SQLite

Check-in [9b7d6f986a]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Incremental check-in: Progress toward implementing the geopoly vtab.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | rtree-geopoly
Files: files | file ages | folders
SHA3-256: 9b7d6f986a19f8fbe26d880dc368870a10df80e06097be34ee3639f78c50be61
User & Date: drh 2018-05-25 20:53:42.012
Context
2018-05-25
22:39
Untested incremental check-in. Basic infrastructure for geopoly in place, except for the MATCH operator. (check-in: b27451910b user: drh tags: rtree-geopoly)
20:53
Incremental check-in: Progress toward implementing the geopoly vtab. (check-in: 9b7d6f986a user: drh tags: rtree-geopoly)
19:22
Forward port the geopoly extension functions into the r-tree extension, with the idea of creating a new spatial index based on simply polygons. (check-in: 0593aac88a user: drh tags: rtree-geopoly)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/rtree/geopoly.c.
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  int nByte;
  if( sqlite3_value_type(pVal)==SQLITE_BLOB
   && (nByte = sqlite3_value_bytes(pVal))>=(4+6*sizeof(GeoCoord))
  ){
    const unsigned char *a = sqlite3_value_blob(pVal);
    int nVertex;
    nVertex = (a[1]<<16) + (a[2]<<8) + a[3];
    if( (a[0]==0 && a[0]==1)
     && (nVertex*2*sizeof(GeoCoord) + 4)==nByte
    ){
      p = sqlite3_malloc64( sizeof(*p) + (nVertex-1)*2*sizeof(GeoCoord) );
      if( p ){
        int x = 1;
        p->nVertex = nVertex;
        memcpy(p->hdr, a, nByte);







|







266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  int nByte;
  if( sqlite3_value_type(pVal)==SQLITE_BLOB
   && (nByte = sqlite3_value_bytes(pVal))>=(4+6*sizeof(GeoCoord))
  ){
    const unsigned char *a = sqlite3_value_blob(pVal);
    int nVertex;
    nVertex = (a[1]<<16) + (a[2]<<8) + a[3];
    if( (a[0]==0 || a[0]==1)
     && (nVertex*2*sizeof(GeoCoord) + 4)==nByte
    ){
      p = sqlite3_malloc64( sizeof(*p) + (nVertex-1)*2*sizeof(GeoCoord) );
      if( p ){
        int x = 1;
        p->nVertex = nVertex;
        memcpy(p->hdr, a, nByte);
402
403
404
405
406
407
408









































































409
410
411
412
413
414
415
    rArea += (p->a[ii*2] - p->a[0])                  /* (xN - x0) */
             * (p->a[ii*2+1] + p->a[1])              /* (yN + y0) */
             * 0.5;
    sqlite3_result_double(context, rArea);
    sqlite3_free(p);
  }            
}










































































/*
** Determine if point (x0,y0) is beneath line segment (x1,y1)->(x2,y2).
** Returns:
**
**    +2  x0,y0 is on the line segement
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    rArea += (p->a[ii*2] - p->a[0])                  /* (xN - x0) */
             * (p->a[ii*2+1] + p->a[1])              /* (yN + y0) */
             * 0.5;
    sqlite3_result_double(context, rArea);
    sqlite3_free(p);
  }            
}

/*
** Compute a bound-box on a polygon.  Return a new GeoPoly object
** that describes the bounding box.  Or, if aCoord is not a NULL pointer
** fill it in with the bounding box instead.
*/
static GeoPoly *geopolyBBox(
  sqlite3_context *context,   /* For recording the error */
  sqlite3_value *pPoly,       /* The polygon */
  double *aCoord              /* Results here */
){
  GeoPoly *p = geopolyFuncParam(context, pPoly);
  GeoPoly *pOut;
  if( p ){
    int ii;
    float mnX, mxX, mnY, mxY;
    mnX = mxX = p->a[0];
    mnY = mxY = p->a[1];
    for(ii=1; ii<p->nVertex; ii++){
      double r = p->a[ii*2];
      if( r<mnX ) mnX = r;
      else if( r>mxX ) mxX = r;
      r = p->a[ii*2+1];
      if( r<mnY ) mnY = r;
      else if( r>mxY ) mxY = r;
    }
    if( aCoord==0 ){
      pOut = sqlite3_realloc(p, sizeof(GeoPoly)+sizeof(GeoCoord)*6);
      if( pOut==0 ){
        sqlite3_free(p);
        sqlite3_result_error_nomem(context);
        return 0;
      }
      pOut->nVertex = 4;
      pOut->hdr[1] = 0;
      pOut->hdr[2] = 0;
      pOut->hdr[3] = 4;
      pOut->a[0] = mnX;
      pOut->a[1] = mnY;
      pOut->a[2] = mxX;
      pOut->a[3] = mnY;
      pOut->a[4] = mxX;
      pOut->a[5] = mxY;
      pOut->a[6] = mnX;
      pOut->a[7] = mxY;
      return pOut;
    }else{
      sqlite3_free(p);
      aCoord[0] = mnX;
      aCoord[1] = mxX;
      aCoord[2] = mnY;
      aCoord[3] = mxY;
      return (GeoPoly*)aCoord;
    }
  }
  return 0;
}

/*
** Implementation of the geopoly_bbox(X) SQL function.
*/
static void geopolyBBoxFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  GeoPoly *p = geopolyBBox(context, argv[0], 0);
  if( p ){
    sqlite3_result_blob(context, p->hdr, 
       4+8*p->nVertex, SQLITE_TRANSIENT);
    sqlite3_free(p);
  }
}

/*
** Determine if point (x0,y0) is beneath line segment (x1,y1)->(x2,y2).
** Returns:
**
**    +2  x0,y0 is on the line segement
**
823
824
825
826
827
828
829







































































































































































































































































































































































































































830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

845
846
847
848
849
850
851



852
853
  int argc,
  sqlite3_value **argv
){
#ifdef GEOPOLY_ENABLE_DEBUG
  geo_debug = sqlite3_value_int(argv[0]);
#endif
}








































































































































































































































































































































































































































static int sqlite3_geopoly_init(sqlite3 *db){
  int rc = SQLITE_OK;
  static const struct {
    void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
    int nArg;
    const char *zName;
  } aFunc[] = {
     { geopolyAreaFunc,          1,    "geopoly_area"     },
     { geopolyBlobFunc,          1,    "geopoly_blob"     },
     { geopolyJsonFunc,          1,    "geopoly_json"     },
     { geopolySvgFunc,          -1,    "geopoly_svg"      },
     { geopolyWithinFunc,        3,    "geopoly_within"   },
     { geopolyOverlapFunc,       2,    "geopoly_overlap"  },
     { geopolyDebugFunc,         1,    "geopoly_debug"    },

  };
  int i;
  for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
                                 SQLITE_UTF8, 0,
                                 aFunc[i].xFunc, 0, 0);
  }



  return rc;
}







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>















>







>
>
>


896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
  int argc,
  sqlite3_value **argv
){
#ifdef GEOPOLY_ENABLE_DEBUG
  geo_debug = sqlite3_value_int(argv[0]);
#endif
}

/* 
** This function is the implementation of both the xConnect and xCreate
** methods of the geopoly virtual table.
**
**   argv[0]   -> module name
**   argv[1]   -> database name
**   argv[2]   -> table name
**   argv[...] -> column names...
*/
static int geopolyInit(
  sqlite3 *db,                        /* Database connection */
  void *pAux,                         /* One of the RTREE_COORD_* constants */
  int argc, const char *const*argv,   /* Parameters to CREATE TABLE statement */
  sqlite3_vtab **ppVtab,              /* OUT: New virtual table */
  char **pzErr,                       /* OUT: Error message, if any */
  int isCreate                        /* True for xCreate, false for xConnect */
){
  int rc = SQLITE_OK;
  Rtree *pRtree;
  int nDb;              /* Length of string argv[1] */
  int nName;            /* Length of string argv[2] */
  sqlite3_str *pSql;
  char *zSql;
  int ii;
  char cSep;

  sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);

  /* Allocate the sqlite3_vtab structure */
  nDb = (int)strlen(argv[1]);
  nName = (int)strlen(argv[2]);
  pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
  if( !pRtree ){
    return SQLITE_NOMEM;
  }
  memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
  pRtree->nBusy = 1;
  pRtree->base.pModule = &rtreeModule;
  pRtree->zDb = (char *)&pRtree[1];
  pRtree->zName = &pRtree->zDb[nDb+1];
  pRtree->eCoordType = RTREE_COORD_REAL32;
  pRtree->nDim = 2;
  pRtree->nDim2 = 4;
  memcpy(pRtree->zDb, argv[1], nDb);
  memcpy(pRtree->zName, argv[2], nName);


  /* Create/Connect to the underlying relational database schema. If
  ** that is successful, call sqlite3_declare_vtab() to configure
  ** the r-tree table schema.
  */
  pSql = sqlite3_str_new(db);
  sqlite3_str_appendf(pSql, "CREATE TABLE x");
  cSep = '(';
  for(ii=3; ii<argc; ii++){
    pRtree->nAux++;
    sqlite3_str_appendf(pSql, "%c%s", cSep, argv[ii]+1);
    cSep = ',';
  }
  sqlite3_str_appendf(pSql, "%c _poly HIDDEN, _bbox HIDDEN);", cSep);
  zSql = sqlite3_str_finish(pSql);
  if( !zSql ){
    rc = SQLITE_NOMEM;
  }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
    *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
  }
  sqlite3_free(zSql);
  if( rc ) goto geopolyInit_fail;
  pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;

  /* Figure out the node size to use. */
  rc = getNodeSize(db, pRtree, isCreate, pzErr);
  if( rc ) goto geopolyInit_fail;
  rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate);
  if( rc ){
    *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
    goto geopolyInit_fail;
  }

  *ppVtab = (sqlite3_vtab *)pRtree;
  return SQLITE_OK;

geopolyInit_fail:
  if( rc==SQLITE_OK ) rc = SQLITE_ERROR;
  assert( *ppVtab==0 );
  assert( pRtree->nBusy==1 );
  rtreeRelease(pRtree);
  return rc;
}


/* 
** GEOPOLY virtual table module xCreate method.
*/
static int geopolyCreate(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
}

/* 
** GEOPOLY virtual table module xConnect method.
*/
static int geopolyConnect(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVtab,
  char **pzErr
){
  return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
}


/*
** GEOPOLY virtual table module xBestIndex method. There are three
** table scan strategies to choose from (in order from most to 
** least desirable):
**
**   idxNum     idxStr        Strategy
**   ------------------------------------------------
**     1        Unused        Direct lookup by rowid.
**     2        'Fx'           shape query
**     2        ''            full-table scan.
**   ------------------------------------------------
**
** If strategy 1 is used, then idxStr is not meaningful. If strategy
** 2 is used, idxStr is either the two-byte string 'Fx' or an empty
** string.
*/
static int geopolyBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  Rtree *pRtree = (Rtree*)tab;
  int rc = SQLITE_OK;
  int ii;
  int bMatch = 0;                 /* True if there exists a MATCH constraint */
  i64 nRow;                       /* Estimated rows returned by this scan */

  int iIdx = 0;
  char zIdxStr[3];
  memset(zIdxStr, 0, sizeof(zIdxStr));

  /* Check if there exists a MATCH constraint - even an unusable one. If there
  ** is, do not consider the lookup-by-rowid plan as using such a plan would
  ** require the VDBE to evaluate the MATCH constraint, which is not currently
  ** possible. */
  for(ii=0; ii<pIdxInfo->nConstraint; ii++){
    if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){
      bMatch = 1;
    }
  }

  assert( pIdxInfo->idxStr==0 );
  for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
    struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];

    if( bMatch==0
     && p->usable 
     && p->iColumn<0
     && p->op==SQLITE_INDEX_CONSTRAINT_EQ 
    ){
      /* We have an equality constraint on the rowid. Use strategy 1. */
      int jj;
      for(jj=0; jj<ii; jj++){
        pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
        pIdxInfo->aConstraintUsage[jj].omit = 0;
      }
      pIdxInfo->idxNum = 1;
      pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
      pIdxInfo->aConstraintUsage[jj].omit = 1;

      /* This strategy involves a two rowid lookups on an B-Tree structures
      ** and then a linear search of an R-Tree node. This should be 
      ** considered almost as quick as a direct rowid lookup (for which 
      ** sqlite uses an internal cost of 0.0). It is expected to return
      ** a single row.
      */ 
      pIdxInfo->estimatedCost = 30.0;
      pIdxInfo->estimatedRows = 1;
      pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE;
      return SQLITE_OK;
    }

    /* A MATCH operator against the _shape column */
    if( p->usable
     && p->iColumn==pRtree->nAux
     && p->op==SQLITE_INDEX_CONSTRAINT_MATCH
    ){
      zIdxStr[0] = RTREE_MATCH;
      zIdxStr[1] = 'x';
      zIdxStr[2] = 0;
      pIdxInfo->aConstraintUsage[ii].argvIndex = 0;
      pIdxInfo->aConstraintUsage[ii].omit = 1;
    }
  }

  pIdxInfo->idxNum = 2;
  pIdxInfo->needToFreeIdxStr = 1;
  if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
    return SQLITE_NOMEM;
  }

  nRow = pRtree->nRowEst/100 + 5;
  pIdxInfo->estimatedCost = (double)6.0 * (double)nRow;
  pIdxInfo->estimatedRows = nRow;

  return rc;
}


/* 
** GEOPOLY virtual table module xColumn method.
*/
static int geopolyColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
  Rtree *pRtree = (Rtree *)cur->pVtab;
  RtreeCursor *pCsr = (RtreeCursor *)cur;
  RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
  int rc = SQLITE_OK;
  RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);

  if( rc ) return rc;
  if( p==0 ) return SQLITE_OK;
  if( i<=pRtree->nAux ){
    if( !pCsr->bAuxValid ){
      if( pCsr->pReadAux==0 ){
        rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0,
                                &pCsr->pReadAux, 0);
        if( rc ) return rc;
      }
      sqlite3_bind_int64(pCsr->pReadAux, 1, 
          nodeGetRowid(pRtree, pNode, p->iCell));
      rc = sqlite3_step(pCsr->pReadAux);
      if( rc==SQLITE_ROW ){
        pCsr->bAuxValid = 1;
      }else{
        sqlite3_reset(pCsr->pReadAux);
        if( rc==SQLITE_DONE ) rc = SQLITE_OK;
        return rc;
      }
    }
    sqlite3_result_value(ctx,
         sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1));
  }else{
    /* Must be the _bbox column */
  }
  return SQLITE_OK;
}


/*
** The xUpdate method for GEOPOLY module virtual tables.
*/
static int geopolyUpdate(
  sqlite3_vtab *pVtab, 
  int nData, 
  sqlite3_value **aData, 
  sqlite_int64 *pRowid
){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_OK;
//  RtreeCell cell;                 /* New cell to insert if nData>1 */
//  int bHaveRowid = 0;             /* Set to 1 after new rowid is determined */
//  int iShapeCol;                  /* Index of the _shape column */

  if( pRtree->nNodeRef ){
    /* Unable to write to the btree while another cursor is reading from it,
    ** since the write might do a rebalance which would disrupt the read
    ** cursor. */
    return SQLITE_LOCKED_VTAB;
  }
  rtreeReference(pRtree);
  assert(nData>=1);

//  cell.iRowid = 0;  /* Used only to suppress a compiler warning */
//  iShapeCol = pRtree->nAux;

  rc = SQLITE_ERROR;

#if 0

  /* Constraint handling. A write operation on an r-tree table may return
  ** SQLITE_CONSTRAINT for two reasons:
  **
  **   1. A duplicate rowid value, or
  **   2. The supplied data violates the "x2>=x1" constraint.
  **
  ** In the first case, if the conflict-handling mode is REPLACE, then
  ** the conflicting row can be removed before proceeding. In the second
  ** case, SQLITE_CONSTRAINT must be returned regardless of the
  ** conflict-handling mode specified by the user.
  */
  if( nData>1 
   && (!sqlite3_value_nochange(aData[iShapeCol+2])
  ){

#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<nn; ii+=2){
        cell.aCoord[ii].f = rtreeValueDown(aData[ii+3]);
        cell.aCoord[ii+1].f = rtreeValueUp(aData[ii+4]);
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
          rc = rtreeConstraintError(pRtree, ii+1);
          goto constraint;
        }
      }
    }else
#endif
    {
      for(ii=0; ii<nn; ii+=2){
        cell.aCoord[ii].i = sqlite3_value_int(aData[ii+3]);
        cell.aCoord[ii+1].i = sqlite3_value_int(aData[ii+4]);
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
          rc = rtreeConstraintError(pRtree, ii+1);
          goto constraint;
        }
      }
    }

    /* If a rowid value was supplied, check if it is already present in 
    ** the table. If so, the constraint has failed. */
    if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){
      cell.iRowid = sqlite3_value_int64(aData[2]);
      if( sqlite3_value_type(aData[0])==SQLITE_NULL
       || sqlite3_value_int64(aData[0])!=cell.iRowid
      ){
        int steprc;
        sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
        steprc = sqlite3_step(pRtree->pReadRowid);
        rc = sqlite3_reset(pRtree->pReadRowid);
        if( SQLITE_ROW==steprc ){
          if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
            rc = rtreeDeleteRowid(pRtree, cell.iRowid);
          }else{
            rc = rtreeConstraintError(pRtree, 0);
            goto constraint;
          }
        }
      }
      bHaveRowid = 1;
    }
  }

  /* If aData[0] is not an SQL NULL value, it is the rowid of a
  ** record to delete from the r-tree table. The following block does
  ** just that.
  */
  if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){
    rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0]));
  }

  /* If the aData[] array contains more than one element, elements
  ** (aData[2]..aData[argc-1]) contain a new record to insert into
  ** the r-tree structure.
  */
  if( rc==SQLITE_OK && nData>1 ){
    /* Insert the new record into the r-tree */
    RtreeNode *pLeaf = 0;

    /* Figure out the rowid of the new row. */
    if( bHaveRowid==0 ){
      rc = newRowid(pRtree, &cell.iRowid);
    }
    *pRowid = cell.iRowid;

    if( rc==SQLITE_OK ){
      rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
    }
    if( rc==SQLITE_OK ){
      int rc2;
      pRtree->iReinsertHeight = -1;
      rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
      rc2 = nodeRelease(pRtree, pLeaf);
      if( rc==SQLITE_OK ){
        rc = rc2;
      }
    }
    if( pRtree->nAux ){
      sqlite3_stmt *pUp = pRtree->pWriteAux;
      int jj;
      sqlite3_bind_int64(pUp, 1, *pRowid);
      for(jj=0; jj<pRtree->nAux; jj++){
        sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]);
      }
      sqlite3_step(pUp);
      rc = sqlite3_reset(pUp);
    }
  }
constraint:
#endif /* 0 */

  rtreeRelease(pRtree);
  return rc;
}

static sqlite3_module geopolyModule = {
  2,                          /* iVersion */
  geopolyCreate,              /* xCreate - create a table */
  geopolyConnect,             /* xConnect - connect to an existing table */
  geopolyBestIndex,           /* xBestIndex - Determine search strategy */
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
  rtreeDestroy,               /* xDestroy - Drop a table */
  rtreeOpen,                  /* xOpen - open a cursor */
  rtreeClose,                 /* xClose - close a cursor */
  rtreeFilter,                /* xFilter - configure scan constraints */
  rtreeNext,                  /* xNext - advance a cursor */
  rtreeEof,                   /* xEof */
  geopolyColumn,              /* xColumn - read data */
  rtreeRowid,                 /* xRowid - read data */
  geopolyUpdate,              /* xUpdate - write data */
  rtreeBeginTransaction,      /* xBegin - begin transaction */
  rtreeEndTransaction,        /* xSync - sync transaction */
  rtreeEndTransaction,        /* xCommit - commit transaction */
  rtreeEndTransaction,        /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  rtreeSavepoint,             /* xSavepoint */
  0,                          /* xRelease */
  0,                          /* xRollbackTo */
};

static int sqlite3_geopoly_init(sqlite3 *db){
  int rc = SQLITE_OK;
  static const struct {
    void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
    int nArg;
    const char *zName;
  } aFunc[] = {
     { geopolyAreaFunc,          1,    "geopoly_area"     },
     { geopolyBlobFunc,          1,    "geopoly_blob"     },
     { geopolyJsonFunc,          1,    "geopoly_json"     },
     { geopolySvgFunc,          -1,    "geopoly_svg"      },
     { geopolyWithinFunc,        3,    "geopoly_within"   },
     { geopolyOverlapFunc,       2,    "geopoly_overlap"  },
     { geopolyDebugFunc,         1,    "geopoly_debug"    },
     { geopolyBBoxFunc,          1,    "geopoly_bbox"     },
  };
  int i;
  for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
                                 SQLITE_UTF8, 0,
                                 aFunc[i].xFunc, 0, 0);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_module_v2(db, "geopoly", &geopolyModule, 0, 0);
  }
  return rc;
}