Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge all the latest trunk changes into the name-resolution enhancement branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | name-resolution-fix |
Files: | files | file ages | folders |
SHA1: |
a5f4d2b641f7fafb6f1a312efeffb10f |
User & Date: | drh 2013-01-02 12:29:05.642 |
Context
2013-01-02
| ||
14:57 | When resolving result-set name collisions, make them x:1, x:2, x:3, etc. instead of x:1, x:1:1, x:1;1;1. (check-in: ef01e30456 user: drh tags: name-resolution-fix) | |
12:29 | Merge all the latest trunk changes into the name-resolution enhancement branch. (check-in: a5f4d2b641 user: drh tags: name-resolution-fix) | |
2013-01-01
| ||
14:01 | Reduce the size of the Index object (by 8 bytes on x64). (check-in: 5a2ac94483 user: drh tags: trunk) | |
2012-12-19
| ||
13:41 | Add commentary to the ExprList object to explain how zSpan is overloaded. Add test cases for the new name resolution functionality. (check-in: 3e7d84db78 user: drh tags: name-resolution-fix) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
366 367 368 369 370 371 372 373 374 375 376 377 378 379 | $(TOP)/src/test_malloc.c \ $(TOP)/src/test_multiplex.c \ $(TOP)/src/test_mutex.c \ $(TOP)/src/test_onefile.c \ $(TOP)/src/test_osinst.c \ $(TOP)/src/test_pcache.c \ $(TOP)/src/test_quota.c \ $(TOP)/src/test_rtree.c \ $(TOP)/src/test_schema.c \ $(TOP)/src/test_server.c \ $(TOP)/src/test_superlock.c \ $(TOP)/src/test_syscall.c \ $(TOP)/src/test_stat.c \ $(TOP)/src/test_tclvar.c \ | > | 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | $(TOP)/src/test_malloc.c \ $(TOP)/src/test_multiplex.c \ $(TOP)/src/test_mutex.c \ $(TOP)/src/test_onefile.c \ $(TOP)/src/test_osinst.c \ $(TOP)/src/test_pcache.c \ $(TOP)/src/test_quota.c \ $(TOP)/src/test_regexp.c \ $(TOP)/src/test_rtree.c \ $(TOP)/src/test_schema.c \ $(TOP)/src/test_server.c \ $(TOP)/src/test_superlock.c \ $(TOP)/src/test_syscall.c \ $(TOP)/src/test_stat.c \ $(TOP)/src/test_tclvar.c \ |
︙ | ︙ |
Changes to Makefile.msc.
︙ | ︙ | |||
687 688 689 690 691 692 693 694 695 696 697 698 699 700 | $(TOP)\src\test_malloc.c \ $(TOP)\src\test_multiplex.c \ $(TOP)\src\test_mutex.c \ $(TOP)\src\test_onefile.c \ $(TOP)\src\test_osinst.c \ $(TOP)\src\test_pcache.c \ $(TOP)\src\test_quota.c \ $(TOP)\src\test_rtree.c \ $(TOP)\src\test_schema.c \ $(TOP)\src\test_server.c \ $(TOP)\src\test_superlock.c \ $(TOP)\src\test_syscall.c \ $(TOP)\src\test_stat.c \ $(TOP)\src\test_tclvar.c \ | > | 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 | $(TOP)\src\test_malloc.c \ $(TOP)\src\test_multiplex.c \ $(TOP)\src\test_mutex.c \ $(TOP)\src\test_onefile.c \ $(TOP)\src\test_osinst.c \ $(TOP)\src\test_pcache.c \ $(TOP)\src\test_quota.c \ $(TOP)\src\test_regexp.c \ $(TOP)\src\test_rtree.c \ $(TOP)\src\test_schema.c \ $(TOP)\src\test_server.c \ $(TOP)\src\test_superlock.c \ $(TOP)\src\test_syscall.c \ $(TOP)\src\test_stat.c \ $(TOP)\src\test_tclvar.c \ |
︙ | ︙ |
Changes to main.mk.
︙ | ︙ | |||
249 250 251 252 253 254 255 256 257 258 259 260 261 262 | $(TOP)/src/test_malloc.c \ $(TOP)/src/test_multiplex.c \ $(TOP)/src/test_mutex.c \ $(TOP)/src/test_onefile.c \ $(TOP)/src/test_osinst.c \ $(TOP)/src/test_pcache.c \ $(TOP)/src/test_quota.c \ $(TOP)/src/test_rtree.c \ $(TOP)/src/test_schema.c \ $(TOP)/src/test_server.c \ $(TOP)/src/test_stat.c \ $(TOP)/src/test_sqllog.c \ $(TOP)/src/test_superlock.c \ $(TOP)/src/test_syscall.c \ | > | 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | $(TOP)/src/test_malloc.c \ $(TOP)/src/test_multiplex.c \ $(TOP)/src/test_mutex.c \ $(TOP)/src/test_onefile.c \ $(TOP)/src/test_osinst.c \ $(TOP)/src/test_pcache.c \ $(TOP)/src/test_quota.c \ $(TOP)/src/test_regexp.c \ $(TOP)/src/test_rtree.c \ $(TOP)/src/test_schema.c \ $(TOP)/src/test_server.c \ $(TOP)/src/test_stat.c \ $(TOP)/src/test_sqllog.c \ $(TOP)/src/test_superlock.c \ $(TOP)/src/test_syscall.c \ |
︙ | ︙ |
Changes to src/backup.c.
︙ | ︙ | |||
208 209 210 211 212 213 214 | } /* ** Parameter zSrcData points to a buffer containing the data for ** page iSrcPg from the source database. Copy this data into the ** destination database. */ | | > > > > > | 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | } /* ** Parameter zSrcData points to a buffer containing the data for ** page iSrcPg from the source database. Copy this data into the ** destination database. */ static int backupOnePage( sqlite3_backup *p, /* Backup handle */ Pgno iSrcPg, /* Source database page to backup */ const u8 *zSrcData, /* Source database page data */ int bUpdate /* True for an update, false otherwise */ ){ Pager * const pDestPager = sqlite3BtreePager(p->pDest); const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc); int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest); const int nCopy = MIN(nSrcPgsz, nDestPgsz); const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz; #ifdef SQLITE_HAS_CODEC /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is |
︙ | ︙ | |||
281 282 283 284 285 286 287 288 289 290 291 292 293 294 | ** and the pager code use this trick (clearing the first byte ** of the page 'extra' space to invalidate the Btree layers ** cached parse of the page). MemPage.isInit is marked ** "MUST BE FIRST" for this purpose. */ memcpy(zOut, zIn, nCopy); ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0; } sqlite3PagerUnref(pDestPg); } return rc; } | > > > | 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | ** and the pager code use this trick (clearing the first byte ** of the page 'extra' space to invalidate the Btree layers ** cached parse of the page). MemPage.isInit is marked ** "MUST BE FIRST" for this purpose. */ memcpy(zOut, zIn, nCopy); ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0; if( iOff==0 && bUpdate==0 ){ sqlite3Put4byte(&zOut[28], sqlite3BtreeLastPage(p->pSrc)); } } sqlite3PagerUnref(pDestPg); } return rc; } |
︙ | ︙ | |||
387 388 389 390 391 392 393 | assert( nSrcPage>=0 ); for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){ const Pgno iSrcPg = p->iNext; /* Source page number */ if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){ DbPage *pSrcPg; /* Source page object */ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg); if( rc==SQLITE_OK ){ | | | 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 | assert( nSrcPage>=0 ); for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){ const Pgno iSrcPg = p->iNext; /* Source page number */ if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){ DbPage *pSrcPg; /* Source page object */ rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg); if( rc==SQLITE_OK ){ rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0); sqlite3PagerUnref(pSrcPg); } } p->iNext++; } if( rc==SQLITE_OK ){ p->nPagecount = nSrcPage; |
︙ | ︙ | |||
635 636 637 638 639 640 641 | /* The backup process p has already copied page iPage. But now it ** has been modified by a transaction on the source pager. Copy ** the new data into the backup. */ int rc; assert( p->pDestDb ); sqlite3_mutex_enter(p->pDestDb->mutex); | | | 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 | /* The backup process p has already copied page iPage. But now it ** has been modified by a transaction on the source pager. Copy ** the new data into the backup. */ int rc; assert( p->pDestDb ); sqlite3_mutex_enter(p->pDestDb->mutex); rc = backupOnePage(p, iPage, aData, 1); sqlite3_mutex_leave(p->pDestDb->mutex); assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED ); if( rc!=SQLITE_OK ){ p->rc = rc; } } } |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
138 139 140 141 142 143 144 | ** Register (x+3): 3.1 (type real) */ /* ** A foreign key constraint requires that the key columns in the parent ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. ** Given that pParent is the parent table for foreign key constraint pFKey, | | | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | ** Register (x+3): 3.1 (type real) */ /* ** A foreign key constraint requires that the key columns in the parent ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. ** Given that pParent is the parent table for foreign key constraint pFKey, ** search the schema for a unique index on the parent key columns. ** ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx ** is set to point to the unique index. ** ** If the parent key consists of a single column (the foreign key constraint ** is not a composite foreign key), output variable *paiCol is set to NULL. |
︙ | ︙ | |||
174 175 176 177 178 179 180 | ** consists of a a different number of columns to the child key in ** the child table. ** ** then non-zero is returned, and a "foreign key mismatch" error loaded ** into pParse. If an OOM error occurs, non-zero is returned and the ** pParse->db->mallocFailed flag is set. */ | | | 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | ** consists of a a different number of columns to the child key in ** the child table. ** ** then non-zero is returned, and a "foreign key mismatch" error loaded ** into pParse. If an OOM error occurs, non-zero is returned and the ** pParse->db->mallocFailed flag is set. */ int sqlite3FkLocateIndex( Parse *pParse, /* Parse context to store any error in */ Table *pParent, /* Parent table of FK constraint pFKey */ FKey *pFKey, /* Foreign key to find index for */ Index **ppIdx, /* OUT: Unique index on parent table */ int **paiCol /* OUT: Map of index columns in pFKey */ ){ Index *pIdx = 0; /* Value to return via *ppIdx */ |
︙ | ︙ | |||
271 272 273 274 275 276 277 | if( i==nCol ) break; /* pIdx is usable */ } } } if( !pIdx ){ if( !pParse->disableTriggers ){ | | > > | 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | if( i==nCol ) break; /* pIdx is usable */ } } } if( !pIdx ){ if( !pParse->disableTriggers ){ sqlite3ErrorMsg(pParse, "foreign key mismatch - \"%w\" referencing \"%w\"", pFKey->pFrom->zName, pFKey->zTo); } sqlite3DbFree(pParse->db, aiCol); return 1; } *ppIdx = pIdx; return 0; |
︙ | ︙ | |||
732 733 734 735 736 737 738 | ** schema items cannot be located, set an error in pParse and return ** early. */ if( pParse->disableTriggers ){ pTo = sqlite3FindTable(db, pFKey->zTo, zDb); }else{ pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); } | | | 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 | ** schema items cannot be located, set an error in pParse and return ** early. */ if( pParse->disableTriggers ){ pTo = sqlite3FindTable(db, pFKey->zTo, zDb); }else{ pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); } if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); if( !isIgnoreErrors || db->mallocFailed ) return; if( pTo==0 ){ /* If isIgnoreErrors is true, then a table is being dropped. In this ** case SQLite runs a "DELETE FROM xxx" on the table being dropped ** before actually dropping it in order to check FK constraints. ** If the parent table of an FK constraint on the current table is |
︙ | ︙ | |||
812 813 814 815 816 817 818 | if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ assert( regOld==0 && regNew!=0 ); /* Inserting a single row into a parent table cannot cause an immediate ** foreign key violation. So do nothing in this case. */ continue; } | | | 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 | if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ assert( regOld==0 && regNew!=0 ); /* Inserting a single row into a parent table cannot cause an immediate ** foreign key violation. So do nothing in this case. */ continue; } if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ if( !isIgnoreErrors || db->mallocFailed ) return; continue; } assert( aiCol || pFKey->nCol==1 ); /* Create a SrcList structure containing a single table (the table ** the foreign key that refers to this table is attached to). This |
︙ | ︙ | |||
867 868 869 870 871 872 873 | FKey *p; int i; for(p=pTab->pFKey; p; p=p->pNextFrom){ for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); } for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ Index *pIdx = 0; | | | 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 | FKey *p; int i; for(p=pTab->pFKey; p; p=p->pNextFrom){ for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); } for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ Index *pIdx = 0; sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); if( pIdx ){ for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); } } } return mask; } |
︙ | ︙ | |||
993 994 995 996 997 998 999 | TriggerStep *pStep = 0; /* First (only) step of trigger program */ Expr *pWhere = 0; /* WHERE clause of trigger step */ ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ int i; /* Iterator variable */ Expr *pWhen = 0; /* WHEN clause for the trigger */ | | | 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 | TriggerStep *pStep = 0; /* First (only) step of trigger program */ Expr *pWhere = 0; /* WHERE clause of trigger step */ ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ int i; /* Iterator variable */ Expr *pWhen = 0; /* WHEN clause for the trigger */ if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; assert( aiCol || pFKey->nCol==1 ); for(i=0; i<pFKey->nCol; i++){ Token tOld = { "old", 3 }; /* Literal "old" token */ Token tNew = { "new", 3 }; /* Literal "new" token */ Token tFromCol; /* Name of column in child table */ Token tToCol; /* Name of column in parent table */ |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
944 945 946 947 948 949 950 | ** dflt_value: The default value for the column, if any. */ if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){ Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ | | > > | 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 | ** dflt_value: The default value for the column, if any. */ if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){ Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ int i, k; int nHidden = 0; Column *pCol; Index *pPk; for(pPk=pTab->pIndex; pPk && pPk->autoIndex!=2; pPk=pPk->pNext){} sqlite3VdbeSetNumCols(v, 6); pParse->nMem = 6; sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", SQLITE_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", SQLITE_STATIC); sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", SQLITE_STATIC); sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", SQLITE_STATIC); |
︙ | ︙ | |||
971 972 973 974 975 976 977 | pCol->zType ? pCol->zType : "", 0); sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4); if( pCol->zDflt ){ sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, 5); } | > > > > > > > | < | 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 | pCol->zType ? pCol->zType : "", 0); sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4); if( pCol->zDflt ){ sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, 5); } if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ k = 0; }else if( pPk==0 ){ k = 1; }else{ for(k=1; ALWAYS(k<=pTab->nCol) && pPk->aiColumn[k-1]!=i; k++){} } sqlite3VdbeAddOp2(v, OP_Integer, k, 6); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6); } } }else if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){ Index *pIdx; |
︙ | ︙ | |||
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8); } ++i; pFK = pFK->pNextFrom; } } } }else #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ #ifndef NDEBUG if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){ if( zRight ){ if( sqlite3GetBoolean(zRight, 0) ){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8); } ++i; pFK = pFK->pNextFrom; } } } }else #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ #ifndef SQLITE_OMIT_FOREIGN_KEY if( sqlite3StrICmp(zLeft, "foreign_key_check")==0 ){ FKey *pFK; /* A foreign key constraint */ Table *pTab; /* Child table contain "REFERENCES" keyword */ Table *pParent; /* Parent table that child points to */ Index *pIdx; /* Index in the parent table */ int i; /* Loop counter: Foreign key number for pTab */ int j; /* Loop counter: Field of the foreign key */ HashElem *k; /* Loop counter: Next table in schema */ int x; /* result variable */ int regResult; /* 3 registers to hold a result row */ int regKey; /* Register to hold key for checking the FK */ int regRow; /* Registers to hold a row from pTab */ int addrTop; /* Top of a loop checking foreign keys */ int addrOk; /* Jump here if the key is OK */ int *aiCols; /* child to parent column mapping */ if( sqlite3ReadSchema(pParse) ) goto pragma_out; regResult = pParse->nMem+1; pParse->nMem += 4; regKey = ++pParse->nMem; regRow = ++pParse->nMem; v = sqlite3GetVdbe(pParse); sqlite3VdbeSetNumCols(v, 4); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "table", SQLITE_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "rowid", SQLITE_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "parent", SQLITE_STATIC); sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "fkid", SQLITE_STATIC); sqlite3CodeVerifySchema(pParse, iDb); k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); while( k ){ if( zRight ){ pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); k = 0; }else{ pTab = (Table*)sqliteHashData(k); k = sqliteHashNext(k); } if( pTab==0 || pTab->pFKey==0 ) continue; sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow; sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); sqlite3VdbeAddOp4(v, OP_String8, 0, regResult, 0, pTab->zName, P4_TRANSIENT); for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ pParent = sqlite3LocateTable(pParse, 0, pFK->zTo, zDb); if( pParent==0 ) break; pIdx = 0; sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); if( x==0 ){ if( pIdx==0 ){ sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); }else{ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); } }else{ k = 0; break; } } if( pFK ) break; if( pParse->nTab<i ) pParse->nTab = i; addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ pParent = sqlite3LocateTable(pParse, 0, pFK->zTo, zDb); assert( pParent!=0 ); pIdx = 0; aiCols = 0; x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); assert( x==0 ); addrOk = sqlite3VdbeMakeLabel(v); if( pIdx==0 ){ int iKey = pFK->aCol[0].iFrom; assert( iKey>=0 && iKey<pTab->nCol ); if( iKey!=pTab->iPKey ){ sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow); sqlite3ColumnDefault(v, pTab, iKey, regRow); sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); sqlite3VdbeAddOp2(v, OP_MustBeInt, regRow, sqlite3VdbeCurrentAddr(v)+3); }else{ sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow); } sqlite3VdbeAddOp3(v, OP_NotExists, i, 0, regRow); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrOk); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); }else{ for(j=0; j<pFK->nCol; j++){ sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, aiCols ? aiCols[j] : pFK->aCol[0].iFrom, regRow+j); sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regRow, pFK->nCol, regKey); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT); sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0); } sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); sqlite3VdbeAddOp4(v, OP_String8, 0, regResult+2, 0, pFK->zTo, P4_TRANSIENT); sqlite3VdbeAddOp2(v, OP_Integer, i-1, regResult+3); sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); sqlite3VdbeResolveLabel(v, addrOk); sqlite3DbFree(db, aiCols); } sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); sqlite3VdbeJumpHere(v, addrTop); } }else #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ #ifndef NDEBUG if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){ if( zRight ){ if( sqlite3GetBoolean(zRight, 0) ){ |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 | if( db==0 || SQLITE_OK!=sqlite3_errcode(db) ){ fprintf(stderr,"Error: unable to open database \"%s\": %s\n", p->zDbFilename, sqlite3_errmsg(db)); exit(1); } #ifndef SQLITE_OMIT_LOAD_EXTENSION sqlite3_enable_load_extension(p->db, 1); #endif } } /* ** Do C-language style dequoting. ** | > > > > > > | 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 | if( db==0 || SQLITE_OK!=sqlite3_errcode(db) ){ fprintf(stderr,"Error: unable to open database \"%s\": %s\n", p->zDbFilename, sqlite3_errmsg(db)); exit(1); } #ifndef SQLITE_OMIT_LOAD_EXTENSION sqlite3_enable_load_extension(p->db, 1); #endif #ifdef SQLITE_ENABLE_REGEXP { extern int sqlite3_add_regexp_func(sqlite3*); sqlite3_add_regexp_func(db); } #endif } } /* ** Do C-language style dequoting. ** |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
1480 1481 1482 1483 1484 1485 1486 | ** must be unique and what to do if they are not. When Index.onError=OE_None, ** it means this is not a unique index. Otherwise it is a unique index ** and the value of Index.onError indicate the which conflict resolution ** algorithm to employ whenever an attempt is made to insert a non-unique ** element. */ struct Index { | | | | | | | | | | < | > | | | | 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 | ** must be unique and what to do if they are not. When Index.onError=OE_None, ** it means this is not a unique index. Otherwise it is a unique index ** and the value of Index.onError indicate the which conflict resolution ** algorithm to employ whenever an attempt is made to insert a non-unique ** element. */ struct Index { char *zName; /* Name of this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ Table *pTable; /* The SQL table being indexed */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ char **azColl; /* Array of collation sequence names for index */ int tnum; /* DB Page containing root of this index */ u16 nColumn; /* Number of columns in table used by this index */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ unsigned autoIndex:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ unsigned bUnordered:1; /* Use this index for == or IN queries only */ #ifdef SQLITE_ENABLE_STAT3 int nSample; /* Number of elements in aSample[] */ tRowcnt avgEq; /* Average nEq value for key values not in aSample */ IndexSample *aSample; /* Samples of the left-most key */ #endif }; |
︙ | ︙ | |||
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 | #define sqlite3FkCheck(a,b,c,d) #define sqlite3FkDropTable(a,b,c) #define sqlite3FkOldmask(a,b) 0 #define sqlite3FkRequired(a,b,c,d) 0 #endif #ifndef SQLITE_OMIT_FOREIGN_KEY void sqlite3FkDelete(sqlite3 *, Table*); #else #define sqlite3FkDelete(a,b) #endif /* ** Available fault injectors. Should be numbered beginning with 0. */ #define SQLITE_FAULTINJECTOR_MALLOC 0 | > > | 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 | #define sqlite3FkCheck(a,b,c,d) #define sqlite3FkDropTable(a,b,c) #define sqlite3FkOldmask(a,b) 0 #define sqlite3FkRequired(a,b,c,d) 0 #endif #ifndef SQLITE_OMIT_FOREIGN_KEY void sqlite3FkDelete(sqlite3 *, Table*); int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**); #else #define sqlite3FkDelete(a,b) #define sqlite3FkLocateIndex(a,b,c,d,e) #endif /* ** Available fault injectors. Should be numbered beginning with 0. */ #define SQLITE_FAULTINJECTOR_MALLOC 0 |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 | extern int Sqlitetestrtree_Init(Tcl_Interp*); extern int Sqlitequota_Init(Tcl_Interp*); extern int Sqlitemultiplex_Init(Tcl_Interp*); extern int SqliteSuperlock_Init(Tcl_Interp*); extern int SqlitetestSyscall_Init(Tcl_Interp*); extern int Sqlitetestfuzzer_Init(Tcl_Interp*); extern int Sqlitetestwholenumber_Init(Tcl_Interp*); #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) extern int Sqlitetestfts3_Init(Tcl_Interp *interp); #endif #ifdef SQLITE_ENABLE_ZIPVFS extern int Zipvfs_Init(Tcl_Interp*); | > | 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 | extern int Sqlitetestrtree_Init(Tcl_Interp*); extern int Sqlitequota_Init(Tcl_Interp*); extern int Sqlitemultiplex_Init(Tcl_Interp*); extern int SqliteSuperlock_Init(Tcl_Interp*); extern int SqlitetestSyscall_Init(Tcl_Interp*); extern int Sqlitetestfuzzer_Init(Tcl_Interp*); extern int Sqlitetestwholenumber_Init(Tcl_Interp*); extern int Sqlitetestregexp_Init(Tcl_Interp*); #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) extern int Sqlitetestfts3_Init(Tcl_Interp *interp); #endif #ifdef SQLITE_ENABLE_ZIPVFS extern int Zipvfs_Init(Tcl_Interp*); |
︙ | ︙ | |||
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 | Sqlitetestrtree_Init(interp); Sqlitequota_Init(interp); Sqlitemultiplex_Init(interp); SqliteSuperlock_Init(interp); SqlitetestSyscall_Init(interp); Sqlitetestfuzzer_Init(interp); Sqlitetestwholenumber_Init(interp); #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) Sqlitetestfts3_Init(interp); #endif Tcl_CreateObjCommand( interp, "load_testfixture_extensions", init_all_cmd, 0, 0 | > | 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 | Sqlitetestrtree_Init(interp); Sqlitequota_Init(interp); Sqlitemultiplex_Init(interp); SqliteSuperlock_Init(interp); SqlitetestSyscall_Init(interp); Sqlitetestfuzzer_Init(interp); Sqlitetestwholenumber_Init(interp); Sqlitetestregexp_Init(interp); #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) Sqlitetestfts3_Init(interp); #endif Tcl_CreateObjCommand( interp, "load_testfixture_extensions", init_all_cmd, 0, 0 |
︙ | ︙ |
Added src/test_regexp.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 | /* ** 2012-11-13 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** The code in this file implements a compact but reasonably ** efficient regular-expression matcher for posix extended regular ** expressions against UTF8 text. The following syntax is supported: ** ** X* zero or more occurrences of X ** X+ one or more occurrences of X ** X? zero or one occurrences of X ** X{p,q} between p and q occurrences of X ** (X) match X ** X|Y X or Y ** ^X X occurring at the beginning of the string ** X$ X occurring at the end of the string ** . Match any single character ** \c Character c where c is one of \{}()[]|*+?. ** \c C-language escapes for c in afnrtv. ex: \t or \n ** \uXXXX Where XXXX is exactly 4 hex digits, unicode value XXXX ** \xXXX Where XXX is any number of hex digits, unicode value XXX ** [abc] Any single character from the set abc ** [^abc] Any single character not in the set abc ** [a-z] Any single character in the range a-z ** [^a-z] Any single character not in the range a-z ** \b Word boundary ** \w Word character. [A-Za-z0-9_] ** \W Non-word character ** \d Digit ** \D Non-digit ** \s Whitespace character ** \S Non-whitespace character ** ** A nondeterministic finite automaton (NFA) is used for matching, so the ** performance is bounded by O(N*M) where N is the size of the regular ** expression and M is the size of the input string. The matcher never ** exhibits exponential behavior. Note that the X{p,q} operator expands ** to p copies of X following by q-p copies of X? and that the size of the ** regular expression in the O(N*M) performance bound is computed after ** this expansion. */ #include <string.h> #include <stdlib.h> #include "sqlite3.h" /* The end-of-input character */ #define RE_EOF 0 /* End of input */ /* The NFA is implemented as sequence of opcodes taken from the following ** set. Each opcode has a single integer argument. */ #define RE_OP_MATCH 1 /* Match the one character in the argument */ #define RE_OP_ANY 2 /* Match any one character. (Implements ".") */ #define RE_OP_ANYSTAR 3 /* Special optimized version of .* */ #define RE_OP_FORK 4 /* Continue to both next and opcode at iArg */ #define RE_OP_GOTO 5 /* Jump to opcode at iArg */ #define RE_OP_ACCEPT 6 /* Halt and indicate a successful match */ #define RE_OP_CC_INC 7 /* Beginning of a [...] character class */ #define RE_OP_CC_EXC 8 /* Beginning of a [^...] character class */ #define RE_OP_CC_VALUE 9 /* Single value in a character class */ #define RE_OP_CC_RANGE 10 /* Range of values in a character class */ #define RE_OP_WORD 11 /* Perl word character [A-Za-z0-9_] */ #define RE_OP_NOTWORD 12 /* Not a perl word character */ #define RE_OP_DIGIT 13 /* digit: [0-9] */ #define RE_OP_NOTDIGIT 14 /* Not a digit */ #define RE_OP_SPACE 15 /* space: [ \t\n\r\v\f] */ #define RE_OP_NOTSPACE 16 /* Not a digit */ #define RE_OP_BOUNDARY 17 /* Boundary between word and non-word */ /* Each opcode is a "state" in the NFA */ typedef unsigned short ReStateNumber; /* Because this is an NFA and not a DFA, multiple states can be active at ** once. An instance of the following object records all active states in ** the NFA. The implementation is optimized for the common case where the ** number of actives states is small. */ typedef struct ReStateSet { unsigned nState; /* Number of current states */ ReStateNumber *aState; /* Current states */ } ReStateSet; /* A compiled NFA (or an NFA that is in the process of being compiled) is ** an instance of the following object. */ typedef struct ReCompiled { const unsigned char *zIn; /* Regular expression text */ const char *zErr; /* Error message to return */ char *aOp; /* Operators for the virtual machine */ int *aArg; /* Arguments to each operator */ char zInit[12]; /* Initial text to match */ int nInit; /* Number of characters in zInit */ unsigned nState; /* Number of entries in aOp[] and aArg[] */ unsigned nAlloc; /* Slots allocated for aOp[] and aArg[] */ } ReCompiled; /* Add a state to the given state set if it is not already there */ static void re_add_state(ReStateSet *pSet, int newState){ unsigned i; for(i=0; i<pSet->nState; i++) if( pSet->aState[i]==newState ) return; pSet->aState[pSet->nState++] = newState; } /* Extract the next unicode character from *pzIn and return it. Advance ** *pzIn to the first byte past the end of the character returned. To ** be clear: this routine converts utf8 to unicode. This routine is ** optimized for the common case where the next character is a single byte. */ static unsigned re_next_char(const unsigned char **pzIn){ unsigned c = **pzIn; if( c>0 ) (*pzIn)++; if( c>0x80 ){ if( (c&0xe0)==0xc0 && ((*pzIn)[0]&0xc0)==0x80 ){ c = (c&0x1f)<<6 | ((*pzIn)[0]&0x3f); (*pzIn)++; if( c<0x80 ) c = 0xfffd; }else if( (c&0xf0)==0xe0 && ((*pzIn)[0]&0xc0)==0x80 && ((*pzIn)[1]&0xc0)==0x80 ){ c = (c&0x0f)<<12 | (((*pzIn)[0]&0x3f)<<6) | ((*pzIn)[1]&0x3f); *pzIn += 2; if( c<0x3ff || (c>=0xd800 && c<=0xdfff) ) c = 0xfffd; }else if( (c&0xf8)==0xf0 && ((*pzIn)[0]&0xc0)==0x80 && ((*pzIn)[1]&0xc0)==0x80 && ((*pzIn)[2]&0xc0)==0x80 ){ c = (c&0x07)<<18 | (((*pzIn)[0]&0x3f)<<12) | (((*pzIn)[1]&0x3f)<<6) | ((*pzIn)[2]&0x3f); *pzIn += 3; if( c<0xffff ) c = 0xfffd; }else{ c = 0xfffd; } } return c; } /* Return true if c is a perl "word" character: [A-Za-z0-9_] */ static int re_word_char(int c){ return (c>='0' && c<='9') || (c>='a' && c<='z') || (c>='A' && c<='Z') || c=='_'; } /* Return true if c is a "digit" character: [0-9] */ static int re_digit_char(int c){ return (c>='0' && c<='9'); } /* Return true if c is a perl "space" character: [ \t\r\n\v\f] */ static int re_space_char(int c){ return c==' ' || c=='\t' || c=='\n' || c=='\v' || c=='\f'; } /* Run a compiled regular expression on the zero-terminated input ** string zIn[]. Return true on a match and false if there is no match. */ static int re_exec(ReCompiled *pRe, const unsigned char *zIn){ ReStateSet aStateSet[2], *pThis, *pNext; ReStateNumber aSpace[100]; ReStateNumber *pToFree; unsigned int i = 0; unsigned int iSwap = 0; int c = RE_EOF+1; int cPrev = 0; int rc = 0; if( pRe->nInit ){ unsigned char x = pRe->zInit[0]; while( zIn[0] && (zIn[0]!=x || memcmp(zIn, pRe->zInit, pRe->nInit)!=0) ){ zIn++; } if( zIn[0]==0 ) return 0; } if( pRe->nState<=(sizeof(aSpace)/(sizeof(aSpace[0])*2)) ){ pToFree = 0; aStateSet[0].aState = aSpace; }else{ pToFree = malloc( sizeof(ReStateNumber)*2*pRe->nState ); if( pToFree==0 ) return -1; aStateSet[0].aState = pToFree; } aStateSet[1].aState = &aStateSet[0].aState[pRe->nState]; pNext = &aStateSet[1]; pNext->nState = 0; re_add_state(pNext, 0); while( c!=RE_EOF && pNext->nState>0 ){ cPrev = c; c = re_next_char(&zIn); pThis = pNext; pNext = &aStateSet[iSwap]; iSwap = 1 - iSwap; pNext->nState = 0; for(i=0; i<pThis->nState; i++){ int x = pThis->aState[i]; switch( pRe->aOp[x] ){ case RE_OP_MATCH: { if( pRe->aArg[x]==c ) re_add_state(pNext, x+1); break; } case RE_OP_ANY: { re_add_state(pNext, x+1); break; } case RE_OP_WORD: { if( re_word_char(c) ) re_add_state(pNext, x+1); break; } case RE_OP_NOTWORD: { if( !re_word_char(c) ) re_add_state(pNext, x+1); break; } case RE_OP_DIGIT: { if( re_digit_char(c) ) re_add_state(pNext, x+1); break; } case RE_OP_NOTDIGIT: { if( !re_digit_char(c) ) re_add_state(pNext, x+1); break; } case RE_OP_SPACE: { if( re_space_char(c) ) re_add_state(pNext, x+1); break; } case RE_OP_NOTSPACE: { if( !re_space_char(c) ) re_add_state(pNext, x+1); break; } case RE_OP_BOUNDARY: { if( re_word_char(c)!=re_word_char(cPrev) ) re_add_state(pThis, x+1); break; } case RE_OP_ANYSTAR: { re_add_state(pNext, x); re_add_state(pThis, x+1); break; } case RE_OP_FORK: { re_add_state(pThis, x+pRe->aArg[x]); re_add_state(pThis, x+1); break; } case RE_OP_GOTO: { re_add_state(pThis, x+pRe->aArg[x]); break; } case RE_OP_ACCEPT: { rc = 1; goto re_exec_end; } case RE_OP_CC_INC: case RE_OP_CC_EXC: { int j = 1; int n = pRe->aArg[x]; int hit = 0; for(j=1; j>0 && j<n; j++){ if( pRe->aOp[x+j]==RE_OP_CC_VALUE ){ if( pRe->aArg[x+j]==c ){ hit = 1; j = -1; } }else{ if( pRe->aArg[x+j]<=c && pRe->aArg[x+j+1]>=c ){ hit = 1; j = -1; }else{ j++; } } } if( pRe->aOp[x]==RE_OP_CC_EXC ) hit = !hit; if( hit ) re_add_state(pNext, x+n); break; } } } } for(i=0; i<pNext->nState; i++){ if( pRe->aOp[pNext->aState[i]]==RE_OP_ACCEPT ){ rc = 1; break; } } re_exec_end: free(pToFree); return rc; } /* Resize the opcode and argument arrays for an RE under construction. */ static int re_resize(ReCompiled *p, int N){ char *aOp; int *aArg; aOp = realloc(p->aOp, N*sizeof(p->aOp[0])); if( aOp==0 ) return 1; p->aOp = aOp; aArg = realloc(p->aArg, N*sizeof(p->aArg[0])); if( aArg==0 ) return 1; p->aArg = aArg; p->nAlloc = N; return 0; } /* Insert a new opcode and argument into an RE under construction. The ** insertion point is just prior to existing opcode iBefore. */ static int re_insert(ReCompiled *p, int iBefore, int op, int arg){ int i; if( p->nAlloc<=p->nState && re_resize(p, p->nAlloc*2) ) return 0; for(i=p->nState; i>iBefore; i--){ p->aOp[i] = p->aOp[i-1]; p->aArg[i] = p->aArg[i-1]; } p->nState++; p->aOp[iBefore] = op; p->aArg[iBefore] = arg; return iBefore; } /* Append a new opcode and argument to the end of the RE under construction. */ static int re_append(ReCompiled *p, int op, int arg){ return re_insert(p, p->nState, op, arg); } /* Make a copy of N opcodes starting at iStart onto the end of the RE ** under construction. */ static void re_copy(ReCompiled *p, int iStart, int N){ if( p->nState+N>=p->nAlloc && re_resize(p, p->nAlloc*2+N) ) return; memcpy(&p->aOp[p->nState], &p->aOp[iStart], N*sizeof(p->aOp[0])); memcpy(&p->aArg[p->nState], &p->aArg[iStart], N*sizeof(p->aArg[0])); p->nState += N; } /* Return true if c is a hexadecimal digit character: [0-9a-fA-F] ** If c is a hex digit, also set *pV = (*pV)*16 + valueof(c). If ** c is not a hex digit *pV is unchanged. */ static int re_hex(int c, int *pV){ if( c>='0' && c<='9' ){ c -= '0'; }else if( c>='a' && c<='f' ){ c -= 'a' - 10; }else if( c>='A' && c<='F' ){ c -= 'A' - 10; }else{ return 0; } *pV = (*pV)*16 + (c & 0xff); return 1; } /* A backslash character has been seen, read the next character and ** return its intepretation. */ static unsigned re_esc_char(ReCompiled *p){ static const char zEsc[] = "afnrtv\\()*.+?[$^{|}]"; static const char zTrans[] = "\a\f\n\r\t\v"; int i, v = 0; char c = p->zIn[0]; if( c=='u' ){ v = 0; if( re_hex(p->zIn[1],&v) && re_hex(p->zIn[2],&v) && re_hex(p->zIn[3],&v) && re_hex(p->zIn[4],&v) ){ p->zIn += 5; return v; } } if( c=='x' ){ v = 0; for(i=1; re_hex(p->zIn[i], &v); i++){} if( i>1 ){ p->zIn += i; return v; } } for(i=0; zEsc[i] && zEsc[i]!=c; i++){} if( zEsc[i] ){ if( i<6 ) c = zTrans[i]; p->zIn++; }else{ p->zErr = "unknown \\ escape"; } return c; } /* Forward declaration */ static const char *re_subcompile_string(ReCompiled*); /* Compile RE text into a sequence of opcodes. Continue up to the ** first unmatched ")" character, then return. If an error is found, ** return a pointer to the error message string. */ static const char *re_subcompile_re(ReCompiled *p){ const char *zErr; int iStart, iEnd, iGoto; iStart = p->nState; zErr = re_subcompile_string(p); if( zErr ) return zErr; while( p->zIn[0]=='|' ){ iEnd = p->nState; re_insert(p, iStart, RE_OP_FORK, iEnd + 2 - iStart); iGoto = re_append(p, RE_OP_GOTO, 0); p->zIn++; zErr = re_subcompile_string(p); if( zErr ) return zErr; p->aArg[iGoto] = p->nState - iGoto; } return 0; } /* Compile an element of regular expression text (anything that can be ** an operand to the "|" operator). Return NULL on success or a pointer ** to the error message if there is a problem. */ static const char *re_subcompile_string(ReCompiled *p){ int iPrev = -1; int iStart; unsigned c; const char *zErr; while( (c = re_next_char(&p->zIn))!=0 ){ iStart = p->nState; switch( c ){ case '|': case '$': case ')': { p->zIn--; return 0; } case '(': { zErr = re_subcompile_re(p); if( zErr ) return zErr; if( p->zIn[0]!=')' ) return "unmatched '('"; p->zIn++; break; } case '.': { if( p->zIn[0]=='*' ){ re_append(p, RE_OP_ANYSTAR, 0); p->zIn++; }else{ re_append(p, RE_OP_ANY, 0); } break; } case '*': { if( iPrev<0 ) return "'*' without operand"; re_insert(p, iPrev, RE_OP_GOTO, p->nState - iPrev + 1); re_append(p, RE_OP_FORK, iPrev - p->nState + 1); break; } case '+': { if( iPrev<0 ) return "'+' without operand"; re_append(p, RE_OP_FORK, iPrev - p->nState); break; } case '?': { if( iPrev<0 ) return "'?' without operand"; re_insert(p, iPrev, RE_OP_FORK, p->nState - iPrev+1); break; } case '{': { int m = 0, n = 0; int sz, j; if( iPrev<0 ) return "'{m,n}' without operand"; while( (c=p->zIn[0])>='0' && c<='9' ){ m = m*10 + c - '0'; p->zIn++; } n = m; if( c==',' ){ p->zIn++; n = 0; while( (c=p->zIn[0])>='0' && c<='9' ){ n = n*10 + c - '0'; p->zIn++; } } if( c!='}' ) return "unmatched '{'"; if( n>0 && n<m ) return "n less than m in '{m,n}'"; p->zIn++; sz = p->nState - iPrev; if( m==0 ){ if( n==0 ) return "both m and n are zero in '{m,n}'"; re_insert(p, iPrev, RE_OP_FORK, sz+1); n--; }else{ for(j=1; j<m; j++) re_copy(p, iPrev, sz); } for(j=m; j<n; j++){ re_append(p, RE_OP_FORK, sz+1); re_copy(p, iPrev, sz); } if( n==0 && m>0 ){ re_append(p, RE_OP_FORK, -sz); } break; } case '[': { int iFirst = p->nState; if( p->zIn[0]=='^' ){ re_append(p, RE_OP_CC_EXC, 0); p->zIn++; }else{ re_append(p, RE_OP_CC_INC, 0); } while( (c = re_next_char(&p->zIn))!=0 ){ if( c=='[' && p->zIn[0]==':' ){ return "POSIX character classes not supported"; } if( c=='\\' ) c = re_esc_char(p); if( p->zIn[0]=='-' && p->zIn[1] ){ re_append(p, RE_OP_CC_RANGE, c); p->zIn++; c = re_next_char(&p->zIn); if( c=='\\' ) c = re_esc_char(p); re_append(p, RE_OP_CC_RANGE, c); }else{ re_append(p, RE_OP_CC_VALUE, c); } if( p->zIn[0]==']' ){ p->zIn++; break; } } if( c==0 ) return "unclosed '['"; p->aArg[iFirst] = p->nState - iFirst; break; } case '\\': { int specialOp = 0; switch( p->zIn[0] ){ case 'b': specialOp = RE_OP_BOUNDARY; break; case 'd': specialOp = RE_OP_DIGIT; break; case 'D': specialOp = RE_OP_NOTDIGIT; break; case 's': specialOp = RE_OP_SPACE; break; case 'S': specialOp = RE_OP_NOTSPACE; break; case 'w': specialOp = RE_OP_WORD; break; case 'W': specialOp = RE_OP_NOTWORD; break; } if( specialOp ){ p->zIn++; re_append(p, specialOp, 0); }else{ c = re_esc_char(p); re_append(p, RE_OP_MATCH, c); } break; } default: { re_append(p, RE_OP_MATCH, c); break; } } iPrev = iStart; } return 0; } /* Free and reclaim all the memory used by a previously compiled ** regular expression. Applications should invoke this routine once ** for every call to re_compile() to avoid memory leaks. */ static void re_free(ReCompiled *pRe){ if( pRe ){ free(pRe->aOp); free(pRe->aArg); } } /* ** Compile a textual regular expression in zIn[] into a compiled regular ** expression suitable for us by re_exec() and return a pointer to the ** compiled regular expression in *ppRe. Return NULL on success or an ** error message if something goes wrong. */ static const char *re_compile(ReCompiled **ppRe, const char *zIn){ ReCompiled *pRe; const char *zErr; int i, j; *ppRe = 0; pRe = malloc( sizeof(*pRe) ); if( pRe==0 ){ return "out of memory"; } memset(pRe, 0, sizeof(*pRe)); if( re_resize(pRe, 30) ){ re_free(pRe); return "out of memory"; } if( zIn[0]=='^' ){ zIn++; }else{ re_append(pRe, RE_OP_ANYSTAR, 0); } pRe->zIn = (unsigned char*)zIn; zErr = re_subcompile_re(pRe); if( zErr ){ re_free(pRe); return zErr; } if( pRe->zIn[0]=='$' && pRe->zIn[1]==0 ){ re_append(pRe, RE_OP_MATCH, RE_EOF); re_append(pRe, RE_OP_ACCEPT, 0); *ppRe = pRe; }else if( pRe->zIn[0]==0 ){ re_append(pRe, RE_OP_ACCEPT, 0); *ppRe = pRe; }else{ re_free(pRe); return "unrecognized character"; } if( pRe->aOp[0]==RE_OP_ANYSTAR ){ for(j=0, i=1; j<sizeof(pRe->zInit)-2 && pRe->aOp[i]==RE_OP_MATCH; i++){ unsigned x = pRe->aArg[i]; if( x<=127 ){ pRe->zInit[j++] = x; }else if( x<=0xfff ){ pRe->zInit[j++] = 0xc0 | (x>>6); pRe->zInit[j++] = 0x80 | (x&0x3f); }else if( x<=0xffff ){ pRe->zInit[j++] = 0xd0 | (x>>12); pRe->zInit[j++] = 0x80 | ((x>>6)&0x3f); pRe->zInit[j++] = 0x80 | ((x>>6)&0x3f); }else{ break; } } pRe->nInit = j; } return pRe->zErr; } /* ** Implementation of the regexp() SQL function. This function implements ** the build-in REGEXP operator. The first argument to the function is the ** pattern and the second argument is the string. So, the SQL statements: ** ** A REGEXP B ** ** is implemented as regexp(B,A). */ static void re_sql_func( sqlite3_context *context, int argc, sqlite3_value **argv ){ ReCompiled *pRe; /* Compiled regular expression */ const char *zPattern; /* The regular expression */ const unsigned char *zStr;/* String being searched */ const char *zErr; /* Compile error message */ pRe = sqlite3_get_auxdata(context, 0); if( pRe==0 ){ zPattern = (const char*)sqlite3_value_text(argv[0]); if( zPattern==0 ) return; zErr = re_compile(&pRe, zPattern); if( zErr ){ sqlite3_result_error(context, zErr, -1); return; } if( pRe==0 ){ sqlite3_result_error_nomem(context); return; } sqlite3_set_auxdata(context, 0, pRe, (void(*)(void*))re_free); } zStr = (const unsigned char*)sqlite3_value_text(argv[1]); if( zStr!=0 ){ sqlite3_result_int(context, re_exec(pRe, zStr)); } } /* ** Invoke this routine in order to install the REGEXP function in an ** SQLite database connection. ** ** Use: ** ** sqlite3_auto_extension(sqlite3_add_regexp_func); ** ** to cause this extension to be automatically loaded into each new ** database connection. */ int sqlite3_add_regexp_func(sqlite3 *db){ return sqlite3_create_function(db, "regexp", 2, SQLITE_UTF8, 0, re_sql_func, 0, 0); } /***************************** Test Code ***********************************/ #ifdef SQLITE_TEST #include <tcl.h> extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); /* Implementation of the TCL command: ** ** sqlite3_add_regexp_func $DB */ static int tclSqlite3AddRegexpFunc( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ sqlite3 *db; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; sqlite3_add_regexp_func(db); return TCL_OK; } /* Register the sqlite3_add_regexp_func TCL command with the TCL interpreter. */ int Sqlitetestregexp_Init(Tcl_Interp *interp){ Tcl_CreateObjCommand(interp, "sqlite3_add_regexp_func", tclSqlite3AddRegexpFunc, 0, 0); return TCL_OK; } #endif /* SQLITE_TEST */ /**************************** End Of Test Code *******************************/ |
Changes to src/where.c.
︙ | ︙ | |||
399 400 401 402 403 404 405 | memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); if( pOld!=pWC->aStatic ){ sqlite3DbFree(db, pOld); } pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); } pTerm = &pWC->a[idx = pWC->nTerm++]; | | | 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); if( pOld!=pWC->aStatic ){ sqlite3DbFree(db, pOld); } pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); } pTerm = &pWC->a[idx = pWC->nTerm++]; pTerm->pExpr = sqlite3ExprSkipCollate(p); pTerm->wtFlags = wtFlags; pTerm->pWC = pWC; pTerm->iParent = -1; return idx; } /* |
︙ | ︙ | |||
1184 1185 1186 1187 1188 1189 1190 | sqlite3 *db = pParse->db; /* Database connection */ if( db->mallocFailed ){ return; } pTerm = &pWC->a[idxTerm]; pMaskSet = pWC->pMaskSet; | | > | 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 | sqlite3 *db = pParse->db; /* Database connection */ if( db->mallocFailed ){ return; } pTerm = &pWC->a[idxTerm]; pMaskSet = pWC->pMaskSet; pExpr = pTerm->pExpr; assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); op = pExpr->op; if( op==TK_IN ){ assert( pExpr->pRight==0 ); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); }else{ |
︙ | ︙ |
Changes to test/e_fkey.test.
︙ | ︙ | |||
623 624 625 626 627 628 629 | } } {} proc test_efkey_57 {tn isError sql} { catchsql { DROP TABLE t1 } execsql $sql do_test e_fkey-18.$tn { catchsql { INSERT INTO t2 VALUES(NULL) } | | > | 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 | } } {} proc test_efkey_57 {tn isError sql} { catchsql { DROP TABLE t1 } execsql $sql do_test e_fkey-18.$tn { catchsql { INSERT INTO t2 VALUES(NULL) } } [lindex {{0 {}} {/1 {foreign key mismatch - ".*" referencing ".*"}/}} \ $isError] } test_efkey_57 2 0 { CREATE TABLE t1(x PRIMARY KEY) } test_efkey_57 3 0 { CREATE TABLE t1(x UNIQUE) } test_efkey_57 4 0 { CREATE TABLE t1(x); CREATE UNIQUE INDEX t1i ON t1(x) } test_efkey_57 5 1 { CREATE TABLE t1(x); CREATE UNIQUE INDEX t1i ON t1(x COLLATE nocase); |
︙ | ︙ | |||
694 695 696 697 698 699 700 | INSERT INTO child1 VALUES('xxx', 1); INSERT INTO child2 VALUES('xxx', 2); INSERT INTO child3 VALUES(3, 4); } } {} do_test e_fkey-19.2 { catchsql { INSERT INTO child4 VALUES('xxx', 5) } | | | | | | 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 | INSERT INTO child1 VALUES('xxx', 1); INSERT INTO child2 VALUES('xxx', 2); INSERT INTO child3 VALUES(3, 4); } } {} do_test e_fkey-19.2 { catchsql { INSERT INTO child4 VALUES('xxx', 5) } } {1 {foreign key mismatch - "child4" referencing "parent"}} do_test e_fkey-19.3 { catchsql { INSERT INTO child5 VALUES('xxx', 6) } } {1 {foreign key mismatch - "child5" referencing "parent"}} do_test e_fkey-19.4 { catchsql { INSERT INTO child6 VALUES(2, 3) } } {1 {foreign key mismatch - "child6" referencing "parent"}} do_test e_fkey-19.5 { catchsql { INSERT INTO child7 VALUES(3) } } {1 {foreign key mismatch - "child7" referencing "parent"}} #------------------------------------------------------------------------- # Test errors in the database schema that are detected while preparing # DML statements. The error text for these messages always matches # either "foreign key mismatch" or "no such table*" (using [string match]). # # EVIDENCE-OF: R-45488-08504 If the database schema contains foreign key |
︙ | ︙ | |||
761 762 763 764 765 766 767 | CREATE TABLE p7(a, b, PRIMARY KEY(a, b)); CREATE TABLE c7(c, d REFERENCES p7); } } {} foreach {tn tbl ptbl err} { 2 c1 {} "no such table: main.nosuchtable" | | | | | | | | 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 | CREATE TABLE p7(a, b, PRIMARY KEY(a, b)); CREATE TABLE c7(c, d REFERENCES p7); } } {} foreach {tn tbl ptbl err} { 2 c1 {} "no such table: main.nosuchtable" 3 c2 p2 "foreign key mismatch - \"c2\" referencing \"p2\"" 4 c3 p3 "foreign key mismatch - \"c3\" referencing \"p3\"" 5 c4 p4 "foreign key mismatch - \"c4\" referencing \"p4\"" 6 c5 p5 "foreign key mismatch - \"c5\" referencing \"p5\"" 7 c6 p6 "foreign key mismatch - \"c6\" referencing \"p6\"" 8 c7 p7 "foreign key mismatch - \"c7\" referencing \"p7\"" } { do_test e_fkey-20.$tn.1 { catchsql "INSERT INTO $tbl VALUES('a', 'b')" } [list 1 $err] do_test e_fkey-20.$tn.2 { catchsql "UPDATE $tbl SET c = ?, d = ?" } [list 1 $err] |
︙ | ︙ | |||
816 817 818 819 820 821 822 | execsql { INSERT INTO parent2 VALUES('I', 'II'); INSERT INTO child8 VALUES('I', 'II'); } } {} do_test e_fkey-21.3 { catchsql { INSERT INTO child9 VALUES('I') } | | | | | | | | 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 | execsql { INSERT INTO parent2 VALUES('I', 'II'); INSERT INTO child8 VALUES('I', 'II'); } } {} do_test e_fkey-21.3 { catchsql { INSERT INTO child9 VALUES('I') } } {1 {foreign key mismatch - "child9" referencing "parent2"}} do_test e_fkey-21.4 { catchsql { INSERT INTO child9 VALUES('II') } } {1 {foreign key mismatch - "child9" referencing "parent2"}} do_test e_fkey-21.5 { catchsql { INSERT INTO child9 VALUES(NULL) } } {1 {foreign key mismatch - "child9" referencing "parent2"}} do_test e_fkey-21.6 { catchsql { INSERT INTO child10 VALUES('I', 'II', 'III') } } {1 {foreign key mismatch - "child10" referencing "parent2"}} do_test e_fkey-21.7 { catchsql { INSERT INTO child10 VALUES(1, 2, 3) } } {1 {foreign key mismatch - "child10" referencing "parent2"}} do_test e_fkey-21.8 { catchsql { INSERT INTO child10 VALUES(NULL, NULL, NULL) } } {1 {foreign key mismatch - "child10" referencing "parent2"}} #------------------------------------------------------------------------- # Test errors that are reported when creating the child table. # Specifically: # # * different number of child and parent key columns, and # * child columns that do not exist. |
︙ | ︙ | |||
1147 1148 1149 1150 1151 1152 1153 | do_test e_fkey-28.8 { drop_all_tables execsql { CREATE TABLE p(x PRIMARY KEY); CREATE TABLE c(a, b, FOREIGN KEY(a,b) REFERENCES p); } catchsql {DELETE FROM p} | | | | 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 | do_test e_fkey-28.8 { drop_all_tables execsql { CREATE TABLE p(x PRIMARY KEY); CREATE TABLE c(a, b, FOREIGN KEY(a,b) REFERENCES p); } catchsql {DELETE FROM p} } {1 {foreign key mismatch - "c" referencing "p"}} do_test e_fkey-28.9 { drop_all_tables execsql { CREATE TABLE p(x, y, PRIMARY KEY(x,y)); CREATE TABLE c(a REFERENCES p); } catchsql {DELETE FROM p} } {1 {foreign key mismatch - "c" referencing "p"}} #------------------------------------------------------------------------- # EVIDENCE-OF: R-24676-09859 # # Test the example schema in the "Composite Foreign Key Constraints" # section. |
︙ | ︙ | |||
2725 2726 2727 2728 2729 2730 2731 | SELECT * FROM c3; ROLLBACK; } } {{} 2} do_test e_fkey-60.4 { execsql { CREATE TABLE nosuchtable(x PRIMARY KEY) } catchsql { DELETE FROM p } | | | | 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 | SELECT * FROM c3; ROLLBACK; } } {{} 2} do_test e_fkey-60.4 { execsql { CREATE TABLE nosuchtable(x PRIMARY KEY) } catchsql { DELETE FROM p } } {1 {foreign key mismatch - "c2" referencing "p"}} do_test e_fkey-60.5 { execsql { DROP TABLE c1 } catchsql { DELETE FROM p } } {1 {foreign key mismatch - "c2" referencing "p"}} do_test e_fkey-60.6 { execsql { DROP TABLE c2 } execsql { DELETE FROM p } } {} #------------------------------------------------------------------------- # Test that the special behaviours of ALTER and DROP TABLE are only |
︙ | ︙ |
Changes to test/filefmt.test.
︙ | ︙ | |||
209 210 211 212 213 214 215 216 | sql36231 { DROP TABLE t1 } } {} do_execsql_test filefmt-3.3 { SELECT * FROM sqlite_master; PRAGMA integrity_check; } {ok} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | sql36231 { DROP TABLE t1 } } {} do_execsql_test filefmt-3.3 { SELECT * FROM sqlite_master; PRAGMA integrity_check; } {ok} reset_db do_execsql_test filefmt-4.1 { PRAGMA auto_vacuum = 1; CREATE TABLE t1(x, y); CREATE TABLE t2(x, y); INSERT INTO t1 VALUES(randomblob(100), randomblob(100)); INSERT INTO t1 VALUES(randomblob(100), randomblob(100)); INSERT INTO t1 VALUES(randomblob(100), randomblob(100)); INSERT INTO t1 VALUES(randomblob(100), randomblob(100)); INSERT INTO t1 VALUES(randomblob(100), randomblob(100)); INSERT INTO t1 VALUES(randomblob(100), randomblob(100)); INSERT INTO t2 SELECT randomblob(100), randomblob(100) FROM t1; INSERT INTO t2 SELECT randomblob(100), randomblob(100) FROM t1; INSERT INTO t2 SELECT randomblob(100), randomblob(100) FROM t1; INSERT INTO t2 SELECT randomblob(100), randomblob(100) FROM t1; } do_test filefmt-4.2 { sql36231 { INSERT INTO t2 SELECT * FROM t1 } } {} do_test filefmt-4.3 { forcedelete bak.db db backup bak.db } {} do_test filefmt-4.4 { sqlite3 db2 bak.db db2 eval { PRAGMA integrity_check } } {ok} db2 close finish_test |
Changes to test/fkey2.test.
︙ | ︙ | |||
135 136 137 138 139 140 141 | 4.13 "UPDATE t7 SET b = 1" {0 {}} 4.14 "INSERT INTO t8 VALUES('a', 'b')" {1 {foreign key constraint failed}} 4.15 "UPDATE t7 SET b = 5" {1 {foreign key constraint failed}} 4.16 "UPDATE t7 SET rowid = 5" {1 {foreign key constraint failed}} 4.17 "UPDATE t7 SET a = 10" {0 {}} 5.1 "INSERT INTO t9 VALUES(1, 3)" {1 {no such table: main.nosuchtable}} | | > | > > > > > > > > > > > > > > > > > > | 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | 4.13 "UPDATE t7 SET b = 1" {0 {}} 4.14 "INSERT INTO t8 VALUES('a', 'b')" {1 {foreign key constraint failed}} 4.15 "UPDATE t7 SET b = 5" {1 {foreign key constraint failed}} 4.16 "UPDATE t7 SET rowid = 5" {1 {foreign key constraint failed}} 4.17 "UPDATE t7 SET a = 10" {0 {}} 5.1 "INSERT INTO t9 VALUES(1, 3)" {1 {no such table: main.nosuchtable}} 5.2 "INSERT INTO t10 VALUES(1, 3)" {1 {foreign key mismatch - "t10" referencing "t9"}} } do_test fkey2-1.1.0 { execsql [string map {/D/ {}} $FkeySimpleSchema] } {} foreach {tn zSql res} $FkeySimpleTests { do_test fkey2-1.1.$tn.1 { catchsql $zSql } $res do_test fkey2-1.1.$tn.2 { execsql {PRAGMA foreign_key_check(t1)} } {} do_test fkey2-1.1.$tn.3 { execsql {PRAGMA foreign_key_check(t2)} } {} do_test fkey2-1.1.$tn.4 { execsql {PRAGMA foreign_key_check(t3)} } {} do_test fkey2-1.1.$tn.5 { execsql {PRAGMA foreign_key_check(t4)} } {} do_test fkey2-1.1.$tn.6 { execsql {PRAGMA foreign_key_check(t7)} } {} do_test fkey2-1.1.$tn.7 { execsql {PRAGMA foreign_key_check(t8)} } {} } drop_all_tables do_test fkey2-1.2.0 { execsql [string map {/D/ {DEFERRABLE INITIALLY DEFERRED}} $FkeySimpleSchema] } {} foreach {tn zSql res} $FkeySimpleTests { do_test fkey2-1.2.$tn { catchsql $zSql } $res do_test fkey2-1.2.$tn.2 { execsql {PRAGMA foreign_key_check(t1)} } {} do_test fkey2-1.2.$tn.3 { execsql {PRAGMA foreign_key_check(t2)} } {} do_test fkey2-1.2.$tn.4 { execsql {PRAGMA foreign_key_check(t3)} } {} do_test fkey2-1.2.$tn.5 { execsql {PRAGMA foreign_key_check(t4)} } {} do_test fkey2-1.2.$tn.6 { execsql {PRAGMA foreign_key_check(t7)} } {} do_test fkey2-1.2.$tn.7 { execsql {PRAGMA foreign_key_check(t8)} } {} } drop_all_tables do_test fkey2-1.3.0 { execsql [string map {/D/ {}} $FkeySimpleSchema] execsql { PRAGMA count_changes = 1 } } {} foreach {tn zSql res} $FkeySimpleTests { if {$res == "0 {}"} { set res {0 1} } do_test fkey2-1.3.$tn { catchsql $zSql } $res do_test fkey2-1.3.$tn.2 { execsql {PRAGMA foreign_key_check(t1)} } {} do_test fkey2-1.3.$tn.3 { execsql {PRAGMA foreign_key_check(t2)} } {} do_test fkey2-1.3.$tn.4 { execsql {PRAGMA foreign_key_check(t3)} } {} do_test fkey2-1.3.$tn.5 { execsql {PRAGMA foreign_key_check(t4)} } {} do_test fkey2-1.3.$tn.6 { execsql {PRAGMA foreign_key_check(t7)} } {} do_test fkey2-1.3.$tn.7 { execsql {PRAGMA foreign_key_check(t8)} } {} } execsql { PRAGMA count_changes = 0 } drop_all_tables do_test fkey2-1.4.0 { execsql [string map {/D/ {}} $FkeySimpleSchema] execsql { PRAGMA count_changes = 1 } |
︙ | ︙ | |||
677 678 679 680 681 682 683 | CREATE UNIQUE INDEX i ON p(a COLLATE nocase); CREATE TABLE c(x REFERENCES p(a)); }] { drop_all_tables do_test fkey2-10.1.[incr tn] { execsql $zSql catchsql { INSERT INTO c DEFAULT VALUES } | | | 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 | CREATE UNIQUE INDEX i ON p(a COLLATE nocase); CREATE TABLE c(x REFERENCES p(a)); }] { drop_all_tables do_test fkey2-10.1.[incr tn] { execsql $zSql catchsql { INSERT INTO c DEFAULT VALUES } } {/1 {foreign key mismatch - "c" referencing "."}/} } # "rowid" cannot be used as part of a child or parent key definition # unless it happens to be the name of an explicitly declared column. # do_test fkey2-10.2.1 { drop_all_tables |
︙ | ︙ | |||
705 706 707 708 709 710 711 | drop_all_tables catchsql { CREATE TABLE t1(a, b); CREATE TABLE t2(c, d, FOREIGN KEY(c) REFERENCES t1(rowid)); INSERT INTO t1(rowid, a, b) VALUES(1, 1, 1); INSERT INTO t2 VALUES(1, 1); } | | | 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 | drop_all_tables catchsql { CREATE TABLE t1(a, b); CREATE TABLE t2(c, d, FOREIGN KEY(c) REFERENCES t1(rowid)); INSERT INTO t1(rowid, a, b) VALUES(1, 1, 1); INSERT INTO t2 VALUES(1, 1); } } {1 {foreign key mismatch - "t2" referencing "t1"}} do_test fkey2-10.2.2 { drop_all_tables catchsql { CREATE TABLE t1(rowid PRIMARY KEY, b); CREATE TABLE t2(c, d, FOREIGN KEY(c) REFERENCES t1(rowid)); INSERT INTO t1(rowid, b) VALUES(1, 1); INSERT INTO t2 VALUES(1, 1); |
︙ | ︙ | |||
1219 1220 1221 1222 1223 1224 1225 | } {} do_test fkey-2.14.3.8 { execsql { CREATE TABLE pp(x, y, PRIMARY KEY(x, y)); CREATE TABLE cc(a, b, FOREIGN KEY(a, b) REFERENCES pp(x, z)); } catchsql { INSERT INTO cc VALUES(1, 2) } | | | 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 | } {} do_test fkey-2.14.3.8 { execsql { CREATE TABLE pp(x, y, PRIMARY KEY(x, y)); CREATE TABLE cc(a, b, FOREIGN KEY(a, b) REFERENCES pp(x, z)); } catchsql { INSERT INTO cc VALUES(1, 2) } } {1 {foreign key mismatch - "cc" referencing "pp"}} do_test fkey-2.14.3.9 { execsql { DROP TABLE cc } } {} do_test fkey-2.14.3.10 { execsql { CREATE TABLE cc(a, b, FOREIGN KEY(a, b) REFERENCES pp DEFERRABLE INITIALLY DEFERRED |
︙ | ︙ |
Added test/fkey5.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 | # 2012 December 17 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. # # This file tests the PRAGMA foreign_key_check command. # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable {!foreignkey} { finish_test return } do_test fkey5-1.1 { db eval { CREATE TABLE p1(a INTEGER PRIMARY KEY); INSERT INTO p1 VALUES(88),(89); CREATE TABLE p2(a INT PRIMARY KEY); INSERT INTO p2 VALUES(77),(78); CREATE TABLE p3(a TEXT PRIMARY KEY); INSERT INTO p3 VALUES(66),(67),('alpha'),('BRAVO'); CREATE TABLE p4(a TEXT PRIMARY KEY COLLATE nocase); INSERT INTO p4 VALUES('alpha'),('BRAVO'),('55'),('Delta'),('ECHO'); CREATE TABLE p5(a INTEGER PRIMARY KEY, b, c, UNIQUE(b,c)); INSERT INTO p5 VALUES(1,'Alpha','abc'),(2,'beta','def'); CREATE TABLE p6(a INTEGER PRIMARY KEY, b TEXT COLLATE nocase, c TEXT COLLATE rtrim, UNIQUE(b,c)); INSERT INTO p6 VALUES(1,'Alpha','abc '),(2,'bETA','def '); CREATE TABLE c1(x INTEGER PRIMARY KEY references p1); CREATE TABLE c2(x INTEGER PRIMARY KEY references p2); CREATE TABLE c3(x INTEGER PRIMARY KEY references p3); CREATE TABLE c4(x INTEGER PRIMARY KEY references p4); CREATE TABLE c5(x INT references p1); CREATE TABLE c6(x INT references p2); CREATE TABLE c7(x INT references p3); CREATE TABLE c8(x INT references p4); CREATE TABLE c9(x TEXT UNIQUE references p1); CREATE TABLE c10(x TEXT UNIQUE references p2); CREATE TABLE c11(x TEXT UNIQUE references p3); CREATE TABLE c12(x TEXT UNIQUE references p4); CREATE TABLE c13(x TEXT COLLATE nocase references p3); CREATE TABLE c14(x TEXT COLLATE nocase references p4); CREATE TABLE c15(x, y, FOREIGN KEY(x,y) REFERENCES p5(b,c)); CREATE TABLE c16(x, y, FOREIGN KEY(x,y) REFERENCES p5(c,b)); CREATE TABLE c17(x, y, FOREIGN KEY(x,y) REFERENCES p6(b,c)); CREATE TABLE c18(x, y, FOREIGN KEY(x,y) REFERENCES p6(c,b)); CREATE TABLE c19(x TEXT COLLATE nocase, y TEXT COLLATE rtrim, FOREIGN KEY(x,y) REFERENCES p5(b,c)); CREATE TABLE c20(x TEXT COLLATE nocase, y TEXT COLLATE rtrim, FOREIGN KEY(x,y) REFERENCES p5(c,b)); CREATE TABLE c21(x TEXT COLLATE nocase, y TEXT COLLATE rtrim, FOREIGN KEY(x,y) REFERENCES p6(b,c)); CREATE TABLE c22(x TEXT COLLATE nocase, y TEXT COLLATE rtrim, FOREIGN KEY(x,y) REFERENCES p6(c,b)); PRAGMA foreign_key_check; } } {} do_test fkey5-1.2 { db eval { INSERT INTO c1 VALUES(90),(87),(88); PRAGMA foreign_key_check; } } {c1 87 p1 0 c1 90 p1 0} do_test fkey5-1.3 { db eval { PRAGMA foreign_key_check(c1); } } {c1 87 p1 0 c1 90 p1 0} do_test fkey5-1.4 { db eval { PRAGMA foreign_key_check(c2); } } {} do_test fkey5-2.0 { db eval { INSERT INTO c5 SELECT x FROM c1; DELETE FROM c1; PRAGMA foreign_key_check; } } {c5 1 p1 0 c5 3 p1 0} do_test fkey5-2.1 { db eval { PRAGMA foreign_key_check(c5); } } {c5 1 p1 0 c5 3 p1 0} do_test fkey5-2.2 { db eval { PRAGMA foreign_key_check(c1); } } {} do_test fkey5-3.0 { db eval { INSERT INTO c9 SELECT x FROM c5; DELETE FROM c5; PRAGMA foreign_key_check; } } {c9 1 p1 0 c9 3 p1 0} do_test fkey5-3.1 { db eval { PRAGMA foreign_key_check(c9); } } {c9 1 p1 0 c9 3 p1 0} do_test fkey5-3.2 { db eval { PRAGMA foreign_key_check(c5); } } {} do_test fkey5-4.0 { db eval { DELETE FROM c9; INSERT INTO c2 VALUES(79),(77),(76); PRAGMA foreign_key_check; } } {c2 76 p2 0 c2 79 p2 0} do_test fkey5-4.1 { db eval { PRAGMA foreign_key_check(c2); } } {c2 76 p2 0 c2 79 p2 0} do_test fkey5-4.2 { db eval { INSERT INTO c6 SELECT x FROM c2; DELETE FROM c2; PRAGMA foreign_key_check; } } {c6 1 p2 0 c6 3 p2 0} do_test fkey5-4.3 { db eval { PRAGMA foreign_key_check(c6); } } {c6 1 p2 0 c6 3 p2 0} do_test fkey5-4.4 { db eval { INSERT INTO c10 SELECT x FROM c6; DELETE FROM c6; PRAGMA foreign_key_check; } } {c10 1 p2 0 c10 3 p2 0} do_test fkey5-4.5 { db eval { PRAGMA foreign_key_check(c10); } } {c10 1 p2 0 c10 3 p2 0} do_test fkey5-5.0 { db eval { DELETE FROM c10; INSERT INTO c3 VALUES(68),(67),(65); PRAGMA foreign_key_check; } } {c3 65 p3 0 c3 68 p3 0} do_test fkey5-5.1 { db eval { PRAGMA foreign_key_check(c3); } } {c3 65 p3 0 c3 68 p3 0} do_test fkey5-5.2 { db eval { INSERT INTO c7 SELECT x FROM c3; INSERT INTO c7 VALUES('Alpha'),('alpha'),('foxtrot'); DELETE FROM c3; PRAGMA foreign_key_check; } } {c7 1 p3 0 c7 3 p3 0 c7 4 p3 0 c7 6 p3 0} do_test fkey5-5.3 { db eval { PRAGMA foreign_key_check(c7); } } {c7 1 p3 0 c7 3 p3 0 c7 4 p3 0 c7 6 p3 0} do_test fkey5-5.4 { db eval { INSERT INTO c11 SELECT x FROM c7; DELETE FROM c7; PRAGMA foreign_key_check; } } {c11 1 p3 0 c11 3 p3 0 c11 4 p3 0 c11 6 p3 0} do_test fkey5-5.5 { db eval { PRAGMA foreign_key_check(c11); } } {c11 1 p3 0 c11 3 p3 0 c11 4 p3 0 c11 6 p3 0} do_test fkey5-6.0 { db eval { DELETE FROM c11; INSERT INTO c4 VALUES(54),(55),(56); PRAGMA foreign_key_check; } } {c4 54 p4 0 c4 56 p4 0} do_test fkey5-6.1 { db eval { PRAGMA foreign_key_check(c4); } } {c4 54 p4 0 c4 56 p4 0} do_test fkey5-6.2 { db eval { INSERT INTO c8 SELECT x FROM c4; INSERT INTO c8 VALUES('Alpha'),('ALPHA'),('foxtrot'); DELETE FROM c4; PRAGMA foreign_key_check; } } {c8 1 p4 0 c8 3 p4 0 c8 6 p4 0} do_test fkey5-6.3 { db eval { PRAGMA foreign_key_check(c8); } } {c8 1 p4 0 c8 3 p4 0 c8 6 p4 0} do_test fkey5-6.4 { db eval { INSERT INTO c12 SELECT x FROM c8; DELETE FROM c8; PRAGMA foreign_key_check; } } {c12 1 p4 0 c12 3 p4 0 c12 6 p4 0} do_test fkey5-6.5 { db eval { PRAGMA foreign_key_check(c12); } } {c12 1 p4 0 c12 3 p4 0 c12 6 p4 0} do_test fkey5-7.1 { db eval { INSERT OR IGNORE INTO c13 SELECT * FROM c12; INSERT OR IGNORE INTO C14 SELECT * FROM c12; DELETE FROM c12; PRAGMA foreign_key_check; } } {c14 1 p4 0 c14 3 p4 0 c14 6 p4 0 c13 1 p3 0 c13 2 p3 0 c13 3 p3 0 c13 4 p3 0 c13 5 p3 0 c13 6 p3 0} do_test fkey5-7.2 { db eval { PRAGMA foreign_key_check(c14); } } {c14 1 p4 0 c14 3 p4 0 c14 6 p4 0} do_test fkey5-7.3 { db eval { PRAGMA foreign_key_check(c13); } } {c13 1 p3 0 c13 2 p3 0 c13 3 p3 0 c13 4 p3 0 c13 5 p3 0 c13 6 p3 0} do_test fkey5-8.0 { db eval { DELETE FROM c13; DELETE FROM c14; INSERT INTO c19 VALUES('alpha','abc'); PRAGMA foreign_key_check(c19); } } {c19 1 p5 0} do_test fkey5-8.1 { db eval { DELETE FROM c19; INSERT INTO c19 VALUES('Alpha','abc'); PRAGMA foreign_key_check(c19); } } {} do_test fkey5-8.2 { db eval { INSERT INTO c20 VALUES('Alpha','abc'); PRAGMA foreign_key_check(c20); } } {c20 1 p5 0} do_test fkey5-8.3 { db eval { DELETE FROM c20; INSERT INTO c20 VALUES('abc','Alpha'); PRAGMA foreign_key_check(c20); } } {} do_test fkey5-8.4 { db eval { INSERT INTO c21 VALUES('alpha','abc '); PRAGMA foreign_key_check(c21); } } {} do_test fkey5-8.5 { db eval { DELETE FROM c21; INSERT INTO c19 VALUES('Alpha','abc'); PRAGMA foreign_key_check(c21); } } {} do_test fkey5-8.6 { db eval { INSERT INTO c22 VALUES('Alpha','abc'); PRAGMA foreign_key_check(c22); } } {c22 1 p6 0} do_test fkey5-8.7 { db eval { DELETE FROM c22; INSERT INTO c22 VALUES('abc ','ALPHA'); PRAGMA foreign_key_check(c22); } } {} finish_test |
Changes to test/fkey_malloc.test.
︙ | ︙ | |||
25 26 27 28 29 30 31 32 33 34 35 36 37 38 | CREATE TABLE t1(a PRIMARY KEY, b UNIQUE); CREATE TABLE t2(x REFERENCES t1 ON UPDATE CASCADE ON DELETE CASCADE); } -sqlbody { INSERT INTO t1 VALUES('aaa', 1); INSERT INTO t2 VALUES('aaa'); UPDATE t1 SET a = 'bbb'; DELETE FROM t1; } do_malloc_test fkey_malloc-2 -sqlprep { PRAGMA foreign_keys = 1; CREATE TABLE t1(a, b, UNIQUE(a, b)); } -sqlbody { CREATE TABLE t2(x, y, | > | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | CREATE TABLE t1(a PRIMARY KEY, b UNIQUE); CREATE TABLE t2(x REFERENCES t1 ON UPDATE CASCADE ON DELETE CASCADE); } -sqlbody { INSERT INTO t1 VALUES('aaa', 1); INSERT INTO t2 VALUES('aaa'); UPDATE t1 SET a = 'bbb'; DELETE FROM t1; PRAGMA foreign_key_check; } do_malloc_test fkey_malloc-2 -sqlprep { PRAGMA foreign_keys = 1; CREATE TABLE t1(a, b, UNIQUE(a, b)); } -sqlbody { CREATE TABLE t2(x, y, |
︙ | ︙ | |||
124 125 126 127 128 129 130 | CREATE TABLE z(e, f, FOREIGN KEY(e, f) REFERENCES x); } -sqlbody { DROP TABLE y; DROP TABLE x; } finish_test | < < | 125 126 127 128 129 130 131 | CREATE TABLE z(e, f, FOREIGN KEY(e, f) REFERENCES x); } -sqlbody { DROP TABLE y; DROP TABLE x; } finish_test |
Changes to test/pragma.test.
︙ | ︙ | |||
530 531 532 533 534 535 536 | do_test pragma-6.2.2 { execsql { CREATE TABLE t5( a TEXT DEFAULT CURRENT_TIMESTAMP, b DEFAULT (5+3), c TEXT, d INTEGER DEFAULT NULL, | | > > | > > > > > > | 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 | do_test pragma-6.2.2 { execsql { CREATE TABLE t5( a TEXT DEFAULT CURRENT_TIMESTAMP, b DEFAULT (5+3), c TEXT, d INTEGER DEFAULT NULL, e TEXT DEFAULT '', UNIQUE(b,c,d), PRIMARY KEY(e,b,c) ); PRAGMA table_info(t5); } } {0 a TEXT 0 CURRENT_TIMESTAMP 0 1 b {} 0 5+3 2 2 c TEXT 0 <<NULL>> 3 3 d INTEGER 0 NULL 0 4 e TEXT 0 '' 1} db nullvalue {} do_test pragma-6.2.3 { execsql { CREATE TABLE t2_3(a,b INTEGER PRIMARY KEY,c); pragma table_info(t2_3) } } {0 a {} 0 {} 0 1 b INTEGER 0 {} 1 2 c {} 0 {} 0} ifcapable {foreignkey} { do_test pragma-6.3.1 { execsql { CREATE TABLE t3(a int references t2(b), b UNIQUE); pragma foreign_key_list(t3); } } {0 0 t2 a b {NO ACTION} {NO ACTION} NONE} |
︙ | ︙ | |||
1615 1616 1617 1618 1619 1620 1621 | execsql { PRAGMA main.integrity_check; } } [list $mainerr] do_test 22.4.3 { execsql { PRAGMA aux.integrity_check; } } {ok} finish_test | < < | 1623 1624 1625 1626 1627 1628 1629 | execsql { PRAGMA main.integrity_check; } } [list $mainerr] do_test 22.4.3 { execsql { PRAGMA aux.integrity_check; } } {ok} finish_test |
Added test/regexp1.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | # 2012 December 31 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file implements test for the REGEXP operator in test_regexp.c. # set testdir [file dirname $argv0] source $testdir/tester.tcl do_test regexp1-1.1 { sqlite3_add_regexp_func db db eval { CREATE TABLE t1(x INTEGER PRIMARY KEY, y TEXT); INSERT INTO t1 VALUES(1, 'For since by man came death,'); INSERT INTO t1 VALUES(2, 'by man came also the resurrection of the dead.'); INSERT INTO t1 VALUES(3, 'For as in Adam all die,'); INSERT INTO t1 VALUES(4, 'even so in Christ shall all be made alive.'); SELECT x FROM t1 WHERE y REGEXP '^For ' ORDER BY x; } } {1 3} do_execsql_test regexp1-1.2 { SELECT x FROM t1 WHERE y REGEXP 'by|in' ORDER BY x; } {1 2 3 4} do_execsql_test regexp1-1.3 { SELECT x FROM t1 WHERE y REGEXP 'by|Christ' ORDER BY x; } {1 2 4} do_execsql_test regexp1-1.4 { SELECT x FROM t1 WHERE y REGEXP 'shal+ al+' ORDER BY x; } {4} do_execsql_test regexp1-1.5 { SELECT x FROM t1 WHERE y REGEXP 'shall x*y*z*all' ORDER BY x; } {4} do_execsql_test regexp1-1.6 { SELECT x FROM t1 WHERE y REGEXP 'shallx?y? ?z?all' ORDER BY x; } {4} do_execsql_test regexp1-1.7 { SELECT x FROM t1 WHERE y REGEXP 'r{2}' ORDER BY x; } {2} do_execsql_test regexp1-1.8 { SELECT x FROM t1 WHERE y REGEXP 'r{3}' ORDER BY x; } {} do_execsql_test regexp1-1.9 { SELECT x FROM t1 WHERE y REGEXP 'r{1}' ORDER BY x; } {1 2 3 4} do_execsql_test regexp1-1.10 { SELECT x FROM t1 WHERE y REGEXP 'ur{2,10}e' ORDER BY x; } {2} do_execsql_test regexp1-1.11 { SELECT x FROM t1 WHERE y REGEXP '[Aa]dam' ORDER BY x; } {3} do_execsql_test regexp1-1.12 { SELECT x FROM t1 WHERE y REGEXP '[^Aa]dam' ORDER BY x; } {} do_execsql_test regexp1-1.13 { SELECT x FROM t1 WHERE y REGEXP '[^b-zB-Z]dam' ORDER BY x; } {3} do_execsql_test regexp1-1.14 { SELECT x FROM t1 WHERE y REGEXP 'alive' ORDER BY x; } {4} do_execsql_test regexp1-1.15 { SELECT x FROM t1 WHERE y REGEXP '^alive' ORDER BY x; } {} do_execsql_test regexp1-1.16 { SELECT x FROM t1 WHERE y REGEXP 'alive$' ORDER BY x; } {} do_execsql_test regexp1-1.17 { SELECT x FROM t1 WHERE y REGEXP 'alive.$' ORDER BY x; } {4} do_execsql_test regexp1-1.18 { SELECT x FROM t1 WHERE y REGEXP 'alive\.$' ORDER BY x; } {4} do_execsql_test regexp1-1.19 { SELECT x FROM t1 WHERE y REGEXP 'ma[nd]' ORDER BY x; } {1 2 4} do_execsql_test regexp1-1.20 { SELECT x FROM t1 WHERE y REGEXP '\bma[nd]' ORDER BY x; } {1 2 4} do_execsql_test regexp1-1.21 { SELECT x FROM t1 WHERE y REGEXP 'ma[nd]\b' ORDER BY x; } {1 2} do_execsql_test regexp1-1.22 { SELECT x FROM t1 WHERE y REGEXP 'ma\w' ORDER BY x; } {1 2 4} do_execsql_test regexp1-1.23 { SELECT x FROM t1 WHERE y REGEXP 'ma\W' ORDER BY x; } {} do_execsql_test regexp1-1.24 { SELECT x FROM t1 WHERE y REGEXP '\sma\w' ORDER BY x; } {1 2 4} do_execsql_test regexp1-1.25 { SELECT x FROM t1 WHERE y REGEXP '\Sma\w' ORDER BY x; } {} do_execsql_test regexp1-1.26 { SELECT x FROM t1 WHERE y REGEXP 'alive\S$' ORDER BY x; } {4} do_execsql_test regexp1-1.27 { SELECT x FROM t1 WHERE y REGEXP '\b(unto|us|son|given|his|name|called|' || 'wonderful|councelor|mighty|god|everlasting|father|' || 'prince|peace|alive)\b'; } {4} do_execsql_test regexp1-2.1 { SELECT 'aaaabbbbcccc' REGEXP 'ab*c', 'aaaacccc' REGEXP 'ab*c'; } {1 1} do_execsql_test regexp1-2.2 { SELECT 'aaaabbbbcccc' REGEXP 'ab+c', 'aaaacccc' REGEXP 'ab+c'; } {1 0} do_execsql_test regexp1-2.3 { SELECT 'aaaabbbbcccc' REGEXP 'ab?c', 'aaaacccc' REGEXP 'ab?c'; } {0 1} do_execsql_test regexp1-2.4 { SELECT 'aaaabbbbbbcccc' REGEXP 'ab{3,5}c', 'aaaabbbbbcccc' REGEXP 'ab{3,5}c', 'aaaabbbbcccc' REGEXP 'ab{3,5}c', 'aaaabbbcccc' REGEXP 'ab{3,5}c', 'aaaabbcccc' REGEXP 'ab{3,5}c', 'aaaabcccc' REGEXP 'ab{3,5}c' } {0 1 1 1 0 0} do_execsql_test regexp1-2.5 { SELECT 'aaaabbbbcccc' REGEXP 'a(a|b|c)+c', 'aaaabbbbcccc' REGEXP '^a(a|b|c){11}c$', 'aaaabbbbcccc' REGEXP '^a(a|b|c){10}c$', 'aaaabbbbcccc' REGEXP '^a(a|b|c){9}c$' } {1 0 1 0} do_execsql_test regexp1-2.6 { SELECT 'aaaabbbbcccc' REGEXP '^a(a|bb|c)+c$', 'aaaabbbbcccc' REGEXP '^a(a|bbb|c)+c$', 'aaaabbbbcccc' REGEXP '^a(a|bbbb|c)+c$' } {1 0 1} do_execsql_test regexp1-2.7 { SELECT 'aaaabbbbcccc' REGEXP '^a([ac]+|bb){3}c$', 'aaaabbbbcccc' REGEXP '^a([ac]+|bb){4}c$', 'aaaabbbbcccc' REGEXP '^a([ac]+|bb){5}c$' } {0 1 1} do_execsql_test regexp1-2.8 { SELECT 'abc*def+ghi.jkl[mno]pqr' REGEXP 'c.d', 'abc*def+ghi.jkl[mno]pqr' REGEXP 'c\*d', 'abc*def+ghi.jkl[mno]pqr' REGEXP 'f\+g', 'abc*def+ghi.jkl[mno]pqr' REGEXP 'i\.j', 'abc*def+ghi.jkl[mno]pqr' REGEXP 'l\[mno\]p' } {1 1 1 1 1} do_test regexp1-2.9 { set v1 "abc\ndef" db eval {SELECT $v1 REGEXP '^abc\ndef$'} } {1} do_test regexp1-2.10 { set v1 "abc\adef" db eval {SELECT $v1 REGEXP '^abc\adef$'} } {1} do_test regexp1-2.11 { set v1 "abc\tdef" db eval {SELECT $v1 REGEXP '^abc\tdef$'} } {1} do_test regexp1-2.12 { set v1 "abc\rdef" db eval {SELECT $v1 REGEXP '^abc\rdef$'} } {1} do_test regexp1-2.13 { set v1 "abc\fdef" db eval {SELECT $v1 REGEXP '^abc\fdef$'} } {1} do_test regexp1-2.14 { set v1 "abc\vdef" db eval {SELECT $v1 REGEXP '^abc\vdef$'} } {1} do_execsql_test regexp1-2.15 { SELECT 'abc\def' REGEXP '^abc\\def', 'abc(def' REGEXP '^abc\(def', 'abc)def' REGEXP '^abc\)def', 'abc*def' REGEXP '^abc\*def', 'abc.def' REGEXP '^abc\.def', 'abc+def' REGEXP '^abc\+def', 'abc?def' REGEXP '^abc\?def', 'abc[def' REGEXP '^abc\[def', 'abc$def' REGEXP '^abc\$', '^def' REGEXP '\^def', 'abc{4}x' REGEXP '^abc\{4\}x$', 'abc|def' REGEXP '^abc\|def$' } {1 1 1 1 1 1 1 1 1 1 1 1} do_execsql_test regexp1-2.20 { SELECT 'abc$¢€xyz' REGEXP '^abc\u0024\u00a2\u20acxyz$', 'abc$¢€xyz' REGEXP '^abc\u0024\u00A2\u20ACxyz$', 'abc$¢€xyz' REGEXP '^abc\x24\xa2\x20acxyz$' } {1 1 1} do_execsql_test regexp1-2.21 { SELECT 'abc$¢€xyz' REGEXP '^abc[\u0024][\u00a2][\u20ac]xyz$', 'abc$¢€xyz' REGEXP '^abc[\u0024\u00A2\u20AC]{3}xyz$', 'abc$¢€xyz' REGEXP '^abc[\x24][\xa2\x20ac]+xyz$' } {1 1 1} do_execsql_test regexp1-2.22 { SELECT 'abc$¢€xyz' REGEXP '^abc[^\u0025-X][^ -\u007f][^\u20ab]xyz$' } {1} finish_test |
Added test/tkt-a7b7803e.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | # 2012 December 19 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. Specifically, # it tests that ticket [a7b7803e8d1e8699cd8a460a38133b98892d2e17] has # been fixed. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl do_test tkt-a7b7803e.1 { db eval { CREATE TABLE t1(a,b); INSERT INTO t1 VALUES(0,'first'),(99,'fuzzy'); SELECT (t1.a==0) AS x, b FROM t1 WHERE a=0 OR x; } } {1 first} do_test tkt-a7b7803e.2 { db eval { SELECT a, (t1.b='fuzzy') AS x FROM t1 WHERE x } } {99 1} do_test tkt-a7b7803e.3 { db eval { SELECT (a=99) AS x, (t1.b='fuzzy') AS y, * FROM t1 WHERE x AND y } } {1 1 99 fuzzy} do_test tkt-a7b7803e.4 { db eval { SELECT (a=99) AS x, (t1.b='first') AS y, * FROM t1 WHERE x OR y ORDER BY a } } {0 1 0 first 1 0 99 fuzzy} do_test tkt-a7b7803e.5 { db eval { SELECT (M.a=99) AS x, M.b, (N.b='first') AS y, N.b FROM t1 M, t1 N WHERE x OR y ORDER BY M.a, N.a } } {0 first 1 first 1 fuzzy 1 first 1 fuzzy 0 fuzzy} do_test tkt-a7b7803e.6 { db eval { SELECT (M.a=99) AS x, M.b, (N.b='first') AS y, N.b FROM t1 M, t1 N WHERE x AND y ORDER BY M.a, N.a } } {1 fuzzy 1 first} do_test tkt-a7b7803e.7 { db eval { SELECT (M.a=99) AS x, M.b, (N.b='first') AS y, N.b FROM t1 M JOIN t1 N ON x AND y ORDER BY M.a, N.a } } {1 fuzzy 1 first} do_test tkt-a7b7803e.8 { db eval { SELECT (M.a=99) AS x, M.b, (N.b='first') AS y, N.b FROM t1 M JOIN t1 N ON x ORDER BY M.a, N.a } } {1 fuzzy 1 first 1 fuzzy 0 fuzzy} finish_test |
Changes to tool/build-shell.sh.
︙ | ︙ | |||
11 12 13 14 15 16 17 18 19 20 21 | make sqlite3.c gcc -o sqlite3 -g -Os -I. \ -DSQLITE_THREADSAFE=0 \ -DSQLITE_ENABLE_VFSTRACE \ -DSQLITE_ENABLE_STAT3 \ -DSQLITE_ENABLE_FTS4 \ -DSQLITE_ENABLE_RTREE \ -DHAVE_READLINE \ -DHAVE_USLEEP=1 \ ../sqlite/src/shell.c ../sqlite/src/test_vfstrace.c \ sqlite3.c -ldl -lreadline -lncurses | > > | 11 12 13 14 15 16 17 18 19 20 21 22 23 | make sqlite3.c gcc -o sqlite3 -g -Os -I. \ -DSQLITE_THREADSAFE=0 \ -DSQLITE_ENABLE_VFSTRACE \ -DSQLITE_ENABLE_STAT3 \ -DSQLITE_ENABLE_FTS4 \ -DSQLITE_ENABLE_RTREE \ -DSQLITE_ENABLE_REGEXP \ -DHAVE_READLINE \ -DHAVE_USLEEP=1 \ ../sqlite/src/shell.c ../sqlite/src/test_vfstrace.c \ ../sqlite/src/test_regexp.c \ sqlite3.c -ldl -lreadline -lncurses |