SQLite

Check-in [a7dcf6a79f]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge the latest enhancements from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | schemalint
Files: files | file ages | folders
SHA3-256: a7dcf6a79f7e1c5884baee2909a4bf3174ae06d561dae87b390856e573f81b49
User & Date: drh 2017-05-02 19:45:14.234
Context
2017-05-02
20:42
In the sqlite3_expert command-line tool, allow two-dash options. Do not accept the database name if it begins with "-". (check-in: af7d159604 user: drh tags: schemalint)
19:45
Merge the latest enhancements from trunk. (check-in: a7dcf6a79f user: drh tags: schemalint)
18:00
Fix the fts3EvalAverageDocsize() routine so that it returns errors from sqlite3_reset() rather than always returning SQLITE_OK. (check-in: 430f539cbb user: drh tags: trunk)
2017-05-01
14:25
Update this branch with latest trunk changes. (check-in: 11f4761c3a user: dan tags: schemalint)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/expert/test_expert.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2017 April 07
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
*/

#if defined(SQLITE_TEST) && defined(SQLITE_ENABLE_WHEREINFO_HOOK)

#include "sqlite3expert.h"
#include <assert.h>
#include <string.h>

#if defined(INCLUDE_SQLITE_TCL_H)
#  include "sqlite_tcl.h"













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2017 April 07
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
*/

#if defined(SQLITE_TEST)

#include "sqlite3expert.h"
#include <assert.h>
#include <string.h>

#if defined(INCLUDE_SQLITE_TCL_H)
#  include "sqlite_tcl.h"
208
209
210
211
212
213
214
215
216
217
218
219
    struct Cmd *p = &aCmd[i];
    Tcl_CreateObjCommand(interp, p->zCmd, p->xProc, 0, 0);
  }

  return TCL_OK;
}

#else /* defined(SQLITE_TEST) && defined(SQLITE_ENABLE_WHEREINFO_HOOK) */
int TestExpert_Init(Tcl_Interp *interp){
  return TCL_OK;
}
#endif







<
<
<
<

208
209
210
211
212
213
214




215
    struct Cmd *p = &aCmd[i];
    Tcl_CreateObjCommand(interp, p->zCmd, p->xProc, 0, 0);
  }

  return TCL_OK;
}





#endif
Changes to ext/fts3/fts3.c.
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
    ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
    ** varints, where nCol is the number of columns in the FTS3 table.
    ** The first varint is the number of documents currently stored in
    ** the table. The following nCol varints contain the total amount of
    ** data stored in all rows of each column of the table, from left
    ** to right.
    */
    int rc;
    Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
    sqlite3_stmt *pStmt;
    sqlite3_int64 nDoc = 0;
    sqlite3_int64 nByte = 0;
    const char *pEnd;
    const char *a;








<







4783
4784
4785
4786
4787
4788
4789

4790
4791
4792
4793
4794
4795
4796
    ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
    ** varints, where nCol is the number of columns in the FTS3 table.
    ** The first varint is the number of documents currently stored in
    ** the table. The following nCol varints contain the total amount of
    ** data stored in all rows of each column of the table, from left
    ** to right.
    */

    Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
    sqlite3_stmt *pStmt;
    sqlite3_int64 nDoc = 0;
    sqlite3_int64 nByte = 0;
    const char *pEnd;
    const char *a;

Changes to src/btree.c.
8186
8187
8188
8189
8190
8191
8192

8193
8194
8195
8196
8197
8198
8199
      return SQLITE_OK;
    }
    dropCell(pPage, idx, info.nSize, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->leaf );
    idx = ++pCur->ix;

  }else{
    assert( pPage->leaf );
  }
  insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
  assert( pPage->nOverflow==0 || rc==SQLITE_OK );
  assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );








>







8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
      return SQLITE_OK;
    }
    dropCell(pPage, idx, info.nSize, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->leaf );
    idx = ++pCur->ix;
    pCur->curFlags &= ~BTCF_ValidNKey;
  }else{
    assert( pPage->leaf );
  }
  insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
  assert( pPage->nOverflow==0 || rc==SQLITE_OK );
  assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );

9310
9311
9312
9313
9314
9315
9316

9317
9318
9319
9320
9321
9322
9323

    /* Check for integer primary key out of range */
    if( pPage->intKey ){
      if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
        checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
      }
      maxKey = info.nKey;

    }

    /* Check the content overflow list */
    if( info.nPayload>info.nLocal ){
      int nPage;       /* Number of pages on the overflow chain */
      Pgno pgnoOvfl;   /* First page of the overflow chain */
      assert( pc + info.nSize - 4 <= usableSize );







>







9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325

    /* Check for integer primary key out of range */
    if( pPage->intKey ){
      if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
        checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
      }
      maxKey = info.nKey;
      keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
    }

    /* Check the content overflow list */
    if( info.nPayload>info.nLocal ){
      int nPage;       /* Number of pages on the overflow chain */
      Pgno pgnoOvfl;   /* First page of the overflow chain */
      assert( pc + info.nSize - 4 <= usableSize );
Changes to src/expr.c.
1811
1812
1813
1814
1815
1816
1817



























































1818
1819
1820
1821
1822
1823
1824
** expression must not refer to any non-deterministic function nor any
** table other than iCur.
*/
int sqlite3ExprIsTableConstant(Expr *p, int iCur){
  return exprIsConst(p, 3, iCur);
}




























































/*
** Walk an expression tree.  Return non-zero if the expression is constant
** or a function call with constant arguments.  Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
** expression must not refer to any non-deterministic function nor any
** table other than iCur.
*/
int sqlite3ExprIsTableConstant(Expr *p, int iCur){
  return exprIsConst(p, 3, iCur);
}


/*
** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
*/
static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
  ExprList *pGroupBy = pWalker->u.pGroupBy;
  int i;

  /* Check if pExpr is identical to any GROUP BY term. If so, consider
  ** it constant.  */
  for(i=0; i<pGroupBy->nExpr; i++){
    Expr *p = pGroupBy->a[i].pExpr;
    if( sqlite3ExprCompare(pExpr, p, -1)<2 ){
      CollSeq *pColl = sqlite3ExprCollSeq(pWalker->pParse, p);
      if( pColl==0 || sqlite3_stricmp("BINARY", pColl->zName)==0 ){
        return WRC_Prune;
      }
    }
  }

  /* Check if pExpr is a sub-select. If so, consider it variable. */
  if( ExprHasProperty(pExpr, EP_xIsSelect) ){
    pWalker->eCode = 0;
    return WRC_Abort;
  }

  return exprNodeIsConstant(pWalker, pExpr);
}

/*
** Walk the expression tree passed as the first argument. Return non-zero
** if the expression consists entirely of constants or copies of terms 
** in pGroupBy that sort with the BINARY collation sequence.
**
** This routine is used to determine if a term of the HAVING clause can
** be promoted into the WHERE clause.  In order for such a promotion to work,
** the value of the HAVING clause term must be the same for all members of
** a "group".  The requirement that the GROUP BY term must be BINARY
** assumes that no other collating sequence will have a finer-grained
** grouping than binary.  In other words (A=B COLLATE binary) implies
** A=B in every other collating sequence.  The requirement that the
** GROUP BY be BINARY is stricter than necessary.  It would also work
** to promote HAVING clauses that use the same alternative collating
** sequence as the GROUP BY term, but that is much harder to check,
** alternative collating sequences are uncommon, and this is only an
** optimization, so we take the easy way out and simply require the
** GROUP BY to use the BINARY collating sequence.
*/
int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.eCode = 1;
  w.xExprCallback = exprNodeIsConstantOrGroupBy;
  w.u.pGroupBy = pGroupBy;
  w.pParse = pParse;
  sqlite3WalkExpr(&w, p);
  return w.eCode;
}

/*
** Walk an expression tree.  Return non-zero if the expression is constant
** or a function call with constant arguments.  Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
Changes to src/select.c.
4874
4875
4876
4877
4878
4879
4880

































































































4881
4882
4883
4884
4885
4886
4887
        pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
    );
  }
}
#else
# define explainSimpleCount(a,b,c)
#endif


































































































/*
** Generate code for the SELECT statement given in the p argument.  
**
** The results are returned according to the SelectDest structure.
** See comments in sqliteInt.h for further information.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
        pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
    );
  }
}
#else
# define explainSimpleCount(a,b,c)
#endif

/*
** Context object for havingToWhereExprCb().
*/
struct HavingToWhereCtx {
  Expr **ppWhere;
  ExprList *pGroupBy;
};

/*
** sqlite3WalkExpr() callback used by havingToWhere().
**
** If the node passed to the callback is a TK_AND node, return 
** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
**
** Otherwise, return WRC_Prune. In this case, also check if the 
** sub-expression matches the criteria for being moved to the WHERE
** clause. If so, add it to the WHERE clause and replace the sub-expression
** within the HAVING expression with a constant "1".
*/
static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
  if( pExpr->op!=TK_AND ){
    struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
    if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
      sqlite3 *db = pWalker->pParse->db;
      Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
      if( pNew ){
        Expr *pWhere = *(p->ppWhere);
        SWAP(Expr, *pNew, *pExpr);
        pNew = sqlite3ExprAnd(db, pWhere, pNew);
        *(p->ppWhere) = pNew;
      }
    }
    return WRC_Prune;
  }
  return WRC_Continue;
}

/*
** Transfer eligible terms from the HAVING clause of a query, which is
** processed after grouping, to the WHERE clause, which is processed before
** grouping. For example, the query:
**
**   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
**
** can be rewritten as:
**
**   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
**
** A term of the HAVING expression is eligible for transfer if it consists
** entirely of constants and expressions that are also GROUP BY terms that
** use the "BINARY" collation sequence.
*/
static void havingToWhere(
  Parse *pParse,
  ExprList *pGroupBy,
  Expr *pHaving, 
  Expr **ppWhere
){
  struct HavingToWhereCtx sCtx;
  Walker sWalker;

  sCtx.ppWhere = ppWhere;
  sCtx.pGroupBy = pGroupBy;

  memset(&sWalker, 0, sizeof(sWalker));
  sWalker.pParse = pParse;
  sWalker.xExprCallback = havingToWhereExprCb;
  sWalker.u.pHavingCtx = &sCtx;
  sqlite3WalkExpr(&sWalker, pHaving);
}

/*
** Check to see if the pThis entry of pTabList is a self-join of a prior view.
** If it is, then return the SrcList_item for the prior view.  If it is not,
** then return 0.
*/
static struct SrcList_item *isSelfJoinView(
  SrcList *pTabList,           /* Search for self-joins in this FROM clause */
  struct SrcList_item *pThis   /* Search for prior reference to this subquery */
){
  struct SrcList_item *pItem;
  for(pItem = pTabList->a; pItem<pThis; pItem++){
    if( pItem->pSelect==0 ) continue;
    if( pItem->fg.viaCoroutine ) continue;
    if( pItem->zName==0 ) continue;
    if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
    if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
    if( sqlite3ExprCompare(pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) ){
      /* The view was modified by some other optimization such as
      ** pushDownWhereTerms() */
      continue;
    }
    return pItem;
  }
  return 0;
}

/*
** Generate code for the SELECT statement given in the p argument.  
**
** The results are returned according to the SelectDest structure.
** See comments in sqliteInt.h for further information.
**
5109
5110
5111
5112
5113
5114
5115


5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128




5129
5130
5131

5132
5133
5134
5135
5136
5137
5138
      ** the content of this subquery.  pItem->addrFillSub will point
      ** to the address of the generated subroutine.  pItem->regReturn
      ** is a register allocated to hold the subroutine return address
      */
      int topAddr;
      int onceAddr = 0;
      int retAddr;


      assert( pItem->addrFillSub==0 );
      pItem->regReturn = ++pParse->nMem;
      topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
      pItem->addrFillSub = topAddr+1;
      if( pItem->fg.isCorrelated==0 ){
        /* If the subquery is not correlated and if we are not inside of
        ** a trigger, then we only need to compute the value of the subquery
        ** once. */
        onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
        VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }else{
        VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }




      sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
      explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
      sqlite3Select(pParse, pSub, &dest);

      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
      retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
      VdbeComment((v, "end %s", pItem->pTab->zName));
      sqlite3VdbeChangeP1(v, topAddr, retAddr);
      sqlite3ClearTempRegCache(pParse);
    }







>
>













>
>
>
>
|
|
|
>







5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
      ** the content of this subquery.  pItem->addrFillSub will point
      ** to the address of the generated subroutine.  pItem->regReturn
      ** is a register allocated to hold the subroutine return address
      */
      int topAddr;
      int onceAddr = 0;
      int retAddr;
      struct SrcList_item *pPrior;

      assert( pItem->addrFillSub==0 );
      pItem->regReturn = ++pParse->nMem;
      topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
      pItem->addrFillSub = topAddr+1;
      if( pItem->fg.isCorrelated==0 ){
        /* If the subquery is not correlated and if we are not inside of
        ** a trigger, then we only need to compute the value of the subquery
        ** once. */
        onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
        VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }else{
        VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
      }
      pPrior = isSelfJoinView(pTabList, pItem);
      if( pPrior ){
        sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
      }else{
        sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
        explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
        sqlite3Select(pParse, pSub, &dest);
      }
      pItem->pTab->nRowLogEst = pSub->nSelectRow;
      if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
      retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
      VdbeComment((v, "end %s", pItem->pTab->zName));
      sqlite3VdbeChangeP1(v, topAddr, retAddr);
      sqlite3ClearTempRegCache(pParse);
    }
5343
5344
5345
5346
5347
5348
5349





5350
5351
5352
5353
5354
5355
5356
    sNC.pAggInfo = &sAggInfo;
    sAggInfo.mnReg = pParse->nMem+1;
    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
    sAggInfo.pGroupBy = pGroupBy;
    sqlite3ExprAnalyzeAggList(&sNC, pEList);
    sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
    if( pHaving ){





      sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
    }
    sAggInfo.nAccumulator = sAggInfo.nColumn;
    for(i=0; i<sAggInfo.nFunc; i++){
      assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
      sNC.ncFlags |= NC_InAggFunc;
      sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);







>
>
>
>
>







5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
    sNC.pAggInfo = &sAggInfo;
    sAggInfo.mnReg = pParse->nMem+1;
    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
    sAggInfo.pGroupBy = pGroupBy;
    sqlite3ExprAnalyzeAggList(&sNC, pEList);
    sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
    if( pHaving ){
      if( pGroupBy ){
        assert( pWhere==p->pWhere );
        havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
        pWhere = p->pWhere;
      }
      sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
    }
    sAggInfo.nAccumulator = sAggInfo.nColumn;
    for(i=0; i<sAggInfo.nFunc; i++){
      assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
      sNC.ncFlags |= NC_InAggFunc;
      sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
Changes to src/sqlite.h.in.
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
** anti-virus programs.  By default, the windows VFS will retry file read,
** file write, and file delete operations up to 10 times, with a delay
** of 25 milliseconds before the first retry and with the delay increasing
** by an additional 25 milliseconds with each subsequent retry.  This
** opcode allows these two values (10 retries and 25 milliseconds of delay)
** to be adjusted.  The values are changed for all database connections
** within the same process.  The argument is a pointer to an array of two
** integers where the first integer i the new retry count and the second
** integer is the delay.  If either integer is negative, then the setting
** is not changed but instead the prior value of that setting is written
** into the array entry, allowing the current retry settings to be
** interrogated.  The zDbName parameter is ignored.
**
** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the







|







853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
** anti-virus programs.  By default, the windows VFS will retry file read,
** file write, and file delete operations up to 10 times, with a delay
** of 25 milliseconds before the first retry and with the delay increasing
** by an additional 25 milliseconds with each subsequent retry.  This
** opcode allows these two values (10 retries and 25 milliseconds of delay)
** to be adjusted.  The values are changed for all database connections
** within the same process.  The argument is a pointer to an array of two
** integers where the first integer is the new retry count and the second
** integer is the delay.  If either integer is negative, then the setting
** is not changed but instead the prior value of that setting is written
** into the array entry, allowing the current retry settings to be
** interrogated.  The zDbName parameter is ignored.
**
** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
Changes to src/sqliteInt.h.
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329


3330
3331
3332
3333
3334
3335
3336
  Parse *pParse;                            /* Parser context.  */
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
  int walkerDepth;                          /* Number of subqueries */
  u8 eCode;                                 /* A small processing code */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int n;                                     /* A counter */
    int iCur;                                  /* A cursor number */
    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */
    struct CCurHint *pCCurHint;                /* Used by codeCursorHint() */
    int *aiCol;                                /* array of column indexes */
    struct IdxCover *pIdxCover;                /* Check for index coverage */
    struct IdxExprTrans *pIdxTrans;            /* Convert indexed expr to column */


  } u;
};

/* Forward declarations */
int sqlite3WalkExpr(Walker*, Expr*);
int sqlite3WalkExprList(Walker*, ExprList*);
int sqlite3WalkSelect(Walker*, Select*);







|
|
|
|
|
|
|
|
|
>
>







3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
  Parse *pParse;                            /* Parser context.  */
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
  int walkerDepth;                          /* Number of subqueries */
  u8 eCode;                                 /* A small processing code */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                         /* Naming context */
    int n;                                    /* A counter */
    int iCur;                                 /* A cursor number */
    SrcList *pSrcList;                        /* FROM clause */
    struct SrcCount *pSrcCount;               /* Counting column references */
    struct CCurHint *pCCurHint;               /* Used by codeCursorHint() */
    int *aiCol;                               /* array of column indexes */
    struct IdxCover *pIdxCover;               /* Check for index coverage */
    struct IdxExprTrans *pIdxTrans;           /* Convert indexed expr to column */
    ExprList *pGroupBy;                       /* GROUP BY clause */
    struct HavingToWhereCtx *pHavingCtx;      /* HAVING to WHERE clause ctx */
  } u;
};

/* Forward declarations */
int sqlite3WalkExpr(Walker*, Expr*);
int sqlite3WalkExprList(Walker*, ExprList*);
int sqlite3WalkSelect(Walker*, Select*);
3792
3793
3794
3795
3796
3797
3798

3799
3800
3801
3802
3803
3804
3805
void sqlite3RollbackTransaction(Parse*);
void sqlite3Savepoint(Parse*, int, Token*);
void sqlite3CloseSavepoints(sqlite3 *);
void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
int sqlite3ExprIsConstant(Expr*);
int sqlite3ExprIsConstantNotJoin(Expr*);
int sqlite3ExprIsConstantOrFunction(Expr*, u8);

int sqlite3ExprIsTableConstant(Expr*,int);
#ifdef SQLITE_ENABLE_CURSOR_HINTS
int sqlite3ExprContainsSubquery(Expr*);
#endif
int sqlite3ExprIsInteger(Expr*, int*);
int sqlite3ExprCanBeNull(const Expr*);
int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);







>







3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
void sqlite3RollbackTransaction(Parse*);
void sqlite3Savepoint(Parse*, int, Token*);
void sqlite3CloseSavepoints(sqlite3 *);
void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
int sqlite3ExprIsConstant(Expr*);
int sqlite3ExprIsConstantNotJoin(Expr*);
int sqlite3ExprIsConstantOrFunction(Expr*, u8);
int sqlite3ExprIsConstantOrGroupBy(Parse*, Expr*, ExprList*);
int sqlite3ExprIsTableConstant(Expr*,int);
#ifdef SQLITE_ENABLE_CURSOR_HINTS
int sqlite3ExprContainsSubquery(Expr*);
#endif
int sqlite3ExprIsInteger(Expr*, int*);
int sqlite3ExprCanBeNull(const Expr*);
int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
Changes to src/vdbe.c.
3535
3536
3537
3538
3539
3540
3541































3542
3543
3544
3545
3546
3547
3548
  testcase( pOp->p2 & OPFLAG_SEEKEQ );
#endif
  sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
                               (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
  if( rc ) goto abort_due_to_error;
  break;
}
































/* Opcode: OpenEphemeral P1 P2 * P4 P5
** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if 
** the main database is read-only.  The ephemeral







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
  testcase( pOp->p2 & OPFLAG_SEEKEQ );
#endif
  sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
                               (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
  if( rc ) goto abort_due_to_error;
  break;
}

/* Opcode: OpenDup P1 P2 * * *
**
** Open a new cursor P1 that points to the same ephemeral table as
** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
** opcode.  Only ephemeral cursors may be duplicated.
**
** Duplicate ephemeral cursors are used for self-joins of materialized views.
*/
case OP_OpenDup: {
  VdbeCursor *pOrig;    /* The original cursor to be duplicated */
  VdbeCursor *pCx;      /* The new cursor */

  pOrig = p->apCsr[pOp->p2];
  assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */

  pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->isEphemeral = 1;
  pCx->pKeyInfo = pOrig->pKeyInfo;
  pCx->isTable = pOrig->isTable;
  rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR,
                          pCx->pKeyInfo, pCx->uc.pCursor);
  /* The sqlite3BtreeCursor() routine can only fail for the first cursor
  ** opened for a database.  Since there is already an open cursor when this
  ** opcode is run, the sqlite3BtreeCursor() cannot fail */
  assert( rc==SQLITE_OK );
  break;
}


/* Opcode: OpenEphemeral P1 P2 * P4 P5
** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if 
** the main database is read-only.  The ephemeral
Changes to src/vdbeaux.c.
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
  assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
  switch( pCx->eCurType ){
    case CURTYPE_SORTER: {
      sqlite3VdbeSorterClose(p->db, pCx);
      break;
    }
    case CURTYPE_BTREE: {
      if( pCx->pBtx ){
        sqlite3BtreeClose(pCx->pBtx);
        /* The pCx->pCursor will be close automatically, if it exists, by
        ** the call above. */
      }else{
        assert( pCx->uc.pCursor!=0 );
        sqlite3BtreeCloseCursor(pCx->uc.pCursor);
      }
      break;







|
|







2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
  assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
  switch( pCx->eCurType ){
    case CURTYPE_SORTER: {
      sqlite3VdbeSorterClose(p->db, pCx);
      break;
    }
    case CURTYPE_BTREE: {
      if( pCx->isEphemeral ){
        if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
        /* The pCx->pCursor will be close automatically, if it exists, by
        ** the call above. */
      }else{
        assert( pCx->uc.pCursor!=0 );
        sqlite3BtreeCloseCursor(pCx->uc.pCursor);
      }
      break;
Changes to test/conflict3.test.
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353













354
355
356
#
# This file focuses on making sure that combinations of REPLACE,
# IGNORE, and FAIL conflict resolution play well together.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl


ifcapable !conflict {
  finish_test
  return
}

do_execsql_test conflict-1.1 {
  CREATE TABLE t1(
    a INTEGER PRIMARY KEY ON CONFLICT REPLACE, 
    b UNIQUE ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-1.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-1.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-1.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Replete the tests above, but this time on a table non-INTEGER primary key.
#
do_execsql_test conflict-2.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a INT PRIMARY KEY ON CONFLICT REPLACE, 
    b UNIQUE ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-2.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-2.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-2.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Replete again on a WITHOUT ROWID table.
#
do_execsql_test conflict-3.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a INT PRIMARY KEY ON CONFLICT REPLACE, 
    b UNIQUE ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  ) WITHOUT ROWID;
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-3.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-3.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-3.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Arrange the table rows in a different order and repeat.
#
do_execsql_test conflict-4.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    b UNIQUE ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL,
    a INT PRIMARY KEY ON CONFLICT REPLACE
  ) WITHOUT ROWID;
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-4.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-4.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-4.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Arrange the table rows in a different order and repeat.
#
do_execsql_test conflict-5.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    b UNIQUE ON CONFLICT IGNORE,
    a INT PRIMARY KEY ON CONFLICT REPLACE,
    c UNIQUE ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-5.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-5.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-5.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Arrange the table rows in a different order and repeat.
#
do_execsql_test conflict-6.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    c UNIQUE ON CONFLICT FAIL,
    a INT PRIMARY KEY ON CONFLICT REPLACE,
    b UNIQUE ON CONFLICT IGNORE
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-6.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-6.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-6.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Change which column is the PRIMARY KEY
#
do_execsql_test conflict-7.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a UNIQUE ON CONFLICT REPLACE, 
    b INTEGER PRIMARY KEY ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-7.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-7.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-7.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Change which column is the PRIMARY KEY
#
do_execsql_test conflict-8.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a UNIQUE ON CONFLICT REPLACE, 
    b INT PRIMARY KEY ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-8.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-8.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-8.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Change which column is the PRIMARY KEY
#
do_execsql_test conflict-9.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a UNIQUE ON CONFLICT REPLACE, 
    b INT PRIMARY KEY ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  ) WITHOUT ROWID;
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-9.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-9.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-9.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Change which column is the PRIMARY KEY
#
do_execsql_test conflict-10.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a UNIQUE ON CONFLICT REPLACE, 
    b UNIQUE ON CONFLICT IGNORE,
    c INTEGER PRIMARY KEY ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-10.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-10.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-10.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Change which column is the PRIMARY KEY
#
do_execsql_test conflict-11.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a UNIQUE ON CONFLICT REPLACE, 
    b UNIQUE ON CONFLICT IGNORE,
    c PRIMARY KEY ON CONFLICT FAIL
  ) WITHOUT ROWID;
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test conflict-11.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test conflict-11.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test conflict-11.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}















finish_test







>






|











|







|


|





|












|







|


|





|












|







|


|





|












|







|


|





|












|







|


|





|












|







|


|





|












|







|


|





|












|







|


|





|












|







|


|





|












|







|


|





|












|







|


|


>
>
>
>
>
>
>
>
>
>
>
>
>



15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#
# This file focuses on making sure that combinations of REPLACE,
# IGNORE, and FAIL conflict resolution play well together.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix conflict3

ifcapable !conflict {
  finish_test
  return
}

do_execsql_test 1.1 {
  CREATE TABLE t1(
    a INTEGER PRIMARY KEY ON CONFLICT REPLACE, 
    b UNIQUE ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 1.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 1.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 1.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Replete the tests above, but this time on a table non-INTEGER primary key.
#
do_execsql_test 2.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a INT PRIMARY KEY ON CONFLICT REPLACE, 
    b UNIQUE ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 2.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 2.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 2.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Replete again on a WITHOUT ROWID table.
#
do_execsql_test 3.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a INT PRIMARY KEY ON CONFLICT REPLACE, 
    b UNIQUE ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  ) WITHOUT ROWID;
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 3.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 3.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 3.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Arrange the table rows in a different order and repeat.
#
do_execsql_test 4.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    b UNIQUE ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL,
    a INT PRIMARY KEY ON CONFLICT REPLACE
  ) WITHOUT ROWID;
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 4.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 4.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 4.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Arrange the table rows in a different order and repeat.
#
do_execsql_test 5.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    b UNIQUE ON CONFLICT IGNORE,
    a INT PRIMARY KEY ON CONFLICT REPLACE,
    c UNIQUE ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 5.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 5.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 5.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Arrange the table rows in a different order and repeat.
#
do_execsql_test 6.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    c UNIQUE ON CONFLICT FAIL,
    a INT PRIMARY KEY ON CONFLICT REPLACE,
    b UNIQUE ON CONFLICT IGNORE
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 6.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 6.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 6.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Change which column is the PRIMARY KEY
#
do_execsql_test 7.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a UNIQUE ON CONFLICT REPLACE, 
    b INTEGER PRIMARY KEY ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 7.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 7.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 7.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Change which column is the PRIMARY KEY
#
do_execsql_test 8.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a UNIQUE ON CONFLICT REPLACE, 
    b INT PRIMARY KEY ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 8.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 8.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 8.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Change which column is the PRIMARY KEY
#
do_execsql_test 9.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a UNIQUE ON CONFLICT REPLACE, 
    b INT PRIMARY KEY ON CONFLICT IGNORE,
    c UNIQUE ON CONFLICT FAIL
  ) WITHOUT ROWID;
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 9.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 9.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 9.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Change which column is the PRIMARY KEY
#
do_execsql_test 10.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a UNIQUE ON CONFLICT REPLACE, 
    b UNIQUE ON CONFLICT IGNORE,
    c INTEGER PRIMARY KEY ON CONFLICT FAIL
  );
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 10.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 10.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 10.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Change which column is the PRIMARY KEY
#
do_execsql_test 11.1 {
  DROP TABLE t1;
  CREATE TABLE t1(
    a UNIQUE ON CONFLICT REPLACE, 
    b UNIQUE ON CONFLICT IGNORE,
    c PRIMARY KEY ON CONFLICT FAIL
  ) WITHOUT ROWID;
  INSERT INTO t1(a,b,c) VALUES(1,2,3), (2,3,4);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert a row that conflicts on column B.  The insert should be ignored.
#
do_execsql_test 11.2 {
  INSERT INTO t1(a,b,c) VALUES(3,2,5);
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4}

# Insert two rows where the second conflicts on C.  The first row show go
# and and then there should be a constraint error.
#
do_test 11.3 {
  catchsql {INSERT INTO t1(a,b,c) VALUES(4,5,6), (5,6,4);}
} {1 {UNIQUE constraint failed: t1.c}}
do_execsql_test 11.4 {
  SELECT a,b,c FROM t1 ORDER BY a;
} {1 2 3 2 3 4 4 5 6}

# Check that ticket [f68dc596c4] has been fixed.
#
do_execsql_test 12.1 {
  CREATE TABLE t2(a INTEGER PRIMARY KEY, b TEXT);
  INSERT INTO t2 VALUES(111, '111');
}
do_execsql_test 12.2 {
  REPLACE INTO t2 VALUES(NULL, '112'), (111, '111B');
}
do_execsql_test 12.3 {
  SELECT * FROM t2;
} {111 111B 112 112}


finish_test
Added test/having.test.




















































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# 2017 April 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Test the HAVING->WHERE optimization.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix having

do_execsql_test 1.0 {
  CREATE TABLE t2(c, d);

  CREATE TABLE t1(a, b);
  INSERT INTO t1 VALUES(1, 1);
  INSERT INTO t1 VALUES(2, 2);
  INSERT INTO t1 VALUES(1, 3);
  INSERT INTO t1 VALUES(2, 4);
  INSERT INTO t1 VALUES(1, 5);
  INSERT INTO t1 VALUES(2, 6);
} {}

foreach {tn sql res} {
  1 "SELECT a, sum(b) FROM t1 GROUP BY a HAVING a=2" {2 12}
  2 "SELECT a, sum(b) FROM t1 GROUP BY a HAVING a=2 AND sum(b)>10" {2 12}
  3 "SELECT a, sum(b) FROM t1 GROUP BY a HAVING sum(b)>12" {}
} {
  do_execsql_test 1.$tn $sql $res
}

# Run an EXPLAIN command for both SQL statements. Return true if 
# the outputs are identical, or false otherwise.
#
proc compare_vdbe {sql1 sql2} {
  set r1 [list]
  set r2 [list]
  db eval "explain $sql1" { lappend r1 $opcode $p1 $p2 $p3 $p4 $p5}
  db eval "explain $sql2" { lappend r2 $opcode $p1 $p2 $p3 $p4 $p5}
  return [expr {$r1==$r2}]
}

proc do_compare_vdbe_test {tn sql1 sql2 res} {
  uplevel [list do_test $tn [list compare_vdbe $sql1 $sql2] $res]
}

#-------------------------------------------------------------------------
# Test that various statements that are eligible for the optimization
# produce the same VDBE code as optimizing by hand does.
#
foreach {tn sql1 sql2} {
  1 "SELECT a, sum(b) FROM t1 GROUP BY a HAVING a=2"
    "SELECT a, sum(b) FROM t1 WHERE a=2 GROUP BY a"

  2 "SELECT a, sum(b) FROM t1 GROUP BY a HAVING sum(b)>5 AND a=2"
    "SELECT a, sum(b) FROM t1 WHERE a=2 GROUP BY a HAVING sum(b)>5"

  3 "SELECT a, sum(b) FROM t1 GROUP BY a COLLATE binary HAVING a=2"
    "SELECT a, sum(b) FROM t1 WHERE a=2 GROUP BY a COLLATE binary"

  4 {
      SELECT x,y FROM (
        SELECT a AS x, sum(b) AS y FROM t1 
        GROUP BY a
      ) WHERE x BETWEEN 8888 AND 9999
    } {
      SELECT x,y FROM (
        SELECT a AS x, sum(b) AS y FROM t1 
        WHERE x BETWEEN 8888 AND 9999 
        GROUP BY a
      )
    }

  5 "SELECT a, sum(b) FROM t1 GROUP BY a COLLATE binary HAVING 0"
    "SELECT a, sum(b) FROM t1 WHERE 0 GROUP BY a COLLATE binary"

  6 "SELECT count(*) FROM t1,t2 WHERE a=c GROUP BY b, d HAVING b=d"
    "SELECT count(*) FROM t1,t2 WHERE a=c AND b=d GROUP BY b, d"

  7 {
      SELECT count(*) FROM t1,t2 WHERE a=c GROUP BY b, d 
      HAVING b=d COLLATE nocase
    } {
      SELECT count(*) FROM t1,t2 WHERE a=c AND b=d COLLATE nocase 
      GROUP BY b, d
    }

  8 "SELECT a, sum(b) FROM t1 GROUP BY a||b HAVING substr(a||b, 1, 1)='a'"
    "SELECT a, sum(b) FROM t1 WHERE substr(a||b, 1, 1)='a' GROUP BY a||b"
} {
  do_compare_vdbe_test 2.$tn $sql1 $sql2 1
}

#-------------------------------------------------------------------------
# 1: Test that the optimization is only applied if the GROUP BY term
#    uses BINARY collation.
#
# 2: Not applied if there is a non-deterministic function in the HAVING
#    term.
#
foreach {tn sql1 sql2} {
  1 "SELECT a, sum(b) FROM t1 GROUP BY a COLLATE nocase HAVING a=2"
    "SELECT a, sum(b) FROM t1 WHERE a=2 GROUP BY a COLLATE nocase"

  2 "SELECT a, sum(b) FROM t1 GROUP BY a HAVING randomblob(a)<X'88'"
    "SELECT a, sum(b) FROM t1 WHERE randomblob(a)<X'88' GROUP BY a"
} {
  do_compare_vdbe_test 3.$tn $sql1 $sql2 0
}


#-------------------------------------------------------------------------
# Test that non-deterministic functions disqualify a term from being
# moved from the HAVING to WHERE clause.
#
do_execsql_test 4.1 {
  CREATE TABLE t3(a, b);
  INSERT INTO t3 VALUES(1, 1);
  INSERT INTO t3 VALUES(1, 2);
  INSERT INTO t3 VALUES(1, 3);
  INSERT INTO t3 VALUES(2, 1);
  INSERT INTO t3 VALUES(2, 2);
  INSERT INTO t3 VALUES(2, 3);
}

proc nondeter {args} {
  incr ::nondeter_ret
  expr {$::nondeter_ret % 2}
}
db func nondeter nondeter

set ::nondeter_ret 0
do_execsql_test 4.2 {
  SELECT a, sum(b) FROM t3 GROUP BY a HAVING nondeter(a)
} {1 6}

# If the term where moved, the query above would return the same
# result as the following. But it does not.
#
set ::nondeter_ret 0
do_execsql_test 4.3 {
  SELECT a, sum(b) FROM t3 WHERE nondeter(a) GROUP BY a
} {1 4 2 2}


finish_test