Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge the 3.24.0 changes plus a few subsequent enhancements. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | begin-concurrent-pnu |
Files: | files | file ages | folders |
SHA3-256: |
be7004a971a174ae5c862cb3fa29f358 |
User & Date: | drh 2018-06-06 17:12:46.841 |
Context
2018-07-10
| ||
15:48 | Merge begin-concurrent changes into this branch. (check-in: af17432eb1 user: dan tags: begin-concurrent-pnu) | |
2018-06-06
| ||
17:12 | Merge the 3.24.0 changes plus a few subsequent enhancements. (check-in: be7004a971 user: drh tags: begin-concurrent-pnu) | |
17:03 | Merge changes from trunk, including all the 3.24.0 changes plus some later enhancements. (check-in: d7299bfeb1 user: drh tags: begin-concurrent) | |
2018-05-15
| ||
11:55 | Merge latest trunk changes into this branch. (check-in: 72f39efa9b user: dan tags: begin-concurrent-pnu) | |
Changes
Changes to VERSION.
|
| | | 1 | 3.25.0 |
Changes to autoconf/Makefile.am.
︙ | ︙ | |||
10 11 12 13 14 15 16 | EXTRA_sqlite3_SOURCES = sqlite3.c sqlite3_LDADD = @EXTRA_SHELL_OBJ@ @READLINE_LIBS@ sqlite3_DEPENDENCIES = @EXTRA_SHELL_OBJ@ sqlite3_CFLAGS = $(AM_CFLAGS) -DSQLITE_ENABLE_EXPLAIN_COMMENTS -DSQLITE_ENABLE_DBPAGE_VTAB -DSQLITE_ENABLE_STMTVTAB -DSQLITE_ENABLE_DBSTAT_VTAB $(SHELL_CFLAGS) include_HEADERS = sqlite3.h sqlite3ext.h | | | 10 11 12 13 14 15 16 17 18 19 20 21 | EXTRA_sqlite3_SOURCES = sqlite3.c sqlite3_LDADD = @EXTRA_SHELL_OBJ@ @READLINE_LIBS@ sqlite3_DEPENDENCIES = @EXTRA_SHELL_OBJ@ sqlite3_CFLAGS = $(AM_CFLAGS) -DSQLITE_ENABLE_EXPLAIN_COMMENTS -DSQLITE_ENABLE_DBPAGE_VTAB -DSQLITE_ENABLE_STMTVTAB -DSQLITE_ENABLE_DBSTAT_VTAB $(SHELL_CFLAGS) include_HEADERS = sqlite3.h sqlite3ext.h EXTRA_DIST = sqlite3.1 tea Makefile.msc sqlite3.rc README.txt Replace.cs Makefile.fallback pkgconfigdir = ${libdir}/pkgconfig pkgconfig_DATA = sqlite3.pc man_MANS = sqlite3.1 |
Added autoconf/Makefile.fallback.
> > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | #!/usr/bin/make # # If the configure script does not work, then this Makefile is available # as a backup. Manually configure the variables below. # # Note: This makefile works out-of-the-box on MacOS 10.2 (Jaguar) # CC = gcc CFLAGS = -O0 -I. LIBS = -lz COPTS += -D_BSD_SOURCE COPTS += -DSQLITE_ENABLE_LOCKING_STYLE=0 COPTS += -DSQLITE_THREADSAFE=0 COPTS += -DSQLITE_OMIT_LOAD_EXTENSION COPTS += -DSQLITE_WITHOUT_ZONEMALLOC COPTS += -DSQLITE_ENABLE_RTREE sqlite3: shell.c sqlite3.c $(CC) $(CFLAGS) $(COPTS) -o sqlite3 shell.c sqlite3.c $(LIBS) |
Changes to configure.
1 2 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. | | | 1 2 3 4 5 6 7 8 9 10 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.69 for sqlite 3.25.0. # # # Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc. # # # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. |
︙ | ︙ | |||
722 723 724 725 726 727 728 | subdirs= MFLAGS= MAKEFLAGS= # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' | | | | 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 | subdirs= MFLAGS= MAKEFLAGS= # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' PACKAGE_VERSION='3.25.0' PACKAGE_STRING='sqlite 3.25.0' PACKAGE_BUGREPORT='' PACKAGE_URL='' # Factoring default headers for most tests. ac_includes_default="\ #include <stdio.h> #ifdef HAVE_SYS_TYPES_H |
︙ | ︙ | |||
1461 1462 1463 1464 1465 1466 1467 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF | | | 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures sqlite 3.25.0 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. |
︙ | ︙ | |||
1526 1527 1528 1529 1530 1531 1532 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in | | | 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of sqlite 3.25.0:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] |
︙ | ︙ | |||
1651 1652 1653 1654 1655 1656 1657 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF | | | 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF sqlite configure 3.25.0 generated by GNU Autoconf 2.69 Copyright (C) 2012 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit |
︙ | ︙ | |||
2070 2071 2072 2073 2074 2075 2076 | eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_mongrel cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. | | | 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 | eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_mongrel cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by sqlite $as_me 3.25.0, which was generated by GNU Autoconf 2.69. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { |
︙ | ︙ | |||
12238 12239 12240 12241 12242 12243 12244 | test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Save the log message, to keep $0 and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" | | | 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 | test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Save the log message, to keep $0 and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by sqlite $as_me 3.25.0, which was generated by GNU Autoconf 2.69. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ |
︙ | ︙ | |||
12304 12305 12306 12307 12308 12309 12310 | Report bugs to the package provider." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ | | | 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 | Report bugs to the package provider." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ sqlite config.status 3.25.0 configured by $0, generated by GNU Autoconf 2.69, with options \\"\$ac_cs_config\\" Copyright (C) 2012 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." |
︙ | ︙ |
Changes to ext/expert/expert1.test.
︙ | ︙ | |||
282 283 284 285 286 287 288 | CREATE TRIGGER t9t AFTER INSERT ON t9 BEGIN UPDATE t10 SET a=new.a WHERE b = new.b; END; } { INSERT INTO t9 VALUES(?, ?, ?); } { CREATE INDEX t10_idx_00000062 ON t10(b); | < | 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | CREATE TRIGGER t9t AFTER INSERT ON t9 BEGIN UPDATE t10 SET a=new.a WHERE b = new.b; END; } { INSERT INTO t9 VALUES(?, ?, ?); } { CREATE INDEX t10_idx_00000062 ON t10(b); SEARCH TABLE t10 USING INDEX t10_idx_00000062 (b=?) } do_setup_rec_test $tn.15 { CREATE TABLE t1(a, b); CREATE TABLE t2(c, d); |
︙ | ︙ |
Changes to ext/expert/sqlite3expert.c.
︙ | ︙ | |||
1148 1149 1150 1151 1152 1153 1154 | idxHashAdd(&rc, &hIdx, zSql, 0); if( rc ) goto find_indexes_out; } break; } } | > | > | 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 | idxHashAdd(&rc, &hIdx, zSql, 0); if( rc ) goto find_indexes_out; } break; } } if( zDetail[0]!='-' ){ pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%s\n", zDetail); } } for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){ pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey); } idxFinalize(&rc, pExplain); |
︙ | ︙ |
Changes to ext/misc/csv.c.
︙ | ︙ | |||
201 202 203 204 205 206 207 | ** + Input comes from p->in. ** + Store results in p->z of length p->n. Space to hold p->z comes ** from sqlite3_malloc64(). ** + Keep track of the line number in p->nLine. ** + Store the character that terminates the field in p->cTerm. Store ** EOF on end-of-file. ** | | > | | 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | ** + Input comes from p->in. ** + Store results in p->z of length p->n. Space to hold p->z comes ** from sqlite3_malloc64(). ** + Keep track of the line number in p->nLine. ** + Store the character that terminates the field in p->cTerm. Store ** EOF on end-of-file. ** ** Return 0 at EOF or on OOM. On EOF, the p->cTerm character will have ** been set to EOF. */ static char *csv_read_one_field(CsvReader *p){ int c; p->n = 0; c = csv_getc(p); if( c==EOF ){ p->cTerm = EOF; return 0; } if( c=='"' ){ int pc, ppc; int startLine = p->nLine; pc = ppc = 0; while( 1 ){ c = csv_getc(p); |
︙ | ︙ | |||
540 541 542 543 544 545 546 | *ppVtab = (sqlite3_vtab*)pNew; if( pNew==0 ) goto csvtab_connect_oom; memset(pNew, 0, sizeof(*pNew)); if( nCol>0 ){ pNew->nCol = nCol; }else{ do{ | | < | 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 | *ppVtab = (sqlite3_vtab*)pNew; if( pNew==0 ) goto csvtab_connect_oom; memset(pNew, 0, sizeof(*pNew)); if( nCol>0 ){ pNew->nCol = nCol; }else{ do{ csv_read_one_field(&sRdr); pNew->nCol++; }while( sRdr.cTerm==',' ); } pNew->zFilename = CSV_FILENAME; CSV_FILENAME = 0; pNew->zData = CSV_DATA; CSV_DATA = 0; #ifdef SQLITE_TEST pNew->tstFlags = tstFlags; |
︙ | ︙ | |||
659 660 661 662 663 664 665 | CsvCursor *pCur = (CsvCursor*)cur; CsvTable *pTab = (CsvTable*)cur->pVtab; int i = 0; char *z; do{ z = csv_read_one_field(&pCur->rdr); if( z==0 ){ | < | 659 660 661 662 663 664 665 666 667 668 669 670 671 672 | CsvCursor *pCur = (CsvCursor*)cur; CsvTable *pTab = (CsvTable*)cur->pVtab; int i = 0; char *z; do{ z = csv_read_one_field(&pCur->rdr); if( z==0 ){ break; } if( i<pTab->nCol ){ if( pCur->aLen[i] < pCur->rdr.n+1 ){ char *zNew = sqlite3_realloc64(pCur->azVal[i], pCur->rdr.n+1); if( zNew==0 ){ csv_errmsg(&pCur->rdr, "out of memory"); |
︙ | ︙ |
Changes to ext/misc/json1.c.
︙ | ︙ | |||
2114 2115 2116 2117 2118 2119 2120 | if( p->zRoot ){ jsonAppendRaw(&x, p->zRoot, (int)strlen(p->zRoot)); }else{ jsonAppendChar(&x, '$'); } if( p->eType==JSON_ARRAY ){ jsonPrintf(30, &x, "[%d]", p->iRowid); | | | 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 | if( p->zRoot ){ jsonAppendRaw(&x, p->zRoot, (int)strlen(p->zRoot)); }else{ jsonAppendChar(&x, '$'); } if( p->eType==JSON_ARRAY ){ jsonPrintf(30, &x, "[%d]", p->iRowid); }else if( p->eType==JSON_OBJECT ){ jsonPrintf(pThis->n, &x, ".%.*s", pThis->n-2, pThis->u.zJContent+1); } } jsonResult(&x); break; } case JEACH_PATH: { |
︙ | ︙ |
Changes to ext/rtree/rtree.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** The data structure for a single virtual r-tree table is stored in three ** native SQLite tables declared as follows. In each case, the '%' character ** in the table name is replaced with the user-supplied name of the r-tree ** table. ** ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) | | | > | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | ** The data structure for a single virtual r-tree table is stored in three ** native SQLite tables declared as follows. In each case, the '%' character ** in the table name is replaced with the user-supplied name of the r-tree ** table. ** ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) ** ** The data for each node of the r-tree structure is stored in the %_node ** table. For each node that is not the root node of the r-tree, there is ** an entry in the %_parent table associating the node with its parent. ** And for each row of data in the table, there is an entry in the %_rowid ** table that maps from the entries rowid to the id of the node that it ** is stored on. If the r-tree contains auxiliary columns, those are stored ** on the end of the %_rowid table. ** ** The root node of an r-tree always exists, even if the r-tree table is ** empty. The nodeno of the root node is always 1. All other nodes in the ** table must be the same size as the root node. The content of each node ** is formatted as follows: ** ** 1. If the node is the root node (node 1), then the first 2 bytes |
︙ | ︙ | |||
89 90 91 92 93 94 95 96 97 98 99 100 101 102 | typedef struct RtreeMatchArg RtreeMatchArg; typedef struct RtreeGeomCallback RtreeGeomCallback; typedef union RtreeCoord RtreeCoord; typedef struct RtreeSearchPoint RtreeSearchPoint; /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ #define RTREE_MAX_DIMENSIONS 5 /* Size of hash table Rtree.aHash. This hash table is not expected to ** ever contain very many entries, so a fixed number of buckets is ** used. */ #define HASHSIZE 97 | > > > | 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | typedef struct RtreeMatchArg RtreeMatchArg; typedef struct RtreeGeomCallback RtreeGeomCallback; typedef union RtreeCoord RtreeCoord; typedef struct RtreeSearchPoint RtreeSearchPoint; /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ #define RTREE_MAX_DIMENSIONS 5 /* Maximum number of auxiliary columns */ #define RTREE_MAX_AUX_COLUMN 100 /* Size of hash table Rtree.aHash. This hash table is not expected to ** ever contain very many entries, so a fixed number of buckets is ** used. */ #define HASHSIZE 97 |
︙ | ︙ | |||
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | sqlite3 *db; /* Host database connection */ int iNodeSize; /* Size in bytes of each node in the node table */ u8 nDim; /* Number of dimensions */ u8 nDim2; /* Twice the number of dimensions */ u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ u8 nBytesPerCell; /* Bytes consumed per cell */ u8 inWrTrans; /* True if inside write transaction */ int iDepth; /* Current depth of the r-tree structure */ char *zDb; /* Name of database containing r-tree table */ char *zName; /* Name of r-tree table */ u32 nBusy; /* Current number of users of this structure */ i64 nRowEst; /* Estimated number of rows in this table */ u32 nCursor; /* Number of open cursors */ /* List of nodes removed during a CondenseTree operation. List is ** linked together via the pointer normally used for hash chains - ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree ** headed by the node (leaf nodes have RtreeNode.iNode==0). */ RtreeNode *pDeleted; | > > > | 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | sqlite3 *db; /* Host database connection */ int iNodeSize; /* Size in bytes of each node in the node table */ u8 nDim; /* Number of dimensions */ u8 nDim2; /* Twice the number of dimensions */ u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ u8 nBytesPerCell; /* Bytes consumed per cell */ u8 inWrTrans; /* True if inside write transaction */ u8 nAux; /* # of auxiliary columns in %_rowid */ int iDepth; /* Current depth of the r-tree structure */ char *zDb; /* Name of database containing r-tree table */ char *zName; /* Name of r-tree table */ u32 nBusy; /* Current number of users of this structure */ i64 nRowEst; /* Estimated number of rows in this table */ u32 nCursor; /* Number of open cursors */ u32 nNodeRef; /* Number RtreeNodes with positive nRef */ char *zReadAuxSql; /* SQL for statement to read aux data */ /* List of nodes removed during a CondenseTree operation. List is ** linked together via the pointer normally used for hash chains - ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree ** headed by the node (leaf nodes have RtreeNode.iNode==0). */ RtreeNode *pDeleted; |
︙ | ︙ | |||
149 150 151 152 153 154 155 156 157 158 159 160 161 162 | sqlite3_stmt *pWriteRowid; sqlite3_stmt *pDeleteRowid; /* Statements to read/write/delete a record from xxx_parent */ sqlite3_stmt *pReadParent; sqlite3_stmt *pWriteParent; sqlite3_stmt *pDeleteParent; RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ }; /* Possible values for Rtree.eCoordType: */ #define RTREE_COORD_REAL32 0 #define RTREE_COORD_INT32 1 | > > > | 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | sqlite3_stmt *pWriteRowid; sqlite3_stmt *pDeleteRowid; /* Statements to read/write/delete a record from xxx_parent */ sqlite3_stmt *pReadParent; sqlite3_stmt *pWriteParent; sqlite3_stmt *pDeleteParent; /* Statement for writing to the "aux:" fields, if there are any */ sqlite3_stmt *pWriteAux; RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ }; /* Possible values for Rtree.eCoordType: */ #define RTREE_COORD_REAL32 0 #define RTREE_COORD_INT32 1 |
︙ | ︙ | |||
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 | /* ** An rtree cursor object. */ struct RtreeCursor { sqlite3_vtab_cursor base; /* Base class. Must be first */ u8 atEOF; /* True if at end of search */ u8 bPoint; /* True if sPoint is valid */ int iStrategy; /* Copy of idxNum search parameter */ int nConstraint; /* Number of entries in aConstraint */ RtreeConstraint *aConstraint; /* Search constraints. */ int nPointAlloc; /* Number of slots allocated for aPoint[] */ int nPoint; /* Number of slots used in aPoint[] */ int mxLevel; /* iLevel value for root of the tree */ RtreeSearchPoint *aPoint; /* Priority queue for search points */ RtreeSearchPoint sPoint; /* Cached next search point */ RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ }; /* Return the Rtree of a RtreeCursor */ #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) | > > | 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | /* ** An rtree cursor object. */ struct RtreeCursor { sqlite3_vtab_cursor base; /* Base class. Must be first */ u8 atEOF; /* True if at end of search */ u8 bPoint; /* True if sPoint is valid */ u8 bAuxValid; /* True if pReadAux is valid */ int iStrategy; /* Copy of idxNum search parameter */ int nConstraint; /* Number of entries in aConstraint */ RtreeConstraint *aConstraint; /* Search constraints. */ int nPointAlloc; /* Number of slots allocated for aPoint[] */ int nPoint; /* Number of slots used in aPoint[] */ int mxLevel; /* iLevel value for root of the tree */ RtreeSearchPoint *aPoint; /* Priority queue for search points */ sqlite3_stmt *pReadAux; /* Statement to read aux-data */ RtreeSearchPoint sPoint; /* Cached next search point */ RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ }; /* Return the Rtree of a RtreeCursor */ #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) |
︙ | ︙ | |||
519 520 521 522 523 524 525 526 527 528 529 530 531 532 | } /* ** Increment the reference count of node p. */ static void nodeReference(RtreeNode *p){ if( p ){ p->nRef++; } } /* ** Clear the content of node p (set all bytes to 0x00). */ | > | 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 | } /* ** Increment the reference count of node p. */ static void nodeReference(RtreeNode *p){ if( p ){ assert( p->nRef>0 ); p->nRef++; } } /* ** Clear the content of node p (set all bytes to 0x00). */ |
︙ | ︙ | |||
586 587 588 589 590 591 592 593 594 595 596 597 598 599 | static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ RtreeNode *pNode; pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); if( pNode ){ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pNode->pParent = pParent; pNode->isDirty = 1; nodeReference(pParent); } return pNode; } | > | 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 | static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ RtreeNode *pNode; pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); if( pNode ){ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pRtree->nNodeRef++; pNode->pParent = pParent; pNode->isDirty = 1; nodeReference(pParent); } return pNode; } |
︙ | ︙ | |||
619 620 621 622 623 624 625 | ){ int rc = SQLITE_OK; RtreeNode *pNode = 0; /* Check if the requested node is already in the hash table. If so, ** increase its reference count and return it. */ | | | | 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 | ){ int rc = SQLITE_OK; RtreeNode *pNode = 0; /* Check if the requested node is already in the hash table. If so, ** increase its reference count and return it. */ if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){ assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); if( pParent && !pNode->pParent ){ pParent->nRef++; pNode->pParent = pParent; } pNode->nRef++; *ppNode = pNode; return SQLITE_OK; } |
︙ | ︙ | |||
661 662 663 664 665 666 667 668 669 670 671 672 673 674 | pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize); if( !pNode ){ rc = SQLITE_NOMEM; }else{ pNode->pParent = pParent; pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pNode->iNode = iNode; pNode->isDirty = 0; pNode->pNext = 0; rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData, pRtree->iNodeSize, 0); nodeReference(pParent); } | > | 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 | pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize); if( !pNode ){ rc = SQLITE_NOMEM; }else{ pNode->pParent = pParent; pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pRtree->nNodeRef++; pNode->iNode = iNode; pNode->isDirty = 0; pNode->pNext = 0; rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData, pRtree->iNodeSize, 0); nodeReference(pParent); } |
︙ | ︙ | |||
701 702 703 704 705 706 707 | if( pNode!=0 ){ nodeHashInsert(pRtree, pNode); }else{ rc = SQLITE_CORRUPT_VTAB; } *ppNode = pNode; }else{ | > > | > | 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 | if( pNode!=0 ){ nodeHashInsert(pRtree, pNode); }else{ rc = SQLITE_CORRUPT_VTAB; } *ppNode = pNode; }else{ if( pNode ){ pRtree->nNodeRef--; sqlite3_free(pNode); } *ppNode = 0; } return rc; } /* |
︙ | ︙ | |||
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 | ** Release a reference to a node. If the node is dirty and the reference ** count drops to zero, the node data is written to the database. */ static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode ){ assert( pNode->nRef>0 ); pNode->nRef--; if( pNode->nRef==0 ){ if( pNode->iNode==1 ){ pRtree->iDepth = -1; } if( pNode->pParent ){ rc = nodeRelease(pRtree, pNode->pParent); } if( rc==SQLITE_OK ){ | > > | 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 | ** Release a reference to a node. If the node is dirty and the reference ** count drops to zero, the node data is written to the database. */ static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode ){ assert( pNode->nRef>0 ); assert( pRtree->nNodeRef>0 ); pNode->nRef--; if( pNode->nRef==0 ){ pRtree->nNodeRef--; if( pNode->iNode==1 ){ pRtree->iDepth = -1; } if( pNode->pParent ){ rc = nodeRelease(pRtree, pNode->pParent); } if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
916 917 918 919 920 921 922 | ** Decrement the r-tree reference count. When the reference count reaches ** zero the structure is deleted. */ static void rtreeRelease(Rtree *pRtree){ pRtree->nBusy--; if( pRtree->nBusy==0 ){ pRtree->inWrTrans = 0; | | > > > | 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 | ** Decrement the r-tree reference count. When the reference count reaches ** zero the structure is deleted. */ static void rtreeRelease(Rtree *pRtree){ pRtree->nBusy--; if( pRtree->nBusy==0 ){ pRtree->inWrTrans = 0; assert( pRtree->nCursor==0 ); nodeBlobReset(pRtree); assert( pRtree->nNodeRef==0 ); sqlite3_finalize(pRtree->pWriteNode); sqlite3_finalize(pRtree->pDeleteNode); sqlite3_finalize(pRtree->pReadRowid); sqlite3_finalize(pRtree->pWriteRowid); sqlite3_finalize(pRtree->pDeleteRowid); sqlite3_finalize(pRtree->pReadParent); sqlite3_finalize(pRtree->pWriteParent); sqlite3_finalize(pRtree->pDeleteParent); sqlite3_finalize(pRtree->pWriteAux); sqlite3_free(pRtree->zReadAuxSql); sqlite3_free(pRtree); } } /* ** Rtree virtual table module xDisconnect method. */ |
︙ | ︙ | |||
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 | */ static int rtreeClose(sqlite3_vtab_cursor *cur){ Rtree *pRtree = (Rtree *)(cur->pVtab); int ii; RtreeCursor *pCsr = (RtreeCursor *)cur; assert( pRtree->nCursor>0 ); freeCursorConstraints(pCsr); sqlite3_free(pCsr->aPoint); for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]); sqlite3_free(pCsr); pRtree->nCursor--; nodeBlobReset(pRtree); return SQLITE_OK; } | > | 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 | */ static int rtreeClose(sqlite3_vtab_cursor *cur){ Rtree *pRtree = (Rtree *)(cur->pVtab); int ii; RtreeCursor *pCsr = (RtreeCursor *)cur; assert( pRtree->nCursor>0 ); freeCursorConstraints(pCsr); sqlite3_finalize(pCsr->pReadAux); sqlite3_free(pCsr->aPoint); for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]); sqlite3_free(pCsr); pRtree->nCursor--; nodeBlobReset(pRtree); return SQLITE_OK; } |
︙ | ︙ | |||
1385 1386 1387 1388 1389 1390 1391 | int ii; pNew = rtreeEnqueue(pCur, rScore, iLevel); if( pNew==0 ) return 0; ii = (int)(pNew - pCur->aPoint) + 1; if( ii<RTREE_CACHE_SZ ){ assert( pCur->aNode[ii]==0 ); pCur->aNode[ii] = pCur->aNode[0]; | | | 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 | int ii; pNew = rtreeEnqueue(pCur, rScore, iLevel); if( pNew==0 ) return 0; ii = (int)(pNew - pCur->aPoint) + 1; if( ii<RTREE_CACHE_SZ ){ assert( pCur->aNode[ii]==0 ); pCur->aNode[ii] = pCur->aNode[0]; }else{ nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); } pCur->aNode[0] = 0; *pNew = pCur->sPoint; } pCur->sPoint.rScore = rScore; pCur->sPoint.iLevel = iLevel; |
︙ | ︙ | |||
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 | */ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; int rc = SQLITE_OK; /* Move to the next entry that matches the configured constraints. */ RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); rtreeSearchPointPop(pCsr); rc = rtreeStepToLeaf(pCsr); return rc; } /* ** Rtree virtual table module xRowid method. | > > > > | 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 | */ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; int rc = SQLITE_OK; /* Move to the next entry that matches the configured constraints. */ RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); if( pCsr->bAuxValid ){ pCsr->bAuxValid = 0; sqlite3_reset(pCsr->pReadAux); } rtreeSearchPointPop(pCsr); rc = rtreeStepToLeaf(pCsr); return rc; } /* ** Rtree virtual table module xRowid method. |
︙ | ︙ | |||
1590 1591 1592 1593 1594 1595 1596 | int rc = SQLITE_OK; RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); if( rc ) return rc; if( p==0 ) return SQLITE_OK; if( i==0 ){ sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); | | > > > > > > | > > > > > > > > > > > > > > | 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 | int rc = SQLITE_OK; RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); if( rc ) return rc; if( p==0 ) return SQLITE_OK; if( i==0 ){ sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); }else if( i<=pRtree->nDim2 ){ nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ sqlite3_result_double(ctx, c.f); }else #endif { assert( pRtree->eCoordType==RTREE_COORD_INT32 ); sqlite3_result_int(ctx, c.i); } }else{ if( !pCsr->bAuxValid ){ if( pCsr->pReadAux==0 ){ rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0, &pCsr->pReadAux, 0); if( rc ) return rc; } sqlite3_bind_int64(pCsr->pReadAux, 1, nodeGetRowid(pRtree, pNode, p->iCell)); rc = sqlite3_step(pCsr->pReadAux); if( rc==SQLITE_ROW ){ pCsr->bAuxValid = 1; }else{ sqlite3_reset(pCsr->pReadAux); if( rc==SQLITE_DONE ) rc = SQLITE_OK; return rc; } } sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1)); } return SQLITE_OK; } /* ** Use nodeAcquire() to obtain the leaf node containing the record with ** rowid iRowid. If successful, set *ppLeaf to point to the node and ** return SQLITE_OK. If there is no such record in the table, set |
︙ | ︙ | |||
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 | ){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeNode *pRoot = 0; int ii; int rc = SQLITE_OK; int iCell = 0; rtreeReference(pRtree); /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ freeCursorConstraints(pCsr); sqlite3_free(pCsr->aPoint); memset(pCsr, 0, sizeof(RtreeCursor)); pCsr->base.pVtab = (sqlite3_vtab*)pRtree; pCsr->iStrategy = idxNum; if( idxNum==1 ){ /* Special case - lookup by rowid. */ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ RtreeSearchPoint *p; /* Search point for the leaf */ i64 iRowid = sqlite3_value_int64(argv[0]); | > > > | 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 | ){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeNode *pRoot = 0; int ii; int rc = SQLITE_OK; int iCell = 0; sqlite3_stmt *pStmt; rtreeReference(pRtree); /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ freeCursorConstraints(pCsr); sqlite3_free(pCsr->aPoint); pStmt = pCsr->pReadAux; memset(pCsr, 0, sizeof(RtreeCursor)); pCsr->base.pVtab = (sqlite3_vtab*)pRtree; pCsr->pReadAux = pStmt; pCsr->iStrategy = idxNum; if( idxNum==1 ){ /* Special case - lookup by rowid. */ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ RtreeSearchPoint *p; /* Search point for the leaf */ i64 iRowid = sqlite3_value_int64(argv[0]); |
︙ | ︙ | |||
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 | ** and then a linear search of an R-Tree node. This should be ** considered almost as quick as a direct rowid lookup (for which ** sqlite uses an internal cost of 0.0). It is expected to return ** a single row. */ pIdxInfo->estimatedCost = 30.0; pIdxInfo->estimatedRows = 1; return SQLITE_OK; } | > > > | > | 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 | ** and then a linear search of an R-Tree node. This should be ** considered almost as quick as a direct rowid lookup (for which ** sqlite uses an internal cost of 0.0). It is expected to return ** a single row. */ pIdxInfo->estimatedCost = 30.0; pIdxInfo->estimatedRows = 1; pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE; return SQLITE_OK; } if( p->usable && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2) || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ u8 op; switch( p->op ){ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; |
︙ | ︙ | |||
2425 2426 2427 2428 2429 2430 2431 | pLeft = nodeNew(pRtree, pNode); pRtree->iDepth++; pNode->isDirty = 1; writeInt16(pNode->zData, pRtree->iDepth); }else{ pLeft = pNode; pRight = nodeNew(pRtree, pLeft->pParent); | | | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 | pLeft = nodeNew(pRtree, pNode); pRtree->iDepth++; pNode->isDirty = 1; writeInt16(pNode->zData, pRtree->iDepth); }else{ pLeft = pNode; pRight = nodeNew(pRtree, pLeft->pParent); pLeft->nRef++; } if( !pLeft || !pRight ){ rc = SQLITE_NOMEM; goto splitnode_out; } |
︙ | ︙ | |||
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 | /* Re-insert the contents of any underfull nodes removed from the tree. */ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ if( rc==SQLITE_OK ){ rc = reinsertNodeContent(pRtree, pLeaf); } pRtree->pDeleted = pLeaf->pNext; sqlite3_free(pLeaf); } /* Release the reference to the root node. */ if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRoot); }else{ | > | 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 | /* Re-insert the contents of any underfull nodes removed from the tree. */ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ if( rc==SQLITE_OK ){ rc = reinsertNodeContent(pRtree, pLeaf); } pRtree->pDeleted = pLeaf->pNext; pRtree->nNodeRef--; sqlite3_free(pLeaf); } /* Release the reference to the root node. */ if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRoot); }else{ |
︙ | ︙ | |||
3011 3012 3013 3014 3015 3016 3017 | /* ** The xUpdate method for rtree module virtual tables. */ static int rtreeUpdate( sqlite3_vtab *pVtab, int nData, | | > > > > > > > > | < | | | | | | | | | | | | | | | | 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 | /* ** The xUpdate method for rtree module virtual tables. */ static int rtreeUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **aData, sqlite_int64 *pRowid ){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_OK; RtreeCell cell; /* New cell to insert if nData>1 */ int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ if( pRtree->nNodeRef ){ /* Unable to write to the btree while another cursor is reading from it, ** since the write might do a rebalance which would disrupt the read ** cursor. */ return SQLITE_LOCKED_VTAB; } rtreeReference(pRtree); assert(nData>=1); cell.iRowid = 0; /* Used only to suppress a compiler warning */ /* Constraint handling. A write operation on an r-tree table may return ** SQLITE_CONSTRAINT for two reasons: ** ** 1. A duplicate rowid value, or ** 2. The supplied data violates the "x2>=x1" constraint. ** ** In the first case, if the conflict-handling mode is REPLACE, then ** the conflicting row can be removed before proceeding. In the second ** case, SQLITE_CONSTRAINT must be returned regardless of the ** conflict-handling mode specified by the user. */ if( nData>1 ){ int ii; int nn = nData - 4; if( nn > pRtree->nDim2 ) nn = pRtree->nDim2; /* Populate the cell.aCoord[] array. The first coordinate is aData[3]. ** ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared ** with "column" that are interpreted as table constraints. ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5)); ** This problem was discovered after years of use, so we silently ignore ** these kinds of misdeclared tables to avoid breaking any legacy. */ #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ for(ii=0; ii<nn; ii+=2){ cell.aCoord[ii].f = rtreeValueDown(aData[ii+3]); cell.aCoord[ii+1].f = rtreeValueUp(aData[ii+4]); if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ rc = rtreeConstraintError(pRtree, ii+1); goto constraint; } } }else #endif { for(ii=0; ii<nn; ii+=2){ cell.aCoord[ii].i = sqlite3_value_int(aData[ii+3]); cell.aCoord[ii+1].i = sqlite3_value_int(aData[ii+4]); if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ rc = rtreeConstraintError(pRtree, ii+1); goto constraint; } } } /* If a rowid value was supplied, check if it is already present in ** the table. If so, the constraint has failed. */ if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){ cell.iRowid = sqlite3_value_int64(aData[2]); if( sqlite3_value_type(aData[0])==SQLITE_NULL || sqlite3_value_int64(aData[0])!=cell.iRowid ){ int steprc; sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); steprc = sqlite3_step(pRtree->pReadRowid); rc = sqlite3_reset(pRtree->pReadRowid); if( SQLITE_ROW==steprc ){ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ rc = rtreeDeleteRowid(pRtree, cell.iRowid); }else{ rc = rtreeConstraintError(pRtree, 0); goto constraint; } } } bHaveRowid = 1; } } /* If aData[0] is not an SQL NULL value, it is the rowid of a ** record to delete from the r-tree table. The following block does ** just that. */ if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){ rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0])); } /* If the aData[] array contains more than one element, elements ** (aData[2]..aData[argc-1]) contain a new record to insert into ** the r-tree structure. */ if( rc==SQLITE_OK && nData>1 ){ /* Insert the new record into the r-tree */ RtreeNode *pLeaf = 0; /* Figure out the rowid of the new row. */ |
︙ | ︙ | |||
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 | pRtree->iReinsertHeight = -1; rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } } constraint: rtreeRelease(pRtree); return rc; } | > > > > > > > > > > | 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 | pRtree->iReinsertHeight = -1; rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } if( pRtree->nAux ){ sqlite3_stmt *pUp = pRtree->pWriteAux; int jj; sqlite3_bind_int64(pUp, 1, *pRowid); for(jj=0; jj<pRtree->nAux; jj++){ sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]); } sqlite3_step(pUp); rc = sqlite3_reset(pUp); } } constraint: rtreeRelease(pRtree); return rc; } |
︙ | ︙ | |||
3285 3286 3287 3288 3289 3290 3291 | int isCreate ){ int rc = SQLITE_OK; #define N_STATEMENT 8 static const char *azSql[N_STATEMENT] = { /* Write the xxx_node table */ | | | | | | | | | | | > > | > > > > > > > > | | > | | | | 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 | int isCreate ){ int rc = SQLITE_OK; #define N_STATEMENT 8 static const char *azSql[N_STATEMENT] = { /* Write the xxx_node table */ "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)", "DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1", /* Read and write the xxx_rowid table */ "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1", "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)", "DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1", /* Read and write the xxx_parent table */ "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1", "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)", "DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1" }; sqlite3_stmt **appStmt[N_STATEMENT]; int i; pRtree->db = db; if( isCreate ){ char *zCreate; sqlite3_str *p = sqlite3_str_new(db); int ii; sqlite3_str_appendf(p, "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno", zDb, zPrefix); for(ii=0; ii<pRtree->nAux; ii++){ sqlite3_str_appendf(p,",a%d",ii); } sqlite3_str_appendf(p, ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);", zDb, zPrefix); sqlite3_str_appendf(p, "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);", zDb, zPrefix); sqlite3_str_appendf(p, "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))", zDb, zPrefix, pRtree->iNodeSize); zCreate = sqlite3_str_finish(p); if( !zCreate ){ return SQLITE_NOMEM; } rc = sqlite3_exec(db, zCreate, 0, 0, 0); sqlite3_free(zCreate); if( rc!=SQLITE_OK ){ return rc; |
︙ | ︙ | |||
3333 3334 3335 3336 3337 3338 3339 | appStmt[4] = &pRtree->pDeleteRowid; appStmt[5] = &pRtree->pReadParent; appStmt[6] = &pRtree->pWriteParent; appStmt[7] = &pRtree->pDeleteParent; rc = rtreeQueryStat1(db, pRtree); for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 | appStmt[4] = &pRtree->pDeleteRowid; appStmt[5] = &pRtree->pReadParent; appStmt[6] = &pRtree->pWriteParent; appStmt[7] = &pRtree->pDeleteParent; rc = rtreeQueryStat1(db, pRtree); for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ char *zSql; const char *zFormat; if( i!=3 || pRtree->nAux==0 ){ zFormat = azSql[i]; }else { /* An UPSERT is very slightly slower than REPLACE, but it is needed ** if there are auxiliary columns */ zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)" "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno"; } zSql = sqlite3_mprintf(zFormat, zDb, zPrefix); if( zSql ){ rc = sqlite3_prepare_v3(db, zSql, -1, SQLITE_PREPARE_PERSISTENT, appStmt[i], 0); }else{ rc = SQLITE_NOMEM; } sqlite3_free(zSql); } if( pRtree->nAux ){ pRtree->zReadAuxSql = sqlite3_mprintf( "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1", zDb, zPrefix); if( pRtree->zReadAuxSql==0 ){ rc = SQLITE_NOMEM; }else{ sqlite3_str *p = sqlite3_str_new(db); int ii; char *zSql; sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix); for(ii=0; ii<pRtree->nAux; ii++){ if( ii ) sqlite3_str_append(p, ",", 1); sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2); } sqlite3_str_appendf(p, " WHERE rowid=?1"); zSql = sqlite3_str_finish(p); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v3(db, zSql, -1, SQLITE_PREPARE_PERSISTENT, &pRtree->pWriteAux, 0); sqlite3_free(zSql); } } } return rc; } /* ** The second argument to this function contains the text of an SQL statement |
︙ | ︙ | |||
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 | int isCreate /* True for xCreate, false for xConnect */ ){ int rc = SQLITE_OK; Rtree *pRtree; int nDb; /* Length of string argv[1] */ int nName; /* Length of string argv[2] */ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); const char *aErrMsg[] = { 0, /* 0 */ "Wrong number of columns for an rtree table", /* 1 */ "Too few columns for an rtree table", /* 2 */ | > > > > | > | | | < < < < < < < < < | < < < < < | | > > | > > > > > | > | | > > > > > > > | | > > > > > | | > > > > > | > | | | > > > > > > > < | > | > > | | | < | 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 | int isCreate /* True for xCreate, false for xConnect */ ){ int rc = SQLITE_OK; Rtree *pRtree; int nDb; /* Length of string argv[1] */ int nName; /* Length of string argv[2] */ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); sqlite3_str *pSql; char *zSql; int ii = 4; int iErr; const char *aErrMsg[] = { 0, /* 0 */ "Wrong number of columns for an rtree table", /* 1 */ "Too few columns for an rtree table", /* 2 */ "Too many columns for an rtree table", /* 3 */ "Auxiliary rtree columns must be last" /* 4 */ }; assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */ if( argc>RTREE_MAX_AUX_COLUMN+3 ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[3]); return SQLITE_ERROR; } sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); /* Allocate the sqlite3_vtab structure */ nDb = (int)strlen(argv[1]); nName = (int)strlen(argv[2]); pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); if( !pRtree ){ return SQLITE_NOMEM; } memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); pRtree->nBusy = 1; pRtree->base.pModule = &rtreeModule; pRtree->zDb = (char *)&pRtree[1]; pRtree->zName = &pRtree->zDb[nDb+1]; pRtree->eCoordType = (u8)eCoordType; memcpy(pRtree->zDb, argv[1], nDb); memcpy(pRtree->zName, argv[2], nName); /* Create/Connect to the underlying relational database schema. If ** that is successful, call sqlite3_declare_vtab() to configure ** the r-tree table schema. */ pSql = sqlite3_str_new(db); sqlite3_str_appendf(pSql, "CREATE TABLE x(%s", argv[3]); for(ii=4; ii<argc; ii++){ if( argv[ii][0]=='+' ){ pRtree->nAux++; sqlite3_str_appendf(pSql, ",%s", argv[ii]+1); }else if( pRtree->nAux>0 ){ break; }else{ pRtree->nDim2++; sqlite3_str_appendf(pSql, ",%s", argv[ii]); } } sqlite3_str_appendf(pSql, ");"); zSql = sqlite3_str_finish(pSql); if( !zSql ){ rc = SQLITE_NOMEM; }else if( ii<argc ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[4]); rc = SQLITE_ERROR; }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } sqlite3_free(zSql); if( rc ) goto rtreeInit_fail; pRtree->nDim = pRtree->nDim2/2; if( pRtree->nDim<1 ){ iErr = 2; }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){ iErr = 3; }else if( pRtree->nDim2 % 2 ){ iErr = 1; }else{ iErr = 0; } if( iErr ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); goto rtreeInit_fail; } pRtree->nBytesPerCell = 8 + pRtree->nDim2*4; /* Figure out the node size to use. */ rc = getNodeSize(db, pRtree, isCreate, pzErr); if( rc ) goto rtreeInit_fail; rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate); if( rc ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); goto rtreeInit_fail; } *ppVtab = (sqlite3_vtab *)pRtree; return SQLITE_OK; rtreeInit_fail: if( rc==SQLITE_OK ) rc = SQLITE_ERROR; assert( *ppVtab==0 ); assert( pRtree->nBusy==1 ); rtreeRelease(pRtree); return rc; } /* ** Implementation of a scalar function that decodes r-tree nodes to ** human readable strings. This can be used for debugging and analysis. |
︙ | ︙ | |||
3747 3748 3749 3750 3751 3752 3753 | /* ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid ** (if bLeaf==1) table contains a specified entry. The schemas of the ** two tables are: ** ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) | | | | | 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 | /* ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid ** (if bLeaf==1) table contains a specified entry. The schemas of the ** two tables are: ** ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) ** ** In both cases, this function checks that there exists an entry with ** IPK value iKey and the second column set to iVal. ** */ static void rtreeCheckMapping( RtreeCheck *pCheck, /* RtreeCheck object */ int bLeaf, /* True for a leaf cell, false for interior */ i64 iKey, /* Key for mapping */ i64 iVal /* Expected value for mapping */ ){ int rc; sqlite3_stmt *pStmt; const char *azSql[2] = { "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1", "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1" }; assert( bLeaf==0 || bLeaf==1 ); if( pCheck->aCheckMapping[bLeaf]==0 ){ pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck, azSql[bLeaf], pCheck->zDb, pCheck->zTab ); |
︙ | ︙ | |||
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 | const char *zDb, /* Name of db ("main", "temp" etc.) */ const char *zTab, /* Name of rtree table to check */ char **pzReport /* OUT: sqlite3_malloc'd report text */ ){ RtreeCheck check; /* Common context for various routines */ sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */ int bEnd = 0; /* True if transaction should be closed */ /* Initialize the context object */ memset(&check, 0, sizeof(check)); check.db = db; check.zDb = zDb; check.zTab = zTab; /* If there is not already an open transaction, open one now. This is ** to ensure that the queries run as part of this integrity-check operate ** on a consistent snapshot. */ if( sqlite3_get_autocommit(db) ){ check.rc = sqlite3_exec(db, "BEGIN", 0, 0, 0); bEnd = 1; } /* Find number of dimensions in the rtree table. */ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab); if( pStmt ){ int rc; | > > > > > > > > > > > | | 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 | const char *zDb, /* Name of db ("main", "temp" etc.) */ const char *zTab, /* Name of rtree table to check */ char **pzReport /* OUT: sqlite3_malloc'd report text */ ){ RtreeCheck check; /* Common context for various routines */ sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */ int bEnd = 0; /* True if transaction should be closed */ int nAux = 0; /* Number of extra columns. */ /* Initialize the context object */ memset(&check, 0, sizeof(check)); check.db = db; check.zDb = zDb; check.zTab = zTab; /* If there is not already an open transaction, open one now. This is ** to ensure that the queries run as part of this integrity-check operate ** on a consistent snapshot. */ if( sqlite3_get_autocommit(db) ){ check.rc = sqlite3_exec(db, "BEGIN", 0, 0, 0); bEnd = 1; } /* Find the number of auxiliary columns */ if( check.rc==SQLITE_OK ){ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab); if( pStmt ){ nAux = sqlite3_column_count(pStmt) - 2; sqlite3_finalize(pStmt); } check.rc = SQLITE_OK; } /* Find number of dimensions in the rtree table. */ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab); if( pStmt ){ int rc; check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2; if( check.nDim<1 ){ rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree"); }else if( SQLITE_ROW==sqlite3_step(pStmt) ){ check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER); } rc = sqlite3_finalize(pStmt); if( rc!=SQLITE_CORRUPT ) check.rc = rc; |
︙ | ︙ |
Changes to ext/rtree/rtree1.test.
︙ | ︙ | |||
472 473 474 475 476 477 478 | ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8} FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8} REPLACE 1 0 {1 1 2 3 4 2 7 7 7 7 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8} } 3 "UPDATE %CONF% t1 SET idx = 2 WHERE idx = 4" { | | | | | | | 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 | ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8} FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8} REPLACE 1 0 {1 1 2 3 4 2 7 7 7 7 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8} } 3 "UPDATE %CONF% t1 SET idx = 2 WHERE idx = 4" { ROLLBACK 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6} ABORT 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} IGNORE 0 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} FAIL 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} REPLACE 0 0 {1 1 2 3 4 2 4 5 6 7 3 3 4 5 6} } 3 "UPDATE %CONF% t1 SET idx = ((idx+1)%5)+1 WHERE idx > 2" { ROLLBACK 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6} ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7} IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 4 4 5 6 7 5 3 4 5 6} FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 4 4 5 6 7 5 3 4 5 6} |
︙ | ︙ | |||
605 606 607 608 609 610 611 612 613 | INSERT INTO rt VALUES(1,2,3,4,5); } do_execsql_test 15.2 { DROP TABLE t13; COMMIT; } expand_all_sql db finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 | INSERT INTO rt VALUES(1,2,3,4,5); } do_execsql_test 15.2 { DROP TABLE t13; COMMIT; } # Test cases for the new auxiliary columns feature # do_catchsql_test 16.100 { CREATE VIRTUAL TABLE t16 USING rtree(id,x0,x1,y0,+aux1,x1); } {1 {Auxiliary rtree columns must be last}} do_test 16.110 { set sql { CREATE VIRTUAL TABLE t16 USING rtree( id, x00, x01, x10, x11, x20, x21, x30, x31, x40, x41 } for {set i 12} {$i<=100} {incr i} { append sql ", +a$i" } append sql ");" execsql $sql } {} do_test 16.120 { set sql { CREATE VIRTUAL TABLE t16b USING rtree( id, x00, x01, x10, x11, x20, x21, x30, x31, x40, x41 } for {set i 12} {$i<=101} {incr i} { append sql ", +a$i" } append sql ");" catchsql $sql } {1 {Too many columns for an rtree table}} do_execsql_test 16.130 { DROP TABLE IF EXISTS rt1; CREATE VIRTUAL TABLE rt1 USING rtree(id, x1, x2, +aux); INSERT INTO rt1 VALUES(1, 1, 2, 'aux1'); INSERT INTO rt1 VALUES(2, 2, 3, 'aux2'); INSERT INTO rt1 VALUES(3, 3, 4, 'aux3'); INSERT INTO rt1 VALUES(4, 4, 5, 'aux4'); SELECT * FROM rt1 WHERE id IN (1, 2, 3, 4); } {1 1.0 2.0 aux1 2 2.0 3.0 aux2 3 3.0 4.0 aux3 4 4.0 5.0 aux4} expand_all_sql db finish_test |
Changes to ext/rtree/rtree3.test.
︙ | ︙ | |||
77 78 79 80 81 82 83 | } -body { execsql { DROP TABLE rt } } do_malloc_test rtree3-3.prep { faultsim_delete_and_reopen execsql { | | | 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | } -body { execsql { DROP TABLE rt } } do_malloc_test rtree3-3.prep { faultsim_delete_and_reopen execsql { CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2, +a1, +a2); INSERT INTO rt VALUES(NULL, 3, 5, 7, 9); } faultsim_save_and_close } {} do_faultsim_test rtree3-3a -faults oom* -prep { faultsim_restore_and_reopen |
︙ | ︙ |
Changes to ext/rtree/rtree8.test.
︙ | ︙ | |||
34 35 36 37 38 39 40 | do_test rtree8-1.1.1 { execsql { PRAGMA page_size = 512 } execsql { CREATE VIRTUAL TABLE t1 USING rtree_i32(id, x1, x2) } populate_t1 5 } {} do_test rtree8-1.1.2 { set res [list] | > | | | | > > | > > > > > > | 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | do_test rtree8-1.1.1 { execsql { PRAGMA page_size = 512 } execsql { CREATE VIRTUAL TABLE t1 USING rtree_i32(id, x1, x2) } populate_t1 5 } {} do_test rtree8-1.1.2 { set res [list] set rc [catch { db eval { SELECT * FROM t1 } { lappend res $x1 $x2 if {$id==3} { db eval { DELETE FROM t1 WHERE id>3 } } } } msg]; lappend rc $msg set rc } {1 {database table is locked}} do_test rtree8-1.1.2b { db eval { SELECT * FROM t1 ORDER BY +id } { if {$id==3} { db eval { DELETE FROM t1 WHERE id>3 } } } db eval {SELECT x1, x2 FROM t1} } {1 3 2 4 3 5} do_test rtree8-1.1.3 { execsql { SELECT * FROM t1 } } {1 1 3 2 2 4 3 3 5} # Many SELECTs on the same small table. # |
︙ | ︙ | |||
165 166 167 168 169 170 171 172 | execsql BEGIN for {set i 0} {$i < 200} {incr i} { execsql { DELETE FROM t2 WHERE id = $i } } execsql COMMIT } {} do_rtree_integrity_test rtree8-5.5 t2 | > > > > | > > > > > > > > > > > > > > > > > > > > | 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | execsql BEGIN for {set i 0} {$i < 200} {incr i} { execsql { DELETE FROM t2 WHERE id = $i } } execsql COMMIT } {} do_rtree_integrity_test rtree8-5.5 t2 # 2018-05-24 # The following script caused an assertion fault and/or segfault # prior to the fix that prevents simultaneous reads and writes on # the same rtree virtual table. # do_test rtree8-6.1 { db close sqlite3 db :memory: db eval { PRAGMA page_size=512; CREATE VIRTUAL TABLE t1 USING rtree(id,x1,x2,y1,y2); WITH RECURSIVE c(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM c WHERE x<49) INSERT INTO t1 SELECT x, x, x+1, x, x+1 FROM c; } set rc [catch { db eval {SELECT id FROM t1} x { db eval {DELETE FROM t1 WHERE id=$x(id)} } } msg] lappend rc $msg } {1 {database table is locked}} finish_test |
Changes to ext/rtree/rtreeC.test.
︙ | ︙ | |||
174 175 176 177 178 179 180 | #-------------------------------------------------------------------- # Test that the sqlite_stat1 data is used correctly. # reset_db do_execsql_test 5.1 { CREATE TABLE t1(x PRIMARY KEY, y); | | | | 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | #-------------------------------------------------------------------- # Test that the sqlite_stat1 data is used correctly. # reset_db do_execsql_test 5.1 { CREATE TABLE t1(x PRIMARY KEY, y); CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, +d1); INSERT INTO t1(x) VALUES(1); INSERT INTO t1(x) SELECT x+1 FROM t1; -- 2 INSERT INTO t1(x) SELECT x+2 FROM t1; -- 4 INSERT INTO t1(x) SELECT x+4 FROM t1; -- 8 INSERT INTO t1(x) SELECT x+8 FROM t1; -- 16 INSERT INTO t1(x) SELECT x+16 FROM t1; -- 32 INSERT INTO t1(x) SELECT x+32 FROM t1; -- 64 INSERT INTO t1(x) SELECT x+64 FROM t1; -- 128 INSERT INTO t1(x) SELECT x+128 FROM t1; -- 256 INSERT INTO t1(x) SELECT x+256 FROM t1; -- 512 INSERT INTO t1(x) SELECT x+512 FROM t1; --1024 INSERT INTO rt SELECT x, x, x+1, printf('x%04xy',x) FROM t1 WHERE x<=5; } do_rtree_integrity_test 5.1.1 rt # First test a query with no ANALYZE data at all. The outer loop is # real table "t1". # do_eqp_test 5.2 { |
︙ | ︙ |
Added ext/rtree/rtreeH.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | # 2018-05-16 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file contains tests for the r-tree module, specifically the # auxiliary column mechanism. if {![info exists testdir]} { set testdir [file join [file dirname [info script]] .. .. test] } source [file join [file dirname [info script]] rtree_util.tcl] source $testdir/tester.tcl ifcapable !rtree { finish_test ; return } do_execsql_test rtreeH-100 { CREATE VIRTUAL TABLE t1 USING rtree(id,x0,x1,y0,y1,+label,+other); INSERT INTO t1(x0,x1,y0,y1,label) VALUES (0,10,0,10,'lower-left corner'), (0,10,90,100,'upper-left corner'), (90,100,0,10,'lower-right corner'), (90,100,90,100,'upper-right corner'), (40,60,40,60,'center'), (0,5,0,100,'left edge'), (95,100,0,100,'right edge'), (0,100,0,5,'bottom edge'), (0,100,95,100,'top edge'), (0,100,0,100,'the whole thing'), (0,50,0,100,'left half'), (51,100,0,100,'right half'), (0,100,0,50,'bottom half'), (0,100,51,100,'top half'); } {} do_execsql_test rtreeH-101 { SELECT * FROM t1_rowid ORDER BY rowid } {1 1 {lower-left corner} {} 2 1 {upper-left corner} {} 3 1 {lower-right corner} {} 4 1 {upper-right corner} {} 5 1 center {} 6 1 {left edge} {} 7 1 {right edge} {} 8 1 {bottom edge} {} 9 1 {top edge} {} 10 1 {the whole thing} {} 11 1 {left half} {} 12 1 {right half} {} 13 1 {bottom half} {} 14 1 {top half} {}} do_execsql_test rtreeH-102 { SELECT * FROM t1 WHERE rowid=5; } {5 40.0 60.0 40.0 60.0 center {}} do_execsql_test rtreeH-103 { SELECT * FROM t1 WHERE label='center'; } {5 40.0 60.0 40.0 60.0 center {}} do_rtree_integrity_test rtreeH-110 t1 do_execsql_test rtreeH-120 { SELECT label FROM t1 WHERE x1<=50 ORDER BY id } {{lower-left corner} {upper-left corner} {left edge} {left half}} do_execsql_test rtreeH-121 { SELECT label FROM t1 WHERE x1<=50 AND label NOT LIKE '%corner%' ORDER BY id } {{left edge} {left half}} do_execsql_test rtreeH-200 { WITH RECURSIVE c1(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM c1 WHERE x<99), c2(y) AS (VALUES(0) UNION ALL SELECT y+1 FROM c2 WHERE y<99) INSERT INTO t1(id, x0,x1,y0,y1,label) SELECT 1000+x+y*100, x, x+1, y, y+1, printf('box-%d,%d',x,y) FROM c1, c2; } {} do_execsql_test rtreeH-210 { SELECT label FROM t1 WHERE x0>=48 AND x1<=50 AND y0>=48 AND y1<=50 ORDER BY id; } {box-48,48 box-49,48 box-48,49 box-49,49} do_execsql_test rtreeH-300 { UPDATE t1 SET label='x'||label WHERE x0>=49 AND x1<=50 AND y0>=49 AND y1<=50; SELECT label FROM t1 WHERE x0>=48 AND x1<=50 AND y0>=48 AND y1<=50 ORDER BY id; } {box-48,48 box-49,48 box-48,49 xbox-49,49} finish_test |
Changes to src/auth.c.
︙ | ︙ | |||
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | sqlite3 *db = pParse->db; Table *pTab = 0; /* The table being read */ const char *zCol; /* Name of the column of the table */ int iSrc; /* Index in pTabList->a[] of table being read */ int iDb; /* The index of the database the expression refers to */ int iCol; /* Index of column in table */ if( db->xAuth==0 ) return; iDb = sqlite3SchemaToIndex(pParse->db, pSchema); if( iDb<0 ){ /* An attempt to read a column out of a subquery or other ** temporary table. */ return; } | > < | 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | sqlite3 *db = pParse->db; Table *pTab = 0; /* The table being read */ const char *zCol; /* Name of the column of the table */ int iSrc; /* Index in pTabList->a[] of table being read */ int iDb; /* The index of the database the expression refers to */ int iCol; /* Index of column in table */ assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER ); if( db->xAuth==0 ) return; iDb = sqlite3SchemaToIndex(pParse->db, pSchema); if( iDb<0 ){ /* An attempt to read a column out of a subquery or other ** temporary table. */ return; } if( pExpr->op==TK_TRIGGER ){ pTab = pParse->pTriggerTab; }else{ assert( pTabList ); for(iSrc=0; ALWAYS(iSrc<pTabList->nSrc); iSrc++){ if( pExpr->iTable==pTabList->a[iSrc].iCursor ){ pTab = pTabList->a[iSrc].pTab; |
︙ | ︙ |
Changes to src/backup.c.
︙ | ︙ | |||
378 379 380 381 382 383 384 | } /* If there is no open read-transaction on the source database, open ** one now. If a transaction is opened here, then it will be closed ** before this function exits. */ if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){ | | | > < | 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | } /* If there is no open read-transaction on the source database, open ** one now. If a transaction is opened here, then it will be closed ** before this function exits. */ if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){ rc = sqlite3BtreeBeginTrans(p->pSrc, 0, 0); bCloseTrans = 1; } /* If the destination database has not yet been locked (i.e. if this ** is the first call to backup_step() for the current backup operation), ** try to set its page size to the same as the source database. This ** is especially important on ZipVFS systems, as in that case it is ** not possible to create a database file that uses one page size by ** writing to it with another. */ if( p->bDestLocked==0 && rc==SQLITE_OK && setDestPgsz(p)==SQLITE_NOMEM ){ rc = SQLITE_NOMEM; } /* Lock the destination database, if it is not locked already. */ if( SQLITE_OK==rc && p->bDestLocked==0 && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2, (int*)&p->iDestSchema)) ){ p->bDestLocked = 1; } /* Do not allow backup if the destination database is in WAL mode ** and the page sizes are different between source and destination */ pgszSrc = sqlite3BtreeGetPageSize(p->pSrc); pgszDest = sqlite3BtreeGetPageSize(p->pDest); destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest)); |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
1093 1094 1095 1096 1097 1098 1099 | ** ** Calling this routine with a NULL cursor pointer returns false. ** ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor ** back to where it ought to be if this routine returns true. */ int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ | > > > | > | 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 | ** ** Calling this routine with a NULL cursor pointer returns false. ** ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor ** back to where it ought to be if this routine returns true. */ int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ assert( EIGHT_BYTE_ALIGNMENT(pCur) || pCur==sqlite3BtreeFakeValidCursor() ); assert( offsetof(BtCursor, eState)==0 ); assert( sizeof(pCur->eState)==1 ); return CURSOR_VALID != *(u8*)pCur; } /* ** Return a pointer to a fake BtCursor object that will always answer ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake ** cursor returned must not be used with any other Btree interface. */ |
︙ | ︙ | |||
3543 3544 3545 3546 3547 3548 3549 | ** a reserved lock. B tries to promote to exclusive but is blocked because ** of A's read lock. A tries to promote to reserved but is blocked by B. ** One or the other of the two processes must give way or there can be ** no progress. By returning SQLITE_BUSY and not invoking the busy callback ** when A already has a read lock, we encourage A to give up and let B ** proceed. */ | | | 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 | ** a reserved lock. B tries to promote to exclusive but is blocked because ** of A's read lock. A tries to promote to reserved but is blocked by B. ** One or the other of the two processes must give way or there can be ** no progress. By returning SQLITE_BUSY and not invoking the busy callback ** when A already has a read lock, we encourage A to give up and let B ** proceed. */ int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ BtShared *pBt = p->pBt; int rc = SQLITE_OK; int bConcurrent = (p->db->bConcurrent && !ISAUTOVACUUM); sqlite3BtreeEnter(p); btreeIntegrity(p); |
︙ | ︙ | |||
3682 3683 3684 3685 3686 3687 3688 | rc = sqlite3PagerBeginConcurrent(pBt->pPager); if( rc==SQLITE_OK && wrflag ){ rc = btreePtrmapAllocate(pBt); } } #endif | | > > > > | | | | | | | | > | 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 | rc = sqlite3PagerBeginConcurrent(pBt->pPager); if( rc==SQLITE_OK && wrflag ){ rc = btreePtrmapAllocate(pBt); } } #endif if( rc==SQLITE_OK ){ if( pSchemaVersion ){ *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); } if( wrflag ){ /* This call makes sure that the pager has the correct number of ** open savepoints. If the second parameter is greater than 0 and ** the sub-journal is not already open, then it will be opened here. */ int nSavepoint = p->db->nSavepoint; rc = sqlite3PagerOpenSavepoint(pBt->pPager, nSavepoint); if( rc==SQLITE_OK && nSavepoint ){ rc = btreePtrmapBegin(pBt, nSavepoint); } } } btreeIntegrity(p); sqlite3BtreeLeave(p); return rc; } |
︙ | ︙ | |||
10551 10552 10553 10554 10555 10556 10557 | /* If setting the version fields to 1, do not automatically open the ** WAL connection, even if the version fields are currently set to 2. */ pBt->btsFlags &= ~BTS_NO_WAL; if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; | | | | 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 | /* If setting the version fields to 1, do not automatically open the ** WAL connection, even if the version fields are currently set to 2. */ pBt->btsFlags &= ~BTS_NO_WAL; if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); if( rc==SQLITE_OK ){ u8 *aData = pBt->pPage1->aData; if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); if( rc==SQLITE_OK ){ aData[18] = (u8)iVersion; aData[19] = (u8)iVersion; } } |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
74 75 76 77 78 79 80 | int sqlite3BtreeMaxPageCount(Btree*,int); u32 sqlite3BtreeLastPage(Btree*); int sqlite3BtreeSecureDelete(Btree*,int); int sqlite3BtreeGetOptimalReserve(Btree*); int sqlite3BtreeGetReserveNoMutex(Btree *p); int sqlite3BtreeSetAutoVacuum(Btree *, int); int sqlite3BtreeGetAutoVacuum(Btree *); | | | 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | int sqlite3BtreeMaxPageCount(Btree*,int); u32 sqlite3BtreeLastPage(Btree*); int sqlite3BtreeSecureDelete(Btree*,int); int sqlite3BtreeGetOptimalReserve(Btree*); int sqlite3BtreeGetReserveNoMutex(Btree *p); int sqlite3BtreeSetAutoVacuum(Btree *, int); int sqlite3BtreeGetAutoVacuum(Btree *); int sqlite3BtreeBeginTrans(Btree*,int,int*); int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); int sqlite3BtreeCommitPhaseTwo(Btree*, int); int sqlite3BtreeCommit(Btree*); int sqlite3BtreeRollback(Btree*,int,int); int sqlite3BtreeBeginStmt(Btree*,int); int sqlite3BtreeCreateTable(Btree*, int*, int flags); int sqlite3BtreeIsInTrans(Btree*); |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 | sqlite3KeyInfoRef(pKey), P4_KEYINFO); /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); if( IsUniqueIndex(pIndex) ){ | > | < > > | 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 | sqlite3KeyInfoRef(pKey), P4_KEYINFO); /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3MultiWrite(pParse); sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); if( IsUniqueIndex(pIndex) ){ int j2 = sqlite3VdbeGoto(v, 1); addr2 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeVerifyAbortable(v, OE_Abort); sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); sqlite3VdbeJumpHere(v, j2); }else{ addr2 = sqlite3VdbeCurrentAddr(v); } sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx); sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
︙ | ︙ |
Changes to src/callback.c.
︙ | ︙ | |||
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | /* If the createFlag parameter is true and the search did not reveal an ** exact match for the name, number of arguments and encoding, then add a ** new entry to the hash table and return it. */ if( createFlag && bestScore<FUNC_PERFECT_MATCH && (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){ FuncDef *pOther; pBest->zName = (const char*)&pBest[1]; pBest->nArg = (u16)nArg; pBest->funcFlags = enc; memcpy((char*)&pBest[1], zName, nName+1); pOther = (FuncDef*)sqlite3HashInsert(&db->aFunc, pBest->zName, pBest); if( pOther==pBest ){ sqlite3DbFree(db, pBest); sqlite3OomFault(db); return 0; }else{ pBest->pNext = pOther; | > > | 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | /* If the createFlag parameter is true and the search did not reveal an ** exact match for the name, number of arguments and encoding, then add a ** new entry to the hash table and return it. */ if( createFlag && bestScore<FUNC_PERFECT_MATCH && (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){ FuncDef *pOther; u8 *z; pBest->zName = (const char*)&pBest[1]; pBest->nArg = (u16)nArg; pBest->funcFlags = enc; memcpy((char*)&pBest[1], zName, nName+1); for(z=(u8*)pBest->zName; *z; z++) *z = sqlite3UpperToLower[*z]; pOther = (FuncDef*)sqlite3HashInsert(&db->aFunc, pBest->zName, pBest); if( pOther==pBest ){ sqlite3DbFree(db, pBest); sqlite3OomFault(db); return 0; }else{ pBest->pNext = pOther; |
︙ | ︙ |
Changes to src/dbpage.c.
︙ | ︙ | |||
365 366 367 368 369 370 371 | */ static int dbpageBegin(sqlite3_vtab *pVtab){ DbpageTable *pTab = (DbpageTable *)pVtab; sqlite3 *db = pTab->db; int i; for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; | | | 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | */ static int dbpageBegin(sqlite3_vtab *pVtab){ DbpageTable *pTab = (DbpageTable *)pVtab; sqlite3 *db = pTab->db; int i; for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ) sqlite3BtreeBeginTrans(pBt, 1, 0); } return SQLITE_OK; } /* ** Invoke this routine to register the "dbpage" virtual table module |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
549 550 551 552 553 554 555 | } /* Delete the row */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); | < < | > > | | > > > | 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 | } /* Delete the row */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE ); sqlite3MayAbort(pParse); if( eOnePass==ONEPASS_SINGLE ){ sqlite3VdbeAddOp1(v, OP_Close, iTabCur); if( sqlite3IsToplevel(pParse) ){ pParse->isMultiWrite = 0; } } sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, OE_Abort); }else #endif { int count = (pParse->nested==0); /* True to count changes */ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, iKey, nKey, count, OE_Default, eOnePass, aiCurOnePass[1]); } |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
3989 3990 3991 3992 3993 3994 3995 | exprCodeBetween(pParse, pExpr, target, 0, 0); return target; } case TK_SPAN: case TK_COLLATE: case TK_UPLUS: { pExpr = pExpr->pLeft; | | | 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 | exprCodeBetween(pParse, pExpr, target, 0, 0); return target; } case TK_SPAN: case TK_COLLATE: case TK_UPLUS: { pExpr = pExpr->pLeft; goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference ** to a column in the new.* or old.* pseudo-tables available to ** trigger programs. In this case Expr.iTable is set to 1 for the ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
327 328 329 330 331 332 333 334 335 336 337 338 339 340 | int isIgnore /* If true, pretend pTab contains all NULL values */ ){ int i; /* Iterator variable */ Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ int iCur = pParse->nTab - 1; /* Cursor number to use */ int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ /* If nIncr is less than zero, then check at runtime if there are any ** outstanding constraints to resolve. If there are not, there is no need ** to check if deleting this row resolves any outstanding violations. ** ** Check if any of the key columns in the child table row are NULL. If ** any are, then the constraint is considered satisfied. No need to ** search for a matching row in the parent table. */ | > > > > > > | 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | int isIgnore /* If true, pretend pTab contains all NULL values */ ){ int i; /* Iterator variable */ Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ int iCur = pParse->nTab - 1; /* Cursor number to use */ int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ sqlite3VdbeVerifyAbortable(v, (!pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) && !pParse->pToplevel && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore); /* If nIncr is less than zero, then check at runtime if there are any ** outstanding constraints to resolve. If there are not, there is no need ** to check if deleting this row resolves any outstanding violations. ** ** Check if any of the key columns in the child table row are NULL. If ** any are, then the constraint is considered satisfied. No need to ** search for a matching row in the parent table. */ |
︙ | ︙ | |||
734 735 736 737 738 739 740 741 742 743 744 745 746 747 | ** transactions are not able to rollback schema changes. ** ** If the SQLITE_DeferFKs flag is set, then this is not required, as ** the statement transaction will not be rolled back even if FK ** constraints are violated. */ if( (db->flags & SQLITE_DeferFKs)==0 ){ sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, OE_Abort, 0, P4_STATIC, P5_ConstraintFK); } if( iSkip ){ | > | 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | ** transactions are not able to rollback schema changes. ** ** If the SQLITE_DeferFKs flag is set, then this is not required, as ** the statement transaction will not be rolled back even if FK ** constraints are violated. */ if( (db->flags & SQLITE_DeferFKs)==0 ){ sqlite3VdbeVerifyAbortable(v, OE_Abort); sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, OE_Abort, 0, P4_STATIC, P5_ConstraintFK); } if( iSkip ){ |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | */ static int autoIncBegin( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database holding pTab */ Table *pTab /* The table we are writing to */ ){ int memId = 0; /* Register holding maximum rowid */ if( (pTab->tabFlags & TF_Autoincrement)!=0 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); AutoincInfo *pInfo; pInfo = pToplevel->pAinc; while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } if( pInfo==0 ){ pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); if( pInfo==0 ) return 0; pInfo->pNext = pToplevel->pAinc; | > > > > > > > > > > > > > > > | 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | */ static int autoIncBegin( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database holding pTab */ Table *pTab /* The table we are writing to */ ){ int memId = 0; /* Register holding maximum rowid */ assert( pParse->db->aDb[iDb].pSchema!=0 ); if( (pTab->tabFlags & TF_Autoincrement)!=0 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); AutoincInfo *pInfo; Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; /* Verify that the sqlite_sequence table exists and is an ordinary ** rowid table with exactly two columns. ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ if( pSeqTab==0 || !HasRowid(pSeqTab) || IsVirtual(pSeqTab) || pSeqTab->nCol!=2 ){ pParse->nErr++; pParse->rc = SQLITE_CORRUPT_SEQUENCE; return 0; } pInfo = pToplevel->pAinc; while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } if( pInfo==0 ){ pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); if( pInfo==0 ) return 0; pInfo->pNext = pToplevel->pAinc; |
︙ | ︙ | |||
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 | pParse->iSelfTab = -(regNewData+1); onError = overrideError!=OE_Default ? overrideError : OE_Abort; for(i=0; i<pCheck->nExpr; i++){ int allOk; Expr *pExpr = pCheck->a[i].pExpr; if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue; allOk = sqlite3VdbeMakeLabel(v); sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); if( onError==OE_Ignore ){ sqlite3VdbeGoto(v, ignoreDest); }else{ char *zName = pCheck->a[i].zName; if( zName==0 ) zName = pTab->zName; if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ | > | 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 | pParse->iSelfTab = -(regNewData+1); onError = overrideError!=OE_Default ? overrideError : OE_Abort; for(i=0; i<pCheck->nExpr; i++){ int allOk; Expr *pExpr = pCheck->a[i].pExpr; if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue; allOk = sqlite3VdbeMakeLabel(v); sqlite3VdbeVerifyAbortable(v, onError); sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); if( onError==OE_Ignore ){ sqlite3VdbeGoto(v, ignoreDest); }else{ char *zName = pCheck->a[i].zName; if( zName==0 ) zName = pTab->zName; if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ |
︙ | ︙ | |||
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 | sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } /* Check to see if the new rowid already exists in the table. Skip ** the following conflict logic if it does not. */ VdbeNoopComment((v, "uniqueness check for ROWID")); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); VdbeCoverage(v); switch( onError ){ default: { onError = OE_Abort; /* Fall thru into the next case */ | > | 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 | sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } /* Check to see if the new rowid already exists in the table. Skip ** the following conflict logic if it does not. */ VdbeNoopComment((v, "uniqueness check for ROWID")); sqlite3VdbeVerifyAbortable(v, onError); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); VdbeCoverage(v); switch( onError ){ default: { onError = OE_Abort; /* Fall thru into the next case */ |
︙ | ︙ | |||
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 | ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; } /* Check to see if the new index entry will be unique */ sqlite3ExprCachePush(pParse); sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, regIdx, pIdx->nKeyCol); VdbeCoverage(v); /* Generate code to handle collisions */ regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); if( isUpdate || onError==OE_Replace ){ if( HasRowid(pTab) ){ | > | 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 | ){ sqlite3VdbeResolveLabel(v, addrUniqueOk); continue; } /* Check to see if the new index entry will be unique */ sqlite3ExprCachePush(pParse); sqlite3VdbeVerifyAbortable(v, onError); sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, regIdx, pIdx->nKeyCol); VdbeCoverage(v); /* Generate code to handle collisions */ regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); if( isUpdate || onError==OE_Replace ){ if( HasRowid(pTab) ){ |
︙ | ︙ | |||
1808 1809 1810 1811 1812 1813 1814 | testcase( onError==OE_Ignore ); sqlite3VdbeGoto(v, ignoreDest); break; } default: { Trigger *pTrigger = 0; assert( onError==OE_Replace ); | < > > > | 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 | testcase( onError==OE_Ignore ); sqlite3VdbeGoto(v, ignoreDest); break; } default: { Trigger *pTrigger = 0; assert( onError==OE_Replace ); if( db->flags&SQLITE_RecTriggers ){ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); } if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ sqlite3MultiWrite(pParse); } sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, regR, nPkField, 0, OE_Replace, (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); seenReplace = 1; break; } |
︙ | ︙ | |||
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 | } if( HasRowid(pSrc) ){ u8 insFlags; sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); if( pDest->iPKey>=0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); VdbeCoverage(v); sqlite3RowidConstraint(pParse, onError, pDest); sqlite3VdbeJumpHere(v, addr2); autoIncStep(pParse, regAutoinc, regRowid); }else if( pDest->pIndex==0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); | > | 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 | } if( HasRowid(pSrc) ){ u8 insFlags; sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); if( pDest->iPKey>=0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); sqlite3VdbeVerifyAbortable(v, onError); addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); VdbeCoverage(v); sqlite3RowidConstraint(pParse, onError, pDest); sqlite3VdbeJumpHere(v, addr2); autoIncStep(pParse, regAutoinc, regRowid); }else if( pDest->pIndex==0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
1804 1805 1806 1807 1808 1809 1810 | #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( xDestroy ){ | | > > | | 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 | #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( xDestroy ){ pArg = (FuncDestructor *)sqlite3Malloc(sizeof(FuncDestructor)); if( !pArg ){ sqlite3OomFault(db); xDestroy(p); goto out; } pArg->nRef = 0; pArg->xDestroy = xDestroy; pArg->pUserData = p; } rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, pArg); if( pArg && pArg->nRef==0 ){ assert( rc!=SQLITE_OK ); xDestroy(p); sqlite3_free(pArg); } out: rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } |
︙ | ︙ | |||
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 | sqlite3DbFree(db, zFunc8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* ** Declare that a function has been overloaded by a virtual table. ** ** If the function already exists as a regular global function, then ** this routine is a no-op. If the function does not exist, then create ** a new one that always throws a run-time error. ** ** When virtual tables intend to provide an overloaded function, they ** should call this routine to make sure the global function exists. ** A global function must exist in order for name resolution to work ** properly. */ int sqlite3_overload_function( sqlite3 *db, const char *zName, int nArg ){ | > > > > > > > > > > > > > > > > > > > > > > | > | < < < < | > > > > | 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 | sqlite3DbFree(db, zFunc8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } #endif /* ** The following is the implementation of an SQL function that always ** fails with an error message stating that the function is used in the ** wrong context. The sqlite3_overload_function() API might construct ** SQL function that use this routine so that the functions will exist ** for name resolution but are actually overloaded by the xFindFunction ** method of virtual tables. */ static void sqlite3InvalidFunction( sqlite3_context *context, /* The function calling context */ int NotUsed, /* Number of arguments to the function */ sqlite3_value **NotUsed2 /* Value of each argument */ ){ const char *zName = (const char*)sqlite3_user_data(context); char *zErr; UNUSED_PARAMETER2(NotUsed, NotUsed2); zErr = sqlite3_mprintf( "unable to use function %s in the requested context", zName); sqlite3_result_error(context, zErr, -1); sqlite3_free(zErr); } /* ** Declare that a function has been overloaded by a virtual table. ** ** If the function already exists as a regular global function, then ** this routine is a no-op. If the function does not exist, then create ** a new one that always throws a run-time error. ** ** When virtual tables intend to provide an overloaded function, they ** should call this routine to make sure the global function exists. ** A global function must exist in order for name resolution to work ** properly. */ int sqlite3_overload_function( sqlite3 *db, const char *zName, int nArg ){ int rc; char *zCopy; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); rc = sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)!=0; sqlite3_mutex_leave(db->mutex); if( rc ) return SQLITE_OK; zCopy = sqlite3_mprintf(zName); if( zCopy==0 ) return SQLITE_NOMEM; return sqlite3_create_function_v2(db, zName, nArg, SQLITE_UTF8, zCopy, sqlite3InvalidFunction, 0, 0, sqlite3_free); } #ifndef SQLITE_OMIT_TRACE /* ** Register a trace function. The pArg from the previously registered trace ** is returned. ** |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
3794 3795 3796 3797 3798 3799 3800 | /* The code below is handling the return value of osFallocate() ** correctly. posix_fallocate() is defined to "returns zero on success, ** or an error number on failure". See the manpage for details. */ int err; do{ err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); }while( err==EINTR ); | | | 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 | /* The code below is handling the return value of osFallocate() ** correctly. posix_fallocate() is defined to "returns zero on success, ** or an error number on failure". See the manpage for details. */ int err; do{ err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); }while( err==EINTR ); if( err && err!=EINVAL ) return SQLITE_IOERR_WRITE; #else /* If the OS does not have posix_fallocate(), fake it. Write a ** single byte to the last byte in each block that falls entirely ** within the extended region. Then, if required, a single byte ** at offset (nSize-1), to set the size of the file correctly. ** This is a similar technique to that used by glibc on systems ** that do not have a real fallocate() call. |
︙ | ︙ |
Changes to src/parse.y.
︙ | ︙ | |||
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | ){ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); } } } } select(A) ::= WITH wqlist(W) selectnowith(X). { Select *p = X; if( p ){ p->pWith = W; parserDoubleLinkSelect(pParse, p); }else{ sqlite3WithDelete(pParse->db, W); } A = p; } select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). { Select *p = X; if( p ){ p->pWith = W; parserDoubleLinkSelect(pParse, p); }else{ sqlite3WithDelete(pParse->db, W); } A = p; } select(A) ::= selectnowith(X). { Select *p = X; if( p ){ parserDoubleLinkSelect(pParse, p); } A = p; /*A-overwrites-X*/ } | > > | 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | ){ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); } } } } %ifndef SQLITE_OMIT_CTE select(A) ::= WITH wqlist(W) selectnowith(X). { Select *p = X; if( p ){ p->pWith = W; parserDoubleLinkSelect(pParse, p); }else{ sqlite3WithDelete(pParse->db, W); } A = p; } select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). { Select *p = X; if( p ){ p->pWith = W; parserDoubleLinkSelect(pParse, p); }else{ sqlite3WithDelete(pParse->db, W); } A = p; } %endif /* SQLITE_OMIT_CTE */ select(A) ::= selectnowith(X). { Select *p = X; if( p ){ parserDoubleLinkSelect(pParse, p); } A = p; /*A-overwrites-X*/ } |
︙ | ︙ |
Changes to src/prepare.c.
︙ | ︙ | |||
184 185 186 187 188 189 190 | } /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed before this function returns. */ sqlite3BtreeEnter(pDb->pBt); if( !sqlite3BtreeIsInReadTrans(pDb->pBt) ){ | | | 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | } /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed before this function returns. */ sqlite3BtreeEnter(pDb->pBt); if( !sqlite3BtreeIsInReadTrans(pDb->pBt) ){ rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); if( rc!=SQLITE_OK ){ sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); goto initone_error_out; } openedTransaction = 1; } |
︙ | ︙ | |||
429 430 431 432 433 434 435 | Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ if( pBt==0 ) continue; /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed immediately after reading the meta-value. */ if( !sqlite3BtreeIsInReadTrans(pBt) ){ | | | 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ if( pBt==0 ) continue; /* If there is not already a read-only (or read-write) transaction opened ** on the b-tree database, open one now. If a transaction is opened, it ** will be closed immediately after reading the meta-value. */ if( !sqlite3BtreeIsInReadTrans(pBt) ){ rc = sqlite3BtreeBeginTrans(pBt, 0, 0); if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ sqlite3OomFault(db); } if( rc!=SQLITE_OK ) return; openedTransaction = 1; } |
︙ | ︙ |
Changes to src/printf.c.
︙ | ︙ | |||
962 963 964 965 966 967 968 969 970 971 972 973 | p->zText[p->nChar] = 0; if( p->mxAlloc>0 && !isMalloced(p) ){ return strAccumFinishRealloc(p); } } return p->zText; } /* Finalize a string created using sqlite3_str_new(). */ char *sqlite3_str_finish(sqlite3_str *p){ char *z; | > > > > > > > > > > | | 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 | p->zText[p->nChar] = 0; if( p->mxAlloc>0 && !isMalloced(p) ){ return strAccumFinishRealloc(p); } } return p->zText; } /* ** This singleton is an sqlite3_str object that is returned if ** sqlite3_malloc() fails to provide space for a real one. This ** sqlite3_str object accepts no new text and always returns ** an SQLITE_NOMEM error. */ static sqlite3_str sqlite3OomStr = { 0, 0, 0, 0, 0, SQLITE_NOMEM, 0 }; /* Finalize a string created using sqlite3_str_new(). */ char *sqlite3_str_finish(sqlite3_str *p){ char *z; if( p!=0 && p!=&sqlite3OomStr ){ z = sqlite3StrAccumFinish(p); sqlite3_free(p); }else{ z = 0; } return z; } |
︙ | ︙ | |||
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 | /* Allocate and initialize a new dynamic string object */ sqlite3_str *sqlite3_str_new(sqlite3 *db){ sqlite3_str *p = sqlite3_malloc64(sizeof(*p)); if( p ){ sqlite3StrAccumInit(p, 0, 0, 0, db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); } return p; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. | > > | 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 | /* Allocate and initialize a new dynamic string object */ sqlite3_str *sqlite3_str_new(sqlite3 *db){ sqlite3_str *p = sqlite3_malloc64(sizeof(*p)); if( p ){ sqlite3StrAccumInit(p, 0, 0, 0, db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); }else{ p = &sqlite3OomStr; } return p; } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
71 72 73 74 75 76 77 | sqlite3 *db; /* The database connection */ assert( iCol>=0 && iCol<pEList->nExpr ); pOrig = pEList->a[iCol].pExpr; assert( pOrig!=0 ); db = pParse->db; pDup = sqlite3ExprDup(db, pOrig, 0); | | | | | | | | | | | | | | | | | | | | | | | > > | 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | sqlite3 *db; /* The database connection */ assert( iCol>=0 && iCol<pEList->nExpr ); pOrig = pEList->a[iCol].pExpr; assert( pOrig!=0 ); db = pParse->db; pDup = sqlite3ExprDup(db, pOrig, 0); if( pDup!=0 ){ if( zType[0]!='G' ) incrAggFunctionDepth(pDup, nSubquery); if( pExpr->op==TK_COLLATE ){ pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken); } ExprSetProperty(pDup, EP_Alias); /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This ** prevents ExprDelete() from deleting the Expr structure itself, ** allowing it to be repopulated by the memcpy() on the following line. ** The pExpr->u.zToken might point into memory that will be freed by the ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to ** make a copy of the token before doing the sqlite3DbFree(). */ ExprSetProperty(pExpr, EP_Static); sqlite3ExprDelete(db, pExpr); memcpy(pExpr, pDup, sizeof(*pExpr)); if( !ExprHasProperty(pExpr, EP_IntValue) && pExpr->u.zToken!=0 ){ assert( (pExpr->flags & (EP_Reduced|EP_TokenOnly))==0 ); pExpr->u.zToken = sqlite3DbStrDup(db, pExpr->u.zToken); pExpr->flags |= EP_MemToken; } sqlite3DbFree(db, pDup); } ExprSetProperty(pExpr, EP_Alias); } /* ** Return TRUE if the name zCol occurs anywhere in the USING clause. ** ** Return FALSE if the USING clause is NULL or if it does not contain |
︙ | ︙ | |||
345 346 347 348 349 350 351 352 353 354 355 356 357 358 | if( iCol<pTab->nCol ){ cnt++; #ifndef SQLITE_OMIT_UPSERT if( pExpr->iTable==2 ){ testcase( iCol==(-1) ); pExpr->iTable = pNC->uNC.pUpsert->regData + iCol; eNewExprOp = TK_REGISTER; }else #endif /* SQLITE_OMIT_UPSERT */ { #ifndef SQLITE_OMIT_TRIGGER if( iCol<0 ){ pExpr->affinity = SQLITE_AFF_INTEGER; }else if( pExpr->iTable==0 ){ | > | 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | if( iCol<pTab->nCol ){ cnt++; #ifndef SQLITE_OMIT_UPSERT if( pExpr->iTable==2 ){ testcase( iCol==(-1) ); pExpr->iTable = pNC->uNC.pUpsert->regData + iCol; eNewExprOp = TK_REGISTER; ExprSetProperty(pExpr, EP_Alias); }else #endif /* SQLITE_OMIT_UPSERT */ { #ifndef SQLITE_OMIT_TRIGGER if( iCol<0 ){ pExpr->affinity = SQLITE_AFF_INTEGER; }else if( pExpr->iTable==0 ){ |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
813 814 815 816 817 818 819 | int nDefer = 0; ExprList *pExtra = 0; for(i=0; i<pEList->nExpr; i++){ struct ExprList_item *pItem = &pEList->a[i]; if( pItem->u.x.iOrderByCol==0 ){ Expr *pExpr = pItem->pExpr; Table *pTab = pExpr->pTab; | | | 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 | int nDefer = 0; ExprList *pExtra = 0; for(i=0; i<pEList->nExpr; i++){ struct ExprList_item *pItem = &pEList->a[i]; if( pItem->u.x.iOrderByCol==0 ){ Expr *pExpr = pItem->pExpr; Table *pTab = pExpr->pTab; if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) ){ int j; for(j=0; j<nDefer; j++){ if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; } if( j==nDefer ){ |
︙ | ︙ | |||
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 | for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ ExprList *pList = pF->pExpr->x.pList; assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); } } /* ** Update the accumulator memory cells for an aggregate based on ** the current cursor position. */ | > > > > > > | | 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 | for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ ExprList *pList = pF->pExpr->x.pList; assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); } } /* ** Update the accumulator memory cells for an aggregate based on ** the current cursor position. ** ** If regAcc is non-zero and there are no min() or max() aggregates ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator ** registers i register regAcc contains 0. The caller will take care ** of setting and clearing regAcc. */ static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ Vdbe *v = pParse->pVdbe; int i; int regHit = 0; int addrHitTest = 0; struct AggInfo_func *pF; struct AggInfo_col *pC; |
︙ | ︙ | |||
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 | ** to pC->iMem. But by the time the value is used, the original register ** may have been used, invalidating the underlying buffer holding the ** text or blob value. See ticket [883034dcb5]. ** ** Another solution would be to change the OP_SCopy used to copy cached ** values to an OP_Copy. */ if( regHit ){ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); } sqlite3ExprCacheClear(pParse); for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); } | > > > | 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 | ** to pC->iMem. But by the time the value is used, the original register ** may have been used, invalidating the underlying buffer holding the ** text or blob value. See ticket [883034dcb5]. ** ** Another solution would be to change the OP_SCopy used to copy cached ** values to an OP_Copy. */ if( regHit==0 && pAggInfo->nAccumulator ){ regHit = regAcc; } if( regHit ){ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); } sqlite3ExprCacheClear(pParse); for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); } |
︙ | ︙ | |||
6017 6018 6019 6020 6021 6022 6023 | addrReset = sqlite3VdbeMakeLabel(v); iAMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; iBMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); VdbeComment((v, "clear abort flag")); | < < | 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 | addrReset = sqlite3VdbeMakeLabel(v); iAMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; iBMem = pParse->nMem + 1; pParse->nMem += pGroupBy->nExpr; sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); VdbeComment((v, "clear abort flag")); sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ |
︙ | ︙ | |||
6151 6152 6153 6154 6155 6156 6157 | sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); VdbeComment((v, "reset accumulator")); /* Update the aggregate accumulators based on the content of ** the current row */ sqlite3VdbeJumpHere(v, addr1); | | | 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 | sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); VdbeComment((v, "reset accumulator")); /* Update the aggregate accumulators based on the content of ** the current row */ sqlite3VdbeJumpHere(v, addr1); updateAccumulator(pParse, iUseFlag, &sAggInfo); sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); VdbeComment((v, "indicate data in accumulator")); /* End of the loop */ if( groupBySort ){ sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); |
︙ | ︙ | |||
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 | sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); VdbeComment((v, "end groupby result generator")); /* Generate a subroutine that will reset the group-by accumulator */ sqlite3VdbeResolveLabel(v, addrReset); resetAccumulator(pParse, &sAggInfo); sqlite3VdbeAddOp1(v, OP_Return, regReset); } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ else { #ifndef SQLITE_OMIT_BTREECOUNT Table *pTab; if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ | > > | 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 | sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); VdbeComment((v, "end groupby result generator")); /* Generate a subroutine that will reset the group-by accumulator */ sqlite3VdbeResolveLabel(v, addrReset); resetAccumulator(pParse, &sAggInfo); sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); VdbeComment((v, "indicate accumulator empty")); sqlite3VdbeAddOp1(v, OP_Return, regReset); } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ else { #ifndef SQLITE_OMIT_BTREECOUNT Table *pTab; if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ |
︙ | ︙ | |||
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 | } sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); sqlite3VdbeAddOp1(v, OP_Close, iCsr); explainSimpleCount(pParse, pTab, pBest); }else #endif /* SQLITE_OMIT_BTREECOUNT */ { /* This case runs if the aggregate has no GROUP BY clause. The ** processing is much simpler since there is only a single row ** of output. */ assert( p->pGroupBy==0 ); resetAccumulator(pParse, &sAggInfo); | > > > > > > > > > > > > > > > > > | 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 | } sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); sqlite3VdbeAddOp1(v, OP_Close, iCsr); explainSimpleCount(pParse, pTab, pBest); }else #endif /* SQLITE_OMIT_BTREECOUNT */ { int regAcc = 0; /* "populate accumulators" flag */ /* If there are accumulator registers but no min() or max() functions, ** allocate register regAcc. Register regAcc will contain 0 the first ** time the inner loop runs, and 1 thereafter. The code generated ** by updateAccumulator() only updates the accumulator registers if ** regAcc contains 0. */ if( sAggInfo.nAccumulator ){ for(i=0; i<sAggInfo.nFunc; i++){ if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; } if( i==sAggInfo.nFunc ){ regAcc = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); } } /* This case runs if the aggregate has no GROUP BY clause. The ** processing is much simpler since there is only a single row ** of output. */ assert( p->pGroupBy==0 ); resetAccumulator(pParse, &sAggInfo); |
︙ | ︙ | |||
6289 6290 6291 6292 6293 6294 6295 | SELECTTRACE(1,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 0, minMaxFlag, 0); if( pWInfo==0 ){ goto select_end; } | | > | 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 | SELECTTRACE(1,pParse,p,("WhereBegin\n")); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 0, minMaxFlag, 0); if( pWInfo==0 ){ goto select_end; } updateAccumulator(pParse, regAcc, &sAggInfo); if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); if( sqlite3WhereIsOrdered(pWInfo)>0 ){ sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); VdbeComment((v, "%s() by index", (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); } sqlite3WhereEnd(pWInfo); finalizeAggFunctions(pParse, &sAggInfo); |
︙ | ︙ |
Changes to src/shell.c.in.
︙ | ︙ | |||
3543 3544 3545 3546 3547 3548 3549 | */ int deduceDatabaseType(const char *zName, int dfltZip){ FILE *f = fopen(zName, "rb"); size_t n; int rc = SHELL_OPEN_UNSPEC; char zBuf[100]; if( f==0 ){ | | > > | > > > > > > > > > > > > > > | | | > | 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 | */ int deduceDatabaseType(const char *zName, int dfltZip){ FILE *f = fopen(zName, "rb"); size_t n; int rc = SHELL_OPEN_UNSPEC; char zBuf[100]; if( f==0 ){ if( dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ){ return SHELL_OPEN_ZIPFILE; }else{ return SHELL_OPEN_NORMAL; } } fseek(f, -25, SEEK_END); n = fread(zBuf, 25, 1, f); if( n==1 && memcmp(zBuf, "Start-Of-SQLite3-", 17)==0 ){ rc = SHELL_OPEN_APPENDVFS; }else{ fseek(f, -22, SEEK_END); n = fread(zBuf, 22, 1, f); if( n==1 && zBuf[0]==0x50 && zBuf[1]==0x4b && zBuf[2]==0x05 && zBuf[3]==0x06 ){ rc = SHELL_OPEN_ZIPFILE; }else if( n==0 && dfltZip && sqlite3_strlike("%.zip",zName,0)==0 ){ rc = SHELL_OPEN_ZIPFILE; } } fclose(f); return rc; } /* Flags for open_db(). ** ** The default behavior of open_db() is to exit(1) if the database fails to ** open. The OPEN_DB_KEEPALIVE flag changes that so that it prints an error ** but still returns without calling exit. ** ** The OPEN_DB_ZIPFILE flag causes open_db() to prefer to open files as a ** ZIP archive if the file does not exist or is empty and its name matches ** the *.zip pattern. */ #define OPEN_DB_KEEPALIVE 0x001 /* Return after error if true */ #define OPEN_DB_ZIPFILE 0x002 /* Open as ZIP if name matches *.zip */ /* ** Make sure the database is open. If it is not, then open it. If ** the database fails to open, print an error message and exit. */ static void open_db(ShellState *p, int openFlags){ if( p->db==0 ){ if( p->openMode==SHELL_OPEN_UNSPEC ){ if( p->zDbFilename==0 || p->zDbFilename[0]==0 ){ p->openMode = SHELL_OPEN_NORMAL; }else{ p->openMode = (u8)deduceDatabaseType(p->zDbFilename, (openFlags & OPEN_DB_ZIPFILE)!=0); } } switch( p->openMode ){ case SHELL_OPEN_APPENDVFS: { sqlite3_open_v2(p->zDbFilename, &p->db, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, "apndvfs"); break; |
︙ | ︙ | |||
3601 3602 3603 3604 3605 3606 3607 | break; } } globalDb = p->db; if( p->db==0 || SQLITE_OK!=sqlite3_errcode(p->db) ){ utf8_printf(stderr,"Error: unable to open database \"%s\": %s\n", p->zDbFilename, sqlite3_errmsg(p->db)); | | | 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 | break; } } globalDb = p->db; if( p->db==0 || SQLITE_OK!=sqlite3_errcode(p->db) ){ utf8_printf(stderr,"Error: unable to open database \"%s\": %s\n", p->zDbFilename, sqlite3_errmsg(p->db)); if( openFlags & OPEN_DB_KEEPALIVE ) return; exit(1); } #ifndef SQLITE_OMIT_LOAD_EXTENSION sqlite3_enable_load_extension(p->db, 1); #endif sqlite3_fileio_init(p->db, 0, 0); sqlite3_shathree_init(p->db, 0, 0); |
︙ | ︙ | |||
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 | char *zSql = sqlite3_mprintf( "CREATE VIRTUAL TABLE zip USING zipfile(%Q);", p->zDbFilename); sqlite3_exec(p->db, zSql, 0, 0, 0); sqlite3_free(zSql); } } } #if HAVE_READLINE || HAVE_EDITLINE /* ** Readline completion callbacks */ static char *readline_completion_generator(const char *text, int state){ static sqlite3_stmt *pStmt = 0; | > > > > > > > > > > > | 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 | char *zSql = sqlite3_mprintf( "CREATE VIRTUAL TABLE zip USING zipfile(%Q);", p->zDbFilename); sqlite3_exec(p->db, zSql, 0, 0, 0); sqlite3_free(zSql); } } } /* ** Attempt to close the databaes connection. Report errors. */ void close_db(sqlite3 *db){ int rc = sqlite3_close(db); if( rc ){ utf8_printf(stderr, "Error: sqlite3_close() returns %d: %s\n", rc, sqlite3_errmsg(db)); } } #if HAVE_READLINE || HAVE_EDITLINE /* ** Readline completion callbacks */ static char *readline_completion_generator(const char *text, int state){ static sqlite3_stmt *pStmt = 0; |
︙ | ︙ | |||
4215 4216 4217 4218 4219 4220 4221 | sqlite3_exec(p->db, "PRAGMA writable_schema=ON;", 0, 0, 0); sqlite3_exec(newDb, "BEGIN EXCLUSIVE;", 0, 0, 0); tryToCloneSchema(p, newDb, "type='table'", tryToCloneData); tryToCloneSchema(p, newDb, "type!='table'", 0); sqlite3_exec(newDb, "COMMIT;", 0, 0, 0); sqlite3_exec(p->db, "PRAGMA writable_schema=OFF;", 0, 0, 0); } | | | 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 | sqlite3_exec(p->db, "PRAGMA writable_schema=ON;", 0, 0, 0); sqlite3_exec(newDb, "BEGIN EXCLUSIVE;", 0, 0, 0); tryToCloneSchema(p, newDb, "type='table'", tryToCloneData); tryToCloneSchema(p, newDb, "type!='table'", 0); sqlite3_exec(newDb, "COMMIT;", 0, 0, 0); sqlite3_exec(p->db, "PRAGMA writable_schema=OFF;", 0, 0, 0); } close_db(newDb); } /* ** Change the output file back to stdout. ** ** If the p->doXdgOpen flag is set, that means the output was being ** redirected to a temporary file named by p->zTempFile. In that case, |
︙ | ︙ | |||
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 | typedef struct ArCommand ArCommand; struct ArCommand { u8 eCmd; /* An AR_CMD_* value */ u8 bVerbose; /* True if --verbose */ u8 bZip; /* True if the archive is a ZIP */ u8 bDryRun; /* True if --dry-run */ u8 bAppend; /* True if --append */ int nArg; /* Number of command arguments */ char *zSrcTable; /* "sqlar", "zipfile($file)" or "zip" */ const char *zFile; /* --file argument, or NULL */ const char *zDir; /* --directory argument, or NULL */ char **azArg; /* Array of command arguments */ ShellState *p; /* Shell state */ sqlite3 *db; /* Database containing the archive */ | > | 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 | typedef struct ArCommand ArCommand; struct ArCommand { u8 eCmd; /* An AR_CMD_* value */ u8 bVerbose; /* True if --verbose */ u8 bZip; /* True if the archive is a ZIP */ u8 bDryRun; /* True if --dry-run */ u8 bAppend; /* True if --append */ u8 fromCmdLine; /* Run from -A instead of .archive */ int nArg; /* Number of command arguments */ char *zSrcTable; /* "sqlar", "zipfile($file)" or "zip" */ const char *zFile; /* --file argument, or NULL */ const char *zDir; /* --directory argument, or NULL */ char **azArg; /* Array of command arguments */ ShellState *p; /* Shell state */ sqlite3 *db; /* Database containing the archive */ |
︙ | ︙ | |||
4916 4917 4918 4919 4920 4921 4922 | return SQLITE_ERROR; } /* ** Print an error message for the .ar command to stderr and return ** SQLITE_ERROR. */ | | | > > > > > | 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 | return SQLITE_ERROR; } /* ** Print an error message for the .ar command to stderr and return ** SQLITE_ERROR. */ static int arErrorMsg(ArCommand *pAr, const char *zFmt, ...){ va_list ap; char *z; va_start(ap, zFmt); z = sqlite3_vmprintf(zFmt, ap); va_end(ap); utf8_printf(stderr, "Error: %s\n", z); if( pAr->fromCmdLine ){ utf8_printf(stderr, "Use \"-A\" for more help\n"); }else{ utf8_printf(stderr, "Use \".archive --help\" for more help\n"); } sqlite3_free(z); return SQLITE_ERROR; } /* ** Values for ArCommand.eCmd. */ |
︙ | ︙ | |||
4953 4954 4955 4956 4957 4958 4959 | switch( eSwitch ){ case AR_CMD_CREATE: case AR_CMD_EXTRACT: case AR_CMD_LIST: case AR_CMD_UPDATE: case AR_CMD_HELP: if( pAr->eCmd ){ | | | 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 | switch( eSwitch ){ case AR_CMD_CREATE: case AR_CMD_EXTRACT: case AR_CMD_LIST: case AR_CMD_UPDATE: case AR_CMD_HELP: if( pAr->eCmd ){ return arErrorMsg(pAr, "multiple command options"); } pAr->eCmd = eSwitch; break; case AR_SWITCH_DRYRUN: pAr->bDryRun = 1; break; |
︙ | ︙ | |||
5013 5014 5015 5016 5017 5018 5019 | int nSwitch = sizeof(aSwitch) / sizeof(struct ArSwitch); struct ArSwitch *pEnd = &aSwitch[nSwitch]; if( nArg<=1 ){ return arUsage(stderr); }else{ char *z = azArg[1]; | < < | | | 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 | int nSwitch = sizeof(aSwitch) / sizeof(struct ArSwitch); struct ArSwitch *pEnd = &aSwitch[nSwitch]; if( nArg<=1 ){ return arUsage(stderr); }else{ char *z = azArg[1]; if( z[0]!='-' ){ /* Traditional style [tar] invocation */ int i; int iArg = 2; for(i=0; z[i]; i++){ const char *zArg = 0; struct ArSwitch *pOpt; for(pOpt=&aSwitch[0]; pOpt<pEnd; pOpt++){ if( z[i]==pOpt->cShort ) break; } if( pOpt==pEnd ){ return arErrorMsg(pAr, "unrecognized option: %c", z[i]); } if( pOpt->bArg ){ if( iArg>=nArg ){ return arErrorMsg(pAr, "option requires an argument: %c",z[i]); } zArg = azArg[iArg++]; } if( arProcessSwitch(pAr, pOpt->eSwitch, zArg) ) return SQLITE_ERROR; } pAr->nArg = nArg-iArg; if( pAr->nArg>0 ){ |
︙ | ︙ | |||
5064 5065 5066 5067 5068 5069 5070 | for(i=1; i<n; i++){ const char *zArg = 0; struct ArSwitch *pOpt; for(pOpt=&aSwitch[0]; pOpt<pEnd; pOpt++){ if( z[i]==pOpt->cShort ) break; } if( pOpt==pEnd ){ | | | | 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 | for(i=1; i<n; i++){ const char *zArg = 0; struct ArSwitch *pOpt; for(pOpt=&aSwitch[0]; pOpt<pEnd; pOpt++){ if( z[i]==pOpt->cShort ) break; } if( pOpt==pEnd ){ return arErrorMsg(pAr, "unrecognized option: %c", z[i]); } if( pOpt->bArg ){ if( i<(n-1) ){ zArg = &z[i+1]; i = n; }else{ if( iArg>=(nArg-1) ){ return arErrorMsg(pAr, "option requires an argument: %c",z[i]); } zArg = azArg[++iArg]; } } if( arProcessSwitch(pAr, pOpt->eSwitch, zArg) ) return SQLITE_ERROR; } }else if( z[2]=='\0' ){ |
︙ | ︙ | |||
5094 5095 5096 5097 5098 5099 5100 | const char *zArg = 0; /* Argument for option, if any */ struct ArSwitch *pMatch = 0; /* Matching option */ struct ArSwitch *pOpt; /* Iterator */ for(pOpt=&aSwitch[0]; pOpt<pEnd; pOpt++){ const char *zLong = pOpt->zLong; if( (n-2)<=strlen30(zLong) && 0==memcmp(&z[2], zLong, n-2) ){ if( pMatch ){ | | | | | 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 | const char *zArg = 0; /* Argument for option, if any */ struct ArSwitch *pMatch = 0; /* Matching option */ struct ArSwitch *pOpt; /* Iterator */ for(pOpt=&aSwitch[0]; pOpt<pEnd; pOpt++){ const char *zLong = pOpt->zLong; if( (n-2)<=strlen30(zLong) && 0==memcmp(&z[2], zLong, n-2) ){ if( pMatch ){ return arErrorMsg(pAr, "ambiguous option: %s",z); }else{ pMatch = pOpt; } } } if( pMatch==0 ){ return arErrorMsg(pAr, "unrecognized option: %s", z); } if( pMatch->bArg ){ if( iArg>=(nArg-1) ){ return arErrorMsg(pAr, "option requires an argument: %s", z); } zArg = azArg[++iArg]; } if( arProcessSwitch(pAr, pMatch->eSwitch, zArg) ) return SQLITE_ERROR; } } } |
︙ | ︙ | |||
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 | ); }else{ utf8_printf(pAr->p->out, "%s\n", sqlite3_column_text(pSql, 0)); } } } shellFinalize(&rc, pSql); return rc; } /* ** Implementation of .ar "eXtract" command. */ static int arExtractCommand(ArCommand *pAr){ const char *zSql1 = "SELECT " " ($dir || name)," " writefile(($dir || name), %s, mode, mtime) " | > | > | 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 | ); }else{ utf8_printf(pAr->p->out, "%s\n", sqlite3_column_text(pSql, 0)); } } } shellFinalize(&rc, pSql); sqlite3_free(zWhere); return rc; } /* ** Implementation of .ar "eXtract" command. */ static int arExtractCommand(ArCommand *pAr){ const char *zSql1 = "SELECT " " ($dir || name)," " writefile(($dir || name), %s, mode, mtime) " "FROM %s WHERE (%s) AND (data IS NULL OR $dirOnly = 0)" " AND name NOT GLOB '*..[/\\]*'"; const char *azExtraArg[] = { "sqlar_uncompress(data, sz)", "data" }; sqlite3_stmt *pSql = 0; |
︙ | ︙ | |||
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 | } /* ** Implementation of ".ar" dot command. */ static int arDotCommand( ShellState *pState, /* Current shell tool state */ char **azArg, /* Array of arguments passed to dot command */ int nArg /* Number of entries in azArg[] */ ){ ArCommand cmd; int rc; memset(&cmd, 0, sizeof(cmd)); rc = arParseCommand(azArg, nArg, &cmd); if( rc==SQLITE_OK ){ int eDbType = SHELL_OPEN_UNSPEC; cmd.p = pState; cmd.db = pState->db; if( cmd.zFile ){ eDbType = deduceDatabaseType(cmd.zFile, 1); | > > | 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 | } /* ** Implementation of ".ar" dot command. */ static int arDotCommand( ShellState *pState, /* Current shell tool state */ int fromCmdLine, /* True if -A command-line option, not .ar cmd */ char **azArg, /* Array of arguments passed to dot command */ int nArg /* Number of entries in azArg[] */ ){ ArCommand cmd; int rc; memset(&cmd, 0, sizeof(cmd)); cmd.fromCmdLine = fromCmdLine; rc = arParseCommand(azArg, nArg, &cmd); if( rc==SQLITE_OK ){ int eDbType = SHELL_OPEN_UNSPEC; cmd.p = pState; cmd.db = pState->db; if( cmd.zFile ){ eDbType = deduceDatabaseType(cmd.zFile, 1); |
︙ | ︙ | |||
5489 5490 5491 5492 5493 5494 5495 | } sqlite3_fileio_init(cmd.db, 0, 0); sqlite3_sqlar_init(cmd.db, 0, 0); sqlite3_create_function(cmd.db, "shell_putsnl", 1, SQLITE_UTF8, cmd.p, shellPutsFunc, 0, 0); } | | | 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 | } sqlite3_fileio_init(cmd.db, 0, 0); sqlite3_sqlar_init(cmd.db, 0, 0); sqlite3_create_function(cmd.db, "shell_putsnl", 1, SQLITE_UTF8, cmd.p, shellPutsFunc, 0, 0); } if( cmd.zSrcTable==0 && cmd.bZip==0 && cmd.eCmd!=AR_CMD_HELP ){ if( cmd.eCmd!=AR_CMD_CREATE && sqlite3_table_column_metadata(cmd.db,0,"sqlar","name",0,0,0,0,0) ){ utf8_printf(stderr, "database does not contain an 'sqlar' table\n"); rc = SQLITE_ERROR; goto end_ar_command; } |
︙ | ︙ | |||
5525 5526 5527 5528 5529 5530 5531 | assert( cmd.eCmd==AR_CMD_UPDATE ); rc = arCreateOrUpdateCommand(&cmd, 1); break; } } end_ar_command: if( cmd.db!=pState->db ){ | | | 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 | assert( cmd.eCmd==AR_CMD_UPDATE ); rc = arCreateOrUpdateCommand(&cmd, 1); break; } } end_ar_command: if( cmd.db!=pState->db ){ close_db(cmd.db); } sqlite3_free(cmd.zSrcTable); return rc; } /* End of the ".archive" or ".ar" command logic **********************************************************************************/ |
︙ | ︙ | |||
5605 5606 5607 5608 5609 5610 5611 | } }else #endif #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) if( c=='a' && strncmp(azArg[0], "archive", n)==0 ){ open_db(p, 0); | | | 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 | } }else #endif #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) if( c=='a' && strncmp(azArg[0], "archive", n)==0 ){ open_db(p, 0); rc = arDotCommand(p, 0, azArg, nArg); }else #endif if( (c=='b' && n>=3 && strncmp(azArg[0], "backup", n)==0) || (c=='s' && n>=3 && strncmp(azArg[0], "save", n)==0) ){ const char *zDestFile = 0; |
︙ | ︙ | |||
5648 5649 5650 5651 5652 5653 5654 | return 1; } if( zDb==0 ) zDb = "main"; rc = sqlite3_open_v2(zDestFile, &pDest, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, zVfs); if( rc!=SQLITE_OK ){ utf8_printf(stderr, "Error: cannot open \"%s\"\n", zDestFile); | | | | | 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 | return 1; } if( zDb==0 ) zDb = "main"; rc = sqlite3_open_v2(zDestFile, &pDest, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, zVfs); if( rc!=SQLITE_OK ){ utf8_printf(stderr, "Error: cannot open \"%s\"\n", zDestFile); close_db(pDest); return 1; } open_db(p, 0); pBackup = sqlite3_backup_init(pDest, "main", p->db, zDb); if( pBackup==0 ){ utf8_printf(stderr, "Error: %s\n", sqlite3_errmsg(pDest)); close_db(pDest); return 1; } while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK ){} sqlite3_backup_finish(pBackup); if( rc==SQLITE_DONE ){ rc = 0; }else{ utf8_printf(stderr, "Error: %s\n", sqlite3_errmsg(pDest)); rc = 1; } close_db(pDest); }else if( c=='b' && n>=3 && strncmp(azArg[0], "bail", n)==0 ){ if( nArg==2 ){ bail_on_error = booleanValue(azArg[1]); }else{ raw_printf(stderr, "Usage: .bail on|off\n"); |
︙ | ︙ | |||
6482 6483 6484 6485 6486 6487 6488 | if( c=='o' && strncmp(azArg[0], "open", n)==0 && n>=2 ){ char *zNewFilename; /* Name of the database file to open */ int iName = 1; /* Index in azArg[] of the filename */ int newFlag = 0; /* True to delete file before opening */ /* Close the existing database */ session_close_all(p); | | | 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 | if( c=='o' && strncmp(azArg[0], "open", n)==0 && n>=2 ){ char *zNewFilename; /* Name of the database file to open */ int iName = 1; /* Index in azArg[] of the filename */ int newFlag = 0; /* True to delete file before opening */ /* Close the existing database */ session_close_all(p); close_db(p->db); p->db = 0; p->zDbFilename = 0; sqlite3_free(p->zFreeOnClose); p->zFreeOnClose = 0; p->openMode = SHELL_OPEN_UNSPEC; /* Check for command-line arguments */ for(iName=1; iName<nArg && azArg[iName][0]=='-'; iName++){ |
︙ | ︙ | |||
6512 6513 6514 6515 6516 6517 6518 | } } /* If a filename is specified, try to open it first */ zNewFilename = nArg>iName ? sqlite3_mprintf("%s", azArg[iName]) : 0; if( zNewFilename ){ if( newFlag ) shellDeleteFile(zNewFilename); p->zDbFilename = zNewFilename; | | | 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 | } } /* If a filename is specified, try to open it first */ zNewFilename = nArg>iName ? sqlite3_mprintf("%s", azArg[iName]) : 0; if( zNewFilename ){ if( newFlag ) shellDeleteFile(zNewFilename); p->zDbFilename = zNewFilename; open_db(p, OPEN_DB_KEEPALIVE); if( p->db==0 ){ utf8_printf(stderr, "Error: cannot open '%s'\n", zNewFilename); sqlite3_free(zNewFilename); }else{ p->zFreeOnClose = zNewFilename; } } |
︙ | ︙ | |||
6662 6663 6664 6665 6666 6667 6668 | raw_printf(stderr, "Usage: .restore ?DB? FILE\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_open(zSrcFile, &pSrc); if( rc!=SQLITE_OK ){ utf8_printf(stderr, "Error: cannot open \"%s\"\n", zSrcFile); | | | | | 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 | raw_printf(stderr, "Usage: .restore ?DB? FILE\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_open(zSrcFile, &pSrc); if( rc!=SQLITE_OK ){ utf8_printf(stderr, "Error: cannot open \"%s\"\n", zSrcFile); close_db(pSrc); return 1; } open_db(p, 0); pBackup = sqlite3_backup_init(p->db, zDb, pSrc, "main"); if( pBackup==0 ){ utf8_printf(stderr, "Error: %s\n", sqlite3_errmsg(p->db)); close_db(pSrc); return 1; } while( (rc = sqlite3_backup_step(pBackup,100))==SQLITE_OK || rc==SQLITE_BUSY ){ if( rc==SQLITE_BUSY ){ if( nTimeout++ >= 3 ) break; sqlite3_sleep(100); } } sqlite3_backup_finish(pBackup); if( rc==SQLITE_DONE ){ rc = 0; }else if( rc==SQLITE_BUSY || rc==SQLITE_LOCKED ){ raw_printf(stderr, "Error: source database is busy\n"); rc = 1; }else{ utf8_printf(stderr, "Error: %s\n", sqlite3_errmsg(p->db)); rc = 1; } close_db(pSrc); }else if( c=='s' && strncmp(azArg[0], "scanstats", n)==0 ){ if( nArg==2 ){ p->scanstatsOn = (u8)booleanValue(azArg[1]); #ifndef SQLITE_ENABLE_STMT_SCANSTATUS raw_printf(stderr, "Warning: .scanstats not available in this build.\n"); |
︙ | ︙ | |||
7373 7374 7375 7376 7377 7378 7379 | char **azResult; int nRow, nAlloc; int ii; ShellText s; initText(&s); open_db(p, 0); rc = sqlite3_prepare_v2(p->db, "PRAGMA database_list", -1, &pStmt, 0); | > > | > > | 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 | char **azResult; int nRow, nAlloc; int ii; ShellText s; initText(&s); open_db(p, 0); rc = sqlite3_prepare_v2(p->db, "PRAGMA database_list", -1, &pStmt, 0); if( rc ){ sqlite3_finalize(pStmt); return shellDatabaseError(p->db); } if( nArg>2 && c=='i' ){ /* It is an historical accident that the .indexes command shows an error ** when called with the wrong number of arguments whereas the .tables ** command does not. */ raw_printf(stderr, "Usage: .indexes ?LIKE-PATTERN?\n"); rc = 1; sqlite3_finalize(pStmt); goto meta_command_exit; } for(ii=0; sqlite3_step(pStmt)==SQLITE_ROW; ii++){ const char *zDbName = (const char*)sqlite3_column_text(pStmt, 1); if( zDbName==0 ) continue; if( s.z && s.z[0] ) appendText(&s, " UNION ALL ", 0); if( sqlite3_stricmp(zDbName, "main")==0 ){ |
︙ | ︙ | |||
8200 8201 8202 8203 8204 8205 8206 | /* ** Internal check: Verify that the SQLite is uninitialized. Print a ** error message if it is initialized. */ static void verify_uninitialized(void){ if( sqlite3_config(-1)==SQLITE_MISUSE ){ | | | 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 | /* ** Internal check: Verify that the SQLite is uninitialized. Print a ** error message if it is initialized. */ static void verify_uninitialized(void){ if( sqlite3_config(-1)==SQLITE_MISUSE ){ utf8_printf(stdout, "WARNING: attempt to configure SQLite after" " initialization.\n"); } } /* ** Initialize the state information in data */ |
︙ | ︙ | |||
8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 | int i; int rc = 0; int warnInmemoryDb = 0; int readStdin = 1; int nCmd = 0; char **azCmd = 0; const char *zVfs = 0; /* Value of -vfs command-line option */ setBinaryMode(stdin, 0); setvbuf(stderr, 0, _IONBF, 0); /* Make sure stderr is unbuffered */ stdin_is_interactive = isatty(0); stdout_is_console = isatty(1); #if USE_SYSTEM_SQLITE+0!=1 | > > > > | 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 | int i; int rc = 0; int warnInmemoryDb = 0; int readStdin = 1; int nCmd = 0; char **azCmd = 0; const char *zVfs = 0; /* Value of -vfs command-line option */ #if !SQLITE_SHELL_IS_UTF8 char **argvToFree = 0; int argcToFree = 0; #endif setBinaryMode(stdin, 0); setvbuf(stderr, 0, _IONBF, 0); /* Make sure stderr is unbuffered */ stdin_is_interactive = isatty(0); stdout_is_console = isatty(1); #if USE_SYSTEM_SQLITE+0!=1 |
︙ | ︙ | |||
8304 8305 8306 8307 8308 8309 8310 | ** The SQLite memory allocator subsystem has to be enabled in order to ** do this. But we want to run an sqlite3_shutdown() afterwards so that ** subsequent sqlite3_config() calls will work. So copy all results into ** memory that does not come from the SQLite memory allocator. */ #if !SQLITE_SHELL_IS_UTF8 sqlite3_initialize(); | | > > > | 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 | ** The SQLite memory allocator subsystem has to be enabled in order to ** do this. But we want to run an sqlite3_shutdown() afterwards so that ** subsequent sqlite3_config() calls will work. So copy all results into ** memory that does not come from the SQLite memory allocator. */ #if !SQLITE_SHELL_IS_UTF8 sqlite3_initialize(); argvToFree = malloc(sizeof(argv[0])*argc*2); argcToFree = argc; argv = argvToFree + argc; if( argv==0 ) shell_out_of_memory(); for(i=0; i<argc; i++){ char *z = sqlite3_win32_unicode_to_utf8(wargv[i]); int n; if( z==0 ) shell_out_of_memory(); n = (int)strlen(z); argv[i] = malloc( n+1 ); if( argv[i]==0 ) shell_out_of_memory(); memcpy(argv[i], z, n+1); argvToFree[i] = argv[i]; sqlite3_free(z); } sqlite3_shutdown(); #endif assert( argc>=1 && argv && argv[0] ); Argv0 = argv[0]; |
︙ | ︙ | |||
8635 8636 8637 8638 8639 8640 8641 | #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) }else if( strncmp(z, "-A", 2)==0 ){ if( nCmd>0 ){ utf8_printf(stderr, "Error: cannot mix regular SQL or dot-commands" " with \"%s\"\n", z); return 1; } | | | | | 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 | #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_HAVE_ZLIB) }else if( strncmp(z, "-A", 2)==0 ){ if( nCmd>0 ){ utf8_printf(stderr, "Error: cannot mix regular SQL or dot-commands" " with \"%s\"\n", z); return 1; } open_db(&data, OPEN_DB_ZIPFILE); if( z[2] ){ argv[i] = &z[2]; arDotCommand(&data, 1, argv+(i-1), argc-(i-1)); }else{ arDotCommand(&data, 1, argv+i, argc-i); } readStdin = 0; break; #endif }else{ utf8_printf(stderr,"%s: Error: unknown option: %s\n", Argv0, z); raw_printf(stderr,"Use -help for a list of options.\n"); |
︙ | ︙ | |||
8719 8720 8721 8722 8723 8724 8725 | }else{ rc = process_input(&data, stdin); } } set_table_name(&data, 0); if( data.db ){ session_close_all(&data); | | | | > > > | 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 | }else{ rc = process_input(&data, stdin); } } set_table_name(&data, 0); if( data.db ){ session_close_all(&data); close_db(data.db); } sqlite3_free(data.zFreeOnClose); find_home_dir(1); output_reset(&data); data.doXdgOpen = 0; clearTempFile(&data); #if !SQLITE_SHELL_IS_UTF8 for(i=0; i<argcToFree; i++) free(argvToFree[i]); free(argvToFree); #endif /* Clear the global data structure so that valgrind will detect memory ** leaks */ memset(&data, 0, sizeof(data)); return rc; } |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 | #define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8)) #define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8)) #define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8)) #define SQLITE_IOERR_BEGIN_ATOMIC (SQLITE_IOERR | (29<<8)) #define SQLITE_IOERR_COMMIT_ATOMIC (SQLITE_IOERR | (30<<8)) #define SQLITE_IOERR_ROLLBACK_ATOMIC (SQLITE_IOERR | (31<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) #define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) #define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8)) #define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) #define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) #define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) #define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) #define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8)) #define SQLITE_READONLY_CANTINIT (SQLITE_READONLY | (5<<8)) #define SQLITE_READONLY_DIRECTORY (SQLITE_READONLY | (6<<8)) #define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) | > > | 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | #define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8)) #define SQLITE_IOERR_VNODE (SQLITE_IOERR | (27<<8)) #define SQLITE_IOERR_AUTH (SQLITE_IOERR | (28<<8)) #define SQLITE_IOERR_BEGIN_ATOMIC (SQLITE_IOERR | (29<<8)) #define SQLITE_IOERR_COMMIT_ATOMIC (SQLITE_IOERR | (30<<8)) #define SQLITE_IOERR_ROLLBACK_ATOMIC (SQLITE_IOERR | (31<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_LOCKED_VTAB (SQLITE_LOCKED | (2<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) #define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) #define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8)) #define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) #define SQLITE_CORRUPT_SEQUENCE (SQLITE_CORRUPT | (2<<8)) #define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) #define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) #define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) #define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8)) #define SQLITE_READONLY_CANTINIT (SQLITE_READONLY | (5<<8)) #define SQLITE_READONLY_DIRECTORY (SQLITE_READONLY | (6<<8)) #define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) |
︙ | ︙ | |||
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 | int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */ /* Fields below are only available in SQLite 3.10.0 and later */ sqlite3_uint64 colUsed; /* Input: Mask of columns used by statement */ }; /* ** CAPI3REF: Virtual Table Scan Flags */ #define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */ /* ** CAPI3REF: Virtual Table Constraint Operator Codes ** ** These macros defined the allowed values for the | > > > > | 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 | int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */ /* Fields below are only available in SQLite 3.10.0 and later */ sqlite3_uint64 colUsed; /* Input: Mask of columns used by statement */ }; /* ** CAPI3REF: Virtual Table Scan Flags ** ** Virtual table implementations are allowed to set the ** [sqlite3_index_info].idxFlags field to some combination of ** these bits. */ #define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */ /* ** CAPI3REF: Virtual Table Constraint Operator Codes ** ** These macros defined the allowed values for the |
︙ | ︙ | |||
7151 7152 7153 7154 7155 7156 7157 | typedef struct sqlite3_str sqlite3_str; /* ** CAPI3REF: Create A New Dynamic String Object ** CONSTRUCTOR: sqlite3_str ** ** ^The [sqlite3_str_new(D)] interface allocates and initializes | < < | > > > > > > > > > > | 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 | typedef struct sqlite3_str sqlite3_str; /* ** CAPI3REF: Create A New Dynamic String Object ** CONSTRUCTOR: sqlite3_str ** ** ^The [sqlite3_str_new(D)] interface allocates and initializes ** a new [sqlite3_str] object. To avoid memory leaks, the object returned by ** [sqlite3_str_new()] must be freed by a subsequent call to ** [sqlite3_str_finish(X)]. ** ** ^The [sqlite3_str_new(D)] interface always returns a pointer to a ** valid [sqlite3_str] object, though in the event of an out-of-memory ** error the returned object might be a special singleton that will ** silently reject new text, always return SQLITE_NOMEM from ** [sqlite3_str_errcode()], always return 0 for ** [sqlite3_str_length()], and always return NULL from ** [sqlite3_str_finish(X)]. It is always safe to use the value ** returned by [sqlite3_str_new(D)] as the sqlite3_str parameter ** to any of the other [sqlite3_str] methods. ** ** The D parameter to [sqlite3_str_new(D)] may be NULL. If the ** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum ** length of the string contained in the [sqlite3_str] object will be ** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead ** of [SQLITE_MAX_LENGTH]. */ |
︙ | ︙ | |||
8521 8522 8523 8524 8525 8526 8527 | /* ** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE ** ** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn] ** method of a [virtual table], then it returns true if and only if the ** column is being fetched as part of an UPDATE operation during which the ** column value will not change. Applications might use this to substitute | | | | | 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 | /* ** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE ** ** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn] ** method of a [virtual table], then it returns true if and only if the ** column is being fetched as part of an UPDATE operation during which the ** column value will not change. Applications might use this to substitute ** a return value that is less expensive to compute and that the corresponding ** [xUpdate] method understands as a "no-change" value. ** ** If the [xColumn] method calls sqlite3_vtab_nochange() and finds that ** the column is not changed by the UPDATE statement, then the xColumn ** method can optionally return without setting a result, without calling ** any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces]. ** In that case, [sqlite3_value_nochange(X)] will return true for the ** same column in the [xUpdate] method. */ int sqlite3_vtab_nochange(sqlite3_context*); |
︙ | ︙ | |||
9045 9046 9047 9048 9049 9050 9051 | ** to the contiguous memory representation of the database that SQLite ** is currently using for that database, or NULL if the no such contiguous ** memory representation of the database exists. A contiguous memory ** representation of the database will usually only exist if there has ** been a prior call to [sqlite3_deserialize(D,S,...)] with the same ** values of D and S. ** The size of the database is written into *P even if the | | | 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 | ** to the contiguous memory representation of the database that SQLite ** is currently using for that database, or NULL if the no such contiguous ** memory representation of the database exists. A contiguous memory ** representation of the database will usually only exist if there has ** been a prior call to [sqlite3_deserialize(D,S,...)] with the same ** values of D and S. ** The size of the database is written into *P even if the ** SQLITE_SERIALIZE_NOCOPY bit is set but no contiguous copy ** of the database exists. ** ** A call to sqlite3_serialize(D,S,P,F) might return NULL even if the ** SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory ** allocation error occurs. ** ** This interface is only available if SQLite is compiled with the |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 | int sqlite3KeyInfoIsWriteable(KeyInfo*); #endif int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), FuncDestructor *pDestructor ); void sqlite3OomFault(sqlite3*); void sqlite3OomClear(sqlite3*); int sqlite3ApiExit(sqlite3 *db, int); int sqlite3OpenTempDatabase(Parse *); void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); char *sqlite3StrAccumFinish(StrAccum*); | > | 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 | int sqlite3KeyInfoIsWriteable(KeyInfo*); #endif int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), FuncDestructor *pDestructor ); void sqlite3NoopDestructor(void*); void sqlite3OomFault(sqlite3*); void sqlite3OomClear(sqlite3*); int sqlite3ApiExit(sqlite3 *db, int); int sqlite3OpenTempDatabase(Parse *); void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int); char *sqlite3StrAccumFinish(StrAccum*); |
︙ | ︙ | |||
4266 4267 4268 4269 4270 4271 4272 | void sqlite3VtabArgInit(Parse*); void sqlite3VtabArgExtend(Parse*, Token*); int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); int sqlite3VtabCallConnect(Parse*, Table*); int sqlite3VtabCallDestroy(sqlite3*, int, const char *); int sqlite3VtabBegin(sqlite3 *, VTable *); FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); | < | 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 | void sqlite3VtabArgInit(Parse*); void sqlite3VtabArgExtend(Parse*, Token*); int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); int sqlite3VtabCallConnect(Parse*, Table*); int sqlite3VtabCallDestroy(sqlite3*, int, const char *); int sqlite3VtabBegin(sqlite3 *, VTable *); FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); void sqlite3ParserReset(Parse*); int sqlite3Reprepare(Vdbe*); void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); |
︙ | ︙ |
Changes to src/test3.c.
︙ | ︙ | |||
129 130 131 132 133 134 135 | if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } pBt = sqlite3TestTextToPtr(argv[1]); sqlite3BtreeEnter(pBt); | | | 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } pBt = sqlite3TestTextToPtr(argv[1]); sqlite3BtreeEnter(pBt); rc = sqlite3BtreeBeginTrans(pBt, 1, 0); sqlite3BtreeLeave(pBt); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, sqlite3ErrName(rc), 0); return TCL_ERROR; } return TCL_OK; } |
︙ | ︙ |
Changes to src/test_malloc.c.
︙ | ︙ | |||
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | ** by malloc() fault simulation. */ static struct MemFault { int iCountdown; /* Number of pending successes before a failure */ int nRepeat; /* Number of times to repeat the failure */ int nBenign; /* Number of benign failures seen since last config */ int nFail; /* Number of failures seen since last config */ u8 enable; /* True if enabled */ int isInstalled; /* True if the fault simulation layer is installed */ int isBenignMode; /* True if malloc failures are considered benign */ sqlite3_mem_methods m; /* 'Real' malloc implementation */ } memfault; /* ** This routine exists as a place to set a breakpoint that will ** fire on any simulated malloc() failure. */ static void sqlite3Fault(void){ static int cnt = 0; cnt++; } /* ** Check to see if a fault should be simulated. Return true to simulate ** the fault. Return false if the fault should not be simulated. */ static int faultsimStep(void){ if( likely(!memfault.enable) ){ return 0; } if( memfault.iCountdown>0 ){ memfault.iCountdown--; return 0; } sqlite3Fault(); memfault.nFail++; if( memfault.isBenignMode>0 ){ memfault.nBenign++; } memfault.nRepeat--; if( memfault.nRepeat<=0 ){ | > > > > > > > > > > > > > > > > | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | ** by malloc() fault simulation. */ static struct MemFault { int iCountdown; /* Number of pending successes before a failure */ int nRepeat; /* Number of times to repeat the failure */ int nBenign; /* Number of benign failures seen since last config */ int nFail; /* Number of failures seen since last config */ int nOkBefore; /* Successful allocations prior to the first fault */ int nOkAfter; /* Successful allocations after a fault */ u8 enable; /* True if enabled */ int isInstalled; /* True if the fault simulation layer is installed */ int isBenignMode; /* True if malloc failures are considered benign */ sqlite3_mem_methods m; /* 'Real' malloc implementation */ } memfault; /* ** This routine exists as a place to set a breakpoint that will ** fire on any simulated malloc() failure. */ static void sqlite3Fault(void){ static int cnt = 0; cnt++; } /* ** This routine exists as a place to set a breakpoint that will ** fire the first time any malloc() fails on a single test case. ** The sqlite3Fault() routine above runs on every malloc() failure. ** This routine only runs on the first such failure. */ static void sqlite3FirstFault(void){ static int cnt2 = 0; cnt2++; } /* ** Check to see if a fault should be simulated. Return true to simulate ** the fault. Return false if the fault should not be simulated. */ static int faultsimStep(void){ if( likely(!memfault.enable) ){ memfault.nOkAfter++; return 0; } if( memfault.iCountdown>0 ){ memfault.iCountdown--; memfault.nOkBefore++; return 0; } if( memfault.nFail==0 ) sqlite3FirstFault(); sqlite3Fault(); memfault.nFail++; if( memfault.isBenignMode>0 ){ memfault.nBenign++; } memfault.nRepeat--; if( memfault.nRepeat<=0 ){ |
︙ | ︙ | |||
129 130 131 132 133 134 135 136 137 138 139 140 141 142 | ** to succeed again. */ static void faultsimConfig(int nDelay, int nRepeat){ memfault.iCountdown = nDelay; memfault.nRepeat = nRepeat; memfault.nBenign = 0; memfault.nFail = 0; memfault.enable = nDelay>=0; /* Sometimes, when running multi-threaded tests, the isBenignMode ** variable is not properly incremented/decremented so that it is ** 0 when not inside a benign malloc block. This doesn't affect ** the multi-threaded tests, as they do not use this system. But ** it does affect OOM tests run later in the same process. So | > > | 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | ** to succeed again. */ static void faultsimConfig(int nDelay, int nRepeat){ memfault.iCountdown = nDelay; memfault.nRepeat = nRepeat; memfault.nBenign = 0; memfault.nFail = 0; memfault.nOkBefore = 0; memfault.nOkAfter = 0; memfault.enable = nDelay>=0; /* Sometimes, when running multi-threaded tests, the isBenignMode ** variable is not properly incremented/decremented so that it is ** 0 when not inside a benign malloc block. This doesn't affect ** the multi-threaded tests, as they do not use this system. But ** it does affect OOM tests run later in the same process. So |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
852 853 854 855 856 857 858 | WhereInfo *pWInfo; int nArg = 2 + pTab->nCol; /* Number of arguments to VUpdate */ int regArg; /* First register in VUpdate arg array */ int regRec; /* Register in which to assemble record */ int regRowid; /* Register for ephem table rowid */ int iCsr = pSrc->a[0].iCursor; /* Cursor used for virtual table scan */ int aDummy[2]; /* Unused arg for sqlite3WhereOkOnePass() */ | | | 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 | WhereInfo *pWInfo; int nArg = 2 + pTab->nCol; /* Number of arguments to VUpdate */ int regArg; /* First register in VUpdate arg array */ int regRec; /* Register in which to assemble record */ int regRowid; /* Register for ephem table rowid */ int iCsr = pSrc->a[0].iCursor; /* Cursor used for virtual table scan */ int aDummy[2]; /* Unused arg for sqlite3WhereOkOnePass() */ int eOnePass; /* True to use onepass strategy */ int addr; /* Address of OP_OpenEphemeral */ /* Allocate nArg registers in which to gather the arguments for VUpdate. Then ** create and open the ephemeral table in which the records created from ** these arguments will be temporarily stored. */ assert( v ); ephemTab = pParse->nTab++; |
︙ | ︙ | |||
897 898 899 900 901 902 903 | assert( pPk!=0 ); assert( pPk->nKeyCol==1 ); iPk = pPk->aiColumn[0]; sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, iPk, regArg); sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1); } | | > > > | > | | | 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 | assert( pPk!=0 ); assert( pPk->nKeyCol==1 ); iPk = pPk->aiColumn[0]; sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, iPk, regArg); sqlite3VdbeAddOp2(v, OP_SCopy, regArg+2+iPk, regArg+1); } eOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy); /* There is no ONEPASS_MULTI on virtual tables */ assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE ); if( eOnePass ){ /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded ** above. */ sqlite3VdbeChangeToNoop(v, addr); sqlite3VdbeAddOp1(v, OP_Close, iCsr); }else{ /* Create a record from the argument register contents and insert it into ** the ephemeral table. */ sqlite3MultiWrite(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec); #ifdef SQLITE_DEBUG /* Signal an assert() within OP_MakeRecord that it is allowed to ** accept no-change records with serial_type 10 */ sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC); #endif sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, ephemTab, regRec, regRowid); } if( eOnePass==ONEPASS_OFF ){ /* End the virtual table scan */ sqlite3WhereEnd(pWInfo); /* Begin scannning through the ephemeral table. */ addr = sqlite3VdbeAddOp1(v, OP_Rewind, ephemTab); VdbeCoverage(v); /* Extract arguments from the current row of the ephemeral table and ** invoke the VUpdate method. */ for(i=0; i<nArg; i++){ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i, regArg+i); } } sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, nArg, regArg, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite3MayAbort(pParse); /* End of the ephemeral table scan. Or, if using the onepass strategy, ** jump to here if the scan visited zero rows. */ if( eOnePass==ONEPASS_OFF ){ sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0); }else{ sqlite3WhereEnd(pWInfo); } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
Changes to src/upsert.c.
︙ | ︙ | |||
225 226 227 228 229 230 231 232 233 234 235 236 237 238 | int k; assert( pPk->aiColumn[i]>=0 ); k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); sqlite3VdbeAddOp3(v, OP_Column, iCur, k, iPk+i); VdbeComment((v, "%s.%s", pIdx->zName, pTab->aCol[pPk->aiColumn[i]].zName)); } i = sqlite3VdbeAddOp4Int(v, OP_Found, iDataCur, 0, iPk, nPk); VdbeCoverage(v); sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0, "corrupt database", P4_STATIC); sqlite3VdbeJumpHere(v, i); } } | > | 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | int k; assert( pPk->aiColumn[i]>=0 ); k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); sqlite3VdbeAddOp3(v, OP_Column, iCur, k, iPk+i); VdbeComment((v, "%s.%s", pIdx->zName, pTab->aCol[pPk->aiColumn[i]].zName)); } sqlite3VdbeVerifyAbortable(v, OE_Abort); i = sqlite3VdbeAddOp4Int(v, OP_Found, iDataCur, 0, iPk, nPk); VdbeCoverage(v); sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0, "corrupt database", P4_STATIC); sqlite3VdbeJumpHere(v, i); } } |
︙ | ︙ |
Changes to src/vacuum.c.
︙ | ︙ | |||
220 221 222 223 224 225 226 | /* Begin a transaction and take an exclusive lock on the main database ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below, ** to ensure that we do not try to change the page-size on a WAL database. */ rc = execSql(db, pzErrMsg, "BEGIN"); if( rc!=SQLITE_OK ) goto end_of_vacuum; | | | 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | /* Begin a transaction and take an exclusive lock on the main database ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below, ** to ensure that we do not try to change the page-size on a WAL database. */ rc = execSql(db, pzErrMsg, "BEGIN"); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeBeginTrans(pMain, 2, 0); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Do not attempt to change the page size for a WAL database */ if( sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain)) ==PAGER_JOURNALMODE_WAL ){ db->nextPagesize = 0; } |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
911 912 913 914 915 916 917 918 919 920 921 922 923 924 | ** Check the value in register P3. If it is NULL then Halt using ** parameter P1, P2, and P4 as if this were a Halt instruction. If the ** value in register P3 is not NULL, then this routine is a no-op. ** The P5 parameter should be 1. */ case OP_HaltIfNull: { /* in3 */ pIn3 = &aMem[pOp->p3]; if( (pIn3->flags & MEM_Null)==0 ) break; /* Fall through into OP_Halt */ } /* Opcode: Halt P1 P2 * P4 P5 ** ** Exit immediately. All open cursors, etc are closed | > > > | 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 | ** Check the value in register P3. If it is NULL then Halt using ** parameter P1, P2, and P4 as if this were a Halt instruction. If the ** value in register P3 is not NULL, then this routine is a no-op. ** The P5 parameter should be 1. */ case OP_HaltIfNull: { /* in3 */ pIn3 = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } #endif if( (pIn3->flags & MEM_Null)==0 ) break; /* Fall through into OP_Halt */ } /* Opcode: Halt P1 P2 * P4 P5 ** ** Exit immediately. All open cursors, etc are closed |
︙ | ︙ | |||
950 951 952 953 954 955 956 957 958 959 960 961 962 963 | ** is the same as executing Halt. */ case OP_Halt: { VdbeFrame *pFrame; int pcx; pcx = (int)(pOp - aOp); if( pOp->p1==SQLITE_OK && p->pFrame ){ /* Halt the sub-program. Return control to the parent frame. */ pFrame = p->pFrame; p->pFrame = pFrame->pParent; p->nFrame--; sqlite3VdbeSetChanges(db, p->nChange); pcx = sqlite3VdbeFrameRestore(pFrame); | > > > | 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 | ** is the same as executing Halt. */ case OP_Halt: { VdbeFrame *pFrame; int pcx; pcx = (int)(pOp - aOp); #ifdef SQLITE_DEBUG if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } #endif if( pOp->p1==SQLITE_OK && p->pFrame ){ /* Halt the sub-program. Return control to the parent frame. */ pFrame = p->pFrame; p->pFrame = pFrame->pParent; p->nFrame--; sqlite3VdbeSetChanges(db, p->nChange); pcx = sqlite3VdbeFrameRestore(pFrame); |
︙ | ︙ | |||
3211 3212 3213 3214 3215 3216 3217 | ** if the schema generation counter in P4 differs from the current ** generation counter, then an SQLITE_SCHEMA error is raised and execution ** halts. The sqlite3_step() wrapper function might then reprepare the ** statement and rerun it from the beginning. */ case OP_Transaction: { Btree *pBt; | | | | | 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 | ** if the schema generation counter in P4 differs from the current ** generation counter, then an SQLITE_SCHEMA error is raised and execution ** halts. The sqlite3_step() wrapper function might then reprepare the ** statement and rerun it from the beginning. */ case OP_Transaction: { Btree *pBt; int iMeta = 0; int iGen = 0; assert( p->bIsReader ); assert( p->readOnly==0 || pOp->p2==0 ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ rc = SQLITE_READONLY; goto abort_due_to_error; } pBt = db->aDb[pOp->p1].pBt; if( pBt ){ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); testcase( rc==SQLITE_BUSY_SNAPSHOT ); testcase( rc==SQLITE_BUSY_RECOVERY ); if( rc!=SQLITE_OK ){ if( (rc&0xff)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); p->rc = rc; goto vdbe_return; |
︙ | ︙ | |||
3264 3265 3266 3267 3268 3269 3270 | } /* Gather the schema version number for checking: ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema ** version is checked to ensure that the schema has not changed since the ** SQL statement was prepared. */ | < < < | 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 | } /* Gather the schema version number for checking: ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema ** version is checked to ensure that the schema has not changed since the ** SQL statement was prepared. */ iGen = db->aDb[pOp->p1].pSchema->iGeneration; } assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); /* If the schema-cookie from the database file matches the cookie ** stored with the in-memory representation of the schema, do |
︙ | ︙ | |||
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 | ** size, and so forth. P1==0 is the main database file and P1==1 is the ** database file used to store temporary tables. ** ** A transaction must be started before executing this opcode. */ case OP_SetCookie: { Db *pDb; assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); | > > | 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 | ** size, and so forth. P1==0 is the main database file and P1==1 is the ** database file used to store temporary tables. ** ** A transaction must be started before executing this opcode. */ case OP_SetCookie: { Db *pDb; sqlite3VdbeIncrWriteCounter(p, 0); assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); |
︙ | ︙ | |||
3389 3390 3391 3392 3393 3394 3395 | ** P2 in a database file. The database file is determined by P3. ** P3==0 means the main database, P3==1 means the database used for ** temporary tables, and P3>1 means used the corresponding attached ** database. Give the new cursor an identifier of P1. The P1 ** values need not be contiguous but all P1 values should be small integers. ** It is an error for P1 to be negative. ** | < | | > | | < < < < < | > | | > | | | | | | | > > > > > > > > | | | > | | > | > > > > > > > > > > | > > > | | < | | 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 | ** P2 in a database file. The database file is determined by P3. ** P3==0 means the main database, P3==1 means the database used for ** temporary tables, and P3>1 means used the corresponding attached ** database. Give the new cursor an identifier of P1. The P1 ** values need not be contiguous but all P1 values should be small integers. ** It is an error for P1 to be negative. ** ** Allowed P5 bits: ** <ul> ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT ** of OP_SeekLE/OP_IdxGT) ** </ul> ** ** The P4 value may be either an integer (P4_INT32) or a pointer to ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo ** object, then table being opened must be an [index b-tree] where the ** KeyInfo object defines the content and collating ** sequence of that index b-tree. Otherwise, if P4 is an integer ** value, then the table being opened must be a [table b-tree] with a ** number of columns no less than the value of P4. ** ** See also: OpenWrite, ReopenIdx */ /* Opcode: ReopenIdx P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** The ReopenIdx opcode works like OP_OpenRead except that it first ** checks to see if the cursor on P1 is already open on the same ** b-tree and if it is this opcode becomes a no-op. In other words, ** if the cursor is already open, do not reopen it. ** ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must ** be the same as every other ReopenIdx or OpenRead for the same cursor ** number. ** ** Allowed P5 bits: ** <ul> ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT ** of OP_SeekLE/OP_IdxGT) ** </ul> ** ** See also: OP_OpenRead, OP_OpenWrite */ /* Opcode: OpenWrite P1 P2 P3 P4 P5 ** Synopsis: root=P2 iDb=P3 ** ** Open a read/write cursor named P1 on the table or index whose root ** page is P2 (or whose root page is held in register P2 if the ** OPFLAG_P2ISREG bit is set in P5 - see below). ** ** The P4 value may be either an integer (P4_INT32) or a pointer to ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo ** object, then table being opened must be an [index b-tree] where the ** KeyInfo object defines the content and collating ** sequence of that index b-tree. Otherwise, if P4 is an integer ** value, then the table being opened must be a [table b-tree] with a ** number of columns no less than the value of P4. ** ** Allowed P5 bits: ** <ul> ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT ** of OP_SeekLE/OP_IdxGT) ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek ** and subsequently delete entries in an index btree. This is a ** hint to the storage engine that the storage engine is allowed to ** ignore. The hint is not used by the official SQLite b*tree storage ** engine, but is used by COMDB2. ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 ** as the root page, not the value of P2 itself. ** </ul> ** ** This instruction works like OpenRead except that it opens the cursor ** in read/write mode. ** ** See also: OP_OpenRead, OP_ReopenIdx */ case OP_ReopenIdx: { int nField; KeyInfo *pKeyInfo; int p2; int iDb; int wrFlag; |
︙ | ︙ | |||
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 | } }else{ wrFlag = 0; } if( pOp->p5 & OPFLAG_P2ISREG ){ assert( p2>0 ); assert( p2<=(p->nMem+1 - p->nCursor) ); pIn2 = &aMem[p2]; assert( memIsValid(pIn2) ); assert( (pIn2->flags & MEM_Int)!=0 ); sqlite3VdbeMemIntegerify(pIn2); p2 = (int)pIn2->u.i; /* The p2 value always comes from a prior OP_CreateBtree opcode and ** that opcode will always set the p2 value to 2 or more or else fail. | > | 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 | } }else{ wrFlag = 0; } if( pOp->p5 & OPFLAG_P2ISREG ){ assert( p2>0 ); assert( p2<=(p->nMem+1 - p->nCursor) ); assert( pOp->opcode==OP_OpenWrite ); pIn2 = &aMem[p2]; assert( memIsValid(pIn2) ); assert( (pIn2->flags & MEM_Int)!=0 ); sqlite3VdbeMemIntegerify(pIn2); p2 = (int)pIn2->u.i; /* The p2 value always comes from a prior OP_CreateBtree opcode and ** that opcode will always set the p2 value to 2 or more or else fail. |
︙ | ︙ | |||
3625 3626 3627 3628 3629 3630 3631 | pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->isEphemeral = 1; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); if( rc==SQLITE_OK ){ | | | 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 | pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->isEphemeral = 1; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); } if( rc==SQLITE_OK ){ /* If a transient index is required, create it by calling ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before ** opening it. If a transient table is required, just use the ** automatically created table with root-page 1 (an BLOB_INTKEY table). */ |
︙ | ︙ | |||
4314 4315 4316 4317 4318 4319 4320 | VdbeFrame *pFrame; /* Root frame of VDBE */ v = 0; res = 0; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; | < < < < > | 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 | VdbeFrame *pFrame; /* Root frame of VDBE */ v = 0; res = 0; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->isTable ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); { /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. ** ** First we attempt to find the largest existing rowid and add one |
︙ | ︙ | |||
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 | pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); REGISTER_TRACE(pOp->p2, pData); if( pOp->opcode==OP_Insert ){ pKey = &aMem[pOp->p3]; assert( pKey->flags & MEM_Int ); assert( memIsValid(pKey) ); REGISTER_TRACE(pOp->p3, pKey); x.nKey = pKey->u.i; | > | 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 | pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); REGISTER_TRACE(pOp->p2, pData); sqlite3VdbeIncrWriteCounter(p, pC); if( pOp->opcode==OP_Insert ){ pKey = &aMem[pOp->p3]; assert( pKey->flags & MEM_Int ); assert( memIsValid(pKey) ); REGISTER_TRACE(pOp->p3, pKey); x.nKey = pKey->u.i; |
︙ | ︙ | |||
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 | opflags = pOp->p2; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->deferredMoveto==0 ); #ifdef SQLITE_DEBUG if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ /* If p5 is zero, the seek operation that positioned the cursor prior to ** OP_Delete will have also set the pC->movetoTarget field to the rowid of ** the row that is being deleted */ i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); | > | 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 | opflags = pOp->p2; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->deferredMoveto==0 ); sqlite3VdbeIncrWriteCounter(p, pC); #ifdef SQLITE_DEBUG if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ /* If p5 is zero, the seek operation that positioned the cursor prior to ** OP_Delete will have also set the pC->movetoTarget field to the rowid of ** the row that is being deleted */ i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); |
︙ | ︙ | |||
4769 4770 4771 4772 4773 4774 4775 | ** ** If cursor P1 is an index, then the content is the key of the row. ** If cursor P2 is a table, then the content extracted is the data. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. ** | | | | 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 | ** ** If cursor P1 is an index, then the content is the key of the row. ** If cursor P2 is a table, then the content extracted is the data. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. ** ** If P3!=0 then this opcode is allowed to make an ephemeral pointer ** into the database page. That means that the content of the output ** register will be invalidated as soon as the cursor moves - including ** moves caused by other cursors that "save" the current cursors ** position in order that they can write to the same table. If P3==0 ** then a copy of the data is made into memory. P3!=0 is faster, but ** P3==0 is safer. ** ** If P3!=0 then the content of the P2 register is unsuitable for use ** in OP_Result and any OP_Result will invalidate the P2 register content. ** The P2 register content is invalidated by opcodes like OP_Function or |
︙ | ︙ | |||
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 | case OP_SorterInsert: /* in2 */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; BtreePayload x; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); assert( pC->isTable==0 ); | > | 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 | case OP_SorterInsert: /* in2 */ case OP_IdxInsert: { /* in2 */ VdbeCursor *pC; BtreePayload x; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; sqlite3VdbeIncrWriteCounter(p, pC); assert( pC!=0 ); assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); assert( pC->isTable==0 ); |
︙ | ︙ | |||
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 | assert( pOp->p3>0 ); assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); pCrsr = pC->uc.pCursor; assert( pCrsr!=0 ); assert( pOp->p5==0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; r.default_rc = 0; r.aMem = &aMem[pOp->p2]; | > | 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 | assert( pOp->p3>0 ); assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); sqlite3VdbeIncrWriteCounter(p, pC); pCrsr = pC->uc.pCursor; assert( pCrsr!=0 ); assert( pOp->p5==0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; r.default_rc = 0; r.aMem = &aMem[pOp->p2]; |
︙ | ︙ | |||
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 | ** ** See also: Clear */ case OP_Destroy: { /* out2 */ int iMoved; int iDb; assert( p->readOnly==0 ); assert( pOp->p1>1 ); pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Null; if( db->nVdbeRead > db->nVDestroy+1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; | > | 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 | ** ** See also: Clear */ case OP_Destroy: { /* out2 */ int iMoved; int iDb; sqlite3VdbeIncrWriteCounter(p, 0); assert( p->readOnly==0 ); assert( pOp->p1>1 ); pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Null; if( db->nVdbeRead > db->nVDestroy+1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; |
︙ | ︙ | |||
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 | ** also incremented by the number of rows in the table being cleared. ** ** See also: Destroy */ case OP_Clear: { int nChange; nChange = 0; assert( p->readOnly==0 ); assert( DbMaskTest(p->btreeMask, pOp->p2) ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) ); if( pOp->p3 ){ | > | 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 | ** also incremented by the number of rows in the table being cleared. ** ** See also: Destroy */ case OP_Clear: { int nChange; sqlite3VdbeIncrWriteCounter(p, 0); nChange = 0; assert( p->readOnly==0 ); assert( DbMaskTest(p->btreeMask, pOp->p2) ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) ); if( pOp->p3 ){ |
︙ | ︙ | |||
5585 5586 5587 5588 5589 5590 5591 | /* Opcode: CreateBtree P1 P2 P3 * * ** Synopsis: r[P2]=root iDb=P1 flags=P3 ** ** Allocate a new b-tree in the main database file if P1==0 or in the ** TEMP database file if P1==1 or in an attached database if ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table | | > > | 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 | /* Opcode: CreateBtree P1 P2 P3 * * ** Synopsis: r[P2]=root iDb=P1 flags=P3 ** ** Allocate a new b-tree in the main database file if P1==0 or in the ** TEMP database file if P1==1 or in an attached database if ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. ** The root page number of the new b-tree is stored in register P2. */ case OP_CreateBtree: { /* out2 */ int pgno; Db *pDb; sqlite3VdbeIncrWriteCounter(p, 0); pOut = out2Prerelease(p, pOp); pgno = 0; assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); if( rc ) goto abort_due_to_error; pOut->u.i = pgno; break; } /* Opcode: SqlExec * * * P4 * ** ** Run the SQL statement or statements specified in the P4 string. */ case OP_SqlExec: { sqlite3VdbeIncrWriteCounter(p, 0); db->nSqlExec++; rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); db->nSqlExec--; if( rc ) goto abort_due_to_error; break; } |
︙ | ︙ | |||
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 | ** Remove the internal (in-memory) data structures that describe ** the table named P4 in database P1. This is called after a table ** is dropped from disk (using the Destroy opcode) in order to keep ** the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTable: { sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropIndex P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the index named P4 in database P1. This is called after an index ** is dropped from disk (using the Destroy opcode) ** in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropIndex: { sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropTrigger P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the trigger named P4 in database P1. This is called after a trigger ** is dropped from disk (using the Destroy opcode) in order to keep ** the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTrigger: { sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); break; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* Opcode: IntegrityCk P1 P2 P3 P4 P5 | > > > | 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 | ** Remove the internal (in-memory) data structures that describe ** the table named P4 in database P1. This is called after a table ** is dropped from disk (using the Destroy opcode) in order to keep ** the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTable: { sqlite3VdbeIncrWriteCounter(p, 0); sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropIndex P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the index named P4 in database P1. This is called after an index ** is dropped from disk (using the Destroy opcode) ** in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropIndex: { sqlite3VdbeIncrWriteCounter(p, 0); sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropTrigger P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe ** the trigger named P4 in database P1. This is called after a trigger ** is dropped from disk (using the Destroy opcode) in order to keep ** the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTrigger: { sqlite3VdbeIncrWriteCounter(p, 0); sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); break; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* Opcode: IntegrityCk P1 P2 P3 P4 P5 |
︙ | ︙ | |||
6780 6781 6782 6783 6784 6785 6786 | ** ** Store in register P3 the value of the P2-th column of ** the current row of the virtual-table of cursor P1. ** ** If the VColumn opcode is being used to fetch the value of ** an unchanging column during an UPDATE operation, then the P5 ** value is 1. Otherwise, P5 is 0. The P5 value is returned | | | 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 | ** ** Store in register P3 the value of the P2-th column of ** the current row of the virtual-table of cursor P1. ** ** If the VColumn opcode is being used to fetch the value of ** an unchanging column during an UPDATE operation, then the P5 ** value is 1. Otherwise, P5 is 0. The P5 value is returned ** by sqlite3_vtab_nochange() routine and can be used ** by virtual table implementations to return special "no-change" ** marks which can be more efficient, depending on the virtual table. */ case OP_VColumn: { sqlite3_vtab *pVtab; const sqlite3_module *pModule; Mem *pDest; |
︙ | ︙ | |||
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 | Mem **apArg; Mem *pX; assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace ); assert( p->readOnly==0 ); pVtab = pOp->p4.pVtab->pVtab; if( pVtab==0 || NEVER(pVtab->pModule==0) ){ rc = SQLITE_LOCKED; goto abort_due_to_error; } pModule = pVtab->pModule; nArg = pOp->p2; | > | 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 | Mem **apArg; Mem *pX; assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace ); assert( p->readOnly==0 ); sqlite3VdbeIncrWriteCounter(p, 0); pVtab = pOp->p4.pVtab->pVtab; if( pVtab==0 || NEVER(pVtab->pModule==0) ){ rc = SQLITE_LOCKED; goto abort_due_to_error; } pModule = pVtab->pModule; nArg = pOp->p2; |
︙ | ︙ | |||
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 | assert( pC->eCurType==CURTYPE_BTREE ); sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, pOp->p4.pExpr, aMem); } break; } #endif /* SQLITE_ENABLE_CURSOR_HINTS */ /* Opcode: Noop * * * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ /* ** The magic Explain opcode are only inserted when explain==2 (which ** is to say when the EXPLAIN QUERY PLAN syntax is used.) ** This opcode records information from the optimizer. It is the ** the same as a no-op. This opcodesnever appears in a real VM program. */ | > > > > > > > > > > > > > > > > | > | 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 | assert( pC->eCurType==CURTYPE_BTREE ); sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, pOp->p4.pExpr, aMem); } break; } #endif /* SQLITE_ENABLE_CURSOR_HINTS */ #ifdef SQLITE_DEBUG /* Opcode: Abortable * * * * * ** ** Verify that an Abort can happen. Assert if an Abort at this point ** might cause database corruption. This opcode only appears in debugging ** builds. ** ** An Abort is safe if either there have been no writes, or if there is ** an active statement journal. */ case OP_Abortable: { sqlite3VdbeAssertAbortable(p); break; } #endif /* Opcode: Noop * * * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ /* ** The magic Explain opcode are only inserted when explain==2 (which ** is to say when the EXPLAIN QUERY PLAN syntax is used.) ** This opcode records information from the optimizer. It is the ** the same as a no-op. This opcodesnever appears in a real VM program. */ default: { /* This is really OP_Noop, OP_Explain */ assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); break; } /***************************************************************************** ** The cases of the switch statement above this line should all be indented ** by 6 spaces. But the left-most 6 spaces have been removed to improve the ** readability. From this point on down, the normal indentation rules are |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
193 194 195 196 197 198 199 200 201 202 203 204 205 206 | #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N); void sqlite3VdbeVerifyNoResultRow(Vdbe *p); #else # define sqlite3VdbeVerifyNoMallocRequired(A,B) # define sqlite3VdbeVerifyNoResultRow(A) #endif VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno); #ifndef SQLITE_OMIT_EXPLAIN void sqlite3VdbeExplain(Parse*,u8,const char*,...); void sqlite3VdbeExplainPop(Parse*); int sqlite3VdbeExplainParent(Parse*); # define ExplainQueryPlan(P) sqlite3VdbeExplain P # define ExplainQueryPlanPop(P) sqlite3VdbeExplainPop(P) | > > > > > | 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N); void sqlite3VdbeVerifyNoResultRow(Vdbe *p); #else # define sqlite3VdbeVerifyNoMallocRequired(A,B) # define sqlite3VdbeVerifyNoResultRow(A) #endif #if defined(SQLITE_DEBUG) void sqlite3VdbeVerifyAbortable(Vdbe *p, int); #else # define sqlite3VdbeVerifyAbortable(A,B) #endif VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno); #ifndef SQLITE_OMIT_EXPLAIN void sqlite3VdbeExplain(Parse*,u8,const char*,...); void sqlite3VdbeExplainPop(Parse*); int sqlite3VdbeExplainParent(Parse*); # define ExplainQueryPlan(P) sqlite3VdbeExplain P # define ExplainQueryPlanPop(P) sqlite3VdbeExplainPop(P) |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
375 376 377 378 379 380 381 382 383 384 385 386 387 388 | VList *pVList; /* Name of variables */ #ifndef SQLITE_OMIT_TRACE i64 startTime; /* Time when query started - used for profiling */ #endif int nOp; /* Number of instructions in the program */ #ifdef SQLITE_DEBUG int rcApp; /* errcode set by sqlite3_result_error_code() */ #endif u16 nResColumn; /* Number of columns in one row of the result set */ u8 errorAction; /* Recovery action to do in case of an error */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ u8 prepFlags; /* SQLITE_PREPARE_* flags */ bft expired:1; /* True if the VM needs to be recompiled */ bft doingRerun:1; /* True if rerunning after an auto-reprepare */ | > | 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 | VList *pVList; /* Name of variables */ #ifndef SQLITE_OMIT_TRACE i64 startTime; /* Time when query started - used for profiling */ #endif int nOp; /* Number of instructions in the program */ #ifdef SQLITE_DEBUG int rcApp; /* errcode set by sqlite3_result_error_code() */ u32 nWrite; /* Number of write operations that have occurred */ #endif u16 nResColumn; /* Number of columns in one row of the result set */ u8 errorAction; /* Recovery action to do in case of an error */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ u8 prepFlags; /* SQLITE_PREPARE_* flags */ bft expired:1; /* True if the VM needs to be recompiled */ bft doingRerun:1; /* True if rerunning after an auto-reprepare */ |
︙ | ︙ | |||
509 510 511 512 513 514 515 516 517 518 519 520 521 522 | void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *); void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *); int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *); int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *); int sqlite3VdbeSorterRewind(const VdbeCursor *, int *); int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *); int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *); #if !defined(SQLITE_OMIT_SHARED_CACHE) void sqlite3VdbeEnter(Vdbe*); #else # define sqlite3VdbeEnter(X) #endif | > > > > > > > > | 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 | void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *); void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *); int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *); int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *); int sqlite3VdbeSorterRewind(const VdbeCursor *, int *); int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *); int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *); #ifdef SQLITE_DEBUG void sqlite3VdbeIncrWriteCounter(Vdbe*, VdbeCursor*); void sqlite3VdbeAssertAbortable(Vdbe*); #else # define sqlite3VdbeIncrWriteCounter(V,C) # define sqlite3VdbeAssertAbortable(V) #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) void sqlite3VdbeEnter(Vdbe*); #else # define sqlite3VdbeEnter(X) #endif |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
783 784 785 786 787 788 789 | if( *piTime==0 ){ rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); if( rc ) *piTime = 0; } return *piTime; } | < < < < < < < < < < < < < < < < < < < < < < | 783 784 785 786 787 788 789 790 791 792 793 794 795 796 | if( *piTime==0 ){ rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); if( rc ) *piTime = 0; } return *piTime; } /* ** Create a new aggregate context for p and return a pointer to ** its pMem->z element. */ static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ Mem *pMem = p->pMem; assert( (pMem->flags & MEM_Agg)==0 ); |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
599 600 601 602 603 604 605 606 607 608 609 610 611 612 | ** true for this case to prevent the assert() in the callers frame ** from failing. */ return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter || (hasCreateTable && hasInitCoroutine) ); } #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ /* ** This routine is called after all opcodes have been inserted. It loops ** through all the opcodes and fixes up some details. ** ** (1) For each jump instruction with a negative P2 value (a label) ** resolve the P2 value to an actual address. ** | > > > > > > > > > > > > > > > > > > > > > > > > > > | 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 | ** true for this case to prevent the assert() in the callers frame ** from failing. */ return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter || (hasCreateTable && hasInitCoroutine) ); } #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ #ifdef SQLITE_DEBUG /* ** Increment the nWrite counter in the VDBE if the cursor is not an ** ephemeral cursor, or if the cursor argument is NULL. */ void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ if( pC==0 || (pC->eCurType!=CURTYPE_SORTER && pC->eCurType!=CURTYPE_PSEUDO && !pC->isEphemeral) ){ p->nWrite++; } } #endif #ifdef SQLITE_DEBUG /* ** Assert if an Abort at this point in time might result in a corrupt ** database. */ void sqlite3VdbeAssertAbortable(Vdbe *p){ assert( p->nWrite==0 || p->usesStmtJournal ); } #endif /* ** This routine is called after all opcodes have been inserted. It loops ** through all the opcodes and fixes up some details. ** ** (1) For each jump instruction with a negative P2 value (a label) ** resolve the P2 value to an actual address. ** |
︙ | ︙ | |||
758 759 760 761 762 763 764 765 766 767 768 769 770 771 | int i; for(i=0; i<p->nOp; i++){ assert( p->aOp[i].opcode!=OP_ResultRow ); } } #endif /* ** This function returns a pointer to the array of opcodes associated with ** the Vdbe passed as the first argument. It is the callers responsibility ** to arrange for the returned array to be eventually freed using the ** vdbeFreeOpArray() function. ** ** Before returning, *pnOp is set to the number of entries in the returned | > > > > > > > > > > > | 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 | int i; for(i=0; i<p->nOp; i++){ assert( p->aOp[i].opcode!=OP_ResultRow ); } } #endif /* ** Generate code (a single OP_Abortable opcode) that will ** verify that the VDBE program can safely call Abort in the current ** context. */ #if defined(SQLITE_DEBUG) void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); } #endif /* ** This function returns a pointer to the array of opcodes associated with ** the Vdbe passed as the first argument. It is the callers responsibility ** to arrange for the returned array to be eventually freed using the ** vdbeFreeOpArray() function. ** ** Before returning, *pnOp is set to the number of entries in the returned |
︙ | ︙ | |||
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 | if( p->aMem ){ for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); } #endif sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; p->pResultSet = 0; /* Save profiling information from this VDBE run. */ #ifdef VDBE_PROFILE { FILE *out = fopen("vdbe_profile.out", "a"); if( out ){ | > > > | 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 | if( p->aMem ){ for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); } #endif sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; p->pResultSet = 0; #ifdef SQLITE_DEBUG p->nWrite = 0; #endif /* Save profiling information from this VDBE run. */ #ifdef VDBE_PROFILE { FILE *out = fopen("vdbe_profile.out", "a"); if( out ){ |
︙ | ︙ | |||
3933 3934 3935 3936 3937 3938 3939 | if( x<r ) return -1; if( x>r ) return +1; return 0; }else{ i64 y; double s; if( r<-9223372036854775808.0 ) return +1; | | | < < < | 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 | if( x<r ) return -1; if( x>r ) return +1; return 0; }else{ i64 y; double s; if( r<-9223372036854775808.0 ) return +1; if( r>=9223372036854775808.0 ) return -1; y = (i64)r; if( i<y ) return -1; if( i>y ) return +1; s = (double)i; if( s<r ) return -1; if( s>r ) return +1; return 0; } } |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
796 797 798 799 800 801 802 | }else{ pMem->u.i = val; pMem->flags = MEM_Int; } } /* A no-op destructor */ | | | 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 | }else{ pMem->u.i = val; pMem->flags = MEM_Int; } } /* A no-op destructor */ void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } /* ** Set the value stored in *pMem should already be a NULL. ** Also store a pointer to go with it. */ void sqlite3VdbeMemSetPointer( Mem *pMem, |
︙ | ︙ |
Changes to src/vtab.c.
︙ | ︙ | |||
1045 1046 1047 1048 1049 1050 1051 | Table *pTab; sqlite3_vtab *pVtab; sqlite3_module *pMod; void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; void *pArg = 0; FuncDef *pNew; int rc = 0; | < < < | > > > > > > > | < | | < < > > | 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 | Table *pTab; sqlite3_vtab *pVtab; sqlite3_module *pMod; void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; void *pArg = 0; FuncDef *pNew; int rc = 0; /* Check to see the left operand is a column in a virtual table */ if( NEVER(pExpr==0) ) return pDef; if( pExpr->op!=TK_COLUMN ) return pDef; pTab = pExpr->pTab; if( pTab==0 ) return pDef; if( !IsVirtual(pTab) ) return pDef; pVtab = sqlite3GetVTable(db, pTab)->pVtab; assert( pVtab!=0 ); assert( pVtab->pModule!=0 ); pMod = (sqlite3_module *)pVtab->pModule; if( pMod->xFindFunction==0 ) return pDef; /* Call the xFindFunction method on the virtual table implementation ** to see if the implementation wants to overload this function. ** ** Though undocumented, we have historically always invoked xFindFunction ** with an all lower-case function name. Continue in this tradition to ** avoid any chance of an incompatibility. */ #ifdef SQLITE_DEBUG { int i; for(i=0; pDef->zName[i]; i++){ unsigned char x = (unsigned char)pDef->zName[i]; assert( x==sqlite3UpperToLower[x] ); } } #endif rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg); if( rc==0 ){ return pDef; } /* Create a new ephemeral function definition for the overloaded ** function */ pNew = sqlite3DbMallocZero(db, sizeof(*pNew) |
︙ | ︙ |
Changes to test/aggnested.test.
︙ | ︙ | |||
61 62 63 64 65 66 67 | NULL,B4 INTEGER NOT NULL,PRIMARY KEY(B1)); REPLACE INTO t2 VALUES(1,88,888,8888); REPLACE INTO t2 VALUES(2,99,999,9999); SELECT (SELECT GROUP_CONCAT(CASE WHEN a1=1 THEN'A' ELSE 'B' END) FROM t2), t1.* FROM t1; } | | | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | NULL,B4 INTEGER NOT NULL,PRIMARY KEY(B1)); REPLACE INTO t2 VALUES(1,88,888,8888); REPLACE INTO t2 VALUES(2,99,999,9999); SELECT (SELECT GROUP_CONCAT(CASE WHEN a1=1 THEN'A' ELSE 'B' END) FROM t2), t1.* FROM t1; } } {A,B,B 1 11 111 1111} db2 close ##################### Test cases for ticket [bfbf38e5e9956ac69f] ############ # # This first test case is the original problem report: do_test aggnested-3.0 { db eval { |
︙ | ︙ |
Changes to test/autoinc.test.
︙ | ︙ | |||
20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # If the library is not compiled with autoincrement support then # skip all tests in this file. # ifcapable {!autoinc} { finish_test return } sqlite3_db_config_lookaside db 0 0 0 # The database is initially empty. # do_test autoinc-1.1 { execsql { | > > > > > | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | # If the library is not compiled with autoincrement support then # skip all tests in this file. # ifcapable {!autoinc} { finish_test return } if {[permutation]=="inmemory_journal"} { finish_test return } sqlite3_db_config_lookaside db 0 0 0 # The database is initially empty. # do_test autoinc-1.1 { execsql { |
︙ | ︙ | |||
679 680 681 682 683 684 685 686 687 | # do_execsql_test autoinc-11.1 { CREATE TABLE t11(a INTEGER PRIMARY KEY AUTOINCREMENT,b UNIQUE); INSERT INTO t11(a,b) VALUES(2,3),(5,6),(4,3),(1,2) ON CONFLICT(b) DO UPDATE SET a=a+1000; SELECT seq FROM sqlite_sequence WHERE name='t11'; } {5} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 | # do_execsql_test autoinc-11.1 { CREATE TABLE t11(a INTEGER PRIMARY KEY AUTOINCREMENT,b UNIQUE); INSERT INTO t11(a,b) VALUES(2,3),(5,6),(4,3),(1,2) ON CONFLICT(b) DO UPDATE SET a=a+1000; SELECT seq FROM sqlite_sequence WHERE name='t11'; } {5} # 2018-05-23 ticket d8dc2b3a58cd5dc2918a1d4acbba4676a23ada4c # Does not crash if the sqlite_sequence table schema is missing # or corrupt. # do_test autoinc-12.1 { db close forcedelete test.db sqlite3 db test.db db eval { CREATE TABLE fake_sequence(name TEXT PRIMARY KEY,seq) WITHOUT ROWID; PRAGMA writable_schema=on; UPDATE sqlite_master SET sql=replace(sql,'fake_','sqlite_'), name='sqlite_sequence', tbl_name='sqlite_sequence' WHERE name='fake_sequence'; } db close sqlite3 db test.db set res [catch {db eval { CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT); INSERT INTO t1(b) VALUES('one'); }} msg] lappend res $msg } {1 {database disk image is malformed}} do_test autoinc-12.2 { db close forcedelete test.db sqlite3 db test.db db eval { CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT); INSERT INTO t1(b) VALUES('one'); PRAGMA writable_schema=on; UPDATE sqlite_master SET sql=replace(sql,'sqlite_','x_'), name='x_sequence', tbl_name='x_sequence' WHERE name='sqlite_sequence'; } db close sqlite3 db test.db set res [catch {db eval { INSERT INTO t1(b) VALUES('two'); }} msg] lappend res $msg } {1 {database disk image is malformed}} ifcapable vtab { set err "database disk image is malformed" } else { set err {malformed database schema (sqlite_sequence) - near "VIRTUAL": syntax error} } do_test autoinc-12.3 { db close forcedelete test.db sqlite3 db test.db db eval { CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT); INSERT INTO t1(b) VALUES('one'); PRAGMA writable_schema=on; UPDATE sqlite_master SET sql='CREATE VIRTUAL TABLE sqlite_sequence USING sqlite_dbpage' WHERE name='sqlite_sequence'; } db close sqlite3 db test.db set res [catch {db eval { INSERT INTO t1(b) VALUES('two'); }} msg] lappend res $msg } [list 1 $err] do_test autoinc-12.4 { db close forcedelete test.db sqlite3 db test.db db eval { CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT); INSERT INTO t1(b) VALUES('one'); CREATE TABLE fake(name TEXT PRIMARY KEY,seq) WITHOUT ROWID; } set root1 [db one {SELECT rootpage FROM sqlite_master WHERE name='sqlite_sequence'}] set root2 [db one {SELECT rootpage FROM sqlite_master WHERE name='fake'}] db eval { PRAGMA writable_schema=on; UPDATE sqlite_master SET rootpage=$root2 WHERE name='sqlite_sequence'; UPDATE sqlite_master SET rootpage=$root1 WHERE name='fake'; } db close sqlite3 db test.db set res [catch {db eval { INSERT INTO t1(b) VALUES('two'); }} msg] lappend res $msg } {1 {database disk image is malformed}} breakpoint do_test autoinc-12.5 { db close forcedelete test.db sqlite3 db test.db db eval { CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT); INSERT INTO t1(b) VALUES('one'); PRAGMA writable_schema=on; UPDATE sqlite_master SET sql='CREATE TABLE sqlite_sequence(x)' WHERE name='sqlite_sequence'; } db close sqlite3 db test.db set res [catch {db eval { INSERT INTO t1(b) VALUES('two'); }} msg] lappend res $msg } {1 {database disk image is malformed}} do_test autoinc-12.6 { db close forcedelete test.db sqlite3 db test.db db eval { CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT); INSERT INTO t1(b) VALUES('one'); PRAGMA writable_schema=on; UPDATE sqlite_master SET sql='CREATE TABLE sqlite_sequence(x,y INTEGER PRIMARY KEY)' WHERE name='sqlite_sequence'; } db close sqlite3 db test.db set res [catch {db eval { INSERT INTO t1(b) VALUES('two'),('three'),('four'); INSERT INTO t1(b) VALUES('five'); PRAGMA integrity_check; }} msg] lappend res $msg } {0 ok} do_test autoinc-12.7 { db close forcedelete test.db sqlite3 db test.db db eval { CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT); INSERT INTO t1(b) VALUES('one'); PRAGMA writable_schema=on; UPDATE sqlite_master SET sql='CREATE TABLE sqlite_sequence(y INTEGER PRIMARY KEY,x)' WHERE name='sqlite_sequence'; } db close sqlite3 db test.db set res [catch {db eval { INSERT INTO t1(b) VALUES('two'),('three'),('four'); INSERT INTO t1(b) VALUES('five'); PRAGMA integrity_check; }} msg] lappend res $msg } {0 ok} finish_test |
Changes to test/csv01.test.
︙ | ︙ | |||
143 144 145 146 147 148 149 150 151 | # 2018-04-24 # Memory leak reported on the sqlite-users mailing list by Ralf Junker. # do_catchsql_test 4.3 { CREATE VIRTUAL TABLE IF NOT EXISTS temp.t1 USING csv(filename='FileDoesNotExist.csv'); } {1 {cannot open 'FileDoesNotExist.csv' for reading}} finish_test | > > > > > > > > > | 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | # 2018-04-24 # Memory leak reported on the sqlite-users mailing list by Ralf Junker. # do_catchsql_test 4.3 { CREATE VIRTUAL TABLE IF NOT EXISTS temp.t1 USING csv(filename='FileDoesNotExist.csv'); } {1 {cannot open 'FileDoesNotExist.csv' for reading}} # 2018-06-02 # Problem with single-column CSV support reported on the mailing list # by Trent W. Buck. # do_execsql_test 4.4 { CREATE VIRTUAL TABLE temp.trent USING csv(data='1'); SELECT * FROM trent; } {1} finish_test |
Changes to test/e_fkey.test.
︙ | ︙ | |||
20 21 22 23 24 25 26 | # either SQLITE_OMIT_TRIGGER or SQLITE_OMIT_FOREIGN_KEY was defined # at build time). # set testdir [file dirname $argv0] source $testdir/tester.tcl | | > > > > > > > > > > > > > > > > > | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | # either SQLITE_OMIT_TRIGGER or SQLITE_OMIT_FOREIGN_KEY was defined # at build time). # set testdir [file dirname $argv0] source $testdir/tester.tcl proc eqp {sql {db db}} { uplevel [subst -nocommands { set eqpres [list] $db eval "$sql" { lappend eqpres [set detail] } set eqpres }] } proc do_detail_test {tn sql res} { set normalres [list {*}$res] uplevel [subst -nocommands { do_test $tn { eqp { $sql } } {$normalres} }] } ########################################################################### ### SECTION 2: Enabling Foreign Key Support ########################################################################### #------------------------------------------------------------------------- # EVIDENCE-OF: R-33710-56344 In order to use foreign key constraints in |
︙ | ︙ | |||
966 967 968 969 970 971 972 | trackid INTEGER, trackname TEXT, trackartist INTEGER, FOREIGN KEY(trackartist) REFERENCES artist(artistid) ); } } {} | | | | | | | | 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 | trackid INTEGER, trackname TEXT, trackartist INTEGER, FOREIGN KEY(trackartist) REFERENCES artist(artistid) ); } } {} do_detail_test e_fkey-25.2 { PRAGMA foreign_keys = OFF; EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1; EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?; } { {SCAN TABLE artist} {SCAN TABLE track} } do_detail_test e_fkey-25.3 { PRAGMA foreign_keys = ON; EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1; } { {SCAN TABLE artist} {SCAN TABLE track} } do_test e_fkey-25.4 { execsql { INSERT INTO artist VALUES(5, 'artist 5'); INSERT INTO artist VALUES(6, 'artist 6'); INSERT INTO artist VALUES(7, 'artist 7'); INSERT INTO track VALUES(1, 'track 1', 5); |
︙ | ︙ | |||
1093 1094 1095 1096 1097 1098 1099 | ); CREATE INDEX trackindex ON track(trackartist); } } {} do_test e_fkey-27.2 { eqp { INSERT INTO artist VALUES(?, ?) } } {} | | | | | | | | < | 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 | ); CREATE INDEX trackindex ON track(trackartist); } } {} do_test e_fkey-27.2 { eqp { INSERT INTO artist VALUES(?, ?) } } {} do_detail_test e_fkey-27.3 { EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ? } { {SCAN TABLE artist} {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)} {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)} } do_detail_test e_fkey-27.4 { EXPLAIN QUERY PLAN DELETE FROM artist } { {SCAN TABLE artist} {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)} } ########################################################################### ### SECTION 4.1: Composite Foreign Key Constraints ########################################################################### #------------------------------------------------------------------------- # Check that parent and child keys must have the same number of columns. |
︙ | ︙ |
Changes to test/e_select.test.
︙ | ︙ | |||
797 798 799 800 801 802 803 | do_select_tests e_select-4.1 { 1 "SELECT * FROM z1 LIMIT 1" {51.65 -59.58 belfries} 2 "SELECT * FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries {} 21} 3 "SELECT z1.* FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries} 4 "SELECT z2.* FROM z1,z2 LIMIT 1" {{} 21} 5 "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries} | | | 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 | do_select_tests e_select-4.1 { 1 "SELECT * FROM z1 LIMIT 1" {51.65 -59.58 belfries} 2 "SELECT * FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries {} 21} 3 "SELECT z1.* FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries} 4 "SELECT z2.* FROM z1,z2 LIMIT 1" {{} 21} 5 "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries} 6 "SELECT count(*), * FROM z1" {6 51.65 -59.58 belfries} 7 "SELECT max(a), * FROM z1" {63 63 born -26} 8 "SELECT *, min(a) FROM z1" {-5 {} 75 -5} 9 "SELECT *,* FROM z1,z2 LIMIT 1" { 51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21 } 10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" { |
︙ | ︙ | |||
935 936 937 938 939 940 941 | CREATE TABLE a2(one PRIMARY KEY, three); INSERT INTO a2 VALUES(1, 1); INSERT INTO a2 VALUES(3, 2); INSERT INTO a2 VALUES(6, 3); INSERT INTO a2 VALUES(10, 4); } {} do_select_tests e_select-4.6 { | | | | | | | | 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | CREATE TABLE a2(one PRIMARY KEY, three); INSERT INTO a2 VALUES(1, 1); INSERT INTO a2 VALUES(3, 2); INSERT INTO a2 VALUES(6, 3); INSERT INTO a2 VALUES(10, 4); } {} do_select_tests e_select-4.6 { 1 "SELECT one, two, count(*) FROM a1" {1 1 4} 2 "SELECT one, two, count(*) FROM a1 WHERE one<3" {1 1 2} 3 "SELECT one, two, count(*) FROM a1 WHERE one>3" {4 10 1} 4 "SELECT *, count(*) FROM a1 JOIN a2" {1 1 1 1 16} 5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {1 1 1 3} 6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {1 1 1 3} 7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 1 1} } # EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then # each non-aggregate expression is evaluated against a row consisting # entirely of NULL values. # do_select_tests e_select-4.7 { |
︙ | ︙ | |||
1124 1125 1126 1127 1128 1129 1130 | 1.2 "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y} 1.3 "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x} 1.4 "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4} 2.1 "SELECT up FROM c1 GROUP BY up HAVING down>10" {y} 2.2 "SELECT up FROM c1 GROUP BY up HAVING up='y'" {y} | | | 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 | 1.2 "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y} 1.3 "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x} 1.4 "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4} 2.1 "SELECT up FROM c1 GROUP BY up HAVING down>10" {y} 2.2 "SELECT up FROM c1 GROUP BY up HAVING up='y'" {y} 2.3 "SELECT i, j FROM c2 GROUP BY i>4 HAVING j>6" {5 10} } # EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then # evaluated once for each group of rows. # # EVIDENCE-OF: R-53735-47017 If the expression is an aggregate # expression, it is evaluated across all rows in the group. |
︙ | ︙ | |||
1150 1151 1152 1153 1154 1155 1156 | # arbitrarily chosen row from within the group. # # EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate # expression in the result-set, then all such expressions are evaluated # for the same row. # do_select_tests e_select-4.15 { | | | | | | | 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 | # arbitrarily chosen row from within the group. # # EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate # expression in the result-set, then all such expressions are evaluated # for the same row. # do_select_tests e_select-4.15 { 1 "SELECT i, j FROM c2 GROUP BY i%2" {2 1 1 0} 2 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {2 1 1 0} 3 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {} 4 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {} 5 "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)" {2 4 beryllium 2 1 hydrogen 1 3 lithium} } # EVIDENCE-OF: R-19334-12811 Each group of input dataset rows # contributes a single row to the set of result rows. # # EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the # DISTINCT keyword, the number of rows returned by an aggregate query |
︙ | ︙ |
Changes to test/json101.test.
︙ | ︙ | |||
779 780 781 782 783 784 785 786 787 788 | WHERE Z.value==t2.id); } {1 {{"items":[3,5]}} 3 {{"value":3}} 1 {{"items":[3,5]}} 5 {{"value":5}}} do_execsql_test json-13.110 { SELECT * FROM t2 CROSS JOIN t1 WHERE EXISTS(SELECT 1 FROM json_each(t1.json,'$.items') AS Z WHERE Z.value==t2.id); } {3 {{"value":3}} 1 {{"items":[3,5]}} 5 {{"value":5}} 1 {{"items":[3,5]}}} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 | WHERE Z.value==t2.id); } {1 {{"items":[3,5]}} 3 {{"value":3}} 1 {{"items":[3,5]}} 5 {{"value":5}}} do_execsql_test json-13.110 { SELECT * FROM t2 CROSS JOIN t1 WHERE EXISTS(SELECT 1 FROM json_each(t1.json,'$.items') AS Z WHERE Z.value==t2.id); } {3 {{"value":3}} 1 {{"items":[3,5]}} 5 {{"value":5}} 1 {{"items":[3,5]}}} # 2018-05-16 # Incorrect fullkey output from json_each() # when the input JSON is not an array or object. # do_execsql_test json-14.100 { SELECT fullkey FROM json_each('123'); } {$} do_execsql_test json-14.110 { SELECT fullkey FROM json_each('123.56'); } {$} do_execsql_test json-14.120 { SELECT fullkey FROM json_each('"hello"'); } {$} do_execsql_test json-14.130 { SELECT fullkey FROM json_each('null'); } {$} do_execsql_test json-14.140 { SELECT fullkey FROM json_tree('123'); } {$} do_execsql_test json-14.150 { SELECT fullkey FROM json_tree('123.56'); } {$} do_execsql_test json-14.160 { SELECT fullkey FROM json_tree('"hello"'); } {$} do_execsql_test json-14.170 { SELECT fullkey FROM json_tree('null'); } {$} finish_test |
Changes to test/malloc5.test.
︙ | ︙ | |||
170 171 172 173 174 175 176 | db eval {SELECT * FROM abc} { incr nRelease [sqlite3_release_memory] lappend data $a $b $c } execsql { COMMIT; } | | > > > | | 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | db eval {SELECT * FROM abc} { incr nRelease [sqlite3_release_memory] lappend data $a $b $c } execsql { COMMIT; } value_in_range $::pgalloc $::mrange $nRelease } [value_in_range $::pgalloc $::mrange] do_test malloc5-2.2.1 { set data } {1 2 3 4 5 6} do_test malloc5-3.1 { # Simple test to show that if two pagers are opened from within this # thread, memory is freed from both when sqlite3_release_memory() is # called. execsql { BEGIN; |
︙ | ︙ |
Changes to test/misc7.test.
︙ | ︙ | |||
266 267 268 269 270 271 272 | db close forcedelete test.db forcedelete test.db-journal sqlite3 db test.db ifcapable explain { | | > > | > | | | | | > | | | | | > | | | 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | db close forcedelete test.db forcedelete test.db-journal sqlite3 db test.db ifcapable explain { do_execsql_test misc7-14.0 { CREATE TABLE abc(a PRIMARY KEY, b, c); } do_eqp_test misc7-14.1 { SELECT * FROM abc AS t2 WHERE rowid = 1; } { QUERY PLAN `--SEARCH TABLE abc AS t2 USING INTEGER PRIMARY KEY (rowid=?) } do_eqp_test misc7-14.2 { SELECT * FROM abc AS t2 WHERE a = 1; } { QUERY PLAN `--SEARCH TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1 (a=?) } do_eqp_test misc7-14.3 { SELECT * FROM abc AS t2 ORDER BY a; } { QUERY PLAN `--SCAN TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1 } } db close forcedelete test.db forcedelete test.db-journal sqlite3 db test.db |
︙ | ︙ |
Changes to test/oserror.test.
︙ | ︙ | |||
51 52 53 54 55 56 57 | # a call to getcwd() may fail if there are no free file descriptors. So # an error may be reported for either open() or getcwd() here. # if {![clang_sanitize_address]} { do_test 1.1.1 { set ::log [list] list [catch { | | | | 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | # a call to getcwd() may fail if there are no free file descriptors. So # an error may be reported for either open() or getcwd() here. # if {![clang_sanitize_address]} { do_test 1.1.1 { set ::log [list] list [catch { for {set i 0} {$i < 20000} {incr i} { sqlite3 dbh_$i test.db -readonly 1 } } msg] $msg } {1 {unable to open database file}} do_test 1.1.2 { catch { for {set i 0} {$i < 20000} {incr i} { dbh_$i close } } } {1} do_re_test 1.1.3 { lindex $::log 0 } {^os_unix.c:\d+: \(\d+\) (open|getcwd)\(.*test.db\) - } } |
︙ | ︙ |
Changes to test/resetdb.test.
︙ | ︙ | |||
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | #*********************************************************************** # Test cases for SQLITE_DBCONFIG_RESET_DATABASE # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix resetdb ifcapable !vtab||!compound { finish_test return } # Create a sample database do_execsql_test 100 { PRAGMA page_size=4096; CREATE TABLE t1(a,b); WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20) INSERT INTO t1(a,b) SELECT x, randomblob(300) FROM c; CREATE INDEX t1a ON t1(a); CREATE INDEX t1b ON t1(b); SELECT sum(a), sum(length(b)) FROM t1; | > > > > > > > > > > > > > > > > > | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | #*********************************************************************** # Test cases for SQLITE_DBCONFIG_RESET_DATABASE # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix resetdb do_not_use_codec ifcapable !vtab||!compound { finish_test return } # In the "inmemory_journal" permutation, each new connection executes # "PRAGMA journal_mode = memory". This fails with SQLITE_BUSY if attempted # on a wal mode database with existing connections. For this and a few # other reasons, this test is not run as part of "inmemory_journal". # # Permutation "journaltest" does not support wal mode. # if {[permutation]=="inmemory_journal" || [permutation]=="journaltest" } { finish_test return } # Create a sample database do_execsql_test 100 { PRAGMA auto_vacuum = 0; PRAGMA page_size=4096; CREATE TABLE t1(a,b); WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20) INSERT INTO t1(a,b) SELECT x, randomblob(300) FROM c; CREATE INDEX t1a ON t1(a); CREATE INDEX t1b ON t1(b); SELECT sum(a), sum(length(b)) FROM t1; |
︙ | ︙ | |||
78 79 80 81 82 83 84 85 86 87 88 89 90 91 | # with a different page size and in WAL mode. # db close db2 close forcedelete test.db sqlite3 db test.db do_execsql_test 300 { PRAGMA page_size=8192; PRAGMA journal_mode=WAL; CREATE TABLE t1(a,b); WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20) INSERT INTO t1(a,b) SELECT x, randomblob(1300) FROM c; CREATE INDEX t1a ON t1(a); CREATE INDEX t1b ON t1(b); | > | 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | # with a different page size and in WAL mode. # db close db2 close forcedelete test.db sqlite3 db test.db do_execsql_test 300 { PRAGMA auto_vacuum = 0; PRAGMA page_size=8192; PRAGMA journal_mode=WAL; CREATE TABLE t1(a,b); WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20) INSERT INTO t1(a,b) SELECT x, randomblob(1300) FROM c; CREATE INDEX t1a ON t1(a); CREATE INDEX t1b ON t1(b); |
︙ | ︙ | |||
113 114 115 116 117 118 119 120 121 122 123 124 125 126 | } {1 {file is not a database}} do_test 330 { catchsql { PRAGMA quick_check } db2 } {1 {file is not a database}} # Reset the database yet again. Verify that the page size and # journal mode are preserved. # do_test 400 { sqlite3_db_config db RESET_DB 1 db eval VACUUM | > > | 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | } {1 {file is not a database}} do_test 330 { catchsql { PRAGMA quick_check } db2 } {1 {file is not a database}} db2 cache flush ;# Required by permutation "prepare". # Reset the database yet again. Verify that the page size and # journal mode are preserved. # do_test 400 { sqlite3_db_config db RESET_DB 1 db eval VACUUM |
︙ | ︙ |
Changes to test/select5.test.
︙ | ︙ | |||
150 151 152 153 154 155 156 | SELECT a, b FROM t2 GROUP BY a, b; } } {1 2 1 4 6 4} do_test select5-5.5 { execsql { SELECT a, b FROM t2 GROUP BY a; } | | | 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | SELECT a, b FROM t2 GROUP BY a, b; } } {1 2 1 4 6 4} do_test select5-5.5 { execsql { SELECT a, b FROM t2 GROUP BY a; } } {1 2 6 4} # Test rendering of columns for the GROUP BY clause. # do_test select5-5.11 { execsql { SELECT max(c), b*a, b, a FROM t2 GROUP BY b*a, b, a } |
︙ | ︙ |
Changes to test/speedtest1.c.
︙ | ︙ | |||
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 | ** A testset for the R-Tree virtual table */ void testset_rtree(int p1, int p2){ unsigned i, n; unsigned mxCoord; unsigned x0, x1, y0, y1, z0, z1; unsigned iStep; int *aCheck = sqlite3_malloc( sizeof(int)*g.szTest*500 ); mxCoord = 15000; | > | | 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 | ** A testset for the R-Tree virtual table */ void testset_rtree(int p1, int p2){ unsigned i, n; unsigned mxCoord; unsigned x0, x1, y0, y1, z0, z1; unsigned iStep; unsigned mxRowid; int *aCheck = sqlite3_malloc( sizeof(int)*g.szTest*500 ); mxCoord = 15000; mxRowid = n = g.szTest*500; speedtest1_begin_test(100, "%d INSERTs into an r-tree", n); speedtest1_exec("BEGIN"); speedtest1_exec("CREATE VIRTUAL TABLE rt1 USING rtree(id,x0,x1,y0,y1,z0,z1)"); speedtest1_prepare("INSERT INTO rt1(id,x0,x1,y0,y1,z0,z1)" "VALUES(?1,?2,?3,?4,?5,?6,?7)"); for(i=1; i<=n; i++){ twoCoords(p1, p2, mxCoord, &x0, &x1); |
︙ | ︙ | |||
1273 1274 1275 1276 1277 1278 1279 | speedtest1_end_test(); speedtest1_begin_test(101, "Copy from rtree to a regular table"); speedtest1_exec("CREATE TABLE t1(id INTEGER PRIMARY KEY,x0,x1,y0,y1,z0,z1)"); speedtest1_exec("INSERT INTO t1 SELECT * FROM rt1"); speedtest1_end_test(); | | | | | | | 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 | speedtest1_end_test(); speedtest1_begin_test(101, "Copy from rtree to a regular table"); speedtest1_exec("CREATE TABLE t1(id INTEGER PRIMARY KEY,x0,x1,y0,y1,z0,z1)"); speedtest1_exec("INSERT INTO t1 SELECT * FROM rt1"); speedtest1_end_test(); n = g.szTest*200; speedtest1_begin_test(110, "%d one-dimensional intersect slice queries", n); speedtest1_prepare("SELECT count(*) FROM rt1 WHERE x0>=?1 AND x1<=?2"); iStep = mxCoord/n; for(i=0; i<n; i++){ sqlite3_bind_int(g.pStmt, 1, i*iStep); sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep); speedtest1_run(); aCheck[i] = atoi(g.zResult); } speedtest1_end_test(); if( g.bVerify ){ n = g.szTest*200; speedtest1_begin_test(111, "Verify result from 1-D intersect slice queries"); speedtest1_prepare("SELECT count(*) FROM t1 WHERE x0>=?1 AND x1<=?2"); iStep = mxCoord/n; for(i=0; i<n; i++){ sqlite3_bind_int(g.pStmt, 1, i*iStep); sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep); speedtest1_run(); if( aCheck[i]!=atoi(g.zResult) ){ fatal_error("Count disagree step %d: %d..%d. %d vs %d", i, i*iStep, (i+1)*iStep, aCheck[i], atoi(g.zResult)); } } speedtest1_end_test(); } n = g.szTest*200; speedtest1_begin_test(120, "%d one-dimensional overlap slice queries", n); speedtest1_prepare("SELECT count(*) FROM rt1 WHERE y1>=?1 AND y0<=?2"); iStep = mxCoord/n; for(i=0; i<n; i++){ sqlite3_bind_int(g.pStmt, 1, i*iStep); sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep); speedtest1_run(); aCheck[i] = atoi(g.zResult); } speedtest1_end_test(); if( g.bVerify ){ n = g.szTest*200; speedtest1_begin_test(121, "Verify result from 1-D overlap slice queries"); speedtest1_prepare("SELECT count(*) FROM t1 WHERE y1>=?1 AND y0<=?2"); iStep = mxCoord/n; for(i=0; i<n; i++){ sqlite3_bind_int(g.pStmt, 1, i*iStep); sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep); speedtest1_run(); if( aCheck[i]!=atoi(g.zResult) ){ fatal_error("Count disagree step %d: %d..%d. %d vs %d", i, i*iStep, (i+1)*iStep, aCheck[i], atoi(g.zResult)); } } speedtest1_end_test(); } n = g.szTest*200; speedtest1_begin_test(125, "%d custom geometry callback queries", n); sqlite3_rtree_geometry_callback(g.db, "xslice", xsliceGeometryCallback, 0); speedtest1_prepare("SELECT count(*) FROM rt1 WHERE id MATCH xslice(?1,?2)"); iStep = mxCoord/n; for(i=0; i<n; i++){ sqlite3_bind_int(g.pStmt, 1, i*iStep); sqlite3_bind_int(g.pStmt, 2, (i+1)*iStep); |
︙ | ︙ | |||
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 | speedtest1_begin_test(140, "%d rowid queries", n); speedtest1_prepare("SELECT * FROM rt1 WHERE id=?1"); for(i=1; i<=n; i++){ sqlite3_bind_int(g.pStmt, 1, i); speedtest1_run(); } speedtest1_end_test(); } #endif /* SQLITE_ENABLE_RTREE */ /* ** A testset that does key/value storage on tables with many columns. ** This is the kind of workload generated by ORMs such as CoreData. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 | speedtest1_begin_test(140, "%d rowid queries", n); speedtest1_prepare("SELECT * FROM rt1 WHERE id=?1"); for(i=1; i<=n; i++){ sqlite3_bind_int(g.pStmt, 1, i); speedtest1_run(); } speedtest1_end_test(); n = g.szTest*50; speedtest1_begin_test(150, "%d UPDATEs using rowid", n); speedtest1_prepare("UPDATE rt1 SET x0=x0+100, x1=x1+100 WHERE id=?1"); for(i=1; i<=n; i++){ sqlite3_bind_int(g.pStmt, 1, (i*251)%mxRowid + 1); speedtest1_run(); } speedtest1_end_test(); n = g.szTest*5; speedtest1_begin_test(155, "%d UPDATEs using one-dimensional overlap", n); speedtest1_prepare("UPDATE rt1 SET x0=x0-100, x1=x1-100" " WHERE y1>=?1 AND y0<=?1+5"); iStep = mxCoord/n; for(i=0; i<n; i++){ sqlite3_bind_int(g.pStmt, 1, i*iStep); speedtest1_run(); aCheck[i] = atoi(g.zResult); } speedtest1_end_test(); n = g.szTest*50; speedtest1_begin_test(160, "%d DELETEs using rowid", n); speedtest1_prepare("DELETE FROM rt1 WHERE id=?1"); for(i=1; i<=n; i++){ sqlite3_bind_int(g.pStmt, 1, (i*257)%mxRowid + 1); speedtest1_run(); } speedtest1_end_test(); n = g.szTest*5; speedtest1_begin_test(165, "%d DELETEs using one-dimensional overlap", n); speedtest1_prepare("DELETE FROM rt1 WHERE y1>=?1 AND y0<=?1+5"); iStep = mxCoord/n; for(i=0; i<n; i++){ sqlite3_bind_int(g.pStmt, 1, i*iStep); speedtest1_run(); aCheck[i] = atoi(g.zResult); } speedtest1_end_test(); speedtest1_begin_test(170, "Restore deleted entries using INSERT OR IGNORE"); speedtest1_exec("INSERT OR IGNORE INTO rt1 SELECT * FROM t1"); speedtest1_end_test(); } #endif /* SQLITE_ENABLE_RTREE */ /* ** A testset that does key/value storage on tables with many columns. ** This is the kind of workload generated by ORMs such as CoreData. */ |
︙ | ︙ |
Changes to tool/mkopcodeh.tcl.
︙ | ︙ | |||
71 72 73 74 75 76 77 78 79 80 81 82 83 84 | } # Scan for "case OP_aaaa:" lines in the vdbe.c file # if {[regexp {^case OP_} $line]} { set line [split $line] set name [string trim [lindex $line 1] :] set op($name) -1 set jump($name) 0 set in1($name) 0 set in2($name) 0 set in3($name) 0 set out2($name) 0 set out3($name) 0 | > | 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | } # Scan for "case OP_aaaa:" lines in the vdbe.c file # if {[regexp {^case OP_} $line]} { set line [split $line] set name [string trim [lindex $line 1] :] if {$name=="OP_Abortable"} continue; # put OP_Abortable last set op($name) -1 set jump($name) 0 set in1($name) 0 set in2($name) 0 set in3($name) 0 set out2($name) 0 set out3($name) 0 |
︙ | ︙ | |||
109 110 111 112 113 114 115 | } } # Assign numbers to all opcodes and output the result. # puts "/* Automatically generated. Do not edit */" puts "/* See the tool/mkopcodeh.tcl script for details */" | | | 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | } } # Assign numbers to all opcodes and output the result. # puts "/* Automatically generated. Do not edit */" puts "/* See the tool/mkopcodeh.tcl script for details */" foreach name {OP_Noop OP_Explain OP_Abortable} { set jump($name) 0 set in1($name) 0 set in2($name) 0 set in3($name) 0 set out2($name) 0 set out3($name) 0 set op($name) -1 |
︙ | ︙ |
Changes to tool/speed-check.sh.
︙ | ︙ | |||
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | LEAN_OPTS="$LEAN_OPTS -DSQLITE_OMIT_SHARED_CACHE" LEAN_OPTS="$LEAN_OPTS -DSQLITE_USE_ALLOCA" BASELINE="trunk" doExplain=0 doCachegrind=1 doVdbeProfile=0 doWal=1 while test "$1" != ""; do case $1 in --reprepare) SPEEDTEST_OPTS="$SPEEDTEST_OPTS $1" ;; --autovacuum) SPEEDTEST_OPTS="$SPEEDTEST_OPTS $1" ;; --utf16be) | > > > > | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | LEAN_OPTS="$LEAN_OPTS -DSQLITE_OMIT_SHARED_CACHE" LEAN_OPTS="$LEAN_OPTS -DSQLITE_USE_ALLOCA" BASELINE="trunk" doExplain=0 doCachegrind=1 doVdbeProfile=0 doWal=1 doDiff=1 while test "$1" != ""; do case $1 in --nodiff) doDiff=0 ;; --reprepare) SPEEDTEST_OPTS="$SPEEDTEST_OPTS $1" ;; --autovacuum) SPEEDTEST_OPTS="$SPEEDTEST_OPTS $1" ;; --utf16be) |
︙ | ︙ | |||
175 176 177 178 179 180 181 | if test $doExplain -eq 1; then ./speedtest1 --explain $SPEEDTEST_OPTS | ./sqlite3 >explain-$NAME.txt fi if test $doVdbeProfile -eq 1; then tclsh ../sqlite/tool/vdbe_profile.tcl >vdbeprofile-$NAME.txt open vdbeprofile-$NAME.txt fi | | | 179 180 181 182 183 184 185 186 187 188 | if test $doExplain -eq 1; then ./speedtest1 --explain $SPEEDTEST_OPTS | ./sqlite3 >explain-$NAME.txt fi if test $doVdbeProfile -eq 1; then tclsh ../sqlite/tool/vdbe_profile.tcl >vdbeprofile-$NAME.txt open vdbeprofile-$NAME.txt fi if test "$NAME" != "$BASELINE" -a $doVdbeProfile -ne 1 -a $doDiff -ne 0; then fossil test-diff --tk -c 20 cout-$BASELINE.txt cout-$NAME.txt fi |