/ Check-in [b22b6140]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Improvements to the makefile and README for MSVC.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1:b22b61406899c2694dae984995d2484fdb8122f1
User & Date: mistachkin 2014-02-13 21:57:48
Context
2014-02-14
00:25
Revise how the Tcl system encoding is handled by the test suite. check-in: 9e573198 user: mistachkin tags: trunk
2014-02-13
21:57
Improvements to the makefile and README for MSVC. check-in: b22b6140 user: mistachkin tags: trunk
19:27
Ensure that if the "psow=0" URI option or FCNTL_POWERSAFE_OVERWRITE file-control is used to clear the power-safe overwrite flag, extra padding frames are added to the WAL file. check-in: 48c821fd user: dan tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to Makefile.msc.

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
....
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
NLTLIBPATHS = "/LIBPATH:$(NCRTLIBPATH)" "/LIBPATH:$(NSDKLIBPATH)"
!ENDIF

# C compiler and options for use in building executables that
# will run on the target platform.  (BCC and TCC are usually the
# same unless your are cross-compiling.)
#
TCC = $(CC) -W3 -DSQLITE_OS_WIN=1 -I$(TOP) -I$(TOP)\src -fp:precise
RCC = $(RC) -DSQLITE_OS_WIN=1 -I$(TOP) -I$(TOP)\src

# Check if assembly code listings should be generated for the source
# code files to be compiled.
#
!IF $(USE_LISTINGS)!=0
TCC = $(TCC) -FAcs
................................................................................
	del /Q parse.y parse.h parse.h.temp
	copy $(TOP)\src\parse.y .
	.\lemon.exe $(OPT_FEATURE_FLAGS) $(OPTS) parse.y
	move parse.h parse.h.temp
	$(NAWK) -f $(TOP)\addopcodes.awk parse.h.temp > parse.h

sqlite3.h:	$(TOP)\src\sqlite.h.in $(TOP)\manifest.uuid $(TOP)\VERSION
	$(TCLSH_CMD) $(TOP)\tool\mksqlite3h.tcl $(TOP) > sqlite3.h

mkkeywordhash.exe:	$(TOP)\tool\mkkeywordhash.c
	$(BCC) -Fe$@ $(OPT_FEATURE_FLAGS) $(OPTS) $(TOP)\tool\mkkeywordhash.c /link $(NLTLIBPATHS)

keywordhash.h:	$(TOP)\tool\mkkeywordhash.c mkkeywordhash.exe
	.\mkkeywordhash.exe > keywordhash.h








|







 







|







210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
....
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
NLTLIBPATHS = "/LIBPATH:$(NCRTLIBPATH)" "/LIBPATH:$(NSDKLIBPATH)"
!ENDIF

# C compiler and options for use in building executables that
# will run on the target platform.  (BCC and TCC are usually the
# same unless your are cross-compiling.)
#
TCC = $(CC) -W3 -DSQLITE_OS_WIN=1 -I. -I$(TOP) -I$(TOP)\src -fp:precise
RCC = $(RC) -DSQLITE_OS_WIN=1 -I$(TOP) -I$(TOP)\src

# Check if assembly code listings should be generated for the source
# code files to be compiled.
#
!IF $(USE_LISTINGS)!=0
TCC = $(TCC) -FAcs
................................................................................
	del /Q parse.y parse.h parse.h.temp
	copy $(TOP)\src\parse.y .
	.\lemon.exe $(OPT_FEATURE_FLAGS) $(OPTS) parse.y
	move parse.h parse.h.temp
	$(NAWK) -f $(TOP)\addopcodes.awk parse.h.temp > parse.h

sqlite3.h:	$(TOP)\src\sqlite.h.in $(TOP)\manifest.uuid $(TOP)\VERSION
	$(TCLSH_CMD) $(TOP)\tool\mksqlite3h.tcl $(TOP:\=/) > sqlite3.h

mkkeywordhash.exe:	$(TOP)\tool\mkkeywordhash.c
	$(BCC) -Fe$@ $(OPT_FEATURE_FLAGS) $(OPTS) $(TOP)\tool\mkkeywordhash.c /link $(NLTLIBPATHS)

keywordhash.h:	$(TOP)\tool\mkkeywordhash.c mkkeywordhash.exe
	.\mkkeywordhash.exe > keywordhash.h

Changes to README.md.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33























34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
..
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
...
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
...
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

    tar xzf sqlite.tar.gz    ;#  Unpack the source tree into "sqlite"
    mkdir bld                ;#  Build will occur in a sibling directory
    cd bld                   ;#  Change to the build directory
    ../sqlite/configure      ;#  Run the configure script
    make                     ;#  Run the makefile.
    make sqlite3.c           ;#  Build the "amalgamation" source file
    make test                ;#  Run some tests (requires TCL)

See the makefile for additional targets.

The configure script uses autoconf 2.61 and libtool.  If the configure
script does not work out for you, there is a generic makefile named
"Makefile.linux-gcc" in the top directory of the source tree that you
can copy and edit to suit your needs.  Comments on the generic makefile
show what changes are needed.

SQLite does not require TCL to run, but a TCL installation is required























by the makefiles.  SQLite contains a lot of generated code and TCL is
used to do much of that code generation.  The makefile also requires
AWK.


## Source Code Tour

Most of the core source files are in the **src/** subdirectory.  But
src/ also contains files used to build the "testfixture" test harness;
those file all begin with "test".  And src/ contains the "shell.c" file
which is the main program for the "sqlite3.exe" command-line shell and
the "tclsqlite.c" file which implements the bindings to SQLite from the
TCL programming language.  (Historical note:  SQLite began as a TCL
extension and only later escaped to the wild as an independent library.)

Test scripts and programs are found in the **test/** subdirectory.
There are other test suites for SQLite (see 
[How SQLite Is Tested](http://www.sqlite.org/testing.html))
but those other test suites are
in separate source repositories.

The **ext/** subdirectory contains code for extensions.  The
Full-text search engine is in **ext/fts3**.  The R-Tree engine is in
**ext/rtree**.  The **ext/misc** subdirectory contains a number of
................................................................................
### Generated Source Code Files

Several of the C-language source files used by SQLite are generated from
other sources rather than being typed in manually by a programmer.  This
section will summarize those automatically-generated files.  To create all
of the automatically-generated files, simply run "make target_source".
The "target_source" make target will create a subdirectory "tsrc/" and
fill it with all the source files needed to build SQLite, both 
manually-edited files and automatically-generated files.

The SQLite interface is defined by the **sqlite3.h** header file, which is
generated from src/sqlite.h.in, ./manifest.uuid, and ./VERSION.  The
TCL script at tool/mksqlite3h.tcl does the conversion.  The manifest.uuid
file contains the SHA1 hash of the particular check-in and is used to generate
the SQLITE_SOURCE_ID macro.  The VERSION file contains the current SQLite
version number.  The sqlite3.h header is really just a copy of src/sqlite.h.in
with the source-id and version number inserted at just the right spots.
Note that comment text in the sqlite3.h file is used to generate much of
the SQLite API documentation.  The TCL scripts used to generate that
documentation are in a separate source repository.

The SQL language parser is **parse.c** which is generate from a grammar in
the src/parse.y file.  The conversion of "parse.y" into "parse.c" is done
by the [lemon](./doc/lemon.html) LALR(1) parser generator.  The source code 
for lemon is at tool/lemon.c.  Lemon uses a
template for generating its parser.  A generic template is in tool/lempar.c,
but SQLite uses a slightly modified template found in src/lempar.c.

Lemon also generates the **parse.h** header file, at the same time it
generates parse.c. But the parse.h header file is
modified further (to add additional symbols) using the ./addopcodes.awk
................................................................................
**sqlite3.c** called "the amalgamation".  The amalgamation is the recommended
way of using SQLite in a larger application.  Combining all individual
source code files into a single big source code file allows the C compiler
to perform more cross-procedure analysis and generate better code.  SQLite
runs about 5% faster when compiled from the amalgamation versus when compiled
from individual source files.

The amalgamation is generated from the tool/mksqlite3c.tcl TCL script.
First, all of the individual source files must be gathered into the tsrc/
subdirectory (using the equivalent of "make target_source") then the
tool/mksqlite3c.tcl script is run to copy them all together in just the
right order while resolving internal "#include" references.

The amalgamation source file is more than 100K lines long.  Some symbolic
debuggers (most notably MSVC) are unable to deal with files longer than 64K
lines.  To work around this, a separate TCL script, tool/split-sqlite3c.tcl,
can be run on the amalgamation to break it up into a single small C file
called **sqlite3-all.c** that does #include on about five other files
named **sqlite3-1.c**, **sqlite3-2.c**, ..., **sqlite3-5.c**.  In this way,
all of the source code is contained within a single translation unit so
that the compiler can do extra cross-procedure optimization, but no 
individual source file exceeds 32K lines in length.

## How It All Fits Together

SQLite is modular in design.
See the [architectural description](http://www.sqlite.org/arch.html) 
for details. Other documents that are useful in
(helping to understand how SQLite works include the
[file format](http://www.sqlite.org/fileformat2.html) description,
the [virtual machine](http://www.sqlite.org/vdbe.html) that runs
prepared statements, the description of 
[how transactions work](http://www.sqlite.org/atomiccommit.html), and
the [overview of the query planner](http://www.sqlite.org/optoverview.html).

Unfortunately, years of effort have gone into optimizating SQLite, both
for small size and high performance.  And optimizations tend to result in
complex code.  So there is a lot of complexity in the SQLite implementation.

................................................................................

  *  **pager.c** - This file contains the "pager" implementation, the
     module that implements transactions.

  *  **os_unix.c** and **os_win.c** - These two files implement the interface
     between SQLite and the underlying operating system using the run-time
     pluggable VFS interface.
  

## Contacts

The main SQLite webpage is [http://www.sqlite.org/](http://www.sqlite.org/)
with geographically distributed backup servers at
[http://www2.sqlite.org/](http://www2.sqlite.org) and
[http://www3.sqlite.org/](http://www3.sqlite.org).







|









|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
<
>








|



|







 







|




|





|




|







 







|







|




|





|




|







 







|







16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
..
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
...
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
...
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    tar xzf sqlite.tar.gz    ;#  Unpack the source tree into "sqlite"
    mkdir bld                ;#  Build will occur in a sibling directory
    cd bld                   ;#  Change to the build directory
    ../sqlite/configure      ;#  Run the configure script
    make                     ;#  Run the makefile.
    make sqlite3.c           ;#  Build the "amalgamation" source file
    make test                ;#  Run some tests (requires Tcl)

See the makefile for additional targets.

The configure script uses autoconf 2.61 and libtool.  If the configure
script does not work out for you, there is a generic makefile named
"Makefile.linux-gcc" in the top directory of the source tree that you
can copy and edit to suit your needs.  Comments on the generic makefile
show what changes are needed.

## Using MSVC

On Windows, all applicable build products can be compiled with MSVC.
First open the command prompt window associated with the desired compiler
version (e.g. "Developer Command Prompt for VS2013").  Next, use NMAKE
with the provided "Makefile.msc" to build one of the supported targets.

For example:

    mkdir bld
    cd bld
    nmake /f Makefile.msc TOP=..\sqlite
    nmake /f Makefile.msc sqlite3.c TOP=..\sqlite
    nmake /f Makefile.msc sqlite3.dll TOP=..\sqlite
    nmake /f Makefile.msc sqlite3.exe TOP=..\sqlite
    nmake /f Makefile.msc test TOP=..\sqlite

There are several build options that can be set via the NMAKE command
line.  For example, to build for WinRT, simply add "FOR_WINRT=1" argument
to the "sqlite3.dll" command line above.  When debugging into the SQLite
code, adding the "DEBUG=1" argument to one of the above command lines is
recommended.

SQLite does not require Tcl to run, but a Tcl installation is required
by the makefiles (including those for MSVC).  SQLite contains a lot of
generated code and Tcl is used to do much of that code generation.  The

makefiles also require AWK.

## Source Code Tour

Most of the core source files are in the **src/** subdirectory.  But
src/ also contains files used to build the "testfixture" test harness;
those file all begin with "test".  And src/ contains the "shell.c" file
which is the main program for the "sqlite3.exe" command-line shell and
the "tclsqlite.c" file which implements the bindings to SQLite from the
Tcl programming language.  (Historical note:  SQLite began as a Tcl
extension and only later escaped to the wild as an independent library.)

Test scripts and programs are found in the **test/** subdirectory.
There are other test suites for SQLite (see
[How SQLite Is Tested](http://www.sqlite.org/testing.html))
but those other test suites are
in separate source repositories.

The **ext/** subdirectory contains code for extensions.  The
Full-text search engine is in **ext/fts3**.  The R-Tree engine is in
**ext/rtree**.  The **ext/misc** subdirectory contains a number of
................................................................................
### Generated Source Code Files

Several of the C-language source files used by SQLite are generated from
other sources rather than being typed in manually by a programmer.  This
section will summarize those automatically-generated files.  To create all
of the automatically-generated files, simply run "make target&#95;source".
The "target&#95;source" make target will create a subdirectory "tsrc/" and
fill it with all the source files needed to build SQLite, both
manually-edited files and automatically-generated files.

The SQLite interface is defined by the **sqlite3.h** header file, which is
generated from src/sqlite.h.in, ./manifest.uuid, and ./VERSION.  The
Tcl script at tool/mksqlite3h.tcl does the conversion.  The manifest.uuid
file contains the SHA1 hash of the particular check-in and is used to generate
the SQLITE_SOURCE_ID macro.  The VERSION file contains the current SQLite
version number.  The sqlite3.h header is really just a copy of src/sqlite.h.in
with the source-id and version number inserted at just the right spots.
Note that comment text in the sqlite3.h file is used to generate much of
the SQLite API documentation.  The Tcl scripts used to generate that
documentation are in a separate source repository.

The SQL language parser is **parse.c** which is generate from a grammar in
the src/parse.y file.  The conversion of "parse.y" into "parse.c" is done
by the [lemon](./doc/lemon.html) LALR(1) parser generator.  The source code
for lemon is at tool/lemon.c.  Lemon uses a
template for generating its parser.  A generic template is in tool/lempar.c,
but SQLite uses a slightly modified template found in src/lempar.c.

Lemon also generates the **parse.h** header file, at the same time it
generates parse.c. But the parse.h header file is
modified further (to add additional symbols) using the ./addopcodes.awk
................................................................................
**sqlite3.c** called "the amalgamation".  The amalgamation is the recommended
way of using SQLite in a larger application.  Combining all individual
source code files into a single big source code file allows the C compiler
to perform more cross-procedure analysis and generate better code.  SQLite
runs about 5% faster when compiled from the amalgamation versus when compiled
from individual source files.

The amalgamation is generated from the tool/mksqlite3c.tcl Tcl script.
First, all of the individual source files must be gathered into the tsrc/
subdirectory (using the equivalent of "make target_source") then the
tool/mksqlite3c.tcl script is run to copy them all together in just the
right order while resolving internal "#include" references.

The amalgamation source file is more than 100K lines long.  Some symbolic
debuggers (most notably MSVC) are unable to deal with files longer than 64K
lines.  To work around this, a separate Tcl script, tool/split-sqlite3c.tcl,
can be run on the amalgamation to break it up into a single small C file
called **sqlite3-all.c** that does #include on about five other files
named **sqlite3-1.c**, **sqlite3-2.c**, ..., **sqlite3-5.c**.  In this way,
all of the source code is contained within a single translation unit so
that the compiler can do extra cross-procedure optimization, but no
individual source file exceeds 32K lines in length.

## How It All Fits Together

SQLite is modular in design.
See the [architectural description](http://www.sqlite.org/arch.html)
for details. Other documents that are useful in
(helping to understand how SQLite works include the
[file format](http://www.sqlite.org/fileformat2.html) description,
the [virtual machine](http://www.sqlite.org/vdbe.html) that runs
prepared statements, the description of
[how transactions work](http://www.sqlite.org/atomiccommit.html), and
the [overview of the query planner](http://www.sqlite.org/optoverview.html).

Unfortunately, years of effort have gone into optimizating SQLite, both
for small size and high performance.  And optimizations tend to result in
complex code.  So there is a lot of complexity in the SQLite implementation.

................................................................................

  *  **pager.c** - This file contains the "pager" implementation, the
     module that implements transactions.

  *  **os_unix.c** and **os_win.c** - These two files implement the interface
     between SQLite and the underlying operating system using the run-time
     pluggable VFS interface.


## Contacts

The main SQLite webpage is [http://www.sqlite.org/](http://www.sqlite.org/)
with geographically distributed backup servers at
[http://www2.sqlite.org/](http://www2.sqlite.org) and
[http://www3.sqlite.org/](http://www3.sqlite.org).