Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Make sure all memory from sqlite3DbMalloc() is freed by sqlite3DbFree() and all memory from sqlite3_malloc() is freed by sqlite3_free(). |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | malloc-enhancement |
Files: | files | file ages | folders |
SHA1: |
ac1f37a647e9ed1c00a901d26d9956a8 |
User & Date: | drh 2010-07-24 16:34:38.000 |
Context
2010-07-26
| ||
11:07 | Make sure all memory from sqlite3DbMalloc() is freed by sqlite3DbFree() and all memory from sqlite3_malloc() is freed by sqlite3_free(). (check-in: 629e38a8c9 user: drh tags: experimental) | |
2010-07-24
| ||
18:25 | Add infrastructure to support a hierarchy of memory allocations with automatic deallocation of substructure. (check-in: 48ef221c28 user: drh tags: malloc-enhancement) | |
16:34 | Make sure all memory from sqlite3DbMalloc() is freed by sqlite3DbFree() and all memory from sqlite3_malloc() is freed by sqlite3_free(). (check-in: ac1f37a647 user: drh tags: malloc-enhancement) | |
2010-07-23
| ||
22:26 | Fix a typo in the OS/2 vfs code. (check-in: a6bb2108bf user: drh tags: trunk) | |
Changes
Changes to src/analyze.c.
︙ | ︙ | |||
587 588 589 590 591 592 593 | if( pIdx ){ int iSample = sqlite3_column_int(pStmt, 1); if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){ int eType = sqlite3_column_type(pStmt, 2); if( pIdx->aSample==0 ){ static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES; | | | 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 | if( pIdx ){ int iSample = sqlite3_column_int(pStmt, 1); if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){ int eType = sqlite3_column_type(pStmt, 2); if( pIdx->aSample==0 ){ static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES; pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz); if( pIdx->aSample==0 ){ db->mallocFailed = 1; break; } memset(pIdx->aSample, 0, sz); } |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
2000 2001 2002 2003 2004 2005 2006 | ** Clean out and delete the BtShared object. */ assert( !pBt->pCursor ); sqlite3PagerClose(pBt->pPager); if( pBt->xFreeSchema && pBt->pSchema ){ pBt->xFreeSchema(pBt->pSchema); } | | | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 | ** Clean out and delete the BtShared object. */ assert( !pBt->pCursor ); sqlite3PagerClose(pBt->pPager); if( pBt->xFreeSchema && pBt->pSchema ){ pBt->xFreeSchema(pBt->pSchema); } sqlite3DbFree(0, pBt->pSchema); freeTempSpace(pBt); sqlite3_free(pBt); } #ifndef SQLITE_OMIT_SHARED_CACHE assert( p->wantToLock==0 ); assert( p->locked==0 ); |
︙ | ︙ | |||
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 | } for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } i = PENDING_BYTE_PAGE(pBt); if( i<=sCheck.nPage ){ sCheck.anRef[i] = 1; } sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000); /* Check the integrity of the freelist */ checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); /* Check all the tables. | > | 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 | } for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } i = PENDING_BYTE_PAGE(pBt); if( i<=sCheck.nPage ){ sCheck.anRef[i] = 1; } sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000); sCheck.errMsg.useMalloc = 2; /* Check the integrity of the freelist */ checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); /* Check all the tables. |
︙ | ︙ | |||
7882 7883 7884 7885 7886 7887 7888 | ** blob of allocated memory. This function should not call sqlite3_free() ** on the memory, the btree layer does that. */ void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( !pBt->pSchema && nBytes ){ | | | 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 | ** blob of allocated memory. This function should not call sqlite3_free() ** on the memory, the btree layer does that. */ void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ BtShared *pBt = p->pBt; sqlite3BtreeEnter(p); if( !pBt->pSchema && nBytes ){ pBt->pSchema = sqlite3DbMallocZero(0, nBytes); pBt->xFreeSchema = xFree; } sqlite3BtreeLeave(p); return pBt->pSchema; } /* |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
1363 1364 1365 1366 1367 1368 1369 | zEnd = ")"; }else{ zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; | | | 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 | zEnd = ")"; }else{ zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; zStmt = sqlite3DbMallocRaw(0, n); if( zStmt==0 ){ db->mallocFailed = 1; return 0; } sqlite3_snprintf(n, zStmt, "CREATE TABLE "); k = sqlite3Strlen30(zStmt); identPut(zStmt, &k, p->zName); |
︙ | ︙ | |||
2810 2811 2812 2813 2814 2815 2816 | pRet = pIndex; pIndex = 0; } /* Clean up before exiting */ exit_create_index: if( pIndex ){ | | | 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 | pRet = pIndex; pIndex = 0; } /* Clean up before exiting */ exit_create_index: if( pIndex ){ sqlite3DbFree(db, pIndex->zColAff); sqlite3DbFree(db, pIndex); } sqlite3ExprListDelete(db, pList); sqlite3SrcListDelete(db, pTblName); sqlite3DbFree(db, zName); return pRet; } |
︙ | ︙ |
Changes to src/callback.c.
︙ | ︙ | |||
435 436 437 438 439 440 441 | ** a new one if necessary. */ Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ Schema * p; if( pBt ){ p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree); }else{ | | | 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | ** a new one if necessary. */ Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ Schema * p; if( pBt ){ p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree); }else{ p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema)); } if( !p ){ db->mallocFailed = 1; }else if ( 0==p->file_format ){ sqlite3HashInit(&p->tblHash); sqlite3HashInit(&p->idxHash); sqlite3HashInit(&p->trigHash); |
︙ | ︙ |
Changes to src/func.c.
︙ | ︙ | |||
1006 1007 1008 1009 1010 1011 1012 | u8 *zOld; sqlite3 *db = sqlite3_context_db_handle(context); nOut += nRep - nPattern; testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); | | | | 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 | u8 *zOld; sqlite3 *db = sqlite3_context_db_handle(context); nOut += nRep - nPattern; testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); sqlite3_free(zOut); return; } zOld = zOut; zOut = sqlite3_realloc(zOut, (int)nOut); if( zOut==0 ){ sqlite3_result_error_nomem(context); sqlite3_free(zOld); return; } memcpy(&zOut[j], zRep, nRep); j += nRep; i += nPattern-1; } } |
︙ | ︙ | |||
1374 1375 1376 1377 1378 1379 1380 | assert( argc==1 || argc==2 ); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); if( pAccum ){ sqlite3 *db = sqlite3_context_db_handle(context); int firstTerm = pAccum->useMalloc==0; | | | 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 | assert( argc==1 || argc==2 ); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); if( pAccum ){ sqlite3 *db = sqlite3_context_db_handle(context); int firstTerm = pAccum->useMalloc==0; pAccum->useMalloc = 2; pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; if( !firstTerm ){ if( argc==2 ){ zSep = (char*)sqlite3_value_text(argv[1]); nSep = sqlite3_value_bytes(argv[1]); }else{ zSep = ","; |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
63 64 65 66 67 68 69 | ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Index structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; sqlite3 *db = sqlite3VdbeDb(v); | | | 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Index structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; sqlite3 *db = sqlite3VdbeDb(v); pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2); if( !pIdx->zColAff ){ db->mallocFailed = 1; return 0; } for(n=0; n<pIdx->nColumn; n++){ pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; } |
︙ | ︙ | |||
105 106 107 108 109 110 111 | ** sqlite3DeleteTable() when the Table structure itself is cleaned up. */ if( !pTab->zColAff ){ char *zColAff; int i; sqlite3 *db = sqlite3VdbeDb(v); | | | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | ** sqlite3DeleteTable() when the Table structure itself is cleaned up. */ if( !pTab->zColAff ){ char *zColAff; int i; sqlite3 *db = sqlite3VdbeDb(v); zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); if( !zColAff ){ db->mallocFailed = 1; return; } for(i=0; i<pTab->nCol; i++){ zColAff[i] = pTab->aCol[i].affinity; |
︙ | ︙ |
Changes to src/loadext.c.
︙ | ︙ | |||
372 373 374 375 376 377 378 | if( zProc==0 ){ zProc = "sqlite3_extension_init"; } handle = sqlite3OsDlOpen(pVfs, zFile); if( handle==0 ){ if( pzErrMsg ){ | | < < | < < | 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 | if( zProc==0 ){ zProc = "sqlite3_extension_init"; } handle = sqlite3OsDlOpen(pVfs, zFile); if( handle==0 ){ if( pzErrMsg ){ *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg); if( zErrmsg ){ sqlite3_snprintf(nMsg, zErrmsg, "unable to open shared library [%s]", zFile); sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); } } return SQLITE_ERROR; } xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*)) sqlite3OsDlSym(pVfs, handle, zProc); if( xInit==0 ){ if( pzErrMsg ){ *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg); if( zErrmsg ){ sqlite3_snprintf(nMsg, zErrmsg, "no entry point [%s] in shared library [%s]", zProc,zFile); sqlite3OsDlError(pVfs, nMsg-1, zErrmsg); } sqlite3OsDlClose(pVfs, handle); } return SQLITE_ERROR; }else if( xInit(db, &zErrmsg, &sqlite3Apis) ){ if( pzErrMsg ){ *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg); |
︙ | ︙ |
Changes to src/malloc.c.
︙ | ︙ | |||
364 365 366 367 368 369 370 371 372 373 374 375 376 377 | } void sqlite3ScratchFree(void *p){ if( p ){ if( sqlite3GlobalConfig.pScratch==0 || p<sqlite3GlobalConfig.pScratch || p>=(void*)mem0.aScratchFree ){ assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); if( sqlite3GlobalConfig.bMemstat ){ int iSize = sqlite3MallocSize(p); sqlite3_mutex_enter(mem0.mutex); sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); sqlite3GlobalConfig.m.xFree(p); | > | 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | } void sqlite3ScratchFree(void *p){ if( p ){ if( sqlite3GlobalConfig.pScratch==0 || p<sqlite3GlobalConfig.pScratch || p>=(void*)mem0.aScratchFree ){ assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); assert( !sqlite3MemdebugHasType(p, ~MEMTYPE_SCRATCH) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); if( sqlite3GlobalConfig.bMemstat ){ int iSize = sqlite3MallocSize(p); sqlite3_mutex_enter(mem0.mutex); sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); sqlite3GlobalConfig.m.xFree(p); |
︙ | ︙ | |||
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 | /* ** Return the size of a memory allocation previously obtained from ** sqlite3Malloc() or sqlite3_malloc(). */ int sqlite3MallocSize(void *p){ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return sqlite3GlobalConfig.m.xSize(p); } int sqlite3DbMallocSize(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); if( isLookaside(db, p) ){ return db->lookaside.sz; }else{ assert( sqlite3MemdebugHasType(p, db ? (MEMTYPE_DB|MEMTYPE_HEAP) : MEMTYPE_HEAP) ); return sqlite3GlobalConfig.m.xSize(p); } } /* ** Free memory previously obtained from sqlite3Malloc(). */ void sqlite3_free(void *p){ if( p==0 ) return; assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); sqlite3GlobalConfig.m.xFree(p); sqlite3_mutex_leave(mem0.mutex); }else{ | > > > | 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 | /* ** Return the size of a memory allocation previously obtained from ** sqlite3Malloc() or sqlite3_malloc(). */ int sqlite3MallocSize(void *p){ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); assert( !sqlite3MemdebugHasType(p, MEMTYPE_RECURSIVE) ); return sqlite3GlobalConfig.m.xSize(p); } int sqlite3DbMallocSize(sqlite3 *db, void *p){ assert( db==0 || sqlite3_mutex_held(db->mutex) ); if( isLookaside(db, p) ){ return db->lookaside.sz; }else{ assert( sqlite3MemdebugHasType(p, MEMTYPE_RECURSIVE) ); assert( sqlite3MemdebugHasType(p, db ? (MEMTYPE_DB|MEMTYPE_HEAP) : MEMTYPE_HEAP) ); return sqlite3GlobalConfig.m.xSize(p); } } /* ** Free memory previously obtained from sqlite3Malloc(). */ void sqlite3_free(void *p){ if( p==0 ) return; assert( !sqlite3MemdebugHasType(p, MEMTYPE_RECURSIVE) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); sqlite3GlobalConfig.m.xFree(p); sqlite3_mutex_leave(mem0.mutex); }else{ |
︙ | ︙ | |||
457 458 459 460 461 462 463 464 465 466 467 468 469 470 | assert( db==0 || sqlite3_mutex_held(db->mutex) ); if( isLookaside(db, p) ){ LookasideSlot *pBuf = (LookasideSlot*)p; pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; db->lookaside.nOut--; }else{ assert( sqlite3MemdebugHasType(p, db ? (MEMTYPE_DB|MEMTYPE_HEAP) : MEMTYPE_HEAP) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } } | > | 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | assert( db==0 || sqlite3_mutex_held(db->mutex) ); if( isLookaside(db, p) ){ LookasideSlot *pBuf = (LookasideSlot*)p; pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; db->lookaside.nOut--; }else{ assert( sqlite3MemdebugHasType(p, MEMTYPE_RECURSIVE) ); assert( sqlite3MemdebugHasType(p, db ? (MEMTYPE_DB|MEMTYPE_HEAP) : MEMTYPE_HEAP) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } } |
︙ | ︙ | |||
493 494 495 496 497 498 499 500 501 502 503 504 505 506 | sqlite3_mutex_enter(mem0.mutex); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= mem0.alarmThreshold ){ sqlite3MallocAlarm(nNew-nOld); } assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); if( pNew==0 && mem0.alarmCallback ){ sqlite3MallocAlarm(nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } if( pNew ){ nNew = sqlite3MallocSize(pNew); | > | 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 | sqlite3_mutex_enter(mem0.mutex); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= mem0.alarmThreshold ){ sqlite3MallocAlarm(nNew-nOld); } assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); assert( !sqlite3MemdebugHasType(pOld, ~MEMTYPE_HEAP) ); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); if( pNew==0 && mem0.alarmCallback ){ sqlite3MallocAlarm(nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } if( pNew ){ nNew = sqlite3MallocSize(pNew); |
︙ | ︙ | |||
590 591 592 593 594 595 596 | return 0; } #endif p = sqlite3Malloc(n); if( !p && db ){ db->mallocFailed = 1; } | | | | 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 | return 0; } #endif p = sqlite3Malloc(n); if( !p && db ){ db->mallocFailed = 1; } sqlite3MemdebugSetType(p, MEMTYPE_RECURSIVE | ((db && db->lookaside.bEnabled) ? MEMTYPE_DB : MEMTYPE_HEAP)); return p; } /* ** Resize the block of memory pointed to by p to n bytes. If the ** resize fails, set the mallocFailed flag in the connection object. */ |
︙ | ︙ | |||
617 618 619 620 621 622 623 624 625 626 627 628 629 | } pNew = sqlite3DbMallocRaw(db, n); if( pNew ){ memcpy(pNew, p, db->lookaside.sz); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, MEMTYPE_DB|MEMTYPE_HEAP) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); pNew = sqlite3_realloc(p, n); if( !pNew ){ db->mallocFailed = 1; } | > > | | | 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 | } pNew = sqlite3DbMallocRaw(db, n); if( pNew ){ memcpy(pNew, p, db->lookaside.sz); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, MEMTYPE_RECURSIVE) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_DB|MEMTYPE_HEAP) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); pNew = sqlite3_realloc(p, n); if( !pNew ){ sqlite3MemdebugSetType(p, MEMTYPE_RECURSIVE|MEMTYPE_HEAP); db->mallocFailed = 1; } sqlite3MemdebugSetType(pNew, MEMTYPE_RECURSIVE | (db->lookaside.bEnabled ? MEMTYPE_DB : MEMTYPE_HEAP)); } } return pNew; } /* ** Attempt to reallocate p. If the reallocation fails, then free p |
︙ | ︙ |
Changes to src/mem2.c.
︙ | ︙ | |||
397 398 399 400 401 402 403 | */ int sqlite3MemdebugHasType(void *p, u8 eType){ int rc = 1; if( p ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ | < < < < < < | 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | */ int sqlite3MemdebugHasType(void *p, u8 eType){ int rc = 1; if( p ){ struct MemBlockHdr *pHdr; pHdr = sqlite3MemsysGetHeader(p); assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */ if( (pHdr->eType&eType)==0 ){ rc = 0; } } return rc; } |
︙ | ︙ |
Changes to src/notify.c.
︙ | ︙ | |||
251 252 253 254 255 256 257 | nArg = 0; } sqlite3BeginBenignMalloc(); assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) ); assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn ); if( (!aDyn && nArg==(int)ArraySize(aStatic)) | | | 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | nArg = 0; } sqlite3BeginBenignMalloc(); assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) ); assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn ); if( (!aDyn && nArg==(int)ArraySize(aStatic)) || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*))) ){ /* The aArg[] array needs to grow. */ void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2); if( pNew ){ memcpy(pNew, aArg, nArg*sizeof(void *)); sqlite3_free(aDyn); aDyn = aArg = pNew; |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
761 762 763 764 765 766 767 | || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) || (SQLITE_TEMP_STORE==2 && db->temp_store==1) ){ invalidateTempStorage(pParse); } sqlite3_free(sqlite3_temp_directory); if( zRight[0] ){ | | | 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 | || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) || (SQLITE_TEMP_STORE==2 && db->temp_store==1) ){ invalidateTempStorage(pParse); } sqlite3_free(sqlite3_temp_directory); if( zRight[0] ){ sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); }else{ sqlite3_temp_directory = 0; } #endif /* SQLITE_OMIT_WSD */ } }else |
︙ | ︙ |
Changes to src/printf.c.
︙ | ︙ | |||
768 769 770 771 772 773 774 | if( szNew > p->mxAlloc ){ sqlite3StrAccumReset(p); p->tooBig = 1; return; }else{ p->nAlloc = (int)szNew; } | > | > > > | 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 | if( szNew > p->mxAlloc ){ sqlite3StrAccumReset(p); p->tooBig = 1; return; }else{ p->nAlloc = (int)szNew; } if( p->useMalloc==1 ){ zNew = sqlite3DbMallocRaw(p->db, p->nAlloc ); }else{ zNew = sqlite3_malloc(p->nAlloc); } if( zNew ){ memcpy(zNew, p->zText, p->nChar); sqlite3StrAccumReset(p); p->zText = zNew; }else{ p->mallocFailed = 1; sqlite3StrAccumReset(p); |
︙ | ︙ | |||
793 794 795 796 797 798 799 | ** Return a pointer to the resulting string. Return a NULL ** pointer if any kind of error was encountered. */ char *sqlite3StrAccumFinish(StrAccum *p){ if( p->zText ){ p->zText[p->nChar] = 0; if( p->useMalloc && p->zText==p->zBase ){ | > | > > > > | > > > | 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 | ** Return a pointer to the resulting string. Return a NULL ** pointer if any kind of error was encountered. */ char *sqlite3StrAccumFinish(StrAccum *p){ if( p->zText ){ p->zText[p->nChar] = 0; if( p->useMalloc && p->zText==p->zBase ){ if( p->useMalloc==1 ){ p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); }else{ p->zText = sqlite3_malloc(p->nChar+1); } if( p->zText ){ memcpy(p->zText, p->zBase, p->nChar+1); }else{ p->mallocFailed = 1; } } } return p->zText; } /* ** Reset an StrAccum string. Reclaim all malloced memory. */ void sqlite3StrAccumReset(StrAccum *p){ if( p->zText!=p->zBase ){ if( p->useMalloc==1 ){ sqlite3DbFree(p->db, p->zText); }else{ sqlite3_free(p->zText); } } p->zText = 0; } /* ** Initialize a string accumulator */ |
︙ | ︙ | |||
891 892 893 894 895 896 897 898 899 900 901 902 903 904 | char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); sqlite3VXPrintf(&acc, 0, zFormat, ap); z = sqlite3StrAccumFinish(&acc); return z; } /* ** Print into memory obtained from sqlite3_malloc()(). Omit the internal | > | 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 | char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); acc.useMalloc = 2; sqlite3VXPrintf(&acc, 0, zFormat, ap); z = sqlite3StrAccumFinish(&acc); return z; } /* ** Print into memory obtained from sqlite3_malloc()(). Omit the internal |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
2321 2322 2323 2324 2325 2326 2327 | sqlite3 *db; /* Optional database for lookaside. Can be NULL */ char *zBase; /* A base allocation. Not from malloc. */ char *zText; /* The string collected so far */ int nChar; /* Length of the string so far */ int nAlloc; /* Amount of space allocated in zText */ int mxAlloc; /* Maximum allowed string length */ u8 mallocFailed; /* Becomes true if any memory allocation fails */ | | | 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 | sqlite3 *db; /* Optional database for lookaside. Can be NULL */ char *zBase; /* A base allocation. Not from malloc. */ char *zText; /* The string collected so far */ int nChar; /* Length of the string so far */ int nAlloc; /* Amount of space allocated in zText */ int mxAlloc; /* Maximum allowed string length */ u8 mallocFailed; /* Becomes true if any memory allocation fails */ u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ u8 tooBig; /* Becomes true if string size exceeds limits */ }; /* ** A pointer to this structure is used to communicate information ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. */ |
︙ | ︙ | |||
3136 3137 3138 3139 3140 3141 3142 | #ifdef SQLITE_MEMDEBUG void sqlite3MemdebugSetType(void*,u8); int sqlite3MemdebugHasType(void*,u8); #else # define sqlite3MemdebugSetType(X,Y) /* no-op */ # define sqlite3MemdebugHasType(X,Y) 1 #endif | | | | | > | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 | #ifdef SQLITE_MEMDEBUG void sqlite3MemdebugSetType(void*,u8); int sqlite3MemdebugHasType(void*,u8); #else # define sqlite3MemdebugSetType(X,Y) /* no-op */ # define sqlite3MemdebugHasType(X,Y) 1 #endif #define MEMTYPE_HEAP 0x01 /* General heap allocations */ #define MEMTYPE_DB 0x02 /* Associated with a database connection */ #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ #define MEMTYPE_RECURSIVE 0x10 /* Experimental */ #endif /* _SQLITEINT_H_ */ |
Changes to src/test4.c.
︙ | ︙ | |||
138 139 140 141 142 143 144 | if( i<0 ) return TCL_ERROR; if( threadset[i].busy ){ Tcl_AppendResult(interp, "thread ", argv[1], " is already running", 0); return TCL_ERROR; } threadset[i].busy = 1; sqlite3_free(threadset[i].zFilename); | | | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | if( i<0 ) return TCL_ERROR; if( threadset[i].busy ){ Tcl_AppendResult(interp, "thread ", argv[1], " is already running", 0); return TCL_ERROR; } threadset[i].busy = 1; sqlite3_free(threadset[i].zFilename); threadset[i].zFilename = sqlite3_mprintf("%s", argv[2]); threadset[i].opnum = 1; threadset[i].completed = 0; rc = pthread_create(&x, 0, thread_main, &threadset[i]); if( rc ){ Tcl_AppendResult(interp, "failed to create the thread", 0); sqlite3_free(threadset[i].zFilename); threadset[i].busy = 0; |
︙ | ︙ | |||
472 473 474 475 476 477 478 | if( !threadset[i].busy ){ Tcl_AppendResult(interp, "no such thread", 0); return TCL_ERROR; } thread_wait(&threadset[i]); threadset[i].xOp = do_compile; sqlite3_free(threadset[i].zArg); | | | 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 | if( !threadset[i].busy ){ Tcl_AppendResult(interp, "no such thread", 0); return TCL_ERROR; } thread_wait(&threadset[i]); threadset[i].xOp = do_compile; sqlite3_free(threadset[i].zArg); threadset[i].zArg = sqlite3_mprintf("%s", argv[2]); threadset[i].opnum++; return TCL_OK; } /* ** This procedure runs in the thread to step the virtual machine. */ |
︙ | ︙ |
Changes to src/test5.c.
︙ | ︙ | |||
151 152 153 154 155 156 157 | if( !enc_to ) return TCL_ERROR; pVal = sqlite3ValueNew(0); if( enc_from==SQLITE_UTF8 ){ z = Tcl_GetString(objv[1]); if( objc==5 ){ | | | 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | if( !enc_to ) return TCL_ERROR; pVal = sqlite3ValueNew(0); if( enc_from==SQLITE_UTF8 ){ z = Tcl_GetString(objv[1]); if( objc==5 ){ z = sqlite3_mprintf("%s", z); } sqlite3ValueSetStr(pVal, -1, z, enc_from, xDel); }else{ z = (char*)Tcl_GetByteArrayFromObj(objv[1], &len); if( objc==5 ){ char *zTmp = z; z = sqlite3_malloc(len); |
︙ | ︙ |
Changes to src/test7.c.
︙ | ︙ | |||
160 161 162 163 164 165 166 | if( i<0 ) return TCL_ERROR; if( threadset[i].busy ){ Tcl_AppendResult(interp, "thread ", argv[1], " is already running", 0); return TCL_ERROR; } threadset[i].busy = 1; sqlite3_free(threadset[i].zFilename); | | | 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | if( i<0 ) return TCL_ERROR; if( threadset[i].busy ){ Tcl_AppendResult(interp, "thread ", argv[1], " is already running", 0); return TCL_ERROR; } threadset[i].busy = 1; sqlite3_free(threadset[i].zFilename); threadset[i].zFilename = sqlite3_mprintf("%s", argv[2]); threadset[i].opnum = 1; threadset[i].completed = 0; rc = pthread_create(&x, 0, client_main, &threadset[i]); if( rc ){ Tcl_AppendResult(interp, "failed to create the thread", 0); sqlite3_free(threadset[i].zFilename); threadset[i].busy = 0; |
︙ | ︙ | |||
503 504 505 506 507 508 509 | if( !threadset[i].busy ){ Tcl_AppendResult(interp, "no such thread", 0); return TCL_ERROR; } client_wait(&threadset[i]); threadset[i].xOp = do_compile; sqlite3_free(threadset[i].zArg); | | | 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | if( !threadset[i].busy ){ Tcl_AppendResult(interp, "no such thread", 0); return TCL_ERROR; } client_wait(&threadset[i]); threadset[i].xOp = do_compile; sqlite3_free(threadset[i].zArg); threadset[i].zArg = sqlite3_mprintf("%s", argv[2]); threadset[i].opnum++; return TCL_OK; } /* ** This procedure runs in the thread to step the virtual machine. */ |
︙ | ︙ |
Changes to src/test8.c.
︙ | ︙ | |||
481 482 483 484 485 486 487 | char *zSql; echo_vtab *pVtab = *(echo_vtab **)ppVtab; pVtab->zLogName = sqlite3_mprintf("%s", argv[4]); zSql = sqlite3_mprintf("CREATE TABLE %Q(logmsg)", pVtab->zLogName); rc = sqlite3_exec(db, zSql, 0, 0, 0); sqlite3_free(zSql); if( rc!=SQLITE_OK ){ | | | 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 | char *zSql; echo_vtab *pVtab = *(echo_vtab **)ppVtab; pVtab->zLogName = sqlite3_mprintf("%s", argv[4]); zSql = sqlite3_mprintf("CREATE TABLE %Q(logmsg)", pVtab->zLogName); rc = sqlite3_exec(db, zSql, 0, 0, 0); sqlite3_free(zSql); if( rc!=SQLITE_OK ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } } if( *ppVtab && rc!=SQLITE_OK ){ echoDestructor(*ppVtab); *ppVtab = 0; } |
︙ | ︙ |
Changes to src/tokenize.c.
︙ | ︙ | |||
492 493 494 495 496 497 498 | if( pParse->nested==0 ){ sqlite3DbFree(db, pParse->aTableLock); pParse->aTableLock = 0; pParse->nTableLock = 0; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE | | | 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 | if( pParse->nested==0 ){ sqlite3DbFree(db, pParse->aTableLock); pParse->aTableLock = 0; pParse->nTableLock = 0; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3_free(pParse->apVtabLock); #endif if( !IN_DECLARE_VTAB ){ /* If the pParse->declareVtab flag is set, do not delete any table ** structure built up in pParse->pNewTable. The calling code (see vtab.c) ** will take responsibility for freeing the Table structure. */ |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
496 497 498 499 500 501 502 503 504 505 506 507 508 509 | int n = 0; Savepoint *p; for(p=db->pSavepoint; p; p=p->pNext) n++; assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* ** Execute as much of a VDBE program as we can then return. ** ** sqlite3VdbeMakeReady() must be called before this routine in order to ** close the program with a final OP_Halt and to set up the callbacks ** and the error message pointer. | > > > > > > > > > > > > > > | 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 | int n = 0; Savepoint *p; for(p=db->pSavepoint; p; p=p->pNext) n++; assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored ** in memory obtained from sqlite3DbMalloc). */ static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){ sqlite3 *db = p->db; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; } /* ** Execute as much of a VDBE program as we can then return. ** ** sqlite3VdbeMakeReady() must be called before this routine in order to ** close the program with a final OP_Halt and to set up the callbacks ** and the error message pointer. |
︙ | ︙ | |||
4026 4027 4028 4029 4030 4031 4032 | v = pC->movetoTarget; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( pC->pVtabCursor ){ pVtab = pC->pVtabCursor->pVtab; pModule = pVtab->pModule; assert( pModule->xRowid ); rc = pModule->xRowid(pC->pVtabCursor, &v); | < < | | 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 | v = pC->movetoTarget; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( pC->pVtabCursor ){ pVtab = pC->pVtabCursor->pVtab; pModule = pVtab->pModule; assert( pModule->xRowid ); rc = pModule->xRowid(pC->pVtabCursor, &v); importVtabErrMsg(p, pVtab); #endif /* SQLITE_OMIT_VIRTUALTABLE */ }else{ assert( pC->pCursor!=0 ); rc = sqlite3VdbeCursorMoveto(pC); if( rc ) goto abort_due_to_error; if( pC->rowidIsValid ){ v = pC->lastRowid; |
︙ | ︙ | |||
5371 5372 5373 5374 5375 5376 5377 | ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { VTable *pVTab; pVTab = pOp->p4.pVtab; rc = sqlite3VtabBegin(db, pVTab); | | < < < < | 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 | ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { VTable *pVTab; pVTab = pOp->p4.pVtab; rc = sqlite3VtabBegin(db, pVTab); if( pVTab ) importVtabErrMsg(p, pVTab->pVtab); break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VCreate P1 * * P4 * ** |
︙ | ︙ | |||
5425 5426 5427 5428 5429 5430 5431 | pCur = 0; pVtabCursor = 0; pVtab = pOp->p4.pVtab->pVtab; pModule = (sqlite3_module *)pVtab->pModule; assert(pVtab && pModule); rc = pModule->xOpen(pVtab, &pVtabCursor); | < < | | 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 | pCur = 0; pVtabCursor = 0; pVtab = pOp->p4.pVtab->pVtab; pModule = (sqlite3_module *)pVtab->pModule; assert(pVtab && pModule); rc = pModule->xOpen(pVtab, &pVtabCursor); importVtabErrMsg(p, pVtab); if( SQLITE_OK==rc ){ /* Initialize sqlite3_vtab_cursor base class */ pVtabCursor->pVtab = pVtab; /* Initialise vdbe cursor object */ pCur = allocateCursor(p, pOp->p1, 0, -1, 0); if( pCur ){ |
︙ | ︙ | |||
5504 5505 5506 5507 5508 5509 5510 | apArg[i] = &pArgc[i+1]; sqlite3VdbeMemStoreType(apArg[i]); } p->inVtabMethod = 1; rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); p->inVtabMethod = 0; | < < | | 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 | apArg[i] = &pArgc[i+1]; sqlite3VdbeMemStoreType(apArg[i]); } p->inVtabMethod = 1; rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); p->inVtabMethod = 0; importVtabErrMsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pVtabCursor); } if( res ){ pc = pOp->p2 - 1; } |
︙ | ︙ | |||
5556 5557 5558 5559 5560 5561 5562 | ** can use the already allocated buffer instead of allocating a ** new one. */ sqlite3VdbeMemMove(&sContext.s, pDest); MemSetTypeFlag(&sContext.s, MEM_Null); rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); | < < | | 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 | ** can use the already allocated buffer instead of allocating a ** new one. */ sqlite3VdbeMemMove(&sContext.s, pDest); MemSetTypeFlag(&sContext.s, MEM_Null); rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); importVtabErrMsg(p, pVtab); if( sContext.isError ){ rc = sContext.isError; } /* Copy the result of the function to the P3 register. We ** do this regardless of whether or not an error occurred to ensure any ** dynamic allocation in sContext.s (a Mem struct) is released. |
︙ | ︙ | |||
5611 5612 5613 5614 5615 5616 5617 | ** xNext(). Instead, if an error occurs, true is returned (indicating that ** data is available) and the error code returned when xColumn or ** some other method is next invoked on the save virtual table cursor. */ p->inVtabMethod = 1; rc = pModule->xNext(pCur->pVtabCursor); p->inVtabMethod = 0; | < < | | 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 | ** xNext(). Instead, if an error occurs, true is returned (indicating that ** data is available) and the error code returned when xColumn or ** some other method is next invoked on the save virtual table cursor. */ p->inVtabMethod = 1; rc = pModule->xNext(pCur->pVtabCursor); p->inVtabMethod = 0; importVtabErrMsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pCur->pVtabCursor); } if( !res ){ /* If there is data, jump to P2 */ pc = pOp->p2 - 1; |
︙ | ︙ | |||
5643 5644 5645 5646 5647 5648 5649 | pVtab = pOp->p4.pVtab->pVtab; pName = &aMem[pOp->p1]; assert( pVtab->pModule->xRename ); REGISTER_TRACE(pOp->p1, pName); assert( pName->flags & MEM_Str ); rc = pVtab->pModule->xRename(pVtab, pName->z); | < < | | 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 | pVtab = pOp->p4.pVtab->pVtab; pName = &aMem[pOp->p1]; assert( pVtab->pModule->xRename ); REGISTER_TRACE(pOp->p1, pName); assert( pName->flags & MEM_Str ); rc = pVtab->pModule->xRename(pVtab, pName->z); importVtabErrMsg(p, pVtab); break; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VUpdate P1 P2 P3 P4 * |
︙ | ︙ | |||
5697 5698 5699 5700 5701 5702 5703 | pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ sqlite3VdbeMemStoreType(pX); apArg[i] = pX; pX++; } rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); | < < | | 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 | pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ sqlite3VdbeMemStoreType(pX); apArg[i] = pX; pX++; } rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); importVtabErrMsg(p, pVtab); if( rc==SQLITE_OK && pOp->p1 ){ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); db->lastRowid = rowid; } p->nChange++; } break; |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
577 578 579 580 581 582 583 | ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ switch( p4type ){ case P4_REAL: case P4_INT64: | < > > > > | 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 | ** Delete a P4 value if necessary. */ static void freeP4(sqlite3 *db, int p4type, void *p4){ if( p4 ){ switch( p4type ){ case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_KEYINFO: case P4_INTARRAY: case P4_KEYINFO_HANDOFF: { sqlite3DbFree(db, p4); break; } case P4_MPRINTF: { sqlite3_free(p4); break; } case P4_VDBEFUNC: { VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; freeEphemeralFunction(db, pVdbeFunc->pFunc); sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); sqlite3DbFree(db, pVdbeFunc); break; |
︙ | ︙ | |||
735 736 737 738 739 740 741 | pOp->p4type = P4_NOTUSED; }else if( n==P4_KEYINFO ){ KeyInfo *pKeyInfo; int nField, nByte; nField = ((KeyInfo*)zP4)->nField; nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; | | | 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 | pOp->p4type = P4_NOTUSED; }else if( n==P4_KEYINFO ){ KeyInfo *pKeyInfo; int nField, nByte; nField = ((KeyInfo*)zP4)->nField; nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; pKeyInfo = sqlite3DbMallocRaw(0, nByte); pOp->p4.pKeyInfo = pKeyInfo; if( pKeyInfo ){ u8 *aSortOrder; memcpy((char*)pKeyInfo, zP4, nByte - nField); aSortOrder = pKeyInfo->aSortOrder; if( aSortOrder ){ pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; |
︙ | ︙ |
Changes to src/vtab.c.
︙ | ︙ | |||
462 463 464 465 466 467 468 | if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; if( SQLITE_OK!=rc ){ if( zErr==0 ){ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); }else { *pzErr = sqlite3MPrintf(db, "%s", zErr); | | | 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; if( SQLITE_OK!=rc ){ if( zErr==0 ){ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); }else { *pzErr = sqlite3MPrintf(db, "%s", zErr); sqlite3_free(zErr); } sqlite3DbFree(db, pVTable); }else if( ALWAYS(pVTable->pVtab) ){ /* Justification of ALWAYS(): A correct vtab constructor must allocate ** the sqlite3_vtab object if successful. */ pVTable->pVtab->pModule = pMod->pModule; pVTable->nRef = 1; |
︙ | ︙ | |||
669 670 671 672 673 674 675 | pTab->nCol = pParse->pNewTable->nCol; pParse->pNewTable->nCol = 0; pParse->pNewTable->aCol = 0; } db->pVTab = 0; }else{ sqlite3Error(db, SQLITE_ERROR, zErr); | | | 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 | pTab->nCol = pParse->pNewTable->nCol; pParse->pNewTable->nCol = 0; pParse->pNewTable->aCol = 0; } db->pVTab = 0; }else{ sqlite3Error(db, SQLITE_ERROR, zErr); sqlite3_free(zErr); rc = SQLITE_ERROR; } pParse->declareVtab = 0; if( pParse->pVdbe ){ sqlite3VdbeFinalize(pParse->pVdbe); } |
︙ | ︙ | |||
764 765 766 767 768 769 770 | db->aVTrans = 0; for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ int (*x)(sqlite3_vtab *); sqlite3_vtab *pVtab = aVTrans[i]->pVtab; if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ rc = x(pVtab); sqlite3DbFree(db, *pzErrmsg); | | | | 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 | db->aVTrans = 0; for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ int (*x)(sqlite3_vtab *); sqlite3_vtab *pVtab = aVTrans[i]->pVtab; if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ rc = x(pVtab); sqlite3DbFree(db, *pzErrmsg); *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg); sqlite3_free(pVtab->zErrMsg); } } db->aVTrans = aVTrans; return rc; } /* |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
2021 2022 2023 2024 2025 2026 2027 | pParse->db->mallocFailed = 1; }else if( !pVtab->zErrMsg ){ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); }else{ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); } } | | | 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 | pParse->db->mallocFailed = 1; }else if( !pVtab->zErrMsg ){ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); }else{ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); } } sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; for(i=0; i<p->nConstraint; i++){ if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ sqlite3ErrorMsg(pParse, "table %s: xBestIndex returned an invalid plan", pTab->zName); } |
︙ | ︙ |