/ Check-in [be44928c]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Testability enhancements.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | stat3-trunk
Files: files | file ages | folders
SHA1:be44928cf2a3c063c8228b769d90947acbfad1ef
User & Date: drh 2011-09-23 13:59:33
Context
2011-09-23
14:40
Merge the latest trunk changes into the stat3-trunk branch. check-in: 0beb88a9 user: drh tags: stat3-trunk
13:59
Testability enhancements. check-in: be44928c user: drh tags: stat3-trunk
13:25
Fix typos in the format description comment of analyze.c. check-in: 74e27fad user: drh tags: stat3-trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/build.c.

2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
      goto exit_drop_table;
    }
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
      goto exit_drop_table;
    }
  }
#endif
  if( !pParse->nested && sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
    sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
    goto exit_drop_table;
  }

#ifndef SQLITE_OMIT_VIEW
  /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
  ** on a table.







|







2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
      goto exit_drop_table;
    }
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
      goto exit_drop_table;
    }
  }
#endif
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
    sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
    goto exit_drop_table;
  }

#ifndef SQLITE_OMIT_VIEW
  /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
  ** on a table.

Changes to src/where.c.

2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
....
3115
3116
3117
3118
3119
3120
3121

3122
3123
3124
3125

3126
3127
3128
3129
3130
3131
3132
3133
      iLower = aSample[i-1].nEq + aSample[i-1].nLt;
    }
    aStat[1] = pIdx->avgEq;
    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;
      if( iGap>=aStat[1]/2 ) iGap -= aStat[1]/2;
    }
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
................................................................................
    /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
    ** and we do not think that values of x are unique and if histogram
    ** data is available for column x, then it might be possible
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){

      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator==WO_EQ );
        testcase( pFirstTerm->eOperator==WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);

      }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT3 */

    /* Adjust the number of output rows and downward to reflect rows
    ** that are excluded by range constraints.







<







 







>




>
|







2574
2575
2576
2577
2578
2579
2580

2581
2582
2583
2584
2585
2586
2587
....
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
      iLower = aSample[i-1].nEq + aSample[i-1].nLt;
    }
    aStat[1] = pIdx->avgEq;
    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;

    }
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
................................................................................
    /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
    ** and we do not think that values of x are unique and if histogram
    ** data is available for column x, then it might be possible
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){
      assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator==WO_EQ );
        testcase( pFirstTerm->eOperator==WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
      }else if( bInEst==0 ){
        assert( pFirstTerm->eOperator==WO_IN );
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT3 */

    /* Adjust the number of output rows and downward to reflect rows
    ** that are excluded by range constraints.