Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | The BTree code compiles and links now, but it does not work yet. (CVS 226) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
b31c49021c260a67b7848bc077b75a71 |
User & Date: | drh 2001-06-22 19:15:00.000 |
Context
2001-06-23
| ||
11:36 | Fix a bug in pager.c introduced in the previous delta. (CVS 227) (check-in: f4df666403 user: drh tags: trunk) | |
2001-06-22
| ||
19:15 | The BTree code compiles and links now, but it does not work yet. (CVS 226) (check-in: b31c49021c user: drh tags: trunk) | |
2001-06-10
| ||
19:56 | All BTree code is in place. Now we just have to make it work. (CVS 225) (check-in: d4be4709ee user: drh tags: trunk) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
43 44 45 46 47 48 49 | # The library that programs using readline() must link against. # LIBREADLINE = @TARGET_READLINE_LIBS@ # Object files for the SQLite library. # | | > | 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | # The library that programs using readline() must link against. # LIBREADLINE = @TARGET_READLINE_LIBS@ # Object files for the SQLite library. # LIBOBJ = btree.o build.o dbbe.o dbbegdbm.o dbbemem.o delete.o expr.o insert.o \ main.o pager.o parse.o printf.o random.o select.o table.o \ tokenize.o update.o util.o vdbe.o where.o tclsqlite.o # All of the source code files. # SRC = \ $(TOP)/src/btree.c \ $(TOP)/src/build.c \ $(TOP)/src/dbbe.c \ $(TOP)/src/dbbe.h \ $(TOP)/src/dbbegdbm.c \ $(TOP)/src/dbbemem.c \ $(TOP)/src/delete.c \ $(TOP)/src/expr.c \ |
︙ | ︙ | |||
80 81 82 83 84 85 86 | $(TOP)/src/vdbe.h \ $(TOP)/src/where.c # Source code to the test files. # TESTSRC = \ $(TOP)/src/test1.c \ | | > | 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | $(TOP)/src/vdbe.h \ $(TOP)/src/where.c # Source code to the test files. # TESTSRC = \ $(TOP)/src/test1.c \ $(TOP)/src/test2.c \ $(TOP)/src/test3.c # This is the default Makefile target. The objects listed here # are what get build when you type just "make" with no arguments. # all: sqlite.h libsqlite.a sqlite # Generate the file "last_change" which contains the date of change |
︙ | ︙ | |||
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | cp $(TOP)/tool/lempar.c . # Header files used by all library source files. # HDR = \ sqlite.h \ $(TOP)/src/sqliteInt.h \ $(TOP)/src/dbbe.h \ $(TOP)/src/vdbe.h \ parse.h build.o: $(TOP)/src/build.c $(HDR) $(TCC) $(GDBM_FLAGS) -c $(TOP)/src/build.c dbbe.o: $(TOP)/src/dbbe.c $(HDR) $(TCC) $(GDBM_FLAGS) -c $(TOP)/src/dbbe.c dbbegdbm.o: $(TOP)/src/dbbegdbm.c $(HDR) | > > > > > | 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | cp $(TOP)/tool/lempar.c . # Header files used by all library source files. # HDR = \ sqlite.h \ $(TOP)/src/sqliteInt.h \ $(TOP)/src/btree.h \ $(TOP)/src/dbbe.h \ $(TOP)/src/pager.h \ $(TOP)/src/vdbe.h \ parse.h btree.o: $(TOP)/src/btree.c $(HDR) $(TCC) $(GDBM_FLAGS) -c $(TOP)/src/btree.c build.o: $(TOP)/src/build.c $(HDR) $(TCC) $(GDBM_FLAGS) -c $(TOP)/src/build.c dbbe.o: $(TOP)/src/dbbe.c $(HDR) $(TCC) $(GDBM_FLAGS) -c $(TOP)/src/dbbe.c dbbegdbm.o: $(TOP)/src/dbbegdbm.c $(HDR) |
︙ | ︙ | |||
197 198 199 200 201 202 203 | tclsqlite: $(TOP)/src/tclsqlite.c libsqlite.a $(TCC) $(TCL_FLAGS) -DTCLSH=1 -o tclsqlite \ $(TOP)/src/tclsqlite.c libsqlite.a $(LIBGDBM) $(LIBTCL) testfixture: $(TOP)/src/tclsqlite.c libsqlite.a $(TESTSRC) $(TCC) $(TCL_FLAGS) -DTCLSH=1 -DSQLITE_TEST=1 -o testfixture \ | | | 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | tclsqlite: $(TOP)/src/tclsqlite.c libsqlite.a $(TCC) $(TCL_FLAGS) -DTCLSH=1 -o tclsqlite \ $(TOP)/src/tclsqlite.c libsqlite.a $(LIBGDBM) $(LIBTCL) testfixture: $(TOP)/src/tclsqlite.c libsqlite.a $(TESTSRC) $(TCC) $(TCL_FLAGS) -DTCLSH=1 -DSQLITE_TEST=1 -o testfixture \ $(TESTSRC) $(TOP)/src/tclsqlite.c $(TOP)/src/btree.c \ libsqlite.a $(LIBGDBM) $(LIBTCL) test: testfixture sqlite ./testfixture $(TOP)/test/all.test sqlite.tar.gz: pwd=`pwd`; cd $(TOP)/..; tar czf $$pwd/sqlite.tar.gz sqlite |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
17 18 19 20 21 22 23 | ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* | | | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** $Id: btree.c,v 1.13 2001/06/22 19:15:00 drh Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
69 70 71 72 73 74 75 | /* ** Primitive data types. u32 must be 4 bytes and u16 must be 2 bytes. ** The uptr type must be big enough to hold a pointer. ** Change these typedefs when porting to new architectures. */ typedef unsigned int uptr; | | > > > > > > | 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | /* ** Primitive data types. u32 must be 4 bytes and u16 must be 2 bytes. ** The uptr type must be big enough to hold a pointer. ** Change these typedefs when porting to new architectures. */ typedef unsigned int uptr; /* typedef unsigned int u32; -- already defined in sqliteInt.h */ typedef unsigned short int u16; typedef unsigned char u8; /* ** This macro casts a pointer to an integer. Useful for doing ** pointer arithmetic. */ #define addr(X) ((uptr)X) /* ** Forward declarations of structures used only in this file. */ typedef struct PageOne PageOne; typedef struct MemPage MemPage; typedef struct PageHdr PageHdr; typedef struct Cell Cell; |
︙ | ︙ | |||
95 96 97 98 99 100 101 | ** This might need to change for computer architectures that require ** and 8-byte alignment boundry for structures. */ #define ROUNDUP(X) ((X+3) & ~3) /* ** This is a magic string that appears at the beginning of every | | | > > > > > > > > > > > > > | | 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | ** This might need to change for computer architectures that require ** and 8-byte alignment boundry for structures. */ #define ROUNDUP(X) ((X+3) & ~3) /* ** This is a magic string that appears at the beginning of every ** SQLite database in order to identify the file as a real database. */ static const char zMagicHeader[] = "** This file contains an SQLite 2.0 database **"; #define MAGIC_SIZE (sizeof(zMagicHeader)) /* ** This is a magic integer also used to the integrety of the database ** file. This integer is used in addition to the string above so that ** if the file is written on a little-endian architecture and read ** on a big-endian architectures (or vice versa) we can detect the ** problem. ** ** The number used was obtained at random and has no special ** significance. */ #define MAGIC 0xdae37528 /* ** The first page of the database file contains a magic header string ** to identify the file as an SQLite database file. It also contains ** a pointer to the first free page of the file. Page 2 contains the ** root of the principle BTree. The file might contain other BTrees ** rooted on pages above 2. ** ** The first page also contains SQLITE_N_BTREE_META integers that ** can be used by higher-level routines. ** ** Remember that pages are numbered beginning with 1. (See pager.c ** for additional information.) Page 0 does not exist and a page ** number of 0 is used to mean "no such page". */ struct PageOne { char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */ int iMagic; /* Integer to verify correct byte order */ Pgno freeList; /* First free page in a list of all free pages */ int aMeta[SQLITE_N_BTREE_META]; /* User defined integers */ }; /* ** Each database page has a header that is an instance of this ** structure. ** |
︙ | ︙ | |||
152 153 154 155 156 157 158 | /* ** Entries on a page of the database are called "Cells". Each Cell ** has a header and data. This structure defines the header. The ** key and data (collectively the "payload") follow this header on ** the database page. ** ** A definition of the complete Cell structure is given below. The | | | | | | 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | /* ** Entries on a page of the database are called "Cells". Each Cell ** has a header and data. This structure defines the header. The ** key and data (collectively the "payload") follow this header on ** the database page. ** ** A definition of the complete Cell structure is given below. The ** header for the cell must be defined first in order to do some ** of the sizing #defines that follow. */ struct CellHdr { Pgno leftChild; /* Child page that comes before this cell */ u16 nKey; /* Number of bytes in the key */ u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */ u32 nData; /* Number of bytes of data */ }; /* ** The minimum size of a complete Cell. The Cell must contain a header ** and at least 4 bytes of payload. */ #define MIN_CELL_SIZE (sizeof(CellHdr)+4) /* ** The maximum number of database entries that can be held in a single ** page of the database. */ #define MX_CELL ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE) /* ** The maximum amount of payload (in bytes) that can be stored locally for ** a database entry. If the entry contains more data than this, the ** extra goes onto overflow pages. ** ** This number is chosen so that at least 4 cells will fit on every page. */ #define MX_LOCAL_PAYLOAD \ ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/4-(sizeof(CellHdr)+sizeof(Pgno))) |
︙ | ︙ | |||
222 223 224 225 226 227 228 | /* ** The number of bytes of payload that will fit on a single overflow page. */ #define OVERFLOW_SIZE (SQLITE_PAGE_SIZE-sizeof(Pgno)) /* ** When the key and data for a single entry in the BTree will not fit in | | | 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | /* ** The number of bytes of payload that will fit on a single overflow page. */ #define OVERFLOW_SIZE (SQLITE_PAGE_SIZE-sizeof(Pgno)) /* ** When the key and data for a single entry in the BTree will not fit in ** the MX_LOCAL_PAYLOAD bytes of space available on the database page, ** then all extra bytes are written to a linked list of overflow pages. ** Each overflow page is an instance of the following structure. ** ** Unused pages in the database are also represented by instances of ** the OverflowPage structure. The PageOne.freeList field is the ** page number of the first page in a linked list of unused database ** pages. |
︙ | ︙ | |||
274 275 276 277 278 279 280 | } u; int isInit; /* True if auxiliary data is initialized */ MemPage *pParent; /* The parent of this page. NULL for root */ int nFree; /* Number of free bytes in u.aDisk[] */ int nCell; /* Number of entries on this page */ int isOverfull; /* Some apCell[] points outside u.aDisk[] */ Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */ | | | 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | } u; int isInit; /* True if auxiliary data is initialized */ MemPage *pParent; /* The parent of this page. NULL for root */ int nFree; /* Number of free bytes in u.aDisk[] */ int nCell; /* Number of entries on this page */ int isOverfull; /* Some apCell[] points outside u.aDisk[] */ Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */ }; /* ** The in-memory image of a disk page has the auxiliary information appended ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold ** that extra information. */ #define EXTRA_SIZE (sizeof(MemPage)-SQLITE_PAGE_SIZE) |
︙ | ︙ | |||
304 305 306 307 308 309 310 | ** MemPage.apCell[] of the entry. */ struct BtCursor { Btree *pBt; /* The Btree to which this cursor belongs */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ Pgno pgnoRoot; /* The root page of this tree */ MemPage *pPage; /* Page that contains the entry */ | | | | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | ** MemPage.apCell[] of the entry. */ struct BtCursor { Btree *pBt; /* The Btree to which this cursor belongs */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ Pgno pgnoRoot; /* The root page of this tree */ MemPage *pPage; /* Page that contains the entry */ int idx; /* Index of the entry in pPage->apCell[] */ u8 bSkipNext; /* sqliteBtreeNext() is no-op if true */ u8 iMatch; /* compare result from last sqliteBtreeMoveto() */ }; /* ** Compute the total number of bytes that a Cell needs on the main ** database page. The number returned includes the Cell header, ** local payload storage, and the pointer to overflow pages (if ** applicable). Additional space allocated on overflow pages ** is NOT included in the value returned from this routine. */ static int cellSize(Cell *pCell){ int n = pCell->h.nKey + pCell->h.nData; if( n>MX_LOCAL_PAYLOAD ){ n = MX_LOCAL_PAYLOAD + sizeof(Pgno); }else{ |
︙ | ︙ | |||
341 342 343 344 345 346 347 | FreeBlk *pFBlk; char newPage[SQLITE_PAGE_SIZE]; pc = sizeof(PageHdr); pPage->u.hdr.firstCell = pc; memcpy(newPage, pPage->u.aDisk, pc); for(i=0; i<pPage->nCell; i++){ | | > > > > > > | | 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 | FreeBlk *pFBlk; char newPage[SQLITE_PAGE_SIZE]; pc = sizeof(PageHdr); pPage->u.hdr.firstCell = pc; memcpy(newPage, pPage->u.aDisk, pc); for(i=0; i<pPage->nCell; i++){ Cell *pCell = (Cell*)&pPage->apCell[i]; /* This routine should never be called on an overfull page. The ** following asserts verify that constraint. */ assert( addr(pCell) > addr(pPage) ); assert( addr(pCell) < addr(pPage) + SQLITE_PAGE_SIZE ); n = cellSize(pCell); pCell->h.iNext = i<pPage->nCell-1 ? pc + n : 0; memcpy(&newPage[pc], pCell, n); pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc]; pc += n; } assert( pPage->nFree==SQLITE_PAGE_SIZE-pc ); memcpy(pPage->u.aDisk, newPage, pc); pFBlk = (FreeBlk*)&pPage->u.aDisk[pc]; pFBlk->iSize = SQLITE_PAGE_SIZE - pc; pFBlk->iNext = 0; pPage->u.hdr.firstFree = pc; memset(&pFBlk[1], 0, SQLITE_PAGE_SIZE - pc - sizeof(FreeBlk)); } /* |
︙ | ︙ | |||
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | ** calls defragementPage() to consolidate all free space before ** allocating the new chunk. */ static int allocateSpace(MemPage *pPage, int nByte){ FreeBlk *p; u16 *pIdx; int start; assert( nByte==ROUNDUP(nByte) ); if( pPage->nFree<nByte || pPage->isOverfull ) return 0; pIdx = &pPage->u.hdr.firstFree; p = (FreeBlk*)&pPage->u.aDisk[*pIdx]; while( p->iSize<nByte ){ if( p->iNext==0 ){ defragmentPage(pPage); pIdx = &pPage->u.hdr.firstFree; }else{ pIdx = &p->iNext; } p = (FreeBlk*)&pPage->u.aDisk[*pIdx]; } if( p->iSize==nByte ){ start = *pIdx; *pIdx = p->iNext; }else{ start = *pIdx; | > > > | | 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 | ** calls defragementPage() to consolidate all free space before ** allocating the new chunk. */ static int allocateSpace(MemPage *pPage, int nByte){ FreeBlk *p; u16 *pIdx; int start; int cnt = 0; assert( nByte==ROUNDUP(nByte) ); if( pPage->nFree<nByte || pPage->isOverfull ) return 0; pIdx = &pPage->u.hdr.firstFree; p = (FreeBlk*)&pPage->u.aDisk[*pIdx]; while( p->iSize<nByte ){ assert( cnt++ < SQLITE_PAGE_SIZE/4 ); if( p->iNext==0 ){ defragmentPage(pPage); pIdx = &pPage->u.hdr.firstFree; }else{ pIdx = &p->iNext; } p = (FreeBlk*)&pPage->u.aDisk[*pIdx]; } if( p->iSize==nByte ){ start = *pIdx; *pIdx = p->iNext; }else{ FreeBlk *pNew; start = *pIdx; pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte]; pNew->iNext = p->iNext; pNew->iSize = p->iSize - nByte; *pIdx = start + nByte; } pPage->nFree -= nByte; return start; } |
︙ | ︙ | |||
427 428 429 430 431 432 433 | pIdx = &pPage->u.hdr.firstFree; idx = *pIdx; while( idx!=0 && idx<start ){ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx]; if( idx + pFBlk->iSize == start ){ pFBlk->iSize += size; if( idx + pFBlk->iSize == pFBlk->iNext ){ | | | 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | pIdx = &pPage->u.hdr.firstFree; idx = *pIdx; while( idx!=0 && idx<start ){ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx]; if( idx + pFBlk->iSize == start ){ pFBlk->iSize += size; if( idx + pFBlk->iSize == pFBlk->iNext ){ pNext = (FreeBlk*)&pPage->u.aDisk[pFBlk->iNext]; pFBlk->iSize += pNext->iSize; pFBlk->iNext = pNext->iNext; } pPage->nFree += size; return; } pIdx = &pFBlk->iNext; |
︙ | ︙ | |||
485 486 487 488 489 490 491 | } if( pPage->isInit ) return SQLITE_OK; pPage->isInit = 1; pPage->nCell = 0; freeSpace = SQLITE_PAGE_SIZE - sizeof(PageHdr); idx = pPage->u.hdr.firstCell; while( idx!=0 ){ | | > | 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | } if( pPage->isInit ) return SQLITE_OK; pPage->isInit = 1; pPage->nCell = 0; freeSpace = SQLITE_PAGE_SIZE - sizeof(PageHdr); idx = pPage->u.hdr.firstCell; while( idx!=0 ){ if( idx>SQLITE_PAGE_SIZE-MIN_CELL_SIZE ) goto page_format_error; if( idx<sizeof(PageHdr) ) goto page_format_error; if( idx!=ROUNDUP(idx) ) goto page_format_error; pCell = (Cell*)&pPage->u.aDisk[idx]; sz = cellSize(pCell); if( idx+sz > SQLITE_PAGE_SIZE ) goto page_format_error; freeSpace -= sz; pPage->apCell[pPage->nCell++] = pCell; idx = pCell->h.iNext; } |
︙ | ︙ | |||
530 531 532 533 534 535 536 537 538 539 540 541 542 543 | memset(pPage, 0, SQLITE_PAGE_SIZE); pHdr = &pPage->u.hdr; pHdr->firstCell = 0; pHdr->firstFree = sizeof(*pHdr); pFBlk = (FreeBlk*)&pHdr[1]; pFBlk->iNext = 0; pFBlk->iSize = SQLITE_PAGE_SIZE - sizeof(*pHdr); } /* ** This routine is called when the reference count for a page ** reaches zero. We need to unref the pParent pointer when that ** happens. */ | > > > | 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 | memset(pPage, 0, SQLITE_PAGE_SIZE); pHdr = &pPage->u.hdr; pHdr->firstCell = 0; pHdr->firstFree = sizeof(*pHdr); pFBlk = (FreeBlk*)&pHdr[1]; pFBlk->iNext = 0; pFBlk->iSize = SQLITE_PAGE_SIZE - sizeof(*pHdr); pPage->nFree = pFBlk->iSize; pPage->nCell = 0; pPage->isOverfull = 0; } /* ** This routine is called when the reference count for a page ** reaches zero. We need to unref the pParent pointer when that ** happens. */ |
︙ | ︙ | |||
555 556 557 558 559 560 561 562 563 564 | ** ** Actually, this routine just sets up the internal data structures ** for accessing the database. We do not open the database file ** until the first page is loaded. */ int sqliteBtreeOpen(const char *zFilename, int mode, Btree **ppBtree){ Btree *pBt; pBt = sqliteMalloc( sizeof(*pBt) ); if( pBt==0 ){ | > | | | 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 | ** ** Actually, this routine just sets up the internal data structures ** for accessing the database. We do not open the database file ** until the first page is loaded. */ int sqliteBtreeOpen(const char *zFilename, int mode, Btree **ppBtree){ Btree *pBt; int rc; pBt = sqliteMalloc( sizeof(*pBt) ); if( pBt==0 ){ *ppBtree = 0; return SQLITE_NOMEM; } rc = sqlitepager_open(&pBt->pPager, zFilename, 100, EXTRA_SIZE); if( rc!=SQLITE_OK ){ if( pBt->pPager ) sqlitepager_close(pBt->pPager); sqliteFree(pBt); *ppBtree = 0; return rc; } sqlitepager_set_destructor(pBt->pPager, pageDestructor); |
︙ | ︙ | |||
600 601 602 603 604 605 606 | ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM ** is returned if we run out of memory. SQLITE_PROTOCOL is returned ** if there is a locking protocol violation. */ static int lockBtree(Btree *pBt){ int rc; if( pBt->page1 ) return SQLITE_OK; | | | | > > | > | 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM ** is returned if we run out of memory. SQLITE_PROTOCOL is returned ** if there is a locking protocol violation. */ static int lockBtree(Btree *pBt){ int rc; if( pBt->page1 ) return SQLITE_OK; rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1); if( rc!=SQLITE_OK ) return rc; /* Do some checking to help insure the file we opened really is ** a valid database file. */ if( sqlitepager_pagecount(pBt->pPager)>0 ){ PageOne *pP1 = pBt->page1; if( strcmp(pP1->zMagic,zMagicHeader)!=0 || pP1->iMagic!=MAGIC ){ rc = SQLITE_CORRUPT; goto page1_init_failed; } } return rc; page1_init_failed: sqlitepager_unref(pBt->page1); pBt->page1 = 0; return rc; } /* ** Create a new database by initializing the first two pages of the ** file. */ static int newDatabase(Btree *pBt){ MemPage *pRoot; PageOne *pP1; int rc; if( sqlitepager_pagecount(pBt->pPager)>0 ) return SQLITE_OK; pP1 = pBt->page1; rc = sqlitepager_write(pBt->page1); if( rc ) return rc; rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot); if( rc ) return rc; rc = sqlitepager_write(pRoot); if( rc ){ sqlitepager_unref(pRoot); return rc; } strcpy(pP1->zMagic, zMagicHeader); pP1->iMagic = MAGIC; zeroPage(pRoot); sqlitepager_unref(pRoot); return SQLITE_OK; } /* ** Attempt to start a new transaction. |
︙ | ︙ | |||
660 661 662 663 664 665 666 | ** sqliteBtreeDropTable() ** sqliteBtreeInsert() ** sqliteBtreeDelete() ** sqliteBtreeUpdateMeta() */ int sqliteBtreeBeginTrans(Btree *pBt){ int rc; | < | > | > | < > > | > | 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 | ** sqliteBtreeDropTable() ** sqliteBtreeInsert() ** sqliteBtreeDelete() ** sqliteBtreeUpdateMeta() */ int sqliteBtreeBeginTrans(Btree *pBt){ int rc; if( pBt->inTrans ) return SQLITE_ERROR; if( pBt->page1==0 ){ rc = lockBtree(pBt); if( rc!=SQLITE_OK ){ return rc; } } rc = sqlitepager_write(pBt->page1); if( rc!=SQLITE_OK ){ return rc; } pBt->inTrans = 1; rc = newDatabase(pBt); return rc; } /* ** Remove the last reference to the database file. This will ** remove the read lock. */ static void unlockBtree(Btree *pBt){ |
︙ | ︙ | |||
730 731 732 733 734 735 736 | } pCur = sqliteMalloc( sizeof(*pCur) ); if( pCur==0 ){ rc = SQLITE_NOMEM; goto create_cursor_exception; } pCur->pgnoRoot = (Pgno)iTable; | | | 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 | } pCur = sqliteMalloc( sizeof(*pCur) ); if( pCur==0 ){ rc = SQLITE_NOMEM; goto create_cursor_exception; } pCur->pgnoRoot = (Pgno)iTable; rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage); if( rc!=SQLITE_OK ){ goto create_cursor_exception; } rc = initPage(pCur->pPage, pCur->pgnoRoot, 0); if( rc!=SQLITE_OK ){ goto create_cursor_exception; } |
︙ | ︙ | |||
755 756 757 758 759 760 761 | create_cursor_exception: *ppCur = 0; if( pCur ){ if( pCur->pPage ) sqlitepager_unref(pCur->pPage); sqliteFree(pCur); } | | < > | 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 | create_cursor_exception: *ppCur = 0; if( pCur ){ if( pCur->pPage ) sqlitepager_unref(pCur->pPage); sqliteFree(pCur); } unlockBtree(pBt); return rc; } /* ** Close a cursor. The lock on the database file is released ** when the last cursor is closed. */ int sqliteBtreeCloseCursor(BtCursor *pCur){ Btree *pBt = pCur->pBt; if( pCur->pPrev ){ pCur->pPrev->pNext = pCur->pNext; }else{ pBt->pCursor = pCur->pNext; } if( pCur->pNext ){ pCur->pNext->pPrev = pCur->pPrev; } sqlitepager_unref(pCur->pPage); unlockBtree(pBt); sqliteFree(pCur); return SQLITE_OK; } /* ** Make a temporary cursor by filling in the fields of pTempCur. ** The temporary cursor is not on the cursor list for the Btree. */ static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){ |
︙ | ︙ | |||
815 816 817 818 819 820 821 | pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ *pSize = 0; }else{ pCell = pPage->apCell[pCur->idx]; | | > | | | | | 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 | pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ *pSize = 0; }else{ pCell = pPage->apCell[pCur->idx]; *pSize = pCell->h.nKey; } return SQLITE_OK; } /* ** Read payload information from the entry that the pCur cursor is ** pointing to. Begin reading the payload at "offset" and read ** a total of "amt" bytes. Put the result in zBuf. ** ** This routine does not make a distinction between key and data. ** It just reads bytes from the payload area. */ static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){ char *aPayload; Pgno nextPage; int rc; assert( pCur!=0 && pCur->pPage!=0 ); assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); aPayload = pCur->pPage->apCell[pCur->idx]->aPayload; if( offset<MX_LOCAL_PAYLOAD ){ int a = amt; if( a+offset>MX_LOCAL_PAYLOAD ){ a = MX_LOCAL_PAYLOAD - offset; } memcpy(zBuf, &aPayload[offset], a); if( a==amt ){ return SQLITE_OK; } offset += a; zBuf += a; amt -= a; } if( amt>0 ){ nextPage = pCur->pPage->apCell[pCur->idx]->ovfl; } while( amt>0 && nextPage ){ OverflowPage *pOvfl; rc = sqlitepager_get(pCur->pBt->pPager, nextPage, (void**)&pOvfl); if( rc!=0 ){ return rc; } nextPage = pOvfl->iNext; if( offset<OVERFLOW_SIZE ){ int a = amt; if( a + offset > OVERFLOW_SIZE ){ |
︙ | ︙ | |||
960 961 962 963 964 965 966 | ** is on overflow pages and we are unable to access those overflow ** pages, then some other value might be returned to indicate the ** reason for the error. */ static int compareKey(BtCursor *pCur, char *pKey, int nKeyOrig, int *pResult){ Pgno nextPage; int nKey = nKeyOrig; | | | 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 | ** is on overflow pages and we are unable to access those overflow ** pages, then some other value might be returned to indicate the ** reason for the error. */ static int compareKey(BtCursor *pCur, char *pKey, int nKeyOrig, int *pResult){ Pgno nextPage; int nKey = nKeyOrig; int n, c, rc; Cell *pCell; assert( pCur->pPage ); assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); pCell = pCur->pPage->apCell[pCur->idx]; if( nKey > pCell->h.nKey ){ nKey = pCell->h.nKey; |
︙ | ︙ | |||
986 987 988 989 990 991 992 | nKey -= n; nextPage = pCell->ovfl; while( nKey>0 ){ OverflowPage *pOvfl; if( nextPage==0 ){ return SQLITE_CORRUPT; } | | | 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 | nKey -= n; nextPage = pCell->ovfl; while( nKey>0 ){ OverflowPage *pOvfl; if( nextPage==0 ){ return SQLITE_CORRUPT; } rc = sqlitepager_get(pCur->pBt->pPager, nextPage, (void**)&pOvfl); if( rc ){ return rc; } nextPage = pOvfl->iNext; n = nKey; if( n>OVERFLOW_SIZE ){ n = OVERFLOW_SIZE; |
︙ | ︙ | |||
1016 1017 1018 1019 1020 1021 1022 | /* ** Move the cursor down to a new child page. */ static int moveToChild(BtCursor *pCur, int newPgno){ int rc; MemPage *pNewPage; | | | 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 | /* ** Move the cursor down to a new child page. */ static int moveToChild(BtCursor *pCur, int newPgno){ int rc; MemPage *pNewPage; rc = sqlitepager_get(pCur->pBt->pPager, newPgno, (void**)&pNewPage); if( rc ){ return rc; } initPage(pNewPage, newPgno, pCur->pPage); sqlitepager_unref(pCur->pPage); pCur->pPage = pNewPage; pCur->idx = 0; |
︙ | ︙ | |||
1038 1039 1040 1041 1042 1043 1044 | ** to the page we are coming from. If we are coming from the ** right-most child page then pCur->idx is set to one more than ** the largest cell index. */ static int moveToParent(BtCursor *pCur){ Pgno oldPgno; MemPage *pParent; | | | | | | | 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 | ** to the page we are coming from. If we are coming from the ** right-most child page then pCur->idx is set to one more than ** the largest cell index. */ static int moveToParent(BtCursor *pCur){ Pgno oldPgno; MemPage *pParent; int i; pParent = pCur->pPage->pParent; if( pParent==0 ) return SQLITE_INTERNAL; oldPgno = sqlitepager_pagenumber(pCur->pPage); sqlitepager_ref(pParent); sqlitepager_unref(pCur->pPage); pCur->pPage = pParent; pCur->idx = pParent->nCell; for(i=0; i<pParent->nCell; i++){ if( pParent->apCell[i]->h.leftChild==oldPgno ){ pCur->idx = i; break; } } return SQLITE_OK; } /* ** Move the cursor to the root page */ static int moveToRoot(BtCursor *pCur){ MemPage *pNew; int rc; rc = sqlitepager_get(pCur->pBt->pPager, pCur->pgnoRoot, (void**)&pNew); if( rc ) return rc; sqlitepager_unref(pCur->pPage); pCur->pPage = pNew; pCur->idx = 0; return SQLITE_OK; } |
︙ | ︙ | |||
1166 1167 1168 1169 1170 1171 1172 | if( pCur->bSkipNext ){ pCur->bSkipNext = 0; if( pRes ) *pRes = 0; return SQLITE_OK; } pCur->idx++; if( pCur->idx>=pCur->pPage->nCell ){ | | | | | 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 | if( pCur->bSkipNext ){ pCur->bSkipNext = 0; if( pRes ) *pRes = 0; return SQLITE_OK; } pCur->idx++; if( pCur->idx>=pCur->pPage->nCell ){ if( pCur->pPage->u.hdr.rightChild ){ rc = moveToChild(pCur, pCur->pPage->u.hdr.rightChild); if( rc ) return rc; rc = moveToLeftmost(pCur); if( rc ) return rc; if( pRes ) *pRes = 0; return SQLITE_OK; } do{ if( pCur->pPage->pParent==0 ){ if( pRes ) *pRes = 1; return SQLITE_OK; } rc = moveToParent(pCur); if( rc ) return rc; }while( pCur->idx>=pCur->pPage->nCell ); if( pRes ) *pRes = 0; |
︙ | ︙ | |||
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 | ** ** SQLITE_OK is returned on success. Any other return value indicates ** an error. *ppPage and *pPgno are undefined in the event of an error. ** Do not invoke sqlitepager_unref() on *ppPage if an error is returned. */ static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno){ PageOne *pPage1 = pBt->page1; if( pPage1->freeList ){ OverflowPage *pOvfl; rc = sqlitepager_write(pPage1); if( rc ) return rc; *pPgno = pPage1->freeList; | > | | | 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 | ** ** SQLITE_OK is returned on success. Any other return value indicates ** an error. *ppPage and *pPgno are undefined in the event of an error. ** Do not invoke sqlitepager_unref() on *ppPage if an error is returned. */ static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno){ PageOne *pPage1 = pBt->page1; int rc; if( pPage1->freeList ){ OverflowPage *pOvfl; rc = sqlitepager_write(pPage1); if( rc ) return rc; *pPgno = pPage1->freeList; rc = sqlitepager_get(pBt->pPager, pPage1->freeList, (void**)&pOvfl); if( rc ) return rc; rc = sqlitepager_write(pOvfl); if( rc ){ sqlitepager_unref(pOvfl); return rc; } pPage1->freeList = pOvfl->iNext; *ppPage = (MemPage*)pOvfl; }else{ *pPgno = sqlitepager_pagecount(pBt->pPager); rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage); if( rc ) return rc; rc = sqlitepager_write(*ppPage); } return rc; } /* |
︙ | ︙ | |||
1251 1252 1253 1254 1255 1256 1257 | } rc = sqlitepager_write(pPage1); if( rc ){ return rc; } if( pOvfl==0 ){ assert( pgno>0 ); | | | | | | | | | | 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 | } rc = sqlitepager_write(pPage1); if( rc ){ return rc; } if( pOvfl==0 ){ assert( pgno>0 ); rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl); if( rc ) return rc; needOvflUnref = 1; } rc = sqlitepager_write(pOvfl); if( rc ){ if( needOvflUnref ) sqlitepager_unref(pOvfl); return rc; } pOvfl->iNext = pPage1->freeList; pPage1->freeList = pgno; memset(pOvfl->aPayload, 0, OVERFLOW_SIZE); ((MemPage*)pPage)->isInit = 0; assert( ((MemPage*)pPage)->pParent==0 ); rc = sqlitepager_unref(pOvfl); return rc; } /* ** Erase all the data out of a cell. This involves returning overflow ** pages back the freelist. */ static int clearCell(Btree *pBt, Cell *pCell){ Pager *pPager = pBt->pPager; OverflowPage *pOvfl; Pgno ovfl, nextOvfl; int rc; if( pCell->h.nKey + pCell->h.nData <= MX_LOCAL_PAYLOAD ){ return SQLITE_OK; } ovfl = pCell->ovfl; pCell->ovfl = 0; while( ovfl ){ rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl); if( rc ) return rc; nextOvfl = pOvfl->iNext; rc = freePage(pBt, pOvfl, ovfl); if( rc ) return rc; ovfl = nextOvfl; sqlitepager_unref(pOvfl); } return SQLITE_OK; } /* ** Create a new cell from key and data. Overflow pages are allocated as ** necessary and linked to this cell. */ static int fillInCell( Btree *pBt, /* The whole Btree. Needed to allocate pages */ Cell *pCell, /* Populate this Cell structure */ void *pKey, int nKey, /* The key */ void *pData,int nData /* The data */ ){ OverflowPage *pOvfl; Pgno *pNext; int spaceLeft; int n, rc; int nPayload; char *pPayload; char *pSpace; pCell->h.leftChild = 0; pCell->h.nKey = nKey; pCell->h.nData = nData; pCell->h.iNext = 0; pNext = &pCell->ovfl; pSpace = pCell->aPayload; spaceLeft = MX_LOCAL_PAYLOAD; pPayload = pKey; pKey = 0; nPayload = nKey; while( nPayload>0 ){ if( spaceLeft==0 ){ rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext); if( rc ){ *pNext = 0; clearCell(pBt, pCell); return rc; } spaceLeft = OVERFLOW_SIZE; pSpace = pOvfl->aPayload; pNext = &pOvfl->iNext; } n = nPayload; if( n>spaceLeft ) n = spaceLeft; memcpy(pSpace, pPayload, n); nPayload -= n; if( nPayload==0 && pData ){ pPayload = pData; |
︙ | ︙ | |||
1379 1380 1381 1382 1383 1384 1385 | ** Reparent all children of the given page to be the given page. ** In other words, for every child of pPage, invoke reparentPage() ** to make sure that child knows that pPage is its parent. ** ** This routine gets called after you memcpy() one page into ** another. */ | | | | | | | | | | | | | | | | | | > | 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 | ** Reparent all children of the given page to be the given page. ** In other words, for every child of pPage, invoke reparentPage() ** to make sure that child knows that pPage is its parent. ** ** This routine gets called after you memcpy() one page into ** another. */ static void reparentChildPages(Pager *pPager, MemPage *pPage){ int i; for(i=0; i<pPage->nCell; i++){ reparentPage(pPager, pPage->apCell[i]->h.leftChild, pPage); } reparentPage(pPager, pPage->u.hdr.rightChild, pPage); } /* ** Remove the i-th cell from pPage. This routine effects pPage only. ** The cell content is not freed or deallocated. It is assumed that ** the cell content has been copied someplace else. This routine just ** removes the reference to the cell from pPage. ** ** "sz" must be the number of bytes in the cell. ** ** Do not bother maintaining the integrity of the linked list of Cells. ** Only the pPage->apCell[] array is important. The relinkCellList() ** routine will be called soon after this routine in order to rebuild ** the linked list. */ static void dropCell(MemPage *pPage, int idx, int sz){ int j; assert( idx>=0 && idx<pPage->nCell ); assert( sz==cellSize(pPage->apCell[idx]) ); freeSpace(pPage, idx, sz); for(j=idx; j<pPage->nCell-2; j++){ pPage->apCell[j] = pPage->apCell[j+1]; } pPage->nCell--; } /* ** Insert a new cell on pPage at cell index "i". pCell points to the ** content of the cell. ** ** If the cell content will fit on the page, then put it there. If it ** will not fit, then just make pPage->apCell[i] point to the content ** and set pPage->isOverfull. ** ** Do not bother maintaining the integrity of the linked list of Cells. ** Only the pPage->apCell[] array is important. The relinkCellList() ** routine will be called soon after this routine in order to rebuild ** the linked list. */ static void insertCell(MemPage *pPage, int i, Cell *pCell, int sz){ int idx, j; assert( i>=0 && i<=pPage->nCell ); assert( sz==cellSize(pCell) ); for(j=pPage->nCell; j>i; j--){ pPage->apCell[j] = pPage->apCell[j-1]; } pPage->nCell++; idx = allocateSpace(pPage, sz); if( idx<=0 ){ pPage->isOverfull = 1; pPage->apCell[i] = pCell; }else{ memcpy(&pPage->u.aDisk[idx], pCell, sz); pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx]; } } /* ** Rebuild the linked list of cells on a page so that the cells ** occur in the order specified by the pPage->apCell[] array. ** Invoke this routine once to repair damage after one or more ** invocations of either insertCell() or dropCell(). */ static void relinkCellList(MemPage *pPage){ int i; u16 *pIdx; pIdx = &pPage->u.hdr.firstCell; for(i=0; i<pPage->nCell; i++){ int idx = addr(pPage->apCell[i]) - addr(pPage); assert( idx>0 && idx<SQLITE_PAGE_SIZE ); *pIdx = idx; pIdx = &pPage->apCell[i]->h.iNext; } *pIdx = 0; } /* |
︙ | ︙ | |||
1475 1476 1477 1478 1479 1480 1481 | int i; memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_PAGE_SIZE); pTo->pParent = pFrom->pParent; pTo->isInit = 1; pTo->nCell = pFrom->nCell; pTo->nFree = pFrom->nFree; pTo->isOverfull = pFrom->isOverfull; | | | | | | | > | | > > > > > > < > > | 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 | int i; memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_PAGE_SIZE); pTo->pParent = pFrom->pParent; pTo->isInit = 1; pTo->nCell = pFrom->nCell; pTo->nFree = pFrom->nFree; pTo->isOverfull = pFrom->isOverfull; to = addr(pTo); from = addr(pFrom); for(i=0; i<pTo->nCell; i++){ uptr x = addr(pFrom->apCell[i]); if( x>from && x<from+SQLITE_PAGE_SIZE ){ *((uptr*)&pTo->apCell[i]) = x + to - from; } } } /* ** This routine redistributes Cells on pPage and up to two siblings ** of pPage so that all pages have about the same amount of free space. ** Usually one sibling on either side of pPage is used in the balancing, ** though both siblings might come from one side if pPage is the first ** or last child of its parent. If pPage has fewer than two siblings ** (something which can only happen if pPage is the root page or a ** child of root) then all available siblings participate in the balancing. ** ** The number of siblings of pPage might be increased or decreased by ** one in an effort to keep pages between 66% and 100% full. The root page ** is special and is allowed to be less than 66% full. If pPage is ** the root page, then the depth of the tree might be increased ** or decreased by one, as necessary, to keep the root page from being ** overfull or empty. ** ** This routine calls relinkCellList() on its input page regardless of ** whether or not it does any real balancing. Client routines will typically ** invoke insertCell() or dropCell() before calling this routine, so we ** need to call relinkCellList() to clean up the mess that those other ** routines left behind. ** ** pCur is left pointing to the same cell as when this routine was called ** even if that cell gets moved to a different page. pCur may be NULL. ** Set the pCur parameter to NULL if you do not care about keeping track ** of a cell as that will save this routine the work of keeping track of it. ** ** Note that when this routine is called, some of the Cells on pPage ** might not actually be stored in pPage->u.aDisk[]. This can happen ** if the page is overfull. Part of the job of this routine is to ** make sure all Cells for pPage once again fit in pPage->u.aDisk[]. ** ** In the course of balancing the siblings of pPage, the parent of pPage ** might become overfull or underfull. If that happens, then this routine ** is called recursively on the parent. ** ** If this routine fails for any reason, it means the database may have ** been left in a corrupted state and should be rolled back. */ static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){ MemPage *pParent; /* The parent of pPage */ MemPage *apOld[3]; /* pPage and up to two siblings */ Pgno pgnoOld[3]; /* Page numbers for each page in apOld[] */ MemPage *apNew[4]; /* pPage and up to 3 siblings after balancing */ Pgno pgnoNew[4]; /* Page numbers for each page in apNew[] */ int idxDiv[3]; /* Indices of divider cells in pParent */ Cell *apDiv[3]; /* Divider cells in pParent */ int nCell; /* Number of cells in apCell[] */ int nOld; /* Number of pages in apOld[] */ int nNew; /* Number of pages in apNew[] */ int nDiv; /* Number of cells in apDiv[] */ int i, j, k; /* Loop counters */ int idx; /* Index of pPage in pParent->apCell[] */ int nxDiv; /* Next divider slot in pParent->apCell[] */ int rc; /* The return code */ int iCur; /* apCell[iCur] is the cell of the cursor */ int usedPerPage; /* Memory needed for each page */ int freePerPage; /* Average free space per page */ int totalSize; /* Total bytes for all cells */ Pgno pgno; /* Page number */ Cell *apCell[MX_CELL*3+5]; /* All cells from pages being balanceed */ int szCell[MX_CELL*3+5]; /* Local size of all cells */ Cell aTemp[2]; /* Temporary holding area for apDiv[] */ MemPage aOld[3]; /* Temporary copies of pPage and its siblings */ /* ** Return without doing any work if pPage is neither overfull nor |
︙ | ︙ | |||
1559 1560 1561 1562 1563 1564 1565 | ** Find the parent of the page to be balanceed. ** If there is no parent, it means this page is the root page and ** special rules apply. */ pParent = pPage->pParent; if( pParent==0 ){ Pgno pgnoChild; | | | | 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 | ** Find the parent of the page to be balanceed. ** If there is no parent, it means this page is the root page and ** special rules apply. */ pParent = pPage->pParent; if( pParent==0 ){ Pgno pgnoChild; MemPage *pChild; if( pPage->nCell==0 ){ if( pPage->u.hdr.rightChild ){ /* ** The root page is empty. Copy the one child page ** into the root page and return. This reduces the depth ** of the BTree by one. */ rc = sqlitepager_write(pPage); if( rc ) return rc; pgnoChild = pPage->u.hdr.rightChild; rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild); if( rc ) return rc; memcpy(pPage, pChild, SQLITE_PAGE_SIZE); pPage->isInit = 0; initPage(pPage, sqlitepager_pagenumber(pPage), 0); reparentChildPages(pBt->pPager, pPage); freePage(pBt, pChild, pgnoChild); sqlitepager_unref(pChild); |
︙ | ︙ | |||
1664 1665 1666 1667 1668 1669 1670 | for(i=0, k=nxDiv; i<3; i++, k++){ if( k<pParent->nCell ){ idxDiv[i] = k; apDiv[i] = pParent->apCell[k]; nDiv++; pgnoOld[i] = apDiv[i]->h.leftChild; }else if( k==pParent->nCell ){ | | | | 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 | for(i=0, k=nxDiv; i<3; i++, k++){ if( k<pParent->nCell ){ idxDiv[i] = k; apDiv[i] = pParent->apCell[k]; nDiv++; pgnoOld[i] = apDiv[i]->h.leftChild; }else if( k==pParent->nCell ){ pgnoOld[i] = pParent->u.hdr.rightChild; }else{ break; } rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]); if( rc ) goto balance_cleanup; nOld++; } /* ** Set iCur to be the index in apCell[] of the cell that the cursor ** is pointing to. We will need this later on in order to keep the |
︙ | ︙ | |||
1715 1716 1717 1718 1719 1720 1721 | for(j=0; j<pOld->nCell; j++){ apCell[nCell] = pOld->apCell[j]; szCell[nCell] = cellSize(apCell[nCell]); nCell++; } if( i<nOld-1 ){ szCell[nCell] = cellSize(apDiv[i]); | | | 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 | for(j=0; j<pOld->nCell; j++){ apCell[nCell] = pOld->apCell[j]; szCell[nCell] = cellSize(apCell[nCell]); nCell++; } if( i<nOld-1 ){ szCell[nCell] = cellSize(apDiv[i]); memcpy(&aTemp[i], apDiv[i], szCell[nCell]); apCell[nCell] = &aTemp[i]; dropCell(pParent, nxDiv, szCell[nCell]); assert( apCell[nCell]->h.leftChild==pgnoOld[i] ); apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild; nCell++; } } |
︙ | ︙ | |||
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 | ** sqliteBtreeNext() after a delete and the cursor will be left ** pointing to the first entry after the deleted entry. */ int sqliteBtreeDelete(BtCursor *pCur){ MemPage *pPage = pCur->pPage; Cell *pCell; int rc; if( !pCur->pBt->inTrans ){ return SQLITE_ERROR; /* Must start a transaction first */ } if( pCur->idx >= pPage->nCell ){ return SQLITE_ERROR; /* The cursor is not pointing to anything */ } rc = sqlitepager_write(pPage); if( rc ) return rc; pCell = pPage->apCell[pCur->idx]; pgnoChild = pCell->h.leftChild; | > | | | | > | | 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 | ** sqliteBtreeNext() after a delete and the cursor will be left ** pointing to the first entry after the deleted entry. */ int sqliteBtreeDelete(BtCursor *pCur){ MemPage *pPage = pCur->pPage; Cell *pCell; int rc; Pgno pgnoChild; if( !pCur->pBt->inTrans ){ return SQLITE_ERROR; /* Must start a transaction first */ } if( pCur->idx >= pPage->nCell ){ return SQLITE_ERROR; /* The cursor is not pointing to anything */ } rc = sqlitepager_write(pPage); if( rc ) return rc; pCell = pPage->apCell[pCur->idx]; pgnoChild = pCell->h.leftChild; clearCell(pCur->pBt, pCell); dropCell(pPage, pCur->idx, cellSize(pCell)); if( pgnoChild ){ /* ** If the entry we just deleted is not a leaf, then we've left a ** hole in an internal page. We have to fill the hole by moving ** in a cell from a leaf. The next Cell after the one just deleted ** is guaranteed to exist and to be a leaf so we can use it. */ BtCursor leafCur; Cell *pNext; int szNext; getTempCursor(pCur, &leafCur); rc = sqliteBtreeNext(&leafCur, 0); if( rc!=SQLITE_OK ){ return SQLITE_CORRUPT; } pNext = leafCur.pPage->apCell[leafCur.idx]; szNext = cellSize(pNext); pNext->h.leftChild = pgnoChild; insertCell(pPage, pCur->idx, pNext, szNext); rc = balance(pCur->pBt, pPage, pCur); if( rc ) return rc; pCur->bSkipNext = 1; dropCell(leafCur.pPage, leafCur.idx, szNext); rc = balance(pCur->pBt, leafCur.pPage, 0); releaseTempCursor(&leafCur); }else{ rc = balance(pCur->pBt, pPage, pCur); pCur->bSkipNext = 1; } return rc; } |
︙ | ︙ | |||
1945 1946 1947 1948 1949 1950 1951 | /* ** Erase the given database page and all its children. Return ** the page to the freelist. */ static int clearDatabasePage(Btree *pBt, Pgno pgno){ MemPage *pPage; int rc; | < | | > > < > | | | 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 | /* ** Erase the given database page and all its children. Return ** the page to the freelist. */ static int clearDatabasePage(Btree *pBt, Pgno pgno){ MemPage *pPage; int rc; Cell *pCell; int idx; rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage); if( rc ) return rc; idx = pPage->u.hdr.firstCell; while( idx>0 ){ pCell = (Cell*)&pPage->u.aDisk[idx]; idx = pCell->h.iNext; if( pCell->h.leftChild ){ rc = clearDatabasePage(pBt, pCell->h.leftChild); if( rc ) return rc; } rc = clearCell(pBt, pCell); if( rc ) return rc; } rc = clearDatabasePage(pBt, pPage->u.hdr.rightChild); if( rc ) return rc; return freePage(pBt, pPage, pgno); } /* ** Delete all information from a single table in the database. */ int sqliteBtreeClearTable(Btree *pBt, int iTable){ int rc; if( !pBt->inTrans ){ return SQLITE_ERROR; /* Must start a transaction first */ } rc = clearDatabasePage(pBt, (Pgno)iTable); if( rc ){ sqliteBtreeRollback(pBt); } return rc; } /* ** Erase all information in a table and add the root of the table to ** the freelist. Except, the root of the principle table (the one on ** page 2) is never added to the freelist. */ int sqliteBtreeDropTable(Btree *pBt, int iTable){ int rc; MemPage *pPage; if( !pBt->inTrans ){ return SQLITE_ERROR; /* Must start a transaction first */ } rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage); if( rc==SQLITE_OK ){ rc = sqliteBtreeClearTable(pBt, iTable); } if( rc==SQLITE_OK && iTable!=2 ){ rc = freePage(pBt, pPage, (Pgno)iTable); } sqlitepager_unref(pPage); return rc; } /* ** Read the meta-information out of a database file. */ int sqliteBtreeGetMeta(Btree *pBt, int *aMeta){ PageOne *pP1; int rc; rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1); if( rc ) return rc; memcpy(aMeta, pP1->aMeta, sizeof(pP1->aMeta)); sqlitepager_unref(pP1); return SQLITE_OK; } /* |
︙ | ︙ | |||
2031 2032 2033 2034 2035 2036 2037 | } pP1 = pBt->page1; rc = sqlitepager_write(pP1); if( rc ) return rc; memcpy(pP1->aMeta, aMeta, sizeof(pP1->aMeta)); return SQLITE_OK; } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 | } pP1 = pBt->page1; rc = sqlitepager_write(pP1); if( rc ) return rc; memcpy(pP1->aMeta, aMeta, sizeof(pP1->aMeta)); return SQLITE_OK; } #ifdef SQLITE_TEST /* ** Print a disassembly of the given page on standard output. This routine ** is used for debugging and testing only. */ int sqliteBtreePageDump(Btree *pBt, int pgno){ int rc; MemPage *pPage; int i, j; int nFree; u16 idx; char range[20]; unsigned char payload[20]; rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage); if( rc ){ return rc; } i = 0; idx = pPage->u.hdr.firstCell; while( idx>0 && idx<=SQLITE_PAGE_SIZE-MIN_CELL_SIZE ){ Cell *pCell = (Cell*)&pPage->u.aDisk[idx]; int sz = cellSize(pCell); sprintf(range,"%d..%d", idx, idx+sz-1); if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1; memcpy(payload, pCell->aPayload, sz); for(j=0; j<sz; j++){ if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.'; } payload[sz] = 0; printf( "cell %2d: i=%-10s chld=%-4d nk=%-3d nd=%-3d payload=%s\n", i, range, (int)pCell->h.leftChild, pCell->h.nKey, pCell->h.nData, pCell->aPayload ); idx = pCell->h.iNext; } if( idx!=0 ){ printf("ERROR: next cell index out of range: %d\n", idx); } printf("right_child: %d\n", pPage->u.hdr.rightChild); nFree = 0; i = 0; idx = pPage->u.hdr.firstFree; while( idx>0 && idx<SQLITE_PAGE_SIZE ){ FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx]; sprintf(range,"%d..%d", idx, idx+p->iSize-1); nFree += p->iSize; printf("freeblock %2d: i=%-10s size=%-4d total=%d\n", i, range, p->iSize, nFree); idx = p->iNext; } if( idx!=0 ){ printf("ERROR: next freeblock index out of range: %d\n", idx); } sqlitepager_unref(pPage); return SQLITE_OK; } #endif #ifdef SQLITE_TEST /* ** Put the page number and index of a cursor into aResult[0] and aResult[1] ** This routine is used for debugging and testing only. */ int sqliteBtreeCursorDump(BtCursor *pCur, int *aResult){ aResult[0] = sqlitepager_pagenumber(pCur->pPage); aResult[1] = pCur->idx; return SQLITE_OK; } #endif |
Changes to src/btree.h.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. ** | | | > > > > > > | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. ** ** @(#) $Id: btree.h,v 1.5 2001/06/22 19:15:00 drh Exp $ */ typedef struct Btree Btree; typedef struct BtCursor BtCursor; int sqliteBtreeOpen(const char *zFilename, int mode, Btree **ppBtree); int sqliteBtreeClose(Btree*); int sqliteBtreeBeginTrans(Btree*); int sqliteBtreeCommit(Btree*); int sqliteBtreeRollback(Btree*); int sqliteBtreeCreateTable(Btree*, int*); int sqliteBtreeDropTable(Btree*, int); int sqliteBtreeClearTable(Btree*, int); int sqliteBtreeCursor(Btree*, int iTable, BtCursor **ppCur); int sqliteBtreeMoveto(BtCursor*, void *pKey, int nKey, int *pRes); int sqliteBtreeDelete(BtCursor*); int sqliteBtreeInsert(BtCursor*, void *pKey, int nKey, void *pData, int nData); int sqliteBtreeNext(BtCursor*, int *pRes); int sqliteBtreeKeySize(BtCursor*, int *pSize); int sqliteBtreeKey(BtCursor*, int offset, int amt, char *zBuf); int sqliteBtreeDataSize(BtCursor*, int *pSize); int sqliteBtreeData(BtCursor*, int offset, int amt, char *zBuf); int sqliteBtreeCloseCursor(BtCursor*); #define SQLITE_N_BTREE_META 3 int sqliteBtreeGetMeta(Btree*, int*); int sqliteBtreeUpdateMeta(Btree*, int*); #ifdef SQLITE_TEST int sqliteBtreePageDump(Btree*, int); int sqliteBtreeCursorDump(BtCursor*, int*); #endif |
Changes to src/pager.c.
︙ | ︙ | |||
23 24 25 26 27 28 29 | ************************************************************************* ** This is the implementation of the page cache subsystem. ** ** The page cache is used to access a database file. The pager journals ** all writes in order to support rollback. Locking is used to limit ** access to one or more reader or one writer. ** | | | 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ************************************************************************* ** This is the implementation of the page cache subsystem. ** ** The page cache is used to access a database file. The pager journals ** all writes in order to support rollback. Locking is used to limit ** access to one or more reader or one writer. ** ** @(#) $Id: pager.c,v 1.9 2001/06/22 19:15:00 drh Exp $ */ #include "sqliteInt.h" #include "pager.h" #include <fcntl.h> #include <sys/stat.h> #include <unistd.h> #include <assert.h> |
︙ | ︙ | |||
558 559 560 561 562 563 564 | } /* ** Increment the reference count for a page. If the page is ** currently on the freelist (the reference count is zero) then ** remove it from the freelist. */ | | > > | 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 | } /* ** Increment the reference count for a page. If the page is ** currently on the freelist (the reference count is zero) then ** remove it from the freelist. */ int sqlitepager_ref(void *pData){ PgHdr *pPg = DATA_TO_PGHDR(pData); if( pPg->nRef==0 ){ /* The page is currently on the freelist. Remove it. */ if( pPg->pPrevFree ){ pPg->pPrevFree->pNextFree = pPg->pNextFree; }else{ pPg->pPager->pFirst = pPg->pNextFree; } if( pPg->pNextFree ){ pPg->pNextFree->pPrevFree = pPg->pPrevFree; }else{ pPg->pPager->pLast = pPg->pPrevFree; } pPg->pPager->nRef++; } pPg->nRef++; return SQLITE_OK; } /* ** Acquire a page. ** ** A read lock is obtained for the first page acquired. The lock ** is dropped when the last page is released. |
︙ | ︙ |
Changes to src/pager.h.
︙ | ︙ | |||
21 22 23 24 25 26 27 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. ** | | | > | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. ** ** @(#) $Id: pager.h,v 1.5 2001/06/22 19:15:01 drh Exp $ */ /* ** The size of one page */ #define SQLITE_PAGE_SIZE 1024 /* ** The type used to represent a page number. The first page in a file ** is called page 1. 0 is used to represent "not a page". */ typedef unsigned int Pgno; /* ** Each open file is managed by a separate instance of the "Pager" structure. */ typedef struct Pager Pager; int sqlitepager_open(Pager **ppPager,const char *zFilename,int nPage,int nEx); void sqlitepager_set_destructor(Pager*, void(*)(void*)); int sqlitepager_close(Pager *pPager); int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage); void *sqlitepager_lookup(Pager *pPager, Pgno pgno); int sqlitepager_ref(void*); int sqlitepager_unref(void*); Pgno sqlitepager_pagenumber(void*); int sqlitepager_write(void*); int sqlitepager_pagecount(Pager*); int sqlitepager_commit(Pager*); int sqlitepager_rollback(Pager*); int *sqlitepager_stats(Pager*); |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
19 20 21 22 23 24 25 | ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** A TCL Interface to SQLite ** | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** A TCL Interface to SQLite ** ** $Id: tclsqlite.c,v 1.19 2001/06/22 19:15:01 drh Exp $ */ #ifndef NO_TCL /* Omit this whole file if TCL is unavailable */ #include "sqlite.h" #include "tcl.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | Tcl_FindExecutable(argv[0]); interp = Tcl_CreateInterp(); Sqlite_Init(interp); #ifdef SQLITE_TEST { extern int Sqlitetest1_Init(Tcl_Interp*); extern int Sqlitetest2_Init(Tcl_Interp*); Sqlitetest1_Init(interp); Sqlitetest2_Init(interp); } #endif if( argc>=2 ){ int i; Tcl_SetVar(interp,"argv0",argv[1],TCL_GLOBAL_ONLY); Tcl_SetVar(interp,"argv", "", TCL_GLOBAL_ONLY); for(i=2; i<argc; i++){ | > > | 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 | Tcl_FindExecutable(argv[0]); interp = Tcl_CreateInterp(); Sqlite_Init(interp); #ifdef SQLITE_TEST { extern int Sqlitetest1_Init(Tcl_Interp*); extern int Sqlitetest2_Init(Tcl_Interp*); extern int Sqlitetest3_Init(Tcl_Interp*); Sqlitetest1_Init(interp); Sqlitetest2_Init(interp); Sqlitetest3_Init(interp); } #endif if( argc>=2 ){ int i; Tcl_SetVar(interp,"argv0",argv[1],TCL_GLOBAL_ONLY); Tcl_SetVar(interp,"argv", "", TCL_GLOBAL_ONLY); for(i=2; i<argc; i++){ |
︙ | ︙ |
Changes to src/test3.c.
︙ | ︙ | |||
21 22 23 24 25 26 27 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test3.c,v 1.2 2001/06/22 19:15:01 drh Exp $ */ #include "sqliteInt.h" #include "pager.h" #include "btree.h" #include "tcl.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
67 68 69 70 71 72 73 | */ static int btree_open( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ | | < | 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | */ static int btree_open( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ Btree *pBt; int rc; char zBuf[100]; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " FILENAME\"", 0); return TCL_ERROR; } |
︙ | ︙ | |||
151 152 153 154 155 156 157 | */ static int btree_rollback( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ | | | 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | */ static int btree_rollback( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ Btree *pBt; int rc; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; |
︙ | ︙ | |||
235 236 237 238 239 240 241 | */ static int btree_drop_table( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 | */ static int btree_drop_table( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ Btree *pBt; int iTable; int rc; if( argc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID TABLENUM\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; if( Tcl_GetInt(interp, argv[2], &iTable) ) return TCL_ERROR; rc = sqliteBtreeDropTable(pBt, iTable); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } return TCL_OK; } /* ** Usage: btree_get_meta ID ** ** Return meta data */ static int btree_get_meta( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ Btree *pBt; int rc; int i; int aMeta[SQLITE_N_BTREE_META]; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; rc = sqliteBtreeGetMeta(pBt, aMeta); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } for(i=0; i<SQLITE_N_BTREE_META; i++){ char zBuf[30]; sprintf(zBuf,"%d",aMeta[i]); Tcl_AppendElement(interp, zBuf); } return TCL_OK; } /* ** Usage: btree_update_meta ID METADATA... ** ** Return meta data */ static int btree_update_meta( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ Btree *pBt; int rc; int i; int aMeta[SQLITE_N_BTREE_META]; if( argc!=2+SQLITE_N_BTREE_META ){ char zBuf[30]; sprintf(zBuf,"%d",SQLITE_N_BTREE_META); Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID METADATA...\" (METADATA is ", zBuf, " integers)", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; for(i=0; i<SQLITE_N_BTREE_META; i++){ if( Tcl_GetInt(interp, argv[i+2], &aMeta[i]) ) return TCL_ERROR; } rc = sqliteBtreeUpdateMeta(pBt, aMeta); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } return TCL_OK; } /* ** Usage: btree_page_dump ID PAGENUM ** ** Print a disassembly of a page on standard output */ static int btree_page_dump( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ Btree *pBt; int iPage; int rc; if( argc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; if( Tcl_GetInt(interp, argv[2], &iPage) ) return TCL_ERROR; rc = sqliteBtreePageDump(pBt, iPage); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } return TCL_OK; } /* ** Usage: btree_cursor ID TABLENUM ** ** Create a new cursor. Return the ID for the cursor. */ static int btree_cursor( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ Btree *pBt; int iTable; BtCursor *pCur; int rc; char zBuf[30]; if( argc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID TABLENUM\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; if( Tcl_GetInt(interp, argv[2], &iTable) ) return TCL_ERROR; rc = sqliteBtreeCursor(pBt, iTable, &pCur); if( rc ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } sprintf(zBuf,"0x%x", (int)pCur); Tcl_AppendResult(interp, zBuf, 0); return SQLITE_OK; } /* ** Usage: btree_close_cursor ID ** ** Close a cursor opened using btree_cursor. */ static int btree_close_cursor( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; rc = sqliteBtreeCloseCursor(pCur); if( rc ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } return SQLITE_OK; } /* ** Usage: btree_move_to ID KEY ** ** Move the cursor to the entry with the given key. */ static int btree_move_to( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; int res; char zBuf[20]; if( argc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID KEY\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; rc = sqliteBtreeMoveto(pCur, argv[2], strlen(argv[2]), &res); if( rc ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } sprintf(zBuf,"%d",res); Tcl_AppendResult(interp, zBuf, 0); return SQLITE_OK; } /* ** Usage: btree_delete ID ** ** Delete the entry that the cursor is pointing to */ static int btree_delete( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; rc = sqliteBtreeDelete(pCur); if( rc ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } return SQLITE_OK; } /* ** Usage: btree_insert ID KEY DATA ** ** Create a new entry with the given key and data. If an entry already ** exists with the same key the old entry is overwritten. */ static int btree_insert( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; if( argc!=4 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID KEY DATA\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; rc = sqliteBtreeInsert(pCur, argv[2], strlen(argv[2]), argv[3], strlen(argv[3])); if( rc ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } return SQLITE_OK; } /* ** Usage: btree_next ID ** ** Move the cursor to the next entry in the table. */ static int btree_next( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; rc = sqliteBtreeNext(pCur, 0); if( rc ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } return SQLITE_OK; } /* ** Usage: btree_key ID ** ** Return the key for the entry at which the cursor is pointing. */ static int btree_key( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; int n; char *zBuf; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; sqliteBtreeKeySize(pCur, &n); zBuf = malloc( n+1 ); rc = sqliteBtreeKey(pCur, 0, n, zBuf); if( rc ){ free(zBuf); Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } zBuf[n] = 0; Tcl_AppendResult(interp, zBuf, 0); free(zBuf); return SQLITE_OK; } /* ** Usage: btree_data ID ** ** Return the data for the entry at which the cursor is pointing. */ static int btree_data( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; int n; char *zBuf; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; sqliteBtreeDataSize(pCur, &n); zBuf = malloc( n+1 ); rc = sqliteBtreeData(pCur, 0, n, zBuf); if( rc ){ free(zBuf); Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } zBuf[n] = 0; Tcl_AppendResult(interp, zBuf, 0); free(zBuf); return SQLITE_OK; } /* ** Usage: btree_cursor_dump ID ** ** Return two integers which are the page number and cell index for ** the given cursor. */ static int btree_cursor_dump( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ BtCursor *pCur; int rc; int aResult[2]; char zBuf[50]; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; rc = sqliteBtreeCursorDump(pCur, aResult); if( rc ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } sprintf(zBuf,"%d %d",aResult[0], aResult[1]); Tcl_AppendResult(interp, zBuf, 0); return SQLITE_OK; } /* ** Register commands with the TCL interpreter. */ int Sqlitetest3_Init(Tcl_Interp *interp){ Tcl_CreateCommand(interp, "btree_open", btree_open, 0, 0); Tcl_CreateCommand(interp, "btree_close", btree_close, 0, 0); Tcl_CreateCommand(interp, "btree_begin_transaction", btree_begin_transaction, 0, 0); Tcl_CreateCommand(interp, "btree_commit", btree_commit, 0, 0); Tcl_CreateCommand(interp, "btree_rollback", btree_rollback, 0, 0); Tcl_CreateCommand(interp, "btree_create_table", btree_create_table, 0, 0); Tcl_CreateCommand(interp, "btree_drop_table", btree_drop_table, 0, 0); Tcl_CreateCommand(interp, "btree_get_meta", btree_get_meta, 0, 0); Tcl_CreateCommand(interp, "btree_update_meta", btree_update_meta, 0, 0); Tcl_CreateCommand(interp, "btree_page_dump", btree_page_dump, 0, 0); Tcl_CreateCommand(interp, "btree_cursor", btree_cursor, 0, 0); Tcl_CreateCommand(interp, "btree_close_cursor", btree_close_cursor, 0, 0); Tcl_CreateCommand(interp, "btree_move_to", btree_move_to, 0, 0); Tcl_CreateCommand(interp, "btree_delete", btree_delete, 0, 0); Tcl_CreateCommand(interp, "btree_insert", btree_insert, 0, 0); Tcl_CreateCommand(interp, "btree_next", btree_next, 0, 0); Tcl_CreateCommand(interp, "btree_key", btree_key, 0, 0); Tcl_CreateCommand(interp, "btree_data", btree_data, 0, 0); Tcl_CreateCommand(interp, "btree_cursor_dump", btree_cursor_dump, 0, 0); return TCL_OK; } |