Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Import 'rtree' extension. (CVS 5159) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
b104dcd6adadbd3fe15a348fe9d4d290 |
User & Date: | danielk1977 2008-05-26 18:41:54.000 |
Context
2008-05-26
| ||
20:19 | Update the amalgamation builder to incorporate the RTREE extension. (CVS 5160) (check-in: aa8eba3360 user: drh tags: trunk) | |
18:41 | Import 'rtree' extension. (CVS 5159) (check-in: b104dcd6ad user: danielk1977 tags: trunk) | |
18:33 | Fix the LIKE query optimizer so that it works with LIKE patterns ending in '@%' on NOCASE columns. Ticket #3139. (CVS 5158) (check-in: 3354874436 user: drh tags: trunk) | |
Changes
Added ext/rtree/README.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | This directory contains an SQLite extension that implements a virtual table type that allows users to create, query and manipulate r-tree[1] data structures inside of SQLite databases. Users create, populate and query r-tree structures using ordinary SQL statements. 1. SQL Interface 1.1 Table Creation 1.2 Data Manipulation 1.3 Data Querying 1.4 Introspection and Analysis 2. Compilation and Deployment 3. References 1. SQL INTERFACE 1.1 Table Creation. All r-tree virtual tables have an odd number of columns between 3 and 11. Unlike regular SQLite tables, r-tree tables are strongly typed. The leftmost column is always the pimary key and contains 64-bit integer values. Each subsequent column contains a 32-bit real value. For each pair of real values, the first (leftmost) must be less than or greater than the second. R-tree tables may be constructed using the following syntax: CREATE VIRTUAL TABLE <name> USING rtree(<column-names>) For example: CREATE VIRTUAL TABLE boxes USING rtree(boxno, xmin, xmax, ymin, ymax); CREATE VIRTUAL TABLE boxes USING rtree(1, 1.0, 3.0, 2.0, 4.0); Constructing a virtual r-tree table <name> creates the following three real tables in the database to store the data structure: <name>_node <name>_rowid <name>_parent Dropping or modifying the contents of these tables directly will corrupt the r-tree structure. To delete an r-tree from a database, use a regular DROP TABLE statement: DROP TABLE <name>; Dropping the main r-tree table automatically drops the automatically created tables. 1.2 Data Manipulation (INSERT, UPDATE, DELETE). The usual INSERT, UPDATE or DELETE syntax is used to manipulate data stored in an r-tree table. Please note the following: * Inserting a NULL value into the primary key column has the same effect as inserting a NULL into an INTEGER PRIMARY KEY column of a regular table. The system automatically assigns an unused integer key value to the new record. Usually, this is one greater than the largest primary key value currently present in the table. * Attempting to insert a duplicate primary key value fails with an SQLITE_CONSTRAINT error. * Attempting to insert or modify a record such that the value stored in the (N*2)th column is greater than that stored in the (N*2+1)th column fails with an SQLITE_CONSTRAINT error. * When a record is inserted, values are always converted to the required type (64-bit integer or 32-bit real) as if they were part of an SQL CAST expression. Non-numeric strings are converted to zero. 1.3 Queries. R-tree tables may be queried using all of the same SQL syntax supported by regular tables. However, some query patterns are more efficient faster than others. R-trees support fast lookup by primary key value (O(logN), like regular tables). Any combination of equality and range (<, <=, >, >=) constraints on spatial data columns may be used to optimize other queries. This is the key advantage to using r-tree tables instead of creating indices on regular tables. 1.4 Introspection and Analysis. TODO: Describe rtreenode() and rtreedepth() functions. 2. COMPILATION AND USAGE The easiest way to compile and use the ICU extension is to build and use it as a dynamically loadable SQLite extension. To do this using gcc on *nix: gcc -shared rtree.c -o libSqliteRtree.so You may need to add "-I" flags so that gcc can find sqlite3ext.h and sqlite3.h. The resulting shared lib, libSqliteIcu.so, may be loaded into sqlite in the same way as any other dynamicly loadable extension. 3. REFERENCES [1] Atonin Guttman, "R-trees - A Dynamic Index Structure For Spatial Searching", University of California Berkeley, 1984. [2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard Seeger, "The R*-tree: An Efficient and Robust Access Method for Points and Rectangles", Universitaet Bremen, 1990. |
Added ext/rtree/rtree.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code for implementations of the r-tree and r*-tree ** algorithms packaged as an SQLite virtual table module. ** ** $Id: rtree.c,v 1.1 2008/05/26 18:41:54 danielk1977 Exp $ */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) /* ** This file contains an implementation of a couple of different variants ** of the r-tree algorithm. See the README file for further details. The ** same data-structure is used for all, but the algorithms for insert and ** delete operations vary. The variants used are selected at compile time ** by defining the following symbols: */ /* Either, both or none of the following may be set to activate ** r*tree variant algorithms. */ #define VARIANT_RSTARTREE_CHOOSESUBTREE 0 #define VARIANT_RSTARTREE_REINSERT 1 /* ** Exactly one of the following must be set to 1. */ #define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0 #define VARIANT_GUTTMAN_LINEAR_SPLIT 0 #define VARIANT_RSTARTREE_SPLIT 1 #define VARIANT_GUTTMAN_SPLIT \ (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT) #if VARIANT_GUTTMAN_QUADRATIC_SPLIT #define PickNext QuadraticPickNext #define PickSeeds QuadraticPickSeeds #define AssignCells splitNodeGuttman #endif #if VARIANT_GUTTMAN_LINEAR_SPLIT #define PickNext LinearPickNext #define PickSeeds LinearPickSeeds #define AssignCells splitNodeGuttman #endif #if VARIANT_RSTARTREE_SPLIT #define AssignCells splitNodeStartree #endif #ifndef SQLITE_CORE #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #else #include "sqlite3.h" #endif #include <string.h> #include <assert.h> typedef sqlite3_int64 i64; typedef unsigned char u8; typedef unsigned int u32; typedef struct Rtree Rtree; typedef struct RtreeCursor RtreeCursor; typedef struct RtreeNode RtreeNode; typedef struct RtreeCell RtreeCell; typedef struct RtreeConstraint RtreeConstraint; /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ #define RTREE_MAX_DIMENSIONS 5 /* Size of hash table Rtree.aHash. This hash table is not expected to ** ever contain very many entries, so a fixed number of buckets is ** used. */ #define HASHSIZE 128 /* ** An rtree virtual-table object. */ struct Rtree { sqlite3_vtab base; sqlite3 *db; /* Host database connection */ int iNodeSize; /* Size in bytes of each node in the node table */ int nDim; /* Number of dimensions */ int nBytesPerCell; /* Bytes consumed per cell */ int iDepth; /* Current depth of the r-tree structure */ char *zDb; /* Name of database containing r-tree table */ char *zName; /* Name of r-tree table */ RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ int nBusy; /* Current number of users of this structure */ /* List of nodes removed during a CondenseTree operation. List is ** linked together via the pointer normally used for hash chains - ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree ** headed by the node (leaf nodes have RtreeNode.iNode==0). */ RtreeNode *pDeleted; int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ /* Statements to read/write/delete a record from xxx_node */ sqlite3_stmt *pReadNode; sqlite3_stmt *pWriteNode; sqlite3_stmt *pDeleteNode; /* Statements to read/write/delete a record from xxx_rowid */ sqlite3_stmt *pReadRowid; sqlite3_stmt *pWriteRowid; sqlite3_stmt *pDeleteRowid; /* Statements to read/write/delete a record from xxx_parent */ sqlite3_stmt *pReadParent; sqlite3_stmt *pWriteParent; sqlite3_stmt *pDeleteParent; }; /* ** The minimum number of cells allowed for a node is a third of the ** maximum. In Gutman's notation: ** ** m = M/3 ** ** If an R*-tree "Reinsert" operation is required, the same number of ** cells are removed from the overfull node and reinserted into the tree. */ #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) #define RTREE_REINSERT(p) RTREE_MINCELLS(p) #define RTREE_MAXCELLS 51 /* ** An rtree cursor object. */ struct RtreeCursor { sqlite3_vtab_cursor base; RtreeNode *pNode; /* Node cursor is currently pointing at */ int iCell; /* Index of current cell in pNode */ int iStrategy; /* Copy of idxNum search parameter */ int nConstraint; /* Number of entries in aConstraint */ RtreeConstraint *aConstraint; /* Search constraints. */ }; /* ** A search constraint. */ struct RtreeConstraint { int iCoord; /* Index of constrained coordinate */ int op; /* Constraining operation */ float rValue; /* Constraint value. */ }; /* Possible values for RtreeConstraint.op */ #define RTREE_EQ 0x41 #define RTREE_LE 0x42 #define RTREE_LT 0x43 #define RTREE_GE 0x44 #define RTREE_GT 0x45 /* ** An rtree structure node. ** ** Data format (RtreeNode.zData): ** ** 1. If the node is the root node (node 1), then the first 2 bytes ** of the node contain the tree depth as a big-endian integer. ** For non-root nodes, the first 2 bytes are left unused. ** ** 2. The next 2 bytes contain the number of entries currently ** stored in the node. ** ** 3. The remainder of the node contains the node entries. Each entry ** consists of a single 8-byte integer followed by an even number ** of 4-byte coordinates. For leaf nodes the integer is the rowid ** of a record. For internal nodes it is the node number of a ** child page. */ struct RtreeNode { RtreeNode *pParent; /* Parent node */ i64 iNode; int nRef; int isDirty; u8 *zData; RtreeNode *pNext; /* Next node in this hash chain */ }; #define NCELL(pNode) readInt16(&(pNode)->zData[2]) /* ** Structure to store a deserialized rtree record. */ struct RtreeCell { i64 iRowid; float aCoord[RTREE_MAX_DIMENSIONS*2]; }; #define MAX(x,y) ((x) < (y) ? (y) : (x)) #define MIN(x,y) ((x) > (y) ? (y) : (x)) /* ** Functions to deserialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The deserialized value is returned. */ static int readInt16(u8 *p){ return (p[0]<<8) + p[1]; } static float readReal32(u8 *p){ u32 i = ( (((u32)p[0]) << 24) + (((u32)p[1]) << 16) + (((u32)p[2]) << 8) + (((u32)p[3]) << 0) ); return *(float *)&i; } static i64 readInt64(u8 *p){ return ( (((i64)p[0]) << 56) + (((i64)p[1]) << 48) + (((i64)p[2]) << 40) + (((i64)p[3]) << 32) + (((i64)p[4]) << 24) + (((i64)p[5]) << 16) + (((i64)p[6]) << 8) + (((i64)p[7]) << 0) ); } /* ** Functions to serialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The value returned is the number of bytes written ** to the argument buffer (always 2, 4 and 8 respectively). */ static int writeInt16(u8 *p, int i){ p[0] = (i>> 8)&0xFF; p[1] = (i>> 0)&0xFF; return 2; } static int writeReal32(u8 *p, float f){ u32 i; assert( sizeof(float)==4 ); assert( sizeof(u32)==4 ); i = *(u32 *)&f; p[0] = (i>>24)&0xFF; p[1] = (i>>16)&0xFF; p[2] = (i>> 8)&0xFF; p[3] = (i>> 0)&0xFF; return 4; } static int writeInt64(u8 *p, i64 i){ p[0] = (i>>56)&0xFF; p[1] = (i>>48)&0xFF; p[2] = (i>>40)&0xFF; p[3] = (i>>32)&0xFF; p[4] = (i>>24)&0xFF; p[5] = (i>>16)&0xFF; p[6] = (i>> 8)&0xFF; p[7] = (i>> 0)&0xFF; return 8; } /* ** Increment the reference count of node p. */ static void nodeReference(RtreeNode *p){ if( p ){ p->nRef++; } } /* ** Clear the content of node p (set all bytes to 0x00). */ static void nodeZero(Rtree *pRtree, RtreeNode *p){ if( p ){ memset(&p->zData[2], 0, pRtree->iNodeSize-2); p->isDirty = 1; } } /* ** Given a node number iNode, return the corresponding key to use ** in the Rtree.aHash table. */ static int nodeHash(i64 iNode){ return ( (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0) ) % HASHSIZE; } /* ** Search the node hash table for node iNode. If found, return a pointer ** to it. Otherwise, return 0. */ static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ RtreeNode *p; assert( iNode!=0 ); for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); return p; } /* ** Add node pNode to the node hash table. */ static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ if( pNode ){ int iHash; assert( pNode->pNext==0 ); iHash = nodeHash(pNode->iNode); pNode->pNext = pRtree->aHash[iHash]; pRtree->aHash[iHash] = pNode; } } /* ** Remove node pNode from the node hash table. */ static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ RtreeNode **pp; if( pNode->iNode!=0 ){ pp = &pRtree->aHash[nodeHash(pNode->iNode)]; for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } *pp = pNode->pNext; pNode->pNext = 0; } } /* ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), ** indicating that node has not yet been assigned a node number. It is ** assigned a node number when nodeWrite() is called to write the ** node contents out to the database. */ static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent, int zero){ RtreeNode *pNode; pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); if( pNode ){ memset(pNode, 0, sizeof(RtreeNode) + (zero?pRtree->iNodeSize:0)); pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pNode->pParent = pParent; pNode->isDirty = 1; nodeReference(pParent); } return pNode; } /* ** Obtain a reference to an r-tree node. */ static int nodeAcquire( Rtree *pRtree, /* R-tree structure */ i64 iNode, /* Node number to load */ RtreeNode *pParent, /* Either the parent node or NULL */ RtreeNode **ppNode /* OUT: Acquired node */ ){ int rc; RtreeNode *pNode; /* Check if the requested node is already in the hash table. If so, ** increase its reference count and return it. */ if( (pNode = nodeHashLookup(pRtree, iNode)) ){ assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); if( pParent ){ pNode->pParent = pParent; } pNode->nRef++; *ppNode = pNode; return SQLITE_OK; } pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); if( !pNode ){ *ppNode = 0; return SQLITE_NOMEM; } pNode->pParent = pParent; pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pNode->iNode = iNode; pNode->isDirty = 0; pNode->pNext = 0; sqlite3_bind_int64(pRtree->pReadNode, 1, iNode); rc = sqlite3_step(pRtree->pReadNode); if( rc==SQLITE_ROW ){ const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0); memcpy(pNode->zData, zBlob, pRtree->iNodeSize); nodeReference(pParent); }else{ sqlite3_free(pNode); pNode = 0; } *ppNode = pNode; rc = sqlite3_reset(pRtree->pReadNode); if( rc==SQLITE_OK && iNode==1 ){ pRtree->iDepth = readInt16(pNode->zData); } assert( (rc==SQLITE_OK && pNode) || (pNode==0 && rc!=SQLITE_OK) ); nodeHashInsert(pRtree, pNode); return rc; } /* ** Overwrite cell iCell of node pNode with the contents of pCell. */ static void nodeOverwriteCell( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iCell ){ int ii; u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; p += writeInt64(p, pCell->iRowid); for(ii=0; ii<(pRtree->nDim*2); ii++){ p += writeReal32(p, pCell->aCoord[ii]); } pNode->isDirty = 1; } /* ** Remove cell the cell with index iCell from node pNode. */ static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; u8 *pSrc = &pDst[pRtree->nBytesPerCell]; int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; memmove(pDst, pSrc, nByte); writeInt16(&pNode->zData[2], NCELL(pNode)-1); pNode->isDirty = 1; } /* ** Insert the contents of cell pCell into node pNode. If the insert ** is successful, return SQLITE_OK. ** ** If there is not enough free space in pNode, return SQLITE_FULL. */ static int nodeInsertCell( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell ){ int nCell; /* Current number of cells in pNode */ int nMaxCell; /* Maximum number of cells for pNode */ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; nCell = NCELL(pNode); assert(nCell<=nMaxCell); if( nCell<nMaxCell ){ nodeOverwriteCell(pRtree, pNode, pCell, nCell); writeInt16(&pNode->zData[2], nCell+1); pNode->isDirty = 1; } return (nCell==nMaxCell); } /* ** If the node is dirty, write it out to the database. */ static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode->isDirty ){ sqlite3_stmt *p = pRtree->pWriteNode; if( pNode->iNode ){ sqlite3_bind_int64(p, 1, pNode->iNode); }else{ sqlite3_bind_null(p, 1); } sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); sqlite3_step(p); pNode->isDirty = 0; rc = sqlite3_reset(p); if( pNode->iNode==0 && rc==SQLITE_OK ){ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); nodeHashInsert(pRtree, pNode); } } return rc; } /* ** Release a reference to a node. If the node is dirty and the reference ** count drops to zero, the node data is written to the database. */ static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode ){ assert( pNode->nRef>0 ); pNode->nRef--; if( pNode->nRef==0 ){ if( pNode->iNode==1 ){ pRtree->iDepth = -1; } if( pNode->pParent ){ rc = nodeRelease(pRtree, pNode->pParent); } if( rc==SQLITE_OK ){ rc = nodeWrite(pRtree, pNode); } nodeHashDelete(pRtree, pNode); sqlite3_free(pNode); } } return rc; } /* ** Return the 64-bit integer value associated with cell iCell of ** node pNode. If pNode is a leaf node, this is a rowid. If it is ** an internal node, then the 64-bit integer is a child page number. */ static i64 nodeGetRowid( Rtree *pRtree, RtreeNode *pNode, int iCell ){ assert( iCell<NCELL(pNode) ); return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); } /* ** Return coordinate iCoord from cell iCell in node pNode. */ static float nodeGetCoord( Rtree *pRtree, RtreeNode *pNode, int iCell, int iCoord ){ return readReal32(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord]); } /* ** Deserialize cell iCell of node pNode. Populate the structure pointed ** to by pCell with the results. */ static void nodeGetCell( Rtree *pRtree, RtreeNode *pNode, int iCell, RtreeCell *pCell ){ int ii; pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); for(ii=0; ii<pRtree->nDim*2; ii++){ pCell->aCoord[ii] = nodeGetCoord(pRtree, pNode, iCell, ii); } } /* Forward declaration for the function that does the work of ** the virtual table module xCreate() and xConnect() methods. */ static int rtreeInit( sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int ); /* ** Rtree virtual table module xCreate method. */ static int rtreeCreate( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); } /* ** Rtree virtual table module xConnect method. */ static int rtreeConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); } /* ** Increment the r-tree reference count. */ static void rtreeReference(Rtree *pRtree){ pRtree->nBusy++; } /* ** Decrement the r-tree reference count. When the reference count reaches ** zero the structure is deleted. */ static void rtreeRelease(Rtree *pRtree){ pRtree->nBusy--; if( pRtree->nBusy==0 ){ sqlite3_finalize(pRtree->pReadNode); sqlite3_finalize(pRtree->pWriteNode); sqlite3_finalize(pRtree->pDeleteNode); sqlite3_finalize(pRtree->pReadRowid); sqlite3_finalize(pRtree->pWriteRowid); sqlite3_finalize(pRtree->pDeleteRowid); sqlite3_finalize(pRtree->pReadParent); sqlite3_finalize(pRtree->pWriteParent); sqlite3_finalize(pRtree->pDeleteParent); sqlite3_free(pRtree); } } /* ** Rtree virtual table module xDisconnect method. */ static int rtreeDisconnect(sqlite3_vtab *pVtab){ rtreeRelease((Rtree *)pVtab); return SQLITE_OK; } /* ** Rtree virtual table module xDestroy method. */ static int rtreeDestroy(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; int rc; char *zCreate = sqlite3_mprintf( "DROP TABLE '%q'.'%q_node';" "DROP TABLE '%q'.'%q_rowid';" "DROP TABLE '%q'.'%q_parent';", pRtree->zDb, pRtree->zName, pRtree->zDb, pRtree->zName, pRtree->zDb, pRtree->zName ); if( !zCreate ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); sqlite3_free(zCreate); } if( rc==SQLITE_OK ){ rtreeRelease(pRtree); } return rc; } /* ** Rtree virtual table module xOpen method. */ static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ int rc = SQLITE_NOMEM; RtreeCursor *pCsr; pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor)); if( pCsr ){ memset(pCsr, 0, sizeof(RtreeCursor)); pCsr->base.pVtab = pVTab; rc = SQLITE_OK; } *ppCursor = (sqlite3_vtab_cursor *)pCsr; return rc; } /* ** Rtree virtual table module xClose method. */ static int rtreeClose(sqlite3_vtab_cursor *cur){ Rtree *pRtree = (Rtree *)(cur->pVtab); int rc; RtreeCursor *pCsr = (RtreeCursor *)cur; sqlite3_free(pCsr->aConstraint); rc = nodeRelease(pRtree, pCsr->pNode); sqlite3_free(pCsr); return rc; } /* ** Rtree virtual table module xEof method. ** ** Return non-zero if the cursor does not currently point to a valid ** record (i.e if the scan has finished), or zero otherwise. */ static int rtreeEof(sqlite3_vtab_cursor *cur){ RtreeCursor *pCsr = (RtreeCursor *)cur; return (pCsr->pNode==0); } /* ** Cursor pCursor currently points to a cell in a non-leaf page. ** Return true if the sub-tree headed by the cell is filtered ** (excluded) by the constraints in the pCursor->aConstraint[] ** array, or false otherwise. */ static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){ RtreeCell cell; int ii; nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); for(ii=0; ii<pCursor->nConstraint; ii++){ RtreeConstraint *p = &pCursor->aConstraint[ii]; float cell_min = cell.aCoord[(p->iCoord>>1)*2]; float cell_max = cell.aCoord[(p->iCoord>>1)*2+1]; assert( cell_min<=cell_max ); switch( p->op ){ case RTREE_LE: case RTREE_LT: { if( p->rValue<cell_min ){ return 1; } break; } case RTREE_GE: case RTREE_GT: { if( p->rValue>cell_max ){ return 1; } break; } case RTREE_EQ: { if( p->rValue>cell_max || p->rValue<cell_min ){ return 1; } break; } #ifndef NDEBUG default: assert(!"Internal error"); #endif } } return 0; } /* ** Return true if the cell that cursor pCursor currently points to ** would be filtered (excluded) by the constraints in the ** pCursor->aConstraint[] array, or false otherwise. ** ** This function assumes that the cell is part of a leaf node. */ static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){ RtreeCell cell; int ii; nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); for(ii=0; ii<pCursor->nConstraint; ii++){ RtreeConstraint *p = &pCursor->aConstraint[ii]; float cell_val = cell.aCoord[p->iCoord]; int res; switch( p->op ){ case RTREE_LE: res = (cell_val<=p->rValue); break; case RTREE_LT: res = (cell_val<p->rValue); break; case RTREE_GE: res = (cell_val>=p->rValue); break; case RTREE_GT: res = (cell_val>p->rValue); break; case RTREE_EQ: res = (cell_val==p->rValue); break; #ifndef NDEBUG default: assert(!"Internal error"); #endif } if( !res ) return 1; } return 0; } /* ** Cursor pCursor currently points at a node that heads a sub-tree of ** height iHeight (if iHeight==0, then the node is a leaf). Descend ** to point to the left-most cell of the sub-tree that matches the ** configured constraints. */ static int descendToCell( Rtree *pRtree, RtreeCursor *pCursor, int iHeight, int *pEof /* OUT: Set to true if cannot descend */ ){ int isEof; int rc; int ii; RtreeNode *pChild; sqlite3_int64 iRowid; RtreeNode *pSavedNode = pCursor->pNode; int iSavedCell = pCursor->iCell; assert( iHeight>=0 ); if( iHeight==0 ){ isEof = testRtreeEntry(pRtree, pCursor); }else{ isEof = testRtreeCell(pRtree, pCursor); } if( isEof || iHeight==0 ){ *pEof = isEof; return SQLITE_OK; } iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell); rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild); if( rc!=SQLITE_OK ){ return rc; } nodeRelease(pRtree, pCursor->pNode); pCursor->pNode = pChild; isEof = 1; for(ii=0; isEof && ii<NCELL(pChild); ii++){ pCursor->iCell = ii; rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof); if( rc!=SQLITE_OK ){ return rc; } } if( isEof ){ assert( pCursor->pNode==pChild ); nodeReference(pSavedNode); nodeRelease(pRtree, pChild); pCursor->pNode = pSavedNode; pCursor->iCell = iSavedCell; } *pEof = isEof; return SQLITE_OK; } /* ** One of the cells in node pNode is guaranteed to have a 64-bit ** integer value equal to iRowid. Return the index of this cell. */ static int nodeRowidIndex(Rtree *pRtree, RtreeNode *pNode, i64 iRowid){ int ii; for(ii=0; nodeGetRowid(pRtree, pNode, ii)!=iRowid; ii++){ assert( ii<(NCELL(pNode)-1) ); } return ii; } /* ** Return the index of the cell containing a pointer to node pNode ** in its parent. If pNode is the root node, return -1. */ static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode){ RtreeNode *pParent = pNode->pParent; if( pParent ){ return nodeRowidIndex(pRtree, pParent, pNode->iNode); } return -1; } /* ** Rtree virtual table module xNext method. */ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab); RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; int rc = SQLITE_OK; if( pCsr->iStrategy==1 ){ /* This "scan" is a direct lookup by rowid. There is no next entry. */ nodeRelease(pRtree, pCsr->pNode); pCsr->pNode = 0; } else if( pCsr->pNode ){ /* Move to the next entry that matches the configured constraints. */ int iHeight = 0; while( pCsr->pNode ){ RtreeNode *pNode = pCsr->pNode; int nCell = NCELL(pNode); for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){ int isEof; rc = descendToCell(pRtree, pCsr, iHeight, &isEof); if( rc!=SQLITE_OK || !isEof ){ return rc; } } pCsr->pNode = pNode->pParent; pCsr->iCell = nodeParentIndex(pRtree, pNode); nodeReference(pCsr->pNode); nodeRelease(pRtree, pNode); iHeight++; } } return rc; } /* ** Rtree virtual table module xRowid method. */ static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; assert(pCsr->pNode); *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); return SQLITE_OK; } /* ** Rtree virtual table module xColumn method. */ static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ Rtree *pRtree = (Rtree *)cur->pVtab; RtreeCursor *pCsr = (RtreeCursor *)cur; if( i==0 ){ i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); sqlite3_result_int64(ctx, iRowid); }else{ float fCoord = nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1); sqlite3_result_double(ctx, fCoord); } return SQLITE_OK; } /* ** Use nodeAcquire() to obtain the leaf node containing the record with ** rowid iRowid. If successful, set *ppLeaf to point to the node and ** return SQLITE_OK. If there is no such record in the table, set ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf ** to zero and return an SQLite error code. */ static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){ int rc; *ppLeaf = 0; sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); sqlite3_reset(pRtree->pReadRowid); }else{ rc = sqlite3_reset(pRtree->pReadRowid); } return rc; } /* ** Rtree virtual table module xFilter method. */ static int rtreeFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeNode *pRoot = 0; int ii; int rc = SQLITE_OK; rtreeReference(pRtree); sqlite3_free(pCsr->aConstraint); pCsr->aConstraint = 0; pCsr->iStrategy = idxNum; if( idxNum==1 ){ /* Special case - lookup by rowid. */ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ i64 iRowid = sqlite3_value_int64(argv[0]); rc = findLeafNode(pRtree, iRowid, &pLeaf); pCsr->pNode = pLeaf; if( pLeaf && rc==SQLITE_OK ){ pCsr->iCell = nodeRowidIndex(pRtree, pLeaf, iRowid); } }else{ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array ** with the configured constraints. */ if( argc>0 ){ pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); pCsr->nConstraint = argc; if( !pCsr->aConstraint ){ rc = SQLITE_NOMEM; }else{ assert( (idxStr==0 && argc==0) || strlen(idxStr)==argc*2 ); for(ii=0; ii<argc; ii++){ RtreeConstraint *p = &pCsr->aConstraint[ii]; p->op = idxStr[ii*2]; p->iCoord = idxStr[ii*2+1]-'a'; p->rValue = sqlite3_value_double(argv[ii]); } } } if( rc==SQLITE_OK ){ pCsr->pNode = 0; rc = nodeAcquire(pRtree, 1, 0, &pRoot); } if( rc==SQLITE_OK ){ int isEof = 1; int nCell = NCELL(pRoot); pCsr->pNode = pRoot; for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){ assert( pCsr->pNode==pRoot ); rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof); if( !isEof ){ break; } } if( rc==SQLITE_OK && isEof ){ assert( pCsr->pNode==pRoot ); nodeRelease(pRtree, pRoot); pCsr->pNode = 0; } assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) ); } } rtreeRelease(pRtree); return rc; } /* ** Rtree virtual table module xBestIndex method. There are three ** table scan strategies to choose from (in order from most to ** least desirable): ** ** idxNum idxStr Strategy ** ------------------------------------------------ ** 1 Unused Direct lookup by rowid. ** 2 See below R-tree query. ** 3 Unused Full table scan. ** ------------------------------------------------ ** ** If strategy 1 or 3 is used, then idxStr is not meaningful. If strategy ** 2 is used, idxStr is formatted to contain 2 bytes for each ** constraint used. The first two bytes of idxStr correspond to ** the constraint in sqlite3_index_info.aConstraintUsage[] with ** (argvIndex==1) etc. ** ** The first of each pair of bytes in idxStr identifies the constraint ** operator as follows: ** ** Operator Byte Value ** ---------------------- ** = 0x41 ('A') ** <= 0x42 ('B') ** < 0x43 ('C') ** >= 0x44 ('D') ** > 0x45 ('E') ** ---------------------- ** ** The second of each pair of bytes identifies the coordinate column ** to which the constraint applies. The leftmost coordinate column ** is 'a', the second from the left 'b' etc. */ static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int rc = SQLITE_OK; int ii; int iIdx = 0; char zIdxStr[RTREE_MAX_DIMENSIONS*2+1]; memset(zIdxStr, 0, RTREE_MAX_DIMENSIONS*2+1); assert( pIdxInfo->idxStr==0 ); for(ii=0; ii<pIdxInfo->nConstraint; ii++){ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ /* We have an equality constraint on the rowid. Use strategy 1. */ int jj; for(jj=0; jj<ii; jj++){ pIdxInfo->aConstraintUsage[jj].argvIndex = 0; pIdxInfo->aConstraintUsage[jj].omit = 0; } pIdxInfo->idxNum = 1; pIdxInfo->aConstraintUsage[ii].argvIndex = 1; pIdxInfo->aConstraintUsage[jj].omit = 1; return SQLITE_OK; } if( p->usable && p->iColumn>0 ){ u8 op = 0; switch( p->op ){ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; } if( op ){ zIdxStr[iIdx++] = op; zIdxStr[iIdx++] = (char)(p->iColumn-1) + 'a'; pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); pIdxInfo->aConstraintUsage[ii].omit = 1; } } } pIdxInfo->idxNum = 2; pIdxInfo->needToFreeIdxStr = 1; if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ return SQLITE_NOMEM; } return rc; } /* ** Return the N-dimensional volumn of the cell stored in *p. */ static float cellArea(Rtree *pRtree, RtreeCell *p){ float area = 1.0; int ii; for(ii=0; ii<(pRtree->nDim*2); ii+=2){ area = area * (p->aCoord[ii+1] - p->aCoord[ii]); } return area; } /* ** Return the margin length of cell p. The margin length is the sum ** of the objects size in each dimension. */ static float cellMargin(Rtree *pRtree, RtreeCell *p){ float margin = 0.0; int ii; for(ii=0; ii<(pRtree->nDim*2); ii+=2){ margin += (p->aCoord[ii+1] - p->aCoord[ii]); } return margin; } /* ** Store the union of cells p1 and p2 in p1. */ static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ int ii; for(ii=0; ii<(pRtree->nDim*2); ii+=2){ p1->aCoord[ii] = MIN(p1->aCoord[ii], p2->aCoord[ii]); p1->aCoord[ii+1] = MAX(p1->aCoord[ii+1], p2->aCoord[ii+1]); } } /* ** Return the amount cell p would grow by if it were unioned with pCell. */ static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ float area; RtreeCell cell; memcpy(&cell, p, sizeof(RtreeCell)); area = cellArea(pRtree, &cell); cellUnion(pRtree, &cell, pCell); return (cellArea(pRtree, &cell)-area); } #if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT static float cellOverlap( Rtree *pRtree, RtreeCell *p, RtreeCell *aCell, int nCell, int iExclude ){ int ii; float overlap = 0.0; for(ii=0; ii<nCell; ii++){ if( ii!=iExclude ){ int jj; float o = 1.0; for(jj=0; jj<(pRtree->nDim*2); jj+=2){ float x1 = MAX(p->aCoord[jj], aCell[ii].aCoord[jj]); float x2 = MIN(p->aCoord[jj+1], aCell[ii].aCoord[jj+1]); if( x2<x1 ){ o = 0.0; break; }else{ o = o * (x2-x1); } } overlap += o; } } return overlap; } #endif #if VARIANT_RSTARTREE_CHOOSESUBTREE static float cellOverlapEnlargement( Rtree *pRtree, RtreeCell *p, RtreeCell *pInsert, RtreeCell *aCell, int nCell, int iExclude ){ float before; float after; before = cellOverlap(pRtree, p, aCell, nCell, iExclude); cellUnion(pRtree, p, pInsert); after = cellOverlap(pRtree, p, aCell, nCell, iExclude); return after-before; } #endif /* ** This function implements the ChooseLeaf algorithm from Gutman[84]. ** ChooseSubTree in r*tree terminology. */ static int ChooseLeaf( Rtree *pRtree, /* Rtree table */ RtreeCell *pCell, /* Cell to insert into rtree */ int iHeight, /* Height of sub-tree rooted at pCell */ RtreeNode **ppLeaf /* OUT: Selected leaf page */ ){ int rc; int ii; RtreeNode *pNode; rc = nodeAcquire(pRtree, 1, 0, &pNode); for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ int iCell; sqlite3_int64 iBest; float fMinGrowth; float fMinArea; float fMinOverlap; int nCell = NCELL(pNode); RtreeCell cell; RtreeNode *pChild; RtreeCell *aCell = 0; #if VARIANT_RSTARTREE_CHOOSESUBTREE if( ii==(pRtree->iDepth-1) ){ int jj; aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell); if( !aCell ){ rc = SQLITE_NOMEM; nodeRelease(pRtree, pNode); pNode = 0; continue; } for(jj=0; jj<nCell; jj++){ nodeGetCell(pRtree, pNode, jj, &aCell[jj]); } } #endif /* Select the child node which will be enlarged the least if pCell ** is inserted into it. Resolve ties by choosing the entry with ** the smallest area. */ for(iCell=0; iCell<nCell; iCell++){ float growth; float area; float overlap = 0.0; nodeGetCell(pRtree, pNode, iCell, &cell); growth = cellGrowth(pRtree, &cell, pCell); area = cellArea(pRtree, &cell); #if VARIANT_RSTARTREE_CHOOSESUBTREE if( ii==(pRtree->iDepth-1) ){ overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); } #endif if( (iCell==0) || (overlap<fMinOverlap) || (overlap==fMinOverlap && growth<fMinGrowth) || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea) ){ fMinOverlap = overlap; fMinGrowth = growth; fMinArea = area; iBest = cell.iRowid; } } sqlite3_free(aCell); rc = nodeAcquire(pRtree, iBest, pNode, &pChild); nodeRelease(pRtree, pNode); pNode = pChild; } *ppLeaf = pNode; return rc; } /* ** A cell with the same content as pCell has just been inserted into ** the node pNode. This function updates the bounding box cells in ** all ancestor elements. */ static void AdjustTree( Rtree *pRtree, /* Rtree table */ RtreeNode *pNode, /* Adjust ancestry of this node. */ RtreeCell *pCell /* This cell was just inserted */ ){ RtreeNode *p = pNode; while( p->pParent ){ RtreeCell cell; RtreeNode *pParent = p->pParent; int iCell = nodeParentIndex(pRtree, p); nodeGetCell(pRtree, pParent, iCell, &cell); if( cellGrowth(pRtree, &cell, pCell)>0.0 ){ cellUnion(pRtree, &cell, pCell); nodeOverwriteCell(pRtree, pParent, &cell, iCell); } p = pParent; } } /* ** Write mapping (iRowid->iNode) to the <rtree>_rowid table. */ static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); sqlite3_step(pRtree->pWriteRowid); return sqlite3_reset(pRtree->pWriteRowid); } /* ** Write mapping (iNode->iPar) to the <rtree>_parent table. */ static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); sqlite3_step(pRtree->pWriteParent); return sqlite3_reset(pRtree->pWriteParent); } static int insertCell(Rtree *, RtreeNode *, RtreeCell *, int); #if VARIANT_GUTTMAN_LINEAR_SPLIT /* ** Implementation of the linear variant of the PickNext() function from ** Guttman[84]. */ static RtreeCell *LinearPickNext( Rtree *pRtree, RtreeCell *aCell, int nCell, RtreeCell *pLeftBox, RtreeCell *pRightBox, int *aiUsed ){ int ii; for(ii=0; aiUsed[ii]; ii++); aiUsed[ii] = 1; return &aCell[ii]; } /* ** Implementation of the linear variant of the PickSeeds() function from ** Guttman[84]. */ static void LinearPickSeeds( Rtree *pRtree, RtreeCell *aCell, int nCell, int *piLeftSeed, int *piRightSeed ){ int i; int iLeftSeed = 0; int iRightSeed = 1; float maxNormalInnerWidth = 0.0; /* Pick two "seed" cells from the array of cells. The algorithm used ** here is the LinearPickSeeds algorithm from Gutman[1984]. The ** indices of the two seed cells in the array are stored in local ** variables iLeftSeek and iRightSeed. */ for(i=0; i<pRtree->nDim; i++){ float x1 = aCell[0].aCoord[i*2]; float x2 = aCell[0].aCoord[i*2+1]; float x3 = x1; float x4 = x2; int jj; int iCellLeft = 0; int iCellRight = 0; for(jj=1; jj<nCell; jj++){ float left = aCell[jj].aCoord[i*2]; float right = aCell[jj].aCoord[i*2+1]; if( left<x1 ) x1 = left; if( right>x4 ) x4 = right; if( left>x3 ){ x3 = left; iCellRight = jj; } if( right<x2 ){ x2 = right; iCellLeft = jj; } } if( x4!=x1 ){ float normalwidth = (x3 - x2) / (x4 - x1); if( normalwidth>maxNormalInnerWidth ){ iLeftSeed = iCellLeft; iRightSeed = iCellRight; } } } *piLeftSeed = iLeftSeed; *piRightSeed = iRightSeed; } #endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */ #if VARIANT_GUTTMAN_QUADRATIC_SPLIT /* ** Implementation of the quadratic variant of the PickNext() function from ** Guttman[84]. */ static RtreeCell *QuadraticPickNext( Rtree *pRtree, RtreeCell *aCell, int nCell, RtreeCell *pLeftBox, RtreeCell *pRightBox, int *aiUsed ){ #define FABS(a) ((a)<0.0?-1.0*(a):(a)) int iSelect = -1; float fDiff; int ii; for(ii=0; ii<nCell; ii++){ if( aiUsed[ii]==0 ){ float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]); float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]); float diff = FABS(right-left); if( iSelect<0 || diff>fDiff ){ fDiff = diff; iSelect = ii; } } } aiUsed[iSelect] = 1; return &aCell[iSelect]; } /* ** Implementation of the quadratic variant of the PickSeeds() function from ** Guttman[84]. */ static void QuadraticPickSeeds( Rtree *pRtree, RtreeCell *aCell, int nCell, int *piLeftSeed, int *piRightSeed ){ int ii; int jj; int iLeftSeed = 0; int iRightSeed = 1; float fWaste = 0.0; for(ii=0; ii<nCell; ii++){ for(jj=ii+1; jj<nCell; jj++){ float right = cellArea(pRtree, &aCell[jj]); float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]); float waste = growth - right; if( waste>fWaste ){ iLeftSeed = ii; iRightSeed = jj; fWaste = waste; } } } *piLeftSeed = iLeftSeed; *piRightSeed = iRightSeed; } #endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */ /* ** Arguments aIdx, aDistance and aSpare all point to arrays of size ** nIdx. The aIdx array contains the set of integers from 0 to ** (nIdx-1) in no particular order. This function sorts the values ** in aIdx according to the indexed values in aDistance. For ** example, assuming the inputs: ** ** aIdx = { 0, 1, 2, 3 } ** aDistance = { 5.0, 2.0, 7.0, 6.0 } ** ** this function sets the aIdx array to contain: ** ** aIdx = { 0, 1, 2, 3 } ** ** The aSpare array is used as temporary working space by the ** sorting algorithm. */ static void SortByDistance( int *aIdx, int nIdx, float *aDistance, int *aSpare ){ if( nIdx>1 ){ int iLeft = 0; int iRight = 0; int nLeft = nIdx/2; int nRight = nIdx-nLeft; int *aLeft = aIdx; int *aRight = &aIdx[nLeft]; SortByDistance(aLeft, nLeft, aDistance, aSpare); SortByDistance(aRight, nRight, aDistance, aSpare); memcpy(aSpare, aLeft, sizeof(int)*nLeft); aLeft = aSpare; while( iLeft<nLeft || iRight<nRight ){ if( iLeft==nLeft ){ aIdx[iLeft+iRight] = aRight[iRight]; iRight++; }else if( iRight==nRight ){ aIdx[iLeft+iRight] = aLeft[iLeft]; iLeft++; }else{ float fLeft = aDistance[aLeft[iLeft]]; float fRight = aDistance[aRight[iRight]]; if( fLeft<fRight ){ aIdx[iLeft+iRight] = aLeft[iLeft]; iLeft++; }else{ aIdx[iLeft+iRight] = aRight[iRight]; iRight++; } } } #if 0 /* Check that the sort worked */ { int jj; for(jj=1; jj<nIdx; jj++){ float left = aDistance[aIdx[jj-1]]; float right = aDistance[aIdx[jj]]; assert( left<=right ); } } #endif } } /* ** Arguments aIdx, aCell and aSpare all point to arrays of size ** nIdx. The aIdx array contains the set of integers from 0 to ** (nIdx-1) in no particular order. This function sorts the values ** in aIdx according to dimension iDim of the cells in aCell. The ** minimum value of dimension iDim is considered first, the ** maximum used to break ties. ** ** The aSpare array is used as temporary working space by the ** sorting algorithm. */ static void SortByDimension( int *aIdx, int nIdx, int iDim, RtreeCell *aCell, int *aSpare ){ if( nIdx>1 ){ int iLeft = 0; int iRight = 0; int nLeft = nIdx/2; int nRight = nIdx-nLeft; int *aLeft = aIdx; int *aRight = &aIdx[nLeft]; SortByDimension(aLeft, nLeft, iDim, aCell, aSpare); SortByDimension(aRight, nRight, iDim, aCell, aSpare); memcpy(aSpare, aLeft, sizeof(int)*nLeft); aLeft = aSpare; while( iLeft<nLeft || iRight<nRight ){ float xleft1 = aCell[aLeft[iLeft]].aCoord[iDim*2]; float xleft2 = aCell[aLeft[iLeft]].aCoord[iDim*2+1]; float xright1 = aCell[aRight[iRight]].aCoord[iDim*2]; float xright2 = aCell[aRight[iRight]].aCoord[iDim*2+1]; if( (iLeft!=nLeft) && ((iRight==nRight) || (xleft1<xright1) || (xleft1==xright1 && xleft2<xright2) )){ aIdx[iLeft+iRight] = aLeft[iLeft]; iLeft++; }else{ aIdx[iLeft+iRight] = aRight[iRight]; iRight++; } } #if 0 /* Check that the sort worked */ { int jj; for(jj=1; jj<nIdx; jj++){ float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; float xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); } } #endif } } #if VARIANT_RSTARTREE_SPLIT /* ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. */ static int splitNodeStartree( Rtree *pRtree, RtreeCell *aCell, int nCell, RtreeNode *pLeft, RtreeNode *pRight, RtreeCell *pBboxLeft, RtreeCell *pBboxRight ){ int **aaSorted; int *aSpare; int ii; int iBestDim; int iBestSplit; float fBestMargin; int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); aaSorted = (int **)sqlite3_malloc(nByte); if( !aaSorted ){ return SQLITE_NOMEM; } aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; memset(aaSorted, 0, nByte); for(ii=0; ii<pRtree->nDim; ii++){ int jj; aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; for(jj=0; jj<nCell; jj++){ aaSorted[ii][jj] = jj; } SortByDimension(aaSorted[ii], nCell, ii, aCell, aSpare); } for(ii=0; ii<pRtree->nDim; ii++){ float margin = 0.0; float fBestOverlap; float fBestArea; int iBestLeft; int nLeft; for( nLeft=RTREE_MINCELLS(pRtree); nLeft<=(nCell-RTREE_MINCELLS(pRtree)); nLeft++ ){ RtreeCell left; RtreeCell right; int kk; float overlap; float area; memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); for(kk=1; kk<(nCell-1); kk++){ if( kk<nLeft ){ cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); }else{ cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); } } margin += cellMargin(pRtree, &left); margin += cellMargin(pRtree, &right); overlap = cellOverlap(pRtree, &left, &right, 1, -1); area = cellArea(pRtree, &left) + cellArea(pRtree, &right); if( (nLeft==RTREE_MINCELLS(pRtree)) || (overlap<fBestOverlap) || (overlap==fBestOverlap && area<fBestArea) ){ iBestLeft = nLeft; fBestOverlap = overlap; fBestArea = area; } } if( ii==0 || margin<fBestMargin ){ iBestDim = ii; fBestMargin = margin; iBestSplit = iBestLeft; } } memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); for(ii=0; ii<nCell; ii++){ RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; nodeInsertCell(pRtree, pTarget, pCell); cellUnion(pRtree, pBbox, pCell); } sqlite3_free(aaSorted); return SQLITE_OK; } #endif #if VARIANT_GUTTMAN_SPLIT /* ** Implementation of the regular R-tree SplitNode from Guttman[1984]. */ static int splitNodeGuttman( Rtree *pRtree, RtreeCell *aCell, int nCell, RtreeNode *pLeft, RtreeNode *pRight, RtreeCell *pBboxLeft, RtreeCell *pBboxRight ){ int iLeftSeed = 0; int iRightSeed = 1; int *aiUsed; int i; aiUsed = sqlite3_malloc(sizeof(int)*nCell); memset(aiUsed, 0, sizeof(int)*nCell); PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed); memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell)); memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell)); nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]); nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]); aiUsed[iLeftSeed] = 1; aiUsed[iRightSeed] = 1; for(i=nCell-2; i>0; i--){ RtreeCell *pNext; pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); float diff = cellGrowth(pRtree, pBboxLeft, pNext) - cellGrowth(pRtree, pBboxRight, pNext) ; if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i) || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i)) ){ nodeInsertCell(pRtree, pRight, pNext); cellUnion(pRtree, pBboxRight, pNext); }else{ nodeInsertCell(pRtree, pLeft, pNext); cellUnion(pRtree, pBboxLeft, pNext); } } sqlite3_free(aiUsed); return SQLITE_OK; } #endif static int updateMapping( Rtree *pRtree, i64 iRowid, RtreeNode *pNode, int iHeight ){ int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); if( iHeight>0 ){ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); if( pChild ){ nodeRelease(pRtree, pChild->pParent); nodeReference(pNode); pChild->pParent = pNode; } } return xSetMapping(pRtree, iRowid, pNode->iNode); } static int SplitNode( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int i; int newCellIsRight = 0; int rc = SQLITE_OK; int nCell = NCELL(pNode); RtreeCell *aCell; int *aiUsed; RtreeNode *pLeft = 0; RtreeNode *pRight = 0; RtreeCell leftbbox; RtreeCell rightbbox; /* Allocate an array and populate it with a copy of pCell and ** all cells from node pLeft. Then zero the original node. */ aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); if( !aCell ){ rc = SQLITE_NOMEM; goto splitnode_out; } aiUsed = (int *)&aCell[nCell+1]; memset(aiUsed, 0, sizeof(int)*(nCell+1)); for(i=0; i<nCell; i++){ nodeGetCell(pRtree, pNode, i, &aCell[i]); } nodeZero(pRtree, pNode); memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); nCell++; if( pNode->iNode==1 ){ pRight = nodeNew(pRtree, pNode, 1); pLeft = nodeNew(pRtree, pNode, 1); pRtree->iDepth++; pNode->isDirty = 1; writeInt16(pNode->zData, pRtree->iDepth); }else{ pLeft = pNode; pRight = nodeNew(pRtree, pLeft->pParent, 1); nodeReference(pLeft); } if( !pLeft || !pRight ){ rc = SQLITE_NOMEM; goto splitnode_out; } memset(pLeft->zData, 0, pRtree->iNodeSize); memset(pRight->zData, 0, pRtree->iNodeSize); rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); if( rc!=SQLITE_OK ){ goto splitnode_out; } /* Ensure both child nodes have node numbers assigned to them. */ if( (0==pRight->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))) || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) ){ goto splitnode_out; } rightbbox.iRowid = pRight->iNode; leftbbox.iRowid = pLeft->iNode; if( pNode->iNode==1 ){ rc = insertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); if( rc!=SQLITE_OK ){ goto splitnode_out; } }else{ RtreeNode *pParent = pLeft->pParent; int iCell = nodeParentIndex(pRtree, pLeft); nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); AdjustTree(pRtree, pParent, &leftbbox); } if( (rc = insertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ goto splitnode_out; } for(i=0; i<NCELL(pRight); i++){ i64 iRowid = nodeGetRowid(pRtree, pRight, i); rc = updateMapping(pRtree, iRowid, pRight, iHeight); if( iRowid==pCell->iRowid ){ newCellIsRight = 1; } if( rc!=SQLITE_OK ){ goto splitnode_out; } } if( pNode->iNode==1 ){ for(i=0; i<NCELL(pLeft); i++){ i64 iRowid = nodeGetRowid(pRtree, pLeft, i); rc = updateMapping(pRtree, iRowid, pLeft, iHeight); if( rc!=SQLITE_OK ){ goto splitnode_out; } } }else if( newCellIsRight==0 ){ rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); } if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRight); pRight = 0; } if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pLeft); pLeft = 0; } splitnode_out: nodeRelease(pRtree, pRight); nodeRelease(pRtree, pLeft); sqlite3_free(aCell); return rc; } static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ int rc = SQLITE_OK; if( pLeaf->iNode!=1 && pLeaf->pParent==0 ){ sqlite3_bind_int64(pRtree->pReadParent, 1, pLeaf->iNode); if( sqlite3_step(pRtree->pReadParent)==SQLITE_ROW ){ i64 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); rc = nodeAcquire(pRtree, iNode, 0, &pLeaf->pParent); }else{ rc = SQLITE_ERROR; } sqlite3_reset(pRtree->pReadParent); if( rc==SQLITE_OK ){ rc = fixLeafParent(pRtree, pLeaf->pParent); } } return rc; } static int deleteCell(Rtree *, RtreeNode *, int, int); static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ int rc; RtreeNode *pParent; int iCell; assert( pNode->nRef==1 ); /* Remove the entry in the parent cell. */ iCell = nodeParentIndex(pRtree, pNode); pParent = pNode->pParent; pNode->pParent = 0; if( SQLITE_OK!=(rc = deleteCell(pRtree, pParent, iCell, iHeight+1)) || SQLITE_OK!=(rc = nodeRelease(pRtree, pParent)) ){ return rc; } /* Remove the xxx_node entry. */ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); sqlite3_step(pRtree->pDeleteNode); if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ return rc; } /* Remove the xxx_parent entry. */ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); sqlite3_step(pRtree->pDeleteParent); if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ return rc; } /* Remove the node from the in-memory hash table and link it into ** the Rtree.pDeleted list. Its contents will be re-inserted later on. */ nodeHashDelete(pRtree, pNode); pNode->iNode = iHeight; pNode->pNext = pRtree->pDeleted; pNode->nRef++; pRtree->pDeleted = pNode; return SQLITE_OK; } static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ RtreeNode *pParent = pNode->pParent; if( pParent ){ int ii; int nCell = NCELL(pNode); RtreeCell box; /* Bounding box for pNode */ nodeGetCell(pRtree, pNode, 0, &box); for(ii=1; ii<nCell; ii++){ RtreeCell cell; nodeGetCell(pRtree, pNode, ii, &cell); cellUnion(pRtree, &box, &cell); } box.iRowid = pNode->iNode; ii = nodeParentIndex(pRtree, pNode); nodeOverwriteCell(pRtree, pParent, &box, ii); fixBoundingBox(pRtree, pParent); } } /* ** Delete the cell at index iCell of node pNode. After removing the ** cell, adjust the r-tree data structure if required. */ static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ int rc; if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ return rc; } /* Remove the cell from the node. This call just moves bytes around ** the in-memory node image, so it cannot fail. */ nodeDeleteCell(pRtree, pNode, iCell); /* If the node is not the tree root and now has less than the minimum ** number of cells, remove it from the tree. Otherwise, update the ** cell in the parent node so that it tightly contains the updated ** node. */ if( pNode->iNode!=1 ){ RtreeNode *pParent = pNode->pParent; if( (pParent->iNode!=1 || NCELL(pParent)!=1) && (NCELL(pNode)<RTREE_MINCELLS(pRtree)) ){ rc = removeNode(pRtree, pNode, iHeight); }else{ fixBoundingBox(pRtree, pNode); } } return rc; } static int Reinsert( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int *aOrder; int *aSpare; RtreeCell *aCell; float *aDistance; int nCell; float aCenterCoord[RTREE_MAX_DIMENSIONS]; int iDim; int ii; int rc = SQLITE_OK; memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS); nCell = NCELL(pNode)+1; /* Allocate the buffers used by this operation. The allocation is ** relinquished before this function returns. */ aCell = (RtreeCell *)sqlite3_malloc(nCell * ( sizeof(RtreeCell) + /* aCell array */ sizeof(int) + /* aOrder array */ sizeof(int) + /* aSpare array */ sizeof(float) /* aDistance array */ )); if( !aCell ){ return SQLITE_NOMEM; } aOrder = (int *)&aCell[nCell]; aSpare = (int *)&aOrder[nCell]; aDistance = (float *)&aSpare[nCell]; for(ii=0; ii<nCell; ii++){ if( ii==(nCell-1) ){ memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); }else{ nodeGetCell(pRtree, pNode, ii, &aCell[ii]); } aOrder[ii] = ii; for(iDim=0; iDim<pRtree->nDim; iDim++){ aCenterCoord[iDim] += aCell[ii].aCoord[iDim*2]; aCenterCoord[iDim] += aCell[ii].aCoord[iDim*2+1]; } } for(iDim=0; iDim<pRtree->nDim; iDim++){ aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0); } for(ii=0; ii<nCell; ii++){ aDistance[ii] = 0.0; for(iDim=0; iDim<pRtree->nDim; iDim++){ float coord = aCell[ii].aCoord[iDim*2+1] - aCell[ii].aCoord[iDim*2]; aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); } } SortByDistance(aOrder, nCell, aDistance, aSpare); nodeZero(pRtree, pNode); for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ RtreeCell *p = &aCell[aOrder[ii]]; nodeInsertCell(pRtree, pNode, p); if( p->iRowid==pCell->iRowid ){ if( iHeight==0 ){ rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); }else{ rc = parentWrite(pRtree, p->iRowid, pNode->iNode); } } } if( rc==SQLITE_OK ){ fixBoundingBox(pRtree, pNode); } for(; rc==SQLITE_OK && ii<nCell; ii++){ /* Find a node to store this cell in. pNode->iNode currently contains ** the height of the sub-tree headed by the cell. */ RtreeNode *pInsert; RtreeCell *p = &aCell[aOrder[ii]]; rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); if( rc==SQLITE_OK ){ int rc2; rc = insertCell(pRtree, pInsert, p, iHeight); rc2 = nodeRelease(pRtree, pInsert); if( rc==SQLITE_OK ){ rc = rc2; } } } sqlite3_free(aCell); return rc; } /* ** Insert cell pCell into node pNode. Node pNode is the head of a ** subtree iHeight high (leaf nodes have iHeight==0). */ static int insertCell( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int rc = SQLITE_OK; if( iHeight>0 ){ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); if( pChild ){ nodeRelease(pRtree, pChild->pParent); nodeReference(pNode); pChild->pParent = pNode; } } if( nodeInsertCell(pRtree, pNode, pCell) ){ #if VARIANT_RSTARTREE_REINSERT if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ rc = SplitNode(pRtree, pNode, pCell, iHeight); }else{ pRtree->iReinsertHeight = iHeight; rc = Reinsert(pRtree, pNode, pCell, iHeight); } #else rc = SplitNode(pRtree, pNode, pCell, iHeight); #endif }else{ AdjustTree(pRtree, pNode, pCell); if( iHeight==0 ){ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); }else{ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); } } return rc; } static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ int ii; int rc = SQLITE_OK; int nCell = NCELL(pNode); for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ RtreeNode *pInsert; RtreeCell cell; nodeGetCell(pRtree, pNode, ii, &cell); /* Find a node to store this cell in. pNode->iNode currently contains ** the height of the sub-tree headed by the cell. */ rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert); if( rc==SQLITE_OK ){ int rc2; rc = insertCell(pRtree, pInsert, &cell, pNode->iNode); rc2 = nodeRelease(pRtree, pInsert); if( rc==SQLITE_OK ){ rc = rc2; } } } return rc; } /* ** Select a currently unused rowid for a new r-tree record. */ static int newRowid(Rtree *pRtree, i64 *piRowid){ int rc; sqlite3_bind_null(pRtree->pWriteRowid, 1); sqlite3_bind_null(pRtree->pWriteRowid, 2); sqlite3_step(pRtree->pWriteRowid); rc = sqlite3_reset(pRtree->pWriteRowid); *piRowid = sqlite3_last_insert_rowid(pRtree->db); return rc; } #ifndef NDEBUG static int hashIsEmpty(Rtree *pRtree){ int ii; for(ii=0; ii<HASHSIZE; ii++){ assert( !pRtree->aHash[ii] ); } return 1; } #endif /* ** The xUpdate method for rtree module virtual tables. */ int rtreeUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **azData, sqlite_int64 *pRowid ){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_OK; rtreeReference(pRtree); assert(nData>=1); assert(hashIsEmpty(pRtree)); /* If azData[0] is not an SQL NULL value, it is the rowid of a ** record to delete from the r-tree table. The following block does ** just that. */ if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ i64 iDelete; /* The rowid to delete */ RtreeNode *pLeaf; /* Leaf node containing record iDelete */ int iCell; /* Index of iDelete cell in pLeaf */ RtreeNode *pRoot; /* Obtain a reference to the root node to initialise Rtree.iDepth */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); /* Obtain a reference to the leaf node that contains the entry ** about to be deleted. */ if( rc==SQLITE_OK ){ iDelete = sqlite3_value_int64(azData[0]); rc = findLeafNode(pRtree, iDelete, &pLeaf); } /* Delete the cell in question from the leaf node. */ if( rc==SQLITE_OK ){ int rc2; iCell = nodeRowidIndex(pRtree, pLeaf, iDelete); rc = deleteCell(pRtree, pLeaf, iCell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } /* Delete the corresponding entry in the <rtree>_rowid table. */ if( rc==SQLITE_OK ){ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); sqlite3_step(pRtree->pDeleteRowid); rc = sqlite3_reset(pRtree->pDeleteRowid); } /* Check if the root node now has exactly one child. If so, remove ** it, schedule the contents of the child for reinsertion and ** reduce the tree height by one. ** ** This is equivalent to copying the contents of the child into ** the root node (the operation that Gutman's paper says to perform ** in this scenario). */ if( rc==SQLITE_OK && pRtree->iDepth>0 ){ if( rc==SQLITE_OK && NCELL(pRoot)==1 ){ RtreeNode *pChild; i64 iChild = nodeGetRowid(pRtree, pRoot, 0); rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); if( rc==SQLITE_OK ){ rc = removeNode(pRtree, pChild, pRtree->iDepth-1); } if( rc==SQLITE_OK ){ pRtree->iDepth--; writeInt16(pRoot->zData, pRtree->iDepth); pRoot->isDirty = 1; } } } /* Re-insert the contents of any underfull nodes removed from the tree. */ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ if( rc==SQLITE_OK ){ rc = reinsertNodeContent(pRtree, pLeaf); } pRtree->pDeleted = pLeaf->pNext; sqlite3_free(pLeaf); } /* Release the reference to the root node. */ if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRoot); }else{ nodeRelease(pRtree, pRoot); } } /* If the azData[] array contains more than one element, elements ** (azData[2]..azData[argc-1]) contain a new record to insert into ** the r-tree structure. */ if( rc==SQLITE_OK && nData>1 ){ /* Insert a new record into the r-tree */ RtreeCell cell; int ii; RtreeNode *pLeaf; /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ assert( nData==(pRtree->nDim*2 + 3) ); for(ii=0; ii<(pRtree->nDim*2); ii+=2){ cell.aCoord[ii] = (float)sqlite3_value_double(azData[ii+3]); cell.aCoord[ii+1] = (float)sqlite3_value_double(azData[ii+4]); if( cell.aCoord[ii]>cell.aCoord[ii+1] ){ rc = SQLITE_CONSTRAINT; goto constraint; } } /* Figure out the rowid of the new row. */ if( sqlite3_value_type(azData[2])==SQLITE_NULL ){ rc = newRowid(pRtree, &cell.iRowid); }else{ cell.iRowid = sqlite3_value_int64(azData[2]); sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){ sqlite3_reset(pRtree->pReadRowid); rc = SQLITE_CONSTRAINT; goto constraint; } rc = sqlite3_reset(pRtree->pReadRowid); } if( rc==SQLITE_OK ){ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); } if( rc==SQLITE_OK ){ int rc2; pRtree->iReinsertHeight = -1; rc = insertCell(pRtree, pLeaf, &cell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } } constraint: rtreeRelease(pRtree); return rc; } /* ** The xRename method for rtree module virtual tables. */ static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_NOMEM; char *zSql = sqlite3_mprintf( "ALTER TABLE %Q.'%q_node' RENAME TO '%q_node';" "ALTER TABLE %Q.'%q_parent' RENAME TO '%q_parent';" "ALTER TABLE %Q.'%q_rowid' RENAME TO '%q_rowid';" , pRtree->zDb, pRtree->zName, zNewName , pRtree->zDb, pRtree->zName, zNewName , pRtree->zDb, pRtree->zName, zNewName ); if( zSql ){ rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); sqlite3_free(zSql); } return rc; } static sqlite3_module rtreeModule = { 0, /* iVersion */ rtreeCreate, /* xCreate - create a table */ rtreeConnect, /* xConnect - connect to an existing table */ rtreeBestIndex, /* xBestIndex - Determine search strategy */ rtreeDisconnect, /* xDisconnect - Disconnect from a table */ rtreeDestroy, /* xDestroy - Drop a table */ rtreeOpen, /* xOpen - open a cursor */ rtreeClose, /* xClose - close a cursor */ rtreeFilter, /* xFilter - configure scan constraints */ rtreeNext, /* xNext - advance a cursor */ rtreeEof, /* xEof */ rtreeColumn, /* xColumn - read data */ rtreeRowid, /* xRowid - read data */ rtreeUpdate, /* xUpdate - write data */ 0, /* xBegin - begin transaction */ 0, /* xSync - sync transaction */ 0, /* xCommit - commit transaction */ 0, /* xRollback - rollback transaction */ 0, /* xFindFunction - function overloading */ rtreeRename /* xRename - rename the table */ }; static int rtreeSqlInit( Rtree *pRtree, sqlite3 *db, const char *zDb, const char *zPrefix, int isCreate ){ int rc = SQLITE_OK; #define N_STATEMENT 9 static const char *azSql[N_STATEMENT] = { /* Read and write the xxx_node table */ "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1", "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)", "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1", /* Read and write the xxx_rowid table */ "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1", "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)", "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1", /* Read and write the xxx_parent table */ "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1", "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)", "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1" }; sqlite3_stmt **appStmt[N_STATEMENT]; int i; pRtree->db = db; if( isCreate ){ char *zCreate = sqlite3_mprintf( "CREATE TABLE '%q'.'%q_node'(nodeno INTEGER PRIMARY KEY, data BLOB);" "CREATE TABLE '%q'.'%q_rowid'(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" "CREATE TABLE '%q'.'%q_parent'(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);" "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize ); if( !zCreate ){ return SQLITE_NOMEM; } rc = sqlite3_exec(db, zCreate, 0, 0, 0); sqlite3_free(zCreate); if( rc!=SQLITE_OK ){ return rc; } } appStmt[0] = &pRtree->pReadNode; appStmt[1] = &pRtree->pWriteNode; appStmt[2] = &pRtree->pDeleteNode; appStmt[3] = &pRtree->pReadRowid; appStmt[4] = &pRtree->pWriteRowid; appStmt[5] = &pRtree->pDeleteRowid; appStmt[6] = &pRtree->pReadParent; appStmt[7] = &pRtree->pWriteParent; appStmt[8] = &pRtree->pDeleteParent; for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix); if( zSql ){ rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); }else{ rc = SQLITE_NOMEM; } sqlite3_free(zSql); } return rc; } /* ** This routine queries database handle db for the page-size used by ** database zDb. If successful, the page-size in bytes is written to ** *piPageSize and SQLITE_OK returned. Otherwise, and an SQLite error ** code is returned. */ static int getPageSize(sqlite3 *db, const char *zDb, int *piPageSize){ int rc = SQLITE_NOMEM; char *zSql; sqlite3_stmt *pStmt = 0; zSql = sqlite3_mprintf("PRAGMA %Q.page_size", zDb); if( !zSql ){ return SQLITE_NOMEM; } rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( rc!=SQLITE_OK ){ return rc; } if( SQLITE_ROW==sqlite3_step(pStmt) ){ *piPageSize = sqlite3_column_int(pStmt, 0); } return sqlite3_finalize(pStmt); } /* ** This function is the implementation of both the xConnect and xCreate ** methods of the r-tree virtual table. ** ** argv[0] -> module name ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> column names... */ static int rtreeInit( sqlite3 *db, /* Database connection */ void *pAux, /* Pointer to head of rtree list */ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ sqlite3_vtab **ppVtab, /* OUT: New virtual table */ char **pzErr, /* OUT: Error message, if any */ int isCreate /* True for xCreate, false for xConnect */ ){ int rc = SQLITE_OK; int iPageSize = 0; Rtree *pRtree; int nDb; /* Length of string argv[1] */ int nName; /* Length of string argv[2] */ const char *aErrMsg[] = { 0, /* 0 */ "Wrong number of columns for an rtree table", /* 1 */ "Too few columns for an rtree table", /* 2 */ "Too many columns for an rtree table" /* 3 */ }; int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; if( aErrMsg[iErr] ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); return SQLITE_ERROR; } rc = getPageSize(db, argv[1], &iPageSize); if( rc!=SQLITE_OK ){ return rc; } /* Allocate the sqlite3_vtab structure */ nDb = strlen(argv[1]); nName = strlen(argv[2]); pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); if( !pRtree ){ return SQLITE_NOMEM; } memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); pRtree->nBusy = 1; pRtree->base.pModule = &rtreeModule; pRtree->zDb = (char *)&pRtree[1]; pRtree->zName = &pRtree->zDb[nDb+1]; pRtree->nDim = (argc-4)/2; pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; memcpy(pRtree->zDb, argv[1], nDb); memcpy(pRtree->zName, argv[2], nName); /* Figure out the node size to use. By default, use 64 bytes less than ** the database page-size. This ensures that each node is stored on ** a single database page. ** ** If the databasd page-size is so large that more than RTREE_MAXCELLS ** entries would fit in a single node, use a smaller node-size. */ pRtree->iNodeSize = iPageSize-64; if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; } /* Create/Connect to the underlying relational database schema. If ** that is successful, call sqlite3_declare_vtab() to configure ** the r-tree table schema. */ if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); }else{ char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); char *zTmp; int ii; for(ii=4; zSql && ii<argc; ii++){ zTmp = zSql; zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]); sqlite3_free(zTmp); } if( zSql ){ zTmp = zSql; zSql = sqlite3_mprintf("%s);", zTmp); sqlite3_free(zTmp); } if( !zSql || sqlite3_declare_vtab(db, zSql) ){ rc = SQLITE_NOMEM; } sqlite3_free(zSql); } if( rc==SQLITE_OK ){ *ppVtab = (sqlite3_vtab *)pRtree; }else{ rtreeRelease(pRtree); } return rc; } /* ** Implementation of a scalar function that decodes r-tree nodes to ** human readable strings. This can be used for debugging and analysis. ** ** The scalar function takes two arguments, a blob of data containing ** an r-tree node, and the number of dimensions the r-tree indexes. ** For a two-dimensional r-tree structure called "rt", to deserialize ** all nodes, a statement like: ** ** SELECT rtreenode(2, data) FROM rt_node; ** ** The human readable string takes the form of a Tcl list with one ** entry for each cell in the r-tree node. Each entry is itself a ** list, containing the 8-byte rowid/pageno followed by the ** <num-dimension>*2 coordinates. */ static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ char *zText = 0; RtreeNode node; Rtree tree; int ii; memset(&node, 0, sizeof(RtreeNode)); memset(&tree, 0, sizeof(Rtree)); tree.nDim = sqlite3_value_int(apArg[0]); tree.nBytesPerCell = 8 + 8 * tree.nDim; node.zData = (u8 *)sqlite3_value_blob(apArg[1]); for(ii=0; ii<NCELL(&node); ii++){ char zCell[512]; int nCell = 0; RtreeCell cell; int jj; nodeGetCell(&tree, &node, ii, &cell); sqlite3_snprintf(512-nCell,&zCell[nCell],"%d", cell.iRowid); nCell = strlen(zCell); for(jj=0; jj<tree.nDim*2; jj++){ sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj]); nCell = strlen(zCell); } if( zText ){ char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); sqlite3_free(zText); zText = zTextNew; }else{ zText = sqlite3_mprintf("{%s}", zCell); } } sqlite3_result_text(ctx, zText, -1, sqlite3_free); } static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB || sqlite3_value_bytes(apArg[0])<2 ){ sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); }else{ u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); sqlite3_result_int(ctx, readInt16(zBlob)); } } /* ** Register the r-tree module with database handle db. This creates the ** virtual table module "rtree" and the debugging/analysis scalar ** function "rtreenode". */ int sqlite3RtreeInit(sqlite3 *db){ int rc = SQLITE_OK; if( rc==SQLITE_OK ){ int utf8 = SQLITE_UTF8; rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); } if( rc==SQLITE_OK ){ int utf8 = SQLITE_UTF8; rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, 0, 0); } return rc; } #if !SQLITE_CORE int sqlite3_extension_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3RtreeInit(db); } #endif #endif |
Added ext/rtree/rtree.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file runs all rtree related tests. # # $Id: rtree.test,v 1.1 2008/05/26 18:41:54 danielk1977 Exp $ set testdir [file join [file dirname $argv0] .. .. test] source $testdir/tester.tcl rename finish_test really_finish_test proc finish_test {} {} set ISQUICK 1 set EXCLUDE { rtree.test } # Files to include in the test. If this list is empty then everything # that is not in the EXCLUDE list is run. # set INCLUDE { } foreach testfile [lsort -dictionary [glob [file dirname $argv0]/*.test]] { set tail [file tail $testfile] if {[lsearch -exact $EXCLUDE $tail]>=0} continue if {[llength $INCLUDE]>0 && [lsearch -exact $INCLUDE $tail]<0} continue source $testfile catch {db close} if {$sqlite_open_file_count>0} { puts "$tail did not close all files: $sqlite_open_file_count" incr nErr lappend ::failList $tail set sqlite_open_file_count 0 } } set sqlite_open_file_count 0 really_finish_test |
Added ext/rtree/rtree1.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | # 2008 Feb 19 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # The focus of this file is testing the r-tree extension. # # $Id: rtree1.test,v 1.1 2008/05/26 18:41:54 danielk1977 Exp $ # set testdir [file join [file dirname $argv0] .. .. test] source $testdir/tester.tcl # Test plan: # # rtree-1.*: Creating/destroying r-tree tables. # rtree-2.*: Test the implicit constraints - unique rowid and # (coord[N]<=coord[N+1]) for even values of N. Also # automatic assigning of rowid values. # rtree-3.*: Linear scans of r-tree data. # rtree-4.*: Test INSERT # rtree-5.*: Test DELETE # rtree-6.*: Test UPDATE # rtree-7.*: Test renaming an r-tree table. # rtree-8.*: Test constrained scans of r-tree data. # ifcapable !rtree { finish_test return } #---------------------------------------------------------------------------- # Test cases rtree-1.* test CREATE and DROP table statements. # # Test creating and dropping an rtree table. # do_test rtree-1.1.1 { execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2) } } {} do_test rtree-1.1.2 { execsql { SELECT name FROM sqlite_master ORDER BY name } } {t1 t1_node t1_parent t1_rowid} do_test rtree-1.1.3 { execsql { DROP TABLE t1; SELECT name FROM sqlite_master ORDER BY name; } } {} # Test creating and dropping an rtree table with an odd name in # an attached database. # do_test rtree-1.2.1 { execsql { ATTACH 'test2.db' AS aux; CREATE VIRTUAL TABLE aux.'a" "b' USING rtree(ii, x1, x2, y1, y2); } } {} do_test rtree-1.2.2 { execsql { SELECT name FROM sqlite_master ORDER BY name } } {} do_test rtree-1.2.3 { execsql { SELECT name FROM aux.sqlite_master ORDER BY name } } {{a" "b} {a" "b_node} {a" "b_parent} {a" "b_rowid}} do_test rtree-1.2.4 { execsql { DROP TABLE aux.'a" "b'; SELECT name FROM aux.sqlite_master ORDER BY name; } } {} # Test that the logic for checking the number of columns specified # for an rtree table. Acceptable values are odd numbers between 3 and # 11, inclusive. # set cols [list i1 i2 i3 i4 i5 i6 i7 i8 i9 iA iB iC iD iE iF iG iH iI iJ iK] for {set nCol 1} {$nCol<[llength $cols]} {incr nCol} { set columns [join [lrange $cols 0 [expr {$nCol-1}]] ,] set X {0 {}} if {$nCol%2 == 0} { set X {1 {Wrong number of columns for an rtree table}} } if {$nCol < 3} { set X {1 {Too few columns for an rtree table}} } if {$nCol > 11} { set X {1 {Too many columns for an rtree table}} } do_test rtree-1.3.$nCol { catchsql " CREATE VIRTUAL TABLE t1 USING rtree($columns); " } $X catchsql { DROP TABLE t1 } } # Test that it is possible to open an existing database that contains # r-tree tables. # do_test rtree-1.4.1 { execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2); INSERT INTO t1 VALUES(1, 5.0, 10.0); INSERT INTO t1 VALUES(2, 15.0, 20.0); } } {} do_test rtree-1.4.2 { db close sqlite3 db test.db execsql { SELECT * FROM t1 ORDER BY ii } } {1 5.0 10.0 2 15.0 20.0} do_test rtree-1.4.3 { execsql { DROP TABLE t1 } } {} # Test that it is possible to create an r-tree table with ridiculous # column names. # do_test rtree-1.5.1 { execsql { CREATE VIRTUAL TABLE t1 USING rtree("the key", "x dim.", "x2'dim"); INSERT INTO t1 VALUES(1, 2, 3); SELECT "the key", "x dim.", "x2'dim" FROM t1; } } {1 2.0 3.0} do_test rtree-1.5.1 { execsql { DROP TABLE t1 } } {} # Force the r-tree constructor to fail. # do_test rtree-1.6.1 { execsql { CREATE TABLE t1_rowid(a); } catchsql { CREATE VIRTUAL TABLE t1 USING rtree("the key", "x dim.", "x2'dim"); } } {1 {table 't1_rowid' already exists}} do_test rtree-1.6.1 { execsql { DROP TABLE t1_rowid } } {} #---------------------------------------------------------------------------- # Test cases rtree-2.* # do_test rtree-2.1.1 { execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2); SELECT * FROM t1; } } {} do_test rtree-2.1.2 { execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) } execsql { SELECT * FROM t1 } } {1 1.0 3.0 2.0 4.0} do_test rtree-2.1.3 { execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) } execsql { SELECT rowid FROM t1 ORDER BY rowid } } {1 2} do_test rtree-2.1.3 { execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) } execsql { SELECT ii FROM t1 ORDER BY ii } } {1 2 3} do_test rtree-2.2.1 { catchsql { INSERT INTO t1 VALUES(2, 1, 3, 2, 4) } } {1 {constraint failed}} do_test rtree-2.2.2 { catchsql { INSERT INTO t1 VALUES(4, 1, 3, 4, 2) } } {1 {constraint failed}} do_test rtree-2.2.3 { catchsql { INSERT INTO t1 VALUES(4, 3, 1, 2, 4) } } {1 {constraint failed}} do_test rtree-2.2.4 { execsql { SELECT ii FROM t1 ORDER BY ii } } {1 2 3} do_test rtree-2.X { execsql { DROP TABLE t1 } } {} #---------------------------------------------------------------------------- # Test cases rtree-3.* test linear scans of r-tree table data. To test # this we have to insert some data into an r-tree, but that is not the # focus of these tests. # do_test rtree-3.1.1 { execsql { CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2); SELECT * FROM t1; } } {} do_test rtree-3.1.2 { execsql { INSERT INTO t1 VALUES(5, 1, 3, 2, 4); SELECT * FROM t1; } } {5 1.0 3.0 2.0 4.0} do_test rtree-3.1.3 { execsql { INSERT INTO t1 VALUES(6, 2, 6, 4, 8); SELECT * FROM t1; } } {5 1.0 3.0 2.0 4.0 6 2.0 6.0 4.0 8.0} # Test the constraint on the coordinates (c[i]<=c[i+1] where (i%2==0)): do_test rtree-3.2.1 { catchsql { INSERT INTO t1 VALUES(7, 2, 6, 4, 3) } } {1 {constraint failed}} do_test rtree-3.2.2 { catchsql { INSERT INTO t1 VALUES(8, 2, 6, 3, 3) } } {0 {}} #---------------------------------------------------------------------------- # Test cases rtree-5.* test DELETE operations. # do_test rtree-5.1.1 { execsql { CREATE VIRTUAL TABLE t2 USING rtree(ii, x1, x2) } } {} do_test rtree-5.1.2 { execsql { INSERT INTO t2 VALUES(1, 10, 20); INSERT INTO t2 VALUES(2, 30, 40); INSERT INTO t2 VALUES(3, 50, 60); SELECT * FROM t2 ORDER BY ii; } } {1 10.0 20.0 2 30.0 40.0 3 50.0 60.0} do_test rtree-5.1.3 { execsql { DELETE FROM t2 WHERE ii=2; SELECT * FROM t2 ORDER BY ii; } } {1 10.0 20.0 3 50.0 60.0} do_test rtree-5.1.4 { execsql { DELETE FROM t2 WHERE ii=1; SELECT * FROM t2 ORDER BY ii; } } {3 50.0 60.0} do_test rtree-5.1.5 { execsql { DELETE FROM t2 WHERE ii=3; SELECT * FROM t2 ORDER BY ii; } } {} do_test rtree-5.1.6 { execsql { SELECT * FROM t2_rowid } } {} #---------------------------------------------------------------------------- # Test cases rtree-5.* test UPDATE operations. # do_test rtree-6.1.1 { execsql { CREATE VIRTUAL TABLE t3 USING rtree(ii, x1, x2, y1, y2) } } {} do_test rtree-6.1.2 { execsql { INSERT INTO t3 VALUES(1, 2, 3, 4, 5); UPDATE t3 SET x2=5; SELECT * FROM t3; } } {1 2.0 5.0 4.0 5.0} do_test rtree-6.1.3 { execsql { UPDATE t3 SET ii = 2 } execsql { SELECT * FROM t3 } } {2 2.0 5.0 4.0 5.0} #---------------------------------------------------------------------------- # Test cases rtree-7.* test rename operations. # do_test rtree-7.1.1 { execsql { CREATE VIRTUAL TABLE t4 USING rtree(ii, x1, x2, y1, y2, z1, z2); INSERT INTO t4 VALUES(1, 2, 3, 4, 5, 6, 7); } } {} do_test rtree-7.1.2 { execsql { ALTER TABLE t4 RENAME TO t5 } execsql { SELECT * FROM t5 } } {1 2.0 3.0 4.0 5.0 6.0 7.0} do_test rtree-7.1.3 { db close sqlite3 db test.db execsql { SELECT * FROM t5 } } {1 2.0 3.0 4.0 5.0 6.0 7.0} do_test rtree-7.1.4 { execsql { ALTER TABLE t5 RENAME TO 'raisara "one"'''} execsql { SELECT * FROM "raisara ""one""'" } } {1 2.0 3.0 4.0 5.0 6.0 7.0} do_test rtree-7.1.5 { execsql { SELECT * FROM 'raisara "one"''' } } {1 2.0 3.0 4.0 5.0 6.0 7.0} do_test rtree-7.1.6 { execsql { ALTER TABLE "raisara ""one""'" RENAME TO "abc 123" } execsql { SELECT * FROM "abc 123" } } {1 2.0 3.0 4.0 5.0 6.0 7.0} do_test rtree-7.1.7 { db close sqlite3 db test.db execsql { SELECT * FROM "abc 123" } } {1 2.0 3.0 4.0 5.0 6.0 7.0} # An error midway through a rename operation. do_test rtree-7.2.1 { execsql { CREATE TABLE t4_node(a); } catchsql { ALTER TABLE "abc 123" RENAME TO t4 } } {1 {SQL logic error or missing database}} do_test rtree-7.2.2 { execsql { SELECT * FROM "abc 123" } } {1 2.0 3.0 4.0 5.0 6.0 7.0} do_test rtree-7.2.3 { execsql { DROP TABLE t4_node; CREATE TABLE t4_rowid(a); } catchsql { ALTER TABLE "abc 123" RENAME TO t4 } } {1 {SQL logic error or missing database}} do_test rtree-7.2.4 { db close sqlite3 db test.db execsql { SELECT * FROM "abc 123" } } {1 2.0 3.0 4.0 5.0 6.0 7.0} do_test rtree-7.2.5 { execsql { DROP TABLE t4_rowid } execsql { ALTER TABLE "abc 123" RENAME TO t4 } execsql { SELECT * FROM t4 } } {1 2.0 3.0 4.0 5.0 6.0 7.0} #---------------------------------------------------------------------------- # Test cases rtree-8.* # # Test that the function to determine if a leaf cell is part of the # result set works. do_test rtree-8.1.1 { execsql { CREATE VIRTUAL TABLE t6 USING rtree(ii, x1, x2); INSERT INTO t6 VALUES(1, 3, 7); INSERT INTO t6 VALUES(2, 4, 6); } } {} do_test rtree-8.1.2 { execsql { SELECT ii FROM t6 WHERE x1>2 } } {1 2} do_test rtree-8.1.3 { execsql { SELECT ii FROM t6 WHERE x1>3 } } {2} do_test rtree-8.1.4 { execsql { SELECT ii FROM t6 WHERE x1>4 } } {} do_test rtree-8.1.5 { execsql { SELECT ii FROM t6 WHERE x1>5 } } {} do_test rtree-8.1.6 { execsql { SELECT ii FROM t6 WHERE x1<3 } } {} do_test rtree-8.1.7 { execsql { SELECT ii FROM t6 WHERE x1<4 } } {1} do_test rtree-8.1.8 { execsql { SELECT ii FROM t6 WHERE x1<5 } } {1 2} finish_test |
Added ext/rtree/rtree2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | # 2008 Feb 19 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # The focus of this file is testing the r-tree extension. # # $Id: rtree2.test,v 1.1 2008/05/26 18:41:54 danielk1977 Exp $ # set testdir [file join [file dirname $argv0] .. .. test] source $testdir/tester.tcl source [file join [file dirname $argv0] rtree_util.tcl] ifcapable !rtree { finish_test return } set ::NROW 1000 set ::NDEL 10 set ::NSELECT 100 for {set nDim 1} {$nDim <= 5} {incr nDim} { do_test rtree2-$nDim.1 { set cols [list] foreach c [list c0 c1 c2 c3 c4 c5 c6 c7 c8 c9] { lappend cols "$c REAL" } set cols [join [lrange $cols 0 [expr {$nDim*2-1}]] ", "] execsql " CREATE VIRTUAL TABLE t1 USING rtree(ii, $cols); CREATE TABLE t2 (ii, $cols); " } {} do_test rtree2-$nDim.2 { db transaction { for {set ii 0} {$ii < $::NROW} {incr ii} { #puts "Row $ii" set values [list] for {set jj 0} {$jj<$nDim*2} {incr jj} { lappend values [expr int(rand()*1000)] } set values [join $values ,] #puts [rtree_treedump db t1] #puts "INSERT INTO t2 VALUES($ii, $values)" set rc [catch {db eval "INSERT INTO t1 VALUES($ii, $values)"}] if {$rc} { incr ii -1 } else { db eval "INSERT INTO t2 VALUES($ii, $values)" } #if {[rtree_check db t1]} { #puts [rtree_treedump db t1] #exit #} } } set t1 [execsql {SELECT * FROM t1 ORDER BY ii}] set t2 [execsql {SELECT * FROM t2 ORDER BY ii}] set rc [expr {$t1 eq $t2}] if {$rc != 1} { puts $t1 puts $t2 } set rc } {1} do_test rtree2-$nDim.3 { rtree_check db t1 } 0 set OPS [list < > <= >= =] for {set ii 0} {$ii < $::NSELECT} {incr ii} { do_test rtree2-$nDim.4.$ii.1 { set where [list] foreach look_three_dots! {. . .} { set colidx [expr int(rand()*($nDim*2+1))-1] if {$colidx<0} { set col ii } else { set col "c$colidx" } set op [lindex $OPS [expr int(rand()*[llength $OPS])]] set val [expr int(rand()*1000)] lappend where "$col $op $val" } set where [join $where " AND "] set t1 [execsql "SELECT * FROM t1 WHERE $where ORDER BY ii"] set t2 [execsql "SELECT * FROM t2 WHERE $where ORDER BY ii"] set rc [expr {$t1 eq $t2}] if {$rc != 1} { puts $where puts $t1 puts $t2 puts [rtree_treedump db t1] breakpoint set t1 [execsql "SELECT * FROM t1 WHERE $where ORDER BY ii"] exit } set rc } {1} } for {set ii 0} {$ii < $::NROW} {incr ii $::NDEL} { #puts [rtree_treedump db t1] do_test rtree2-$nDim.5.$ii.1 { execsql "DELETE FROM t2 WHERE ii <= $::ii" execsql "DELETE FROM t1 WHERE ii <= $::ii" set t1 [execsql {SELECT * FROM t1 ORDER BY ii}] set t2 [execsql {SELECT * FROM t2 ORDER BY ii}] set rc [expr {$t1 eq $t2}] if {$rc != 1} { puts $t1 puts $t2 } set rc } {1} do_test rtree2-$nDim.5.$ii.2 { rtree_check db t1 } {0} } do_test rtree2-$nDim.6 { execsql { DROP TABLE t1; DROP TABLE t2; } } {} } finish_test |
Added ext/rtree/rtree3.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | # 2008 Feb 19 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # The focus of this file is testing that the r-tree correctly handles # out-of-memory conditions. # # $Id: rtree3.test,v 1.1 2008/05/26 18:41:54 danielk1977 Exp $ # set testdir [file join [file dirname $argv0] .. .. test] source $testdir/tester.tcl ifcapable !rtree { finish_test return } # Only run these tests if memory debugging is turned on. # source $testdir/malloc_common.tcl if {!$MEMDEBUG} { puts "Skipping malloc tests: not compiled with -DSQLITE_MEMDEBUG..." finish_test return } do_malloc_test rtree3-1 -sqlbody { BEGIN TRANSACTION; CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2); INSERT INTO rt VALUES(NULL, 3, 5, 7, 9); INSERT INTO rt VALUES(NULL, 13, 15, 17, 19); DELETE FROM rt WHERE ii = 1; SELECT * FROM rt; SELECT ii FROM rt WHERE ii = 2; COMMIT; } do_malloc_test rtree3-2 -sqlprep { CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2); INSERT INTO rt VALUES(NULL, 3, 5, 7, 9); } -sqlbody { DROP TABLE rt; } do_malloc_test rtree3-3 -sqlprep { CREATE VIRTUAL TABLE rt USING rtree(ii, x1, x2, y1, y2); INSERT INTO rt VALUES(NULL, 3, 5, 7, 9); } -tclbody { db eval BEGIN for {set ii 0} {$ii < 100} {incr ii} { set f [expr rand()] db eval {INSERT INTO rt VALUES(NULL, $f*10.0, $f*10.0, $f*15.0, $f*15.0)} } db eval COMMIT db eval BEGIN for {set ii 0} {$ii < 100} {incr ii} { set f [expr rand()] db eval { DELETE FROM rt WHERE x1<($f*10.0) AND x1>($f*10.5) } } db eval COMMIT } finish_test |
Added ext/rtree/rtree_perf.tcl.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | set testdir [file join [file dirname $argv0] .. .. test] source $testdir/tester.tcl ifcapable !rtree { finish_test return } set NROW 10000 set NQUERY 500 puts "Generating $NROW rows of data..." set data [list] for {set ii 0} {$ii < $NROW} {incr ii} { set x1 [expr {rand()*1000}] set x2 [expr {$x1+rand()*50}] set y1 [expr {rand()*1000}] set y2 [expr {$y1+rand()*50}] lappend data $x1 $x2 $y1 $y2 } puts "Finished generating data" set sql1 {CREATE TABLE btree(ii INTEGER PRIMARY KEY, x1, x2, y1, y2)} set sql2 {CREATE VIRTUAL TABLE rtree USING rtree(ii, x1, x2, y1, y2)} puts "Creating tables:" puts " $sql1" puts " $sql2" db eval $sql1 db eval $sql2 db eval "pragma cache_size=100" puts -nonewline "Inserting into btree... " flush stdout set btree_time [time {db transaction { set ii 1 foreach {x1 x2 y1 y2} $data { db eval {INSERT INTO btree VALUES($ii, $x1, $x2, $y1, $y2)} incr ii } }}] puts "$btree_time" puts -nonewline "Inserting into rtree... " flush stdout set rtree_time [time {db transaction { set ii 1 foreach {x1 x2 y1 y2} $data { incr ii db eval {INSERT INTO rtree VALUES($ii, $x1, $x2, $y1, $y2)} } }}] puts "$rtree_time" puts -nonewline "Selecting from btree... " flush stdout set btree_select_time [time { foreach {x1 x2 y1 y2} [lrange $data 0 [expr $NQUERY*4-1]] { db eval {SELECT * FROM btree WHERE x1<$x1 AND x2>$x2 AND y1<$y1 AND y2>$y2} } }] puts "$btree_select_time" puts -nonewline "Selecting from rtree... " flush stdout set rtree_select_time [time { foreach {x1 x2 y1 y2} [lrange $data 0 [expr $NQUERY*4-1]] { db eval {SELECT * FROM rtree WHERE x1<$x1 AND x2>$x2 AND y1<$y1 AND y2>$y2} } }] puts "$rtree_select_time" |
Added ext/rtree/rtree_util.tcl.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | # 2008 Feb 19 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file contains Tcl code that may be useful for testing or # analyzing r-tree structures created with this module. It is # used by both test procedures and the r-tree viewer application. # # $Id: rtree_util.tcl,v 1.1 2008/05/26 18:41:54 danielk1977 Exp $ # #-------------------------------------------------------------------------- # PUBLIC API: # # rtree_depth # rtree_ndim # rtree_node # rtree_mincells # rtree_check # rtree_dump # rtree_treedump # proc rtree_depth {db zTab} { $db one "SELECT rtreedepth(data) FROM ${zTab}_node WHERE nodeno=1" } proc rtree_nodedepth {db zTab iNode} { set iDepth [rtree_depth $db $zTab] set ii $iNode while {$ii != 1} { set sql "SELECT parentnode FROM ${zTab}_parent WHERE nodeno = $ii" set ii [db one $sql] incr iDepth -1 } return $iDepth } # Return the number of dimensions of the rtree. # proc rtree_ndim {db zTab} { set nDim [expr {(([llength [$db eval "pragma table_info($zTab)"]]/6)-1)/2}] } # Return the contents of rtree node $iNode. # proc rtree_node {db zTab iNode {iPrec 6}} { set nDim [rtree_ndim $db $zTab] set sql " SELECT rtreenode($nDim, data) FROM ${zTab}_node WHERE nodeno = $iNode " set node [db one $sql] set nCell [llength $node] set nCoord [expr $nDim*2] for {set ii 0} {$ii < $nCell} {incr ii} { for {set jj 1} {$jj <= $nCoord} {incr jj} { set newval [format "%.${iPrec}f" [lindex $node $ii $jj]] lset node $ii $jj $newval } } set node } proc rtree_mincells {db zTab} { set n [$db one "select length(data) FROM ${zTab}_node LIMIT 1"] set nMax [expr {int(($n-4)/(8+[rtree_ndim $db $zTab]*2*4))}] return [expr {int($nMax/3)}] } # An integrity check for the rtree $zTab accessible via database # connection $db. # proc rtree_check {db zTab} { array unset ::checked # Check each r-tree node. set rc [catch { rtree_node_check $db $zTab 1 [rtree_depth $db $zTab] } msg] if {$rc && $msg ne ""} { error $msg } # Check that the _rowid and _parent tables have the right # number of entries. set nNode [$db one "SELECT count(*) FROM ${zTab}_node"] set nRow [$db one "SELECT count(*) FROM ${zTab}"] set nRowid [$db one "SELECT count(*) FROM ${zTab}_rowid"] set nParent [$db one "SELECT count(*) FROM ${zTab}_parent"] if {$nNode != ($nParent+1)} { error "Wrong number of entries in ${zTab}_parent" } if {$nRow != $nRowid} { error "Wrong number of entries in ${zTab}_rowid" } return $rc } proc rtree_node_check {db zTab iNode iDepth} { if {[info exists ::checked($iNode)]} { error "Second ref to $iNode" } set ::checked($iNode) 1 set node [rtree_node $db $zTab $iNode] if {$iNode!=1 && [llength $node]==0} { error "No such node: $iNode" } if {$iNode != 1 && [llength $node]<[rtree_mincells $db $zTab]} { puts "Node $iNode: Has only [llength $node] cells" error "" } if {$iNode == 1 && [llength $node]==1 && [rtree_depth $db $zTab]>0} { set depth [rtree_depth $db $zTab] puts "Node $iNode: Has only 1 child (tree depth is $depth)" error "" } set nDim [expr {([llength [lindex $node 0]]-1)/2}] if {$iDepth > 0} { set d [expr $iDepth-1] foreach cell $node { set shouldbe [rtree_node_check $db $zTab [lindex $cell 0] $d] if {$cell ne $shouldbe} { puts "Node $iNode: Cell is: {$cell}, should be {$shouldbe}" error "" } } } set mapping_table "${zTab}_parent" set mapping_sql "SELECT parentnode FROM $mapping_table WHERE rowid = \$rowid" if {$iDepth==0} { set mapping_table "${zTab}_rowid" set mapping_sql "SELECT nodeno FROM $mapping_table WHERE rowid = \$rowid" } foreach cell $node { set rowid [lindex $cell 0] set mapping [db one $mapping_sql] if {$mapping != $iNode} { puts "Node $iNode: $mapping_table entry for cell $rowid is $mapping" error "" } } set ret [list $iNode] for {set ii 1} {$ii <= $nDim*2} {incr ii} { set f [lindex $node 0 $ii] foreach cell $node { set f2 [lindex $cell $ii] if {($ii%2)==1 && $f2<$f} {set f $f2} if {($ii%2)==0 && $f2>$f} {set f $f2} } lappend ret $f } return $ret } proc rtree_dump {db zTab} { set zRet "" set nDim [expr {(([llength [$db eval "pragma table_info($zTab)"]]/6)-1)/2}] set sql "SELECT nodeno, rtreenode($nDim, data) AS node FROM ${zTab}_node" $db eval $sql { append zRet [format "% -10s %s\n" $nodeno $node] } set zRet } proc rtree_nodetreedump {db zTab zIndent iDepth iNode} { set ret "" set node [rtree_node $db $zTab $iNode 1] append ret [format "%-3d %s%s\n" $iNode $zIndent $node] if {$iDepth>0} { foreach cell $node { set i [lindex $cell 0] append ret [rtree_nodetreedump $db $zTab "$zIndent " [expr $iDepth-1] $i] } } set ret } proc rtree_treedump {db zTab} { set d [rtree_depth $db $zTab] rtree_nodetreedump $db $zTab "" $d 1 } |
Added ext/rtree/viewrtree.tcl.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | load ./libsqlite3.dylib #package require sqlite3 source [file join [file dirname $argv0] rtree_util.tcl] wm title . "SQLite r-tree viewer" if {[llength $argv]!=1} { puts stderr "Usage: $argv0 <database-file>" puts stderr "" exit } sqlite3 db [lindex $argv 0] canvas .c -background white -width 400 -height 300 -highlightthickness 0 button .b -text "Parent Node" -command { set sql "SELECT parentnode FROM $::O(zTab)_parent WHERE nodeno = $::O(iNode)" set ::O(iNode) [db one $sql] if {$::O(iNode) eq ""} {set ::O(iNode) 1} view_node } set O(iNode) 1 set O(zTab) "" set O(listbox_captions) [list] set O(listbox_itemmap) [list] set O(listbox_highlight) -1 listbox .l -listvariable ::O(listbox_captions) -yscrollcommand {.ls set} scrollbar .ls -command {.l yview} label .status -font courier -anchor w label .title -anchor w -text "Node 1:" -background white -borderwidth 0 set rtree_tables [list] db eval { SELECT name FROM sqlite_master WHERE type='table' AND sql LIKE '%virtual%table%using%rtree%' } { set nCol [expr [llength [db eval "pragma table_info($name)"]]/6] if {$nCol != 5} { puts stderr "Not viewing $name - is not 2-dimensional" } else { lappend rtree_tables [list Table $name] } } if {$rtree_tables eq ""} { puts stderr "Cannot find an r-tree table in database [lindex $argv 0]" puts stderr "" exit } eval tk_optionMenu .select option_var $rtree_tables trace add variable option_var write set_option_var proc set_option_var {args} { set ::O(zTab) [lindex $::option_var 1] set ::O(iNode) 1 view_node } set ::O(zTab) [lindex $::rtree_tables 0 1] bind .l <1> {listbox_click [.l nearest %y]} bind .l <Motion> {listbox_mouseover [.l nearest %y]} bind .l <Leave> {listbox_mouseover -1} proc listbox_click {sel} { if {$sel ne ""} { set ::O(iNode) [lindex $::O(listbox_captions) $sel 1] view_node } } proc listbox_mouseover {i} { set oldid [lindex $::O(listbox_itemmap) $::O(listbox_highlight)] .c itemconfigure $oldid -fill "" .l selection clear 0 end .status configure -text "" if {$i>=0} { set id [lindex $::O(listbox_itemmap) $i] .c itemconfigure $id -fill grey .c lower $id set ::O(listbox_highlight) $i .l selection set $i .status configure -text [cell_report db $::O(zTab) $::O(iNode) $i] } } grid configure .select -row 0 -column 0 -columnspan 2 -sticky nsew grid configure .b -row 1 -column 0 -columnspan 2 -sticky nsew grid configure .l -row 2 -column 0 -sticky nsew grid configure .status -row 3 -column 0 -columnspan 3 -sticky nsew grid configure .title -row 0 -column 2 -sticky nsew grid configure .c -row 1 -column 2 -rowspan 2 -sticky nsew grid configure .ls -row 2 -column 1 -sticky nsew grid columnconfigure . 2 -weight 1 grid rowconfigure . 2 -weight 1 proc node_bbox {data} { set xmin 0 set xmax 0 set ymin 0 set ymax 0 foreach {rowid xmin xmax ymin ymax} [lindex $data 0] break foreach cell [lrange $data 1 end] { foreach {rowid x1 x2 y1 y2} $cell break if {$x1 < $xmin} {set xmin $x1} if {$x2 > $xmax} {set xmax $x2} if {$y1 < $ymin} {set ymin $y1} if {$y2 > $ymax} {set ymax $y2} } list $xmin $xmax $ymin $ymax } proc view_node {} { set iNode $::O(iNode) set zTab $::O(zTab) set data [rtree_node db $zTab $iNode 12] set depth [rtree_nodedepth db $zTab $iNode] .c delete all set ::O(listbox_captions) [list] set ::O(listbox_itemmap) [list] set $::O(listbox_highlight) -1 .b configure -state normal if {$iNode == 1} {.b configure -state disabled} .title configure -text "Node $iNode: [cell_report db $zTab $iNode -1]" foreach {xmin xmax ymin ymax} [node_bbox $data] break set total_area 0.0 set xscale [expr {double([winfo width .c]-20)/($xmax-$xmin)}] set yscale [expr {double([winfo height .c]-20)/($ymax-$ymin)}] set xoff [expr {10.0 - $xmin*$xscale}] set yoff [expr {10.0 - $ymin*$yscale}] foreach cell $data { foreach {rowid x1 x2 y1 y2} $cell break set total_area [expr {$total_area + ($x2-$x1)*($y2-$y1)}] set x1 [expr {$x1*$xscale + $xoff}] set x2 [expr {$x2*$xscale + $xoff}] set y1 [expr {$y1*$yscale + $yoff}] set y2 [expr {$y2*$yscale + $yoff}] set id [.c create rectangle $x1 $y1 $x2 $y2] if {$depth>0} { lappend ::O(listbox_captions) "Node $rowid" lappend ::O(listbox_itemmap) $id } } } proc cell_report {db zTab iParent iCell} { set data [rtree_node db $zTab $iParent 12] set cell [lindex $data $iCell] foreach {xmin xmax ymin ymax} [node_bbox $data] break set total_area [expr ($xmax-$xmin)*($ymax-$ymin)] if {$cell eq ""} { set cell_area 0.0 foreach cell $data { foreach {rowid x1 x2 y1 y2} $cell break set cell_area [expr $cell_area+($x2-$x1)*($y2-$y1)] } set cell_area [expr $cell_area/[llength $data]] set zReport [format "Size = %.1f x %.1f Average child area = %.1f%%" \ [expr $xmax-$xmin] [expr $ymax-$ymin] [expr 100.0*$cell_area/$total_area]\ ] append zReport " Sub-tree height: [rtree_nodedepth db $zTab $iParent]" } else { foreach {rowid x1 x2 y1 y2} $cell break set cell_area [expr ($x2-$x1)*($y2-$y1)] set zReport [format "Size = %.1f x %.1f Area = %.1f%%" \ [expr $x2-$x1] [expr $y2-$y1] [expr 100.0*$cell_area/$total_area] ] } return $zReport } view_node bind .c <Configure> view_node |
Changes to main.mk.
︙ | ︙ | |||
54 55 56 57 58 59 60 | main.o malloc.o mem1.o mem2.o mem3.o mem4.o mem5.o \ mutex.o mutex_os2.o mutex_unix.o mutex_w32.o \ opcodes.o os.o os_os2.o os_unix.o os_win.o \ pager.o parse.o pragma.o prepare.o printf.o random.o \ select.o table.o $(TCLOBJ) tokenize.o trigger.o \ update.o util.o vacuum.o \ vdbe.o vdbeapi.o vdbeaux.o vdbeblob.o vdbefifo.o vdbemem.o \ | | | 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | main.o malloc.o mem1.o mem2.o mem3.o mem4.o mem5.o \ mutex.o mutex_os2.o mutex_unix.o mutex_w32.o \ opcodes.o os.o os_os2.o os_unix.o os_win.o \ pager.o parse.o pragma.o prepare.o printf.o random.o \ select.o table.o $(TCLOBJ) tokenize.o trigger.o \ update.o util.o vacuum.o \ vdbe.o vdbeapi.o vdbeaux.o vdbeblob.o vdbefifo.o vdbemem.o \ where.o utf.o legacy.o vtab.o rtree.o EXTOBJ = icu.o EXTOBJ += fts1.o \ fts1_hash.o \ fts1_tokenizer1.o \ fts1_porter.o EXTOBJ += fts2.o \ |
︙ | ︙ | |||
407 408 409 410 411 412 413 414 415 416 417 418 419 420 | $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_porter.c fts3_tokenizer.o: $(TOP)/ext/fts3/fts3_tokenizer.c $(HDR) $(EXTHDR) $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_tokenizer.c fts3_tokenizer1.o: $(TOP)/ext/fts3/fts3_tokenizer1.c $(HDR) $(EXTHDR) $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_tokenizer1.c # Rules for building test programs and for running tests # tclsqlite3: $(TOP)/src/tclsqlite.c libsqlite3.a $(TCCX) $(TCL_FLAGS) -DTCLSH=1 -o tclsqlite3 \ $(TOP)/src/tclsqlite.c libsqlite3.a $(LIBTCL) $(THREADLIB) | > > > | 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 | $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_porter.c fts3_tokenizer.o: $(TOP)/ext/fts3/fts3_tokenizer.c $(HDR) $(EXTHDR) $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_tokenizer.c fts3_tokenizer1.o: $(TOP)/ext/fts3/fts3_tokenizer1.c $(HDR) $(EXTHDR) $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_tokenizer1.c rtree.o: $(TOP)/ext/rtree/rtree.c $(HDR) $(EXTHDR) $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/rtree/rtree.c # Rules for building test programs and for running tests # tclsqlite3: $(TOP)/src/tclsqlite.c libsqlite3.a $(TCCX) $(TCL_FLAGS) -DTCLSH=1 -o tclsqlite3 \ $(TOP)/src/tclsqlite.c libsqlite3.a $(LIBTCL) $(THREADLIB) |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: main.c,v 1.441 2008/05/26 18:41:54 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> #ifdef SQLITE_ENABLE_FTS3 # include "fts3.h" #endif |
︙ | ︙ | |||
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 | #ifdef SQLITE_ENABLE_ICU if( !db->mallocFailed && rc==SQLITE_OK ){ extern int sqlite3IcuInit(sqlite3*); rc = sqlite3IcuInit(db); } #endif sqlite3Error(db, rc, 0); /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking ** mode. Doing nothing at all also makes NORMAL the default. */ #ifdef SQLITE_DEFAULT_LOCKING_MODE | > > > > > > > > | 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 | #ifdef SQLITE_ENABLE_ICU if( !db->mallocFailed && rc==SQLITE_OK ){ extern int sqlite3IcuInit(sqlite3*); rc = sqlite3IcuInit(db); } #endif #ifdef SQLITE_ENABLE_RTREE if( !db->mallocFailed && rc==SQLITE_OK){ extern int sqlite3RtreeInit(sqlite3*); rc = sqlite3RtreeInit(db); } #endif sqlite3Error(db, rc, 0); /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking ** mode. Doing nothing at all also makes NORMAL the default. */ #ifdef SQLITE_DEFAULT_LOCKING_MODE |
︙ | ︙ |
Changes to src/test_config.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** ** This file contains code used for testing the SQLite system. ** None of the code in this file goes into a deliverable build. ** ** The focus of this file is providing the TCL testing layer ** access to compile-time constants. ** | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** ** This file contains code used for testing the SQLite system. ** None of the code in this file goes into a deliverable build. ** ** The focus of this file is providing the TCL testing layer ** access to compile-time constants. ** ** $Id: test_config.c,v 1.26 2008/05/26 18:41:54 danielk1977 Exp $ */ #include "sqliteLimit.h" #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> |
︙ | ︙ | |||
333 334 335 336 337 338 339 340 341 342 343 344 345 346 | #endif #ifdef SQLITE_OMIT_REINDEX Tcl_SetVar2(interp, "sqlite_options", "reindex", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "reindex", "1", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_OMIT_SCHEMA_PRAGMAS Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "1", TCL_GLOBAL_ONLY); #endif | > > > > > > | 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | #endif #ifdef SQLITE_OMIT_REINDEX Tcl_SetVar2(interp, "sqlite_options", "reindex", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "reindex", "1", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_ENABLE_RTREE Tcl_SetVar2(interp, "sqlite_options", "rtree", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "rtree", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_OMIT_SCHEMA_PRAGMAS Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "1", TCL_GLOBAL_ONLY); #endif |
︙ | ︙ |