Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | New comments and minor refactoring of rowhash.c. (CVS 6529) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
b8cb4f3e2473afaee7c147a6b3f0972f |
User & Date: | drh 2009-04-21 15:05:19.000 |
Context
2009-04-21
| ||
16:15 | Allocate the initial RowHash object using lookaside. (CVS 6530) (check-in: 9b30ab7199 user: drh tags: trunk) | |
15:05 | New comments and minor refactoring of rowhash.c. (CVS 6529) (check-in: b8cb4f3e24 user: drh tags: trunk) | |
12:02 | Remove a redundant test from sqlite3_shutdown(). (CVS 6528) (check-in: 6f481ceb50 user: drh tags: trunk) | |
Changes
Changes to src/rowhash.c.
1 2 3 4 5 6 7 8 9 10 11 12 | /* ** 2009 April 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** | | > > > > > > > > > > > > > > > > > > > | < < < | < > > > > > > > > > > > > > > > > > > > > | | | > > > > | > > > > > > > | > > | > > > | | | | > > > > > | > > > > > > | | | | | | < | | | | | | | | | | | | | | | | < < < < < < < < < | < | < | | < < < < < | < < | | | | > > | | | | | > > | > > > > > | | | | | > > | | < < > | | | | | > | | > > | | > > > > > > | > > > > > | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | /* ** 2009 April 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the implementation of the RowHash data structure. ** A RowHash has the following properties: ** ** * A RowHash stores an unordered "bag" of 64-bit integer rowids. ** There is no other content. ** ** * Primative operations are CREATE, INSERT, TEST, and DESTROY. ** There is no way to remove individual elements from the RowHash ** once they are inserted. ** ** * INSERT operations are batched. TEST operation will ignore ** elements in the current INSERT batch. Only elements inserted ** in prior batches will be seen by a TEST. ** ** The insert batch number is a parameter to the TEST primitive. The ** hash table is rebuilt whenever the batch number increases. TEST ** operations only look for INSERTs that occurred in prior batches. ** ** The caller is responsible for insuring that there are no duplicate ** INSERTs. ** ** $Id: rowhash.c,v 1.2 2009/04/21 15:05:19 drh Exp $ */ #include "sqliteInt.h" /* ** An upper bound on the size of heap allocations made by this module. ** Limiting the size of allocations helps to avoid memory fragmentation. */ #define ROWHASH_ALLOCATION 1024 /* ** If there are less than this number of elements in the RowHash, do not ** bother building a hash-table. Just do a linear search. */ #define ROWHASH_LINEAR_SEARCH_LIMIT 10 /* ** This value is what we want the average length of the collision hash ** chain to be. */ #define ROWHASH_COLLISION_LENGTH 3 /* Forward references to data structures. */ typedef struct RowHashElem RowHashElem; typedef struct RowHashBlock RowHashBlock; typedef union RowHashPtr RowHashPtr; typedef struct RowHashPage RowHashPage; /* ** Number of elements in the RowHashBlock.aElem[] array. This array is ** sized to make RowHashBlock very close to (without exceeding) ** ROWHASH_ALLOCATION bytes in size. */ #define ROWHASH_ELEM_PER_BLOCK ( \ (ROWHASH_ALLOCATION - ROUND8(sizeof(struct RowHashBlockData))) / \ sizeof(RowHashElem) \ ) /* ** Number of pointers that fit into a single allocation of ** ROWHASH_ALLOCATION bytes. */ #define ROWHASH_POINTER_PER_PAGE (ROWHASH_ALLOCATION/sizeof(RowHashPtr)) /* ** A page of pointers used to construct a hash table. ** ** The hash table is actually a tree composed of instances of this ** object. Leaves of the tree use the a[].pElem pointer to point ** to RowHashElem entries. Interior nodes of the tree use the ** a[].pPage element to point to subpages. ** ** The hash table is split into a tree in order to avoid having ** to make large memory allocations, since large allocations can ** result in unwanted memory fragmentation. */ struct RowHashPage { union RowHashPtr { RowHashPage *pPage; /* Used by interior nodes. Pointer to subtree. */ RowHashElem *pElem; /* Used by leaves. Pointer to hash entry. */ } a[ROWHASH_POINTER_PER_PAGE]; }; /* ** Each 64-bit integer in a RowHash is stored as an instance of ** this object. ** ** Instances of this object are not allocated separately. They are ** allocated in large blocks using the RowHashBlock object as a container. */ struct RowHashElem { i64 iVal; /* The value being stored. A rowid. */ RowHashElem *pNext; /* Next element with the same hash */ }; /* ** In order to avoid many small allocations of RowHashElem objects, ** multiple RowHashElem objects are allocated at once, as an instance ** of this object, and then used as needed. ** ** A single RowHash object will allocate one or more of these RowHashBlock ** objects. As many are allocated as are needed to store all of the ** content. All RowHashBlocks are kept on a linked list formed using ** RowHashBlock.data.pNext so that they can be freed when the RowHash ** is destroyed. ** ** The linked list of RowHashBlock objects also provides a way to sequentially ** scan all elements in the RowHash. This sequential scan is used when ** rebuilding the hash table. The hash table is rebuilt after every ** batch of inserts. */ struct RowHashBlock { struct RowHashBlockData { int nUsed; /* Num of aElem[] currently used in this block */ RowHashBlock *pNext; /* Next RowHashBlock object in list of them all */ } data; RowHashElem aElem[ROWHASH_ELEM_PER_BLOCK]; /* Available RowHashElem objects */ }; /* ** RowHash structure. References to a structure of this type are passed ** around and used as opaque handles by code in other modules. */ struct RowHash { /* Variables populated by sqlite3RowhashInsert() */ int nEntry; /* Number of used entries over all RowHashBlocks */ RowHashBlock *pBlock; /* Linked list of RowHashBlocks */ /* Variables populated by makeHashTable() */ int iBatch; /* The current insert batch number */ int iMod; /* Number of buckets in hash table */ int nHeight; /* Height of tree of hash pages */ RowHashPage *pHash; /* Pointer to root of hash table tree */ int nLinearLimit; /* Linear search limit (used if pHash==0) */ }; /* ** Allocate a hash table tree of height nHeight with *pnLeaf leaf pages. ** Set *pp to point to the root of the tree. If the maximum number of leaf ** pages in a tree of height nHeight is less than *pnLeaf, allocate only ** that part of the tree that is necessary to account for all leaves. ** ** Before returning, subtract the number of leaves in the tree allocated ** from *pnLeaf. ** ** This routine returns SQLITE_NOMEM if a malloc() fails, or SQLITE_OK ** otherwise. */ static int allocHashTable(RowHashPage **pp, int nHeight, int *pnLeaf){ RowHashPage *p = (RowHashPage *)sqlite3MallocZero(sizeof(*p)); if( !p ){ return SQLITE_NOMEM; } *pp = p; if( nHeight==0 ){ (*pnLeaf)--; }else{ int ii; for(ii=0; ii<ROWHASH_POINTER_PER_PAGE && *pnLeaf>0; ii++){ if( allocHashTable(&p->a[ii].pPage, nHeight-1, pnLeaf) ){ return SQLITE_NOMEM; } } } return SQLITE_OK; } /* ** Delete the hash table tree of height nHeight passed as the first argument. */ static void deleteHashTable(RowHashPage *p, int nHeight){ if( p ){ if( nHeight>0 ){ int ii; for(ii=0; ii<ROWHASH_POINTER_PER_PAGE; ii++){ deleteHashTable(p->a[ii].pPage, nHeight-1); } } sqlite3_free(p); } } /* ** Find the hash-bucket associated with value iVal. Return a pointer to it. ** ** By "hash-bucket", we mean the RowHashPage.a[].pElem pointer that ** corresponds to a particular hash entry. */ static RowHashElem **findHashBucket(RowHash *pRowHash, i64 iVal){ int aOffset[16]; int n; RowHashPage *pPage = pRowHash->pHash; int h = (((u64)iVal) % pRowHash->iMod); assert( pRowHash->nHeight < sizeof(aOffset)/sizeof(aOffset[0]) ); for(n=0; n<pRowHash->nHeight; n++){ int h1 = h / ROWHASH_POINTER_PER_PAGE; aOffset[n] = h - (h1 * ROWHASH_POINTER_PER_PAGE); h = h1; } aOffset[n] = h; for(n=pRowHash->nHeight; n>0; n--){ pPage = pPage->a[aOffset[n]].pPage; } return &pPage->a[aOffset[0]].pElem; } /* ** Build a new hash table tree in p->pHash. The new hash table should ** contain all p->nEntry entries in the p->pBlock list. If there ** existed a prior tree, delete the old tree first before constructing ** the new one. ** ** If the number of entries (p->nEntry) is less than ** ROWHASH_LINEAR_SEARCH_LIMIT, then we are guessing that a linear ** search is going to be faster than a lookup, so do not bother ** building the hash table. */ static int makeHashTable(RowHash *p, int iBatch){ RowHashBlock *pBlock; int iMod; int nLeaf, n; /* Delete the old hash table. */ deleteHashTable(p->pHash, p->nHeight); assert( p->iBatch!=iBatch ); p->iBatch = iBatch; /* Skip building the hash table if the number of elements is small */ if( p->nEntry<ROWHASH_LINEAR_SEARCH_LIMIT ){ p->nLinearLimit = p->nEntry; p->pHash = 0; return SQLITE_OK; } /* Determine how many leaves the hash-table will comprise. */ nLeaf = 1 + (p->nEntry / (ROWHASH_POINTER_PER_PAGE*ROWHASH_COLLISION_LENGTH)); p->iMod = iMod = nLeaf*ROWHASH_POINTER_PER_PAGE; /* Set nHeight to the height of the tree that contains the leaf pages. If ** RowHash.nHeight is zero, then the whole hash-table fits on a single ** leaf. If RowHash.nHeight is 1, then RowHash.pHash points to an array ** of pointers to leaf pages. If 2, pHash points to an array of pointers ** to arrays of pointers to leaf pages. And so on. */ p->nHeight = 0; n = nLeaf; while( n>1 ){ n = (n+ROWHASH_POINTER_PER_PAGE-1) / ROWHASH_POINTER_PER_PAGE; p->nHeight++; } /* Allocate the hash-table. */ if( allocHashTable(&p->pHash, p->nHeight, &nLeaf) ){ return SQLITE_NOMEM; } /* Insert all values into the hash-table. */ for(pBlock=p->pBlock; pBlock; pBlock=pBlock->data.pNext){ RowHashElem * const pEnd = &pBlock->aElem[pBlock->data.nUsed]; RowHashElem *pIter; for(pIter=pBlock->aElem; pIter<pEnd; pIter++){ RowHashElem **ppElem = findHashBucket(p, pIter->iVal); pIter->pNext = *ppElem; *ppElem = pIter; } } return SQLITE_OK; } /* ** Check to see if iVal has been inserted into the hash table "p" ** in some batch prior to iBatch. If so, set *pExists to 1. ** If not, set *pExists to 0. ** ** The hash table is rebuilt whenever iBatch changes. A hash table ** rebuild might encounter an out-of-memory condition. If that happens, ** return SQLITE_NOMEM. If there are no problems, return SQLITE_OK. ** ** The initial "batch" is 0. So, if there were prior calls to ** sqlite3RowhashInsert() and then this routine is invoked with iBatch==0, ** because all prior inserts where in the same batch, none of the prior ** inserts will be visible and this routine will indicate not found. ** Hence, the first invocation of this routine should probably use ** a batch number of 1. */ int sqlite3RowhashTest( RowHash *p, /* The RowHash to search in */ int iBatch, /* Look for values inserted in batches prior to this batch */ i64 iVal, /* The rowid value we are looking for */ int *pExists /* Store 0 or 1 hear to indicate not-found or found */ ){ *pExists = 0; if( p ){ assert( p->pBlock ); if( iBatch!=p->iBatch && makeHashTable(p, iBatch) ){ return SQLITE_NOMEM; } if( p->pHash ){ RowHashElem *pElem = *findHashBucket(p, iVal); for(; pElem; pElem=pElem->pNext){ if( pElem->iVal==iVal ){ *pExists = 1; break; } } }else{ |
︙ | ︙ | |||
264 265 266 267 268 269 270 | } } } return SQLITE_OK; } /* | | > | | | | | < | 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 | } } } return SQLITE_OK; } /* ** Insert value iVal into the RowHash object. Allocate a new RowHash ** object if necessary. ** ** Return SQLITE_OK if all goes as planned. If a malloc() fails, return ** SQLITE_NOMEM. */ int sqlite3RowhashInsert(RowHash **pp, i64 iVal){ RowHash *p = *pp; /* If the RowHash structure has not been allocated, allocate it now. */ if( !p ){ p = (RowHash*)sqlite3MallocZero(sizeof(RowHash)); if( !p ){ return SQLITE_NOMEM; } *pp = p; } /* If the current RowHashBlock is full, or if the first RowHashBlock has ** not yet been allocated, allocate one now. */ if( !p->pBlock || p->pBlock->data.nUsed==ROWHASH_ELEM_PER_BLOCK ){ RowHashBlock *pBlock = (RowHashBlock*)sqlite3Malloc(sizeof(RowHashBlock)); if( !pBlock ){ return SQLITE_NOMEM; } pBlock->data.nUsed = 0; pBlock->data.pNext = p->pBlock; p->pBlock = pBlock; } /* Add iVal to the current RowHashBlock. */ p->pBlock->aElem[p->pBlock->data.nUsed].iVal = iVal; p->pBlock->data.nUsed++; p->nEntry++; return SQLITE_OK; } /* ** Destroy the RowHash object passed as the first argument. */ void sqlite3RowhashDestroy(RowHash *p){ if( p ){ RowHashBlock *pBlock, *pNext; deleteHashTable(p->pHash, p->nHeight); for(pBlock=p->pBlock; pBlock; pBlock=pNext){ pNext = pBlock->data.pNext; sqlite3_free(pBlock); } sqlite3_free(p); } } |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.834 2009/04/21 15:05:19 drh Exp $ */ #include "sqliteInt.h" #include "vdbeInt.h" /* ** The following global variable is incremented every time a cursor ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test |
︙ | ︙ | |||
4600 4601 4602 4603 4604 4605 4606 | sqlite3VdbeMemSetInt64(pOut, val); } break; } /* Opcode: RowHash P1 P2 P3 P4 ** | | | > | 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 | sqlite3VdbeMemSetInt64(pOut, val); } break; } /* Opcode: RowHash P1 P2 P3 P4 ** ** Register P3 is assumed to hold a 64-bit integer value. If register P1 ** contains a rowid-hash object and the rowid-hash object contains ** the value held in P3, jump to register P2. Otherwise, insert the ** integer in P3 into the rowid-hash container and continue on to the ** next opcode. ** ** The rowid-hash is optimized for the case where successive sets ** of integers, where each set contains no duplicates. Each set ** of values is identified by a unique P4 value. The first set ** must have P4==0, the final set P4=-1. ** ** This allows optimizations: (a) when P4==0 there is no need to test |
︙ | ︙ |