Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | More changes to support the manifest type model. A few things are currently broken. (CVS 1385) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
a4af838f8d1b81ec6c8db97655c6876a |
User & Date: | danielk1977 2004-05-16 11:15:36.000 |
Context
2004-05-16
| ||
11:57 | Fix two bugs that were causing lots of tests to fail. (CVS 1386) (check-in: 5cba8a510c user: danielk1977 tags: trunk) | |
11:15 | More changes to support the manifest type model. A few things are currently broken. (CVS 1385) (check-in: a4af838f8d user: danielk1977 tags: trunk) | |
2004-05-15
| ||
00:29 | More speed improvements to btree. (CVS 1384) (check-in: aab4b794b4 user: drh tags: trunk) | |
Changes
Changes to src/build.c.
︙ | ︙ | |||
19 20 21 22 23 24 25 | ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** PRAGMA ** | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** PRAGMA ** ** $Id: build.c,v 1.184 2004/05/16 11:15:36 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** This routine is called when a new SQL statement is beginning to ** be parsed. Check to see if the schema for the database needs |
︙ | ︙ | |||
180 181 182 183 184 185 186 187 188 189 190 191 192 193 | assert( db!=0 && p->zName!=0 ); pOld = sqlite3HashInsert(&db->aDb[p->iDb].idxHash, p->zName, strlen(p->zName)+1, 0); if( pOld!=0 && pOld!=p ){ sqlite3HashInsert(&db->aDb[p->iDb].idxHash, pOld->zName, strlen(pOld->zName)+1, pOld); } sqliteFree(p); } /* ** Unlink the given index from its table, then remove ** the index from the index hash table and free its memory ** structures. | > > > | 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | assert( db!=0 && p->zName!=0 ); pOld = sqlite3HashInsert(&db->aDb[p->iDb].idxHash, p->zName, strlen(p->zName)+1, 0); if( pOld!=0 && pOld!=p ){ sqlite3HashInsert(&db->aDb[p->iDb].idxHash, pOld->zName, strlen(pOld->zName)+1, pOld); } if( p->zColAff ){ sqliteFree(p->zColAff); } sqliteFree(p); } /* ** Unlink the given index from its table, then remove ** the index from the index hash table and free its memory ** structures. |
︙ | ︙ | |||
577 578 579 580 581 582 583 | aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0])); if( aNew==0 ) return; p->aCol = aNew; } pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zName = z; | | > > > > > | 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 | aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0])); if( aNew==0 ) return; p->aCol = aNew; } pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zName = z; /* If there is no type specified, columns have the default affinity ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() ** will be called next to set pCol->affinity correctly. */ pCol->affinity = SQLITE_AFF_NONE; p->nCol++; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has ** been seen on a column. This routine sets the notNull flag on |
︙ | ︙ | |||
625 626 627 628 629 630 631 | if( z==0 ) return; for(i=j=0; z[i]; i++){ int c = z[i]; if( isspace(c) ) continue; z[j++] = c; } z[j] = 0; | | > | 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 | if( z==0 ) return; for(i=j=0; z[i]; i++){ int c = z[i]; if( isspace(c) ) continue; z[j++] = c; } z[j] = 0; // pCol->sortOrder = sqlite3CollateType(z, n); pCol->affinity = sqlite3AffinityType(z, n); } /* ** The given token is the default value for the last column added to ** the table currently under construction. If "minusFlag" is true, it ** means the value token was preceded by a minus sign. ** |
︙ | ︙ | |||
747 748 749 750 751 752 753 | ** the column currently under construction. */ void sqlite3AddCollateType(Parse *pParse, int collType){ Table *p; int i; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 | ** the column currently under construction. */ void sqlite3AddCollateType(Parse *pParse, int collType){ Table *p; int i; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; /* FIX ME */ /* if( i>=0 ) p->aCol[i].sortOrder = collType; */ } /* ** Parse the column type name zType (length nType) and return the ** associated affinity type. */ char sqlite3AffinityType(const char *zType, int nType){ /* FIX ME: This could be done more efficiently */ int n, i; struct { const char *zSub; int nSub; char affinity; } substrings[] = { {"INT", 3, SQLITE_AFF_INTEGER}, {"REAL", 4, SQLITE_AFF_NUMERIC}, {"FLOAT", 5, SQLITE_AFF_NUMERIC}, {"DOUBLE", 6, SQLITE_AFF_NUMERIC}, {"NUM", 3, SQLITE_AFF_NUMERIC}, {"CHAR", 4, SQLITE_AFF_TEXT}, {"CLOB", 4, SQLITE_AFF_TEXT}, {"TEXT", 4, SQLITE_AFF_TEXT} }; for(n=0; n<(nType-3); n++){ for(i=0; i<sizeof(substrings)/sizeof(substrings[0]); i++){ if( 0==sqlite3StrNICmp(zType, substrings[i].zSub, substrings[i].nSub) ){ return substrings[i].affinity; } } } return SQLITE_AFF_NONE; } /* ** Come up with a new random value for the schema cookie. Make sure ** the new value is different from the old. ** ** The schema cookie is used to determine when the schema for the |
︙ | ︙ | |||
1291 1292 1293 1294 1295 1296 1297 | if( !pParse->explain ){ sqliteUnlinkAndDeleteTable(db, pTable); db->flags |= SQLITE_InternChanges; } sqliteViewResetAll(db, iDb); } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 | if( !pParse->explain ){ sqliteUnlinkAndDeleteTable(db, pTable); db->flags |= SQLITE_InternChanges; } sqliteViewResetAll(db, iDb); } /* ** This routine is called to create a new foreign key on the table ** currently under construction. pFromCol determines which columns ** in the current table point to the foreign key. If pFromCol==0 then ** connect the key to the last column inserted. pTo is the name of ** the table referred to. pToCol is a list of tables in the other ** pTo table that the foreign key points to. flags contains all |
︙ | ︙ | |||
1721 1722 1723 1724 1725 1726 1727 | if( pTab->iPKey==iCol ){ sqlite3VdbeAddOp(v, OP_Dup, i, 0); }else{ sqlite3VdbeAddOp(v, OP_Column, 2, iCol); } } sqlite3VdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0); | | | 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 | if( pTab->iPKey==iCol ){ sqlite3VdbeAddOp(v, OP_Dup, i, 0); }else{ sqlite3VdbeAddOp(v, OP_Column, 2, iCol); } } sqlite3VdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0); sqlite3IndexAffinityStr(v, pIndex); sqlite3VdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None, "indexed columns are not unique", P3_STATIC); sqlite3VdbeAddOp(v, OP_Next, 2, lbl1); sqlite3VdbeResolveLabel(v, lbl2); sqlite3VdbeAddOp(v, OP_Close, 2, 0); sqlite3VdbeAddOp(v, OP_Close, 1, 0); } |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle DELETE FROM statements. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle DELETE FROM statements. ** ** $Id: delete.c,v 1.65 2004/05/16 11:15:37 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Look up every table that is named in pSrc. If any table is not found, ** add an error message to pParse->zErrMsg and return NULL. If all tables ** are found, return a pointer to the last table. |
︙ | ︙ | |||
383 384 385 386 387 388 389 | if( idx==pTab->iPKey ){ sqlite3VdbeAddOp(v, OP_Dup, j, 0); }else{ sqlite3VdbeAddOp(v, OP_Column, iCur, idx); } } sqlite3VdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0); | | | 383 384 385 386 387 388 389 390 391 392 393 394 395 396 | if( idx==pTab->iPKey ){ sqlite3VdbeAddOp(v, OP_Dup, j, 0); }else{ sqlite3VdbeAddOp(v, OP_Column, iCur, idx); } } sqlite3VdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0); sqlite3IndexAffinityStr(v, pIdx); sqlite3VdbeAddOp(v, OP_IdxDelete, iCur+i, 0); } } |
Changes to src/expr.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** ** $Id: expr.c,v 1.118 2004/05/16 11:15:37 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> static char exprAffinity(Expr *pExpr){ if( pExpr->op==TK_AS ){ return exprAffinity(pExpr->pLeft); } if( pExpr->op==TK_SELECT ){ return exprAffinity(pExpr->pSelect->pEList->a[0].pExpr); } return pExpr->affinity; } /* ** Return the P1 value that should be used for a binary comparison ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. ** If jumpIfNull is true, then set the low byte of the returned ** P1 value to tell the opcode to jump if either expression ** evaluates to NULL. */ int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ char aff1 = exprAffinity(pExpr1); char aff2 = exprAffinity(pExpr2); if( aff1 && aff2 ){ /* Both sides of the comparison are columns. If one has numeric or ** integer affinity, use that. Otherwise use no affinity. */ if( aff1==SQLITE_AFF_INTEGER || aff2==SQLITE_AFF_INTEGER ){ aff1 = SQLITE_AFF_INTEGER; }else if( aff1==SQLITE_AFF_NUMERIC || aff2==SQLITE_AFF_NUMERIC ){ aff1 = SQLITE_AFF_NUMERIC; }else{ aff1 = SQLITE_AFF_NONE; } }else if( !aff1 ){ aff1 = aff2; } return (((int)aff1)<<8)+(jumpIfNull?1:0); } /* ** Construct a new expression node and return a pointer to it. Memory ** for this node is obtained from sqliteMalloc(). The calling function ** is responsible for making sure the node eventually gets freed. */ Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, Token *pToken){ |
︙ | ︙ | |||
468 469 470 471 472 473 474 | for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ cnt++; pExpr->iTable = pItem->iCursor; pExpr->iDb = pTab->iDb; /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ pExpr->iColumn = j==pTab->iPKey ? -1 : j; | > > > | > | 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 | for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ cnt++; pExpr->iTable = pItem->iCursor; pExpr->iDb = pTab->iDb; /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ pExpr->iColumn = j==pTab->iPKey ? -1 : j; pExpr->affinity = pTab->aCol[j].affinity; /* FIX ME: Expr::dataType will be removed... */ pExpr->dataType = (pCol->affinity==SQLITE_AFF_TEXT?SQLITE_SO_TEXT:SQLITE_SO_NUM); break; } } } /* If we have not already resolved the name, then maybe ** it is a new.* or old.* trigger argument reference |
︙ | ︙ | |||
500 501 502 503 504 505 506 | pExpr->iDb = pTab->iDb; cntTab++; for(j=0; j < pTab->nCol; j++, pCol++) { if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ cnt++; pExpr->iColumn = j==pTab->iPKey ? -1 : j; | > > | > > | 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 | pExpr->iDb = pTab->iDb; cntTab++; for(j=0; j < pTab->nCol; j++, pCol++) { if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ cnt++; pExpr->iColumn = j==pTab->iPKey ? -1 : j; pExpr->affinity = pTab->aCol[j].affinity; /* FIX ME: Expr::dataType will be removed... */ pExpr->dataType = (pCol->affinity==SQLITE_AFF_TEXT?SQLITE_SO_TEXT:SQLITE_SO_NUM); break; } } } } /* ** Perhaps the name is a reference to the ROWID */ if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ cnt = 1; pExpr->iColumn = -1; pExpr->dataType = SQLITE_SO_NUM; pExpr->affinity = SQLITE_AFF_INTEGER; } /* ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z ** might refer to an result-set alias. This happens, for example, when ** we are resolving names in the WHERE clause of the following command: ** |
︙ | ︙ | |||
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 | break; } case TK_STRING: case TK_FLOAT: case TK_INTEGER: { if( pExpr->op==TK_INTEGER && sqlite3FitsIn32Bits(pExpr->token.z) ){ sqlite3VdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0); }else{ sqlite3VdbeAddOp(v, OP_String, 0, 0); } assert( pExpr->token.z ); sqlite3VdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n); sqlite3VdbeDequoteP3(v, -1); break; | > > | 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 | break; } case TK_STRING: case TK_FLOAT: case TK_INTEGER: { if( pExpr->op==TK_INTEGER && sqlite3FitsIn32Bits(pExpr->token.z) ){ sqlite3VdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0); }else if( pExpr->op==TK_FLOAT ){ sqlite3VdbeAddOp(v, OP_Real, 0, 0); }else{ sqlite3VdbeAddOp(v, OP_String, 0, 0); } assert( pExpr->token.z ); sqlite3VdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n); sqlite3VdbeDequoteP3(v, -1); break; |
︙ | ︙ | |||
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { if( sqlite3ExprType(pExpr)==SQLITE_SO_TEXT ){ op += 6; /* Convert numeric opcodes to text opcodes */ } /* Fall through into the next case */ } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: case TK_REM: | > > > > > > > | 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, 0); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); sqlite3VdbeAddOp(v, op, p1, 0); break; #if 0 if( sqlite3ExprType(pExpr)==SQLITE_SO_TEXT ){ op += 6; /* Convert numeric opcodes to text opcodes */ } /* Fall through into the next case */ #endif } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: case TK_REM: |
︙ | ︙ | |||
1131 1132 1133 1134 1135 1136 1137 | case TK_NOTNULL: { int dest; sqlite3VdbeAddOp(v, OP_Integer, 1, 0); sqlite3ExprCode(pParse, pExpr->pLeft); dest = sqlite3VdbeCurrentAddr(v) + 2; sqlite3VdbeAddOp(v, op, 1, dest); sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); | < > > > > > > | > | 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 | case TK_NOTNULL: { int dest; sqlite3VdbeAddOp(v, OP_Integer, 1, 0); sqlite3ExprCode(pParse, pExpr->pLeft); dest = sqlite3VdbeCurrentAddr(v) + 2; sqlite3VdbeAddOp(v, op, 1, dest); sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); } break; case TK_AGG_FUNCTION: { sqlite3VdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); break; } case TK_GLOB: case TK_LIKE: case TK_FUNCTION: { ExprList *pList = pExpr->pList; int nExpr = pList ? pList->nExpr : 0; FuncDef *pDef; int nId; const char *zId; getFunctionName(pExpr, &zId, &nId); pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, 0); assert( pDef!=0 ); nExpr = sqlite3ExprCodeExprList(pParse, pList, pDef->includeTypes); /* FIX ME: The following is a temporary hack. */ if( 0==sqlite3StrNICmp(zId, "classof", nId) ){ assert( nExpr==1 ); sqlite3VdbeOp3(v, OP_Class, nExpr, 0, 0, 0); }else{ sqlite3VdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER); } break; } case TK_SELECT: { sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); break; } case TK_IN: { |
︙ | ︙ | |||
1328 1329 1330 1331 1332 1333 1334 1335 1336 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); | > < < < | | 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, jumpIfNull); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); sqlite3VdbeAddOp(v, op, p1, dest); break; } case TK_ISNULL: case TK_NOTNULL: { sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, op, 1, dest); break; |
︙ | ︙ | |||
1423 1424 1425 1426 1427 1428 1429 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { | | < < < < < < < < | | 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, jumpIfNull); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); sqlite3VdbeAddOp(v, op, p1, dest); break; } case TK_ISNULL: case TK_NOTNULL: { sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, op, 1, dest); break; |
︙ | ︙ |
Changes to src/func.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** ** $Id: func.c,v 1.48 2004/05/16 11:15:38 danielk1977 Exp $ */ #include <ctype.h> #include <math.h> #include <stdlib.h> #include <assert.h> #include "sqliteInt.h" #include "os.h" |
︙ | ︙ | |||
567 568 569 570 571 572 573 574 575 576 577 578 579 580 | void (*xFunc)(sqlite_func*,int,const char**); } aFuncs[] = { { "min", -1, SQLITE_ARGS, 0, minmaxFunc }, { "min", 0, 0, 0, 0 }, { "max", -1, SQLITE_ARGS, 2, minmaxFunc }, { "max", 0, 0, 2, 0 }, { "typeof", 1, SQLITE_TEXT, 0, typeofFunc }, { "length", 1, SQLITE_NUMERIC, 0, lengthFunc }, { "substr", 3, SQLITE_TEXT, 0, substrFunc }, { "abs", 1, SQLITE_NUMERIC, 0, absFunc }, { "round", 1, SQLITE_NUMERIC, 0, roundFunc }, { "round", 2, SQLITE_NUMERIC, 0, roundFunc }, { "upper", 1, SQLITE_TEXT, 0, upperFunc }, { "lower", 1, SQLITE_TEXT, 0, lowerFunc }, | > | 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 | void (*xFunc)(sqlite_func*,int,const char**); } aFuncs[] = { { "min", -1, SQLITE_ARGS, 0, minmaxFunc }, { "min", 0, 0, 0, 0 }, { "max", -1, SQLITE_ARGS, 2, minmaxFunc }, { "max", 0, 0, 2, 0 }, { "typeof", 1, SQLITE_TEXT, 0, typeofFunc }, { "classof", 1, SQLITE_TEXT, 0, typeofFunc }, /* FIX ME: hack */ { "length", 1, SQLITE_NUMERIC, 0, lengthFunc }, { "substr", 3, SQLITE_TEXT, 0, substrFunc }, { "abs", 1, SQLITE_NUMERIC, 0, absFunc }, { "round", 1, SQLITE_NUMERIC, 0, roundFunc }, { "round", 2, SQLITE_NUMERIC, 0, roundFunc }, { "upper", 1, SQLITE_TEXT, 0, upperFunc }, { "lower", 1, SQLITE_TEXT, 0, lowerFunc }, |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** | | | > > > > > > > > > > > | > > > > > > > > > | > | > > > > > > > > > > > > > > > | | < | < < < < < < < | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** ** $Id: insert.c,v 1.99 2004/05/16 11:15:38 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Set P3 of the most recently inserted opcode to a column affinity ** string for index pIdx. A column affinity string has one character ** for each column in the table, according to the affinity of the column: ** ** Character Column affinity ** ------------------------------ ** 'n' NUMERIC ** 'i' INTEGER ** 't' TEXT ** 'o' NONE */ void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ if( !pIdx->zColAff ){ /* The first time a column affinity string for a particular table is ** required, it is allocated and populated here. It is then stored as ** a member of the Table structure for subsequent use. ** ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Table structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; pIdx->zColAff = (char *)sqliteMalloc(pIdx->nColumn+1); if( !pIdx->zColAff ){ return; } for(n=0; n<pIdx->nColumn; n++){ pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; } pIdx->zColAff[pIdx->nColumn] = '\0'; } sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, P3_STATIC); } /* ** Set P3 of the most recently inserted opcode to a column affinity ** string for table pTab. A column affinity string has one character ** for each column indexed by the index, according to the affinity of the ** column: ** ** Character Column affinity ** ------------------------------ ** 'n' NUMERIC ** 'i' INTEGER ** 't' TEXT ** 'o' NONE */ void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ /* The first time a column affinity string for a particular table ** is required, it is allocated and populated here. It is then ** stored as a member of the Table structure for subsequent use. ** ** The column affinity string will eventually be deleted by ** sqlite3DeleteTable() when the Table structure itself is cleaned up. */ if( !pTab->zColAff ){ char *zColAff; int i; zColAff = (char *)sqliteMalloc(pTab->nCol+1); if( !zColAff ){ return; } for(i=0; i<pTab->nCol; i++){ zColAff[i] = pTab->aCol[i].affinity; } zColAff[pTab->nCol] = '\0'; pTab->zColAff = zColAff; } sqlite3VdbeChangeP3(v, -1, pTab->zColAff, P3_STATIC); } /* ** This routine is call to handle SQL of the following forms: ** ** insert into TABLE (IDLIST) values(EXPRLIST) |
︙ | ︙ | |||
263 264 265 266 267 268 269 | if( useTempTable ){ /* Generate the subroutine that SELECT calls to process each row of ** the result. Store the result in a temporary table */ srcTab = pParse->nTab++; sqlite3VdbeResolveLabel(v, iInsertBlock); sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); | | | 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | if( useTempTable ){ /* Generate the subroutine that SELECT calls to process each row of ** the result. Store the result in a temporary table */ srcTab = pParse->nTab++; sqlite3VdbeResolveLabel(v, iInsertBlock); sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); sqlite3TableAffinityStr(v, pTab); sqlite3VdbeAddOp(v, OP_NewRecno, srcTab, 0); sqlite3VdbeAddOp(v, OP_Pull, 1, 0); sqlite3VdbeAddOp(v, OP_PutIntKey, srcTab, 0); sqlite3VdbeAddOp(v, OP_Return, 0, 0); /* The following code runs first because the GOTO at the very top ** of the program jumps to it. Create the temporary table, then jump |
︙ | ︙ | |||
442 443 444 445 446 447 448 | }else if( pSelect ){ sqlite3VdbeAddOp(v, OP_Dup, nColumn-j-1, 1); }else{ sqlite3ExprCode(pParse, pList->a[j].pExpr); } } sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); | | > > > > > > > > | 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 | }else if( pSelect ){ sqlite3VdbeAddOp(v, OP_Dup, nColumn-j-1, 1); }else{ sqlite3ExprCode(pParse, pList->a[j].pExpr); } } sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, ** do not attempt any conversions before assembling the record. ** If this is a real table, attempt conversions as required by the ** table column affinities. */ if( !isView ){ sqlite3TableAffinityStr(v, pTab); } sqlite3VdbeAddOp(v, OP_PutIntKey, newIdx, 0); /* Fire BEFORE or INSTEAD OF triggers */ if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab, newIdx, -1, onError, endOfLoop) ){ goto insert_cleanup; } |
︙ | ︙ | |||
822 823 824 825 826 827 828 | if( idx==pTab->iPKey ){ sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); }else{ sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); } } jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0); | | | 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 | if( idx==pTab->iPKey ){ sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1); }else{ sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1); } } jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0); sqlite3IndexAffinityStr(v, pIdx); /* Find out what action to take in case there is an indexing conflict */ onError = pIdx->onError; if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ if( overrideError!=OE_Default ){ onError = overrideError; }else if( pParse->db->onError!=OE_Default ){ |
︙ | ︙ | |||
932 933 934 935 936 937 938 | assert( pTab->pSelect==0 ); /* This table is not a VIEW */ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} for(i=nIdx-1; i>=0; i--){ if( aIdxUsed && aIdxUsed[i]==0 ) continue; sqlite3VdbeAddOp(v, OP_IdxPut, base+i+1, 0); } sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); | | | 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 | assert( pTab->pSelect==0 ); /* This table is not a VIEW */ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} for(i=nIdx-1; i>=0; i--){ if( aIdxUsed && aIdxUsed[i]==0 ) continue; sqlite3VdbeAddOp(v, OP_IdxPut, base+i+1, 0); } sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); sqlite3TableAffinityStr(v, pTab); if( newIdx>=0 ){ sqlite3VdbeAddOp(v, OP_Dup, 1, 0); sqlite3VdbeAddOp(v, OP_Dup, 1, 0); sqlite3VdbeAddOp(v, OP_PutIntKey, newIdx, 0); } sqlite3VdbeAddOp(v, OP_PutIntKey, base, (pParse->trigStack?0:OPFLAG_NCHANGE) | |
︙ | ︙ |
Changes to src/pragma.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the PRAGMA command. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the PRAGMA command. ** ** $Id: pragma.c,v 1.23 2004/05/16 11:15:38 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** Interpret the given string as a boolean value. */ |
︙ | ︙ | |||
663 664 665 666 667 668 669 | if( idx==pTab->iPKey ){ sqlite3VdbeAddOp(v, OP_Recno, 1, 0); }else{ sqlite3VdbeAddOp(v, OP_Column, 1, idx); } } sqlite3VdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0); | | | 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 | if( idx==pTab->iPKey ){ sqlite3VdbeAddOp(v, OP_Recno, 1, 0); }else{ sqlite3VdbeAddOp(v, OP_Column, 1, idx); } } sqlite3VdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0); sqlite3IndexAffinityStr(v, pIdx); jmp2 = sqlite3VdbeAddOp(v, OP_Found, j+2, 0); addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); sqlite3VdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC); sqlite3VdbeChangeP2(v, jmp2, sqlite3VdbeCurrentAddr(v)); } sqlite3VdbeAddOp(v, OP_Next, 1, loopTop+1); sqlite3VdbeChangeP2(v, loopTop, sqlite3VdbeCurrentAddr(v)); |
︙ | ︙ |
Changes to src/sqliteInt.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.234 2004/05/16 11:15:39 danielk1977 Exp $ */ #include "config.h" #include "sqlite.h" #include "hash.h" #include "parse.h" #include <stdio.h> #include <stdlib.h> |
︙ | ︙ | |||
453 454 455 456 457 458 459 | */ struct Column { char *zName; /* Name of this column */ char *zDflt; /* Default value of this column */ char *zType; /* Data type for this column */ u8 notNull; /* True if there is a NOT NULL constraint */ u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ | | > > > > > > > > > > | 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | */ struct Column { char *zName; /* Name of this column */ char *zDflt; /* Default value of this column */ char *zType; /* Data type for this column */ u8 notNull; /* True if there is a NOT NULL constraint */ u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ // u8 sortOrder; /* Some combination of SQLITE_SO_... values */ char affinity; /* One of the SQLITE_AFF_... values */ u8 dottedName; /* True if zName contains a "." character */ }; /* ** The allowed sort orders. ** ** The TEXT and NUM values use bits that do not overlap with DESC and ASC. ** That way the two can be combined into a single number. */ #define SQLITE_SO_UNK 0 /* Use the default collating type. (SCT_NUM) */ #define SQLITE_SO_TEXT 2 /* Sort using memcmp() */ #define SQLITE_SO_NUM 4 /* Sort using sqlite3Compare() */ #define SQLITE_SO_TYPEMASK 6 /* Mask to extract the collating sequence */ #define SQLITE_SO_ASC 0 /* Sort in ascending order */ #define SQLITE_SO_DESC 1 /* Sort in descending order */ #define SQLITE_SO_DIRMASK 1 /* Mask to extract the sort direction */ /* ** Column affinity types. */ #define SQLITE_AFF_INTEGER 'i' #define SQLITE_AFF_NUMERIC 'n' #define SQLITE_AFF_TEXT 't' #define SQLITE_AFF_NONE 'o' /* ** Each SQL table is represented in memory by an instance of the ** following structure. ** ** Table.zName is the name of the table. The case of the original ** CREATE TABLE statement is stored, but case is not significant for |
︙ | ︙ | |||
634 635 636 637 638 639 640 641 642 643 644 645 646 647 | int nColumn; /* Number of columns in the table used by this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ Table *pTable; /* The SQL table being indexed */ int tnum; /* Page containing root of this index in database file */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ Index *pNext; /* The next index associated with the same table */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** | > | 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 | int nColumn; /* Number of columns in the table used by this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ Table *pTable; /* The SQL table being indexed */ int tnum; /* Page containing root of this index in database file */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** |
︙ | ︙ | |||
703 704 705 706 707 708 709 710 711 712 713 714 715 716 | Token span; /* Complete text of the expression */ int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the ** iColumn-th field of the iTable-th table. */ int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull ** result from the iAgg-th element of the aggregator */ Select *pSelect; /* When the expression is a sub-select. Also the ** right side of "<expr> IN (<select>)" */ }; /* ** The following are the meanings of bits in the Expr.flags field. */ #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ | > | 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 | Token span; /* Complete text of the expression */ int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the ** iColumn-th field of the iTable-th table. */ int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull ** result from the iAgg-th element of the aggregator */ Select *pSelect; /* When the expression is a sub-select. Also the ** right side of "<expr> IN (<select>)" */ char affinity; /* The affinity of the column or 0 if not a column */ }; /* ** The following are the meanings of bits in the Expr.flags field. */ #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ |
︙ | ︙ | |||
1287 1288 1289 1290 1291 1292 1293 | void *sqlite3utf8to16le(const unsigned char *pIn, int N); void sqlite3utf16to16le(void *pData, int N); void sqlite3utf16to16be(void *pData, int N); int sqlite3PutVarint(unsigned char *, u64); int sqlite3GetVarint(const unsigned char *, u64 *); int sqlite3GetVarint32(const unsigned char *, u32 *); int sqlite3VarintLen(u64 v); | > > > | | 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 | void *sqlite3utf8to16le(const unsigned char *pIn, int N); void sqlite3utf16to16le(void *pData, int N); void sqlite3utf16to16be(void *pData, int N); int sqlite3PutVarint(unsigned char *, u64); int sqlite3GetVarint(const unsigned char *, u64 *); int sqlite3GetVarint32(const unsigned char *, u32 *); int sqlite3VarintLen(u64 v); char sqlite3AffinityType(const char *, int); void sqlite3IndexAffinityStr(Vdbe *, Index *); void sqlite3TableAffinityStr(Vdbe *, Table *); |
Changes to src/update.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** ** $Id: update.c,v 1.74 2004/05/16 11:15:39 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Process an UPDATE statement. ** ** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL; |
︙ | ︙ | |||
283 284 285 286 287 288 289 | if( j<0 ){ sqlite3VdbeAddOp(v, OP_Column, iCur, i); }else{ sqlite3ExprCode(pParse, pChanges->a[j].pExpr); } } sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); | > | > > | 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | if( j<0 ){ sqlite3VdbeAddOp(v, OP_Column, iCur, i); }else{ sqlite3ExprCode(pParse, pChanges->a[j].pExpr); } } sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0); if( !isView ){ sqlite3TableAffinityStr(v, pTab); } if( pParse->nErr ) goto update_cleanup; sqlite3VdbeAddOp(v, OP_PutIntKey, newIdx, 0); if( !isView ){ sqlite3VdbeAddOp(v, OP_Close, iCur, 0); } /* Fire the BEFORE and INSTEAD OF triggers */ |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.294 2004/05/16 11:15:40 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> #include "vdbeInt.h" /* |
︙ | ︙ | |||
424 425 426 427 428 429 430 | return 0; } /* ** Apply any conversion required by the supplied column affinity to ** memory cell pRec. affinity may be one of: ** | | | | > > > > > > > > > > > > | < | | | < < < < < < < < < < < < | 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 | return 0; } /* ** Apply any conversion required by the supplied column affinity to ** memory cell pRec. affinity may be one of: ** ** SQLITE_AFF_NUMERIC ** SQLITE_AFF_TEXT ** SQLITE_AFF_NONE ** SQLITE_AFF_INTEGER ** */ static void applyAffinity(Mem *pRec, char affinity){ switch( affinity ){ case SQLITE_AFF_INTEGER: case SQLITE_AFF_NUMERIC: if( 0==(pRec->flags&(MEM_Real|MEM_Int)) ){ /* pRec does not have a valid integer or real representation. ** Attempt a conversion if pRec has a string representation and ** it looks like a number. */ int realnum; if( pRec->flags&MEM_Str && sqlite3IsNumber(pRec->z, &realnum) ){ if( realnum ){ Realify(pRec); }else{ Integerify(pRec); } } } if( affinity==SQLITE_AFF_INTEGER ){ /* For INTEGER affinity, try to convert a real value to an int */ if( pRec->flags&MEM_Real ){ pRec->i = pRec->r; if( ((double)pRec->i)==pRec->r ){ pRec->flags |= MEM_Int; } } } break; case SQLITE_AFF_TEXT: /* Only attempt the conversion if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. */ if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ Stringify(pRec); } pRec->flags &= ~(MEM_Real|MEM_Int); break; case SQLITE_AFF_NONE: /* Affinity NONE. Do nothing. */ break; default: assert(0); } } #ifdef VDBE_PROFILE /* ** The following routine only works on pentium-class processors. ** It uses the RDTSC opcode to read cycle count value out of the ** processor and returns that value. This can be used for high-res ** profiling. */ |
︙ | ︙ | |||
768 769 770 771 772 773 774 775 776 777 778 779 780 781 | }else{ pTos->z = z; pTos->n = strlen(z) + 1; pTos->flags = MEM_Str | MEM_Static; } break; } /* Opcode: Variable P1 * * ** ** Push the value of variable P1 onto the stack. A variable is ** an unknown in the original SQL string as handed to sqlite3_compile(). ** Any occurance of the '?' character in the original SQL is considered ** a variable. Variables in the SQL string are number from left to | > > > > > > > > > > > > > > > > > > | 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 | }else{ pTos->z = z; pTos->n = strlen(z) + 1; pTos->flags = MEM_Str | MEM_Static; } break; } /* Opcode: Real * * P3 ** ** The string value P3 is converted to a real and pushed on to the stack. */ case OP_Real: { char *z = pOp->p3; assert( z ); assert( sqlite3IsNumber(z, 0) ); pTos++; pTos->r = sqlite3AtoF(z, 0); pTos->z = z; pTos->n = strlen(z)+1; pTos->flags = MEM_Real|MEM_Str|MEM_Static; break; } /* Opcode: Variable P1 * * ** ** Push the value of variable P1 onto the stack. A variable is ** an unknown in the original SQL string as handed to sqlite3_compile(). ** Any occurance of the '?' character in the original SQL is considered ** a variable. Variables in the SQL string are number from left to |
︙ | ︙ | |||
1354 1355 1356 1357 1358 1359 1360 | } /* Opcode: Eq P1 P2 * ** ** Pop the top two elements from the stack. If they are equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** | > | | > > | | > > > > > | | > > > > > > | 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 | } /* Opcode: Eq P1 P2 * ** ** Pop the top two elements from the stack. If they are equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** ** The least significant byte of P1 may be either 0x00 or 0x01. If either ** operand is NULL (and thus if the result is unknown) then take the jump ** only if the least significant byte of P1 is 0x01. ** ** The second least significant byte of P1 determines whether any ** conversions are applied to the two values before the comparison is made. ** If this byte is 0x00, and one of the values being compared is numeric ** and the other text, an attempt is made to convert the text value to ** a numeric form. ** ** If the second least significant byte of P1 is not 0x00, then it must ** be an affinity character - 'n', 't', 'i' or 'o'. In this case an ** attempt is made to coerce both values according to the affinity before ** the comparison is made. ** ** Once any conversions have taken place, and neither value is NULL, ** the values are compared. If both values are blobs, or both are text, ** then memcmp() is used to determine the results of the comparison. If ** both values are numeric, then a numeric comparison is used. If the ** two values are of different types, then they are inequal. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. ** */ /* Opcode: Ne P1 P2 * ** ** Pop the top two elements from the stack. If they are not equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. ** ** If either operand is NULL (and thus if the result is unknown) then |
︙ | ︙ | |||
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 | ** non-numeric values. If both operands are non-numeric, the strcmp() library ** routine is used for the comparison. For a pure text comparison ** use OP_StrGe. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. */ case OP_Eq: case OP_Ne: case OP_Lt: case OP_Le: case OP_Gt: case OP_Ge: { Mem *pNos = &pTos[-1]; i64 c, v; int ft, fn; assert( pNos>=p->aStack ); ft = pTos->flags; fn = pNos->flags; if( (ft | fn) & MEM_Null ){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 | ** non-numeric values. If both operands are non-numeric, the strcmp() library ** routine is used for the comparison. For a pure text comparison ** use OP_StrGe. ** ** If P2 is zero, do not jump. Instead, push an integer 1 onto the ** stack if the jump would have been taken, or a 0 if not. Push a ** NULL if either operand was NULL. ** ** FIX ME: The comment for OP_Eq is up to date, but none of the others are. */ case OP_Eq: case OP_Ne: case OP_Lt: case OP_Le: case OP_Gt: case OP_Ge: { Mem *pNos; int flags; int res; char affinity; pNos = &pTos[-1]; flags = pTos->flags|pNos->flags; /* If either value is a NULL P2 is not zero, take the jump if the least ** significant byte of P1 is true. If P2 is zero, then push a NULL onto ** the stack. */ if( flags&MEM_Null ){ popStack(&pTos, 2); if( pOp->p2 ){ if( pOp->p1 ) pc = pOp->p2-1; }else{ pTos++; pTos->flags = MEM_Null; } break; } affinity = (pOp->p1>>8)&0xFF; if( !affinity && (flags&(MEM_Real|MEM_Int)) ){ affinity = SQLITE_AFF_NUMERIC; } if( affinity ){ applyAffinity(pNos, affinity); applyAffinity(pTos, affinity); } res = sqlite3MemCompare(pNos, pTos); switch( pOp->opcode ){ case OP_Eq: res = res==0; break; case OP_Ne: res = res!=0; break; case OP_Lt: res = res<0; break; case OP_Le: res = res<=0; break; case OP_Gt: res = res>0; break; default: res = res>=0; break; } popStack(&pTos, 2); if( pOp->p2 ){ if( res ){ pc = pOp->p2-1; } }else{ pTos++; pTos->flags = MEM_Int; pTos->i = res; } break; } #if 0 Mem *pNos = &pTos[-1]; i64 c, v; int ft, fn; assert( pNos>=p->aStack ); ft = pTos->flags; fn = pNos->flags; if( (ft | fn) & MEM_Null ){ |
︙ | ︙ | |||
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 | }else{ pTos++; pTos->i = c; pTos->flags = MEM_Int; } break; } /* INSERT NO CODE HERE! ** ** The opcode numbers are extracted from this source file by doing ** ** grep '^case OP_' vdbe.c | ... >opcodes.h ** ** The opcodes are numbered in the order that they appear in this file. | > | 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 | }else{ pTos++; pTos->i = c; pTos->flags = MEM_Int; } break; } #endif /* INSERT NO CODE HERE! ** ** The opcode numbers are extracted from this source file by doing ** ** grep '^case OP_' vdbe.c | ... >opcodes.h ** ** The opcodes are numbered in the order that they appear in this file. |
︙ | ︙ | |||
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 | if( cnt<0 ) cnt = -cnt; assert( &pTos[1-cnt] >= p->aStack ); for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} if( i>=cnt ) pc = pOp->p2-1; if( pOp->p1>0 ) popStack(&pTos, cnt); break; } /* Opcode: Column P1 P2 * ** ** Interpret the data that cursor P1 points to as a structure built using ** the MakeRecord instruction. (See the MakeRecord opcode for additional ** information about the format of the data.) Push onto the stack the value ** of the P2-th column contained in the data. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 | if( cnt<0 ) cnt = -cnt; assert( &pTos[1-cnt] >= p->aStack ); for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){} if( i>=cnt ) pc = pOp->p2-1; if( pOp->p1>0 ) popStack(&pTos, cnt); break; } /* Opcode: Class * * * ** ** Pop a single value from the top of the stack and push on one of the ** following strings, according to the storage class of the value just ** popped: ** ** "NULL", "INTEGER", "REAL", "TEXT", "BLOB" ** ** This opcode is probably temporary. */ case OP_Class: { int flags = pTos->flags; int i; struct { int mask; char * zClass; } classes[] = { {MEM_Null, "NULL"}, {MEM_Int, "INTEGER"}, {MEM_Real, "REAL"}, {MEM_Str, "TEXT"}, {MEM_Blob, "BLOB"} }; Release(pTos); pTos->flags = MEM_Str|MEM_Static; for(i=0; i<5; i++){ if( classes[i].mask&flags ){ pTos->z = classes[i].zClass; break; } } assert( i<5 ); break; } /* Opcode: Column P1 P2 * ** ** Interpret the data that cursor P1 points to as a structure built using ** the MakeRecord instruction. (See the MakeRecord opcode for additional ** information about the format of the data.) Push onto the stack the value ** of the P2-th column contained in the data. |
︙ | ︙ | |||
1954 1955 1956 1957 1958 1959 1960 | ** into the record header cache fields of the cursor. */ if( !pC->cacheValid ){ pC->payloadSize = payloadSize; if( zRec ){ zData = zRec; }else{ | | | | | 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 | ** into the record header cache fields of the cursor. */ if( !pC->cacheValid ){ pC->payloadSize = payloadSize; if( zRec ){ zData = zRec; }else{ /* We can assume that 10 bytes (maximum length of a varint) fits ** on the main page in all cases. */ int n = 10; if( payloadSize<10 ) n = payloadSize; if( pC->keyAsData ){ zData = (char *)sqlite3BtreeKeyFetch(pCrsr, n); }else{ zData = (char *)sqlite3BtreeDataFetch(pCrsr, n); } assert( zData ); } |
︙ | ︙ | |||
2148 2149 2150 2151 2152 2153 2154 | /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ nBytes = sqlite3VarintLen(nField); for(pRec=pData0; pRec<=pTos; pRec++){ u64 serial_type; if( zAffinity ){ | | | 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 | /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ nBytes = sqlite3VarintLen(nField); for(pRec=pData0; pRec<=pTos; pRec++){ u64 serial_type; if( zAffinity ){ applyAffinity(pRec, zAffinity[pRec-pData0]); } serial_type = sqlite3VdbeSerialType(pRec); nBytes += sqlite3VdbeSerialTypeLen(serial_type); nBytes += sqlite3VarintLen(serial_type); } if( nBytes>MAX_BYTES_PER_ROW ){ |
︙ | ︙ | |||
2270 2271 2272 2273 2274 2275 2276 | ** ** TODO: Figure out if the in-place coercion causes a problem for ** OP_MakeKey when P2 is 0 (used by DISTINCT). */ for(pRec=pData0; pRec<=pTos; pRec++){ u64 serial_type; if( zAffinity ){ | | | 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 | ** ** TODO: Figure out if the in-place coercion causes a problem for ** OP_MakeKey when P2 is 0 (used by DISTINCT). */ for(pRec=pData0; pRec<=pTos; pRec++){ u64 serial_type; if( zAffinity ){ applyAffinity(pRec, zAffinity[pRec-pData0]); }else{ applyAffinity(pRec, SQLITE_SO_NUM); } if( pRec->flags&MEM_Null ){ containsNull = 1; } serial_type = sqlite3VdbeSerialType(pRec); |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
329 330 331 332 333 334 335 | u64 sqlite3VdbeSerialType(const Mem *); int sqlite3VdbeSerialPut(unsigned char *, const Mem *); int sqlite3VdbeSerialGet(const unsigned char *, u64, Mem *); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int, int*); int sqlite3VdbeIdxRowid(BtCursor *, i64 *); | > | 329 330 331 332 333 334 335 336 | u64 sqlite3VdbeSerialType(const Mem *); int sqlite3VdbeSerialPut(unsigned char *, const Mem *); int sqlite3VdbeSerialGet(const unsigned char *, u64, Mem *); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int, int*); int sqlite3VdbeIdxRowid(BtCursor *, i64 *); int sqlite3MemCompare(Mem *, Mem *); |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1313 1314 1315 1316 1317 1318 1319 | ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers ** and reals) sorted numerically, followed by text ordered by memcmp() and ** finally blob's ordered by memcmp(). ** ** Two NULL values are considered equal by this function. */ | | | 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 | ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers ** and reals) sorted numerically, followed by text ordered by memcmp() and ** finally blob's ordered by memcmp(). ** ** Two NULL values are considered equal by this function. */ int sqlite3MemCompare(Mem *pMem1, Mem *pMem2){ int rc; int combined_flags = pMem1->flags|pMem2->flags; /* If one value is NULL, it is less than the other. If both values ** are NULL, return 0. */ if( combined_flags&MEM_Null ){ |
︙ | ︙ | |||
1426 1427 1428 1429 1430 1431 1432 | ** data to go with the serial type just read. This assert may fail if ** the file is corrupted. Then read the value from each key into mem1 ** and mem2 respectively. */ offset1 += sqlite3VdbeSerialGet(&aKey1[offset1], serial_type1, &mem1); offset2 += sqlite3VdbeSerialGet(&aKey2[offset2], serial_type2, &mem2); | | | 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 | ** data to go with the serial type just read. This assert may fail if ** the file is corrupted. Then read the value from each key into mem1 ** and mem2 respectively. */ offset1 += sqlite3VdbeSerialGet(&aKey1[offset1], serial_type1, &mem1); offset2 += sqlite3VdbeSerialGet(&aKey2[offset2], serial_type2, &mem2); rc = sqlite3MemCompare(&mem1, &mem2); if( mem1.flags&MEM_Dyn ){ sqliteFree(mem1.z); } if( mem2.flags&MEM_Dyn ){ sqliteFree(mem2.z); } if( rc!=0 ){ |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. ** ** $Id: where.c,v 1.94 2004/05/16 11:15:41 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by an AND operator. |
︙ | ︙ | |||
794 795 796 797 798 799 800 | } pLevel->iMem = pParse->nMem++; cont = pLevel->cont = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3); sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, brk); sqlite3VdbeAddOp(v, OP_MakeKey, nColumn, 0); | | | 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 | } pLevel->iMem = pParse->nMem++; cont = pLevel->cont = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3); sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, brk); sqlite3VdbeAddOp(v, OP_MakeKey, nColumn, 0); sqlite3IndexAffinityStr(v, pIdx); sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); if( nColumn==pIdx->nColumn || pLevel->bRev ){ testOp = OP_IdxGT; }else{ testOp = OP_IdxGE; } if( pLevel->bRev ){ |
︙ | ︙ | |||
999 1000 1001 1002 1003 1004 1005 | if( testOp!=OP_Noop ){ int nCol = nEqColumn + (score & 1); pLevel->iMem = pParse->nMem++; sqlite3VdbeAddOp(v, OP_NotNull, -nCol, sqlite3VdbeCurrentAddr(v)+3); sqlite3VdbeAddOp(v, OP_Pop, nCol, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, brk); sqlite3VdbeAddOp(v, OP_MakeKey, nCol, 0); | | | 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 | if( testOp!=OP_Noop ){ int nCol = nEqColumn + (score & 1); pLevel->iMem = pParse->nMem++; sqlite3VdbeAddOp(v, OP_NotNull, -nCol, sqlite3VdbeCurrentAddr(v)+3); sqlite3VdbeAddOp(v, OP_Pop, nCol, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, brk); sqlite3VdbeAddOp(v, OP_MakeKey, nCol, 0); sqlite3IndexAffinityStr(v, pIdx); if( pLevel->bRev ){ sqlite3VdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); if( !geFlag ){ sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); } }else{ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
︙ | ︙ | |||
1055 1056 1057 1058 1059 1060 1061 | } if( nEqColumn>0 || (score&2)!=0 ){ int nCol = nEqColumn + ((score&2)!=0); sqlite3VdbeAddOp(v, OP_NotNull, -nCol, sqlite3VdbeCurrentAddr(v)+3); sqlite3VdbeAddOp(v, OP_Pop, nCol, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, brk); sqlite3VdbeAddOp(v, OP_MakeKey, nCol, 0); | | | 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 | } if( nEqColumn>0 || (score&2)!=0 ){ int nCol = nEqColumn + ((score&2)!=0); sqlite3VdbeAddOp(v, OP_NotNull, -nCol, sqlite3VdbeCurrentAddr(v)+3); sqlite3VdbeAddOp(v, OP_Pop, nCol, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, brk); sqlite3VdbeAddOp(v, OP_MakeKey, nCol, 0); sqlite3IndexAffinityStr(v, pIdx); if( pLevel->bRev ){ pLevel->iMem = pParse->nMem++; sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); testOp = OP_IdxLT; }else{ sqlite3VdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); if( !geFlag ){ |
︙ | ︙ |
Changes to test/types.test.
1 2 3 4 5 6 7 8 9 10 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** | | > > < | > > > > > > > > > > > > > > > > | | | > | > > > > | > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | < > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. Specfically # it tests that the different storage classes (integer, real, text etc.) # all work correctly. # # $Id: types.test,v 1.2 2004/05/16 11:15:42 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Tests in this file are organized roughly as follows: # # types-1.*.*: Test that values are stored using the expected storage # classes when various forms of literals are inserted into # columns with different affinities. # types-1.1.*: INSERT INTO <table> VALUES(...) # types-1.2.*: INSERT INTO <table> SELECT... # types-1.3.*: UPDATE <table> SET... # # types-2.*.*: Check that values can be stored and retrieving using the # various storage classes. # types-2.1.*: INTEGER # types-2.2.*: REAL # types-2.3.*: NULL # types-2.4.*: TEXT # types-2.5.*: Records with a few different storage classes. # # types-3.*: Test that the '=' operator respects manifest types. # # Create a table with one column for each type of affinity do_test types-1.1.0 { execsql { CREATE TABLE t1(i integer, n numeric, t text, o); } } {} # Each element of the following list represents one test case. # # The first value of each sub-list is an SQL literal. The following # four value are the storage classes that would be used if the # literal were inserted into a column with affinity INTEGER, NUMERIC, TEXT # or NONE, respectively. set values [list \ [list 5.0 INTEGER REAL TEXT REAL] \ [list 5 INTEGER INTEGER TEXT INTEGER] \ [list '5.0' INTEGER REAL TEXT TEXT] \ [list '5' INTEGER INTEGER TEXT TEXT] \ [list 'abc' TEXT TEXT TEXT TEXT] \ [list NULL NULL NULL NULL NULL] \ ] # This code tests that the storage classes specified above (in the $values # table) are correctly assigned when values are inserted using a statement # of the form: # # INSERT INTO <table> VALUE(<values>); # set tnum 1 foreach val $values { set lit [lindex $val 0] execsql "DELETE FROM t1;" execsql "INSERT INTO t1 VALUES($lit, $lit, $lit, $lit);" do_test types-1.1.$tnum { execsql { SELECT classof(i), classof(n), classof(t), classof(o) FROM t1; } } [lrange $val 1 end] incr tnum } # This code tests that the storage classes specified above (in the $values # table) are correctly assigned when values are inserted using a statement # of the form: # # INSERT INTO t1 SELECT .... # set tnum 1 foreach val $values { set lit [lindex $val 0] execsql "DELETE FROM t1;" execsql "INSERT INTO t1 SELECT $lit, $lit, $lit, $lit;" do_test types-1.2.$tnum { execsql { SELECT classof(i), classof(n), classof(t), classof(o) FROM t1; } } [lrange $val 1 end] incr tnum } # This code tests that the storage classes specified above (in the $values # table) are correctly assigned when values are inserted using a statement # of the form: # # UPDATE <table> SET <column> = <value>; # set tnum 1 foreach val $values { set lit [lindex $val 0] execsql "UPDATE t1 SET i = $lit, n = $lit, t = $lit, o = $lit;" do_test types-1.3.$tnum { execsql { SELECT classof(i), classof(n), classof(t), classof(o) FROM t1; } } [lrange $val 1 end] incr tnum } execsql { DROP TABLE t1; } # Open the table with root-page $rootpage at the btree # level. Return a list that is the length of each record # in the table, in the tables default scanning order. proc record_sizes {rootpage} { set bt [btree_open test.db 10 0] set c [btree_cursor $bt $rootpage 0] btree_first $c while 1 { lappend res [btree_payload_size $c] if {[btree_next $c]} break } btree_close_cursor $c btree_close $bt set res } # Create a table and insert some 1-byte integers. Make sure they # can be read back OK. These should be 3 byte records. do_test types-2.1.1 { execsql { CREATE TABLE t1(a integer); INSERT INTO t1 VALUES(0); INSERT INTO t1 VALUES(120); INSERT INTO t1 VALUES(-120); } } {} do_test types-2.1.2 { execsql { SELECT a FROM t1; } } {0 120 -120} # Try some 2-byte integers (4 byte records) do_test types-2.1.3 { execsql { INSERT INTO t1 VALUES(30000); INSERT INTO t1 VALUES(-30000); } } {} do_test types-2.1.4 { execsql { SELECT a FROM t1; } } {0 120 -120 30000 -30000} # 4-byte integers (6 byte records) do_test types-2.1.5 { execsql { INSERT INTO t1 VALUES(2100000000); INSERT INTO t1 VALUES(-2100000000); } } {} do_test types-2.1.6 { execsql { SELECT a FROM t1; } } {0 120 -120 30000 -30000 2100000000 -2100000000} # 8-byte integers (10 byte records) do_test types-2.1.7 { execsql { INSERT INTO t1 VALUES(9000000*1000000*1000000); INSERT INTO t1 VALUES(-9000000*1000000*1000000); } } {} do_test types-2.1.8 { execsql { SELECT a FROM t1; } } [list 0 120 -120 30000 -30000 2100000000 -2100000000 \ 9000000000000000000 -9000000000000000000] # Check that all the record sizes are as we expected. do_test types-2.1.9 { set root [db eval {select rootpage from sqlite_master where name = 't1'}] record_sizes $root } {3 3 3 4 4 6 6 10 10} # Insert some reals. These should be 10 byte records. do_test types-2.2.1 { execsql { CREATE TABLE t2(a float); INSERT INTO t2 VALUES(0.0); INSERT INTO t2 VALUES(12345.678); INSERT INTO t2 VALUES(-12345.678); } } {} do_test types-2.2.2 { execsql { SELECT a FROM t2; } } {0 12345.678 -12345.678} # Check that all the record sizes are as we expected. do_test types-2.2.3 { set root [db eval {select rootpage from sqlite_master where name = 't2'}] record_sizes $root } {10 10 10} # Insert a NULL. This should be a two byte record. do_test types-2.3.1 { execsql { CREATE TABLE t3(a nullvalue); INSERT INTO t3 VALUES(NULL); } } {} do_test types-2.3.2 { execsql { SELECT a ISNULL FROM t3; } } {1} # Check that all the record sizes are as we expected. do_test types-2.3.3 { set root [db eval {select rootpage from sqlite_master where name = 't3'}] record_sizes $root } {2} # Insert a couple of strings. do_test types-2.4.1 { set string10 abcdefghij set string500 [string repeat $string10 50] set string500000 [string repeat $string10 50000] execsql " CREATE TABLE t4(a string); INSERT INTO t4 VALUES('$string10'); INSERT INTO t4 VALUES('$string500'); INSERT INTO t4 VALUES('$string500000'); " } {} do_test types-2.4.2 { execsql { SELECT a FROM t4; } } [list $string10 $string500 $string500000] # Check that all the record sizes are as we expected. do_test types-2.4.3 { set root [db eval {select rootpage from sqlite_master where name = 't4'}] record_sizes $root } {13 504 500005} do_test types-2.5.1 { execsql { DROP TABLE t1; DROP TABLE t2; DROP TABLE t3; DROP TABLE t4; CREATE TABLE t1(a, b, c); } } {} do_test types-2.5.2 { set string10 abcdefghij set string500 [string repeat $string10 50] set string500000 [string repeat $string10 50000] execsql "INSERT INTO t1 VALUES(NULL, '$string10', 4000);" execsql "INSERT INTO t1 VALUES('$string500', 4000, NULL);" execsql "INSERT INTO t1 VALUES(4000, NULL, '$string500000');" } {} do_test types-2.5.3 { execsql { SELECT * FROM t1; } } [list {} $string10 4000 $string500 4000 {} 4000 {} $string500000] finish_test |
Added test/types2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The focus # of this file is testing the interaction of manifest types, type affinity # and comparison expressions. # # $Id: types2.test,v 1.1 2004/05/16 11:15:42 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Tests in this file are organized roughly as follows: # # types2-1.*: The '=' operator in the absence of an index. # types2-2.*: The '=' operator implemented using an index. # types2-2.*: The '<' operator implemented using an index. # types2-3.*: The '>' operator in the absense of an index. # execsql { CREATE TABLE t1( i1 INTEGER, i2 INTEGER, n1 NUMERIC, n2 NUMERIC, t1 TEXT, t2 TEXT, o1, o2 ); INSERT INTO t1 VALUES(NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); } proc test_bool {testname vars expr res} { if { $vars != "" } { execsql "UPDATE t1 SET $vars" } foreach {t e r} [list $testname $expr $res] {} do_test $t.1 "execsql {SELECT $e FROM t1}" $r do_test $t.2 "execsql {SELECT 1 FROM t1 WHERE $expr}" [expr $r?"1":""] do_test $t.3 "execsql {SELECT 1 FROM t1 WHERE NOT ($e)}" [expr $r?"":"1"] } # Compare literals against literals test_bool types2-1.1 "" {500 = 500.0} 1 test_bool types2-1.2 "" {'500' = 500.0} 1 test_bool types2-1.3 "" {500 = '500.0'} 1 test_bool types2-1.4 "" {'500' = '500.0'} 0 # Compare literals against a column with TEXT affinity test_bool types2-1.5 {t1=500} {500 = t1} 1 test_bool types2-1.6 {t1=500} {'500' = t1} 1 test_bool types2-1.7 {t1=500} {500.0 = t1} 0 test_bool types2-1.8 {t1=500} {'500.0' = t1} 0 test_bool types2-1.9 {t1='500'} {500 = t1} 1 test_bool types2-1.10 {t1='500'} {'500' = t1} 1 test_bool types2-1.11 {t1='500'} {500.0 = t1} 0 test_bool types2-1.12 {t1='500'} {'500.0' = t1} 0 # Compare literals against a column with NUMERIC affinity test_bool types2-1.13 {n1=500} {500 = n1} 1 test_bool types2-1.14 {n1=500} {'500' = n1} 1 test_bool types2-1.15 {n1=500} {500.0 = n1} 1 test_bool types2-1.16 {n1=500} {'500.0' = n1} 1 test_bool types2-1.17 {n1='500'} {500 = n1} 1 test_bool types2-1.18 {n1='500'} {'500' = n1} 1 test_bool types2-1.19 {n1='500'} {500.0 = n1} 1 test_bool types2-1.20 {n1='500'} {'500.0' = n1} 1 # Compare literals against a column with affinity NONE test_bool types2-1.21 {o1=500} {500 = o1} 1 test_bool types2-1.22 {o1=500} {'500' = o1} 0 test_bool types2-1.23 {o1=500} {500.0 = o1} 1 test_bool types2-1.24 {o1=500} {'500.0' = o1} 0 test_bool types2-1.25 {o1='500'} {500 = o1} 0 test_bool types2-1.26 {o1='500'} {'500' = o1} 1 test_bool types2-1.27 {o1='500'} {500.0 = o1} 0 test_bool types2-1.28 {o1='500'} {'500.0' = o1} 0 set vals [list 10 10.0 '10' '10.0' 20 20.0 '20' '20.0' 30 30.0 '30' '30.0'] # 1 2 3 4 5 6 7 8 9 10 11 12 execsql { CREATE TABLE t2(i INTEGER, n NUMERIC, t TEXT, o); CREATE INDEX t2i1 ON t2(i); CREATE INDEX t2i2 ON t2(n); CREATE INDEX t2i3 ON t2(t); CREATE INDEX t2i4 ON t2(o); } foreach v $vals { execsql "INSERT INTO t2 VALUES($v, $v, $v, $v);" } proc test_boolset {testname where set} { set ::tb_sql "SELECT rowid FROM t2 WHERE $where" do_test $testname { lsort -integer [execsql $::tb_sql] } $set } test_boolset types2-2.1 {i = 10} {1 2 3 4} test_boolset types2-2.2 {i = 10.0} {1 2 3 4} test_boolset types2-2.3 {i = '10'} {1 2 3 4} test_boolset types2-2.4 {i = '10.0'} {1 2 3 4} test_boolset types2-2.5 {n = 20} {5 6 7 8} test_boolset types2-2.6 {n = 20.0} {5 6 7 8} test_boolset types2-2.7 {n = '20'} {5 6 7 8} test_boolset types2-2.8 {n = '20.0'} {5 6 7 8} test_boolset types2-2.9 {t = 20} {5 7} test_boolset types2-2.10 {t = 20.0} {6 8} test_boolset types2-2.11 {t = '20'} {5 7} test_boolset types2-2.12 {t = '20.0'} {6 8} test_boolset types2-2.10 {o = 30} {9 10} test_boolset types2-2.11 {o = 30.0} {9 10} test_boolset types2-2.12 {o = '30'} 11 test_boolset types2-2.13 {o = '30.0'} 12 test_boolset types2-3.1 {i < 20} {1 2 3 4} test_boolset types2-3.2 {i < 20.0} {1 2 3 4} test_boolset types2-3.3 {i < '20'} {1 2 3 4} test_boolset types2-3.4 {i < '20.0'} {1 2 3 4} test_boolset types2-3.1 {n < 20} {1 2 3 4} test_boolset types2-3.2 {n < 20.0} {1 2 3 4} test_boolset types2-3.3 {n < '20'} {1 2 3 4} test_boolset types2-3.4 {n < '20.0'} {1 2 3 4} test_boolset types2-3.1 {t < 20} {1 2 3 4} test_boolset types2-3.2 {t < 20.0} {1 2 3 4 5 7} test_boolset types2-3.3 {t < '20'} {1 2 3 4} test_boolset types2-3.4 {t < '20.0'} {1 2 3 4 5 7} test_boolset types2-3.1 {o < 20} {1 2} test_boolset types2-3.2 {o < 20.0} {1 2} test_boolset types2-3.3 {o < '20'} {1 2 3 4 5 6 9 10} test_boolset types2-3.3 {o < '20.0'} {1 2 3 4 5 6 7 9 10} # Compare literals against literals test_bool types2-4.1 "" {500 > 60.0} 1 test_bool types2-4.2 "" {'500' > 60.0} 1 test_bool types2-4.3 "" {500 > '60.0'} 1 test_bool types2-4.4 "" {'500' > '60.0'} 0 # Compare literals against a column with TEXT affinity test_bool types2-4.5 {t1=500.0} {t1 > 500} 1 test_bool types2-4.6 {t1=500.0} {t1 > '500' } 1 test_bool types2-4.7 {t1=500.0} {t1 > 500.0 } 0 test_bool types2-4.8 {t1=500.0} {t1 > '500.0' } 0 test_bool types2-4.9 {t1='500.0'} {t1 > 500 } 1 test_bool types2-4.10 {t1='500.0'} {t1 > '500' } 1 test_bool types2-4.11 {t1='500.0'} {t1 > 500.0 } 0 test_bool types2-4.12 {t1='500.0'} {t1 > '500.0' } 0 # Compare literals against a column with NUMERIC affinity test_bool types2-4.13 {n1=400} {500 > n1} 1 test_bool types2-4.14 {n1=400} {'500' > n1} 1 test_bool types2-4.15 {n1=400} {500.0 > n1} 1 test_bool types2-4.16 {n1=400} {'500.0' > n1} 1 test_bool types2-4.17 {n1='400'} {500 > n1} 1 test_bool types2-4.18 {n1='400'} {'500' > n1} 1 test_bool types2-4.19 {n1='400'} {500.0 > n1} 1 test_bool types2-4.20 {n1='400'} {'500.0' > n1} 1 # Compare literals against a column with affinity NONE test_bool types2-4.21 {o1=500} {500 > o1} 0 test_bool types2-4.22 {o1=500} {'500' > o1} 1 test_bool types2-4.23 {o1=500} {500.0 > o1} 0 test_bool types2-4.24 {o1=500} {'500.0' > o1} 1 test_bool types2-4.25 {o1='500'} {500 > o1} 0 test_bool types2-4.26 {o1='500'} {'500' > o1} 0 test_bool types2-4.27 {o1='500'} {500.0 > o1} 0 test_bool types2-4.28 {o1='500'} {'500.0' > o1} 1 finish_test |