
** error if either the JSON or PATH inputs are not well-formed.
*/
static void jsonTypeFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *p;          /* The parse */
  const char *zPath;
  JsonNode *pNode;

  p = jsonParseCached(ctx, argv[0], ctx, 0);
  if( p==0 ) return;
  if( argc==2 ){
    zPath = (const char*)sqlite3_value_text(argv[1]);
    pNode = jsonLookup(p, zPath, 0, ctx);
  }else{
    pNode = p->aNode;
  }
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *p;          /* The parse */
  UNUSED_PARAMETER(argc);
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  p = jsonParseCached(ctx, argv, 0);
  if( p==0 || p->oom ){
    sqlite3_result_error_nomem(ctx);
    sqlite3_free(p);
  }else{
    sqlite3_result_int(ctx, p->nErr==0 && p->hasNonstd==0);
    if( p->nErr ) jsonParseFree(p);
  }
}

/*
** json_error_position(JSON)
**







|




|







2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *p;          /* The parse */
  UNUSED_PARAMETER(argc);
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  p = jsonParseCached(ctx, argv[0], 0, 0);
  if( p==0 || p->oom ){
    sqlite3_result_error_nomem(ctx);
    sqlite3_free(p);
  }else{
    sqlite3_result_int(ctx, p->nErr==0 && (p->hasNonstd==0 || p->useMod));
    if( p->nErr ) jsonParseFree(p);
  }
}

/*
** json_error_position(JSON)
**
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *p;          /* The parse */
  UNUSED_PARAMETER(argc);
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  p = jsonParseCached(ctx, argv, 0);
  if( p==0 || p->oom ){
    sqlite3_result_error_nomem(ctx);
    sqlite3_free(p);
  }else if( p->nErr==0 ){
    sqlite3_result_int(ctx, 0);
  }else{
    int n = 1;
    u32 i;
    const char *z = p->zJson;
    for(i=0; i<p->iErr && ALWAYS(z[i]); i++){
      if( (z[i]&0xc0)!=0x80 ) n++;
    }
    sqlite3_result_int(ctx, n);
    jsonParseFree(p);
  }
}







|








|







3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse *p;          /* The parse */
  UNUSED_PARAMETER(argc);
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  p = jsonParseCached(ctx, argv[0], 0, 0);
  if( p==0 || p->oom ){
    sqlite3_result_error_nomem(ctx);
    sqlite3_free(p);
  }else if( p->nErr==0 ){
    sqlite3_result_int(ctx, 0);
  }else{
    int n = 1;
    u32 i;
    const char *z = (const char*)sqlite3_value_text(argv[0]);
    for(i=0; i<p->iErr && ALWAYS(z[i]); i++){
      if( (z[i]&0xc0)!=0x80 ) n++;
    }
    sqlite3_result_int(ctx, n);
    jsonParseFree(p);
  }
}
2709
2710
2711
2712
2713
2714
2715
2716

2717
2718
2719
2720
2721
2722
2723
    pStr->pCtx = ctx;
    jsonAppendChar(pStr, ']');
    if( pStr->bErr ){
      if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else if( isFinal ){
      sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);

      pStr->bStatic = 1;
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT);
      pStr->nUsed--;
    }
  }else{
    sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC);







|
>







3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
    pStr->pCtx = ctx;
    jsonAppendChar(pStr, ']');
    if( pStr->bErr ){
      if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else if( isFinal ){
      sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT :
                              (void(*)(void*))sqlite3RCStrUnref);
      pStr->bStatic = 1;
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT);
      pStr->nUsed--;
    }
  }else{
    sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC);
2817
2818
2819
2820
2821
2822
2823
2824

2825
2826
2827
2828
2829
2830
2831
  if( pStr ){
    jsonAppendChar(pStr, '}');
    if( pStr->bErr ){
      if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else if( isFinal ){
      sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);

      pStr->bStatic = 1;
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT);
      pStr->nUsed--;
    }
  }else{
    sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC);







|
>







3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
  if( pStr ){
    jsonAppendChar(pStr, '}');
    if( pStr->bErr ){
      if( pStr->bErr==1 ) sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else if( isFinal ){
      sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT :
                          (void(*)(void*))sqlite3RCStrUnref);
      pStr->bStatic = 1;
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT);
      pStr->nUsed--;
    }
  }else{
    sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC);
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
#define JEACH_JSON    8
#define JEACH_ROOT    9

  UNUSED_PARAMETER(pzErr);
  UNUSED_PARAMETER(argv);
  UNUSED_PARAMETER(argc);
  UNUSED_PARAMETER(pAux);
  rc = sqlite3_declare_vtab(db, 
     "CREATE TABLE x(key,value,type,atom,id,parent,fullkey,path,"
                    "json HIDDEN,root HIDDEN)");
  if( rc==SQLITE_OK ){
    pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
    if( pNew==0 ) return SQLITE_NOMEM;
    memset(pNew, 0, sizeof(*pNew));
    sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);







|







3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
#define JEACH_JSON    8
#define JEACH_ROOT    9

  UNUSED_PARAMETER(pzErr);
  UNUSED_PARAMETER(argv);
  UNUSED_PARAMETER(argc);
  UNUSED_PARAMETER(pAux);
  rc = sqlite3_declare_vtab(db,
     "CREATE TABLE x(key,value,type,atom,id,parent,fullkey,path,"
                    "json HIDDEN,root HIDDEN)");
  if( rc==SQLITE_OK ){
    pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
    if( pNew==0 ) return SQLITE_NOMEM;
    memset(pNew, 0, sizeof(*pNew));
    sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
  }
  return rc;
}

/* Reset a JsonEachCursor back to its original state.  Free any memory
** held. */
static void jsonEachCursorReset(JsonEachCursor *p){
  sqlite3_free(p->zJson);
  sqlite3_free(p->zRoot);
  jsonParseReset(&p->sParse);
  p->iRowid = 0;
  p->i = 0;
  p->iEnd = 0;
  p->eType = 0;
  p->zJson = 0;







<







3308
3309
3310
3311
3312
3313
3314

3315
3316
3317
3318
3319
3320
3321
  }
  return rc;
}

/* Reset a JsonEachCursor back to its original state.  Free any memory
** held. */
static void jsonEachCursorReset(JsonEachCursor *p){

  sqlite3_free(p->zRoot);
  jsonParseReset(&p->sParse);
  p->iRowid = 0;
  p->i = 0;
  p->iEnd = 0;
  p->eType = 0;
  p->zJson = 0;
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  JsonNode *pThis = &p->sParse.aNode[p->i];
  switch( i ){
    case JEACH_KEY: {
      if( p->i==0 ) break;
      if( p->eType==JSON_OBJECT ){
        jsonReturn(pThis, ctx, 0);
      }else if( p->eType==JSON_ARRAY ){
        u32 iKey;
        if( p->bRecursive ){
          if( p->iRowid==0 ) break;
          assert( p->sParse.aNode[p->sParse.aUp[p->i]].eU==3 );
          iKey = p->sParse.aNode[p->sParse.aUp[p->i]].u.iKey;
        }else{
          iKey = p->iRowid;
        }
        sqlite3_result_int64(ctx, (sqlite3_int64)iKey);
      }
      break;
    }
    case JEACH_VALUE: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      jsonReturn(pThis, ctx, 0);
      break;
    }
    case JEACH_TYPE: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC);
      break;
    }
    case JEACH_ATOM: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      if( pThis->eType>=JSON_ARRAY ) break;
      jsonReturn(pThis, ctx, 0);
      break;
    }
    case JEACH_ID: {
      sqlite3_result_int64(ctx, 
         (sqlite3_int64)p->i + ((pThis->jnFlags & JNODE_LABEL)!=0));
      break;
    }
    case JEACH_PARENT: {
      if( p->i>p->iBegin && p->bRecursive ){
        sqlite3_result_int64(ctx, (sqlite3_int64)p->sParse.aUp[p->i]);
      }







|















|










|



|







3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  JsonNode *pThis = &p->sParse.aNode[p->i];
  switch( i ){
    case JEACH_KEY: {
      if( p->i==0 ) break;
      if( p->eType==JSON_OBJECT ){
        jsonReturn(&p->sParse, pThis, ctx);
      }else if( p->eType==JSON_ARRAY ){
        u32 iKey;
        if( p->bRecursive ){
          if( p->iRowid==0 ) break;
          assert( p->sParse.aNode[p->sParse.aUp[p->i]].eU==3 );
          iKey = p->sParse.aNode[p->sParse.aUp[p->i]].u.iKey;
        }else{
          iKey = p->iRowid;
        }
        sqlite3_result_int64(ctx, (sqlite3_int64)iKey);
      }
      break;
    }
    case JEACH_VALUE: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      jsonReturn(&p->sParse, pThis, ctx);
      break;
    }
    case JEACH_TYPE: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC);
      break;
    }
    case JEACH_ATOM: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      if( pThis->eType>=JSON_ARRAY ) break;
      jsonReturn(&p->sParse, pThis, ctx);
      break;
    }
    case JEACH_ID: {
      sqlite3_result_int64(ctx,
         (sqlite3_int64)p->i + ((pThis->jnFlags & JNODE_LABEL)!=0));
      break;
    }
    case JEACH_PARENT: {
      if( p->i>p->iBegin && p->bRecursive ){
        sqlite3_result_int64(ctx, (sqlite3_int64)p->sParse.aUp[p->i]);
      }
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
    if( pConstraint->usable==0 ){
      unusableMask |= iMask;
    }else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
      aIdx[iCol] = i;
      idxMask |= iMask;
    }
  }
  if( pIdxInfo->nOrderBy>0 
   && pIdxInfo->aOrderBy[0].iColumn<0 
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }

  if( (unusableMask & ~idxMask)!=0 ){
    /* If there are any unusable constraints on JSON or ROOT, then reject







|
|







3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
    if( pConstraint->usable==0 ){
      unusableMask |= iMask;
    }else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
      aIdx[iCol] = i;
      idxMask |= iMask;
    }
  }
  if( pIdxInfo->nOrderBy>0
   && pIdxInfo->aOrderBy[0].iColumn<0
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }

  if( (unusableMask & ~idxMask)!=0 ){
    /* If there are any unusable constraints on JSON or ROOT, then reject
3248
3249
3250
3251
3252
3253
3254





3255
3256
3257
3258



3259
3260
3261
3262
3263
3264
3265
3266

  UNUSED_PARAMETER(idxStr);
  UNUSED_PARAMETER(argc);
  jsonEachCursorReset(p);
  if( idxNum==0 ) return SQLITE_OK;
  z = (const char*)sqlite3_value_text(argv[0]);
  if( z==0 ) return SQLITE_OK;





  n = sqlite3_value_bytes(argv[0]);
  p->zJson = sqlite3_malloc64( n+1 );
  if( p->zJson==0 ) return SQLITE_NOMEM;
  memcpy(p->zJson, z, (size_t)n+1);



  if( jsonParse(&p->sParse, 0, p->zJson) ){
    int rc = SQLITE_NOMEM;
    if( p->sParse.oom==0 ){
      sqlite3_free(cur->pVtab->zErrMsg);
      cur->pVtab->zErrMsg = sqlite3_mprintf("malformed JSON");
      if( cur->pVtab->zErrMsg ) rc = SQLITE_ERROR;
    }
    jsonEachCursorReset(p);







>
>
>
>
>
|
|
|
|
>
>
>
|







3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653

  UNUSED_PARAMETER(idxStr);
  UNUSED_PARAMETER(argc);
  jsonEachCursorReset(p);
  if( idxNum==0 ) return SQLITE_OK;
  z = (const char*)sqlite3_value_text(argv[0]);
  if( z==0 ) return SQLITE_OK;
  memset(&p->sParse, 0, sizeof(p->sParse));
  p->sParse.nJPRef = 1;
  if( sqlite3ValueIsOfClass(argv[0], (void(*)(void*))sqlite3RCStrUnref) ){
    p->sParse.zJson = sqlite3RCStrRef((char*)z);
  }else{
    n = sqlite3_value_bytes(argv[0]);
    p->sParse.zJson = sqlite3RCStrNew( n+1 );
    if( p->sParse.zJson==0 ) return SQLITE_NOMEM;
    memcpy(p->sParse.zJson, z, (size_t)n+1);
  }
  p->sParse.bJsonIsRCStr = 1;
  p->zJson = p->sParse.zJson;
  if( jsonParse(&p->sParse, 0) ){
    int rc = SQLITE_NOMEM;
    if( p->sParse.oom==0 ){
      sqlite3_free(cur->pVtab->zErrMsg);
      cur->pVtab->zErrMsg = sqlite3_mprintf("malformed JSON");
      if( cur->pVtab->zErrMsg ) rc = SQLITE_ERROR;
    }
    jsonEachCursorReset(p);
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
    JFUNCTION(json_type,          1, 0,  jsonTypeFunc),
    JFUNCTION(json_type,          2, 0,  jsonTypeFunc),
    JFUNCTION(json_valid,         1, 0,  jsonValidFunc),
#if SQLITE_DEBUG
    JFUNCTION(json_parse,         1, 0,  jsonParseFunc),
    JFUNCTION(json_test1,         1, 0,  jsonTest1Func),
#endif
    WAGGREGATE(json_group_array,  1, 0, 0, 
       jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse,
       SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC),
    WAGGREGATE(json_group_object, 2, 0, 0, 
       jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse,
       SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC)
  };
  sqlite3InsertBuiltinFuncs(aJsonFunc, ArraySize(aJsonFunc));
#endif
}








|


|







3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
    JFUNCTION(json_type,          1, 0,  jsonTypeFunc),
    JFUNCTION(json_type,          2, 0,  jsonTypeFunc),
    JFUNCTION(json_valid,         1, 0,  jsonValidFunc),
#if SQLITE_DEBUG
    JFUNCTION(json_parse,         1, 0,  jsonParseFunc),
    JFUNCTION(json_test1,         1, 0,  jsonTest1Func),
#endif
    WAGGREGATE(json_group_array,  1, 0, 0,
       jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse,
       SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC),
    WAGGREGATE(json_group_object, 2, 0, 0,
       jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse,
       SQLITE_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC)
  };
  sqlite3InsertBuiltinFuncs(aJsonFunc, ArraySize(aJsonFunc));
#endif
}

Changes to src/parse.y.
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
ecmd ::= SEMI.
ecmd ::= cmdx SEMI.
%ifndef SQLITE_OMIT_EXPLAIN
ecmd ::= explain cmdx SEMI.       {NEVER-REDUCE}
explain ::= EXPLAIN.              { pParse->explain = 1; }
explain ::= EXPLAIN QUERY PLAN.   { pParse->explain = 2; }
%endif  SQLITE_OMIT_EXPLAIN
cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }

///////////////////// Begin and end transactions. ////////////////////////////
//

cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}







|
|







144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
ecmd ::= SEMI.
ecmd ::= cmdx SEMI.
%ifndef SQLITE_OMIT_EXPLAIN
ecmd ::= explain cmdx SEMI.       {NEVER-REDUCE}
explain ::= EXPLAIN.              { if( pParse->pReprepare==0 ) pParse->explain = 1; }
explain ::= EXPLAIN QUERY PLAN.   { if( pParse->pReprepare==0 ) pParse->explain = 2; }
%endif  SQLITE_OMIT_EXPLAIN
cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }

///////////////////// Begin and end transactions. ////////////////////////////
//

cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
Changes to src/prepare.c.
696
697
698
699
700
701
702

703




704
705
706
707
708
709
710

  /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */
  memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ);
  memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ);
  sParse.pOuterParse = db->pParse;
  db->pParse = &sParse;
  sParse.db = db;

  sParse.pReprepare = pReprepare;




  assert( ppStmt && *ppStmt==0 );
  if( db->mallocFailed ){
    sqlite3ErrorMsg(&sParse, "out of memory");
    db->errCode = rc = SQLITE_NOMEM;
    goto end_prepare;
  }
  assert( sqlite3_mutex_held(db->mutex) );







>
|
>
>
>
>







696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

  /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */
  memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ);
  memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ);
  sParse.pOuterParse = db->pParse;
  db->pParse = &sParse;
  sParse.db = db;
  if( pReprepare ){
    sParse.pReprepare = pReprepare;
    sParse.explain = sqlite3_stmt_isexplain((sqlite3_stmt*)pReprepare);
  }else{
    assert( sParse.pReprepare==0 );
  }
  assert( ppStmt && *ppStmt==0 );
  if( db->mallocFailed ){
    sqlite3ErrorMsg(&sParse, "out of memory");
    db->errCode = rc = SQLITE_NOMEM;
    goto end_prepare;
  }
  assert( sqlite3_mutex_held(db->mutex) );
Changes to src/printf.c.
1362
1363
1364
1365
1366
1367
1368





































































*/
void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){
  va_list ap;
  va_start(ap,zFormat);
  sqlite3_str_vappendf(p, zFormat, ap);
  va_end(ap);
}












































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
*/
void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){
  va_list ap;
  va_start(ap,zFormat);
  sqlite3_str_vappendf(p, zFormat, ap);
  va_end(ap);
}


/*****************************************************************************
** Reference counted string storage
*****************************************************************************/

/*
** Increase the reference count of the string by one.
**
** The input parameter is returned.
*/
char *sqlite3RCStrRef(char *z){
  RCStr *p = (RCStr*)z;
  assert( p!=0 );
  p--;
  p->nRCRef++;
  return z;
}

/*
** Decrease the reference count by one.  Free the string when the
** reference count reaches zero.
*/
void sqlite3RCStrUnref(char *z){
  RCStr *p = (RCStr*)z;
  assert( p!=0 );
  p--;
  assert( p->nRCRef>0 );
  if( p->nRCRef>=2 ){
    p->nRCRef--;
  }else{
    sqlite3_free(p);
  }
}

/*
** Create a new string that is capable of holding N bytes of text, not counting
** the zero byte at the end.  The string is uninitialized.
**
** The reference count is initially 1.  Call sqlite3RCStrUnref() to free the
** newly allocated string.
**
** This routine returns 0 on an OOM.
*/
char *sqlite3RCStrNew(u64 N){
  RCStr *p = sqlite3_malloc64( N + sizeof(*p) + 1 );
  if( p==0 ) return 0;
  p->nRCRef = 1;
  return (char*)&p[1];
}

/*
** Change the size of the string so that it is able to hold N bytes.
** The string might be reallocated, so return the new allocation.
*/
char *sqlite3RCStrResize(char *z, u64 N){
  RCStr *p = (RCStr*)z;
  RCStr *pNew;
  assert( p!=0 );
  p--;
  assert( p->nRCRef==1 );
  pNew = sqlite3_realloc64(p, N+sizeof(RCStr)+1);
  if( pNew==0 ){
    sqlite3_free(p);
    return 0;
  }else{
    return (char*)&pNew[1];
  }
}
Changes to src/select.c.
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
  Table *pTab;
  SrcList *pTabList;
  ExprList *pEList;
  sqlite3 *db = pParse->db;
  int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
  int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */

#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  if( pParse->colNamesSet ) return;
  /* Column names are determined by the left-most term of a compound select */
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  TREETRACE(0x80,pParse,pSelect,("generating column names\n"));
  pTabList = pSelect->pSrc;
  pEList = pSelect->pEList;
  assert( v!=0 );







<
<
<
<
<
<
<







2097
2098
2099
2100
2101
2102
2103







2104
2105
2106
2107
2108
2109
2110
  Table *pTab;
  SrcList *pTabList;
  ExprList *pEList;
  sqlite3 *db = pParse->db;
  int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
  int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */








  if( pParse->colNamesSet ) return;
  /* Column names are determined by the left-most term of a compound select */
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  TREETRACE(0x80,pParse,pSelect,("generating column names\n"));
  pTabList = pSelect->pSrc;
  pEList = pSelect->pEList;
  assert( v!=0 );
Changes to src/shell.c.in.
1603
1604
1605
1606
1607
1608
1609

1610
1611
1612
1613
1614
1615
1616
#define MODE_EQP     12  /* Converts EXPLAIN QUERY PLAN output into a graph */
#define MODE_Json    13  /* Output JSON */
#define MODE_Markdown 14 /* Markdown formatting */
#define MODE_Table   15  /* MySQL-style table formatting */
#define MODE_Box     16  /* Unicode box-drawing characters */
#define MODE_Count   17  /* Output only a count of the rows of output */
#define MODE_Off     18  /* No query output shown */


static const char *modeDescr[] = {
  "line",
  "column",
  "list",
  "semi",
  "html",







>







1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
#define MODE_EQP     12  /* Converts EXPLAIN QUERY PLAN output into a graph */
#define MODE_Json    13  /* Output JSON */
#define MODE_Markdown 14 /* Markdown formatting */
#define MODE_Table   15  /* MySQL-style table formatting */
#define MODE_Box     16  /* Unicode box-drawing characters */
#define MODE_Count   17  /* Output only a count of the rows of output */
#define MODE_Off     18  /* No query output shown */
#define MODE_ScanExp 19  /* Like MODE_Explain, but for ".scanstats vm" */

static const char *modeDescr[] = {
  "line",
  "column",
  "list",
  "semi",
  "html",
2516
2517
2518
2519
2520
2521
2522

2523
2524




2525

2526

2527









2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539


2540

2541

2542

2543
2544
2545

2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
      if( p->cnt++>0 ) utf8_printf(p->out, "%s", p->rowSeparator);
      for(i=0; i<nArg; i++){
        utf8_printf(p->out,"%*s = %s%s", w, azCol[i],
                azArg[i] ? azArg[i] : p->nullValue, p->rowSeparator);
      }
      break;
    }

    case MODE_Explain: {
      static const int aExplainWidth[] = {4, 13, 4, 4, 4, 13, 2, 13};




      if( nArg>ArraySize(aExplainWidth) ){

        nArg = ArraySize(aExplainWidth);

      }









      if( p->cnt++==0 ){
        for(i=0; i<nArg; i++){
          int w = aExplainWidth[i];
          utf8_width_print(p->out, w, azCol[i]);
          fputs(i==nArg-1 ? "\n" : "  ", p->out);
        }
        for(i=0; i<nArg; i++){
          int w = aExplainWidth[i];
          print_dashes(p->out, w);
          fputs(i==nArg-1 ? "\n" : "  ", p->out);
        }
      }


      if( azArg==0 ) break;

      for(i=0; i<nArg; i++){

        int w = aExplainWidth[i];

        if( i==nArg-1 ) w = 0;
        if( azArg[i] && strlenChar(azArg[i])>w ){
          w = strlenChar(azArg[i]);

        }
        if( i==1 && p->aiIndent && p->pStmt ){
          if( p->iIndent<p->nIndent ){
            utf8_printf(p->out, "%*.s", p->aiIndent[p->iIndent], "");
          }
          p->iIndent++;
        }
        utf8_width_print(p->out, w, azArg[i] ? azArg[i] : p->nullValue);
        fputs(i==nArg-1 ? "\n" : "  ", p->out);
      }
      break;
    }
    case MODE_Semi: {   /* .schema and .fullschema output */
      printSchemaLine(p->out, azArg[0], ";\n");
      break;
    }







>

|
>
>
>
>
|
>
|
>
|
>
>
>
>
>
>
>
>
>


<
|



<
|



>
>

>

>
|
>

|
|
>

|





|
|







2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546

2547
2548
2549
2550

2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
      if( p->cnt++>0 ) utf8_printf(p->out, "%s", p->rowSeparator);
      for(i=0; i<nArg; i++){
        utf8_printf(p->out,"%*s = %s%s", w, azCol[i],
                azArg[i] ? azArg[i] : p->nullValue, p->rowSeparator);
      }
      break;
    }
    case MODE_ScanExp:
    case MODE_Explain: {
      static const int aExplainWidth[] = {4,       13, 4, 4, 4, 13, 2, 13};
      static const int aExplainMap[] =   {0,       1,  2, 3, 4, 5,  6, 7 };
      static const int aScanExpWidth[] = {4, 6, 6, 13, 4, 4, 4, 13, 2, 13};
      static const int aScanExpMap[] =   {0, 9, 8, 1,  2, 3, 4, 5,  6, 7 };

      const int *aWidth = aExplainWidth;
      const int *aMap = aExplainMap;
      int nWidth = ArraySize(aExplainWidth);
      int iIndent = 1;

      if( p->cMode==MODE_ScanExp ){
        aWidth = aScanExpWidth;
        aMap = aScanExpMap;
        nWidth = ArraySize(aScanExpWidth);
        iIndent = 3;
      }
      if( nArg>nWidth ) nArg = nWidth;

      /* If this is the first row seen, print out the headers */
      if( p->cnt++==0 ){
        for(i=0; i<nArg; i++){

          utf8_width_print(p->out, aWidth[i], azCol[ aMap[i] ]);
          fputs(i==nArg-1 ? "\n" : "  ", p->out);
        }
        for(i=0; i<nArg; i++){

          print_dashes(p->out, aWidth[i]);
          fputs(i==nArg-1 ? "\n" : "  ", p->out);
        }
      }

      /* If there is no data, exit early. */
      if( azArg==0 ) break;

      for(i=0; i<nArg; i++){
        const char *zSep = "  ";
        int w = aWidth[i];
        const char *zVal = azArg[ aMap[i] ];
        if( i==nArg-1 ) w = 0;
        if( zVal && strlenChar(zVal)>w ){
          w = strlenChar(zVal);
          zSep = " ";
        }
        if( i==iIndent && p->aiIndent && p->pStmt ){
          if( p->iIndent<p->nIndent ){
            utf8_printf(p->out, "%*.s", p->aiIndent[p->iIndent], "");
          }
          p->iIndent++;
        }
        utf8_width_print(p->out, w, zVal ? zVal : p->nullValue);
        fputs(i==nArg-1 ? "\n" : zSep, p->out);
      }
      break;
    }
    case MODE_Semi: {   /* .schema and .fullschema output */
      printSchemaLine(p->out, azArg[0], ";\n");
      break;
    }
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337

3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
    }
    ret++;
  }
  return ret;
}
#endif

/*
** Display scan stats.
*/

static void display_scanstats(
  sqlite3 *db,                    /* Database to query */
  ShellState *pArg                /* Pointer to ShellState */
){
#ifndef SQLITE_ENABLE_STMT_SCANSTATUS
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pArg);
#else
  static const int f = SQLITE_SCANSTAT_COMPLEX;
  sqlite3_stmt *p = pArg->pStmt;
  int ii = 0;
  i64 nTotal = 0;
  int nWidth = 0;
  eqp_reset(pArg);








<
<
<
>
|



<
<
<
<







3349
3350
3351
3352
3353
3354
3355



3356
3357
3358
3359
3360




3361
3362
3363
3364
3365
3366
3367
    }
    ret++;
  }
  return ret;
}
#endif




#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
static void display_explain_scanstats(
  sqlite3 *db,                    /* Database to query */
  ShellState *pArg                /* Pointer to ShellState */
){




  static const int f = SQLITE_SCANSTAT_COMPLEX;
  sqlite3_stmt *p = pArg->pStmt;
  int ii = 0;
  i64 nTotal = 0;
  int nWidth = 0;
  eqp_reset(pArg);

3410
3411
3412
3413
3414
3415
3416

3417
3418
3419
3420
3421
3422
3423
3424
3425
    }

    eqp_append(pArg, iId, iPid, zText);
    sqlite3_free(zText);
  }

  eqp_render(pArg, nTotal);

#endif
}

/*
** Parameter azArray points to a zero-terminated array of strings. zStr
** points to a single nul-terminated string. Return non-zero if zStr
** is equal, according to strcmp(), to any of the strings in the array.
** Otherwise, return zero.
*/







>

|







3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
    }

    eqp_append(pArg, iId, iPid, zText);
    sqlite3_free(zText);
  }

  eqp_render(pArg, nTotal);
}
#endif


/*
** Parameter azArray points to a zero-terminated array of strings. zStr
** points to a single nul-terminated string. Return non-zero if zStr
** is equal, according to strcmp(), to any of the strings in the array.
** Otherwise, return zero.
*/
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467


3468
3469

3470
3471
3472
3473
3474

3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485


3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516

3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544










































3545
3546
3547
3548
3549
3550
3551
**       and ends on one of:
**          Yield  SeekGt  SeekLt  RowSetRead  Rewind
**       or if the P1 parameter is one instead of zero,
**       then indent all opcodes between the earlier instruction
**       and "Goto" by 2 spaces.
*/
static void explain_data_prepare(ShellState *p, sqlite3_stmt *pSql){
  const char *zSql;               /* The text of the SQL statement */
  const char *z;                  /* Used to check if this is an EXPLAIN */
  int *abYield = 0;               /* True if op is an OP_Yield */
  int nAlloc = 0;                 /* Allocated size of p->aiIndent[], abYield */
  int iOp;                        /* Index of operation in p->aiIndent[] */

  const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext",
                           "Return", 0 };
  const char *azYield[] = { "Yield", "SeekLT", "SeekGT", "RowSetRead",
                            "Rewind", 0 };
  const char *azGoto[] = { "Goto", 0 };



  /* Try to figure out if this is really an EXPLAIN statement. If this
  ** cannot be verified, return early.  */

  if( sqlite3_column_count(pSql)!=8 ){
    p->cMode = p->mode;
    return;
  }
  zSql = sqlite3_sql(pSql);

  if( zSql==0 ) return;
  for(z=zSql; *z==' ' || *z=='\t' || *z=='\n' || *z=='\f' || *z=='\r'; z++);
  if( sqlite3_strnicmp(z, "explain", 7) ){
    p->cMode = p->mode;
    return;
  }

  for(iOp=0; SQLITE_ROW==sqlite3_step(pSql); iOp++){
    int i;
    int iAddr = sqlite3_column_int(pSql, 0);
    const char *zOp = (const char*)sqlite3_column_text(pSql, 1);



    /* Set p2 to the P2 field of the current opcode. Then, assuming that
    ** p2 is an instruction address, set variable p2op to the index of that
    ** instruction in the aiIndent[] array. p2 and p2op may be different if
    ** the current instruction is part of a sub-program generated by an
    ** SQL trigger or foreign key.  */
    int p2 = sqlite3_column_int(pSql, 3);
    int p2op = (p2 + (iOp-iAddr));

    /* Grow the p->aiIndent array as required */
    if( iOp>=nAlloc ){
      if( iOp==0 ){
        /* Do further verification that this is explain output.  Abort if
        ** it is not */
        static const char *explainCols[] = {
           "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment" };
        int jj;
        for(jj=0; jj<ArraySize(explainCols); jj++){
          if( cli_strcmp(sqlite3_column_name(pSql,jj),explainCols[jj])!=0 ){
            p->cMode = p->mode;
            sqlite3_reset(pSql);
            return;
          }
        }
      }
      nAlloc += 100;
      p->aiIndent = (int*)sqlite3_realloc64(p->aiIndent, nAlloc*sizeof(int));
      shell_check_oom(p->aiIndent);
      abYield = (int*)sqlite3_realloc64(abYield, nAlloc*sizeof(int));
      shell_check_oom(abYield);
    }

    abYield[iOp] = str_in_array(zOp, azYield);
    p->aiIndent[iOp] = 0;
    p->nIndent = iOp+1;

    if( str_in_array(zOp, azNext) && p2op>0 ){
      for(i=p2op; i<iOp; i++) p->aiIndent[i] += 2;
    }
    if( str_in_array(zOp, azGoto) && p2op<p->nIndent
     && (abYield[p2op] || sqlite3_column_int(pSql, 2))
    ){
      for(i=p2op; i<iOp; i++) p->aiIndent[i] += 2;
    }
  }

  p->iIndent = 0;
  sqlite3_free(abYield);
  sqlite3_reset(pSql);
}

/*
** Free the array allocated by explain_data_prepare().
*/
static void explain_data_delete(ShellState *p){
  sqlite3_free(p->aiIndent);
  p->aiIndent = 0;
  p->nIndent = 0;
  p->iIndent = 0;
}











































/*
** Disable and restore .wheretrace and .treetrace/.selecttrace settings.
*/
static unsigned int savedSelectTrace;
static unsigned int savedWhereTrace;
static void disable_debug_trace_modes(void){







<
<










>
>
|
<
>
|
<
<
<
|
>
|
<
|
<
<
<





>
>

<
|
|
|
|
<




<
<
<
<
<
<
<
<
<
<
<
<
<
<






>



<



|
<
<


















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3465
3466
3467
3468
3469
3470
3471


3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484

3485
3486



3487
3488
3489

3490



3491
3492
3493
3494
3495
3496
3497
3498

3499
3500
3501
3502

3503
3504
3505
3506














3507
3508
3509
3510
3511
3512
3513
3514
3515
3516

3517
3518
3519
3520


3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
**       and ends on one of:
**          Yield  SeekGt  SeekLt  RowSetRead  Rewind
**       or if the P1 parameter is one instead of zero,
**       then indent all opcodes between the earlier instruction
**       and "Goto" by 2 spaces.
*/
static void explain_data_prepare(ShellState *p, sqlite3_stmt *pSql){


  int *abYield = 0;               /* True if op is an OP_Yield */
  int nAlloc = 0;                 /* Allocated size of p->aiIndent[], abYield */
  int iOp;                        /* Index of operation in p->aiIndent[] */

  const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext",
                           "Return", 0 };
  const char *azYield[] = { "Yield", "SeekLT", "SeekGT", "RowSetRead",
                            "Rewind", 0 };
  const char *azGoto[] = { "Goto", 0 };

  /* The caller guarantees that the leftmost 4 columns of the statement
  ** passed to this function are equivalent to the leftmost 4 columns
  ** of EXPLAIN statement output. In practice the statement may be

  ** an EXPLAIN, or it may be a query on the bytecode() virtual table.  */
  assert( sqlite3_column_count(pSql)>=4 );



  assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 0), "addr" ) );
  assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 1), "opcode" ) );
  assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 2), "p1" ) );

  assert( 0==sqlite3_stricmp( sqlite3_column_name(pSql, 3), "p2" ) );




  for(iOp=0; SQLITE_ROW==sqlite3_step(pSql); iOp++){
    int i;
    int iAddr = sqlite3_column_int(pSql, 0);
    const char *zOp = (const char*)sqlite3_column_text(pSql, 1);
    int p1 = sqlite3_column_int(pSql, 2);
    int p2 = sqlite3_column_int(pSql, 3);


    /* Assuming that p2 is an instruction address, set variable p2op to the
    ** index of that instruction in the aiIndent[] array. p2 and p2op may be
    ** different if the current instruction is part of a sub-program generated
    ** by an SQL trigger or foreign key.  */

    int p2op = (p2 + (iOp-iAddr));

    /* Grow the p->aiIndent array as required */
    if( iOp>=nAlloc ){














      nAlloc += 100;
      p->aiIndent = (int*)sqlite3_realloc64(p->aiIndent, nAlloc*sizeof(int));
      shell_check_oom(p->aiIndent);
      abYield = (int*)sqlite3_realloc64(abYield, nAlloc*sizeof(int));
      shell_check_oom(abYield);
    }

    abYield[iOp] = str_in_array(zOp, azYield);
    p->aiIndent[iOp] = 0;
    p->nIndent = iOp+1;

    if( str_in_array(zOp, azNext) && p2op>0 ){
      for(i=p2op; i<iOp; i++) p->aiIndent[i] += 2;
    }
    if( str_in_array(zOp, azGoto) && p2op<iOp && (abYield[p2op] || p1) ){


      for(i=p2op; i<iOp; i++) p->aiIndent[i] += 2;
    }
  }

  p->iIndent = 0;
  sqlite3_free(abYield);
  sqlite3_reset(pSql);
}

/*
** Free the array allocated by explain_data_prepare().
*/
static void explain_data_delete(ShellState *p){
  sqlite3_free(p->aiIndent);
  p->aiIndent = 0;
  p->nIndent = 0;
  p->iIndent = 0;
}

static void exec_prepared_stmt(ShellState*, sqlite3_stmt*);

/*
** Display scan stats.
*/
static void display_scanstats(
  sqlite3 *db,                    /* Database to query */
  ShellState *pArg                /* Pointer to ShellState */
){
#ifndef SQLITE_ENABLE_STMT_SCANSTATUS
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pArg);
#else
  if( pArg->scanstatsOn==3 ){
    const char *zSql = 
      "  SELECT addr, opcode, p1, p2, p3, p4, p5, comment, nexec,"
      "   round(ncycle*100.0 / (sum(ncycle) OVER ()), 2)||'%' AS cycles"
      "   FROM bytecode(?)";

    int rc = SQLITE_OK;
    sqlite3_stmt *pStmt = 0;
    rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
    if( rc==SQLITE_OK ){
      sqlite3_stmt *pSave = pArg->pStmt;
      pArg->pStmt = pStmt;
      sqlite3_bind_pointer(pStmt, 1, pSave, "stmt-pointer", 0);

      pArg->cnt = 0;
      pArg->cMode = MODE_ScanExp;
      explain_data_prepare(pArg, pStmt);
      exec_prepared_stmt(pArg, pStmt);
      explain_data_delete(pArg);

      sqlite3_finalize(pStmt);
      pArg->pStmt = pSave;
    }
  }else{
    display_explain_scanstats(db, pArg);
  }
#endif
}

/*
** Disable and restore .wheretrace and .treetrace/.selecttrace settings.
*/
static unsigned int savedSelectTrace;
static unsigned int savedWhereTrace;
static void disable_debug_trace_modes(void){
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341

4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364

4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378


4379
4380
4381
4382

4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
        pArg->pStmt = pStmt;
        pArg->cnt = 0;
      }

      /* Show the EXPLAIN QUERY PLAN if .eqp is on */
      if( pArg && pArg->autoEQP && sqlite3_stmt_isexplain(pStmt)==0 ){
        sqlite3_stmt *pExplain;
        char *zEQP;
        int triggerEQP = 0;
        disable_debug_trace_modes();
        sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, -1, &triggerEQP);
        if( pArg->autoEQP>=AUTOEQP_trigger ){
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0);
        }

        zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", zStmtSql);
        shell_check_oom(zEQP);
        rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
        if( rc==SQLITE_OK ){
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            const char *zEQPLine = (const char*)sqlite3_column_text(pExplain,3);
            int iEqpId = sqlite3_column_int(pExplain, 0);
            int iParentId = sqlite3_column_int(pExplain, 1);
            if( zEQPLine==0 ) zEQPLine = "";
            if( zEQPLine[0]=='-' ) eqp_render(pArg, 0);
            eqp_append(pArg, iEqpId, iParentId, zEQPLine);
          }
          eqp_render(pArg, 0);
        }
        sqlite3_finalize(pExplain);
        sqlite3_free(zEQP);
        if( pArg->autoEQP>=AUTOEQP_full ){
          /* Also do an EXPLAIN for ".eqp full" mode */
          zEQP = sqlite3_mprintf("EXPLAIN %s", zStmtSql);
          shell_check_oom(zEQP);
          rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
          if( rc==SQLITE_OK ){
            pArg->cMode = MODE_Explain;

            explain_data_prepare(pArg, pExplain);
            exec_prepared_stmt(pArg, pExplain);
            explain_data_delete(pArg);
          }
          sqlite3_finalize(pExplain);
          sqlite3_free(zEQP);
        }
        if( pArg->autoEQP>=AUTOEQP_trigger && triggerEQP==0 ){
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 0, 0);
          /* Reprepare pStmt before reactivating trace modes */
          sqlite3_finalize(pStmt);
          sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
          if( pArg ) pArg->pStmt = pStmt;
        }


        restore_debug_trace_modes();
      }

      if( pArg ){

        pArg->cMode = pArg->mode;
        if( pArg->autoExplain ){
          if( sqlite3_stmt_isexplain(pStmt)==1 ){
            pArg->cMode = MODE_Explain;
          }
          if( sqlite3_stmt_isexplain(pStmt)==2 ){
            pArg->cMode = MODE_EQP;
          }
        }

        /* If the shell is currently in ".explain" mode, gather the extra
        ** data required to add indents to the output.*/
        if( pArg->cMode==MODE_Explain ){
          explain_data_prepare(pArg, pStmt);
        }
      }

      bind_prepared_stmt(pArg, pStmt);
      exec_prepared_stmt(pArg, pStmt);
      explain_data_delete(pArg);







<






>
|
<
|











<
<


|
<
|


>




<
<



<
<
<
<

>
>




>


|









|







4364
4365
4366
4367
4368
4369
4370

4371
4372
4373
4374
4375
4376
4377
4378

4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390


4391
4392
4393

4394
4395
4396
4397
4398
4399
4400
4401


4402
4403
4404




4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
        pArg->pStmt = pStmt;
        pArg->cnt = 0;
      }

      /* Show the EXPLAIN QUERY PLAN if .eqp is on */
      if( pArg && pArg->autoEQP && sqlite3_stmt_isexplain(pStmt)==0 ){
        sqlite3_stmt *pExplain;

        int triggerEQP = 0;
        disable_debug_trace_modes();
        sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, -1, &triggerEQP);
        if( pArg->autoEQP>=AUTOEQP_trigger ){
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0);
        }
        pExplain = pStmt;
        sqlite3_reset(pExplain);

        rc = sqlite3_stmt_explain(pExplain, 2);
        if( rc==SQLITE_OK ){
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            const char *zEQPLine = (const char*)sqlite3_column_text(pExplain,3);
            int iEqpId = sqlite3_column_int(pExplain, 0);
            int iParentId = sqlite3_column_int(pExplain, 1);
            if( zEQPLine==0 ) zEQPLine = "";
            if( zEQPLine[0]=='-' ) eqp_render(pArg, 0);
            eqp_append(pArg, iEqpId, iParentId, zEQPLine);
          }
          eqp_render(pArg, 0);
        }


        if( pArg->autoEQP>=AUTOEQP_full ){
          /* Also do an EXPLAIN for ".eqp full" mode */
          sqlite3_reset(pExplain);

          rc = sqlite3_stmt_explain(pExplain, 1);
          if( rc==SQLITE_OK ){
            pArg->cMode = MODE_Explain;
            assert( sqlite3_stmt_isexplain(pExplain)==1 );
            explain_data_prepare(pArg, pExplain);
            exec_prepared_stmt(pArg, pExplain);
            explain_data_delete(pArg);
          }


        }
        if( pArg->autoEQP>=AUTOEQP_trigger && triggerEQP==0 ){
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 0, 0);




        }
        sqlite3_reset(pStmt);
        sqlite3_stmt_explain(pStmt, 0);
        restore_debug_trace_modes();
      }

      if( pArg ){
        int bIsExplain = (sqlite3_stmt_isexplain(pStmt)==1);
        pArg->cMode = pArg->mode;
        if( pArg->autoExplain ){
          if( bIsExplain ){
            pArg->cMode = MODE_Explain;
          }
          if( sqlite3_stmt_isexplain(pStmt)==2 ){
            pArg->cMode = MODE_EQP;
          }
        }

        /* If the shell is currently in ".explain" mode, gather the extra
        ** data required to add indents to the output.*/
        if( pArg->cMode==MODE_Explain && bIsExplain ){
          explain_data_prepare(pArg, pStmt);
        }
      }

      bind_prepared_stmt(pArg, pStmt);
      exec_prepared_stmt(pArg, pStmt);
      explain_data_delete(pArg);
9929
9930
9931
9932
9933
9934
9935



9936
9937
9938
9939
9940
9941
9942
    }
    close_db(pSrc);
  }else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */

  if( c=='s' && cli_strncmp(azArg[0], "scanstats", n)==0 ){
    if( nArg==2 ){



      if( cli_strcmp(azArg[1], "est")==0 ){
        p->scanstatsOn = 2;
      }else{
        p->scanstatsOn = (u8)booleanValue(azArg[1]);
      }
      open_db(p, 0);
      sqlite3_db_config(







>
>
>







9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
    }
    close_db(pSrc);
  }else
#endif /* !defined(SQLITE_SHELL_FIDDLE) */

  if( c=='s' && cli_strncmp(azArg[0], "scanstats", n)==0 ){
    if( nArg==2 ){
      if( cli_strcmp(azArg[1], "vm")==0 ){
        p->scanstatsOn = 3;
      }else
      if( cli_strcmp(azArg[1], "est")==0 ){
        p->scanstatsOn = 2;
      }else{
        p->scanstatsOn = (u8)booleanValue(azArg[1]);
      }
      open_db(p, 0);
      sqlite3_db_config(
Changes to src/sqlite.h.in.
4418
4419
4420
4421
4422
4423
4424



































4425
4426
4427
4428
4429
4430
4431
** prepared statement S is an EXPLAIN statement, or 2 if the
** statement S is an EXPLAIN QUERY PLAN.
** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is
** an ordinary statement or a NULL pointer.
*/
int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt);




































/*
** CAPI3REF: Determine If A Prepared Statement Has Been Reset
** METHOD: sqlite3_stmt
**
** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
** [prepared statement] S has been stepped at least once using
** [sqlite3_step(S)] but has neither run to completion (returned







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
** prepared statement S is an EXPLAIN statement, or 2 if the
** statement S is an EXPLAIN QUERY PLAN.
** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is
** an ordinary statement or a NULL pointer.
*/
int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Change The EXPLAIN Setting For A Prepared Statement
** METHOD: sqlite3_stmt
**
** The sqlite3_stmt_explain(S,E) interface changes the EXPLAIN
** setting for prepared statement S.  If E is zero, then S becomes
** a normal prepared statement.  If E is 1, then S behaves as if
** its SQL text began with "EXPLAIN".  If E is 2, then S behaves as if
** its SQL text began with "EXPLAIN QUERY PLAN".
**
** Calling sqlite3_stmt_explain(S,E) might cause S to be reprepared.
** SQLite tries to avoid a reprepare, but a reprepare might be necessary
** on the first transition into EXPLAIN or EXPLAIN QUERY PLAN mode.
**
** Because of the potential need to reprepare, a call to
** sqlite3_stmt_explain(S,E) will fail with SQLITE_ERROR if S cannot be
** reprepared because it was created using sqlite3_prepare() instead of
** the newer sqlite_prepare_v2() or sqlite3_prepare_v3() interfaces and
** hence has no saved SQL text with which to reprepare.
**
** Changing the explain setting for a prepared statement does not change
** the original SQL text for the statement.  Hence, if the SQL text originally
** began with EXPLAIN or EXPLAIN QUERY PLAN, but sqlite3_stmt_explain(S,0)
** is called to convert the statement into an ordinary statement, the EXPLAIN
** or EXPLAIN QUERY PLAN keywords will still appear in the sqlite3_sql(S)
** output, even though the statement now acts like a normal SQL statement.
**
** This routine returns SQLITE_OK if the explain mode is successfully
** changed, or an error code if the explain mode could not be changed.
** The explain mode cannot be changed while a statement is active.
** Hence, it is good practice to call [sqlite3_reset(S)]
** immediately prior to calling sqlite3_stmt_explain(S,E).
*/
int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode);

/*
** CAPI3REF: Determine If A Prepared Statement Has Been Reset
** METHOD: sqlite3_stmt
**
** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
** [prepared statement] S has been stepped at least once using
** [sqlite3_step(S)] but has neither run to completion (returned
Changes to src/sqliteInt.h.
1277
1278
1279
1280
1281
1282
1283

1284
1285
1286
1287
1288
1289
1290
typedef struct Module Module;
typedef struct NameContext NameContext;
typedef struct OnOrUsing OnOrUsing;
typedef struct Parse Parse;
typedef struct ParseCleanup ParseCleanup;
typedef struct PreUpdate PreUpdate;
typedef struct PrintfArguments PrintfArguments;

typedef struct RenameToken RenameToken;
typedef struct Returning Returning;
typedef struct RowSet RowSet;
typedef struct Savepoint Savepoint;
typedef struct Select Select;
typedef struct SQLiteThread SQLiteThread;
typedef struct SelectDest SelectDest;







>







1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
typedef struct Module Module;
typedef struct NameContext NameContext;
typedef struct OnOrUsing OnOrUsing;
typedef struct Parse Parse;
typedef struct ParseCleanup ParseCleanup;
typedef struct PreUpdate PreUpdate;
typedef struct PrintfArguments PrintfArguments;
typedef struct RCStr RCStr;
typedef struct RenameToken RenameToken;
typedef struct Returning Returning;
typedef struct RowSet RowSet;
typedef struct Savepoint Savepoint;
typedef struct Select Select;
typedef struct SQLiteThread SQLiteThread;
typedef struct SelectDest SelectDest;
4057
4058
4059
4060
4061
4062
4063



















4064
4065
4066
4067
4068
4069
4070
};
#define SQLITE_PRINTF_INTERNAL 0x01  /* Internal-use-only converters allowed */
#define SQLITE_PRINTF_SQLFUNC  0x02  /* SQL function arguments to VXPrintf */
#define SQLITE_PRINTF_MALLOCED 0x04  /* True if xText is allocated space */

#define isMalloced(X)  (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0)





















/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
typedef struct {
  sqlite3 *db;        /* The database being initialized */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
};
#define SQLITE_PRINTF_INTERNAL 0x01  /* Internal-use-only converters allowed */
#define SQLITE_PRINTF_SQLFUNC  0x02  /* SQL function arguments to VXPrintf */
#define SQLITE_PRINTF_MALLOCED 0x04  /* True if xText is allocated space */

#define isMalloced(X)  (((X)->printfFlags & SQLITE_PRINTF_MALLOCED)!=0)

/*
** The following object is the header for an "RCStr" or "reference-counted
** string".  An RCStr is passed around and used like any other char*
** that has been dynamically allocated.  The important interface
** differences:
**
**   1.  RCStr strings are reference counted.  They are deallocated
**       when the reference count reaches zero.
**
**   2.  Use sqlite3RCStrUnref() to free an RCStr string rather than
**       sqlite3_free()
**
**   3.  Make a (read-only) copy of a read-only RCStr string using
**       sqlite3RCStrRef().
*/
struct RCStr {
  u64 nRCRef;            /* Number of references */
  /* Total structure size should be a multiple of 8 bytes for alignment */
};

/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
typedef struct {
  sqlite3 *db;        /* The database being initialized */
5176
5177
5178
5179
5180
5181
5182

5183
5184
5185
5186
5187
5188
5189
void sqlite3FileSuffix3(const char*, char*);
#else
# define sqlite3FileSuffix3(X,Y)
#endif
u8 sqlite3GetBoolean(const char *z,u8);

const void *sqlite3ValueText(sqlite3_value*, u8);

int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
                        void(*)(void*));
void sqlite3ValueSetNull(sqlite3_value*);
void sqlite3ValueFree(sqlite3_value*);
#ifndef SQLITE_UNTESTABLE
void sqlite3ResultIntReal(sqlite3_context*);







>







5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
void sqlite3FileSuffix3(const char*, char*);
#else
# define sqlite3FileSuffix3(X,Y)
#endif
u8 sqlite3GetBoolean(const char *z,u8);

const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueIsOfClass(const sqlite3_value*, void(*)(void*));
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
                        void(*)(void*));
void sqlite3ValueSetNull(sqlite3_value*);
void sqlite3ValueFree(sqlite3_value*);
#ifndef SQLITE_UNTESTABLE
void sqlite3ResultIntReal(sqlite3_context*);
5283
5284
5285
5286
5287
5288
5289





5290
5291
5292
5293
5294
5295
5296
);
void sqlite3NoopDestructor(void*);
void *sqlite3OomFault(sqlite3*);
void sqlite3OomClear(sqlite3*);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);






void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
int sqlite3StrAccumEnlarge(StrAccum*, i64);
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumSetError(StrAccum*, u8);
void sqlite3ResultStrAccum(sqlite3_context*,StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);







>
>
>
>
>







5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
);
void sqlite3NoopDestructor(void*);
void *sqlite3OomFault(sqlite3*);
void sqlite3OomClear(sqlite3*);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);

char *sqlite3RCStrRef(char*);
void sqlite3RCStrUnref(char*);
char *sqlite3RCStrNew(u64);
char *sqlite3RCStrResize(char*,u64);

void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
int sqlite3StrAccumEnlarge(StrAccum*, i64);
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumSetError(StrAccum*, u8);
void sqlite3ResultStrAccum(sqlite3_context*,StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
Changes to src/test1.c.
2917
2918
2919
2920
2921
2922
2923




























2924
2925
2926
2927
2928
2929
2930
  }

  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;
  rc = sqlite3_stmt_isexplain(pStmt);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return TCL_OK;
}





























/*
** Usage:  sqlite3_stmt_busy  STMT
**
** Return true if STMT is a non-NULL pointer to a statement
** that has been stepped but not to completion.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
  }

  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;
  rc = sqlite3_stmt_isexplain(pStmt);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return TCL_OK;
}

/*
** Usage:  sqlite3_stmt_explain  STMT  INT
**
** Set the explain to normal (0), EXPLAIN (1) or EXPLAIN QUERY PLAN (2).
*/
static int SQLITE_TCLAPI test_stmt_explain(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3_stmt *pStmt;
  int eMode = 0;
  int rc;

  if( objc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " STMT INT", 0);
    return TCL_ERROR;
  }

  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;
  if( Tcl_GetIntFromObj(interp, objv[2], &eMode) ) return TCL_ERROR;
  rc = sqlite3_stmt_explain(pStmt, eMode);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return TCL_OK;
}

/*
** Usage:  sqlite3_stmt_busy  STMT
**
** Return true if STMT is a non-NULL pointer to a statement
** that has been stepped but not to completion.
*/
8987
8988
8989
8990
8991
8992
8993

8994
8995
8996
8997
8998
8999
9000
     { "sqlite3_expanded_sql",          test_ex_sql        ,0 },
#ifdef SQLITE_ENABLE_NORMALIZE
     { "sqlite3_normalized_sql",        test_norm_sql      ,0 },
#endif
     { "sqlite3_next_stmt",             test_next_stmt     ,0 },
     { "sqlite3_stmt_readonly",         test_stmt_readonly ,0 },
     { "sqlite3_stmt_isexplain",        test_stmt_isexplain,0 },

     { "sqlite3_stmt_busy",             test_stmt_busy     ,0 },
     { "uses_stmt_journal",             uses_stmt_journal ,0 },

     { "sqlite3_release_memory",        test_release_memory,     0},
     { "sqlite3_db_release_memory",     test_db_release_memory,  0},
     { "sqlite3_db_cacheflush",         test_db_cacheflush,      0},
     { "sqlite3_system_errno",          test_system_errno,       0},







>







9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
     { "sqlite3_expanded_sql",          test_ex_sql        ,0 },
#ifdef SQLITE_ENABLE_NORMALIZE
     { "sqlite3_normalized_sql",        test_norm_sql      ,0 },
#endif
     { "sqlite3_next_stmt",             test_next_stmt     ,0 },
     { "sqlite3_stmt_readonly",         test_stmt_readonly ,0 },
     { "sqlite3_stmt_isexplain",        test_stmt_isexplain,0 },
     { "sqlite3_stmt_explain",          test_stmt_explain  ,0 },
     { "sqlite3_stmt_busy",             test_stmt_busy     ,0 },
     { "uses_stmt_journal",             uses_stmt_journal ,0 },

     { "sqlite3_release_memory",        test_release_memory,     0},
     { "sqlite3_db_release_memory",     test_db_release_memory,  0},
     { "sqlite3_db_cacheflush",         test_db_cacheflush,      0},
     { "sqlite3_system_errno",          test_system_errno,       0},
Changes to src/vdbe.c.
690
691
692
693
694
695
696













































































697
698
699
700
701
702
703
      ** though, at least, those hashes are different from each other and
      ** from NULL. */
      h += 4093 + (p->flags & (MEM_Str|MEM_Blob));
    }
  }
  return h;
}














































































/*
** Return the symbolic name for the data type of a pMem
*/
static const char *vdbeMemTypeName(Mem *pMem){
  static const char *azTypes[] = {
      /* SQLITE_INTEGER */ "INT",







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
      ** though, at least, those hashes are different from each other and
      ** from NULL. */
      h += 4093 + (p->flags & (MEM_Str|MEM_Blob));
    }
  }
  return h;
}


/*
** For OP_Column, factor out the case where content is loaded from
** overflow pages, so that the code to implement this case is separate
** the common case where all content fits on the page.  Factoring out
** the code reduces register pressure and helps the common case
** to run faster.
*/
static SQLITE_NOINLINE int vdbeColumnFromOverflow(
  VdbeCursor *pC,       /* The BTree cursor from which we are reading */
  int iCol,             /* The column to read */
  int t,                /* The serial-type code for the column value */
  i64 iOffset,          /* Offset to the start of the content value */
  Mem *pDest            /* Store the value into this register. */
){
  int rc;
  sqlite3 *db = pDest->db;
  int encoding = pDest->enc;
  int len = sqlite3VdbeSerialTypeLen(t);
  assert( pC->eCurType==CURTYPE_BTREE );
  if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG;
  if( len > 4000 ){
    /* Cache large column values that are on overflow pages using
    ** an RCStr (reference counted string) so that if they are reloaded,
    ** that do not have to be copied a second time.  The overhead of
    ** creating and managing the cache is such that this is only
    ** profitable for larger TEXT and BLOB values.
    */
    VdbeTxtBlbCache *pCache;
    char *pBuf;
    if( pC->colCache==0 ){
      pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) );
      if( pC->pCache==0 ) return SQLITE_NOMEM;
      pC->colCache = 1;
    }
    pCache = pC->pCache;
    if( pCache->pCValue==0
     || pCache->iCol!=iCol
     || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor)
    ){
      if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue);
      pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 );
      if( pBuf==0 ) return SQLITE_NOMEM;
      rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf);
      if( rc ) return rc;
      pBuf[len] = 0;
      pBuf[len+1] = 0;
      pBuf[len+2] = 0;
      pCache->iCol = iCol;
      pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor);
    }else{
      pBuf = pCache->pCValue;
    }
    assert( t>=12 );
    sqlite3RCStrRef(pBuf);
    if( t&1 ){
      rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding,
                                (void(*)(void*))sqlite3RCStrUnref);
      pDest->flags |= MEM_Term;
    }else{
      rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0,
                                (void(*)(void*))sqlite3RCStrUnref);
    }
  }else{
    rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest);
    if( rc ) return rc;
    sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
    if( (t&1)!=0 && encoding==SQLITE_UTF8 ){
      pDest->z[len] = 0;
      pDest->flags |= MEM_Term;
    }
  }
  pDest->flags &= ~MEM_Ephem;
  return rc;
}


/*
** Return the symbolic name for the data type of a pMem
*/
static const char *vdbeMemTypeName(Mem *pMem){
  static const char *azTypes[] = {
      /* SQLITE_INTEGER */ "INT",
3057
3058
3059
3060
3061
3062
3063

3064
3065
3066
3067
3068
3069
3070
      pDest->z[len] = 0;
      pDest->z[len+1] = 0;
      pDest->flags = aFlag[t&1];
    }
  }else{
    u8 p5;
    pDest->enc = encoding;

    /* This branch happens only when content is on overflow pages */
    if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0
          && (p5==OPFLAG_TYPEOFARG
              || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG))
             )
        )
     || (len = sqlite3VdbeSerialTypeLen(t))==0







>







3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
      pDest->z[len] = 0;
      pDest->z[len+1] = 0;
      pDest->flags = aFlag[t&1];
    }
  }else{
    u8 p5;
    pDest->enc = encoding;
    assert( pDest->db==db );
    /* This branch happens only when content is on overflow pages */
    if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0
          && (p5==OPFLAG_TYPEOFARG
              || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG))
             )
        )
     || (len = sqlite3VdbeSerialTypeLen(t))==0
3080
3081
3082
3083
3084
3085
3086



3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
      ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
      ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
      ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
      ** and it begins with a bunch of zeros.
      */
      sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
    }else{



      if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
      rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
      if( (t&1)!=0 && encoding==SQLITE_UTF8 ){
        pDest->flags |= MEM_Term;
      }
      pDest->flags &= ~MEM_Ephem;
    }
  }

op_column_out:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;







>
>
>
|
<
|
<
<
<

<







3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168

3169



3170

3171
3172
3173
3174
3175
3176
3177
      ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
      ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
      ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
      ** and it begins with a bunch of zeros.
      */
      sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
    }else{
      rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2], pDest);
      if( rc ){
        if( rc==SQLITE_NOMEM ) goto no_mem;
        if( rc==SQLITE_TOOBIG ) goto too_big;

        goto abort_due_to_error;



      }

    }
  }

op_column_out:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
Changes to src/vdbeInt.h.
52
53
54
55
56
57
58



59
60
61
62
63
64
65

/* Opaque type used by code in vdbesort.c */
typedef struct VdbeSorter VdbeSorter;

/* Elements of the linked list at Vdbe.pAuxData */
typedef struct AuxData AuxData;




/* Types of VDBE cursors */
#define CURTYPE_BTREE       0
#define CURTYPE_SORTER      1
#define CURTYPE_VTAB        2
#define CURTYPE_PSEUDO      3

/*







>
>
>







52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

/* Opaque type used by code in vdbesort.c */
typedef struct VdbeSorter VdbeSorter;

/* Elements of the linked list at Vdbe.pAuxData */
typedef struct AuxData AuxData;

/* A cache of large TEXT or BLOB values in a VdbeCursor */
typedef struct VdbeTxtBlbCache VdbeTxtBlbCache;

/* Types of VDBE cursors */
#define CURTYPE_BTREE       0
#define CURTYPE_SORTER      1
#define CURTYPE_VTAB        2
#define CURTYPE_PSEUDO      3

/*
83
84
85
86
87
88
89

90
91
92
93
94
95
96
  u8 seekOp;              /* Most recent seek operation on this cursor */
  u8 wrFlag;              /* The wrFlag argument to sqlite3BtreeCursor() */
#endif
  Bool isEphemeral:1;     /* True for an ephemeral table */
  Bool useRandomRowid:1;  /* Generate new record numbers semi-randomly */
  Bool isOrdered:1;       /* True if the table is not BTREE_UNORDERED */
  Bool noReuse:1;         /* OpenEphemeral may not reuse this cursor */

  u16 seekHit;            /* See the OP_SeekHit and OP_IfNoHope opcodes */
  union {                 /* pBtx for isEphermeral.  pAltMap otherwise */
    Btree *pBtx;            /* Separate file holding temporary table */
    u32 *aAltMap;           /* Mapping from table to index column numbers */
  } ub;
  i64 seqCount;           /* Sequence counter */








>







86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
  u8 seekOp;              /* Most recent seek operation on this cursor */
  u8 wrFlag;              /* The wrFlag argument to sqlite3BtreeCursor() */
#endif
  Bool isEphemeral:1;     /* True for an ephemeral table */
  Bool useRandomRowid:1;  /* Generate new record numbers semi-randomly */
  Bool isOrdered:1;       /* True if the table is not BTREE_UNORDERED */
  Bool noReuse:1;         /* OpenEphemeral may not reuse this cursor */
  Bool colCache:1;        /* pCache pointer is initialized and non-NULL */
  u16 seekHit;            /* See the OP_SeekHit and OP_IfNoHope opcodes */
  union {                 /* pBtx for isEphermeral.  pAltMap otherwise */
    Btree *pBtx;            /* Separate file holding temporary table */
    u32 *aAltMap;           /* Mapping from table to index column numbers */
  } ub;
  i64 seqCount;           /* Sequence counter */

123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146












147
148
149
150
151
152
153
  u32 *aOffset;           /* Pointer to aType[nField] */
  const u8 *aRow;         /* Data for the current row, if all on one page */
  u32 payloadSize;        /* Total number of bytes in the record */
  u32 szRow;              /* Byte available in aRow */
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
  u64 maskUsed;           /* Mask of columns used by this cursor */
#endif


  /* 2*nField extra array elements allocated for aType[], beyond the one
  ** static element declared in the structure.  nField total array slots for
  ** aType[] and nField+1 array slots for aOffset[] */
  u32 aType[1];           /* Type values record decode.  MUST BE LAST */
};

/* Return true if P is a null-only cursor
*/
#define IsNullCursor(P) \
  ((P)->eCurType==CURTYPE_PSEUDO && (P)->nullRow && (P)->seekResult==0)


/*
** A value for VdbeCursor.cacheStatus that means the cache is always invalid.
*/
#define CACHE_STALE 0













/*
** When a sub-program is executed (OP_Program), a structure of this type
** is allocated to store the current value of the program counter, as
** well as the current memory cell array and various other frame specific
** values stored in the Vdbe struct. When the sub-program is finished,
** these values are copied back to the Vdbe from the VdbeFrame structure,







>












<




>
>
>
>
>
>
>
>
>
>
>
>







127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  u32 *aOffset;           /* Pointer to aType[nField] */
  const u8 *aRow;         /* Data for the current row, if all on one page */
  u32 payloadSize;        /* Total number of bytes in the record */
  u32 szRow;              /* Byte available in aRow */
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
  u64 maskUsed;           /* Mask of columns used by this cursor */
#endif
  VdbeTxtBlbCache *pCache; /* Cache of large TEXT or BLOB values */

  /* 2*nField extra array elements allocated for aType[], beyond the one
  ** static element declared in the structure.  nField total array slots for
  ** aType[] and nField+1 array slots for aOffset[] */
  u32 aType[1];           /* Type values record decode.  MUST BE LAST */
};

/* Return true if P is a null-only cursor
*/
#define IsNullCursor(P) \
  ((P)->eCurType==CURTYPE_PSEUDO && (P)->nullRow && (P)->seekResult==0)


/*
** A value for VdbeCursor.cacheStatus that means the cache is always invalid.
*/
#define CACHE_STALE 0

/*
** Large TEXT or BLOB values can be slow to load, so we want to avoid
** loading them more than once.  For that reason, large TEXT and BLOB values
** can be stored in a cache defined by this object, and attached to the
** VdbeCursor using the pCache field.
*/
struct VdbeTxtBlbCache {
  char *pCValue;        /* A RCStr buffer to hold the value */
  i64 iOffset;          /* File offset of the row being cached */
  int iCol;             /* Column for which the cache is valid */
};

/*
** When a sub-program is executed (OP_Program), a structure of this type
** is allocated to store the current value of the program counter, as
** well as the current memory cell array and various other frame specific
** values stored in the Vdbe struct. When the sub-program is finished,
** these values are copied back to the Vdbe from the VdbeFrame structure,
461
462
463
464
465
466
467

468
469
470
471
472
473
474
475
476
477

478
479
480
481
482
483
484
  i64 startTime;          /* Time when query started - used for profiling */
#endif
#ifdef SQLITE_DEBUG
  int rcApp;              /* errcode set by sqlite3_result_error_code() */
  u32 nWrite;             /* Number of write operations that have occurred */
#endif
  u16 nResColumn;         /* Number of columns in one row of the result set */

  u8 errorAction;         /* Recovery action to do in case of an error */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 prepFlags;           /* SQLITE_PREPARE_* flags */
  u8 eVdbeState;          /* On of the VDBE_*_STATE values */
  bft expired:2;          /* 1: recompile VM immediately  2: when convenient */
  bft explain:2;          /* True if EXPLAIN present on SQL command */
  bft changeCntOn:1;      /* True to update the change-counter */
  bft usesStmtJournal:1;  /* True if uses a statement journal */
  bft readOnly:1;         /* True for statements that do not write */
  bft bIsReader:1;        /* True for statements that read */

  yDbMask btreeMask;      /* Bitmask of db->aDb[] entries referenced */
  yDbMask lockMask;       /* Subset of btreeMask that requires a lock */
  u32 aCounter[9];        /* Counters used by sqlite3_stmt_status() */
  char *zSql;             /* Text of the SQL statement that generated this */
#ifdef SQLITE_ENABLE_NORMALIZE
  char *zNormSql;         /* Normalization of the associated SQL statement */
  DblquoteStr *pDblStr;   /* List of double-quoted string literals */







>





|




>







477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
  i64 startTime;          /* Time when query started - used for profiling */
#endif
#ifdef SQLITE_DEBUG
  int rcApp;              /* errcode set by sqlite3_result_error_code() */
  u32 nWrite;             /* Number of write operations that have occurred */
#endif
  u16 nResColumn;         /* Number of columns in one row of the result set */
  u16 nResAlloc;          /* Column slots allocated to aColName[] */
  u8 errorAction;         /* Recovery action to do in case of an error */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 prepFlags;           /* SQLITE_PREPARE_* flags */
  u8 eVdbeState;          /* On of the VDBE_*_STATE values */
  bft expired:2;          /* 1: recompile VM immediately  2: when convenient */
  bft explain:2;          /* 0: normal, 1: EXPLAIN, 2: EXPLAIN QUERY PLAN */
  bft changeCntOn:1;      /* True to update the change-counter */
  bft usesStmtJournal:1;  /* True if uses a statement journal */
  bft readOnly:1;         /* True for statements that do not write */
  bft bIsReader:1;        /* True for statements that read */
  bft haveEqpOps:1;       /* Bytecode supports EXPLAIN QUERY PLAN */
  yDbMask btreeMask;      /* Bitmask of db->aDb[] entries referenced */
  yDbMask lockMask;       /* Subset of btreeMask that requires a lock */
  u32 aCounter[9];        /* Counters used by sqlite3_stmt_status() */
  char *zSql;             /* Text of the SQL statement that generated this */
#ifdef SQLITE_ENABLE_NORMALIZE
  char *zNormSql;         /* Normalization of the associated SQL statement */
  DblquoteStr *pDblStr;   /* List of double-quoted string literals */
Changes to src/vdbeapi.c.
1123
1124
1125
1126
1127
1128
1129

1130
1131
1132
1133
1134
1135
1136
1137
#endif

/*
** Return the number of columns in the result set for the statement pStmt.
*/
int sqlite3_column_count(sqlite3_stmt *pStmt){
  Vdbe *pVm = (Vdbe *)pStmt;

  return pVm ? pVm->nResColumn : 0;
}

/*
** Return the number of values available from the current row of the
** currently executing statement pStmt.
*/
int sqlite3_data_count(sqlite3_stmt *pStmt){







>
|







1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
#endif

/*
** Return the number of columns in the result set for the statement pStmt.
*/
int sqlite3_column_count(sqlite3_stmt *pStmt){
  Vdbe *pVm = (Vdbe *)pStmt;
  if( pVm==0 ) return 0;
  return pVm->nResColumn;
}

/*
** Return the number of values available from the current row of the
** currently executing statement pStmt.
*/
int sqlite3_data_count(sqlite3_stmt *pStmt){
1296
1297
1298
1299
1300
1301
1302


























1303
1304
1305
1306
1307
1308
1309
#endif /* SQLITE_OMIT_UTF16 */
int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
  int iType = sqlite3_value_type( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return iType;
}



























/*
** Convert the N-th element of pStmt->pColName[] into a string using
** xFunc() then return that string.  If N is out of range, return 0.
**
** There are up to 5 names for each column.  useType determines which
** name is returned.  Here are the names:
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
#endif /* SQLITE_OMIT_UTF16 */
int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
  int iType = sqlite3_value_type( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return iType;
}

/*
** Column names appropriate for EXPLAIN or EXPLAIN QUERY PLAN.
*/
static const char * const azExplainColNames8[] = {
   "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",  /* EXPLAIN */
   "id", "parent", "notused", "detail"                         /* EQP */
};
static const u16 azExplainColNames16data[] = {
  /*   0 */  'a', 'd', 'd', 'r',                0,
  /*   5 */  'o', 'p', 'c', 'o', 'd', 'e',      0,
  /*  12 */  'p', '1',                          0, 
  /*  15 */  'p', '2',                          0,
  /*  18 */  'p', '3',                          0,
  /*  21 */  'p', '4',                          0,
  /*  24 */  'p', '5',                          0,
  /*  27 */  'c', 'o', 'm', 'm', 'e', 'n', 't', 0,
  /*  35 */  'i', 'd',                          0,
  /*  38 */  'p', 'a', 'r', 'e', 'n', 't',      0,
  /*  45 */  'n', 'o', 't', 'u', 's', 'e', 'd', 0,
  /*  53 */  'd', 'e', 't', 'a', 'i', 'l',      0
};
static const u8 iExplainColNames16[] = {
  0, 5, 12, 15, 18, 21, 24, 27,
  35, 38, 45, 53
};

/*
** Convert the N-th element of pStmt->pColName[] into a string using
** xFunc() then return that string.  If N is out of range, return 0.
**
** There are up to 5 names for each column.  useType determines which
** name is returned.  Here are the names:
**
1328
1329
1330
1331
1332
1333
1334

1335
1336
1337
1338

1339













1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361


1362
1363
1364
1365
1366
1367
1368
  sqlite3 *db;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pStmt==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif

  ret = 0;
  p = (Vdbe *)pStmt;
  db = p->db;
  assert( db!=0 );

  n = sqlite3_column_count(pStmt);













  if( N<n && N>=0 ){
    u8 prior_mallocFailed = db->mallocFailed;
    N += useType*n;
    sqlite3_mutex_enter(db->mutex);
#ifndef SQLITE_OMIT_UTF16
    if( useUtf16 ){
      ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
    }else
#endif
    {
      ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
    }
    /* A malloc may have failed inside of the _text() call. If this
    ** is the case, clear the mallocFailed flag and return NULL.
    */
    assert( db->mallocFailed==0 || db->mallocFailed==1 );
    if( db->mallocFailed > prior_mallocFailed ){
      sqlite3OomClear(db);
      ret = 0;
    }
    sqlite3_mutex_leave(db->mutex);
  }


  return ret;
}

/*
** Return the name of the Nth column of the result set returned by SQL
** statement pStmt.
*/







>




>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
|


<
















<

>
>







1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
  sqlite3 *db;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pStmt==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  if( N<0 ) return 0;
  ret = 0;
  p = (Vdbe *)pStmt;
  db = p->db;
  assert( db!=0 );
  sqlite3_mutex_enter(db->mutex);

  if( p->explain ){
    if( useType>0 ) goto columnName_end;
    n = p->explain==1 ? 8 : 4;
    if( N>=n ) goto columnName_end;
    if( useUtf16 ){
      int i = iExplainColNames16[N + 8*p->explain - 8];
      ret = (void*)&azExplainColNames16data[i];
    }else{
      ret = (void*)azExplainColNames8[N + 8*p->explain - 8];
    }
    goto columnName_end;
  }
  n = p->nResColumn;
  if( N<n ){
    u8 prior_mallocFailed = db->mallocFailed;
    N += useType*n;

#ifndef SQLITE_OMIT_UTF16
    if( useUtf16 ){
      ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
    }else
#endif
    {
      ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
    }
    /* A malloc may have failed inside of the _text() call. If this
    ** is the case, clear the mallocFailed flag and return NULL.
    */
    assert( db->mallocFailed==0 || db->mallocFailed==1 );
    if( db->mallocFailed > prior_mallocFailed ){
      sqlite3OomClear(db);
      ret = 0;
    }

  }
columnName_end:
  sqlite3_mutex_leave(db->mutex);
  return ret;
}

/*
** Return the name of the Nth column of the result set returned by SQL
** statement pStmt.
*/
1810
1811
1812
1813
1814
1815
1816





























1817
1818
1819
1820
1821
1822
1823
/*
** Return 1 if the statement is an EXPLAIN and return 2 if the
** statement is an EXPLAIN QUERY PLAN
*/
int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
  return pStmt ? ((Vdbe*)pStmt)->explain : 0;
}






























/*
** Return true if the prepared statement is in need of being reset.
*/
int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
  Vdbe *v = (Vdbe*)pStmt;
  return v!=0 && v->eVdbeState==VDBE_RUN_STATE;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
/*
** Return 1 if the statement is an EXPLAIN and return 2 if the
** statement is an EXPLAIN QUERY PLAN
*/
int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
  return pStmt ? ((Vdbe*)pStmt)->explain : 0;
}

/*
** Set the explain mode for a statement.
*/
int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode){
  Vdbe *v = (Vdbe*)pStmt;
  int rc;
  if( v->eVdbeState!=VDBE_READY_STATE ) return SQLITE_BUSY; 
  if( v->explain==eMode ) return SQLITE_OK;
  if( v->zSql==0 || eMode<0 || eMode>2 ) return SQLITE_ERROR;
  sqlite3_mutex_enter(v->db->mutex);
  if( v->nMem>=10 && (eMode!=2 || v->haveEqpOps) ){
    /* No reprepare necessary */
    v->explain = eMode;
    rc = SQLITE_OK;
  }else{
    int haveEqpOps = v->explain==2 || v->haveEqpOps;
    v->explain = eMode;
    rc = sqlite3Reprepare(v);
    v->haveEqpOps = haveEqpOps!=0;
  }
  if( v->explain ){
    v->nResColumn = 12 - 4*v->explain;
  }else{
    v->nResColumn = v->nResAlloc;
  }
  sqlite3_mutex_leave(v->db->mutex);
  return rc;
}

/*
** Return true if the prepared statement is in need of being reset.
*/
int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
  Vdbe *v = (Vdbe*)pStmt;
  return v!=0 && v->eVdbeState==VDBE_RUN_STATE;
Changes to src/vdbeaux.c.
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
  if( N>0 ){
    sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
    if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
  }
}
#endif /* SQLITE_DEBUG */


/*
** Change the value of the P4 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
**
** If n>=0 then the P4 operand is dynamic, meaning that a copy of







<







1494
1495
1496
1497
1498
1499
1500

1501
1502
1503
1504
1505
1506
1507
  if( N>0 ){
    sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
    if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
  }
}
#endif /* SQLITE_DEBUG */


/*
** Change the value of the P4 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
**
** If n>=0 then the P4 operand is dynamic, meaning that a copy of
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
      sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
    }else{
      char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
      if( p->explain==2 ){
        sqlite3VdbeMemSetInt64(pMem, pOp->p1);
        sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
        sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
        sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);    
        p->nResColumn = 4;
      }else{
        sqlite3VdbeMemSetInt64(pMem+0, i);
        sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
                             -1, SQLITE_UTF8, SQLITE_STATIC);
        sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
        sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
        sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
        /* pMem+5 for p4 is done last */
        sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
        {
          char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
          sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
        }
#else
        sqlite3VdbeMemSetNull(pMem+7);
#endif
        sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
        p->nResColumn = 8;
      }
      p->pResultRow = pMem;
      if( db->mallocFailed ){
        p->rc = SQLITE_NOMEM;
        rc = SQLITE_ERROR;
      }else{
        p->rc = SQLITE_OK;







|
|


















|







2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
      sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
    }else{
      char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
      if( p->explain==2 ){
        sqlite3VdbeMemSetInt64(pMem, pOp->p1);
        sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
        sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
        sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
        assert( p->nResColumn==4 );
      }else{
        sqlite3VdbeMemSetInt64(pMem+0, i);
        sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
                             -1, SQLITE_UTF8, SQLITE_STATIC);
        sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
        sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
        sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
        /* pMem+5 for p4 is done last */
        sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
        {
          char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
          sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
        }
#else
        sqlite3VdbeMemSetNull(pMem+7);
#endif
        sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
        assert( p->nResColumn==8 );
      }
      p->pResultRow = pMem;
      if( db->mallocFailed ){
        p->rc = SQLITE_NOMEM;
        rc = SQLITE_ERROR;
      }else{
        p->rc = SQLITE_OK;
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
  x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
  assert( x.nFree>=0 );
  assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );

  resolveP2Values(p, &nArg);
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain ){
    static const char * const azColName[] = {
       "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
       "id", "parent", "notused", "detail"
    };
    int iFirst, mx, i;
    if( nMem<10 ) nMem = 10;
    p->explain = pParse->explain;
    if( pParse->explain==2 ){
      sqlite3VdbeSetNumCols(p, 4);
      iFirst = 8;
      mx = 12;
    }else{
      sqlite3VdbeSetNumCols(p, 8);
      iFirst = 0;
      mx = 8;
    }
    for(i=iFirst; i<mx; i++){
      sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
                            azColName[i], SQLITE_STATIC);
    }
  }
  p->expired = 0;

  /* Memory for registers, parameters, cursor, etc, is allocated in one or two
  ** passes.  On the first pass, we try to reuse unused memory at the
  ** end of the opcode array.  If we are unable to satisfy all memory
  ** requirements by reusing the opcode array tail, then the second







<
<
<
<
<


<
<
<
|
<
<
<
<
<
<
<
<
<







2647
2648
2649
2650
2651
2652
2653





2654
2655



2656









2657
2658
2659
2660
2661
2662
2663
  x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
  assert( x.nFree>=0 );
  assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );

  resolveP2Values(p, &nArg);
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain ){





    if( nMem<10 ) nMem = 10;
    p->explain = pParse->explain;



    p->nResColumn = 12 - 4*p->explain;









  }
  p->expired = 0;

  /* Memory for registers, parameters, cursor, etc, is allocated in one or two
  ** passes.  On the first pass, we try to reuse unused memory at the
  ** end of the opcode array.  If we are unable to satisfy all memory
  ** requirements by reusing the opcode array tail, then the second
2718
2719
2720
2721
2722
2723
2724
2725












2726




2727
2728
2729
2730
2731
2732
2733

/*
** Close a VDBE cursor and release all the resources that cursor
** happens to hold.
*/
void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
  if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
}












void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){




  switch( pCx->eCurType ){
    case CURTYPE_SORTER: {
      sqlite3VdbeSorterClose(p->db, pCx);
      break;
    }
    case CURTYPE_BTREE: {
      assert( pCx->uc.pCursor!=0 );








>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>







2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731

/*
** Close a VDBE cursor and release all the resources that cursor
** happens to hold.
*/
void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
  if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
}
static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){
  VdbeTxtBlbCache *pCache = pCx->pCache;
  assert( pCx->colCache );
  pCx->colCache = 0;
  pCx->pCache = 0;
  if( pCache->pCValue ){
    sqlite3RCStrUnref(pCache->pCValue);
    pCache->pCValue = 0;
  }
  sqlite3DbFree(p->db, pCache);
  sqlite3VdbeFreeCursorNN(p, pCx);
}
void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
  if( pCx->colCache ){
    freeCursorWithCache(p, pCx);
    return;
  }
  switch( pCx->eCurType ){
    case CURTYPE_SORTER: {
      sqlite3VdbeSorterClose(p->db, pCx);
      break;
    }
    case CURTYPE_BTREE: {
      assert( pCx->uc.pCursor!=0 );
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
** execution of the vdbe program so that sqlite3_column_count() can
** be called on an SQL statement before sqlite3_step().
*/
void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
  int n;
  sqlite3 *db = p->db;

  if( p->nResColumn ){
    releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
    sqlite3DbFree(db, p->aColName);
  }
  n = nResColumn*COLNAME_N;
  p->nResColumn = (u16)nResColumn;
  p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
  if( p->aColName==0 ) return;
  initMemArray(p->aColName, n, db, MEM_Null);
}

/*
** Set the name of the idx'th column to be returned by the SQL statement.







|
|



|







2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
** execution of the vdbe program so that sqlite3_column_count() can
** be called on an SQL statement before sqlite3_step().
*/
void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
  int n;
  sqlite3 *db = p->db;

  if( p->nResAlloc ){
    releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
    sqlite3DbFree(db, p->aColName);
  }
  n = nResColumn*COLNAME_N;
  p->nResColumn = p->nResAlloc = (u16)nResColumn;
  p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
  if( p->aColName==0 ) return;
  initMemArray(p->aColName, n, db, MEM_Null);
}

/*
** Set the name of the idx'th column to be returned by the SQL statement.
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
  int idx,                         /* Index of column zName applies to */
  int var,                         /* One of the COLNAME_* constants */
  const char *zName,               /* Pointer to buffer containing name */
  void (*xDel)(void*)              /* Memory management strategy for zName */
){
  int rc;
  Mem *pColName;
  assert( idx<p->nResColumn );
  assert( var<COLNAME_N );
  if( p->db->mallocFailed ){
    assert( !zName || xDel!=SQLITE_DYNAMIC );
    return SQLITE_NOMEM_BKPT;
  }
  assert( p->aColName!=0 );
  pColName = &(p->aColName[idx+var*p->nResColumn]);
  rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
  assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
  return rc;
}

/*
** A read or write transaction may or may not be active on database handle







|






|







2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
  int idx,                         /* Index of column zName applies to */
  int var,                         /* One of the COLNAME_* constants */
  const char *zName,               /* Pointer to buffer containing name */
  void (*xDel)(void*)              /* Memory management strategy for zName */
){
  int rc;
  Mem *pColName;
  assert( idx<p->nResAlloc );
  assert( var<COLNAME_N );
  if( p->db->mallocFailed ){
    assert( !zName || xDel!=SQLITE_DYNAMIC );
    return SQLITE_NOMEM_BKPT;
  }
  assert( p->aColName!=0 );
  pColName = &(p->aColName[idx+var*p->nResAlloc]);
  rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
  assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
  return rc;
}

/*
** A read or write transaction may or may not be active on database handle
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
** the database connection and frees the object itself.
*/
static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
  SubProgram *pSub, *pNext;
  assert( db!=0 );
  assert( p->db==0 || p->db==db );
  if( p->aColName ){
    releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
    sqlite3DbNNFreeNN(db, p->aColName);
  }
  for(pSub=p->pProgram; pSub; pSub=pNext){
    pNext = pSub->pNext;
    vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
    sqlite3DbFree(db, pSub);
  }







|







3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
** the database connection and frees the object itself.
*/
static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
  SubProgram *pSub, *pNext;
  assert( db!=0 );
  assert( p->db==0 || p->db==db );
  if( p->aColName ){
    releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
    sqlite3DbNNFreeNN(db, p->aColName);
  }
  for(pSub=p->pProgram; pSub; pSub=pNext){
    pNext = pSub->pNext;
    vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
    sqlite3DbFree(db, pSub);
  }
Changes to src/vdbemem.c.
328
329
330
331
332
333
334





335
336
337
338
339
340
341
  if( pMem->flags & MEM_Dyn ){
    if( pMem->xDel==sqlite3_free
     && sqlite3_msize(pMem->z) >= (u64)(pMem->n+1)
    ){
      pMem->z[pMem->n] = 0;
      pMem->flags |= MEM_Term;
      return;





    }
  }else if( pMem->szMalloc>0 && pMem->szMalloc >= pMem->n+1 ){
    pMem->z[pMem->n] = 0;
    pMem->flags |= MEM_Term;
    return;
  }
}







>
>
>
>
>







328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
  if( pMem->flags & MEM_Dyn ){
    if( pMem->xDel==sqlite3_free
     && sqlite3_msize(pMem->z) >= (u64)(pMem->n+1)
    ){
      pMem->z[pMem->n] = 0;
      pMem->flags |= MEM_Term;
      return;
    }
    if( pMem->xDel==(void(*)(void*))sqlite3RCStrUnref ){
      /* Blindly assume that all RCStr objects are zero-terminated */
      pMem->flags |= MEM_Term;
      return;
    }
  }else if( pMem->szMalloc>0 && pMem->szMalloc >= pMem->n+1 ){
    pMem->z[pMem->n] = 0;
    pMem->flags |= MEM_Term;
    return;
  }
}
1358
1359
1360
1361
1362
1363
1364


















1365
1366
1367
1368
1369
1370
1371
    return pVal->z;
  }
  if( pVal->flags&MEM_Null ){
    return 0;
  }
  return valueToText(pVal, enc);
}



















/*
** Create a new sqlite3_value object.
*/
sqlite3_value *sqlite3ValueNew(sqlite3 *db){
  Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
  if( p ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
    return pVal->z;
  }
  if( pVal->flags&MEM_Null ){
    return 0;
  }
  return valueToText(pVal, enc);
}

/* Return true if sqlit3_value object pVal is a string or blob value
** that uses the destructor specified in the second argument.
**
** TODO:  Maybe someday promote this interface into a published API so
** that third-party extensions can get access to it?
*/
int sqlite3ValueIsOfClass(const sqlite3_value *pVal, void(*xFree)(void*)){
  if( ALWAYS(pVal!=0)
   && ALWAYS((pVal->flags & (MEM_Str|MEM_Blob))!=0)
   && (pVal->flags & MEM_Dyn)!=0
   && pVal->xDel==xFree
  ){
    return 1;
  }else{
    return 0;
  }
}

/*
** Create a new sqlite3_value object.
*/
sqlite3_value *sqlite3ValueNew(sqlite3 *db){
  Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
  if( p ){
Changes to src/vdbevtab.c.
65
66
67
68
69
70
71


72
73
74
75
76
77
78
      "p1 INT,"
      "p2 INT,"
      "p3 INT,"
      "p4 TEXT,"
      "p5 INT,"
      "comment TEXT,"
      "subprog TEXT," 


      "stmt HIDDEN"
    ");",

    /* Tables_used() schema */
    "CREATE TABLE x("
      "type TEXT,"
      "schema TEXT,"







>
>







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
      "p1 INT,"
      "p2 INT,"
      "p3 INT,"
      "p4 TEXT,"
      "p5 INT,"
      "comment TEXT,"
      "subprog TEXT," 
      "nexec INT,"
      "ncycle INT,"
      "stmt HIDDEN"
    ");",

    /* Tables_used() schema */
    "CREATE TABLE x("
      "type TEXT,"
      "schema TEXT,"
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
            if( pIdx->tnum==iRoot ){
              pCur->zName = pIdx->zName;
              pCur->zType = "index";
            }
          }
        }
      }
      i += 10;
    }
  }
  switch( i ){
    case 0:   /* addr */
      sqlite3_result_int(ctx, pCur->iAddr);
      break;
    case 1:   /* opcode */







|







229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
            if( pIdx->tnum==iRoot ){
              pCur->zName = pIdx->zName;
              pCur->zType = "index";
            }
          }
        }
      }
      i += 20;
    }
  }
  switch( i ){
    case 0:   /* addr */
      sqlite3_result_int(ctx, pCur->iAddr);
      break;
    case 1:   /* opcode */
277
278
279
280
281
282
283















284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
      }else if( aOp[0].p4.z!=0 ){
         sqlite3_result_text(ctx, aOp[0].p4.z+3, -1, SQLITE_STATIC);
      }else{
         sqlite3_result_text(ctx, "(FK)", 4, SQLITE_STATIC);
      }
      break;
    }















    case 10:  /* tables_used.type */
      sqlite3_result_text(ctx, pCur->zType, -1, SQLITE_STATIC);
      break;
    case 11:  /* tables_used.schema */
      sqlite3_result_text(ctx, pCur->zSchema, -1, SQLITE_STATIC);
      break;
    case 12:  /* tables_used.name */
      sqlite3_result_text(ctx, pCur->zName, -1, SQLITE_STATIC);
      break;
    case 13:  /* tables_used.wr */
      sqlite3_result_int(ctx, pOp->opcode==OP_OpenWrite);
      break;
  }
  return SQLITE_OK;
}

/*







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|


|


|


|







279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
      }else if( aOp[0].p4.z!=0 ){
         sqlite3_result_text(ctx, aOp[0].p4.z+3, -1, SQLITE_STATIC);
      }else{
         sqlite3_result_text(ctx, "(FK)", 4, SQLITE_STATIC);
      }
      break;
    }

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    case 9:     /* nexec */
      sqlite3_result_int(ctx, pOp->nExec);
      break;
    case 10:    /* ncycle */
      sqlite3_result_int(ctx, pOp->nCycle);
      break;
#else
    case 9:     /* nexec */
    case 10:    /* ncycle */
      sqlite3_result_int(ctx, 0);
      break;
#endif

    case 20:  /* tables_used.type */
      sqlite3_result_text(ctx, pCur->zType, -1, SQLITE_STATIC);
      break;
    case 21:  /* tables_used.schema */
      sqlite3_result_text(ctx, pCur->zSchema, -1, SQLITE_STATIC);
      break;
    case 22:  /* tables_used.name */
      sqlite3_result_text(ctx, pCur->zName, -1, SQLITE_STATIC);
      break;
    case 23:  /* tables_used.wr */
      sqlite3_result_int(ctx, pOp->opcode==OP_OpenWrite);
      break;
  }
  return SQLITE_OK;
}

/*
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  int i;
  int rc = SQLITE_CONSTRAINT;
  struct sqlite3_index_constraint *p;
  bytecodevtab *pVTab = (bytecodevtab*)tab;
  int iBaseCol = pVTab->bTablesUsed ? 4 : 8;
  pIdxInfo->estimatedCost = (double)100;
  pIdxInfo->estimatedRows = 100;
  pIdxInfo->idxNum = 0;
  for(i=0, p=pIdxInfo->aConstraint; i<pIdxInfo->nConstraint; i++, p++){
    if( p->usable==0 ) continue;
    if( p->op==SQLITE_INDEX_CONSTRAINT_EQ && p->iColumn==iBaseCol+1 ){
      rc = SQLITE_OK;







|







377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  int i;
  int rc = SQLITE_CONSTRAINT;
  struct sqlite3_index_constraint *p;
  bytecodevtab *pVTab = (bytecodevtab*)tab;
  int iBaseCol = pVTab->bTablesUsed ? 4 : 10;
  pIdxInfo->estimatedCost = (double)100;
  pIdxInfo->estimatedRows = 100;
  pIdxInfo->idxNum = 0;
  for(i=0, p=pIdxInfo->aConstraint; i<pIdxInfo->nConstraint; i++, p++){
    if( p->usable==0 ) continue;
    if( p->op==SQLITE_INDEX_CONSTRAINT_EQ && p->iColumn==iBaseCol+1 ){
      rc = SQLITE_OK;
Changes to test/fuzzdata6.db.

cannot compute difference between binary files

Changes to test/json/README.md.
1
2

3
4
5
6
7
8


9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
The files in this subdirectory are used to help measure the performance
of the SQLite JSON parser.


# 1.0 Prerequisites

  1.  Valgrind

  2.  Fossil



# 2.0 Setup

  1.  Run: "`tclsh json-generator.tcl | sqlite3 json100mb.db`" to create
      the 100 megabyte test database.  Do this so that the "json100mb.db"
      file lands in the directory from which you will run tests, not in
      the test/json subdirectory of the source tree.

  2.  Build the baseline sqlite3.c file.  ("`make sqlite3.c`")


  3.  Run "`sh json-speed-check-1.sh trunk`".   This creates the baseline
      profile in "jout-trunk.txt".

# 3.0 Testing

  1.  Build the sqlite3.c to be tested.

  2.  Run "`sh json-speed-check-1.sh x1`".  The profile output will appear
      in jout-x1.txt.  Substitute any label you want in place of "x1".

  3.  Run the script shown below in the CLI.
      Divide 2500 by the real elapse time from this test
      to get an estimate for number of MB/s that the JSON parser is
      able to process.


|
>






>
>








|
>

|




|

|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
The files in this subdirectory are used to help measure the performance
of the SQLite JSON functions, especially in relation to handling large
JSON inputs.

# 1.0 Prerequisites

  1.  Valgrind

  2.  Fossil

  3.  tclsh

# 2.0 Setup

  1.  Run: "`tclsh json-generator.tcl | sqlite3 json100mb.db`" to create
      the 100 megabyte test database.  Do this so that the "json100mb.db"
      file lands in the directory from which you will run tests, not in
      the test/json subdirectory of the source tree.

  2.  Build the baseline sqlite3.c file with sqlite3.h and shell.c.
      ("`CFLAGS='-Os -g' make -e clean sqlite3.c`")

  3.  Run "`sh json-speed-check.sh trunk`".   This creates the baseline
      profile in "jout-trunk.txt".

# 3.0 Testing

  1.  Build the sqlite3.c (with sqlite3.h and shell.c) to be tested.

  2.  Run "`sh json-speed-check.sh x1`".  The profile output will appear
      in jout-x1.txt.  Substitute any label you want in place of "x1".

  3.  Run the script shown below in the CLI.
      Divide 2500 by the real elapse time from this test
      to get an estimate for number of MB/s that the JSON parser is
      able to process.

Changes to test/json/json-q1.txt.
1
2
3
4




















.mode qbox
.timer on
.param set $label 'q87'
SELECT rowid, x->>$label FROM data1 WHERE x->>$label IS NOT NULL;
























>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
.mode qbox
.timer on
.param set $label 'q87'
SELECT rowid, x->>$label FROM data1 WHERE x->>$label IS NOT NULL;

CREATE TEMP TABLE t2(x JSON TEXT);
WITH RECURSIVE
  c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<25000),
  array1(y) AS (
    SELECT json_group_array(
             json_object('x',x,'y',random(),'z',hex(randomblob(50)))
           )
      FROM c
  ),
  c2(n) AS (VALUES(1) UNION ALL SELECT n+1 FROM c2 WHERE n<5)
INSERT INTO t2(x)
  SELECT json_object('a',n,'b',n*2,'c',y,'d',3,'e',5,'f',6) FROM array1, c2;
CREATE INDEX t2x1 ON t2(x->>'a');
CREATE INDEX t2x2 ON t2(x->>'b');
CREATE INDEX t2x3 ON t2(x->>'e');
CREATE INDEX t2x4 ON t2(x->>'f');
UPDATE t2 SET x=json_replace(x,'$.f',(x->>'f')+1);
UPDATE t2 SET x=json_set(x,'$.e',(x->>'f')-1);
UPDATE t2 SET x=json_remove(x,'$.d');