Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge all recent changes from trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | threads |
Files: | files | file ages | folders |
SHA1: |
a353a8515fb2eff86042d0c33e39772f |
User & Date: | drh 2014-08-06 02:03:35.291 |
Context
2014-08-14
| ||
14:02 | Merge the pre-3.8.6 changes into the threads branch. (check-in: a608fd1d52 user: drh tags: threads) | |
2014-08-06
| ||
02:03 | Merge all recent changes from trunk. (check-in: a353a8515f user: drh tags: threads) | |
01:08 | Fix typos in the opcode documentation. Comment changes only. No changes to code. (check-in: 717245d487 user: drh tags: trunk) | |
2014-07-30
| ||
18:47 | Add a new sqlite3FaultSim() call to vdbePmaReaderSeek() to facilitate tests of error handling in the sorter. (check-in: 655d8cfc75 user: drh tags: threads) | |
Changes
Changes to src/analyze.c.
︙ | ︙ | |||
1125 1126 1127 1128 1129 1130 1131 | ** if( idx(1) != regPrev(1) ) goto chng_addr_1 ** ... ** regChng = N ** goto endDistinctTest */ sqlite3VdbeAddOp0(v, OP_Goto); addrNextRow = sqlite3VdbeCurrentAddr(v); | | | 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 | ** if( idx(1) != regPrev(1) ) goto chng_addr_1 ** ... ** regChng = N ** goto endDistinctTest */ sqlite3VdbeAddOp0(v, OP_Goto); addrNextRow = sqlite3VdbeCurrentAddr(v); if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ /* For a single-column UNIQUE index, once we have found a non-NULL ** row, we know that all the rest will be distinct, so skip ** subsequent distinctness tests. */ sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); VdbeCoverage(v); } for(i=0; i<nColTest; i++){ |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
158 159 160 161 162 163 164 | } /* If the client is reading or writing an index and the schema is ** not loaded, then it is too difficult to actually check to see if ** the correct locks are held. So do not bother - just return true. ** This case does not come up very often anyhow. */ | | | 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | } /* If the client is reading or writing an index and the schema is ** not loaded, then it is too difficult to actually check to see if ** the correct locks are held. So do not bother - just return true. ** This case does not come up very often anyhow. */ if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ return 1; } /* Figure out the root-page that the lock should be held on. For table ** b-trees, this is just the root page of the b-tree being read or ** written. For index b-trees, it is the root page of the associated ** table. */ |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
2126 2127 2128 2129 2130 2131 2132 | assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(db, pSelTab); assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); | | | 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 | assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(db, pSelTab); assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); pTable->pSchema->schemaFlags |= DB_UnresetViews; }else{ pTable->nCol = 0; nErr++; } sqlite3SelectDelete(db, pSel); } else { nErr++; |
︙ | ︙ | |||
2703 2704 2705 2706 2707 2708 2709 | if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); assert( pKey!=0 || db->mallocFailed || pParse->nErr ); | | | 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 | if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); assert( pKey!=0 || db->mallocFailed || pParse->nErr ); if( IsUniqueIndex(pIndex) && pKey!=0 ){ int j2 = sqlite3VdbeCurrentAddr(v) + 3; sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); addr2 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); }else{ |
︙ | ︙ | |||
3100 3101 3102 3103 3104 3105 3106 | ** If there are different collating sequences or if the columns of ** the constraint occur in different orders, then the constraints are ** considered distinct and both result in separate indices. */ Index *pIdx; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int k; | | | | 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 | ** If there are different collating sequences or if the columns of ** the constraint occur in different orders, then the constraints are ** considered distinct and both result in separate indices. */ Index *pIdx; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int k; assert( IsUniqueIndex(pIdx) ); assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); assert( IsUniqueIndex(pIndex) ); if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; for(k=0; k<pIdx->nKeyCol; k++){ const char *z1; const char *z2; if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; z1 = pIdx->azColl[k]; |
︙ | ︙ | |||
3293 3294 3295 3296 3297 3298 3299 | ** 6 and each subsequent value (if any) is 5. */ memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ a[i] = 23; assert( 23==sqlite3LogEst(5) ); } assert( 0==sqlite3LogEst(1) ); | | | 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 | ** 6 and each subsequent value (if any) is 5. */ memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ a[i] = 23; assert( 23==sqlite3LogEst(5) ); } assert( 0==sqlite3LogEst(1) ); if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; } /* ** This routine will drop an existing named index. This routine ** implements the DROP INDEX statement. */ void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ |
︙ | ︙ |
Changes to src/callback.c.
︙ | ︙ | |||
443 444 445 446 447 448 449 | for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqlite3DeleteTable(0, pTab); } sqlite3HashClear(&temp1); sqlite3HashClear(&pSchema->fkeyHash); pSchema->pSeqTab = 0; | | | | 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqlite3DeleteTable(0, pTab); } sqlite3HashClear(&temp1); sqlite3HashClear(&pSchema->fkeyHash); pSchema->pSeqTab = 0; if( pSchema->schemaFlags & DB_SchemaLoaded ){ pSchema->iGeneration++; pSchema->schemaFlags &= ~DB_SchemaLoaded; } } /* ** Find and return the schema associated with a BTree. Create ** a new one if necessary. */ |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 | if( op==TK_REGISTER ) op = p->op2; switch( op ){ case TK_INTEGER: case TK_STRING: case TK_FLOAT: case TK_BLOB: return 0; default: return 1; } } /* ** Return TRUE if the given expression is a constant which would be | > > > | 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 | if( op==TK_REGISTER ) op = p->op2; switch( op ){ case TK_INTEGER: case TK_STRING: case TK_FLOAT: case TK_BLOB: return 0; case TK_COLUMN: assert( p->pTab!=0 ); return p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0; default: return 1; } } /* ** Return TRUE if the given expression is a constant which would be |
︙ | ︙ | |||
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 | ** address of the new instruction. */ int sqlite3CodeOnce(Parse *pParse){ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); } /* ** This function is used by the implementation of the IN (...) operator. ** The pX parameter is the expression on the RHS of the IN operator, which ** might be either a list of expressions or a subquery. ** ** The job of this routine is to find or create a b-tree object that can ** be used either to test for membership in the RHS set or to iterate through ** all members of the RHS set, skipping duplicates. ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > | > > > > > > > | | | | | > > > > > > > | < > | | | | < < | < < < < | < | < < < | | > | 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 | ** address of the new instruction. */ int sqlite3CodeOnce(Parse *pParse){ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); } /* ** Generate code that checks the left-most column of index table iCur to see if ** it contains any NULL entries. Cause the register at regHasNull to be set ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull ** to be set to NULL if iCur contains one or more NULL values. */ static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ int j1; sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); VdbeComment((v, "first_entry_in(%d)", iCur)); sqlite3VdbeJumpHere(v, j1); } #ifndef SQLITE_OMIT_SUBQUERY /* ** The argument is an IN operator with a list (not a subquery) on the ** right-hand side. Return TRUE if that list is constant. */ static int sqlite3InRhsIsConstant(Expr *pIn){ Expr *pLHS; int res; assert( !ExprHasProperty(pIn, EP_xIsSelect) ); pLHS = pIn->pLeft; pIn->pLeft = 0; res = sqlite3ExprIsConstant(pIn); pIn->pLeft = pLHS; return res; } #endif /* ** This function is used by the implementation of the IN (...) operator. ** The pX parameter is the expression on the RHS of the IN operator, which ** might be either a list of expressions or a subquery. ** ** The job of this routine is to find or create a b-tree object that can ** be used either to test for membership in the RHS set or to iterate through ** all members of the RHS set, skipping duplicates. ** ** A cursor is opened on the b-tree object that is the RHS of the IN operator ** and pX->iTable is set to the index of that cursor. ** ** The returned value of this function indicates the b-tree type, as follows: ** ** IN_INDEX_ROWID - The cursor was opened on a database table. ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. ** IN_INDEX_EPH - The cursor was opened on a specially created and ** populated epheremal table. ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be ** implemented as a sequence of comparisons. ** ** An existing b-tree might be used if the RHS expression pX is a simple ** subquery such as: ** ** SELECT <column> FROM <table> ** ** If the RHS of the IN operator is a list or a more complex subquery, then ** an ephemeral table might need to be generated from the RHS and then ** pX->iTable made to point to the ephermeral table instead of an ** existing table. ** ** The inFlags parameter must contain exactly one of the bits ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a ** fast membership test. When the IN_INDEX_LOOP bit is set, the ** IN index will be used to loop over all values of the RHS of the ** IN operator. ** ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate ** through the set members) then the b-tree must not contain duplicates. ** An epheremal table must be used unless the selected <column> is guaranteed ** to be unique - either because it is an INTEGER PRIMARY KEY or it ** has a UNIQUE constraint or UNIQUE index. ** ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used ** for fast set membership tests) then an epheremal table must ** be used unless <column> is an INTEGER PRIMARY KEY or an index can ** be found with <column> as its left-most column. ** ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and ** if the RHS of the IN operator is a list (not a subquery) then this ** routine might decide that creating an ephemeral b-tree for membership ** testing is too expensive and return IN_INDEX_NOOP. In that case, the ** calling routine should implement the IN operator using a sequence ** of Eq or Ne comparison operations. ** ** When the b-tree is being used for membership tests, the calling function ** might need to know whether or not the RHS side of the IN operator ** contains a NULL. If prRhsHasNull is not a NULL pointer and ** if there is any chance that the (...) might contain a NULL value at ** runtime, then a register is allocated and the register number written ** to *prRhsHasNull. If there is no chance that the (...) contains a ** NULL value, then *prRhsHasNull is left unchanged. ** ** If a register is allocated and its location stored in *prRhsHasNull, then ** the value in that register will be NULL if the b-tree contains one or more ** NULL values, and it will be some non-NULL value if the b-tree contains no ** NULL values. */ #ifndef SQLITE_OMIT_SUBQUERY int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ Select *p; /* SELECT to the right of IN operator */ int eType = 0; /* Type of RHS table. IN_INDEX_* */ int iTab = pParse->nTab++; /* Cursor of the RHS table */ int mustBeUnique; /* True if RHS must be unique */ Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ assert( pX->op==TK_IN ); mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; /* Check to see if an existing table or index can be used to ** satisfy the query. This is preferable to generating a new ** ephemeral table. */ p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ |
︙ | ︙ | |||
1600 1601 1602 1603 1604 1605 1606 | ** it is not, it is not possible to use any index. */ int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ if( (pIdx->aiColumn[0]==iCol) && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq | | | | | > > > > > > > > > > > > > > > > | | < < < > > | 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 | ** it is not, it is not possible to use any index. */ int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ if( (pIdx->aiColumn[0]==iCol) && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) ){ int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "%s", pIdx->zName)); assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ *prRhsHasNull = ++pParse->nMem; sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); } sqlite3VdbeJumpHere(v, iAddr); } } } } /* If no preexisting index is available for the IN clause ** and IN_INDEX_NOOP is an allowed reply ** and the RHS of the IN operator is a list, not a subquery ** and the RHS is not contant or has two or fewer terms, ** then it is not worth creating an ephermeral table to evaluate ** the IN operator so return IN_INDEX_NOOP. */ if( eType==0 && (inFlags & IN_INDEX_NOOP_OK) && !ExprHasProperty(pX, EP_xIsSelect) && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) ){ eType = IN_INDEX_NOOP; } if( eType==0 ){ /* Could not find an existing table or index to use as the RHS b-tree. ** We will have to generate an ephemeral table to do the job. */ u32 savedNQueryLoop = pParse->nQueryLoop; int rMayHaveNull = 0; eType = IN_INDEX_EPH; if( inFlags & IN_INDEX_LOOP ){ pParse->nQueryLoop = 0; if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ eType = IN_INDEX_ROWID; } }else if( prRhsHasNull ){ *prRhsHasNull = rMayHaveNull = ++pParse->nMem; } sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); pParse->nQueryLoop = savedNQueryLoop; }else{ pX->iTable = iTab; } return eType; |
︙ | ︙ | |||
1664 1665 1666 1667 1668 1669 1670 | ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference ** to some integer key column of a table B-Tree. In this case, use an ** intkey B-Tree to store the set of IN(...) values instead of the usual ** (slower) variable length keys B-Tree. ** ** If rMayHaveNull is non-zero, that means that the operation is an IN ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. | < < | | | < < < < | | | | < < < < | 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 | ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference ** to some integer key column of a table B-Tree. In this case, use an ** intkey B-Tree to store the set of IN(...) values instead of the usual ** (slower) variable length keys B-Tree. ** ** If rMayHaveNull is non-zero, that means that the operation is an IN ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. ** All this routine does is initialize the register given by rMayHaveNull ** to NULL. Calling routines will take care of changing this register ** value to non-NULL if the RHS is NULL-free. ** ** For a SELECT or EXISTS operator, return the register that holds the ** result. For IN operators or if an error occurs, the return value is 0. */ #ifndef SQLITE_OMIT_SUBQUERY int sqlite3CodeSubselect( Parse *pParse, /* Parsing context */ Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ int isRowid /* If true, LHS of IN operator is a rowid */ ){ int jmpIfDynamic = -1; /* One-time test address */ int rReg = 0; /* Register storing resulting */ Vdbe *v = sqlite3GetVdbe(pParse); if( NEVER(v==0) ) return 0; sqlite3ExprCachePush(pParse); /* This code must be run in its entirety every time it is encountered ** if any of the following is true: ** ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); } #ifndef SQLITE_OMIT_EXPLAIN if( pParse->explain==2 ){ char *zMsg = sqlite3MPrintf( pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId ); sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); } #endif switch( pExpr->op ){ case TK_IN: { char affinity; /* Affinity of the LHS of the IN */ int addr; /* Address of OP_OpenEphemeral instruction */ Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ KeyInfo *pKeyInfo = 0; /* Key information */ affinity = sqlite3ExprAffinity(pLeft); /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' ** expression it is handled the same way. An ephemeral table is ** filled with single-field index keys representing the results ** from the SELECT or the <exprlist>. ** |
︙ | ︙ | |||
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 | if( ExprHasProperty(pExpr, EP_xIsSelect) ){ /* Case 1: expr IN (SELECT ...) ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ SelectDest dest; ExprList *pEList; assert( !isRowid ); sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); dest.affSdst = (u8)affinity; assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); | > | > > | | | 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 | if( ExprHasProperty(pExpr, EP_xIsSelect) ){ /* Case 1: expr IN (SELECT ...) ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ Select *pSelect = pExpr->x.pSelect; SelectDest dest; ExprList *pEList; assert( !isRowid ); sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); dest.affSdst = (u8)affinity; assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); pSelect->iLimit = 0; testcase( pSelect->selFlags & SF_Distinct ); pSelect->selFlags &= ~SF_Distinct; testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ if( sqlite3Select(pParse, pSelect, &dest) ){ sqlite3KeyInfoUnref(pKeyInfo); return 0; } pEList = pSelect->pEList; assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ assert( pEList!=0 ); assert( pEList->nExpr>0 ); assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pEList->a[0].pExpr); }else if( ALWAYS(pExpr->x.pList!=0) ){ |
︙ | ︙ | |||
1794 1795 1796 1797 1798 1799 1800 | assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); } /* Loop through each expression in <exprlist>. */ r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempReg(pParse); | | | | | | 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 | assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); } /* Loop through each expression in <exprlist>. */ r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempReg(pParse); if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ Expr *pE2 = pItem->pExpr; int iValToIns; /* If the expression is not constant then we will need to ** disable the test that was generated above that makes sure ** this code only executes once. Because for a non-constant ** expression we need to rerun this code each time. */ if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ sqlite3VdbeChangeToNoop(v, jmpIfDynamic); jmpIfDynamic = -1; } /* Evaluate the expression and insert it into the temp table */ if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); }else{ r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); |
︙ | ︙ | |||
1876 1877 1878 1879 1880 1881 1882 | } rReg = dest.iSDParm; ExprSetVVAProperty(pExpr, EP_NoReduce); break; } } | > > > | > | | | 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 | } rReg = dest.iSDParm; ExprSetVVAProperty(pExpr, EP_NoReduce); break; } } if( rHasNullFlag ){ sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); } if( jmpIfDynamic>=0 ){ sqlite3VdbeJumpHere(v, jmpIfDynamic); } sqlite3ExprCachePop(pParse); return rReg; } #endif /* SQLITE_OMIT_SUBQUERY */ #ifndef SQLITE_OMIT_SUBQUERY /* ** Generate code for an IN expression. ** ** x IN (SELECT ...) ** x IN (value, value, ...) ** ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) ** is an array of zero or more values. The expression is true if the LHS is ** contained within the RHS. The value of the expression is unknown (NULL) ** if the LHS is NULL or if the LHS is not contained within the RHS and the ** RHS contains one or more NULL values. ** ** This routine generates code that jumps to destIfFalse if the LHS is not ** contained within the RHS. If due to NULLs we cannot determine if the LHS ** is contained in the RHS then jump to destIfNull. If the LHS is contained ** within the RHS then fall through. */ static void sqlite3ExprCodeIN( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* The IN expression */ |
︙ | ︙ | |||
1921 1922 1923 1924 1925 1926 1927 | /* Compute the RHS. After this step, the table with cursor ** pExpr->iTable will contains the values that make up the RHS. */ v = pParse->pVdbe; assert( v!=0 ); /* OOM detected prior to this routine */ VdbeNoopComment((v, "begin IN expr")); | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | > | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | > > | | | | < < < < < < < | < < | < | | < < | < < < < | 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 | /* Compute the RHS. After this step, the table with cursor ** pExpr->iTable will contains the values that make up the RHS. */ v = pParse->pVdbe; assert( v!=0 ); /* OOM detected prior to this routine */ VdbeNoopComment((v, "begin IN expr")); eType = sqlite3FindInIndex(pParse, pExpr, IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, destIfFalse==destIfNull ? 0 : &rRhsHasNull); /* Figure out the affinity to use to create a key from the results ** of the expression. affinityStr stores a static string suitable for ** P4 of OP_MakeRecord. */ affinity = comparisonAffinity(pExpr); /* Code the LHS, the <expr> from "<expr> IN (...)". */ sqlite3ExprCachePush(pParse); r1 = sqlite3GetTempReg(pParse); sqlite3ExprCode(pParse, pExpr->pLeft, r1); /* If sqlite3FindInIndex() did not find or create an index that is ** suitable for evaluating the IN operator, then evaluate using a ** sequence of comparisons. */ if( eType==IN_INDEX_NOOP ){ ExprList *pList = pExpr->x.pList; CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); int labelOk = sqlite3VdbeMakeLabel(v); int r2, regToFree; int regCkNull = 0; int ii; assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); if( destIfNull!=destIfFalse ){ regCkNull = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); } for(ii=0; ii<pList->nExpr; ii++){ r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); } if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, (void*)pColl, P4_COLLSEQ); VdbeCoverageIf(v, ii<pList->nExpr-1); VdbeCoverageIf(v, ii==pList->nExpr-1); sqlite3VdbeChangeP5(v, affinity); }else{ assert( destIfNull==destIfFalse ); sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); } sqlite3ReleaseTempReg(pParse, regToFree); } if( regCkNull ){ sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); } sqlite3VdbeResolveLabel(v, labelOk); sqlite3ReleaseTempReg(pParse, regCkNull); }else{ /* If the LHS is NULL, then the result is either false or NULL depending ** on whether the RHS is empty or not, respectively. */ if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ if( destIfNull==destIfFalse ){ /* Shortcut for the common case where the false and NULL outcomes are ** the same. */ sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); }else{ int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); sqlite3VdbeJumpHere(v, addr1); } } if( eType==IN_INDEX_ROWID ){ /* In this case, the RHS is the ROWID of table b-tree */ sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); VdbeCoverage(v); }else{ /* In this case, the RHS is an index b-tree. */ sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); /* If the set membership test fails, then the result of the ** "x IN (...)" expression must be either 0 or NULL. If the set ** contains no NULL values, then the result is 0. If the set ** contains one or more NULL values, then the result of the ** expression is also NULL. */ assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); if( rRhsHasNull==0 ){ /* This branch runs if it is known at compile time that the RHS ** cannot contain NULL values. This happens as the result ** of a "NOT NULL" constraint in the database schema. ** ** Also run this branch if NULL is equivalent to FALSE ** for this particular IN operator. */ sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); VdbeCoverage(v); }else{ /* In this branch, the RHS of the IN might contain a NULL and ** the presence of a NULL on the RHS makes a difference in the ** outcome. */ int j1; /* First check to see if the LHS is contained in the RHS. If so, ** then the answer is TRUE the presence of NULLs in the RHS does ** not matter. If the LHS is not contained in the RHS, then the ** answer is NULL if the RHS contains NULLs and the answer is ** FALSE if the RHS is NULL-free. */ j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); sqlite3VdbeJumpHere(v, j1); } } } sqlite3ReleaseTempReg(pParse, r1); sqlite3ExprCachePop(pParse); VdbeComment((v, "end IN expr")); } #endif /* SQLITE_OMIT_SUBQUERY */ |
︙ | ︙ | |||
2634 2635 2636 2637 2638 2639 2640 | assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); addr = sqlite3VdbeAddOp1(v, op, r1); VdbeCoverageIf(v, op==TK_ISNULL); VdbeCoverageIf(v, op==TK_NOTNULL); | | | 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 | assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); addr = sqlite3VdbeAddOp1(v, op, r1); VdbeCoverageIf(v, op==TK_ISNULL); VdbeCoverageIf(v, op==TK_NOTNULL); sqlite3VdbeAddOp2(v, OP_Integer, 0, target); sqlite3VdbeJumpHere(v, addr); break; } case TK_AGG_FUNCTION: { AggInfo *pInfo = pExpr->pAggInfo; if( pInfo==0 ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
︙ | ︙ | |||
2670 2671 2672 2673 2674 2675 2676 | pFarg = pExpr->x.pList; } nFarg = pFarg ? pFarg->nExpr : 0; assert( !ExprHasProperty(pExpr, EP_IntValue) ); zId = pExpr->u.zToken; nId = sqlite3Strlen30(zId); pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); | | | 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 | pFarg = pExpr->x.pList; } nFarg = pFarg ? pFarg->nExpr : 0; assert( !ExprHasProperty(pExpr, EP_IntValue) ); zId = pExpr->u.zToken; nId = sqlite3Strlen30(zId); pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); if( pDef==0 || pDef->xFunc==0 ){ sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); break; } /* Attempt a direct implementation of the built-in COALESCE() and ** IFNULL() functions. This avoids unnecessary evalation of ** arguments past the first non-NULL argument. |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
221 222 223 224 225 226 227 | assert( nCol>1 ); aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); if( !aiCol ) return 1; *paiCol = aiCol; } for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ | | | 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | assert( nCol>1 ); aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); if( !aiCol ) return 1; *paiCol = aiCol; } for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) ){ /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number ** of columns. If each indexed column corresponds to a foreign key ** column of pFKey, then this index is a winner. */ if( zKey==0 ){ /* If zKey is NULL, then this foreign key is implicitly mapped to ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
1882 1883 1884 1885 1886 1887 1888 | && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0) || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0)) ){ return 0; /* Default values must be the same for all columns */ } } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ | | | 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 | && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0) || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0)) ){ return 0; /* Default values must be the same for all columns */ } } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ if( IsUniqueIndex(pDestIdx) ){ destHasUniqueIdx = 1; } for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } if( pSrcIdx==0 ){ return 0; /* pDestIdx has no corresponding index in pSrc */ |
︙ | ︙ |
Changes to src/mutex_w32.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2007 August 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | > > > > > | | < < < < < < < < < < < < < < > > | < < < < < < > | | | > < < < < < < < < < < | > > | < > > > | | | < | > | > | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | /* ** 2007 August 14 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement mutexes for Win32. */ #include "sqliteInt.h" #if SQLITE_OS_WIN /* ** Include code that is common to all os_*.c files */ #include "os_common.h" /* ** Include the header file for the Windows VFS. */ #include "os_win.h" #endif /* ** The code in this file is only used if we are compiling multithreaded ** on a Win32 system. */ #ifdef SQLITE_MUTEX_W32 /* ** Each recursive mutex is an instance of the following structure. */ struct sqlite3_mutex { CRITICAL_SECTION mutex; /* Mutex controlling the lock */ int id; /* Mutex type */ #ifdef SQLITE_DEBUG volatile int nRef; /* Number of enterances */ volatile DWORD owner; /* Thread holding this mutex */ volatile int trace; /* True to trace changes */ #endif }; /* ** These are the initializer values used when declaring a "static" mutex ** on Win32. It should be noted that all mutexes require initialization ** on the Win32 platform. */ #define SQLITE_W32_MUTEX_INITIALIZER { 0 } #ifdef SQLITE_DEBUG #define SQLITE3_MUTEX_INITIALIZER { SQLITE_W32_MUTEX_INITIALIZER, 0, \ 0L, (DWORD)0, 0 } #else #define SQLITE3_MUTEX_INITIALIZER { SQLITE_W32_MUTEX_INITIALIZER, 0 } #endif #ifdef SQLITE_DEBUG /* ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are ** intended for use only inside assert() statements. */ static int winMutexHeld(sqlite3_mutex *p){ return p->nRef!=0 && p->owner==GetCurrentThreadId(); } static int winMutexNotheld2(sqlite3_mutex *p, DWORD tid){ return p->nRef==0 || p->owner!=tid; } static int winMutexNotheld(sqlite3_mutex *p){ DWORD tid = GetCurrentThreadId(); return winMutexNotheld2(p, tid); } #endif /* ** Initialize and deinitialize the mutex subsystem. */ static sqlite3_mutex winMutex_staticMutexes[] = { SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER, SQLITE3_MUTEX_INITIALIZER }; static int winMutex_isInit = 0; static int winMutex_isNt = -1; /* <0 means "need to query" */ /* As the winMutexInit() and winMutexEnd() functions are called as part ** of the sqlite3_initialize() and sqlite3_shutdown() processing, the ** "interlocked" magic used here is probably not strictly necessary. */ static LONG volatile winMutex_lock = 0; int sqlite3_win32_is_nt(void); /* os_win.c */ void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */ static int winMutexInit(void){ /* The first to increment to 1 does actual initialization */ if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){ int i; for(i=0; i<ArraySize(winMutex_staticMutexes); i++){ #if SQLITE_OS_WINRT InitializeCriticalSectionEx(&winMutex_staticMutexes[i].mutex, 0, 0); #else InitializeCriticalSection(&winMutex_staticMutexes[i].mutex); #endif } winMutex_isInit = 1; }else{ /* Another thread is (in the process of) initializing the static ** mutexes */ while( !winMutex_isInit ){ sqlite3_win32_sleep(1); } } return SQLITE_OK; } static int winMutexEnd(void){ /* The first to decrement to 0 does actual shutdown ** (which should be the last to shutdown.) */ if( InterlockedCompareExchange(&winMutex_lock, 0, 1)==1 ){ if( winMutex_isInit==1 ){ int i; for(i=0; i<ArraySize(winMutex_staticMutexes); i++){ DeleteCriticalSection(&winMutex_staticMutexes[i].mutex); } winMutex_isInit = 0; } } return SQLITE_OK; } /* ** The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. If it returns NULL ** that means that a mutex could not be allocated. SQLite ** will unwind its stack and return an error. The argument |
︙ | ︙ | |||
194 195 196 197 198 199 200 | ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() | | | > > > < > > > > > > | | > > > > > | > | > | | > | | > > > > > | > > | > | | > > > > | | 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 | ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() ** returns a different mutex on every call. But for the static ** mutex types, the same mutex is returned on every call that has ** the same type number. */ static sqlite3_mutex *winMutexAlloc(int iType){ sqlite3_mutex *p; switch( iType ){ case SQLITE_MUTEX_FAST: case SQLITE_MUTEX_RECURSIVE: { p = sqlite3MallocZero( sizeof(*p) ); if( p ){ #ifdef SQLITE_DEBUG p->id = iType; #ifdef SQLITE_WIN32_MUTEX_TRACE_DYNAMIC p->trace = 1; #endif #endif #if SQLITE_OS_WINRT InitializeCriticalSectionEx(&p->mutex, 0, 0); #else InitializeCriticalSection(&p->mutex); #endif } break; } default: { assert( iType-2 >= 0 ); assert( iType-2 < ArraySize(winMutex_staticMutexes) ); assert( winMutex_isInit==1 ); p = &winMutex_staticMutexes[iType-2]; #ifdef SQLITE_DEBUG p->id = iType; #ifdef SQLITE_WIN32_MUTEX_TRACE_STATIC p->trace = 1; #endif #endif break; } } return p; } /* ** This routine deallocates a previously ** allocated mutex. SQLite is careful to deallocate every ** mutex that it allocates. */ static void winMutexFree(sqlite3_mutex *p){ assert( p ); #ifdef SQLITE_DEBUG assert( p->nRef==0 && p->owner==0 ); assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); #endif assert( winMutex_isInit==1 ); DeleteCriticalSection(&p->mutex); sqlite3_free(p); } /* ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can ** be entered multiple times by the same thread. In such cases the, ** mutex must be exited an equal number of times before another thread ** can enter. If the same thread tries to enter any other kind of mutex ** more than once, the behavior is undefined. */ static void winMutexEnter(sqlite3_mutex *p){ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) DWORD tid = GetCurrentThreadId(); #endif #ifdef SQLITE_DEBUG assert( p ); assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); #else assert( p ); #endif assert( winMutex_isInit==1 ); EnterCriticalSection(&p->mutex); #ifdef SQLITE_DEBUG assert( p->nRef>0 || p->owner==0 ); p->owner = tid; p->nRef++; if( p->trace ){ OSTRACE(("ENTER-MUTEX tid=%lu, mutex=%p (%d), nRef=%d\n", tid, p, p->trace, p->nRef)); } #endif } static int winMutexTry(sqlite3_mutex *p){ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) DWORD tid = GetCurrentThreadId(); #endif int rc = SQLITE_BUSY; assert( p ); assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) ); /* ** The sqlite3_mutex_try() routine is very rarely used, and when it ** is used it is merely an optimization. So it is OK for it to always ** fail. ** ** The TryEnterCriticalSection() interface is only available on WinNT. ** And some windows compilers complain if you try to use it without ** first doing some #defines that prevent SQLite from building on Win98. ** For that reason, we will omit this optimization for now. See ** ticket #2685. */ #if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0400 assert( winMutex_isInit==1 ); assert( winMutex_isNt>=-1 && winMutex_isNt<=1 ); if( winMutex_isNt<0 ){ winMutex_isNt = sqlite3_win32_is_nt(); } assert( winMutex_isNt==0 || winMutex_isNt==1 ); if( winMutex_isNt && TryEnterCriticalSection(&p->mutex) ){ #ifdef SQLITE_DEBUG p->owner = tid; p->nRef++; #endif rc = SQLITE_OK; } #else UNUSED_PARAMETER(p); #endif #ifdef SQLITE_DEBUG if( p->trace ){ OSTRACE(("TRY-MUTEX tid=%lu, mutex=%p (%d), owner=%lu, nRef=%d, rc=%s\n", tid, p, p->trace, p->owner, p->nRef, sqlite3ErrName(rc))); } #endif return rc; } /* ** The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered or ** is not currently allocated. SQLite will never do either. */ static void winMutexLeave(sqlite3_mutex *p){ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) DWORD tid = GetCurrentThreadId(); #endif assert( p ); #ifdef SQLITE_DEBUG assert( p->nRef>0 ); assert( p->owner==tid ); p->nRef--; if( p->nRef==0 ) p->owner = 0; assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); #endif assert( winMutex_isInit==1 ); LeaveCriticalSection(&p->mutex); #ifdef SQLITE_DEBUG if( p->trace ){ OSTRACE(("LEAVE-MUTEX tid=%lu, mutex=%p (%d), nRef=%d\n", tid, p, p->trace, p->nRef)); } #endif } sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ static const sqlite3_mutex_methods sMutex = { winMutexInit, |
︙ | ︙ | |||
349 350 351 352 353 354 355 | winMutexHeld, winMutexNotheld #else 0, 0 #endif }; | < > | 361 362 363 364 365 366 367 368 369 370 371 | winMutexHeld, winMutexNotheld #else 0, 0 #endif }; return &sMutex; } #endif /* SQLITE_MUTEX_W32 */ |
Changes to src/os_win.c.
︙ | ︙ | |||
410 411 412 413 414 415 416 | ** 1: Operating system is Win9x. ** 2: Operating system is WinNT. ** ** In order to facilitate testing on a WinNT system, the test fixture ** can manually set this value to 1 to emulate Win98 behavior. */ #ifdef SQLITE_TEST | | | < | | 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | ** 1: Operating system is Win9x. ** 2: Operating system is WinNT. ** ** In order to facilitate testing on a WinNT system, the test fixture ** can manually set this value to 1 to emulate Win98 behavior. */ #ifdef SQLITE_TEST LONG volatile sqlite3_os_type = 0; #else static LONG volatile sqlite3_os_type = 0; #endif #ifndef SYSCALL # define SYSCALL sqlite3_syscall_ptr #endif /* |
︙ | ︙ | |||
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 | { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 }, #else { "CreateFileMappingFromApp", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \ LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent) }; /* End of the overrideable system calls */ /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "win32" VFSes. Return SQLITE_OK opon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable | > > > > > | 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 | { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 }, #else { "CreateFileMappingFromApp", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \ LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent) { "InterlockedCompareExchange", (SYSCALL)InterlockedCompareExchange, 0 }, #define osInterlockedCompareExchange ((LONG(WINAPI*)(LONG volatile*, \ LONG,LONG))aSyscall[76].pCurrent) }; /* End of the overrideable system calls */ /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "win32" VFSes. Return SQLITE_OK opon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable |
︙ | ︙ | |||
1297 1298 1299 1300 1301 1302 1303 | #if !defined(SQLITE_WIN32_GETVERSIONEX) || !SQLITE_WIN32_GETVERSIONEX # define osIsNT() (1) #elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI) # define osIsNT() (1) #elif !defined(SQLITE_WIN32_HAS_WIDE) # define osIsNT() (0) #else | | | > | | | 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 | #if !defined(SQLITE_WIN32_GETVERSIONEX) || !SQLITE_WIN32_GETVERSIONEX # define osIsNT() (1) #elif SQLITE_OS_WINCE || SQLITE_OS_WINRT || !defined(SQLITE_WIN32_HAS_ANSI) # define osIsNT() (1) #elif !defined(SQLITE_WIN32_HAS_WIDE) # define osIsNT() (0) #else # define osIsNT() ((sqlite3_os_type==2) || sqlite3_win32_is_nt()) #endif /* ** This function determines if the machine is running a version of Windows ** based on the NT kernel. */ int sqlite3_win32_is_nt(void){ if( osInterlockedCompareExchange(&sqlite3_os_type, 0, 0)==0 ){ #if defined(NTDDI_VERSION) && NTDDI_VERSION >= NTDDI_WIN8 OSVERSIONINFOW sInfo; sInfo.dwOSVersionInfoSize = sizeof(sInfo); osGetVersionExW(&sInfo); #else OSVERSIONINFOA sInfo; sInfo.dwOSVersionInfoSize = sizeof(sInfo); osGetVersionExA(&sInfo); #endif osInterlockedCompareExchange(&sqlite3_os_type, (sInfo.dwPlatformId == VER_PLATFORM_WIN32_NT) ? 2 : 1, 0); } return osInterlockedCompareExchange(&sqlite3_os_type, 2, 2)==2; } #ifdef SQLITE_WIN32_MALLOC /* ** Allocate nBytes of memory. */ static void *winMemMalloc(int nBytes){ |
︙ | ︙ | |||
5474 5475 5476 5477 5478 5479 5480 | winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #endif /* Double-check that the aSyscall[] array has been constructed ** correctly. See ticket [bb3a86e890c8e96ab] */ | | | 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 | winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #endif /* Double-check that the aSyscall[] array has been constructed ** correctly. See ticket [bb3a86e890c8e96ab] */ assert( ArraySize(aSyscall)==77 ); /* get memory map allocation granularity */ memset(&winSysInfo, 0, sizeof(SYSTEM_INFO)); #if SQLITE_OS_WINRT osGetNativeSystemInfo(&winSysInfo); #else osGetSystemInfo(&winSysInfo); |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
1540 1541 1542 1543 1544 1545 1546 | sqlite3CodeVerifySchema(pParse, iDb); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC); for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ sqlite3VdbeAddOp2(v, OP_Integer, i, 1); sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0); | | | 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 | sqlite3CodeVerifySchema(pParse, iDb); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC); for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ sqlite3VdbeAddOp2(v, OP_Integer, i, 1); sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0); sqlite3VdbeAddOp2(v, OP_Integer, IsUniqueIndex(pIdx), 3); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); } } } break; case PragTyp_DATABASE_LIST: { |
︙ | ︙ | |||
1790 1791 1792 1793 1794 1795 1796 | /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList endCode[] = { | < | | | 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 | /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList endCode[] = { { OP_IfNeg, 1, 0, 0}, /* 0 */ { OP_String8, 0, 3, 0}, /* 1 */ { OP_ResultRow, 3, 1, 0}, }; int isQuick = (sqlite3Tolower(zLeft[0])=='q'); /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check", ** then iDb is set to the index of the database identified by <db>. |
︙ | ︙ | |||
1904 1905 1906 1907 1908 1909 1910 1911 | sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ } pParse->nMem = MAX(pParse->nMem, 8+j); sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ | > > > > > > > > > > > > > > > > > > > > | > > | | | | > | > > > > > > > > > > > > > > > > | > > > > > > > > > | 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 | sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ } pParse->nMem = MAX(pParse->nMem, 8+j); sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); /* Verify that all NOT NULL columns really are NOT NULL */ for(j=0; j<pTab->nCol; j++){ char *zErr; int jmp2, jmp3; if( j==pTab->iPKey ) continue; if( pTab->aCol[j].notNull==0 ) continue; sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName, pTab->aCol[j].zName); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); jmp3 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v); sqlite3VdbeAddOp0(v, OP_Halt); sqlite3VdbeJumpHere(v, jmp2); sqlite3VdbeJumpHere(v, jmp3); } /* Validate index entries for the current row */ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int jmp2, jmp3, jmp4, jmp5; int ckUniq = sqlite3VdbeMakeLabel(v); if( pPk==pIdx ) continue; r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, pPrior, r1); pPrior = pIdx; sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1); /* increment entry count */ /* Verify that an index entry exists for the current table row */ jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1, pIdx->nColumn); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, "row ", P4_STATIC); sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, " missing from index ", P4_STATIC); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); jmp5 = sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, pIdx->zName, P4_TRANSIENT); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v); sqlite3VdbeAddOp0(v, OP_Halt); sqlite3VdbeJumpHere(v, jmp2); /* For UNIQUE indexes, verify that only one entry exists with the ** current key. The entry is unique if (1) any column is NULL ** or (2) the next entry has a different key */ if( IsUniqueIndex(pIdx) ){ int uniqOk = sqlite3VdbeMakeLabel(v); int jmp6; int kk; for(kk=0; kk<pIdx->nKeyCol; kk++){ int iCol = pIdx->aiColumn[kk]; assert( iCol>=0 && iCol<pTab->nCol ); if( pTab->aCol[iCol].notNull ) continue; sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); VdbeCoverage(v); } jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, uniqOk); sqlite3VdbeJumpHere(v, jmp6); sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1, pIdx->nKeyCol); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, "non-unique entry in index ", P4_STATIC); sqlite3VdbeAddOp2(v, OP_Goto, 0, jmp5); sqlite3VdbeResolveLabel(v, uniqOk); } sqlite3VdbeJumpHere(v, jmp4); sqlite3ResolvePartIdxLabel(pParse, jmp3); } sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); sqlite3VdbeJumpHere(v, loopTop-1); #ifndef SQLITE_OMIT_BTREECOUNT sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, "wrong # of entries in index ", P4_STATIC); |
︙ | ︙ | |||
1950 1951 1952 1953 1954 1955 1956 | sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7); sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1); } #endif /* SQLITE_OMIT_BTREECOUNT */ } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); | | | | | 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 | sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7); sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1); } #endif /* SQLITE_OMIT_BTREECOUNT */ } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); sqlite3VdbeChangeP3(v, addr, -mxErr); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeChangeP4(v, addr+1, "ok", P4_STATIC); } break; #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_UTF16 /* ** PRAGMA encoding |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
557 558 559 560 561 562 563 | static void codeOffset( Vdbe *v, /* Generate code into this VM */ int iOffset, /* Register holding the offset counter */ int iContinue /* Jump here to skip the current record */ ){ if( iOffset>0 ){ int addr; | < | | 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | static void codeOffset( Vdbe *v, /* Generate code into this VM */ int iOffset, /* Register holding the offset counter */ int iContinue /* Jump here to skip the current record */ ){ if( iOffset>0 ){ int addr; addr = sqlite3VdbeAddOp3(v, OP_IfNeg, iOffset, 0, -1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); VdbeComment((v, "skip OFFSET records")); sqlite3VdbeJumpHere(v, addr); } } /* |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
893 894 895 896 897 898 899 | Hash tblHash; /* All tables indexed by name */ Hash idxHash; /* All (named) indices indexed by name */ Hash trigHash; /* All triggers indexed by name */ Hash fkeyHash; /* All foreign keys by referenced table name */ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ u8 file_format; /* Schema format version for this file */ u8 enc; /* Text encoding used by this database */ | | | | | | | 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 | Hash tblHash; /* All tables indexed by name */ Hash idxHash; /* All (named) indices indexed by name */ Hash trigHash; /* All triggers indexed by name */ Hash fkeyHash; /* All foreign keys by referenced table name */ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ u8 file_format; /* Schema format version for this file */ u8 enc; /* Text encoding used by this database */ u16 schemaFlags; /* Flags associated with this schema */ int cache_size; /* Number of pages to use in the cache */ }; /* ** These macros can be used to test, set, or clear bits in the ** Db.pSchema->flags field. */ #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P)) #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0) #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P) #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P) /* ** Allowed values for the DB.pSchema->flags field. ** ** The DB_SchemaLoaded flag is set after the database schema has been ** read into internal hash tables. ** |
︙ | ︙ | |||
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 | #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ /* Return true if index X is a PRIMARY KEY index */ #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) /* ** Each sample stored in the sqlite_stat3 table is represented in memory ** using a structure of this type. See documentation at the top of the ** analyze.c source file for additional information. */ struct IndexSample { void *p; /* Pointer to sampled record */ | > > > | 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 | #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ #define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */ #define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */ /* Return true if index X is a PRIMARY KEY index */ #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) /* Return true if index X is a UNIQUE index */ #define IsUniqueIndex(X) ((X)->onError!=OE_None) /* ** Each sample stored in the sqlite_stat3 table is represented in memory ** using a structure of this type. See documentation at the top of the ** analyze.c source file for additional information. */ struct IndexSample { void *p; /* Pointer to sampled record */ |
︙ | ︙ | |||
3607 3608 3609 3610 3611 3612 3613 | void sqlite3BeginBenignMalloc(void); void sqlite3EndBenignMalloc(void); #else #define sqlite3BeginBenignMalloc() #define sqlite3EndBenignMalloc() #endif | > > > | | | | > > > > > > > | | 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 | void sqlite3BeginBenignMalloc(void); void sqlite3EndBenignMalloc(void); #else #define sqlite3BeginBenignMalloc() #define sqlite3EndBenignMalloc() #endif /* ** Allowed return values from sqlite3FindInIndex() */ #define IN_INDEX_ROWID 1 /* Search the rowid of the table */ #define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */ #define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */ #define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */ #define IN_INDEX_NOOP 5 /* No table available. Use comparisons */ /* ** Allowed flags for the 3rd parameter to sqlite3FindInIndex(). */ #define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */ #define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */ #define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */ int sqlite3FindInIndex(Parse *, Expr *, u32, int*); #ifdef SQLITE_ENABLE_ATOMIC_WRITE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); int sqlite3JournalSize(sqlite3_vfs *); int sqlite3JournalCreate(sqlite3_file *); int sqlite3JournalExists(sqlite3_file *p); #else |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
6741 6742 6743 6744 6745 6746 6747 | extern int sqlite3_opentemp_count; extern int sqlite3_like_count; extern int sqlite3_xferopt_count; extern int sqlite3_pager_readdb_count; extern int sqlite3_pager_writedb_count; extern int sqlite3_pager_writej_count; #if SQLITE_OS_WIN | | | 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 | extern int sqlite3_opentemp_count; extern int sqlite3_like_count; extern int sqlite3_xferopt_count; extern int sqlite3_pager_readdb_count; extern int sqlite3_pager_writedb_count; extern int sqlite3_pager_writej_count; #if SQLITE_OS_WIN extern LONG volatile sqlite3_os_type; #endif #ifdef SQLITE_DEBUG extern int sqlite3WhereTrace; extern int sqlite3OSTrace; extern int sqlite3WalTrace; #endif #ifdef SQLITE_TEST |
︙ | ︙ | |||
6799 6800 6801 6802 6803 6804 6805 | #endif #ifndef SQLITE_OMIT_UTF16 Tcl_LinkVar(interp, "sqlite_last_needed_collation", (char*)&pzNeededCollation, TCL_LINK_STRING|TCL_LINK_READ_ONLY); #endif #if SQLITE_OS_WIN Tcl_LinkVar(interp, "sqlite_os_type", | | | 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 | #endif #ifndef SQLITE_OMIT_UTF16 Tcl_LinkVar(interp, "sqlite_last_needed_collation", (char*)&pzNeededCollation, TCL_LINK_STRING|TCL_LINK_READ_ONLY); #endif #if SQLITE_OS_WIN Tcl_LinkVar(interp, "sqlite_os_type", (char*)&sqlite3_os_type, TCL_LINK_LONG); #endif #ifdef SQLITE_TEST { static const char *query_plan = "*** OBSOLETE VARIABLE ***"; Tcl_LinkVar(interp, "sqlite_query_plan", (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY); } |
︙ | ︙ |
Changes to src/test_multiplex.c.
︙ | ︙ | |||
1172 1173 1174 1175 1176 1177 1178 | ** ** All SQLite database connections must be closed before calling this ** routine. ** ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once while ** shutting down in order to free all remaining multiplex groups. */ | | > | > > > > > | | 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 | ** ** All SQLite database connections must be closed before calling this ** routine. ** ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once while ** shutting down in order to free all remaining multiplex groups. */ int sqlite3_multiplex_shutdown(int eForce){ int rc = SQLITE_OK; if( gMultiplex.isInitialized==0 ) return SQLITE_MISUSE; if( gMultiplex.pGroups ){ sqlite3_log(SQLITE_MISUSE, "sqlite3_multiplex_shutdown() called " "while database connections are still open"); if( !eForce ) return SQLITE_MISUSE; rc = SQLITE_MISUSE; } gMultiplex.isInitialized = 0; sqlite3_mutex_free(gMultiplex.pMutex); sqlite3_vfs_unregister(&gMultiplex.sThisVfs); memset(&gMultiplex, 0, sizeof(gMultiplex)); return rc; } /***************************** Test Code ***********************************/ #ifdef SQLITE_TEST #include <tcl.h> extern const char *sqlite3ErrName(int); |
︙ | ︙ | |||
1232 1233 1234 1235 1236 1237 1238 | int objc, Tcl_Obj *CONST objv[] ){ int rc; /* Value returned by multiplex_shutdown() */ UNUSED_PARAMETER(clientData); | > > > | | | | 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 | int objc, Tcl_Obj *CONST objv[] ){ int rc; /* Value returned by multiplex_shutdown() */ UNUSED_PARAMETER(clientData); if( objc==2 && strcmp(Tcl_GetString(objv[1]),"-force")!=0 ){ objc = 3; } if( (objc!=1 && objc!=2) ){ Tcl_WrongNumArgs(interp, 1, objv, "?-force?"); return TCL_ERROR; } /* Call sqlite3_multiplex_shutdown() */ rc = sqlite3_multiplex_shutdown(objc==2); Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); return TCL_OK; } /* ** tclcmd: sqlite3_multiplex_dump |
︙ | ︙ |
Changes to src/test_multiplex.h.
︙ | ︙ | |||
86 87 88 89 90 91 92 | ** ** All SQLite database connections must be closed before calling this ** routine. ** ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once while ** shutting down in order to free all remaining multiplex groups. */ | | | 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | ** ** All SQLite database connections must be closed before calling this ** routine. ** ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once while ** shutting down in order to free all remaining multiplex groups. */ extern int sqlite3_multiplex_shutdown(int eForce); #ifdef __cplusplus } /* End of the 'extern "C"' block */ #endif #endif /* _TEST_MULTIPLEX_H */ |
Changes to src/update.c.
︙ | ︙ | |||
434 435 436 437 438 439 440 | if( aToOpen[iDataCur-iBaseCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey); VdbeCoverageNeverTaken(v); } labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); | | > | 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | if( aToOpen[iDataCur-iBaseCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey); VdbeCoverageNeverTaken(v); } labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); VdbeCoverageIf(v, pPk==0); VdbeCoverageIf(v, pPk!=0); }else if( pPk ){ labelContinue = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v); addrTop = sqlite3VdbeAddOp2(v, OP_RowKey, iEph, regKey); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0); VdbeCoverage(v); }else{ |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
112 113 114 115 116 117 118 119 120 121 122 123 124 125 | ** feature is used for test suite validation only and does not appear an ** production builds. ** ** M is an integer, 2 or 3, that indices how many different ways the ** branch can go. It is usually 2. "I" is the direction the branch ** goes. 0 means falls through. 1 means branch is taken. 2 means the ** second alternative branch is taken. */ #if !defined(SQLITE_VDBE_COVERAGE) # define VdbeBranchTaken(I,M) #else # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ | > > > > > > | 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | ** feature is used for test suite validation only and does not appear an ** production builds. ** ** M is an integer, 2 or 3, that indices how many different ways the ** branch can go. It is usually 2. "I" is the direction the branch ** goes. 0 means falls through. 1 means branch is taken. 2 means the ** second alternative branch is taken. ** ** iSrcLine is the source code line (from the __LINE__ macro) that ** generated the VDBE instruction. This instrumentation assumes that all ** source code is in a single file (the amalgamation). Special values 1 ** and 2 for the iSrcLine parameter mean that this particular branch is ** always taken or never taken, respectively. */ #if !defined(SQLITE_VDBE_COVERAGE) # define VdbeBranchTaken(I,M) #else # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ |
︙ | ︙ | |||
786 787 788 789 790 791 792 | pOut->flags = MEM_Int; if( pOp->p2 ) pc = pOp->p2 - 1; break; } /* Opcode: EndCoroutine P1 * * * * ** | | | 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 | pOut->flags = MEM_Int; if( pOp->p2 ) pc = pOp->p2 - 1; break; } /* Opcode: EndCoroutine P1 * * * * ** ** The instruction at the address in register P1 is a Yield. ** Jump to the P2 parameter of that Yield. ** After the jump, register P1 becomes undefined. ** ** See also: InitCoroutine */ case OP_EndCoroutine: { /* in1 */ VdbeOp *pCaller; |
︙ | ︙ | |||
979 980 981 982 983 984 985 | } #endif /* Opcode: String8 * P2 * P4 * ** Synopsis: r[P2]='P4' ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed | | | 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 | } #endif /* Opcode: String8 * P2 * P4 * ** Synopsis: r[P2]='P4' ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed ** into a String before it is executed for the first time. During ** this transformation, the length of string P4 is computed and stored ** as the P1 parameter. */ case OP_String8: { /* same as TK_STRING, out2-prerelease */ assert( pOp->p4.z!=0 ); pOp->opcode = OP_String; pOp->p1 = sqlite3Strlen30(pOp->p4.z); |
︙ | ︙ | |||
2225 2226 2227 2228 2229 2230 2231 | break; } /* Opcode: If P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is true. The value ** is considered true if it is numeric and non-zero. If the value | | | | 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 | break; } /* Opcode: If P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is true. The value ** is considered true if it is numeric and non-zero. If the value ** in P1 is NULL then take the jump if and only if P3 is non-zero. */ /* Opcode: IfNot P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is False. The value ** is considered false if it has a numeric value of zero. If the value ** in P1 is NULL then take the jump if and only if P3 is non-zero. */ case OP_If: /* jump, in1 */ case OP_IfNot: { /* jump, in1 */ int c; pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Null ){ c = pOp->p3; |
︙ | ︙ | |||
3525 3526 3527 3528 3529 3530 3531 | ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the smallest entry that ** is greater than or equal to the key value. If there are no records ** greater than or equal to the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in forward order, | | | 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 | ** that are used as an unpacked index key. ** ** Reposition cursor P1 so that it points to the smallest entry that ** is greater than or equal to the key value. If there are no records ** greater than or equal to the key and P2 is not zero, then jump to P2. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. ** ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe */ /* Opcode: SeekGT P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** |
︙ | ︙ | |||
3765 3766 3767 3768 3769 3770 3771 | ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** is a prefix of any entry in P1 then a jump is made to P2 and ** P1 is left pointing at the matching entry. ** | | | | | 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 | ** P4>0 then register P3 is the first of P4 registers that form an unpacked ** record. ** ** Cursor P1 is on an index btree. If the record identified by P3 and P4 ** is a prefix of any entry in P1 then a jump is made to P2 and ** P1 is left pointing at the matching entry. ** ** This operation leaves the cursor in a state where it can be ** advanced in the forward direction. The Next instruction will work, ** but not the Prev instruction. ** ** See also: NotFound, NoConflict, NotExists. SeekGe */ /* Opcode: NotFound P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] ** ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
︙ | ︙ | |||
3834 3835 3836 3837 3838 3839 3840 | #endif assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p4type==P4_INT32 ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifdef SQLITE_DEBUG | | | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 | #endif assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p4type==P4_INT32 ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif pIn3 = &aMem[pOp->p3]; assert( pC->pCursor!=0 ); assert( pC->isTable==0 ); pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ if( pOp->p4.i>0 ){ r.pKeyInfo = pC->pKeyInfo; |
︙ | ︙ | |||
4229 4230 4231 4232 4233 4234 4235 | /* Opcode: Delete P1 P2 * P4 * ** ** Delete the record at which the P1 cursor is currently pointing. ** ** The cursor will be left pointing at either the next or the previous ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. Hence it is OK to delete | | | 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 | /* Opcode: Delete P1 P2 * P4 * ** ** Delete the record at which the P1 cursor is currently pointing. ** ** The cursor will be left pointing at either the next or the previous ** record in the table. If it is left pointing at the next record, then ** the next Next instruction will be a no-op. Hence it is OK to delete ** a record from within a Next loop. ** ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is ** incremented (otherwise not). ** ** P1 must not be pseudo-table. It has to be a real table with ** multiple rows. ** |
︙ | ︙ | |||
4292 4293 4294 4295 4296 4297 4298 | break; } /* Opcode: SorterCompare P1 P2 P3 P4 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 ** ** P1 is a sorter cursor. This instruction compares a prefix of the | | | 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 | break; } /* Opcode: SorterCompare P1 P2 P3 P4 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 ** ** P1 is a sorter cursor. This instruction compares a prefix of the ** record blob in register P3 against a prefix of the entry that ** the sorter cursor currently points to. Only the first P4 fields ** of r[P3] and the sorter record are compared. ** ** If either P3 or the sorter contains a NULL in one of their significant ** fields (not counting the P4 fields at the end which are ignored) then ** the comparison is assumed to be equal. ** |
︙ | ︙ | |||
4692 4693 4694 4695 4696 4697 4698 | assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE | | | 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 | assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE || pC->seekOp==OP_Last ); rc = pOp->p4.xAdvance(pC->pCursor, &res); next_tail: pC->cacheStatus = CACHE_STALE; |
︙ | ︙ | |||
5619 5620 5621 5622 5623 5624 5625 | VdbeBranchTaken( pIn1->u.i>0, 2); if( pIn1->u.i>0 ){ pc = pOp->p2 - 1; } break; } | | | > | < < < > < < < | 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 | VdbeBranchTaken( pIn1->u.i>0, 2); if( pIn1->u.i>0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfNeg P1 P2 P3 * * ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2 ** ** Register P1 must contain an integer. Add literal P3 to the value in ** register P1 then if the value of register P1 is less than zero, jump to P2. */ case OP_IfNeg: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); pIn1->u.i += pOp->p3; VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i<0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfZero P1 P2 P3 * * ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 ** ** The register P1 must contain an integer. Add literal P3 to the ** value in register P1. If the result is exactly 0, jump to P2. */ case OP_IfZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); pIn1->u.i += pOp->p3; VdbeBranchTaken(pIn1->u.i==0, 2); if( pIn1->u.i==0 ){ |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
1466 1467 1468 1469 1470 1471 1472 | ** where X is a constant value. The collation sequences of the ** comparison and select-list expressions must match those of the index. ** ** 3. All of those index columns for which the WHERE clause does not ** contain a "col=X" term are subject to a NOT NULL constraint. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | | | 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 | ** where X is a constant value. The collation sequences of the ** comparison and select-list expressions must match those of the index. ** ** 3. All of those index columns for which the WHERE clause does not ** contain a "col=X" term are subject to a NOT NULL constraint. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( !IsUniqueIndex(pIdx) ) continue; for(i=0; i<pIdx->nKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ break; } |
︙ | ︙ | |||
2518 2519 2520 2521 2522 2523 2524 | ){ testcase( iEq==0 ); testcase( bRev ); bRev = !bRev; } assert( pX->op==TK_IN ); iReg = iTarget; | | | 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 | ){ testcase( iEq==0 ); testcase( bRev ); bRev = !bRev; } assert( pX->op==TK_IN ); iReg = iTarget; eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } iTab = pX->iTable; sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); VdbeCoverageIf(v, bRev); |
︙ | ︙ | |||
4372 4373 4374 4375 4376 4377 4378 | } assert( nIn>0 ); /* RHS always has 2 or more terms... The parser ** changes "x IN (?)" into "x=?". */ }else if( eOp & (WO_EQ) ){ pNew->wsFlags |= WHERE_COLUMN_EQ; if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ | | | 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 | } assert( nIn>0 ); /* RHS always has 2 or more terms... The parser ** changes "x IN (?)" into "x=?". */ }else if( eOp & (WO_EQ) ){ pNew->wsFlags |= WHERE_COLUMN_EQ; if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ if( iCol>=0 && !IsUniqueIndex(pProbe) ){ pNew->wsFlags |= WHERE_UNQ_WANTED; }else{ pNew->wsFlags |= WHERE_ONEROW; } } }else if( eOp & WO_ISNULL ){ pNew->wsFlags |= WHERE_COLUMN_NULL; |
︙ | ︙ | |||
5227 5228 5229 5230 5231 5232 5233 | }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ return 0; }else{ nKeyCol = pIndex->nKeyCol; nColumn = pIndex->nColumn; assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable)); | | | 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 | }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ return 0; }else{ nKeyCol = pIndex->nKeyCol; nColumn = pIndex->nColumn; assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable)); isOrderDistinct = IsUniqueIndex(pIndex); } /* Loop through all columns of the index and deal with the ones ** that are not constrained by == or IN. */ rev = revSet = 0; distinctColumns = 0; |
︙ | ︙ | |||
5742 5743 5744 5745 5746 5747 5748 | pLoop->u.btree.nEq = 1; /* TUNING: Cost of a rowid lookup is 10 */ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ }else{ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pLoop->aLTermSpace==pLoop->aLTerm ); assert( ArraySize(pLoop->aLTermSpace)==4 ); | | | 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 | pLoop->u.btree.nEq = 1; /* TUNING: Cost of a rowid lookup is 10 */ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ }else{ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pLoop->aLTermSpace==pLoop->aLTerm ); assert( ArraySize(pLoop->aLTermSpace)==4 ); if( !IsUniqueIndex(pIdx) || pIdx->pPartIdxWhere!=0 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) ) continue; for(j=0; j<pIdx->nKeyCol; j++){ pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx); if( pTerm==0 ) break; pLoop->aLTerm[j] = pTerm; |
︙ | ︙ |
Changes to test/in4.test.
︙ | ︙ | |||
227 228 229 230 231 232 233 | SELECT * FROM t3 WHERE x IN (10); } {10 10 10} do_execsql_test in4-3.44 { EXPLAIN SELECT * FROM t3 WHERE x IN (10); } {~/OpenEphemeral/} do_execsql_test in4-3.45 { | | | | 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | SELECT * FROM t3 WHERE x IN (10); } {10 10 10} do_execsql_test in4-3.44 { EXPLAIN SELECT * FROM t3 WHERE x IN (10); } {~/OpenEphemeral/} do_execsql_test in4-3.45 { SELECT * FROM t3 WHERE x NOT IN (10,11,99999); } {1 1 1} do_execsql_test in4-3.46 { EXPLAIN SELECT * FROM t3 WHERE x NOT IN (10,11,99999); } {/OpenEphemeral/} do_execsql_test in4-3.47 { SELECT * FROM t3 WHERE x NOT IN (10); } {1 1 1} do_execsql_test in4-3.48 { EXPLAIN SELECT * FROM t3 WHERE x NOT IN (10); |
︙ | ︙ |
Changes to test/multiplex.test.
︙ | ︙ | |||
64 65 66 67 68 69 70 71 72 73 74 75 76 77 | forcedelete [multiplex_name $name $i] forcedelete [multiplex_name $name-journal $i] forcedelete [multiplex_name $name-wal $i] } } db close multiplex_delete test.db multiplex_delete test2.db #------------------------------------------------------------------------- # multiplex-1.1.*: Test initialize and shutdown. | > > > > > > | 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | forcedelete [multiplex_name $name $i] forcedelete [multiplex_name $name-journal $i] forcedelete [multiplex_name $name-wal $i] } } db close sqlite3_shutdown test_sqlite3_log xLog proc xLog {error_code msg} { lappend ::log $error_code $msg } unset -nocomplain log multiplex_delete test.db multiplex_delete test2.db #------------------------------------------------------------------------- # multiplex-1.1.*: Test initialize and shutdown. |
︙ | ︙ | |||
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | do_test multiplex-2.3.1 { sqlite3 db2 test2.x db2 close } {} do_test multiplex-2.4.1 { sqlite3_multiplex_shutdown } {SQLITE_MISUSE} do_test multiplex-2.4.2 { execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) } } {} do_test multiplex-2.4.4 { file size [multiplex_name test.x 0] } {7168} do_test multiplex-2.4.5 { db close sqlite3 db test.x db eval vacuum db close glob test.x* | > > > > | 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | do_test multiplex-2.3.1 { sqlite3 db2 test2.x db2 close } {} unset -nocomplain ::log do_test multiplex-2.4.1 { sqlite3_multiplex_shutdown } {SQLITE_MISUSE} do_test multiplex-2.4.2 { execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) } } {} do_test multiplex-2.4.3 { set ::log } {SQLITE_MISUSE {sqlite3_multiplex_shutdown() called while database connections are still open}} do_test multiplex-2.4.4 { file size [multiplex_name test.x 0] } {7168} do_test multiplex-2.4.5 { db close sqlite3 db test.x db eval vacuum db close glob test.x* |
︙ | ︙ | |||
579 580 581 582 583 584 585 586 587 | multiplex_delete test.x sqlite3_multiplex_shutdown } {SQLITE_OK} } catch { sqlite3_multiplex_shutdown } finish_test | > > > > | 589 590 591 592 593 594 595 596 597 598 599 600 601 | multiplex_delete test.x sqlite3_multiplex_shutdown } {SQLITE_OK} } catch { db close } catch { sqlite3_multiplex_shutdown } sqlite3_shutdown test_sqlite3_log sqlite3_initialize finish_test |
Changes to test/pragma.test.
︙ | ︙ | |||
427 428 429 430 431 432 433 | do_test pragma-3.19 { catch {db close} forcedelete test.db test.db-journal sqlite3 db test.db db eval {PRAGMA integrity_check} } {ok} } | | > > > > > > > > > > > > > > > > > > > > > > > > > | 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | do_test pragma-3.19 { catch {db close} forcedelete test.db test.db-journal sqlite3 db test.db db eval {PRAGMA integrity_check} } {ok} } # Verify that PRAGMA integrity_check catches UNIQUE and NOT NULL # constraint violations. # do_execsql_test pragma-3.20 { CREATE TABLE t1(a,b); CREATE INDEX t1a ON t1(a); INSERT INTO t1 VALUES(1,1),(2,2),(3,3),(2,4),(NULL,5),(NULL,6); PRAGMA writable_schema=ON; UPDATE sqlite_master SET sql='CREATE UNIQUE INDEX t1a ON t1(a)' WHERE name='t1a'; UPDATE sqlite_master SET sql='CREATE TABLE t1(a NOT NULL,b)' WHERE name='t1'; PRAGMA writable_schema=OFF; ALTER TABLE t1 RENAME TO t1x; PRAGMA integrity_check; } {{non-unique entry in index t1a} {NULL value in t1x.a} {non-unique entry in index t1a} {NULL value in t1x.a}} do_execsql_test pragma-3.21 { PRAGMA integrity_check(3); } {{non-unique entry in index t1a} {NULL value in t1x.a} {non-unique entry in index t1a}} do_execsql_test pragma-3.22 { PRAGMA integrity_check(2); } {{non-unique entry in index t1a} {NULL value in t1x.a}} do_execsql_test pragma-3.21 { PRAGMA integrity_check(1); } {{non-unique entry in index t1a}} # Test modifying the cache_size of an attached database. ifcapable pager_pragmas&&attach { do_test pragma-4.1 { execsql { ATTACH 'test2.db' AS aux; pragma aux.cache_size; |
︙ | ︙ |
Changes to test/table.test.
︙ | ︙ | |||
721 722 723 724 725 726 727 728 729 | do_test table-15.2 { execsql {BEGIN} for {set i 0} {$i<2000} {incr i} { execsql "DROP TABLE tbl$i" } execsql {COMMIT} } {} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 | do_test table-15.2 { execsql {BEGIN} for {set i 0} {$i<2000} {incr i} { execsql "DROP TABLE tbl$i" } execsql {COMMIT} } {} # Ticket 3a88d85f36704eebe134f7f48aebf00cd6438c1a (2014-08-05) # The following SQL script segfaults while running the INSERT statement: # # CREATE TABLE t1(x DEFAULT(max(1))); # INSERT INTO t1(rowid) VALUES(1); # # The problem appears to be the use of an aggregate function as part of # the default value for a column. This problem has been in the code since # at least 2006-01-01 and probably before that. This problem was detected # and reported on the sqlite-users@sqlite.org mailing list by Zsbán Ambrus. # do_execsql_test table-16.1 { CREATE TABLE t16(x DEFAULT(max(1))); INSERT INTO t16(x) VALUES(123); SELECT rowid, x FROM t16; } {1 123} do_catchsql_test table-16.2 { INSERT INTO t16(rowid) VALUES(4); } {1 {unknown function: max()}} do_execsql_test table-16.3 { DROP TABLE t16; CREATE TABLE t16(x DEFAULT(abs(1))); INSERT INTO t16(rowid) VALUES(4); SELECT rowid, x FROM t16; } {4 1} do_catchsql_test table-16.4 { DROP TABLE t16; CREATE TABLE t16(x DEFAULT(avg(1))); INSERT INTO t16(rowid) VALUES(123); SELECT rowid, x FROM t16; } {1 {unknown function: avg()}} do_catchsql_test table-16.5 { DROP TABLE t16; CREATE TABLE t16(x DEFAULT(count())); INSERT INTO t16(rowid) VALUES(123); SELECT rowid, x FROM t16; } {1 {unknown function: count()}} do_catchsql_test table-16.6 { DROP TABLE t16; CREATE TABLE t16(x DEFAULT(group_concat('x',','))); INSERT INTO t16(rowid) VALUES(123); SELECT rowid, x FROM t16; } {1 {unknown function: group_concat()}} do_catchsql_test table-16.7 { INSERT INTO t16 DEFAULT VALUES; } {1 {unknown function: group_concat()}} finish_test |
Changes to test/tester.tcl.
︙ | ︙ | |||
859 860 861 862 863 864 865 866 867 868 869 870 871 872 | } } # Run this routine last # proc finish_test {} { catch {db close} catch {db2 close} catch {db3 close} if {0==[info exists ::SLAVE]} { finalize_testing } } proc finalize_testing {} { global sqlite_open_file_count | > | 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 | } } # Run this routine last # proc finish_test {} { catch {db close} catch {db1 close} catch {db2 close} catch {db3 close} if {0==[info exists ::SLAVE]} { finalize_testing } } proc finalize_testing {} { global sqlite_open_file_count |
︙ | ︙ |
Changes to test/tkt-80e031a00f.test.
︙ | ︙ | |||
156 157 158 159 160 161 162 163 164 165 166 167 168 169 | do_execsql_test tkt-80e031a00f.319 {SELECT 'c' NOT IN t7} 0 do_execsql_test tkt-80e031a00f.320 {SELECT 'c' IN t7n} 1 do_execsql_test tkt-80e031a00f.321 {SELECT 'd' NOT IN t7n} 0 do_execsql_test tkt-80e031a00f.322 {SELECT 'b' IN t8} 1 do_execsql_test tkt-80e031a00f.323 {SELECT 'c' NOT IN t8} 0 do_execsql_test tkt-80e031a00f.324 {SELECT 'c' IN t8n} 1 do_execsql_test tkt-80e031a00f.325 {SELECT 'd' NOT IN t8n} 0 # # Row 4: do_execsql_test tkt-80e031a00f.400 {SELECT 1 IN (2,3,4,null)} {{}} do_execsql_test tkt-80e031a00f.401 {SELECT 1 NOT IN (2,3,4,null)} {{}} do_execsql_test tkt-80e031a00f.402 {SELECT 'a' IN ('b','c',null,'d')} {{}} do_execsql_test tkt-80e031a00f.403 {SELECT 'a' NOT IN (null,'b','c','d')} {{}} do_execsql_test tkt-80e031a00f.404 {SELECT 1 IN t4n} {{}} | > > > > | 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | do_execsql_test tkt-80e031a00f.319 {SELECT 'c' NOT IN t7} 0 do_execsql_test tkt-80e031a00f.320 {SELECT 'c' IN t7n} 1 do_execsql_test tkt-80e031a00f.321 {SELECT 'd' NOT IN t7n} 0 do_execsql_test tkt-80e031a00f.322 {SELECT 'b' IN t8} 1 do_execsql_test tkt-80e031a00f.323 {SELECT 'c' NOT IN t8} 0 do_execsql_test tkt-80e031a00f.324 {SELECT 'c' IN t8n} 1 do_execsql_test tkt-80e031a00f.325 {SELECT 'd' NOT IN t8n} 0 do_execsql_test tkt-80e031a00f.326 {SELECT 'a' IN (NULL,'a')} 1 do_execsql_test tkt-80e031a00f.327 {SELECT 'a' IN (NULL,'b')} {{}} do_execsql_test tkt-80e031a00f.328 {SELECT 'a' NOT IN (NULL,'a')} 0 do_execsql_test tkt-80e031a00f.329 {SELECT 'a' NOT IN (NULL,'b')} {{}} # # Row 4: do_execsql_test tkt-80e031a00f.400 {SELECT 1 IN (2,3,4,null)} {{}} do_execsql_test tkt-80e031a00f.401 {SELECT 1 NOT IN (2,3,4,null)} {{}} do_execsql_test tkt-80e031a00f.402 {SELECT 'a' IN ('b','c',null,'d')} {{}} do_execsql_test tkt-80e031a00f.403 {SELECT 'a' NOT IN (null,'b','c','d')} {{}} do_execsql_test tkt-80e031a00f.404 {SELECT 1 IN t4n} {{}} |
︙ | ︙ |