Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update this branch with latest trunk changes. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | fts5 |
Files: | files | file ages | folders |
SHA1: |
9797482ded7de985e3b20aedec5e4d81 |
User & Date: | dan 2015-04-22 09:40:35.867 |
Context
2015-04-22
| ||
20:14 | Fix problems with doclist-indexes involving very large rowids. (check-in: 1e5994097e user: dan tags: fts5) | |
09:40 | Update this branch with latest trunk changes. (check-in: 9797482ded user: dan tags: fts5) | |
01:33 | When compiling for UAP, link against the new minimal MSVC runtime. (check-in: 2cb945116e user: mistachkin tags: trunk) | |
2015-04-21
| ||
20:13 | Fix a problem in fts5fault1.test. (check-in: a21d60cb2a user: dan tags: fts5) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
532 533 534 535 536 537 538 539 540 541 542 543 544 545 | -avoid-version sqlite3$(TEXE): $(TOP)/src/shell.c libsqlite3.la sqlite3.h $(LTLINK) $(READLINE_FLAGS) \ -o $@ $(TOP)/src/shell.c libsqlite3.la \ $(LIBREADLINE) $(TLIBS) -rpath "$(libdir)" mptester$(EXE): sqlite3.c $(TOP)/mptest/mptest.c $(LTLINK) -o $@ -I. $(TOP)/mptest/mptest.c sqlite3.c \ $(TLIBS) -rpath "$(libdir)" MPTEST1=./mptester$(EXE) mptest.db $(TOP)/mptest/crash01.test --repeat 20 MPTEST2=./mptester$(EXE) mptest.db $(TOP)/mptest/multiwrite01.test --repeat 20 mptest: mptester$(EXE) | > > > > > > | 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 | -avoid-version sqlite3$(TEXE): $(TOP)/src/shell.c libsqlite3.la sqlite3.h $(LTLINK) $(READLINE_FLAGS) \ -o $@ $(TOP)/src/shell.c libsqlite3.la \ $(LIBREADLINE) $(TLIBS) -rpath "$(libdir)" sqldiff$(EXE): $(TOP)/tool/sqldiff.c sqlite3.c sqlite3.h $(LTLINK) -o $@ $(TOP)/tool/sqldiff.c sqlite3.c $(TLIBS) fuzzershell$(EXE): $(TOP)/tool/fuzzershell.c sqlite3.c sqlite3.h $(LTLINK) -o $@ $(TOP)/tool/fuzzershell.c sqlite3.c $(TLIBS) mptester$(EXE): sqlite3.c $(TOP)/mptest/mptest.c $(LTLINK) -o $@ -I. $(TOP)/mptest/mptest.c sqlite3.c \ $(TLIBS) -rpath "$(libdir)" MPTEST1=./mptester$(EXE) mptest.db $(TOP)/mptest/crash01.test --repeat 20 MPTEST2=./mptester$(EXE) mptest.db $(TOP)/mptest/multiwrite01.test --repeat 20 mptest: mptester$(EXE) |
︙ | ︙ | |||
1055 1056 1057 1058 1059 1060 1061 | $(INSTALL) -d $(DESTDIR)$(includedir) $(INSTALL) -m 0644 sqlite3.h $(DESTDIR)$(includedir) $(INSTALL) -m 0644 $(TOP)/src/sqlite3ext.h $(DESTDIR)$(includedir) $(INSTALL) -d $(DESTDIR)$(pkgconfigdir) $(INSTALL) -m 0644 sqlite3.pc $(DESTDIR)$(pkgconfigdir) pkgIndex.tcl: | | | 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 | $(INSTALL) -d $(DESTDIR)$(includedir) $(INSTALL) -m 0644 sqlite3.h $(DESTDIR)$(includedir) $(INSTALL) -m 0644 $(TOP)/src/sqlite3ext.h $(DESTDIR)$(includedir) $(INSTALL) -d $(DESTDIR)$(pkgconfigdir) $(INSTALL) -m 0644 sqlite3.pc $(DESTDIR)$(pkgconfigdir) pkgIndex.tcl: echo 'package ifneeded sqlite3 $(RELEASE) [list load $(TCLLIBDIR)/libtclsqlite3$(SHLIB_SUFFIX) sqlite3]' > $@ tcl_install: lib_install libtclsqlite3.la pkgIndex.tcl $(INSTALL) -d $(DESTDIR)$(TCLLIBDIR) $(LTINSTALL) libtclsqlite3.la $(DESTDIR)$(TCLLIBDIR) rm -f $(DESTDIR)$(TCLLIBDIR)/libtclsqlite3.la $(DESTDIR)$(TCLLIBDIR)/libtclsqlite3.a $(INSTALL) -m 0644 pkgIndex.tcl $(DESTDIR)$(TCLLIBDIR) clean: |
︙ | ︙ |
Changes to Makefile.msc.
︙ | ︙ | |||
38 39 40 41 42 43 44 | # If necessary, create a list of harmless compiler warnings to disable when # compiling the various tools. For the SQLite source code itself, warnings, # if any, will be disabled from within it. # !IFNDEF NO_WARN !IF $(USE_FULLWARN)!=0 | | | | 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | # If necessary, create a list of harmless compiler warnings to disable when # compiling the various tools. For the SQLite source code itself, warnings, # if any, will be disabled from within it. # !IFNDEF NO_WARN !IF $(USE_FULLWARN)!=0 NO_WARN = -wd4054 -wd4055 -wd4100 -wd4127 -wd4130 -wd4152 -wd4189 -wd4206 NO_WARN = $(NO_WARN) -wd4210 -wd4232 -wd4244 -wd4305 -wd4306 -wd4702 -wd4706 !ENDIF !ENDIF # Set this non-0 to use the library paths and other options necessary for # Windows Phone 8.1. # !IFNDEF USE_WP81_OPTS |
︙ | ︙ | |||
110 111 112 113 114 115 116 117 118 119 120 121 122 123 | # Set this non-0 to compile binaries suitable for the WinRT environment. # This setting does not apply to any binaries that require Tcl to operate # properly (i.e. the text fixture, etc). # !IFNDEF FOR_WINRT FOR_WINRT = 0 !ENDIF # Set this non-0 to skip attempting to look for and/or link with the Tcl # runtime library. # !IFNDEF NO_TCL NO_TCL = 0 !ENDIF | > > > > > > > > | 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | # Set this non-0 to compile binaries suitable for the WinRT environment. # This setting does not apply to any binaries that require Tcl to operate # properly (i.e. the text fixture, etc). # !IFNDEF FOR_WINRT FOR_WINRT = 0 !ENDIF # Set this non-0 to compile binaries suitable for the UAP environment. # This setting does not apply to any binaries that require Tcl to operate # properly (i.e. the text fixture, etc). # !IFNDEF FOR_UAP FOR_UAP = 0 !ENDIF # Set this non-0 to skip attempting to look for and/or link with the Tcl # runtime library. # !IFNDEF NO_TCL NO_TCL = 0 !ENDIF |
︙ | ︙ | |||
284 285 286 287 288 289 290 291 292 293 294 295 296 297 | # Check if the native library paths should be used when compiling # the command line tools used during the compilation process. If # so, set the necessary macro now. # !IF $(USE_NATIVE_LIBPATHS)!=0 NLTLIBPATHS = "/LIBPATH:$(NCRTLIBPATH)" "/LIBPATH:$(NSDKLIBPATH)" !ENDIF # C compiler and options for use in building executables that # will run on the target platform. (BCC and TCC are usually the # same unless your are cross-compiling.) # !IF $(USE_FULLWARN)!=0 | > > > > > | 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 | # Check if the native library paths should be used when compiling # the command line tools used during the compilation process. If # so, set the necessary macro now. # !IF $(USE_NATIVE_LIBPATHS)!=0 NLTLIBPATHS = "/LIBPATH:$(NCRTLIBPATH)" "/LIBPATH:$(NSDKLIBPATH)" !IFDEF NUCRTLIBPATH NUCRTLIBPATH = $(NUCRTLIBPATH:\\=\) NLTLIBPATHS = $(NLTLIBPATHS) "/LIBPATH:$(NUCRTLIBPATH)" !ENDIF !ENDIF # C compiler and options for use in building executables that # will run on the target platform. (BCC and TCC are usually the # same unless your are cross-compiling.) # !IF $(USE_FULLWARN)!=0 |
︙ | ︙ | |||
308 309 310 311 312 313 314 | # also be noted here that building any target with these "stdcall" options # will most likely fail if the Tcl library is also required. This is due # to how the Tcl library functions are declared and exported (i.e. without # an explicit calling convention, which results in "cdecl"). # !IF $(USE_STDCALL)!=0 !IF "$(PLATFORM)"=="x86" | | | | | | | | | 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | # also be noted here that building any target with these "stdcall" options # will most likely fail if the Tcl library is also required. This is due # to how the Tcl library functions are declared and exported (i.e. without # an explicit calling convention, which results in "cdecl"). # !IF $(USE_STDCALL)!=0 !IF "$(PLATFORM)"=="x86" CORE_CCONV_OPTS = -Gz -DSQLITE_CDECL=__cdecl -DSQLITE_STDCALL=__stdcall SHELL_CCONV_OPTS = -Gz -DSQLITE_CDECL=__cdecl -DSQLITE_STDCALL=__stdcall !ELSE !IFNDEF PLATFORM CORE_CCONV_OPTS = -Gz -DSQLITE_CDECL=__cdecl -DSQLITE_STDCALL=__stdcall SHELL_CCONV_OPTS = -Gz -DSQLITE_CDECL=__cdecl -DSQLITE_STDCALL=__stdcall !ELSE CORE_CCONV_OPTS = SHELL_CCONV_OPTS = !ENDIF !ENDIF !ELSE CORE_CCONV_OPTS = SHELL_CCONV_OPTS = !ENDIF # These are additional compiler options used for the core library. # !IFNDEF CORE_COMPILE_OPTS !IF $(DYNAMIC_SHELL)!=0 CORE_COMPILE_OPTS = $(CORE_CCONV_OPTS) -DSQLITE_API=__declspec(dllexport) !ELSE CORE_COMPILE_OPTS = $(CORE_CCONV_OPTS) !ENDIF !ENDIF # These are the additional targets that the core library should depend on # when linking. # !IFNDEF CORE_LINK_DEP !IF $(DYNAMIC_SHELL)!=0 CORE_LINK_DEP = !ELSE CORE_LINK_DEP = sqlite3.def !ENDIF !ENDIF # These are additional linker options used for the core library. # !IFNDEF CORE_LINK_OPTS !IF $(DYNAMIC_SHELL)!=0 CORE_LINK_OPTS = !ELSE CORE_LINK_OPTS = /DEF:sqlite3.def !ENDIF !ENDIF # These are additional compiler options used for the shell executable. |
︙ | ︙ | |||
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | !ENDIF # The mksqlite3c.tcl script accepts some options on the command # line. When compiling with debugging enabled, some of these # options are necessary in order to allow debugging symbols to # work correctly with Visual Studio when using the amalgamation. # !IF $(DEBUG)>1 MKSQLITE3C_ARGS = --linemacros !ELSE MKSQLITE3C_ARGS = !ENDIF # Define -DNDEBUG to compile without debugging (i.e., for production usage) # Omitting the define will cause extra debugging code to be inserted and # includes extra comments when "EXPLAIN stmt" is used. # !IF $(DEBUG)==0 | > > | 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 | !ENDIF # The mksqlite3c.tcl script accepts some options on the command # line. When compiling with debugging enabled, some of these # options are necessary in order to allow debugging symbols to # work correctly with Visual Studio when using the amalgamation. # !IFNDEF MKSQLITE3C_ARGS !IF $(DEBUG)>1 MKSQLITE3C_ARGS = --linemacros !ELSE MKSQLITE3C_ARGS = !ENDIF !ENDIF # Define -DNDEBUG to compile without debugging (i.e., for production usage) # Omitting the define will cause extra debugging code to be inserted and # includes extra comments when "EXPLAIN stmt" is used. # !IF $(DEBUG)==0 |
︙ | ︙ | |||
702 703 704 705 706 707 708 | # When compiling for use in the WinRT environment, the following # linker option must be used to mark the executable as runnable # only in the context of an application container. # !IF $(FOR_WINRT)!=0 LTLINKOPTS = $(LTLINKOPTS) /APPCONTAINER | | | 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 | # When compiling for use in the WinRT environment, the following # linker option must be used to mark the executable as runnable # only in the context of an application container. # !IF $(FOR_WINRT)!=0 LTLINKOPTS = $(LTLINKOPTS) /APPCONTAINER !IF "$(VISUALSTUDIOVERSION)"=="12.0" || "$(VISUALSTUDIOVERSION)"=="14.0" !IFNDEF STORELIBPATH !IF "$(PLATFORM)"=="x86" STORELIBPATH = $(CRTLIBPATH)\store !ELSEIF "$(PLATFORM)"=="x64" STORELIBPATH = $(CRTLIBPATH)\store\amd64 !ELSEIF "$(PLATFORM)"=="ARM" STORELIBPATH = $(CRTLIBPATH)\store\arm |
︙ | ︙ | |||
745 746 747 748 749 750 751 752 753 754 755 756 757 758 | !IFDEF WP81LIBPATH LTLINKOPTS = $(LTLINKOPTS) "/LIBPATH:$(WP81LIBPATH)" !ENDIF LTLINKOPTS = $(LTLINKOPTS) /DYNAMICBASE LTLINKOPTS = $(LTLINKOPTS) WindowsPhoneCore.lib RuntimeObject.lib PhoneAppModelHost.lib LTLINKOPTS = $(LTLINKOPTS) /NODEFAULTLIB:kernel32.lib /NODEFAULTLIB:ole32.lib !ENDIF # If either debugging or symbols are enabled, enable PDBs. # !IF $(DEBUG)>1 || $(SYMBOLS)!=0 LDFLAGS = /DEBUG !ENDIF | > > > > > > > > > > | 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 | !IFDEF WP81LIBPATH LTLINKOPTS = $(LTLINKOPTS) "/LIBPATH:$(WP81LIBPATH)" !ENDIF LTLINKOPTS = $(LTLINKOPTS) /DYNAMICBASE LTLINKOPTS = $(LTLINKOPTS) WindowsPhoneCore.lib RuntimeObject.lib PhoneAppModelHost.lib LTLINKOPTS = $(LTLINKOPTS) /NODEFAULTLIB:kernel32.lib /NODEFAULTLIB:ole32.lib !ENDIF # When compiling for UAP, some extra linker options are also required. # !IF $(FOR_UAP)!=0 LTLINKOPTS = $(LTLINKOPTS) /DYNAMICBASE /NODEFAULTLIB:kernel32.lib LTLINKOPTS = $(LTLINKOPTS) mincore.lib !IFDEF PSDKLIBPATH LTLINKOPTS = $(LTLINKOPTS) "/LIBPATH:$(PSDKLIBPATH)" !ENDIF !ENDIF # If either debugging or symbols are enabled, enable PDBs. # !IF $(DEBUG)>1 || $(SYMBOLS)!=0 LDFLAGS = /DEBUG !ENDIF |
︙ | ︙ | |||
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 | libtclsqlite3.lib: tclsqlite.lo libsqlite3.lib $(LTLIB) $(LTLIBOPTS) $(LTLIBPATHS) /OUT:$@ tclsqlite.lo libsqlite3.lib $(LIBTCL:tcl=tclstub) $(TLIBS) sqlite3.exe: $(TOP)\src\shell.c $(SHELL_CORE_DEP) $(LIBRESOBJS) sqlite3.h $(LTLINK) $(SHELL_COMPILE_OPTS) $(READLINE_FLAGS) $(TOP)\src\shell.c \ /link /pdb:sqlite3sh.pdb $(LTLINKOPTS) $(SHELL_LINK_OPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LIBREADLINE) $(LTLIBS) $(TLIBS) mptester.exe: $(TOP)\mptest\mptest.c $(SHELL_CORE_DEP) $(LIBRESOBJS) sqlite3.h $(LTLINK) $(SHELL_COMPILE_OPTS) $(TOP)\mptest\mptest.c \ /link $(LTLINKOPTS) $(LTLIBPATHS) $(SHELL_LINK_OPTS) $(LIBRESOBJS) $(LIBREADLINE) $(LTLIBS) $(TLIBS) # This target creates a directory named "tsrc" and fills it with # copies of all of the C source code and header files needed to # build on the target system. Some of the C source code and header # files are automatically generated. This target takes care of # all that automatic generation. # | > > > > > > > > > > > > > > > > > > > > | 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 | libtclsqlite3.lib: tclsqlite.lo libsqlite3.lib $(LTLIB) $(LTLIBOPTS) $(LTLIBPATHS) /OUT:$@ tclsqlite.lo libsqlite3.lib $(LIBTCL:tcl=tclstub) $(TLIBS) sqlite3.exe: $(TOP)\src\shell.c $(SHELL_CORE_DEP) $(LIBRESOBJS) sqlite3.h $(LTLINK) $(SHELL_COMPILE_OPTS) $(READLINE_FLAGS) $(TOP)\src\shell.c \ /link /pdb:sqlite3sh.pdb $(LTLINKOPTS) $(SHELL_LINK_OPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LIBREADLINE) $(LTLIBS) $(TLIBS) sqldiff.exe: $(TOP)\tool\sqldiff.c sqlite3.c sqlite3.h $(LTLINK) $(TOP)\tool\sqldiff.c sqlite3.c fuzzershell.exe: $(TOP)\tool\fuzzershell.c sqlite3.c sqlite3.h $(LTLINK) $(TOP)\tool\fuzzershell.c sqlite3.c mptester.exe: $(TOP)\mptest\mptest.c $(SHELL_CORE_DEP) $(LIBRESOBJS) sqlite3.h $(LTLINK) $(SHELL_COMPILE_OPTS) $(TOP)\mptest\mptest.c \ /link $(LTLINKOPTS) $(LTLIBPATHS) $(SHELL_LINK_OPTS) $(LIBRESOBJS) $(LIBREADLINE) $(LTLIBS) $(TLIBS) MPTEST1 = mptester mptest.db $(TOP)\mptest\crash01.test --repeat 20 MPTEST2 = mptester mptest.db $(TOP)\mptest\multiwrite01.test --repeat 20 mptest: mptester.exe del /Q mptest.db 2>NUL $(MPTEST1) --journalmode DELETE $(MPTEST2) --journalmode WAL $(MPTEST1) --journalmode WAL $(MPTEST2) --journalmode PERSIST $(MPTEST1) --journalmode PERSIST $(MPTEST2) --journalmode TRUNCATE $(MPTEST1) --journalmode TRUNCATE $(MPTEST2) --journalmode DELETE # This target creates a directory named "tsrc" and fills it with # copies of all of the C source code and header files needed to # build on the target system. Some of the C source code and header # files are automatically generated. This target takes care of # all that automatic generation. # |
︙ | ︙ | |||
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 | queryplantest: testfixture.exe sqlite3.exe .\testfixture.exe $(TOP)\test\permutations.test queryplanner test: testfixture.exe sqlite3.exe .\testfixture.exe $(TOP)\test\veryquick.test sqlite3_analyzer.c: $(SQLITE3C) $(TOP)\src\test_stat.c $(TOP)\src\tclsqlite.c $(TOP)\tool\spaceanal.tcl copy $(SQLITE3C) + $(TOP)\src\test_stat.c + $(TOP)\src\tclsqlite.c $@ echo static const char *tclsh_main_loop(void){ >> $@ echo static const char *zMainloop = >> $@ $(NAWK) -f $(TOP)\tool\tostr.awk $(TOP)\tool\spaceanal.tcl >> $@ echo ; return zMainloop; } >> $@ | > > > | 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 | queryplantest: testfixture.exe sqlite3.exe .\testfixture.exe $(TOP)\test\permutations.test queryplanner test: testfixture.exe sqlite3.exe .\testfixture.exe $(TOP)\test\veryquick.test smoketest: testfixture.exe .\testfixture.exe $(TOP)\test\main.test sqlite3_analyzer.c: $(SQLITE3C) $(TOP)\src\test_stat.c $(TOP)\src\tclsqlite.c $(TOP)\tool\spaceanal.tcl copy $(SQLITE3C) + $(TOP)\src\test_stat.c + $(TOP)\src\tclsqlite.c $@ echo static const char *tclsh_main_loop(void){ >> $@ echo static const char *zMainloop = >> $@ $(NAWK) -f $(TOP)\tool\tostr.awk $(TOP)\tool\spaceanal.tcl >> $@ echo ; return zMainloop; } >> $@ |
︙ | ︙ |
Changes to VERSION.
|
| | | 1 | 3.8.10 |
Changes to configure.
1 2 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. | | | 1 2 3 4 5 6 7 8 9 10 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.62 for sqlite 3.8.10. # # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, # 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## --------------------- ## ## M4sh Initialization. ## |
︙ | ︙ | |||
739 740 741 742 743 744 745 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' | | | | 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' PACKAGE_VERSION='3.8.10' PACKAGE_STRING='sqlite 3.8.10' PACKAGE_BUGREPORT='' # Factoring default headers for most tests. ac_includes_default="\ #include <stdio.h> #ifdef HAVE_SYS_TYPES_H # include <sys/types.h> |
︙ | ︙ | |||
880 881 882 883 884 885 886 887 888 889 890 891 892 893 | TCL_INCLUDE_SPEC TCL_LIB_FILE TCL_LIB_FLAG TCL_LIB_SPEC TCL_STUB_LIB_FILE TCL_STUB_LIB_FLAG TCL_STUB_LIB_SPEC HAVE_TCL TARGET_READLINE_LIBS TARGET_READLINE_INC TARGET_HAVE_READLINE TARGET_DEBUG USE_AMALGAMATION OPT_FEATURE_FLAGS | > | 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 | TCL_INCLUDE_SPEC TCL_LIB_FILE TCL_LIB_FLAG TCL_LIB_SPEC TCL_STUB_LIB_FILE TCL_STUB_LIB_FLAG TCL_STUB_LIB_SPEC TCL_SHLIB_SUFFIX HAVE_TCL TARGET_READLINE_LIBS TARGET_READLINE_INC TARGET_HAVE_READLINE TARGET_DEBUG USE_AMALGAMATION OPT_FEATURE_FLAGS |
︙ | ︙ | |||
1476 1477 1478 1479 1480 1481 1482 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF | | | 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures sqlite 3.8.10 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. |
︙ | ︙ | |||
1541 1542 1543 1544 1545 1546 1547 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in | | | 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of sqlite 3.8.10:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] |
︙ | ︙ | |||
1655 1656 1657 1658 1659 1660 1661 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF | | | | 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF sqlite configure 3.8.10 generated by GNU Autoconf 2.62 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by sqlite $as_me 3.8.10, which was generated by GNU Autoconf 2.62. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { |
︙ | ︙ | |||
3720 3721 3722 3723 3724 3725 3726 | { $as_echo "$as_me:$LINENO: checking the name lister ($NM) interface" >&5 $as_echo_n "checking the name lister ($NM) interface... " >&6; } if test "${lt_cv_nm_interface+set}" = set; then $as_echo_n "(cached) " >&6 else lt_cv_nm_interface="BSD nm" echo "int some_variable = 0;" > conftest.$ac_ext | | | | | 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 | { $as_echo "$as_me:$LINENO: checking the name lister ($NM) interface" >&5 $as_echo_n "checking the name lister ($NM) interface... " >&6; } if test "${lt_cv_nm_interface+set}" = set; then $as_echo_n "(cached) " >&6 else lt_cv_nm_interface="BSD nm" echo "int some_variable = 0;" > conftest.$ac_ext (eval echo "\"\$as_me:3728: $ac_compile\"" >&5) (eval "$ac_compile" 2>conftest.err) cat conftest.err >&5 (eval echo "\"\$as_me:3731: $NM \\\"conftest.$ac_objext\\\"\"" >&5) (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out) cat conftest.err >&5 (eval echo "\"\$as_me:3734: output\"" >&5) cat conftest.out >&5 if $GREP 'External.*some_variable' conftest.out > /dev/null; then lt_cv_nm_interface="MS dumpbin" fi rm -f conftest* fi { $as_echo "$as_me:$LINENO: result: $lt_cv_nm_interface" >&5 |
︙ | ︙ | |||
4948 4949 4950 4951 4952 4953 4954 | ;; esac fi rm -rf conftest* ;; *-*-irix6*) # Find out which ABI we are using. | | | 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 | ;; esac fi rm -rf conftest* ;; *-*-irix6*) # Find out which ABI we are using. echo '#line 4956 "configure"' > conftest.$ac_ext if { (eval echo "$as_me:$LINENO: \"$ac_compile\"") >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:$LINENO: \$? = $ac_status" >&5 (exit $ac_status); }; then if test "$lt_cv_prog_gnu_ld" = yes; then case `/usr/bin/file conftest.$ac_objext` in |
︙ | ︙ | |||
6817 6818 6819 6820 6821 6822 6823 | # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` | | | | 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 | # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:6825: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:6829: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_rtti_exceptions=yes |
︙ | ︙ | |||
7156 7157 7158 7159 7160 7161 7162 | # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` | | | | 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 | # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:7164: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:7168: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_pic_works=yes |
︙ | ︙ | |||
7261 7262 7263 7264 7265 7266 7267 | # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` | | | | 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 | # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:7269: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:7273: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then |
︙ | ︙ | |||
7316 7317 7318 7319 7320 7321 7322 | # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` | | | | 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 | # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:7324: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:7328: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then |
︙ | ︙ | |||
10129 10130 10131 10132 10133 10134 10135 | else if test "$cross_compiling" = yes; then : lt_cv_dlopen_self=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF | | | 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 | else if test "$cross_compiling" = yes; then : lt_cv_dlopen_self=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF #line 10137 "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include <dlfcn.h> #endif #include <stdio.h> |
︙ | ︙ | |||
10225 10226 10227 10228 10229 10230 10231 | else if test "$cross_compiling" = yes; then : lt_cv_dlopen_self_static=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF | | | 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 | else if test "$cross_compiling" = yes; then : lt_cv_dlopen_self_static=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF #line 10233 "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include <dlfcn.h> #endif #include <stdio.h> |
︙ | ︙ | |||
12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 | fi fi if test "${use_tcl}" = "no" ; then HAVE_TCL="" else HAVE_TCL=1 | > | 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 | fi fi if test "${use_tcl}" = "no" ; then HAVE_TCL="" else HAVE_TCL=1 |
︙ | ︙ | |||
13947 13948 13949 13950 13951 13952 13953 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" | | | 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by sqlite $as_me 3.8.10, which was generated by GNU Autoconf 2.62. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ |
︙ | ︙ | |||
14000 14001 14002 14003 14004 14005 14006 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ | | | 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ sqlite config.status 3.8.10 configured by $0, generated by GNU Autoconf 2.62, with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\" Copyright (C) 2008 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." |
︙ | ︙ |
Changes to configure.ac.
︙ | ︙ | |||
426 427 428 429 430 431 432 433 434 435 436 437 438 439 | AC_SUBST(TCL_LIB_FILE) AC_SUBST(TCL_LIB_FLAG) AC_SUBST(TCL_LIB_SPEC) AC_SUBST(TCL_STUB_LIB_FILE) AC_SUBST(TCL_STUB_LIB_FLAG) AC_SUBST(TCL_STUB_LIB_SPEC) fi fi if test "${use_tcl}" = "no" ; then HAVE_TCL="" else HAVE_TCL=1 fi | > | 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | AC_SUBST(TCL_LIB_FILE) AC_SUBST(TCL_LIB_FLAG) AC_SUBST(TCL_LIB_SPEC) AC_SUBST(TCL_STUB_LIB_FILE) AC_SUBST(TCL_STUB_LIB_FLAG) AC_SUBST(TCL_STUB_LIB_SPEC) AC_SUBST(TCL_SHLIB_SUFFIX) fi fi if test "${use_tcl}" = "no" ; then HAVE_TCL="" else HAVE_TCL=1 fi |
︙ | ︙ |
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
309 310 311 312 313 314 315 316 317 318 319 320 321 322 | #endif static int fts3EvalNext(Fts3Cursor *pCsr); static int fts3EvalStart(Fts3Cursor *pCsr); static int fts3TermSegReaderCursor( Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **); /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. ** The number of bytes written is returned. */ int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ unsigned char *q = (unsigned char *) p; | > > > > > > > | 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | #endif static int fts3EvalNext(Fts3Cursor *pCsr); static int fts3EvalStart(Fts3Cursor *pCsr); static int fts3TermSegReaderCursor( Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **); #ifndef SQLITE_AMALGAMATION # if defined(SQLITE_DEBUG) int sqlite3Fts3Always(int b) { assert( b ); return b; } int sqlite3Fts3Never(int b) { assert( !b ); return b; } # endif #endif /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. ** The number of bytes written is returned. */ int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ unsigned char *q = (unsigned char *) p; |
︙ | ︙ | |||
418 419 420 421 422 423 424 | if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){ int iIn = 1; /* Index of next byte to read from input */ int iOut = 0; /* Index of next byte to write to output */ /* If the first byte was a '[', then the close-quote character is a ']' */ if( quote=='[' ) quote = ']'; | | | 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){ int iIn = 1; /* Index of next byte to read from input */ int iOut = 0; /* Index of next byte to write to output */ /* If the first byte was a '[', then the close-quote character is a ']' */ if( quote=='[' ) quote = ']'; while( z[iIn] ){ if( z[iIn]==quote ){ if( z[iIn+1]!=quote ) break; z[iOut++] = quote; iIn += 2; }else{ z[iOut++] = z[iIn++]; } |
︙ | ︙ | |||
906 907 908 909 910 911 912 | ** ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and ** the output value undefined. Otherwise SQLITE_OK is returned. ** ** This function is used when parsing the "prefix=" FTS4 parameter. */ static int fts3GobbleInt(const char **pp, int *pnOut){ | | | 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 | ** ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and ** the output value undefined. Otherwise SQLITE_OK is returned. ** ** This function is used when parsing the "prefix=" FTS4 parameter. */ static int fts3GobbleInt(const char **pp, int *pnOut){ const int MAX_NPREFIX = 10000000; const char *p; /* Iterator pointer */ int nInt = 0; /* Output value */ for(p=*pp; p[0]>='0' && p[0]<='9'; p++){ nInt = nInt * 10 + (p[0] - '0'); if( nInt>MAX_NPREFIX ){ nInt = 0; |
︙ | ︙ | |||
1015 1016 1017 1018 1019 1020 1021 | */ static int fts3ContentColumns( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */ const char *zTbl, /* Name of content table */ const char ***pazCol, /* OUT: Malloc'd array of column names */ int *pnCol, /* OUT: Size of array *pazCol */ | | > > > > | 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 | */ static int fts3ContentColumns( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */ const char *zTbl, /* Name of content table */ const char ***pazCol, /* OUT: Malloc'd array of column names */ int *pnCol, /* OUT: Size of array *pazCol */ int *pnStr, /* OUT: Bytes of string content */ char **pzErr /* OUT: error message */ ){ int rc = SQLITE_OK; /* Return code */ char *zSql; /* "SELECT *" statement on zTbl */ sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } } sqlite3_free(zSql); if( rc==SQLITE_OK ){ const char **azCol; /* Output array */ int nStr = 0; /* Size of all column names (incl. 0x00) */ int nCol; /* Number of table columns */ |
︙ | ︙ | |||
1104 1105 1106 1107 1108 1109 1110 | char *zCsr; /* Space for holding column names */ int nDb; /* Bytes required to hold database name */ int nName; /* Bytes required to hold table name */ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ const char **aCol; /* Array of column names */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ | | | 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 | char *zCsr; /* Space for holding column names */ int nDb; /* Bytes required to hold database name */ int nName; /* Bytes required to hold table name */ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ const char **aCol; /* Array of column names */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ int nIndex = 0; /* Size of aIndex[] array */ struct Fts3Index *aIndex = 0; /* Array of indexes for this table */ /* The results of parsing supported FTS4 key=value options: */ int bNoDocsize = 0; /* True to omit %_docsize table */ int bDescIdx = 0; /* True to store descending indexes */ char *zPrefix = 0; /* Prefix parameter value (or NULL) */ char *zCompress = 0; /* compress=? parameter (or NULL) */ |
︙ | ︙ | |||
1277 1278 1279 1280 1281 1282 1283 | sqlite3_free(zCompress); sqlite3_free(zUncompress); zCompress = 0; zUncompress = 0; if( nCol==0 ){ sqlite3_free((void*)aCol); aCol = 0; | | | 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 | sqlite3_free(zCompress); sqlite3_free(zUncompress); zCompress = 0; zUncompress = 0; if( nCol==0 ){ sqlite3_free((void*)aCol); aCol = 0; rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr); /* If a languageid= option was specified, remove the language id ** column from the aCol[] array. */ if( rc==SQLITE_OK && zLanguageid ){ int j; for(j=0; j<nCol; j++){ if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){ |
︙ | ︙ | |||
2498 2499 2500 2501 2502 2503 2504 | ** ** If the docids in the input doclists are sorted in ascending order, ** parameter bDescDoclist should be false. If they are sorted in ascending ** order, it should be passed a non-zero value. ** ** The right-hand input doclist is overwritten by this function. */ | | | > | > > > > > | > | 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 | ** ** If the docids in the input doclists are sorted in ascending order, ** parameter bDescDoclist should be false. If they are sorted in ascending ** order, it should be passed a non-zero value. ** ** The right-hand input doclist is overwritten by this function. */ static int fts3DoclistPhraseMerge( int bDescDoclist, /* True if arguments are desc */ int nDist, /* Distance from left to right (1=adjacent) */ char *aLeft, int nLeft, /* Left doclist */ char **paRight, int *pnRight /* IN/OUT: Right/output doclist */ ){ sqlite3_int64 i1 = 0; sqlite3_int64 i2 = 0; sqlite3_int64 iPrev = 0; char *aRight = *paRight; char *pEnd1 = &aLeft[nLeft]; char *pEnd2 = &aRight[*pnRight]; char *p1 = aLeft; char *p2 = aRight; char *p; int bFirstOut = 0; char *aOut; assert( nDist>0 ); if( bDescDoclist ){ aOut = sqlite3_malloc(*pnRight + FTS3_VARINT_MAX); if( aOut==0 ) return SQLITE_NOMEM; }else{ aOut = aRight; } p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 && p2 ){ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); if( iDiff==0 ){ char *pSave = p; |
︙ | ︙ | |||
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 | }else{ fts3PoslistCopy(0, &p2); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); } } *pnRight = (int)(p - aOut); } /* ** Argument pList points to a position list nList bytes in size. This ** function checks to see if the position list contains any entries for ** a token in position 0 (of any column). If so, it writes argument iDelta ** to the output buffer pOut, followed by a position list consisting only | > > > > > > | 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 | }else{ fts3PoslistCopy(0, &p2); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); } } *pnRight = (int)(p - aOut); if( bDescDoclist ){ sqlite3_free(aRight); *paRight = aOut; } return SQLITE_OK; } /* ** Argument pList points to a position list nList bytes in size. This ** function checks to see if the position list contains any entries for ** a token in position 0 (of any column). If so, it writes argument iDelta ** to the output buffer pOut, followed by a position list consisting only |
︙ | ︙ | |||
2670 2671 2672 2673 2674 2675 2676 | Fts3Table *p, /* FTS table handle */ TermSelect *pTS, /* TermSelect object to merge into */ char *aDoclist, /* Pointer to doclist */ int nDoclist /* Size of aDoclist in bytes */ ){ if( pTS->aaOutput[0]==0 ){ /* If this is the first term selected, copy the doclist to the output | | > > > > > > > > > > > > > > | | 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 | Fts3Table *p, /* FTS table handle */ TermSelect *pTS, /* TermSelect object to merge into */ char *aDoclist, /* Pointer to doclist */ int nDoclist /* Size of aDoclist in bytes */ ){ if( pTS->aaOutput[0]==0 ){ /* If this is the first term selected, copy the doclist to the output ** buffer using memcpy(). ** ** Add FTS3_VARINT_MAX bytes of unused space to the end of the ** allocation. This is so as to ensure that the buffer is big enough ** to hold the current doclist AND'd with any other doclist. If the ** doclists are stored in order=ASC order, this padding would not be ** required (since the size of [doclistA AND doclistB] is always less ** than or equal to the size of [doclistA] in that case). But this is ** not true for order=DESC. For example, a doclist containing (1, -1) ** may be smaller than (-1), as in the first example the -1 may be stored ** as a single-byte delta, whereas in the second it must be stored as a ** FTS3_VARINT_MAX byte varint. ** ** Similar padding is added in the fts3DoclistOrMerge() function. */ pTS->aaOutput[0] = sqlite3_malloc(nDoclist + FTS3_VARINT_MAX + 1); pTS->anOutput[0] = nDoclist; if( pTS->aaOutput[0] ){ memcpy(pTS->aaOutput[0], aDoclist, nDoclist); }else{ return SQLITE_NOMEM; } }else{ |
︙ | ︙ | |||
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 | ** moves *ppPoslist so that it instead points to the first byte of the ** same position list. */ static void fts3ReversePoslist(char *pStart, char **ppPoslist){ char *p = &(*ppPoslist)[-2]; char c = 0; while( p>pStart && (c=*p--)==0 ); while( p>pStart && (*p & 0x80) | c ){ c = *p--; } | > > > > > > | > > > > > > > > > > > > > > | 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 | ** moves *ppPoslist so that it instead points to the first byte of the ** same position list. */ static void fts3ReversePoslist(char *pStart, char **ppPoslist){ char *p = &(*ppPoslist)[-2]; char c = 0; /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */ while( p>pStart && (c=*p--)==0 ); /* Search backwards for a varint with value zero (the end of the previous ** poslist). This is an 0x00 byte preceded by some byte that does not ** have the 0x80 bit set. */ while( p>pStart && (*p & 0x80) | c ){ c = *p--; } assert( p==pStart || c==0 ); /* At this point p points to that preceding byte without the 0x80 bit ** set. So to find the start of the poslist, skip forward 2 bytes then ** over a varint. ** ** Normally. The other case is that p==pStart and the poslist to return ** is the first in the doclist. In this case do not skip forward 2 bytes. ** The second part of the if condition (c==0 && *ppPoslist>&p[2]) ** is required for cases where the first byte of a doclist and the ** doclist is empty. For example, if the first docid is 10, a doclist ** that begins with: ** ** 0x0A 0x00 <next docid delta varint> */ if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; } while( *p++&0x80 ); *ppPoslist = p; } /* ** Helper function used by the implementation of the overloaded snippet(), ** offsets() and optimize() SQL functions. |
︙ | ︙ | |||
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 | case 5: iCol = sqlite3_value_int(apVal[4]); case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]); case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]); case 2: zStart = (const char*)sqlite3_value_text(apVal[1]); } if( !zEllipsis || !zEnd || !zStart ){ sqlite3_result_error_nomem(pContext); }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken); } } /* ** Implementation of the offsets() function for FTS3 | > > | 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 | case 5: iCol = sqlite3_value_int(apVal[4]); case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]); case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]); case 2: zStart = (const char*)sqlite3_value_text(apVal[1]); } if( !zEllipsis || !zEnd || !zStart ){ sqlite3_result_error_nomem(pContext); }else if( nToken==0 ){ sqlite3_result_text(pContext, "", -1, SQLITE_STATIC); }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken); } } /* ** Implementation of the offsets() function for FTS3 |
︙ | ︙ | |||
3927 3928 3929 3930 3931 3932 3933 3934 | /* ** Arguments pList/nList contain the doclist for token iToken of phrase p. ** It is merged into the main doclist stored in p->doclist.aAll/nAll. ** ** This function assumes that pList points to a buffer allocated using ** sqlite3_malloc(). This function takes responsibility for eventually ** freeing the buffer. */ | > > | > | 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 | /* ** Arguments pList/nList contain the doclist for token iToken of phrase p. ** It is merged into the main doclist stored in p->doclist.aAll/nAll. ** ** This function assumes that pList points to a buffer allocated using ** sqlite3_malloc(). This function takes responsibility for eventually ** freeing the buffer. ** ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs. */ static int fts3EvalPhraseMergeToken( Fts3Table *pTab, /* FTS Table pointer */ Fts3Phrase *p, /* Phrase to merge pList/nList into */ int iToken, /* Token pList/nList corresponds to */ char *pList, /* Pointer to doclist */ int nList /* Number of bytes in pList */ ){ int rc = SQLITE_OK; assert( iToken!=p->iDoclistToken ); if( pList==0 ){ sqlite3_free(p->doclist.aAll); p->doclist.aAll = 0; p->doclist.nAll = 0; } |
︙ | ︙ | |||
3973 3974 3975 3976 3977 3978 3979 | pRight = p->doclist.aAll; nRight = p->doclist.nAll; pLeft = pList; nLeft = nList; nDiff = p->iDoclistToken - iToken; } | > | > > | 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 | pRight = p->doclist.aAll; nRight = p->doclist.nAll; pLeft = pList; nLeft = nList; nDiff = p->iDoclistToken - iToken; } rc = fts3DoclistPhraseMerge( pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight ); sqlite3_free(pLeft); p->doclist.aAll = pRight; p->doclist.nAll = nRight; } if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken; return rc; } /* ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist ** does not take deferred tokens into account. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. |
︙ | ︙ | |||
4005 4006 4007 4008 4009 4010 4011 | assert( pToken->pDeferred==0 || pToken->pSegcsr==0 ); if( pToken->pSegcsr ){ int nThis = 0; char *pThis = 0; rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis); if( rc==SQLITE_OK ){ | | | 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 | assert( pToken->pDeferred==0 || pToken->pSegcsr==0 ); if( pToken->pSegcsr ){ int nThis = 0; char *pThis = 0; rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis); if( rc==SQLITE_OK ){ rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis); } } assert( pToken->pSegcsr==0 ); } return rc; } |
︙ | ︙ | |||
4547 4548 4549 4550 4551 4552 4553 | static void fts3EvalStartReaders( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pExpr, /* Expression to initialize phrases in */ int *pRc /* IN/OUT: Error code */ ){ if( pExpr && SQLITE_OK==*pRc ){ if( pExpr->eType==FTSQUERY_PHRASE ){ | < > > | | | | > | 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 | static void fts3EvalStartReaders( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pExpr, /* Expression to initialize phrases in */ int *pRc /* IN/OUT: Error code */ ){ if( pExpr && SQLITE_OK==*pRc ){ if( pExpr->eType==FTSQUERY_PHRASE ){ int nToken = pExpr->pPhrase->nToken; if( nToken ){ int i; for(i=0; i<nToken; i++){ if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break; } pExpr->bDeferred = (i==nToken); } *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase); }else{ fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc); fts3EvalStartReaders(pCsr, pExpr->pRight, pRc); pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred); } } |
︙ | ︙ | |||
4807 4808 4809 4810 4811 4812 4813 4814 4815 | ** part of a multi-token phrase. Either way, the entire doclist will ** (eventually) be loaded into memory. It may as well be now. */ Fts3PhraseToken *pToken = pTC->pToken; int nList = 0; char *pList = 0; rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList); assert( rc==SQLITE_OK || pList==0 ); if( rc==SQLITE_OK ){ int nCount; | > > > > > < | 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 | ** part of a multi-token phrase. Either way, the entire doclist will ** (eventually) be loaded into memory. It may as well be now. */ Fts3PhraseToken *pToken = pTC->pToken; int nList = 0; char *pList = 0; rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList); assert( rc==SQLITE_OK || pList==0 ); if( rc==SQLITE_OK ){ rc = fts3EvalPhraseMergeToken( pTab, pTC->pPhrase, pTC->iToken,pList,nList ); } if( rc==SQLITE_OK ){ int nCount; nCount = fts3DoclistCountDocids( pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll ); if( ii==0 || nCount<nMinEst ) nMinEst = nCount; } } } |
︙ | ︙ | |||
5711 5712 5713 5714 5715 5716 5717 | } } if( rc!=SQLITE_OK ) return rc; pIter = pPhrase->pOrPoslist; iDocid = pPhrase->iOrDocid; if( pCsr->bDesc==bDescDoclist ){ | > | | 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 | } } if( rc!=SQLITE_OK ) return rc; pIter = pPhrase->pOrPoslist; iDocid = pPhrase->iOrDocid; if( pCsr->bDesc==bDescDoclist ){ bEof = !pPhrase->doclist.nAll || (pIter >= (pPhrase->doclist.aAll + pPhrase->doclist.nAll)); while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){ sqlite3Fts3DoclistNext( bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll, &pIter, &iDocid, &bEof ); } }else{ |
︙ | ︙ |
Changes to ext/fts3/fts3Int.h.
︙ | ︙ | |||
130 131 132 133 134 135 136 137 138 139 140 141 142 143 | /* ** Macros indicating that conditional expressions are always true or ** false. */ #ifdef SQLITE_COVERAGE_TEST # define ALWAYS(x) (1) # define NEVER(X) (0) #else # define ALWAYS(x) (x) # define NEVER(x) (x) #endif /* ** Internal types used by SQLite. | > > > > > | 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | /* ** Macros indicating that conditional expressions are always true or ** false. */ #ifdef SQLITE_COVERAGE_TEST # define ALWAYS(x) (1) # define NEVER(X) (0) #elif defined(SQLITE_DEBUG) # define ALWAYS(x) sqlite3Fts3Always((x)!=0) # define NEVER(x) sqlite3Fts3Never((x)!=0) int sqlite3Fts3Always(int b); int sqlite3Fts3Never(int b); #else # define ALWAYS(x) (x) # define NEVER(x) (x) #endif /* ** Internal types used by SQLite. |
︙ | ︙ |
Changes to ext/fts3/fts3_tokenizer.c.
︙ | ︙ | |||
65 66 67 68 69 70 71 | zName = sqlite3_value_text(argv[0]); nName = sqlite3_value_bytes(argv[0])+1; if( argc==2 ){ void *pOld; int n = sqlite3_value_bytes(argv[1]); | | > | > | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | zName = sqlite3_value_text(argv[0]); nName = sqlite3_value_bytes(argv[0])+1; if( argc==2 ){ void *pOld; int n = sqlite3_value_bytes(argv[1]); if( zName==0 || n!=sizeof(pPtr) ){ sqlite3_result_error(context, "argument type mismatch", -1); return; } pPtr = *(void **)sqlite3_value_blob(argv[1]); pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr); if( pOld==pPtr ){ sqlite3_result_error(context, "out of memory", -1); return; } }else{ if( zName ){ pPtr = sqlite3Fts3HashFind(pHash, zName, nName); } if( !pPtr ){ char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName); sqlite3_result_error(context, zErr, -1); sqlite3_free(zErr); return; } } |
︙ | ︙ | |||
273 274 275 276 277 278 279 | nInput = sqlite3_value_bytes(argv[argc-1]); zInput = (const char *)sqlite3_value_text(argv[argc-1]); pHash = (Fts3Hash *)sqlite3_user_data(context); p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1); if( !p ){ | | | | | 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | nInput = sqlite3_value_bytes(argv[argc-1]); zInput = (const char *)sqlite3_value_text(argv[argc-1]); pHash = (Fts3Hash *)sqlite3_user_data(context); p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1); if( !p ){ char *zErr2 = sqlite3_mprintf("unknown tokenizer: %s", zName); sqlite3_result_error(context, zErr2, -1); sqlite3_free(zErr2); return; } pRet = Tcl_NewObj(); Tcl_IncrRefCount(pRet); for(i=1; i<argc-1; i++){ |
︙ | ︙ |
Changes to ext/misc/fuzzer.c.
︙ | ︙ | |||
872 873 874 875 876 877 878 | fuzzer_rule *pRule; unsigned int h; pNew = sqlite3_malloc( sizeof(*pNew) + (int)strlen(zWord) + 1 ); if( pNew==0 ) return 0; memset(pNew, 0, sizeof(*pNew)); pNew->zBasis = (char*)&pNew[1]; | | | 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 | fuzzer_rule *pRule; unsigned int h; pNew = sqlite3_malloc( sizeof(*pNew) + (int)strlen(zWord) + 1 ); if( pNew==0 ) return 0; memset(pNew, 0, sizeof(*pNew)); pNew->zBasis = (char*)&pNew[1]; pNew->nBasis = (fuzzer_len)strlen(zWord); memcpy(pNew->zBasis, zWord, pNew->nBasis+1); pRule = pCur->pVtab->pRule; while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){ pRule = pRule->pNext; } pNew->pRule = pRule; pNew->n = -1; |
︙ | ︙ |
Changes to main.mk.
︙ | ︙ | |||
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | $(RANLIB) libsqlite3.a sqlite3$(EXE): $(TOP)/src/shell.c libsqlite3.a sqlite3.h $(TCCX) $(READLINE_FLAGS) -o sqlite3$(EXE) \ $(TOP)/src/shell.c \ libsqlite3.a $(LIBREADLINE) $(TLIBS) $(THREADLIB) mptester$(EXE): sqlite3.c $(TOP)/mptest/mptest.c $(TCCX) -o $@ -I. $(TOP)/mptest/mptest.c sqlite3.c \ $(TLIBS) $(THREADLIB) sqlite3.o: sqlite3.c $(TCCX) -I. -c sqlite3.c # This target creates a directory named "tsrc" and fills it with # copies of all of the C source code and header files needed to # build on the target system. Some of the C source code and header | > > > > > > > > > > > > > > > > > > > > > | 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | $(RANLIB) libsqlite3.a sqlite3$(EXE): $(TOP)/src/shell.c libsqlite3.a sqlite3.h $(TCCX) $(READLINE_FLAGS) -o sqlite3$(EXE) \ $(TOP)/src/shell.c \ libsqlite3.a $(LIBREADLINE) $(TLIBS) $(THREADLIB) sqldiff$(EXE): $(TOP)/tool/sqldiff.c sqlite3.c sqlite3.h $(TCCX) -o sqldiff$(EXE) -DSQLITE_THREADSAFE=0 \ $(TOP)/tool/sqldiff.c sqlite3.c $(TLIBS) $(THREADLIB) fuzzershell$(EXE): $(TOP)/tool/fuzzershell.c sqlite3.c sqlite3.h $(TCCX) -o fuzzershell$(EXE) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION\ $(TOP)/tool/fuzzershell.c sqlite3.c $(TLIBS) $(THREADLIB) mptester$(EXE): sqlite3.c $(TOP)/mptest/mptest.c $(TCCX) -o $@ -I. $(TOP)/mptest/mptest.c sqlite3.c \ $(TLIBS) $(THREADLIB) MPTEST1=./mptester$(EXE) mptest.db $(TOP)/mptest/crash01.test --repeat 20 MPTEST2=./mptester$(EXE) mptest.db $(TOP)/mptest/multiwrite01.test --repeat 20 mptest: mptester$(EXE) rm -f mptest.db $(MPTEST1) --journalmode DELETE $(MPTEST2) --journalmode WAL $(MPTEST1) --journalmode WAL $(MPTEST2) --journalmode PERSIST $(MPTEST1) --journalmode PERSIST $(MPTEST2) --journalmode TRUNCATE $(MPTEST1) --journalmode TRUNCATE $(MPTEST2) --journalmode DELETE sqlite3.o: sqlite3.c $(TCCX) -I. -c sqlite3.c # This target creates a directory named "tsrc" and fills it with # copies of all of the C source code and header files needed to # build on the target system. Some of the C source code and header |
︙ | ︙ |
Changes to mkopcodeh.awk.
︙ | ︙ | |||
68 69 70 71 72 73 74 | # Scan for "case OP_aaaa:" lines in the vdbe.c file /^case OP_/ { name = $2 sub(/:/,"",name) sub("\r","",name) op[name] = -1 # op[x] holds the numeric value for OP symbol x jump[name] = 0 | < < < | 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | # Scan for "case OP_aaaa:" lines in the vdbe.c file /^case OP_/ { name = $2 sub(/:/,"",name) sub("\r","",name) op[name] = -1 # op[x] holds the numeric value for OP symbol x jump[name] = 0 in1[name] = 0 in2[name] = 0 in3[name] = 0 out2[name] = 0 out3[name] = 0 for(i=3; i<NF; i++){ if($i=="same" && $(i+1)=="as"){ sym = $(i+2) sub(/,/,"",sym) val = tk[sym] op[name] = val used[val] = 1 sameas[val] = sym def[val] = name } x = $i sub(",","",x) if(x=="jump"){ jump[name] = 1 }else if(x=="in1"){ in1[name] = 1 }else if(x=="in2"){ in2[name] = 1 }else if(x=="in3"){ in3[name] = 1 }else if(x=="out2"){ |
︙ | ︙ | |||
190 191 192 193 194 195 196 | # bit 1: pushes a result onto stack # bit 2: output to p1. release p1 before opcode runs # for(i=0; i<=max; i++){ name = def[i] a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0 if( jump[name] ) a0 = 1; | < | | | | | | < | | | | | | 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | # bit 1: pushes a result onto stack # bit 2: output to p1. release p1 before opcode runs # for(i=0; i<=max; i++){ name = def[i] a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0 if( jump[name] ) a0 = 1; if( in1[name] ) a2 = 2; if( in2[name] ) a3 = 4; if( in3[name] ) a4 = 8; if( out2[name] ) a5 = 16; if( out3[name] ) a6 = 32; bv[i] = a0+a1+a2+a3+a4+a5+a6; } print "\n" print "/* Properties such as \"out2\" or \"jump\" that are specified in" print "** comments following the \"case\" for each opcode in the vdbe.c" print "** are encoded into bitvectors as follows:" print "*/" print "#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */" print "#define OPFLG_IN1 0x0002 /* in1: P1 is an input */" print "#define OPFLG_IN2 0x0004 /* in2: P2 is an input */" print "#define OPFLG_IN3 0x0008 /* in3: P3 is an input */" print "#define OPFLG_OUT2 0x0010 /* out2: P2 is an output */" print "#define OPFLG_OUT3 0x0020 /* out3: P3 is an output */" print "#define OPFLG_INITIALIZER {\\" for(i=0; i<=max; i++){ if( i%8==0 ) printf("/* %3d */",i) printf " 0x%02x,", bv[i] if( i%8==7 ) printf("\\\n"); } print "}" |
︙ | ︙ |
Changes to mptest/mptest.c.
︙ | ︙ | |||
48 49 50 51 52 53 54 55 56 57 58 59 60 61 | /* The suffix to append to the child command lines, if any */ #if defined(_WIN32) # define GETPID (int)GetCurrentProcessId #else # define GETPID getpid #endif /* Mark a parameter as unused to suppress compiler warnings */ #define UNUSED_PARAMETER(x) (void)x /* Global data */ static struct Global { | > > > > > > > | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | /* The suffix to append to the child command lines, if any */ #if defined(_WIN32) # define GETPID (int)GetCurrentProcessId #else # define GETPID getpid #endif /* The directory separator character(s) */ #if defined(_WIN32) # define isDirSep(c) (((c) == '/') || ((c) == '\\')) #else # define isDirSep(c) ((c) == '/') #endif /* Mark a parameter as unused to suppress compiler warnings */ #define UNUSED_PARAMETER(x) (void)x /* Global data */ static struct Global { |
︙ | ︙ | |||
820 821 822 823 824 825 826 | } } /* Return a pointer to the tail of a filename */ static char *filenameTail(char *z){ int i, j; | | | 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 | } } /* Return a pointer to the tail of a filename */ static char *filenameTail(char *z){ int i, j; for(i=j=0; z[i]; i++) if( isDirSep(z[i]) ) j = i+1; return z+j; } /* ** Interpret zArg as a boolean value. Return either 0 or 1. */ static int booleanValue(char *zArg){ |
︙ | ︙ | |||
1017 1018 1019 1020 1021 1022 1023 | ** ** Run a subscript from a separate file. */ if( strcmp(zCmd, "source")==0 ){ char *zNewFile, *zNewScript; char *zToDel = 0; zNewFile = azArg[0]; | | | | 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 | ** ** Run a subscript from a separate file. */ if( strcmp(zCmd, "source")==0 ){ char *zNewFile, *zNewScript; char *zToDel = 0; zNewFile = azArg[0]; if( !isDirSep(zNewFile[0]) ){ int k; for(k=(int)strlen(zFilename)-1; k>=0 && !isDirSep(zFilename[k]); k--){} if( k>0 ){ zNewFile = zToDel = sqlite3_mprintf("%.*s/%s", k,zFilename,zNewFile); } } zNewScript = readFile(zNewFile); if( g.iTrace ) logMessage("begin script [%s]\n", zNewFile); runScript(0, 0, zNewScript, zNewFile); |
︙ | ︙ | |||
1227 1228 1229 1230 1231 1232 1233 | } /* Print a usage message for the program and exit */ static void usage(const char *argv0){ int i; const char *zTail = argv0; for(i=0; argv0[i]; i++){ | | | 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 | } /* Print a usage message for the program and exit */ static void usage(const char *argv0){ int i; const char *zTail = argv0; for(i=0; argv0[i]; i++){ if( isDirSep(argv0[i]) ) zTail = argv0+i+1; } fprintf(stderr,"Usage: %s DATABASE ?OPTIONS? ?SCRIPT?\n", zTail); exit(1); } /* Report on unrecognized arguments */ static void unrecognizedArguments( |
︙ | ︙ | |||
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 | if( zClient ){ iClient = atoi(zClient); if( iClient<1 ) fatalError("illegal client number: %d\n", iClient); sqlite3_snprintf(sizeof(g.zName), g.zName, "%05d.client%02d", GETPID(), iClient); }else{ if( g.iTrace>0 ){ printf("With SQLite " SQLITE_VERSION " " SQLITE_SOURCE_ID "\n" ); for(i=0; (zCOption = sqlite3_compileoption_get(i))!=0; i++){ printf("-DSQLITE_%s\n", zCOption); } fflush(stdout); } iClient = 0; unlink(g.zDbFile); openFlags |= SQLITE_OPEN_CREATE; } rc = sqlite3_open_v2(g.zDbFile, &g.db, openFlags, g.zVfs); if( rc ) fatalError("cannot open [%s]", g.zDbFile); sqlite3_enable_load_extension(g.db, 1); sqlite3_busy_handler(g.db, busyHandler, 0); sqlite3_create_function(g.db, "vfsname", 0, SQLITE_UTF8, 0, vfsNameFunc, 0, 0); sqlite3_create_function(g.db, "eval", 1, SQLITE_UTF8, 0, evalFunc, 0, 0); g.iTimeout = DEFAULT_TIMEOUT; if( g.bSqlTrace ) sqlite3_trace(g.db, sqlTraceCallback, 0); | > > > > > > > > > > > > > > > < | 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 | if( zClient ){ iClient = atoi(zClient); if( iClient<1 ) fatalError("illegal client number: %d\n", iClient); sqlite3_snprintf(sizeof(g.zName), g.zName, "%05d.client%02d", GETPID(), iClient); }else{ if( g.iTrace>0 ){ printf("BEGIN: %s", argv[0]); for(i=1; i<argc; i++) printf(" %s", argv[i]); printf("\n"); printf("With SQLite " SQLITE_VERSION " " SQLITE_SOURCE_ID "\n" ); for(i=0; (zCOption = sqlite3_compileoption_get(i))!=0; i++){ printf("-DSQLITE_%s\n", zCOption); } fflush(stdout); } iClient = 0; unlink(g.zDbFile); openFlags |= SQLITE_OPEN_CREATE; } rc = sqlite3_open_v2(g.zDbFile, &g.db, openFlags, g.zVfs); if( rc ) fatalError("cannot open [%s]", g.zDbFile); if( zJMode ){ #if defined(_WIN32) if( sqlite3_stricmp(zJMode,"persist")==0 || sqlite3_stricmp(zJMode,"truncate")==0 ){ printf("Changing journal mode to DELETE from %s", zJMode); zJMode = "DELETE"; } #endif runSql("PRAGMA journal_mode=%Q;", zJMode); } if( !g.bSync ) trySql("PRAGMA synchronous=OFF"); sqlite3_enable_load_extension(g.db, 1); sqlite3_busy_handler(g.db, busyHandler, 0); sqlite3_create_function(g.db, "vfsname", 0, SQLITE_UTF8, 0, vfsNameFunc, 0, 0); sqlite3_create_function(g.db, "eval", 1, SQLITE_UTF8, 0, evalFunc, 0, 0); g.iTimeout = DEFAULT_TIMEOUT; if( g.bSqlTrace ) sqlite3_trace(g.db, sqlTraceCallback, 0); if( iClient>0 ){ if( n>0 ) unrecognizedArguments(argv[0], n, argv+2); if( g.iTrace ) logMessage("start-client"); while(1){ char *zTaskName = 0; rc = startScript(iClient, &zScript, &taskId, &zTaskName); if( rc==SQLITE_DONE ) break; |
︙ | ︙ | |||
1351 1352 1353 1354 1355 1356 1357 | }else{ sqlite3_stmt *pStmt; int iTimeout; if( n==0 ){ fatalError("missing script filename"); } if( n>1 ) unrecognizedArguments(argv[0], n, argv+2); | < | 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 | }else{ sqlite3_stmt *pStmt; int iTimeout; if( n==0 ){ fatalError("missing script filename"); } if( n>1 ) unrecognizedArguments(argv[0], n, argv+2); runSql( "DROP TABLE IF EXISTS task;\n" "DROP TABLE IF EXISTS counters;\n" "DROP TABLE IF EXISTS client;\n" "CREATE TABLE task(\n" " id INTEGER PRIMARY KEY,\n" " name TEXT,\n" |
︙ | ︙ | |||
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 | sqlite3_finalize(pStmt); } sqlite3_close(g.db); maybeClose(g.pLog); maybeClose(g.pErrLog); if( iClient==0 ){ printf("Summary: %d errors out of %d tests\n", g.nError, g.nTest); } return g.nError>0; } | > > > | 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 | sqlite3_finalize(pStmt); } sqlite3_close(g.db); maybeClose(g.pLog); maybeClose(g.pErrLog); if( iClient==0 ){ printf("Summary: %d errors out of %d tests\n", g.nError, g.nTest); printf("END: %s", argv[0]); for(i=1; i<argc; i++) printf(" %s", argv[i]); printf("\n"); } return g.nError>0; } |
Changes to src/analyze.c.
︙ | ︙ | |||
1515 1516 1517 1518 1519 1520 1521 1522 1523 | pIndex = sqlite3PrimaryKeyIndex(pTable); }else{ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); } z = argv[2]; if( pIndex ){ int nCol = pIndex->nKeyCol+1; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | > > > > | | < | < > | | 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 | pIndex = sqlite3PrimaryKeyIndex(pTable); }else{ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); } z = argv[2]; if( pIndex ){ tRowcnt *aiRowEst = 0; int nCol = pIndex->nKeyCol+1; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 /* Index.aiRowEst may already be set here if there are duplicate ** sqlite_stat1 entries for this index. In that case just clobber ** the old data with the new instead of allocating a new array. */ if( pIndex->aiRowEst==0 ){ pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); if( pIndex->aiRowEst==0 ) pInfo->db->mallocFailed = 1; } aiRowEst = pIndex->aiRowEst; #endif pIndex->bUnordered = 0; decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0]; }else{ Index fakeIdx; fakeIdx.szIdxRow = pTable->szTabRow; |
︙ | ︙ |
Changes to src/attach.c.
︙ | ︙ | |||
294 295 296 297 298 299 300 | sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName); goto detach_error; } sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; | | | 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName); goto detach_error; } sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; sqlite3CollapseDatabaseArray(db); return; detach_error: sqlite3_result_error(context, zErr, -1); } /* |
︙ | ︙ | |||
328 329 330 331 332 333 334 | sName.pParse = pParse; if( SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) || SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) || SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey)) ){ | < | 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | sName.pParse = pParse; if( SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) || SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) || SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey)) ){ goto attach_end; } #ifndef SQLITE_OMIT_AUTHORIZATION if( pAuthArg ){ char *zAuthArg; if( pAuthArg->op==TK_STRING ){ |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
596 597 598 599 600 601 602 | ** ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) ** prior to calling this routine. */ static int saveCursorPosition(BtCursor *pCur){ int rc; | | > > > > > | 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 | ** ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) ** prior to calling this routine. */ static int saveCursorPosition(BtCursor *pCur){ int rc; assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); assert( 0==pCur->pKey ); assert( cursorHoldsMutex(pCur) ); if( pCur->eState==CURSOR_SKIPNEXT ){ pCur->eState = CURSOR_VALID; }else{ pCur->skipNext = 0; } rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); assert( rc==SQLITE_OK ); /* KeySize() cannot fail */ /* If this is an intKey table, then the above call to BtreeKeySize() ** stores the integer key in pCur->nKey. In this case this value is ** all that is required. Otherwise, if pCur is not open on an intKey ** table, then malloc space for and store the pCur->nKey bytes of key |
︙ | ︙ | |||
670 671 672 673 674 675 676 | static int SQLITE_NOINLINE saveCursorsOnList( BtCursor *p, /* The first cursor that needs saving */ Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ BtCursor *pExcept /* Do not save this cursor */ ){ do{ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ | | | 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 | static int SQLITE_NOINLINE saveCursorsOnList( BtCursor *p, /* The first cursor that needs saving */ Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ BtCursor *pExcept /* Do not save this cursor */ ){ do{ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ int rc = saveCursorPosition(p); if( SQLITE_OK!=rc ){ return rc; } }else{ testcase( p->iPage>0 ); btreeReleaseAllCursorPages(p); |
︙ | ︙ | |||
742 743 744 745 746 747 748 749 750 751 752 753 754 | ** when saveCursorPosition() was called. Note that this call deletes the ** saved position info stored by saveCursorPosition(), so there can be ** at most one effective restoreCursorPosition() call after each ** saveCursorPosition(). */ static int btreeRestoreCursorPosition(BtCursor *pCur){ int rc; assert( cursorHoldsMutex(pCur) ); assert( pCur->eState>=CURSOR_REQUIRESEEK ); if( pCur->eState==CURSOR_FAULT ){ return pCur->skipNext; } pCur->eState = CURSOR_INVALID; | > | > | 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 | ** when saveCursorPosition() was called. Note that this call deletes the ** saved position info stored by saveCursorPosition(), so there can be ** at most one effective restoreCursorPosition() call after each ** saveCursorPosition(). */ static int btreeRestoreCursorPosition(BtCursor *pCur){ int rc; int skipNext; assert( cursorHoldsMutex(pCur) ); assert( pCur->eState>=CURSOR_REQUIRESEEK ); if( pCur->eState==CURSOR_FAULT ){ return pCur->skipNext; } pCur->eState = CURSOR_INVALID; rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); if( rc==SQLITE_OK ){ sqlite3_free(pCur->pKey); pCur->pKey = 0; assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); pCur->skipNext |= skipNext; if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ pCur->eState = CURSOR_SKIPNEXT; } } return rc; } |
︙ | ︙ | |||
804 805 806 807 808 809 810 | assert( pCur!=0 ); assert( pCur->eState!=CURSOR_VALID ); rc = restoreCursorPosition(pCur); if( rc ){ *pDifferentRow = 1; return rc; } | | > | 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 | assert( pCur!=0 ); assert( pCur->eState!=CURSOR_VALID ); rc = restoreCursorPosition(pCur); if( rc ){ *pDifferentRow = 1; return rc; } if( pCur->eState!=CURSOR_VALID ){ *pDifferentRow = 1; }else{ assert( pCur->skipNext==0 ); *pDifferentRow = 0; } return SQLITE_OK; } #ifndef SQLITE_OMIT_AUTOVACUUM /* |
︙ | ︙ | |||
1947 1948 1949 1950 1951 1952 1953 1954 | #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) /* ** If this Btree is a candidate for shared cache, try to find an ** existing BtShared object that we can share with */ if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ int nFullPathname = pVfs->mxPathname+1; | > | > | | 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 | #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) /* ** If this Btree is a candidate for shared cache, try to find an ** existing BtShared object that we can share with */ if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ int nFilename = sqlite3Strlen30(zFilename)+1; int nFullPathname = pVfs->mxPathname+1; char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) p->sharable = 1; if( !zFullPathname ){ sqlite3_free(p); return SQLITE_NOMEM; } if( isMemdb ){ memcpy(zFullPathname, zFilename, nFilename); }else{ rc = sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname); if( rc ){ sqlite3_free(zFullPathname); sqlite3_free(p); return rc; |
︙ | ︙ | |||
2013 2014 2015 2016 2017 2018 2019 | #endif if( pBt==0 ){ /* ** The following asserts make sure that structures used by the btree are ** the right size. This is to guard against size changes that result ** when compiling on a different architecture. */ | | | | 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 | #endif if( pBt==0 ){ /* ** The following asserts make sure that structures used by the btree are ** the right size. This is to guard against size changes that result ** when compiling on a different architecture. */ assert( sizeof(i64)==8 ); assert( sizeof(u64)==8 ); assert( sizeof(u32)==4 ); assert( sizeof(u16)==2 ); assert( sizeof(Pgno)==4 ); pBt = sqlite3MallocZero( sizeof(*pBt) ); if( pBt==0 ){ rc = SQLITE_NOMEM; |
︙ | ︙ | |||
3621 3622 3623 3624 3625 3626 3627 | assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); if( pBtree ){ sqlite3BtreeEnter(pBtree); for(p=pBtree->pBt->pCursor; p; p=p->pNext){ int i; if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ | | | 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 | assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); if( pBtree ){ sqlite3BtreeEnter(pBtree); for(p=pBtree->pBt->pCursor; p; p=p->pNext){ int i; if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ rc = saveCursorPosition(p); if( rc!=SQLITE_OK ){ (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); break; } } }else{ |
︙ | ︙ | |||
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 | ** Failure is not possible. This function always returns SQLITE_OK. ** It might just as well be a procedure (returning void) but we continue ** to return an integer result code for historical reasons. */ int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 ); getCellInfo(pCur); *pSize = pCur->info.nPayload; return SQLITE_OK; } /* | > > | 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 | ** Failure is not possible. This function always returns SQLITE_OK. ** It might just as well be a procedure (returning void) but we continue ** to return an integer result code for historical reasons. */ int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>=0 ); assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 ); getCellInfo(pCur); *pSize = pCur->info.nPayload; return SQLITE_OK; } /* |
︙ | ︙ | |||
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 | ** page of the database. The data might change or move the next time ** any btree routine is called. */ static const void *fetchPayload( BtCursor *pCur, /* Cursor pointing to entry to read from */ u32 *pAmt /* Write the number of available bytes here */ ){ assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); assert( pCur->eState==CURSOR_VALID ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( cursorHoldsMutex(pCur) ); assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); assert( pCur->info.nSize>0 ); | > > > > > | | 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 | ** page of the database. The data might change or move the next time ** any btree routine is called. */ static const void *fetchPayload( BtCursor *pCur, /* Cursor pointing to entry to read from */ u32 *pAmt /* Write the number of available bytes here */ ){ u32 amt; assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); assert( pCur->eState==CURSOR_VALID ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( cursorHoldsMutex(pCur) ); assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); assert( pCur->info.nSize>0 ); assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB ); assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB); amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload); if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal; *pAmt = amt; return (void*)pCur->info.pPayload; } /* ** For the entry that cursor pCur is point to, return as ** many bytes of the key or data as are available on the local |
︙ | ︙ | |||
4505 4506 4507 4508 4509 4510 4511 | pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){ return SQLITE_CORRUPT_BKPT; } return SQLITE_OK; } | | > > | 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 | pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){ return SQLITE_CORRUPT_BKPT; } return SQLITE_OK; } #if SQLITE_DEBUG /* ** Page pParent is an internal (non-leaf) tree page. This function ** asserts that page number iChild is the left-child if the iIdx'th ** cell in page pParent. Or, if iIdx is equal to the total number of ** cells in pParent, that page number iChild is the right-child of ** the page. */ static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ if( CORRUPT_DB ) return; /* The conditions tested below might not be true ** in a corrupt database */ assert( iIdx<=pParent->nCell ); if( iIdx==pParent->nCell ){ assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); }else{ assert( get4byte(findCell(pParent, iIdx))==iChild ); } } |
︙ | ︙ | |||
4538 4539 4540 4541 4542 4543 4544 | ** the largest cell index. */ static void moveToParent(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>0 ); assert( pCur->apPage[pCur->iPage] ); | < < < < < < < < | 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 | ** the largest cell index. */ static void moveToParent(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>0 ); assert( pCur->apPage[pCur->iPage] ); assertParentIndex( pCur->apPage[pCur->iPage-1], pCur->aiIdx[pCur->iPage-1], pCur->apPage[pCur->iPage]->pgno ); testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); releasePage(pCur->apPage[pCur->iPage]); pCur->iPage--; pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); } |
︙ | ︙ | |||
6725 6726 6727 6728 6729 6730 6731 | }else{ assert( bBulk==0 || bBulk==1 ); if( iParentIdx==0 ){ nxDiv = 0; }else if( iParentIdx==i ){ nxDiv = i-2+bBulk; }else{ | < | 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 | }else{ assert( bBulk==0 || bBulk==1 ); if( iParentIdx==0 ){ nxDiv = 0; }else if( iParentIdx==i ){ nxDiv = i-2+bBulk; }else{ nxDiv = iParentIdx-1; } i = 2-bBulk; } nOld = i+1; if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ pRight = &pParent->aData[pParent->hdrOffset+8]; |
︙ | ︙ | |||
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 | } pPage->nOverflow = 0; /* The next iteration of the do-loop balances the parent page. */ releasePage(pPage); pCur->iPage--; } }while( rc==SQLITE_OK ); if( pFree ){ sqlite3PageFree(pFree); } return rc; | > | 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 | } pPage->nOverflow = 0; /* The next iteration of the do-loop balances the parent page. */ releasePage(pPage); pCur->iPage--; assert( pCur->iPage>=0 ); } }while( rc==SQLITE_OK ); if( pFree ){ sqlite3PageFree(pFree); } return rc; |
︙ | ︙ | |||
7974 7975 7976 7977 7978 7979 7980 | int hdr; u16 szCell; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } | < > > > > > | 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 | int hdr; u16 szCell; assert( sqlite3_mutex_held(pBt->mutex) ); if( pgno>btreePagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } rc = getAndInitPage(pBt, pgno, &pPage, 0); if( rc ) return rc; if( pPage->bBusy ){ rc = SQLITE_CORRUPT_BKPT; goto cleardatabasepage_out; } pPage->bBusy = 1; hdr = pPage->hdrOffset; for(i=0; i<pPage->nCell; i++){ pCell = findCell(pPage, i); if( !pPage->leaf ){ rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); if( rc ) goto cleardatabasepage_out; } |
︙ | ︙ | |||
8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 | if( freePageFlag ){ freePage(pPage, &rc); }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); } cleardatabasepage_out: releasePage(pPage); return rc; } /* ** Delete all information from a single table in the database. iTable is ** the page number of the root of the table. After this routine returns, | > | 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 | if( freePageFlag ){ freePage(pPage, &rc); }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); } cleardatabasepage_out: pPage->bBusy = 0; releasePage(pPage); return rc; } /* ** Delete all information from a single table in the database. iTable is ** the page number of the root of the table. After this routine returns, |
︙ | ︙ | |||
8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 | } #endif iPage = get4byte(pOvflData); sqlite3PagerUnref(pOvflPage); } } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* ** Do various sanity checks on a single page of a tree. Return ** the tree depth. Root pages return 0. Parents of root pages ** return 1, and so forth. ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 | } #endif iPage = get4byte(pOvflData); sqlite3PagerUnref(pOvflPage); } } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* ** An implementation of a min-heap. ** ** aHeap[0] is the number of elements on the heap. aHeap[1] is the ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] ** and aHeap[N*2+1]. ** ** The heap property is this: Every node is less than or equal to both ** of its daughter nodes. A consequence of the heap property is that the ** root node aHeap[1] is always the minimum value current in the heap. ** ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto ** the heap, preserving the heap property. The btreeHeapPull() routine ** removes the root element from the heap (the minimum value in the heap) ** and then move other nodes around as necessary to preserve the heap ** property. ** ** This heap is used for cell overlap and coverage testing. Each u32 ** entry represents the span of a cell or freeblock on a btree page. ** The upper 16 bits are the index of the first byte of a range and the ** lower 16 bits are the index of the last byte of that range. */ static void btreeHeapInsert(u32 *aHeap, u32 x){ u32 j, i = ++aHeap[0]; aHeap[i] = x; while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ x = aHeap[j]; aHeap[j] = aHeap[i]; aHeap[i] = x; i = j; } } static int btreeHeapPull(u32 *aHeap, u32 *pOut){ u32 j, i, x; if( (x = aHeap[0])==0 ) return 0; *pOut = aHeap[1]; aHeap[1] = aHeap[x]; aHeap[x] = 0xffffffff; aHeap[0]--; i = 1; while( (j = i*2)<=aHeap[0] ){ if( aHeap[j]>aHeap[j+1] ) j++; if( aHeap[i]<aHeap[j] ) break; x = aHeap[i]; aHeap[i] = aHeap[j]; aHeap[j] = x; i = j; } return 1; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* ** Do various sanity checks on a single page of a tree. Return ** the tree depth. Root pages return 0. Parents of root pages ** return 1, and so forth. ** |
︙ | ︙ | |||
8540 8541 8542 8543 8544 8545 8546 | MemPage *pPage; int i, rc, depth, d2, pgno, cnt; int hdr, cellStart; int nCell; u8 *data; BtShared *pBt; int usableSize; | > | | 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 | MemPage *pPage; int i, rc, depth, d2, pgno, cnt; int hdr, cellStart; int nCell; u8 *data; BtShared *pBt; int usableSize; u32 *heap = 0; u32 x, prev = 0; i64 nMinKey = 0; i64 nMaxKey = 0; const char *saved_zPfx = pCheck->zPfx; int saved_v1 = pCheck->v1; int saved_v2 = pCheck->v2; /* Check that the page exists |
︙ | ︙ | |||
8685 8686 8687 8688 8689 8690 8691 | } } /* Check for complete coverage of the page */ data = pPage->aData; hdr = pPage->hdrOffset; | | | | | < | | < < | > > > > | | > > > > | | | 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 | } } /* Check for complete coverage of the page */ data = pPage->aData; hdr = pPage->hdrOffset; heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); pCheck->zPfx = 0; if( heap==0 ){ pCheck->mallocFailed = 1; }else{ int contentOffset = get2byteNotZero(&data[hdr+5]); assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ heap[0] = 0; btreeHeapInsert(heap, contentOffset-1); /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ nCell = get2byte(&data[hdr+3]); /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page ** immediately follows the b-tree page header. */ cellStart = hdr + 12 - 4*pPage->leaf; /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte ** integer offsets to the cell contents. */ for(i=0; i<nCell; i++){ int pc = get2byte(&data[cellStart+i*2]); u32 size = 65536; if( pc<=usableSize-4 ){ size = cellSizePtr(pPage, &data[pc]); } if( (int)(pc+size-1)>=usableSize ){ pCheck->zPfx = 0; checkAppendMsg(pCheck, "Corruption detected in cell %d on page %d",i,iPage); }else{ btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); } } /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header ** is the offset of the first freeblock, or zero if there are no ** freeblocks on the page. */ i = get2byte(&data[hdr+1]); while( i>0 ){ int size, j; assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */ size = get2byte(&data[i+2]); assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */ btreeHeapInsert(heap, (i<<16)|(i+size-1)); /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a ** big-endian integer which is the offset in the b-tree page of the next ** freeblock in the chain, or zero if the freeblock is the last on the ** chain. */ j = get2byte(&data[i]); /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of ** increasing offset. */ assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */ i = j; } cnt = 0; assert( heap[0]>0 ); assert( (heap[1]>>16)==0 ); btreeHeapPull(heap,&prev); while( btreeHeapPull(heap,&x) ){ if( (prev&0xffff)+1>(x>>16) ){ checkAppendMsg(pCheck, "Multiple uses for byte %u of page %d", x>>16, iPage); break; }else{ cnt += (x>>16) - (prev&0xffff) - 1; prev = x; } } cnt += usableSize - (prev&0xffff) - 1; /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments ** is stored in the fifth field of the b-tree page header. ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the ** number of fragmented free bytes within the cell content area. */ if( heap[0]==0 && cnt!=data[hdr+7] ){ checkAppendMsg(pCheck, "Fragmentation of %d bytes reported as %d on page %d", cnt, data[hdr+7], iPage); } } sqlite3PageFree(heap); releasePage(pPage); end_of_check: pCheck->zPfx = saved_zPfx; pCheck->v1 = saved_v1; pCheck->v2 = saved_v2; return depth+1; |
︙ | ︙ |
Changes to src/btreeInt.h.
︙ | ︙ | |||
276 277 278 279 280 281 282 283 284 285 286 287 288 289 | u8 intKey; /* True if table b-trees. False for index b-trees */ u8 intKeyLeaf; /* True if the leaf of an intKey table */ u8 noPayload; /* True if internal intKey page (thus w/o data) */ u8 leaf; /* True if a leaf page */ u8 hdrOffset; /* 100 for page 1. 0 otherwise */ u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ u8 max1bytePayload; /* min(maxLocal,127) */ u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */ u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */ u16 cellOffset; /* Index in aData of first cell pointer */ u16 nFree; /* Number of free bytes on the page */ u16 nCell; /* Number of cells on this page, local and ovfl */ u16 maskPage; /* Mask for page offset */ u16 aiOvfl[5]; /* Insert the i-th overflow cell before the aiOvfl-th | > | 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | u8 intKey; /* True if table b-trees. False for index b-trees */ u8 intKeyLeaf; /* True if the leaf of an intKey table */ u8 noPayload; /* True if internal intKey page (thus w/o data) */ u8 leaf; /* True if a leaf page */ u8 hdrOffset; /* 100 for page 1. 0 otherwise */ u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ u8 max1bytePayload; /* min(maxLocal,127) */ u8 bBusy; /* Prevent endless loops on corrupt database files */ u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */ u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */ u16 cellOffset; /* Index in aData of first cell pointer */ u16 nFree; /* Number of free bytes on the page */ u16 nCell; /* Number of cells on this page, local and ovfl */ u16 maskPage; /* Mask for page offset */ u16 aiOvfl[5]; /* Insert the i-th overflow cell before the aiOvfl-th |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
138 139 140 141 142 143 144 | */ void sqlite3FinishCoding(Parse *pParse){ sqlite3 *db; Vdbe *v; assert( pParse->pToplevel==0 ); db = pParse->db; | > | | | > | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | */ void sqlite3FinishCoding(Parse *pParse){ sqlite3 *db; Vdbe *v; assert( pParse->pToplevel==0 ); db = pParse->db; if( pParse->nested ) return; if( db->mallocFailed || pParse->nErr ){ if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; return; } /* Begin by generating some termination code at the end of the ** vdbe program */ v = sqlite3GetVdbe(pParse); assert( !pParse->isMultiWrite || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); |
︙ | ︙ | |||
222 223 224 225 226 227 228 | sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); } } /* Get the VDBE program ready for execution */ | | | 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | sqlite3VdbeAddOp2(v, OP_Goto, 0, 1); } } /* Get the VDBE program ready for execution */ if( v && pParse->nErr==0 && !db->mallocFailed ){ assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ /* A minimum of one cursor is required if autoincrement is used * See ticket [a696379c1f08866] */ if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; sqlite3VdbeMakeReady(v, pParse); pParse->rc = SQLITE_DONE; pParse->colNamesSet = 0; |
︙ | ︙ | |||
757 758 759 760 761 762 763 | ){ int iDb; /* Database holding the object */ sqlite3 *db = pParse->db; if( ALWAYS(pName2!=0) && pName2->n>0 ){ if( db->init.busy ) { sqlite3ErrorMsg(pParse, "corrupt database"); | < < | 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 | ){ int iDb; /* Database holding the object */ sqlite3 *db = pParse->db; if( ALWAYS(pName2!=0) && pName2->n>0 ){ if( db->init.busy ) { sqlite3ErrorMsg(pParse, "corrupt database"); return -1; } *pUnqual = pName2; iDb = sqlite3FindDb(db, pName1); if( iDb<0 ){ sqlite3ErrorMsg(pParse, "unknown database %T", pName1); return -1; } }else{ assert( db->init.iDb==0 || db->init.busy ); iDb = db->init.iDb; *pUnqual = pName1; } |
︙ | ︙ | |||
923 924 925 926 927 928 929 | goto begin_table_error; } pTable = sqlite3FindTable(db, zName, zDb); if( pTable ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "table %T already exists", pName); }else{ | | | 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 | goto begin_table_error; } pTable = sqlite3FindTable(db, zName, zDb); if( pTable ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "table %T already exists", pName); }else{ assert( !db->init.busy || CORRUPT_DB ); sqlite3CodeVerifySchema(pParse, iDb); } goto begin_table_error; } if( sqlite3FindIndex(db, zName, zDb)!=0 ){ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); goto begin_table_error; |
︙ | ︙ | |||
1212 1213 1214 1215 1216 1217 1218 | void sqlite3AddColumnType(Parse *pParse, Token *pType){ Table *p; Column *pCol; p = pParse->pNewTable; if( p==0 || NEVER(p->nCol<1) ) return; pCol = &p->aCol[p->nCol-1]; | | > | 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 | void sqlite3AddColumnType(Parse *pParse, Token *pType){ Table *p; Column *pCol; p = pParse->pNewTable; if( p==0 || NEVER(p->nCol<1) ) return; pCol = &p->aCol[p->nCol-1]; assert( pCol->zType==0 || CORRUPT_DB ); sqlite3DbFree(pParse->db, pCol->zType); pCol->zType = sqlite3NameFromToken(pParse->db, pType); pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst); } /* ** The expression is the default value for the most recently added column ** of the table currently under construction. |
︙ | ︙ | |||
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 | int iDb; if( db->mallocFailed ){ goto exit_drop_table; } assert( pParse->nErr==0 ); assert( pName->nSrc==1 ); if( noErr ) db->suppressErr++; pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); if( noErr ) db->suppressErr--; if( pTab==0 ){ if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); goto exit_drop_table; | > | 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 | int iDb; if( db->mallocFailed ){ goto exit_drop_table; } assert( pParse->nErr==0 ); assert( pName->nSrc==1 ); if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; if( noErr ) db->suppressErr++; pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); if( noErr ) db->suppressErr--; if( pTab==0 ){ if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); goto exit_drop_table; |
︙ | ︙ | |||
2759 2760 2761 2762 2763 2764 2765 | sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); }else{ addr2 = sqlite3VdbeCurrentAddr(v); } sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); | > | | 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 | sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); }else{ addr2 = sqlite3VdbeCurrentAddr(v); } sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Close, iTab); sqlite3VdbeAddOp1(v, OP_Close, iIdx); |
︙ | ︙ | |||
2852 2853 2854 2855 2856 2857 2858 | struct ExprList_item *pListItem; /* For looping over pList */ const Column *pTabCol; /* A column in the table */ int nExtra = 0; /* Space allocated for zExtra[] */ int nExtraCol; /* Number of extra columns needed */ char *zExtra = 0; /* Extra space after the Index object */ Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ | < | | 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 | struct ExprList_item *pListItem; /* For looping over pList */ const Column *pTabCol; /* A column in the table */ int nExtra = 0; /* Space allocated for zExtra[] */ int nExtraCol; /* Number of extra columns needed */ char *zExtra = 0; /* Extra space after the Index object */ Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ goto exit_create_index; } if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_create_index; } /* |
︙ | ︙ | |||
3772 3773 3774 3775 3776 3777 3778 | ** The operator is "natural cross join". The A and B operands are stored ** in p->a[0] and p->a[1], respectively. The parser initially stores the ** operator with A. This routine shifts that operator over to B. */ void sqlite3SrcListShiftJoinType(SrcList *p){ if( p ){ int i; | < | 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 | ** The operator is "natural cross join". The A and B operands are stored ** in p->a[0] and p->a[1], respectively. The parser initially stores the ** operator with A. This routine shifts that operator over to B. */ void sqlite3SrcListShiftJoinType(SrcList *p){ if( p ){ int i; for(i=p->nSrc-1; i>0; i--){ p->a[i].jointype = p->a[i-1].jointype; } p->a[0].jointype = 0; } } |
︙ | ︙ |
Changes to src/complete.c.
︙ | ︙ | |||
265 266 267 268 269 270 271 | ** This routine is the same as the sqlite3_complete() routine described ** above, except that the parameter is required to be UTF-16 encoded, not ** UTF-8. */ int sqlite3_complete16(const void *zSql){ sqlite3_value *pVal; char const *zSql8; | | | 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | ** This routine is the same as the sqlite3_complete() routine described ** above, except that the parameter is required to be UTF-16 encoded, not ** UTF-8. */ int sqlite3_complete16(const void *zSql){ sqlite3_value *pVal; char const *zSql8; int rc; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC); |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
393 394 395 396 397 398 399 400 401 402 403 404 405 406 | ** the height is greater than the maximum allowed expression depth, ** leave an error in pParse. ** ** Also propagate all EP_Propagate flags from the Expr.x.pList into ** Expr.flags. */ void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ exprSetHeight(p); sqlite3ExprCheckHeight(pParse, p->nHeight); } /* ** Return the maximum height of any expression tree referenced ** by the select statement passed as an argument. | > | 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | ** the height is greater than the maximum allowed expression depth, ** leave an error in pParse. ** ** Also propagate all EP_Propagate flags from the Expr.x.pList into ** Expr.flags. */ void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ if( pParse->nErr ) return; exprSetHeight(p); sqlite3ExprCheckHeight(pParse, p->nHeight); } /* ** Return the maximum height of any expression tree referenced ** by the select statement passed as an argument. |
︙ | ︙ | |||
1246 1247 1248 1249 1250 1251 1252 | ** ExprList. */ u32 sqlite3ExprListFlags(const ExprList *pList){ int i; u32 m = 0; if( pList ){ for(i=0; i<pList->nExpr; i++){ | > | | 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 | ** ExprList. */ u32 sqlite3ExprListFlags(const ExprList *pList){ int i; u32 m = 0; if( pList ){ for(i=0; i<pList->nExpr; i++){ Expr *pExpr = pList->a[i].pExpr; if( ALWAYS(pExpr) ) m |= pList->a[i].pExpr->flags; } } return m; } /* ** These routines are Walker callbacks used to check expressions to |
︙ | ︙ | |||
1686 1687 1688 1689 1690 1691 1692 | mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; /* Check to see if an existing table or index can be used to ** satisfy the query. This is preferable to generating a new ** ephemeral table. */ p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); | | | 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 | mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; /* Check to see if an existing table or index can be used to ** satisfy the query. This is preferable to generating a new ** ephemeral table. */ p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); if( pParse->nErr==0 && isCandidateForInOpt(p) ){ sqlite3 *db = pParse->db; /* Database connection */ Table *pTab; /* Table <table>. */ Expr *pExpr; /* Expression <column> */ i16 iCol; /* Index of column <column> */ i16 iDb; /* Database idx for pTab */ assert( p ); /* Because of isCandidateForInOpt(p) */ |
︙ | ︙ | |||
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 | sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); VdbeComment((v, "Init EXISTS result")); } sqlite3ExprDelete(pParse->db, pSel->pLimit); pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[1]); pSel->iLimit = 0; if( sqlite3Select(pParse, pSel, &dest) ){ return 0; } rReg = dest.iSDParm; ExprSetVVAProperty(pExpr, EP_NoReduce); break; } | > | 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 | sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); VdbeComment((v, "Init EXISTS result")); } sqlite3ExprDelete(pParse->db, pSel->pLimit); pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[1]); pSel->iLimit = 0; pSel->selFlags &= ~SF_MultiValue; if( sqlite3Select(pParse, pSel, &dest) ){ return 0; } rReg = dest.iSDParm; ExprSetVVAProperty(pExpr, EP_NoReduce); break; } |
︙ | ︙ | |||
4011 4012 4013 4014 4015 4016 4017 | } if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ if( combinedFlags & EP_xIsSelect ) return 2; if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; | | | 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 | } if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ if( combinedFlags & EP_xIsSelect ) return 2; if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ if( pA->iColumn!=pB->iColumn ) return 2; if( pA->iTable!=pB->iTable && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; } } return 0; } |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
1180 1181 1182 1183 1184 1185 1186 | Token tFromCol; /* Name of column in child table */ Token tToCol; /* Name of column in parent table */ int iFromCol; /* Idx of column in child table */ Expr *pEq; /* tFromCol = OLD.tToCol */ iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iFromCol>=0 ); | > | | | | | | | | | | | 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 | Token tFromCol; /* Name of column in child table */ Token tToCol; /* Name of column in parent table */ int iFromCol; /* Idx of column in child table */ Expr *pEq; /* tFromCol = OLD.tToCol */ iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iFromCol>=0 ); assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); tToCol.z = pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName; tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; tToCol.n = sqlite3Strlen30(tToCol.z); tFromCol.n = sqlite3Strlen30(tFromCol.z); /* Create the expression "OLD.zToCol = zFromCol". It is important ** that the "OLD.zToCol" term is on the LHS of the = operator, so ** that the affinity and collation sequence associated with the ** parent table are used for the comparison. */ pEq = sqlite3PExpr(pParse, TK_EQ, sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tOld, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0) , 0), sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) , 0); pWhere = sqlite3ExprAnd(db, pWhere, pEq); /* For ON UPDATE, construct the next term of the WHEN clause. ** The final WHEN clause will be like this: ** ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) */ if( pChanges ){ pEq = sqlite3PExpr(pParse, TK_IS, sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tOld, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0), 0), sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tNew, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0), 0), 0); pWhen = sqlite3ExprAnd(db, pWhen, pEq); } if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ Expr *pNew; if( action==OE_Cascade ){ pNew = sqlite3PExpr(pParse, TK_DOT, sqlite3ExprAlloc(db, TK_ID, &tNew, 0), sqlite3ExprAlloc(db, TK_ID, &tToCol, 0) , 0); }else if( action==OE_SetDflt ){ Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; if( pDflt ){ pNew = sqlite3ExprDup(db, pDflt, 0); }else{ pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); |
︙ | ︙ | |||
1270 1271 1272 1273 1274 1275 1276 | /* Disable lookaside memory allocation */ enableLookaside = db->lookaside.bEnabled; db->lookaside.bEnabled = 0; pTrigger = (Trigger *)sqlite3DbMallocZero(db, sizeof(Trigger) + /* struct Trigger */ sizeof(TriggerStep) + /* Single step in trigger program */ | | | < | | 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 | /* Disable lookaside memory allocation */ enableLookaside = db->lookaside.bEnabled; db->lookaside.bEnabled = 0; pTrigger = (Trigger *)sqlite3DbMallocZero(db, sizeof(Trigger) + /* struct Trigger */ sizeof(TriggerStep) + /* Single step in trigger program */ nFrom + 1 /* Space for pStep->zTarget */ ); if( pTrigger ){ pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; pStep->zTarget = (char *)&pStep[1]; memcpy((char *)pStep->zTarget, zFrom, nFrom); pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); if( pWhen ){ pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
338 339 340 341 342 343 344 | int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ); /* ** This routine is called to handle SQL of the following forms: ** | | > | | > | > | | | | | 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 | int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ); /* ** This routine is called to handle SQL of the following forms: ** ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... ** insert into TABLE (IDLIST) select ** insert into TABLE (IDLIST) default values ** ** The IDLIST following the table name is always optional. If omitted, ** then a list of all (non-hidden) columns for the table is substituted. ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST ** is omitted. ** ** For the pSelect parameter holds the values to be inserted for the ** first two forms shown above. A VALUES clause is really just short-hand ** for a SELECT statement that omits the FROM clause and everything else ** that follows. If the pSelect parameter is NULL, that means that the ** DEFAULT VALUES form of the INSERT statement is intended. ** ** The code generated follows one of four templates. For a simple ** insert with data coming from a single-row VALUES clause, the code executes ** once straight down through. Pseudo-code follows (we call this ** the "1st template"): ** ** open write cursor to <table> and its indices ** put VALUES clause expressions into registers ** write the resulting record into <table> ** cleanup |
︙ | ︙ | |||
458 459 460 461 462 463 464 | int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ int iDb; /* Index of database holding TABLE */ Db *pDb; /* The database containing table being inserted into */ u8 useTempTable = 0; /* Store SELECT results in intermediate table */ u8 appendFlag = 0; /* True if the insert is likely to be an append */ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ | | | 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ int iDb; /* Index of database holding TABLE */ Db *pDb; /* The database containing table being inserted into */ u8 useTempTable = 0; /* Store SELECT results in intermediate table */ u8 appendFlag = 0; /* True if the insert is likely to be an append */ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ u8 bIdListInOrder; /* True if IDLIST is in table order */ ExprList *pList = 0; /* List of VALUES() to be inserted */ /* Register allocations */ int regFromSelect = 0;/* Base register for data coming from SELECT */ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ int regRowCount = 0; /* Memory cell used for the row counter */ int regIns; /* Block of regs holding rowid+data being inserted */ |
︙ | ︙ | |||
483 484 485 486 487 488 489 | db = pParse->db; memset(&dest, 0, sizeof(dest)); if( pParse->nErr || db->mallocFailed ){ goto insert_cleanup; } /* If the Select object is really just a simple VALUES() list with a | | | | 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 | db = pParse->db; memset(&dest, 0, sizeof(dest)); if( pParse->nErr || db->mallocFailed ){ goto insert_cleanup; } /* If the Select object is really just a simple VALUES() list with a ** single row (the common case) then keep that one row of values ** and discard the other (unused) parts of the pSelect object */ if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ pList = pSelect->pEList; pSelect->pEList = 0; sqlite3SelectDelete(db, pSelect); pSelect = 0; } |
︙ | ︙ | |||
592 593 594 595 596 597 598 599 600 601 602 603 604 605 | ** If the table has an INTEGER PRIMARY KEY column and that column ** is named in the IDLIST, then record in the ipkColumn variable ** the index into IDLIST of the primary key column. ipkColumn is ** the index of the primary key as it appears in IDLIST, not as ** is appears in the original table. (The index of the INTEGER ** PRIMARY KEY in the original table is pTab->iPKey.) */ if( pColumn ){ for(i=0; i<pColumn->nId; i++){ pColumn->a[i].idx = -1; } for(i=0; i<pColumn->nId; i++){ for(j=0; j<pTab->nCol; j++){ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ | > | 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | ** If the table has an INTEGER PRIMARY KEY column and that column ** is named in the IDLIST, then record in the ipkColumn variable ** the index into IDLIST of the primary key column. ipkColumn is ** the index of the primary key as it appears in IDLIST, not as ** is appears in the original table. (The index of the INTEGER ** PRIMARY KEY in the original table is pTab->iPKey.) */ bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; if( pColumn ){ for(i=0; i<pColumn->nId; i++){ pColumn->a[i].idx = -1; } for(i=0; i<pColumn->nId; i++){ for(j=0; j<pTab->nCol; j++){ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ |
︙ | ︙ | |||
627 628 629 630 631 632 633 | /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then generate a co-routine that ** produces a single row of the SELECT on each invocation. The ** co-routine is the common header to the 3rd and 4th templates. */ if( pSelect ){ | > | < | | 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 | /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then generate a co-routine that ** produces a single row of the SELECT on each invocation. The ** co-routine is the common header to the 3rd and 4th templates. */ if( pSelect ){ /* Data is coming from a SELECT or from a multi-row VALUES clause. ** Generate a co-routine to run the SELECT. */ int regYield; /* Register holding co-routine entry-point */ int addrTop; /* Top of the co-routine */ int rc; /* Result code */ regYield = ++pParse->nMem; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); dest.iSdst = bIdListInOrder ? regData : 0; dest.nSdst = pTab->nCol; rc = sqlite3Select(pParse, pSelect, &dest); regFromSelect = dest.iSdst; if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ assert( pSelect->pEList ); nColumn = pSelect->pEList->nExpr; /* Set useTempTable to TRUE if the result of the SELECT statement ** should be written into a temporary table (template 4). Set to |
︙ | ︙ | |||
689 690 691 692 693 694 695 | sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL); sqlite3VdbeJumpHere(v, addrL); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempReg(pParse, regTempRowid); } }else{ | | | | 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 | sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL); sqlite3VdbeJumpHere(v, addrL); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempReg(pParse, regTempRowid); } }else{ /* This is the case if the data for the INSERT is coming from a ** single-row VALUES clause */ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; srcTab = -1; assert( useTempTable==0 ); nColumn = pList ? pList->nExpr : 0; |
︙ | ︙ | |||
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 | static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ){ ExprList *pEList; /* The result set of the SELECT */ Table *pSrc; /* The table in the FROM clause of SELECT */ Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ struct SrcList_item *pItem; /* An element of pSelect->pSrc */ int i; /* Loop counter */ int iDbSrc; /* The database of pSrc */ int iSrc, iDest; /* Cursors from source and destination */ | > | 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 | static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ){ sqlite3 *db = pParse->db; ExprList *pEList; /* The result set of the SELECT */ Table *pSrc; /* The table in the FROM clause of SELECT */ Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ struct SrcList_item *pItem; /* An element of pSelect->pSrc */ int i; /* Loop counter */ int iDbSrc; /* The database of pSrc */ int iSrc, iDest; /* Cursors from source and destination */ |
︙ | ︙ | |||
1908 1909 1910 1911 1912 1913 1914 | /* Disallow the transfer optimization if the destination table constains ** any foreign key constraints. This is more restrictive than necessary. ** But the main beneficiary of the transfer optimization is the VACUUM ** command, and the VACUUM command disables foreign key constraints. So ** the extra complication to make this rule less restrictive is probably ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] */ | | | | > | | | > > > > | < | 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 | /* Disallow the transfer optimization if the destination table constains ** any foreign key constraints. This is more restrictive than necessary. ** But the main beneficiary of the transfer optimization is the VACUUM ** command, and the VACUUM command disables foreign key constraints. So ** the extra complication to make this rule less restrictive is probably ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] */ if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ return 0; } #endif if( (db->flags & SQLITE_CountRows)!=0 ){ return 0; /* xfer opt does not play well with PRAGMA count_changes */ } /* If we get this far, it means that the xfer optimization is at ** least a possibility, though it might only work if the destination ** table (tab1) is initially empty. */ #ifdef SQLITE_TEST sqlite3_xferopt_count++; #endif iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); v = sqlite3GetVdbe(pParse); sqlite3CodeVerifySchema(pParse, iDbSrc); iSrc = pParse->nTab++; iDest = pParse->nTab++; regAutoinc = autoIncBegin(pParse, iDbDest, pDest); regData = sqlite3GetTempReg(pParse); regRowid = sqlite3GetTempReg(pParse); sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); assert( HasRowid(pDest) || destHasUniqueIdx ); if( (db->flags & SQLITE_Vacuum)==0 && ( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ || destHasUniqueIdx /* (2) */ || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ )){ /* In some circumstances, we are able to run the xfer optimization ** only if the destination table is initially empty. Unless the ** SQLITE_Vacuum flag is set, this block generates code to make ** that determination. If SQLITE_Vacuum is set, then the destination ** table is always empty. ** ** Conditions under which the destination must be empty: ** ** (1) There is no INTEGER PRIMARY KEY but there are indices. ** (If the destination is not initially empty, the rowid fields ** of index entries might need to change.) ** ** (2) The destination has a unique index. (The xfer optimization ** is unable to test uniqueness.) |
︙ | ︙ | |||
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 | sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); }else{ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } assert( pSrcIdx ); sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); VdbeComment((v, "%s", pSrcIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); } if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); sqlite3ReleaseTempReg(pParse, regRowid); | > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 | sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); }else{ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ u8 useSeekResult = 0; for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } assert( pSrcIdx ); sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); VdbeComment((v, "%s", pSrcIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); if( db->flags & SQLITE_Vacuum ){ /* This INSERT command is part of a VACUUM operation, which guarantees ** that the destination table is empty. If all indexed columns use ** collation sequence BINARY, then it can also be assumed that the ** index will be populated by inserting keys in strictly sorted ** order. In this case, instead of seeking within the b-tree as part ** of every OP_IdxInsert opcode, an OP_Last is added before the ** OP_IdxInsert to seek to the point within the b-tree where each key ** should be inserted. This is faster. ** ** If any of the indexed columns use a collation sequence other than ** BINARY, this optimization is disabled. This is because the user ** might change the definition of a collation sequence and then run ** a VACUUM command. In that case keys may not be written in strictly ** sorted order. */ for(i=0; i<pSrcIdx->nColumn; i++){ char *zColl = pSrcIdx->azColl[i]; assert( zColl!=0 ); if( sqlite3_stricmp("BINARY", zColl) ) break; } if( i==pSrcIdx->nColumn ){ useSeekResult = OPFLAG_USESEEKRESULT; sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); } } sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); sqlite3VdbeChangeP5(v, useSeekResult); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); } if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); sqlite3ReleaseTempReg(pParse, regRowid); |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
61 62 63 64 65 66 67 | #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** If the following function pointer is not NULL and if ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing ** I/O active are written using this function. These messages ** are intended for debugging activity only. */ | | | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) /* ** If the following function pointer is not NULL and if ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing ** I/O active are written using this function. These messages ** are intended for debugging activity only. */ SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; #endif /* ** If the following global variable points to a string which is the ** name of a directory, then that directory will be used to store ** temporary files. ** |
︙ | ︙ | |||
126 127 128 129 130 131 132 133 134 135 136 137 138 139 | #ifdef SQLITE_OMIT_WSD rc = sqlite3_wsd_init(4096, 24); if( rc!=SQLITE_OK ){ return rc; } #endif /* If SQLite is already completely initialized, then this call ** to sqlite3_initialize() should be a no-op. But the initialization ** must be complete. So isInit must not be set until the very end ** of this routine. */ if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; | > > > > > | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | #ifdef SQLITE_OMIT_WSD rc = sqlite3_wsd_init(4096, 24); if( rc!=SQLITE_OK ){ return rc; } #endif /* If the following assert() fails on some obscure processor/compiler ** combination, the work-around is to set the correct pointer ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ assert( SQLITE_PTRSIZE==sizeof(char*) ); /* If SQLite is already completely initialized, then this call ** to sqlite3_initialize() should be a no-op. But the initialization ** must be complete. So isInit must not be set until the very end ** of this routine. */ if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; |
︙ | ︙ |
Changes to src/malloc.c.
︙ | ︙ | |||
70 71 72 73 74 75 76 77 78 79 80 81 82 83 | ** True if heap is nearly "full" where "full" is defined by the ** sqlite3_soft_heap_limit() setting. */ int nearlyFull; } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; #define mem0 GLOBAL(struct Mem0Global, mem0) /* ** This routine runs when the memory allocator sees that the ** total memory allocation is about to exceed the soft heap ** limit. */ static void softHeapLimitEnforcer( | > > > > > > > | 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | ** True if heap is nearly "full" where "full" is defined by the ** sqlite3_soft_heap_limit() setting. */ int nearlyFull; } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; #define mem0 GLOBAL(struct Mem0Global, mem0) /* ** Return the memory allocator mutex. sqlite3_status() needs it. */ sqlite3_mutex *sqlite3MallocMutex(void){ return mem0.mutex; } /* ** This routine runs when the memory allocator sees that the ** total memory allocation is about to exceed the soft heap ** limit. */ static void softHeapLimitEnforcer( |
︙ | ︙ | |||
93 94 95 96 97 98 99 | ** Change the alarm callback */ static int sqlite3MemoryAlarm( void(*xCallback)(void *pArg, sqlite3_int64 used,int N), void *pArg, sqlite3_int64 iThreshold ){ | | | 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | ** Change the alarm callback */ static int sqlite3MemoryAlarm( void(*xCallback)(void *pArg, sqlite3_int64 used,int N), void *pArg, sqlite3_int64 iThreshold ){ sqlite3_int64 nUsed; sqlite3_mutex_enter(mem0.mutex); mem0.alarmCallback = xCallback; mem0.alarmArg = pArg; mem0.alarmThreshold = iThreshold; nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); sqlite3_mutex_leave(mem0.mutex); |
︙ | ︙ | |||
151 152 153 154 155 156 157 158 159 160 161 162 163 164 | sqlite3_soft_heap_limit64(n); } /* ** Initialize the memory allocation subsystem. */ int sqlite3MallocInit(void){ if( sqlite3GlobalConfig.m.xMalloc==0 ){ sqlite3MemSetDefault(); } memset(&mem0, 0, sizeof(mem0)); if( sqlite3GlobalConfig.bCoreMutex ){ mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } | > | 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | sqlite3_soft_heap_limit64(n); } /* ** Initialize the memory allocation subsystem. */ int sqlite3MallocInit(void){ int rc; if( sqlite3GlobalConfig.m.xMalloc==0 ){ sqlite3MemSetDefault(); } memset(&mem0, 0, sizeof(mem0)); if( sqlite3GlobalConfig.bCoreMutex ){ mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } |
︙ | ︙ | |||
186 187 188 189 190 191 192 | } if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 || sqlite3GlobalConfig.nPage<1 ){ sqlite3GlobalConfig.pPage = 0; sqlite3GlobalConfig.szPage = 0; sqlite3GlobalConfig.nPage = 0; } | | > > | 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | } if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 || sqlite3GlobalConfig.nPage<1 ){ sqlite3GlobalConfig.pPage = 0; sqlite3GlobalConfig.szPage = 0; sqlite3GlobalConfig.nPage = 0; } rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); return rc; } /* ** Return true if the heap is currently under memory pressure - in other ** words if the amount of heap used is close to the limit set by ** sqlite3_soft_heap_limit(). */ |
︙ | ︙ | |||
262 263 264 265 266 267 268 | static int mallocWithAlarm(int n, void **pp){ int nFull; void *p; assert( sqlite3_mutex_held(mem0.mutex) ); nFull = sqlite3GlobalConfig.m.xRoundup(n); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); if( mem0.alarmCallback!=0 ){ | | | | | 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | static int mallocWithAlarm(int n, void **pp){ int nFull; void *p; assert( sqlite3_mutex_held(mem0.mutex) ); nFull = sqlite3GlobalConfig.m.xRoundup(n); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); if( mem0.alarmCallback!=0 ){ sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); if( nUsed >= mem0.alarmThreshold - nFull ){ mem0.nearlyFull = 1; sqlite3MallocAlarm(nFull); }else{ mem0.nearlyFull = 0; } } p = sqlite3GlobalConfig.m.xMalloc(nFull); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( p==0 && mem0.alarmCallback ){ sqlite3MallocAlarm(nFull); p = sqlite3GlobalConfig.m.xMalloc(nFull); } #endif if( p ){ nFull = sqlite3MallocSize(p); sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); } *pp = p; return nFull; } /* ** Allocate memory. This routine is like sqlite3_malloc() except that it |
︙ | ︙ | |||
357 358 359 360 361 362 363 | sqlite3_mutex_enter(mem0.mutex); sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ p = mem0.pScratchFree; mem0.pScratchFree = mem0.pScratchFree->pNext; mem0.nScratchFree--; | | | | 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 | sqlite3_mutex_enter(mem0.mutex); sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ p = mem0.pScratchFree; mem0.pScratchFree = mem0.pScratchFree->pNext; mem0.nScratchFree--; sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1); sqlite3_mutex_leave(mem0.mutex); }else{ sqlite3_mutex_leave(mem0.mutex); p = sqlite3Malloc(n); if( sqlite3GlobalConfig.bMemstat && p ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); sqlite3_mutex_leave(mem0.mutex); } sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); } assert( sqlite3_mutex_notheld(mem0.mutex) ); |
︙ | ︙ | |||
405 406 407 408 409 410 411 | ScratchFreeslot *pSlot; pSlot = (ScratchFreeslot*)p; sqlite3_mutex_enter(mem0.mutex); pSlot->pNext = mem0.pScratchFree; mem0.pScratchFree = pSlot; mem0.nScratchFree++; assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); | | | | | | | 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 | ScratchFreeslot *pSlot; pSlot = (ScratchFreeslot*)p; sqlite3_mutex_enter(mem0.mutex); pSlot->pNext = mem0.pScratchFree; mem0.pScratchFree = pSlot; mem0.nScratchFree++; assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1); sqlite3_mutex_leave(mem0.mutex); }else{ /* Release memory back to the heap */ assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); if( sqlite3GlobalConfig.bMemstat ){ int iSize = sqlite3MallocSize(p); sqlite3_mutex_enter(mem0.mutex); sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize); sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize); sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); sqlite3GlobalConfig.m.xFree(p); sqlite3_mutex_leave(mem0.mutex); }else{ sqlite3GlobalConfig.m.xFree(p); } } } |
︙ | ︙ | |||
448 449 450 451 452 453 454 | */ int sqlite3MallocSize(void *p){ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return sqlite3GlobalConfig.m.xSize(p); } int sqlite3DbMallocSize(sqlite3 *db, void *p){ if( db==0 ){ | | | | | | | | 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 | */ int sqlite3MallocSize(void *p){ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return sqlite3GlobalConfig.m.xSize(p); } int sqlite3DbMallocSize(sqlite3 *db, void *p){ if( db==0 ){ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return sqlite3MallocSize(p); }else{ assert( sqlite3_mutex_held(db->mutex) ); if( isLookaside(db, p) ){ return db->lookaside.sz; }else{ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); return sqlite3GlobalConfig.m.xSize(p); } } } sqlite3_uint64 sqlite3_msize(void *p){ assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p); } /* ** Free memory previously obtained from sqlite3Malloc(). */ void sqlite3_free(void *p){ if( p==0 ) return; /* IMP: R-49053-54554 */ assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); sqlite3GlobalConfig.m.xFree(p); sqlite3_mutex_leave(mem0.mutex); }else{ sqlite3GlobalConfig.m.xFree(p); } } |
︙ | ︙ | |||
519 520 521 522 523 524 525 | pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; db->lookaside.nOut--; return; } } assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | | | | 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 | pBuf->pNext = db->lookaside.pFree; db->lookaside.pFree = pBuf; db->lookaside.nOut--; return; } } assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } /* ** Change the size of an existing memory allocation */ void *sqlite3Realloc(void *pOld, u64 nBytes){ int nOld, nNew, nDiff; void *pNew; assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); if( pOld==0 ){ return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ } if( nBytes==0 ){ sqlite3_free(pOld); /* IMP: R-26507-47431 */ return 0; } |
︙ | ︙ | |||
566 567 568 569 570 571 572 | pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); if( pNew==0 && mem0.alarmCallback ){ sqlite3MallocAlarm((int)nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } if( pNew ){ nNew = sqlite3MallocSize(pNew); | | | 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 | pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); if( pNew==0 && mem0.alarmCallback ){ sqlite3MallocAlarm((int)nBytes); pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } if( pNew ){ nNew = sqlite3MallocSize(pNew); sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); } sqlite3_mutex_leave(mem0.mutex); }else{ pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); } assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ return pNew; |
︙ | ︙ | |||
699 700 701 702 703 704 705 | pNew = sqlite3DbMallocRaw(db, n); if( pNew ){ memcpy(pNew, p, db->lookaside.sz); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | | | 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 | pNew = sqlite3DbMallocRaw(db, n); if( pNew ){ memcpy(pNew, p, db->lookaside.sz); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); pNew = sqlite3_realloc64(p, n); if( !pNew ){ db->mallocFailed = 1; } sqlite3MemdebugSetType(pNew, (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); |
︙ | ︙ |
Changes to src/msvc.h.
︙ | ︙ | |||
16 17 18 19 20 21 22 23 24 25 26 27 28 29 | #define _MSVC_H_ #if defined(_MSC_VER) #pragma warning(disable : 4054) #pragma warning(disable : 4055) #pragma warning(disable : 4100) #pragma warning(disable : 4127) #pragma warning(disable : 4152) #pragma warning(disable : 4189) #pragma warning(disable : 4206) #pragma warning(disable : 4210) #pragma warning(disable : 4232) #pragma warning(disable : 4244) #pragma warning(disable : 4305) | > | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | #define _MSVC_H_ #if defined(_MSC_VER) #pragma warning(disable : 4054) #pragma warning(disable : 4055) #pragma warning(disable : 4100) #pragma warning(disable : 4127) #pragma warning(disable : 4130) #pragma warning(disable : 4152) #pragma warning(disable : 4189) #pragma warning(disable : 4206) #pragma warning(disable : 4210) #pragma warning(disable : 4232) #pragma warning(disable : 4244) #pragma warning(disable : 4305) |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
86 87 88 89 90 91 92 93 94 95 96 97 98 99 | #endif #if SQLITE_ENABLE_LOCKING_STYLE # include <sys/ioctl.h> # include <sys/file.h> # include <sys/param.h> #endif /* SQLITE_ENABLE_LOCKING_STYLE */ #if OS_VXWORKS # include <sys/ioctl.h> # include <semaphore.h> # include <limits.h> #endif /* OS_VXWORKS */ | > > > > > > > > > > > | 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | #endif #if SQLITE_ENABLE_LOCKING_STYLE # include <sys/ioctl.h> # include <sys/file.h> # include <sys/param.h> #endif /* SQLITE_ENABLE_LOCKING_STYLE */ #if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \ (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000)) # if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \ && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0)) # define HAVE_GETHOSTUUID 1 # else # warning "gethostuuid() is disabled." # endif #endif #if OS_VXWORKS # include <sys/ioctl.h> # include <semaphore.h> # include <limits.h> #endif /* OS_VXWORKS */ |
︙ | ︙ | |||
1532 1533 1534 1535 1536 1537 1538 | struct flock lock; int tErrno = 0; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared, | | | 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 | struct flock lock; int tErrno = 0; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared, osGetpid(0))); /* If there is already a lock of this type or more restrictive on the ** unixFile, do nothing. Don't use the end_lock: exit path, as ** unixEnterMutex() hasn't been called yet. */ if( pFile->eFileLock>=eFileLock ){ OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, |
︙ | ︙ | |||
1740 1741 1742 1743 1744 1745 1746 | unixInodeInfo *pInode; struct flock lock; int rc = SQLITE_OK; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, | | | 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 | unixInodeInfo *pInode; struct flock lock; int rc = SQLITE_OK; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); if( pFile->eFileLock<=eFileLock ){ return SQLITE_OK; } unixEnterMutex(); pInode = pFile->pInode; |
︙ | ︙ | |||
2167 2168 2169 2170 2171 2172 2173 | static int dotlockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; char *zLockFile = (char *)pFile->lockingContext; int rc; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, | | | 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 | static int dotlockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; char *zLockFile = (char *)pFile->lockingContext; int rc; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } |
︙ | ︙ | |||
2385 2386 2387 2388 2389 2390 2391 | ** the requested locking level, this routine is a no-op. */ static int flockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, | | | 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 | ** the requested locking level, this routine is a no-op. */ static int flockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } |
︙ | ︙ | |||
2553 2554 2555 2556 2557 2558 2559 | static int semXUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; sem_t *pSem = pFile->pInode->pSem; assert( pFile ); assert( pSem ); OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, | | | 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 | static int semXUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; sem_t *pSem = pFile->pInode->pSem; assert( pFile ); assert( pSem ); OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } |
︙ | ︙ | |||
2767 2768 2769 2770 2771 2772 2773 | unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode = pFile->pInode; afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), | | | 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 | unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode = pFile->pInode; afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0))); /* If there is already a lock of this type or more restrictive on the ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as ** unixEnterMutex() hasn't been called yet. */ if( pFile->eFileLock>=eFileLock ){ OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, |
︙ | ︙ | |||
2953 2954 2955 2956 2957 2958 2959 | #ifdef SQLITE_TEST int h = pFile->h; #endif assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, | | | 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 | #ifdef SQLITE_TEST int h = pFile->h; #endif assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, osGetpid(0))); assert( eFileLock<=SHARED_LOCK ); if( pFile->eFileLock<=eFileLock ){ return SQLITE_OK; } unixEnterMutex(); pInode = pFile->pInode; |
︙ | ︙ | |||
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 | /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ unixFile *pFile = (unixFile*)id; switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = pFile->eFileLock; return SQLITE_OK; } case SQLITE_FCNTL_LAST_ERRNO: { *(int*)pArg = pFile->lastErrno; return SQLITE_OK; | > > > > | 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 | /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ unixFile *pFile = (unixFile*)id; switch( op ){ case SQLITE_FCNTL_WAL_BLOCK: { /* pFile->ctrlFlags |= UNIXFILE_BLOCK; // Deferred feature */ return SQLITE_OK; } case SQLITE_FCNTL_LOCKSTATE: { *(int*)pArg = pFile->eFileLock; return SQLITE_OK; } case SQLITE_FCNTL_LAST_ERRNO: { *(int*)pArg = pFile->lastErrno; return SQLITE_OK; |
︙ | ︙ | |||
4628 4629 4630 4631 4632 4633 4634 | assert( (p->sharedMask & mask)==0 ); p->exclMask |= mask; } } } sqlite3_mutex_leave(pShmNode->mutex); OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", | | | 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 | assert( (p->sharedMask & mask)==0 ); p->exclMask |= mask; } } } sqlite3_mutex_leave(pShmNode->mutex); OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", p->id, osGetpid(0), p->sharedMask, p->exclMask)); return rc; } /* ** Implement a memory barrier or memory fence on shared memory. ** ** All loads and stores begun before the barrier must complete before |
︙ | ︙ | |||
5723 5724 5725 5726 5727 5728 5729 | ); /* Detect a pid change and reset the PRNG. There is a race condition ** here such that two or more threads all trying to open databases at ** the same instant might all reset the PRNG. But multiple resets ** are harmless. */ | | | | 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 | ); /* Detect a pid change and reset the PRNG. There is a race condition ** here such that two or more threads all trying to open databases at ** the same instant might all reset the PRNG. But multiple resets ** are harmless. */ if( randomnessPid!=osGetpid(0) ){ randomnessPid = osGetpid(0); sqlite3_randomness(0,0); } memset(p, 0, sizeof(unixFile)); if( eType==SQLITE_OPEN_MAIN_DB ){ UnixUnusedFd *pUnused; |
︙ | ︙ | |||
6115 6116 6117 6118 6119 6120 6121 | ** in the random seed. ** ** When testing, initializing zBuf[] to zero is all we do. That means ** that we always use the same random number sequence. This makes the ** tests repeatable. */ memset(zBuf, 0, nBuf); | | | 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 | ** in the random seed. ** ** When testing, initializing zBuf[] to zero is all we do. That means ** that we always use the same random number sequence. This makes the ** tests repeatable. */ memset(zBuf, 0, nBuf); randomnessPid = osGetpid(0); #if !defined(SQLITE_TEST) { int fd, got; fd = robust_open("/dev/urandom", O_RDONLY, 0); if( fd<0 ){ time_t t; time(&t); |
︙ | ︙ | |||
6436 6437 6438 6439 6440 6441 6442 | #ifdef LOCKPROXYDIR len = strlcpy(lPath, LOCKPROXYDIR, maxLen); #else # ifdef _CS_DARWIN_USER_TEMP_DIR { if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", | | | 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 | #ifdef LOCKPROXYDIR len = strlcpy(lPath, LOCKPROXYDIR, maxLen); #else # ifdef _CS_DARWIN_USER_TEMP_DIR { if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", lPath, errno, osGetpid(0))); return SQLITE_IOERR_LOCK; } len = strlcat(lPath, "sqliteplocks", maxLen); } # else len = strlcpy(lPath, "/tmp/", maxLen); # endif |
︙ | ︙ | |||
6458 6459 6460 6461 6462 6463 6464 | dbLen = (int)strlen(dbPath); for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ char c = dbPath[i]; lPath[i+len] = (c=='/')?'_':c; } lPath[i+len]='\0'; strlcat(lPath, ":auto:", maxLen); | | | 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 | dbLen = (int)strlen(dbPath); for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ char c = dbPath[i]; lPath[i+len] = (c=='/')?'_':c; } lPath[i+len]='\0'; strlcat(lPath, ":auto:", maxLen); OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, osGetpid(0))); return SQLITE_OK; } /* ** Creates the lock file and any missing directories in lockPath */ static int proxyCreateLockPath(const char *lockPath){ |
︙ | ︙ | |||
6485 6486 6487 6488 6489 6490 6491 | || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ buf[i]='\0'; if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ int err=errno; if( err!=EEXIST ) { OSTRACE(("CREATELOCKPATH FAILED creating %s, " "'%s' proxy lock path=%s pid=%d\n", | | | | 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 | || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ buf[i]='\0'; if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ int err=errno; if( err!=EEXIST ) { OSTRACE(("CREATELOCKPATH FAILED creating %s, " "'%s' proxy lock path=%s pid=%d\n", buf, strerror(err), lockPath, osGetpid(0))); return err; } } } start=i+1; } buf[i] = lockPath[i]; } OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, osGetpid(0))); return 0; } /* ** Create a new VFS file descriptor (stored in memory obtained from ** sqlite3_malloc) and open the file named "path" in the file descriptor. ** |
︙ | ︙ | |||
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 | #ifdef SQLITE_TEST /* simulate multiple hosts by creating unique hostid file paths */ int sqlite3_hostid_num = 0; #endif #define PROXY_HOSTIDLEN 16 /* conch file host id length */ /* Not always defined in the headers as it ought to be */ extern int gethostuuid(uuid_t id, const struct timespec *wait); /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN ** bytes of writable memory. */ static int proxyGetHostID(unsigned char *pHostID, int *pError){ assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); memset(pHostID, 0, PROXY_HOSTIDLEN); | > > | < | 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 | #ifdef SQLITE_TEST /* simulate multiple hosts by creating unique hostid file paths */ int sqlite3_hostid_num = 0; #endif #define PROXY_HOSTIDLEN 16 /* conch file host id length */ #ifdef HAVE_GETHOSTUUID /* Not always defined in the headers as it ought to be */ extern int gethostuuid(uuid_t id, const struct timespec *wait); #endif /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN ** bytes of writable memory. */ static int proxyGetHostID(unsigned char *pHostID, int *pError){ assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); memset(pHostID, 0, PROXY_HOSTIDLEN); #ifdef HAVE_GETHOSTUUID { struct timespec timeout = {1, 0}; /* 1 sec timeout */ if( gethostuuid(pHostID, &timeout) ){ int err = errno; if( pError ){ *pError = err; } |
︙ | ︙ | |||
6800 6801 6802 6803 6804 6805 6806 | int hostIdMatch = 0; int readLen = 0; int tryOldLockPath = 0; int forceNewLockPath = 0; OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), | | | 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 | int hostIdMatch = 0; int readLen = 0; int tryOldLockPath = 0; int forceNewLockPath = 0; OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), osGetpid(0))); rc = proxyGetHostID(myHostID, &pError); if( (rc&0xff)==SQLITE_IOERR ){ storeLastErrno(pFile, pError); goto end_takeconch; } rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); |
︙ | ︙ | |||
7010 7011 7012 7013 7014 7015 7016 | proxyLockingContext *pCtx; /* The locking context for the proxy lock */ unixFile *conchFile; /* Name of the conch file */ pCtx = (proxyLockingContext *)pFile->lockingContext; conchFile = pCtx->conchFile; OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), | | | 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 | proxyLockingContext *pCtx; /* The locking context for the proxy lock */ unixFile *conchFile; /* Name of the conch file */ pCtx = (proxyLockingContext *)pFile->lockingContext; conchFile = pCtx->conchFile; OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), osGetpid(0))); if( pCtx->conchHeld>0 ){ rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); } pCtx->conchHeld = 0; OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, (rc==SQLITE_OK ? "ok" : "failed"))); return rc; |
︙ | ︙ | |||
7152 7153 7154 7155 7156 7157 7158 | if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ lockPath=NULL; }else{ lockPath=(char *)path; } OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, | | | 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 | if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ lockPath=NULL; }else{ lockPath=(char *)path; } OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, (lockPath ? lockPath : ":auto:"), osGetpid(0))); pCtx = sqlite3_malloc( sizeof(*pCtx) ); if( pCtx==0 ){ return SQLITE_NOMEM; } memset(pCtx, 0, sizeof(*pCtx)); |
︙ | ︙ | |||
7224 7225 7226 7227 7228 7229 7230 | /* ** This routine handles sqlite3_file_control() calls that are specific ** to proxy locking. */ static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ switch( op ){ | < < < < | 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 | /* ** This routine handles sqlite3_file_control() calls that are specific ** to proxy locking. */ static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ switch( op ){ case SQLITE_FCNTL_GET_LOCKPROXYFILE: { unixFile *pFile = (unixFile*)id; if( pFile->pMethod == &proxyIoMethods ){ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; proxyTakeConch(pFile); if( pCtx->lockProxyPath ){ *(const char **)pArg = pCtx->lockProxyPath; |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
193 194 195 196 197 198 199 | DWORD, DWORD, DWORD, LPCWSTR); #endif /* defined(SQLITE_WIN32_HAS_WIDE) */ WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T); #endif /* SQLITE_OS_WINRT */ /* | | > > | 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | DWORD, DWORD, DWORD, LPCWSTR); #endif /* defined(SQLITE_WIN32_HAS_WIDE) */ WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T); #endif /* SQLITE_OS_WINRT */ /* ** These file mapping APIs are common to both Win32 and WinRT. */ WINBASEAPI BOOL WINAPI FlushViewOfFile(LPCVOID, SIZE_T); WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID); #endif /* SQLITE_WIN32_FILEMAPPING_API */ /* ** Some Microsoft compilers lack this definition. */ #ifndef INVALID_FILE_ATTRIBUTES |
︙ | ︙ | |||
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 | #else { "UuidCreateSequential", (SYSCALL)0, 0 }, #endif #define osUuidCreateSequential \ ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[78].pCurrent) }; /* End of the overrideable system calls */ /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "win32" VFSes. Return SQLITE_OK opon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable ** system call named zName. | > > > > > > > > > | 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 | #else { "UuidCreateSequential", (SYSCALL)0, 0 }, #endif #define osUuidCreateSequential \ ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[78].pCurrent) #if !defined(SQLITE_NO_SYNC) && SQLITE_MAX_MMAP_SIZE>0 { "FlushViewOfFile", (SYSCALL)FlushViewOfFile, 0 }, #else { "FlushViewOfFile", (SYSCALL)0, 0 }, #endif #define osFlushViewOfFile \ ((BOOL(WINAPI*)(LPCVOID,SIZE_T))aSyscall[79].pCurrent) }; /* End of the overrideable system calls */ /* ** This is the xSetSystemCall() method of sqlite3_vfs for all of the ** "win32" VFSes. Return SQLITE_OK opon successfully updating the ** system call pointer, or SQLITE_NOTFOUND if there is no configurable ** system call named zName. |
︙ | ︙ | |||
1962 1963 1964 1965 1966 1967 1968 | } return 0; } /* ** Log a I/O error retry episode. */ | | | | | | 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 | } return 0; } /* ** Log a I/O error retry episode. */ static void winLogIoerr(int nRetry, int lineno){ if( nRetry ){ sqlite3_log(SQLITE_NOTICE, "delayed %dms for lock/sharing conflict at line %d", winIoerrRetryDelay*nRetry*(nRetry+1)/2, lineno ); } } #if SQLITE_OS_WINCE /************************************************************************* ** This section contains code for WinCE only. |
︙ | ︙ | |||
2446 2447 2448 2449 2450 2451 2452 | winFile *pFile = (winFile*)id; assert( id!=0 ); #ifndef SQLITE_OMIT_WAL assert( pFile->pShm==0 ); #endif assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE ); | | > | 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 | winFile *pFile = (winFile*)id; assert( id!=0 ); #ifndef SQLITE_OMIT_WAL assert( pFile->pShm==0 ); #endif assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE ); OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p\n", osGetCurrentProcessId(), pFile, pFile->h)); #if SQLITE_MAX_MMAP_SIZE>0 winUnmapfile(pFile); #endif do{ rc = osCloseHandle(pFile->h); |
︙ | ︙ | |||
2475 2476 2477 2478 2479 2480 2481 | sqlite3_free(pFile->zDeleteOnClose); } #endif if( rc ){ pFile->h = NULL; } OpenCounter(-1); | > | | 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 | sqlite3_free(pFile->zDeleteOnClose); } #endif if( rc ){ pFile->h = NULL; } OpenCounter(-1); OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p, rc=%s\n", osGetCurrentProcessId(), pFile, pFile->h, rc ? "ok" : "failed")); return rc ? SQLITE_OK : winLogError(SQLITE_IOERR_CLOSE, osGetLastError(), "winClose", pFile->zPath); } /* ** Read data from a file into a buffer. Return SQLITE_OK if all |
︙ | ︙ | |||
2503 2504 2505 2506 2507 2508 2509 | DWORD nRead; /* Number of bytes actually read from file */ int nRetry = 0; /* Number of retrys */ assert( id!=0 ); assert( amt>0 ); assert( offset>=0 ); SimulateIOError(return SQLITE_IOERR_READ); | | > | > | > | > | | > | > | 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 | DWORD nRead; /* Number of bytes actually read from file */ int nRetry = 0; /* Number of retrys */ assert( id!=0 ); assert( amt>0 ); assert( offset>=0 ); SimulateIOError(return SQLITE_IOERR_READ); OSTRACE(("READ pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, " "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, pBuf, amt, offset, pFile->locktype)); #if SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this read request as possible by transfering ** data from the memory mapping using memcpy(). */ if( offset<pFile->mmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); OSTRACE(("READ-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; }else{ int nCopy = (int)(pFile->mmapSize - offset); memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy); pBuf = &((u8 *)pBuf)[nCopy]; amt -= nCopy; offset += nCopy; } } #endif #if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED) if( winSeekFile(pFile, offset) ){ OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_FULL; } while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){ #else memset(&overlapped, 0, sizeof(OVERLAPPED)); overlapped.Offset = (LONG)(offset & 0xffffffff); overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff); while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) && osGetLastError()!=ERROR_HANDLE_EOF ){ #endif DWORD lastErrno; if( winRetryIoerr(&nRetry, &lastErrno) ) continue; pFile->lastErrno = lastErrno; OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_READ\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_IOERR_READ, pFile->lastErrno, "winRead", pFile->zPath); } winLogIoerr(nRetry, __LINE__); if( nRead<(DWORD)amt ){ /* Unread parts of the buffer must be zero-filled */ memset(&((char*)pBuf)[nRead], 0, amt-nRead); OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_SHORT_READ\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_IOERR_SHORT_READ; } OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; } /* ** Write data from a buffer into a file. Return SQLITE_OK on success ** or some other error code on failure. */ |
︙ | ︙ | |||
2575 2576 2577 2578 2579 2580 2581 | int nRetry = 0; /* Number of retries */ assert( amt>0 ); assert( pFile ); SimulateIOError(return SQLITE_IOERR_WRITE); SimulateDiskfullError(return SQLITE_FULL); | | > | > | 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 | int nRetry = 0; /* Number of retries */ assert( amt>0 ); assert( pFile ); SimulateIOError(return SQLITE_IOERR_WRITE); SimulateDiskfullError(return SQLITE_FULL); OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, " "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, pBuf, amt, offset, pFile->locktype)); #if SQLITE_MAX_MMAP_SIZE>0 /* Deal with as much of this write request as possible by transfering ** data from the memory mapping using memcpy(). */ if( offset<pFile->mmapSize ){ if( offset+amt <= pFile->mmapSize ){ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); OSTRACE(("WRITE-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; }else{ int nCopy = (int)(pFile->mmapSize - offset); memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy); pBuf = &((u8 *)pBuf)[nCopy]; amt -= nCopy; offset += nCopy; |
︙ | ︙ | |||
2647 2648 2649 2650 2651 2652 2653 | rc = 1; } } if( rc ){ if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ) || ( pFile->lastErrno==ERROR_DISK_FULL )){ | | > | > | | > | | | 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 | rc = 1; } } if( rc ){ if( ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ) || ( pFile->lastErrno==ERROR_DISK_FULL )){ OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_FULL, pFile->lastErrno, "winWrite1", pFile->zPath); } OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_WRITE\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno, "winWrite2", pFile->zPath); }else{ winLogIoerr(nRetry, __LINE__); } OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; } /* ** Truncate an open file to a specified size */ static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){ winFile *pFile = (winFile*)id; /* File handle object */ int rc = SQLITE_OK; /* Return code for this function */ DWORD lastErrno; assert( pFile ); SimulateIOError(return SQLITE_IOERR_TRUNCATE); OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype)); /* If the user has configured a chunk-size for this file, truncate the ** file so that it consists of an integer number of chunks (i.e. the ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk>0 ){ |
︙ | ︙ | |||
2704 2705 2706 2707 2708 2709 2710 | ** use read() and write() to access data beyond this point from now on. */ if( pFile->pMapRegion && nByte<pFile->mmapSize ){ pFile->mmapSize = nByte; } #endif | > | | 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 | ** use read() and write() to access data beyond this point from now on. */ if( pFile->pMapRegion && nByte<pFile->mmapSize ){ pFile->mmapSize = nByte; } #endif OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, rc=%s\n", osGetCurrentProcessId(), pFile, pFile->h, sqlite3ErrName(rc))); return rc; } #ifdef SQLITE_TEST /* ** Count the number of fullsyncs and normal syncs. This is used to test ** that syncs and fullsyncs are occuring at the right times. |
︙ | ︙ | |||
2749 2750 2751 2752 2753 2754 2755 | ); /* Unix cannot, but some systems may return SQLITE_FULL from here. This ** line is to test that doing so does not cause any problems. */ SimulateDiskfullError( return SQLITE_FULL ); | | > | | > > > > > > > > > > > > > > > > > | > | > | | 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 | ); /* Unix cannot, but some systems may return SQLITE_FULL from here. This ** line is to test that doing so does not cause any problems. */ SimulateDiskfullError( return SQLITE_FULL ); OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, flags=%x, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, flags, pFile->locktype)); #ifndef SQLITE_TEST UNUSED_PARAMETER(flags); #else if( (flags&0x0F)==SQLITE_SYNC_FULL ){ sqlite3_fullsync_count++; } sqlite3_sync_count++; #endif /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a ** no-op */ #ifdef SQLITE_NO_SYNC OSTRACE(("SYNC-NOP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; #else #if SQLITE_MAX_MMAP_SIZE>0 if( pFile->pMapRegion ){ if( osFlushViewOfFile(pFile->pMapRegion, 0) ){ OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, " "rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->pMapRegion)); }else{ pFile->lastErrno = osGetLastError(); OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, " "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile, pFile->pMapRegion)); return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno, "winSync1", pFile->zPath); } } #endif rc = osFlushFileBuffers(pFile->h); SimulateIOError( rc=FALSE ); if( rc ){ OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFile, pFile->h)); return SQLITE_OK; }else{ pFile->lastErrno = osGetLastError(); OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_FSYNC\n", osGetCurrentProcessId(), pFile, pFile->h)); return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno, "winSync2", pFile->zPath); } #endif } /* ** Determine the current size of a file in bytes */ |
︙ | ︙ | |||
4748 4749 4750 4751 4752 4753 4754 | dwFlagsAndAttributes, NULL))==INVALID_HANDLE_VALUE && winRetryIoerr(&cnt, &lastErrno) ){ /* Noop */ } } #endif | | | 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 | dwFlagsAndAttributes, NULL))==INVALID_HANDLE_VALUE && winRetryIoerr(&cnt, &lastErrno) ){ /* Noop */ } } #endif winLogIoerr(cnt, __LINE__); OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name, dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok")); if( h==INVALID_HANDLE_VALUE ){ pFile->lastErrno = lastErrno; winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name); |
︙ | ︙ | |||
4932 4933 4934 4935 4936 4937 4938 | } } while(1); } #endif if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){ rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename); }else{ | | | 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 | } } while(1); } #endif if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){ rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename); }else{ winLogIoerr(cnt, __LINE__); } sqlite3_free(zConverted); OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc))); return rc; } /* |
︙ | ︙ | |||
4982 4983 4984 4985 4986 4987 4988 | && sAttrData.nFileSizeHigh==0 && sAttrData.nFileSizeLow==0 ){ attr = INVALID_FILE_ATTRIBUTES; }else{ attr = sAttrData.dwFileAttributes; } }else{ | | | 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 | && sAttrData.nFileSizeHigh==0 && sAttrData.nFileSizeLow==0 ){ attr = INVALID_FILE_ATTRIBUTES; }else{ attr = sAttrData.dwFileAttributes; } }else{ winLogIoerr(cnt, __LINE__); if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){ sqlite3_free(zConverted); return winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess", zFilename); }else{ attr = INVALID_FILE_ATTRIBUTES; } |
︙ | ︙ | |||
5551 5552 5553 5554 5555 5556 5557 | winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #endif /* Double-check that the aSyscall[] array has been constructed ** correctly. See ticket [bb3a86e890c8e96ab] */ | | | 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 | winGetSystemCall, /* xGetSystemCall */ winNextSystemCall, /* xNextSystemCall */ }; #endif /* Double-check that the aSyscall[] array has been constructed ** correctly. See ticket [bb3a86e890c8e96ab] */ assert( ArraySize(aSyscall)==80 ); /* get memory map allocation granularity */ memset(&winSysInfo, 0, sizeof(SYSTEM_INFO)); #if SQLITE_OS_WINRT osGetNativeSystemInfo(&winSysInfo); #else osGetSystemInfo(&winSysInfo); |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
3040 3041 3042 3043 3044 3045 3046 | Pager *pPager, /* Pager object */ PgHdr *pList, /* List of frames to log */ Pgno nTruncate, /* Database size after this commit */ int isCommit /* True if this is a commit */ ){ int rc; /* Return code */ int nList; /* Number of pages in pList */ | < < < < | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 | Pager *pPager, /* Pager object */ PgHdr *pList, /* List of frames to log */ Pgno nTruncate, /* Database size after this commit */ int isCommit /* True if this is a commit */ ){ int rc; /* Return code */ int nList; /* Number of pages in pList */ PgHdr *p; /* For looping over pages */ assert( pPager->pWal ); assert( pList ); #ifdef SQLITE_DEBUG /* Verify that the page list is in accending order */ for(p=pList; p && p->pDirty; p=p->pDirty){ assert( p->pgno < p->pDirty->pgno ); } #endif assert( pList->pDirty==0 || isCommit ); if( isCommit ){ /* If a WAL transaction is being committed, there is no point in writing ** any pages with page numbers greater than nTruncate into the WAL file. ** They will never be read by any client. So remove them from the pDirty ** list here. */ PgHdr **ppNext = &pList; nList = 0; for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ if( p->pgno<=nTruncate ){ ppNext = &p->pDirty; nList++; } } assert( pList ); }else{ nList = 1; } pPager->aStat[PAGER_STAT_WRITE] += nList; if( pList->pgno==1 ) pager_write_changecounter(pList); rc = sqlite3WalFrames(pPager->pWal, pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags ); if( rc==SQLITE_OK && pPager->pBackup ){ for(p=pList; p; p=p->pDirty){ sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); } } #ifdef SQLITE_CHECK_PAGES pList = sqlite3PcacheDirtyList(pPager->pPCache); |
︙ | ︙ |
Changes to src/parse.y.
︙ | ︙ | |||
405 406 407 408 409 410 411 | %type select {Select*} %destructor select {sqlite3SelectDelete(pParse->db, $$);} %type selectnowith {Select*} %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} %type oneselect {Select*} %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} | < < | > > > > > | < < | > < < | < | | > > > > > > > > > > | 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | %type select {Select*} %destructor select {sqlite3SelectDelete(pParse->db, $$);} %type selectnowith {Select*} %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} %type oneselect {Select*} %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} %include { /* ** For a compound SELECT statement, make sure p->pPrior->pNext==p for ** all elements in the list. And make sure list length does not exceed ** SQLITE_LIMIT_COMPOUND_SELECT. */ static void parserDoubleLinkSelect(Parse *pParse, Select *p){ if( p->pPrior ){ Select *pNext = 0, *pLoop; int mxSelect, cnt = 0; for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ pLoop->pNext = pNext; pLoop->selFlags |= SF_Compound; } if( (p->selFlags & SF_MultiValue)==0 && (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && cnt>mxSelect ){ sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); } } } } select(A) ::= with(W) selectnowith(X). { Select *p = X; if( p ){ p->pWith = W; parserDoubleLinkSelect(pParse, p); }else{ sqlite3WithDelete(pParse->db, W); } A = p; } selectnowith(A) ::= oneselect(X). {A = X;} %ifndef SQLITE_OMIT_COMPOUND_SELECT selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z). { Select *pRhs = Z; if( pRhs && pRhs->pPrior ){ SrcList *pFrom; Token x; x.n = 0; parserDoubleLinkSelect(pParse, pRhs); pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); } if( pRhs ){ pRhs->op = (u8)Y; pRhs->pPrior = X; pRhs->selFlags &= ~SF_MultiValue; if( Y!=TK_ALL ) pParse->hasCompound = 1; }else{ sqlite3SelectDelete(pParse->db, X); } A = pRhs; } %type multiselect_op {int} |
︙ | ︙ | |||
494 495 496 497 498 499 500 | %type values {Select*} %destructor values {sqlite3SelectDelete(pParse->db, $$);} values(A) ::= VALUES LP nexprlist(X) RP. { A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0); } values(A) ::= values(X) COMMA LP exprlist(Y) RP. { | > | > > | | | 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 | %type values {Select*} %destructor values {sqlite3SelectDelete(pParse->db, $$);} values(A) ::= VALUES LP nexprlist(X) RP. { A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0); } values(A) ::= values(X) COMMA LP exprlist(Y) RP. { Select *pRight, *pLeft = X; pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0); if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; if( pRight ){ pRight->op = TK_ALL; pLeft = X; pRight->pPrior = pLeft; A = pRight; }else{ A = pLeft; } } // The "distinct" nonterminal is true (1) if the DISTINCT keyword is // present and false (0) if it is not. // %type distinct {u16} |
︙ | ︙ |
Changes to src/pcache1.c.
︙ | ︙ | |||
191 192 193 194 195 196 197 | ** ** Multiple threads can run this routine at the same time. Global variables ** in pcache1 need to be protected via mutex. */ static void *pcache1Alloc(int nByte){ void *p = 0; assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); | < > | > | | | | 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | ** ** Multiple threads can run this routine at the same time. Global variables ** in pcache1 need to be protected via mutex. */ static void *pcache1Alloc(int nByte){ void *p = 0; assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); if( nByte<=pcache1.szSlot ){ sqlite3_mutex_enter(pcache1.mutex); p = (PgHdr1 *)pcache1.pFree; if( p ){ pcache1.pFree = pcache1.pFree->pNext; pcache1.nFreeSlot--; pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; assert( pcache1.nFreeSlot>=0 ); sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte); sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); } sqlite3_mutex_leave(pcache1.mutex); } if( p==0 ){ /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get ** it from sqlite3Malloc instead. */ p = sqlite3Malloc(nByte); #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS if( p ){ int sz = sqlite3MallocSize(p); sqlite3_mutex_enter(pcache1.mutex); sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte); sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); sqlite3_mutex_leave(pcache1.mutex); } #endif sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); } return p; } /* ** Free an allocated buffer obtained from pcache1Alloc(). */ static int pcache1Free(void *p){ int nFreed = 0; if( p==0 ) return 0; if( p>=pcache1.pStart && p<pcache1.pEnd ){ PgFreeslot *pSlot; sqlite3_mutex_enter(pcache1.mutex); sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); pSlot = (PgFreeslot*)p; pSlot->pNext = pcache1.pFree; pcache1.pFree = pSlot; pcache1.nFreeSlot++; pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; assert( pcache1.nFreeSlot<=pcache1.nSlot ); sqlite3_mutex_leave(pcache1.mutex); }else{ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); nFreed = sqlite3MallocSize(p); #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS sqlite3_mutex_enter(pcache1.mutex); sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); sqlite3_mutex_leave(pcache1.mutex); #endif sqlite3_free(p); } return nFreed; } |
︙ | ︙ | |||
981 982 983 984 985 986 987 988 989 990 991 992 993 994 | sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); } /* ** Return the size of the header on each page of this PCACHE implementation. */ int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* ** This function is called to free superfluous dynamically allocated memory ** held by the pager system. Memory in use by any SQLite pager allocated ** by the current thread may be sqlite3_free()ed. ** | > > > > > > > > | 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 | sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); } /* ** Return the size of the header on each page of this PCACHE implementation. */ int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } /* ** Return the global mutex used by this PCACHE implementation. The ** sqlite3_status() routine needs access to this mutex. */ sqlite3_mutex *sqlite3Pcache1Mutex(void){ return pcache1.mutex; } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* ** This function is called to free superfluous dynamically allocated memory ** held by the pager system. Memory in use by any SQLite pager allocated ** by the current thread may be sqlite3_free()ed. ** |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
160 161 162 163 164 165 166 | #endif /* SQLITE_PAGER_PRAGMAS */ /* ** Generate code to return a single integer value. */ static void returnSingleInt(Parse *pParse, const char *zLabel, i64 value){ Vdbe *v = sqlite3GetVdbe(pParse); | | | | | 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | #endif /* SQLITE_PAGER_PRAGMAS */ /* ** Generate code to return a single integer value. */ static void returnSingleInt(Parse *pParse, const char *zLabel, i64 value){ Vdbe *v = sqlite3GetVdbe(pParse); int nMem = ++pParse->nMem; i64 *pI64 = sqlite3DbMallocRaw(pParse->db, sizeof(value)); if( pI64 ){ memcpy(pI64, &value, sizeof(value)); } sqlite3VdbeAddOp4(v, OP_Int64, 0, nMem, 0, (char*)pI64, P4_INT64); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC); sqlite3VdbeAddOp2(v, OP_ResultRow, nMem, 1); } /* ** Set the safety_level and pager flags for pager iDb. Or if iDb<0 ** set these values for all pagers. */ |
︙ | ︙ | |||
333 334 335 336 337 338 339 | aFcntl[1] = zLeft; aFcntl[2] = zRight; aFcntl[3] = 0; db->busyHandler.nBusy = 0; rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); if( rc==SQLITE_OK ){ if( aFcntl[0] ){ | | | | | 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | aFcntl[1] = zLeft; aFcntl[2] = zRight; aFcntl[3] = 0; db->busyHandler.nBusy = 0; rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); if( rc==SQLITE_OK ){ if( aFcntl[0] ){ int nMem = ++pParse->nMem; sqlite3VdbeAddOp4(v, OP_String8, 0, nMem, 0, aFcntl[0], 0); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "result", SQLITE_STATIC); sqlite3VdbeAddOp2(v, OP_ResultRow, nMem, 1); sqlite3_free(aFcntl[0]); } goto pragma_out; } if( rc!=SQLITE_NOTFOUND ){ if( aFcntl[0] ){ sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); |
︙ | ︙ | |||
942 943 944 945 946 947 948 | if( !zRight ){ returnSingleInt(pParse, "synchronous", pDb->safety_level-1); }else{ if( !db->autoCommit ){ sqlite3ErrorMsg(pParse, "Safety level may not be changed inside a transaction"); }else{ | > > | | 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 | if( !zRight ){ returnSingleInt(pParse, "synchronous", pDb->safety_level-1); }else{ if( !db->autoCommit ){ sqlite3ErrorMsg(pParse, "Safety level may not be changed inside a transaction"); }else{ int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK; if( iLevel==0 ) iLevel = 1; pDb->safety_level = iLevel; setAllPagerFlags(db); } } break; } #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ |
︙ | ︙ | |||
1037 1038 1039 1040 1041 1042 1043 | sqlite3VdbeAddOp2(v, OP_Null, 0, 5); } if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ k = 0; }else if( pPk==0 ){ k = 1; }else{ | | | 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 | sqlite3VdbeAddOp2(v, OP_Null, 0, 5); } if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ k = 0; }else if( pPk==0 ){ k = 1; }else{ for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} } sqlite3VdbeAddOp2(v, OP_Integer, k, 6); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6); } } } break; |
︙ | ︙ |
Changes to src/prepare.c.
︙ | ︙ | |||
63 64 65 66 67 68 69 | return 1; } assert( iDb>=0 && iDb<db->nDb ); if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ if( argv[1]==0 ){ corruptSchema(pData, argv[0], 0); | | | 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | return 1; } assert( iDb>=0 && iDb<db->nDb ); if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ if( argv[1]==0 ){ corruptSchema(pData, argv[0], 0); }else if( sqlite3_strnicmp(argv[2],"create ",7)==0 ){ /* Call the parser to process a CREATE TABLE, INDEX or VIEW. ** But because db->init.busy is set to 1, no VDBE code is generated ** or executed. All the parser does is build the internal data ** structures that describe the table, index, or view. */ int rc; sqlite3_stmt *pStmt; |
︙ | ︙ | |||
94 95 96 97 98 99 100 | db->mallocFailed = 1; }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ corruptSchema(pData, argv[0], sqlite3_errmsg(db)); } } } sqlite3_finalize(pStmt); | | | | 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | db->mallocFailed = 1; }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ corruptSchema(pData, argv[0], sqlite3_errmsg(db)); } } } sqlite3_finalize(pStmt); }else if( argv[0]==0 || (argv[2]!=0 && argv[2][0]!=0) ){ corruptSchema(pData, argv[0], 0); }else{ /* If the SQL column is blank it means this is an index that ** was created to be the PRIMARY KEY or to fulfill a UNIQUE ** constraint for a CREATE TABLE. The index should have already ** been created when we processed the CREATE TABLE. All we have ** to do here is record the root page number for that index. */ |
︙ | ︙ |
Changes to src/printf.c.
︙ | ︙ | |||
257 258 259 260 261 262 263 | if( bArgList ){ width = (int)getIntArg(pArgList); }else{ width = va_arg(ap,int); } if( width<0 ){ flag_leftjustify = 1; | | > | > > > < > > > > | > > | 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | if( bArgList ){ width = (int)getIntArg(pArgList); }else{ width = va_arg(ap,int); } if( width<0 ){ flag_leftjustify = 1; width = width >= -2147483647 ? -width : 0; } c = *++fmt; }else{ unsigned wx = 0; while( c>='0' && c<='9' ){ wx = wx*10 + c - '0'; c = *++fmt; } testcase( wx>0x7fffffff ); width = wx & 0x7fffffff; } /* Get the precision */ if( c=='.' ){ precision = 0; c = *++fmt; if( c=='*' ){ if( bArgList ){ precision = (int)getIntArg(pArgList); }else{ precision = va_arg(ap,int); } c = *++fmt; if( precision<0 ){ precision = precision >= -2147483647 ? -precision : -1; } }else{ unsigned px = 0; while( c>='0' && c<='9' ){ px = px*10 + c - '0'; c = *++fmt; } testcase( px>0x7fffffff ); precision = px & 0x7fffffff; } }else{ precision = -1; } /* Get the conversion type modifier */ if( c=='l' ){ flag_long = 1; |
︙ | ︙ | |||
446 447 448 449 450 451 452 | prefix = '-'; }else{ if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; } if( xtype==etGENERIC && precision>0 ) precision--; | > | | 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | prefix = '-'; }else{ if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; } if( xtype==etGENERIC && precision>0 ) precision--; testcase( precision>0xfff ); for(idx=precision&0xfff, rounder=0.5; idx>0; idx--, rounder*=0.1){} if( xtype==etFLOAT ) realvalue += rounder; /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ exp = 0; if( sqlite3IsNaN((double)realvalue) ){ bufpt = "NaN"; length = 3; break; |
︙ | ︙ | |||
501 502 503 504 505 506 507 | flag_rtz = flag_altform2; } if( xtype==etEXP ){ e2 = 0; }else{ e2 = exp; } | | | > | 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 | flag_rtz = flag_altform2; } if( xtype==etEXP ){ e2 = 0; }else{ e2 = exp; } if( MAX(e2,0)+(i64)precision+(i64)width > etBUFSIZE - 15 ){ bufpt = zExtra = sqlite3Malloc( MAX(e2,0)+(i64)precision+(i64)width+15 ); if( bufpt==0 ){ setStrAccumError(pAccum, STRACCUM_NOMEM); return; } } zOut = bufpt; nsd = 16 + flag_altform2*10; |
︙ | ︙ | |||
734 735 736 737 738 739 740 | ** able to accept at least N more bytes of text. ** ** Return the number of bytes of text that StrAccum is able to accept ** after the attempted enlargement. The value returned might be zero. */ static int sqlite3StrAccumEnlarge(StrAccum *p, int N){ char *zNew; | | | 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 | ** able to accept at least N more bytes of text. ** ** Return the number of bytes of text that StrAccum is able to accept ** after the attempted enlargement. The value returned might be zero. */ static int sqlite3StrAccumEnlarge(StrAccum *p, int N){ char *zNew; assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */ if( p->accError ){ testcase(p->accError==STRACCUM_TOOBIG); testcase(p->accError==STRACCUM_NOMEM); return 0; } if( !p->useMalloc ){ N = p->nAlloc - p->nChar - 1; |
︙ | ︙ | |||
783 784 785 786 787 788 789 | return N; } /* ** Append N copies of character c to the given string buffer. */ void sqlite3AppendChar(StrAccum *p, int N, char c){ | > | > > | 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 | return N; } /* ** Append N copies of character c to the given string buffer. */ void sqlite3AppendChar(StrAccum *p, int N, char c){ testcase( p->nChar + (i64)N > 0x7fffffff ); if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){ return; } while( (N--)>0 ) p->zText[p->nChar++] = c; } /* ** The StrAccum "p" is not large enough to accept N new bytes of z[]. ** So enlarge if first, then do the append. ** |
︙ | ︙ | |||
808 809 810 811 812 813 814 | } /* ** Append N bytes of text from z to the StrAccum object. Increase the ** size of the memory allocation for StrAccum if necessary. */ void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ | | | 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 | } /* ** Append N bytes of text from z to the StrAccum object. Increase the ** size of the memory allocation for StrAccum if necessary. */ void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ assert( z!=0 || N==0 ); assert( p->zText!=0 || p->nChar==0 || p->accError ); assert( N>=0 ); assert( p->accError==0 || p->nAlloc==0 ); if( p->nChar+N >= p->nAlloc ){ enlargeAndAppend(p,z,N); }else{ assert( p->zText ); |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
989 990 991 992 993 994 995 | Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); if( pNew==0 ) return 1; pNew->flags |= EP_IntValue; pNew->u.iValue = iCol; if( pItem->pExpr==pE ){ pItem->pExpr = pNew; }else{ | > | > | | | 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 | Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); if( pNew==0 ) return 1; pNew->flags |= EP_IntValue; pNew->u.iValue = iCol; if( pItem->pExpr==pE ){ pItem->pExpr = pNew; }else{ Expr *pParent = pItem->pExpr; assert( pParent->op==TK_COLLATE ); while( pParent->pLeft->op==TK_COLLATE ) pParent = pParent->pLeft; assert( pParent->pLeft==pE ); pParent->pLeft = pNew; } sqlite3ExprDelete(db, pE); pItem->u.x.iOrderByCol = (u16)iCol; pItem->done = 1; }else{ moreToDo = 1; } |
︙ | ︙ | |||
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 | */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; if( sqlite3ResolveExprNames(&sNC, p->pLimit) || sqlite3ResolveExprNames(&sNC, p->pOffset) ){ return WRC_Abort; } /* Recursively resolve names in all subqueries */ for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; if( pItem->pSelect ){ NameContext *pNC; /* Used to iterate name contexts */ | > > > > > > > > > > > > > > | 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 | */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; if( sqlite3ResolveExprNames(&sNC, p->pLimit) || sqlite3ResolveExprNames(&sNC, p->pOffset) ){ return WRC_Abort; } /* If the SF_Converted flags is set, then this Select object was ** was created by the convertCompoundSelectToSubquery() function. ** In this case the ORDER BY clause (p->pOrderBy) should be resolved ** as if it were part of the sub-query, not the parent. This block ** moves the pOrderBy down to the sub-query. It will be moved back ** after the names have been resolved. */ if( p->selFlags & SF_Converted ){ Select *pSub = p->pSrc->a[0].pSelect; assert( p->pSrc->nSrc==1 && p->pOrderBy ); assert( pSub->pPrior && pSub->pOrderBy==0 ); pSub->pOrderBy = p->pOrderBy; p->pOrderBy = 0; } /* Recursively resolve names in all subqueries */ for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; if( pItem->pSelect ){ NameContext *pNC; /* Used to iterate name contexts */ |
︙ | ︙ | |||
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 | if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort; /* The ORDER BY and GROUP BY clauses may not refer to terms in ** outer queries */ sNC.pNext = 0; sNC.ncFlags |= NC_AllowAgg; /* Process the ORDER BY clause for singleton SELECT statements. ** The ORDER BY clause for compounds SELECT statements is handled ** below, after all of the result-sets for all of the elements of ** the compound have been resolved. */ | > > > > > > > > > > > > > > > > > | > | 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 | if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort; /* The ORDER BY and GROUP BY clauses may not refer to terms in ** outer queries */ sNC.pNext = 0; sNC.ncFlags |= NC_AllowAgg; /* If this is a converted compound query, move the ORDER BY clause from ** the sub-query back to the parent query. At this point each term ** within the ORDER BY clause has been transformed to an integer value. ** These integers will be replaced by copies of the corresponding result ** set expressions by the call to resolveOrderGroupBy() below. */ if( p->selFlags & SF_Converted ){ Select *pSub = p->pSrc->a[0].pSelect; p->pOrderBy = pSub->pOrderBy; pSub->pOrderBy = 0; } /* Process the ORDER BY clause for singleton SELECT statements. ** The ORDER BY clause for compounds SELECT statements is handled ** below, after all of the result-sets for all of the elements of ** the compound have been resolved. ** ** If there is an ORDER BY clause on a term of a compound-select other ** than the right-most term, then that is a syntax error. But the error ** is not detected until much later, and so we need to go ahead and ** resolve those symbols on the incorrect ORDER BY for consistency. */ if( isCompound<=nCompound /* Defer right-most ORDER BY of a compound */ && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){ return WRC_Abort; } if( db->mallocFailed ){ return WRC_Abort; } /* Resolve the GROUP BY clause. At the same time, make sure |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
107 108 109 110 111 112 113 | Expr *pLimit, /* LIMIT value. NULL means not used */ Expr *pOffset /* OFFSET value. NULL means no offset */ ){ Select *pNew; Select standin; sqlite3 *db = pParse->db; pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); | < | | 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | Expr *pLimit, /* LIMIT value. NULL means not used */ Expr *pOffset /* OFFSET value. NULL means no offset */ ){ Select *pNew; Select standin; sqlite3 *db = pParse->db; pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); if( pNew==0 ){ assert( db->mallocFailed ); pNew = &standin; memset(pNew, 0, sizeof(*pNew)); } if( pEList==0 ){ pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); } pNew->pEList = pEList; if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); pNew->pSrc = pSrc; pNew->pWhere = pWhere; pNew->pGroupBy = pGroupBy; pNew->pHaving = pHaving; pNew->pOrderBy = pOrderBy; pNew->selFlags = selFlags; pNew->op = TK_SELECT; pNew->pLimit = pLimit; pNew->pOffset = pOffset; assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; if( db->mallocFailed ) { clearSelect(db, pNew, pNew!=&standin); pNew = 0; }else{ assert( pNew->pSrc!=0 || pParse->nErr>0 ); |
︙ | ︙ | |||
1377 1378 1379 1380 1381 1382 1383 | assert( pTab && pExpr->pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ | | | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 | assert( pTab && pExpr->pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ if( iCol>=0 && iCol<pS->pEList->nExpr ){ /* If iCol is less than zero, then the expression requests the ** rowid of the sub-select or view. This expression is legal (see ** test case misc2.2.2) - it always evaluates to NULL. */ NameContext sNC; Expr *p = pS->pEList->a[iCol].pExpr; sNC.pSrcList = pS->pSrc; |
︙ | ︙ | |||
1697 1698 1699 1700 1701 1702 1703 | assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); if( db->mallocFailed ) return; memset(&sNC, 0, sizeof(sNC)); sNC.pSrcList = pSelect->pSrc; a = pSelect->pEList->a; for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ p = a[i].pExpr; | > | > | | 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 | assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); if( db->mallocFailed ) return; memset(&sNC, 0, sizeof(sNC)); sNC.pSrcList = pSelect->pSrc; a = pSelect->pEList->a; for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ p = a[i].pExpr; if( pCol->zType==0 ){ pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); } szAll += pCol->szEst; pCol->affinity = sqlite3ExprAffinity(p); if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; pColl = sqlite3ExprCollSeq(pParse, p); if( pColl && pCol->zColl==0 ){ pCol->zColl = sqlite3DbStrDup(db, pColl->zName); } } pTab->szTabRow = sqlite3LogEst(szAll*4); } /* |
︙ | ︙ | |||
2104 2105 2106 2107 2108 2109 2110 | Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ Select *pPrior; int nExpr = p->pEList->nExpr; int nRow = 1; int rc = 0; | < | | 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 | Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ){ Select *pPrior; int nExpr = p->pEList->nExpr; int nRow = 1; int rc = 0; assert( p->selFlags & SF_MultiValue ); do{ assert( p->selFlags & SF_Values ); assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); assert( p->pLimit==0 ); assert( p->pOffset==0 ); if( p->pEList->nExpr!=nExpr ){ selectWrongNumTermsError(pParse, p); |
︙ | ︙ | |||
2214 2215 2216 2217 2218 2219 2220 | sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); sqlite3VdbeChangeP5(v, BTREE_UNORDERED); dest.eDest = SRT_Table; } /* Special handling for a compound-select that originates as a VALUES clause. */ | | | 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 | sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); sqlite3VdbeChangeP5(v, BTREE_UNORDERED); dest.eDest = SRT_Table; } /* Special handling for a compound-select that originates as a VALUES clause. */ if( p->selFlags & SF_MultiValue ){ rc = multiSelectValues(pParse, p, &dest); goto multi_select_end; } /* Make sure all SELECTs in the statement have the same number of elements ** in their result sets. */ |
︙ | ︙ | |||
2625 2626 2627 2628 2629 2630 2631 | #endif /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell and break out ** of the scan loop. */ case SRT_Mem: { | | | | 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 | #endif /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell and break out ** of the scan loop. */ case SRT_Mem: { assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); /* The LIMIT clause will jump out of the loop for us */ break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ /* The results are stored in a sequence of registers ** starting at pDest->iSdst. Then the co-routine yields. */ case SRT_Coroutine: { if( pDest->iSdst==0 ){ pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); pDest->nSdst = pIn->nSdst; } sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); break; } /* If none of the above, then the result destination must be ** SRT_Output. This routine is never called with any other ** destination other than the ones handled above or SRT_Output. |
︙ | ︙ | |||
2856 2857 2858 2859 2860 2861 2862 | ** to the right and the left are evaluated, they use the correct ** collation. */ aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); if( aPermute ){ struct ExprList_item *pItem; for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ | | | > > | 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 | ** to the right and the left are evaluated, they use the correct ** collation. */ aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); if( aPermute ){ struct ExprList_item *pItem; for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ assert( pItem->u.x.iOrderByCol>0 ); /* assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ) is also true ** but only for well-formed SELECT statements. */ testcase( pItem->u.x.iOrderByCol > p->pEList->nExpr ); aPermute[i] = pItem->u.x.iOrderByCol - 1; } pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); }else{ pKeyMerge = 0; } |
︙ | ︙ | |||
3067 3068 3069 3070 3071 3072 3073 | } p->pPrior = pPrior; pPrior->pNext = p; /*** TBD: Insert subroutine calls to close cursors on incomplete **** subqueries ****/ explainComposite(pParse, p->op, iSub1, iSub2, 0); | | | 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 | } p->pPrior = pPrior; pPrior->pNext = p; /*** TBD: Insert subroutine calls to close cursors on incomplete **** subqueries ****/ explainComposite(pParse, p->op, iSub1, iSub2, 0); return pParse->nErr!=0; } #endif #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) /* Forward Declarations */ static void substExprList(sqlite3*, ExprList*, int, ExprList*); static void substSelect(sqlite3*, Select *, int, ExprList *); |
︙ | ︙ | |||
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 | p->op = TK_SELECT; p->pWhere = 0; pNew->pGroupBy = 0; pNew->pHaving = 0; pNew->pOrderBy = 0; p->pPrior = 0; p->pNext = 0; p->selFlags &= ~SF_Compound; assert( pNew->pPrior!=0 ); pNew->pPrior->pNext = pNew; pNew->pLimit = 0; pNew->pOffset = 0; return WRC_Continue; } | > > > | 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 | p->op = TK_SELECT; p->pWhere = 0; pNew->pGroupBy = 0; pNew->pHaving = 0; pNew->pOrderBy = 0; p->pPrior = 0; p->pNext = 0; p->pWith = 0; p->selFlags &= ~SF_Compound; assert( (p->selFlags & SF_Converted)==0 ); p->selFlags |= SF_Converted; assert( pNew->pPrior!=0 ); pNew->pPrior->pNext = pNew; pNew->pLimit = 0; pNew->pOffset = 0; return WRC_Continue; } |
︙ | ︙ | |||
4415 4416 4417 4418 4419 4420 4421 | w.xExprCallback = exprWalkNoop; w.pParse = pParse; if( pParse->hasCompound ){ w.xSelectCallback = convertCompoundSelectToSubquery; sqlite3WalkSelect(&w, pSelect); } w.xSelectCallback = selectExpander; | | | 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 | w.xExprCallback = exprWalkNoop; w.pParse = pParse; if( pParse->hasCompound ){ w.xSelectCallback = convertCompoundSelectToSubquery; sqlite3WalkSelect(&w, pSelect); } w.xSelectCallback = selectExpander; if( (pSelect->selFlags & SF_MultiValue)==0 ){ w.xSelectCallback2 = selectPopWith; } sqlite3WalkSelect(&w, pSelect); } #ifndef SQLITE_OMIT_SUBQUERY |
︙ | ︙ | |||
4601 4602 4603 4604 4605 4606 4607 | sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); }else{ nArg = 0; regAgg = 0; } if( pF->iDistinct>=0 ){ addrNext = sqlite3VdbeMakeLabel(v); | | > | 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 | sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); }else{ nArg = 0; regAgg = 0; } if( pF->iDistinct>=0 ){ addrNext = sqlite3VdbeMakeLabel(v); testcase( nArg==0 ); /* Error condition */ testcase( nArg>1 ); /* Also an error */ codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); } if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ CollSeq *pColl = 0; struct ExprList_item *pItem; int j; assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ |
︙ | ︙ | |||
5476 5477 5478 5479 5480 5481 5482 | generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); } /* Jump here to skip this query */ sqlite3VdbeResolveLabel(v, iEnd); | > | < < | | 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 | generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); } /* Jump here to skip this query */ sqlite3VdbeResolveLabel(v, iEnd); /* The SELECT has been coded. If there is an error in the Parse structure, ** set the return code to 1. Otherwise 0. */ rc = (pParse->nErr>0); /* Control jumps to here if an error is encountered above, or upon ** successful coding of the SELECT. */ select_end: explainSetInteger(pParse->iSelectId, iRestoreSelectId); |
︙ | ︙ | |||
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 | pView = sqlite3TreeViewPush(pView, (n--)>0); sqlite3TreeViewLine(pView, "FROM"); for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; StrAccum x; char zLine[100]; sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0); sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); if( pItem->zDatabase ){ sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); }else if( pItem->zName ){ sqlite3XPrintf(&x, 0, " %s", pItem->zName); } if( pItem->pTab ){ | > | 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 | pView = sqlite3TreeViewPush(pView, (n--)>0); sqlite3TreeViewLine(pView, "FROM"); for(i=0; i<p->pSrc->nSrc; i++){ struct SrcList_item *pItem = &p->pSrc->a[i]; StrAccum x; char zLine[100]; sqlite3StrAccumInit(&x, zLine, sizeof(zLine), 0); x.useMalloc = 0; sqlite3XPrintf(&x, 0, "{%d,*}", pItem->iCursor); if( pItem->zDatabase ){ sqlite3XPrintf(&x, 0, " %s.%s", pItem->zDatabase, pItem->zName); }else if( pItem->zName ){ sqlite3XPrintf(&x, 0, " %s", pItem->zName); } if( pItem->pTab ){ |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
23 24 25 26 27 28 29 | #if defined(INCLUDE_MSVC_H) #include "msvc.h" #endif /* ** No support for loadable extensions in VxWorks. */ | | | 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | #if defined(INCLUDE_MSVC_H) #include "msvc.h" #endif /* ** No support for loadable extensions in VxWorks. */ #if (defined(__RTP__) || defined(_WRS_KERNEL)) && !SQLITE_OMIT_LOAD_EXTENSION # define SQLITE_OMIT_LOAD_EXTENSION 1 #endif /* ** Enable large-file support for fopen() and friends on unix. */ #ifndef SQLITE_DISABLE_LFS |
︙ | ︙ | |||
332 333 334 335 336 337 338 | static int stdin_is_interactive = 1; /* ** The following is the open SQLite database. We make a pointer ** to this database a static variable so that it can be accessed ** by the SIGINT handler to interrupt database processing. */ | | | 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | static int stdin_is_interactive = 1; /* ** The following is the open SQLite database. We make a pointer ** to this database a static variable so that it can be accessed ** by the SIGINT handler to interrupt database processing. */ static sqlite3 *globalDb = 0; /* ** True if an interrupt (Control-C) has been received. */ static volatile int seenInterrupt = 0; /* |
︙ | ︙ | |||
366 367 368 369 370 371 372 | /* ** This routine works like printf in that its first argument is a ** format string and subsequent arguments are values to be substituted ** in place of % fields. The result of formatting this string ** is written to iotrace. */ #ifdef SQLITE_ENABLE_IOTRACE | | | 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | /* ** This routine works like printf in that its first argument is a ** format string and subsequent arguments are values to be substituted ** in place of % fields. The result of formatting this string ** is written to iotrace. */ #ifdef SQLITE_ENABLE_IOTRACE static void SQLITE_CDECL iotracePrintf(const char *zFormat, ...){ va_list ap; char *z; if( iotrace==0 ) return; va_start(ap, zFormat); z = sqlite3_vmprintf(zFormat, ap); va_end(ap); fprintf(iotrace, "%s", z); |
︙ | ︙ | |||
523 524 525 526 527 528 529 530 531 532 533 534 535 536 | typedef struct ShellState ShellState; struct ShellState { sqlite3 *db; /* The database */ int echoOn; /* True to echo input commands */ int autoEQP; /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */ int statsOn; /* True to display memory stats before each finalize */ int scanstatsOn; /* True to display scan stats before each finalize */ int outCount; /* Revert to stdout when reaching zero */ int cnt; /* Number of records displayed so far */ FILE *out; /* Write results here */ FILE *traceOut; /* Output for sqlite3_trace() */ int nErr; /* Number of errors seen */ int mode; /* An output mode setting */ int writableSchema; /* True if PRAGMA writable_schema=ON */ | > | 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | typedef struct ShellState ShellState; struct ShellState { sqlite3 *db; /* The database */ int echoOn; /* True to echo input commands */ int autoEQP; /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */ int statsOn; /* True to display memory stats before each finalize */ int scanstatsOn; /* True to display scan stats before each finalize */ int backslashOn; /* Resolve C-style \x escapes in SQL input text */ int outCount; /* Revert to stdout when reaching zero */ int cnt; /* Number of records displayed so far */ FILE *out; /* Write results here */ FILE *traceOut; /* Output for sqlite3_trace() */ int nErr; /* Number of errors seen */ int mode; /* An output mode setting */ int writableSchema; /* True if PRAGMA writable_schema=ON */ |
︙ | ︙ | |||
800 801 802 803 804 805 806 | /* ** This routine runs when the user presses Ctrl-C */ static void interrupt_handler(int NotUsed){ UNUSED_PARAMETER(NotUsed); seenInterrupt++; if( seenInterrupt>2 ) exit(1); | | | 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 | /* ** This routine runs when the user presses Ctrl-C */ static void interrupt_handler(int NotUsed){ UNUSED_PARAMETER(NotUsed); seenInterrupt++; if( seenInterrupt>2 ) exit(1); if( globalDb ) sqlite3_interrupt(globalDb); } #endif /* ** This is the callback routine that the shell ** invokes for each row of a query result. */ |
︙ | ︙ | |||
1904 1905 1906 1907 1908 1909 1910 | ** Make sure the database is open. If it is not, then open it. If ** the database fails to open, print an error message and exit. */ static void open_db(ShellState *p, int keepAlive){ if( p->db==0 ){ sqlite3_initialize(); sqlite3_open(p->zDbFilename, &p->db); | | | | | | | | | | 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 | ** Make sure the database is open. If it is not, then open it. If ** the database fails to open, print an error message and exit. */ static void open_db(ShellState *p, int keepAlive){ if( p->db==0 ){ sqlite3_initialize(); sqlite3_open(p->zDbFilename, &p->db); globalDb = p->db; if( p->db && sqlite3_errcode(p->db)==SQLITE_OK ){ sqlite3_create_function(p->db, "shellstatic", 0, SQLITE_UTF8, 0, shellstaticFunc, 0, 0); } if( p->db==0 || SQLITE_OK!=sqlite3_errcode(p->db) ){ fprintf(stderr,"Error: unable to open database \"%s\": %s\n", p->zDbFilename, sqlite3_errmsg(p->db)); if( keepAlive ) return; exit(1); } #ifndef SQLITE_OMIT_LOAD_EXTENSION sqlite3_enable_load_extension(p->db, 1); #endif sqlite3_create_function(p->db, "readfile", 1, SQLITE_UTF8, 0, readfileFunc, 0, 0); sqlite3_create_function(p->db, "writefile", 2, SQLITE_UTF8, 0, writefileFunc, 0, 0); } } /* ** Do C-language style dequoting. ** ** \t -> tab ** \n -> newline ** \r -> carriage return ** \" -> " ** \NNN -> ascii character NNN in octal ** \\ -> backslash */ static void resolve_backslashes(char *z){ int i, j; char c; while( *z && *z!='\\' ) z++; for(i=j=0; (c = z[i])!=0; i++, j++){ if( c=='\\' && z[i+1]!=0 ){ c = z[++i]; if( c=='n' ){ c = '\n'; }else if( c=='t' ){ c = '\t'; }else if( c=='r' ){ c = '\r'; |
︙ | ︙ | |||
2581 2582 2583 2584 2585 2586 2587 | /* ** If an input line begins with "." then invoke this routine to ** process that line. ** ** Return 1 on error, 2 to exit, and 0 otherwise. */ static int do_meta_command(char *zLine, ShellState *p){ | | | | | | | | | | | | | | | | | 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 | /* ** If an input line begins with "." then invoke this routine to ** process that line. ** ** Return 1 on error, 2 to exit, and 0 otherwise. */ static int do_meta_command(char *zLine, ShellState *p){ int h = 1; int nArg = 0; int n, c; int rc = 0; char *azArg[50]; /* Parse the input line into tokens. */ while( zLine[h] && nArg<ArraySize(azArg) ){ while( IsSpace(zLine[h]) ){ h++; } if( zLine[h]==0 ) break; if( zLine[h]=='\'' || zLine[h]=='"' ){ int delim = zLine[h++]; azArg[nArg++] = &zLine[h]; while( zLine[h] && zLine[h]!=delim ){ if( zLine[h]=='\\' && delim=='"' && zLine[h+1]!=0 ) h++; h++; } if( zLine[h]==delim ){ zLine[h++] = 0; } if( delim=='"' ) resolve_backslashes(azArg[nArg-1]); }else{ azArg[nArg++] = &zLine[h]; while( zLine[h] && !IsSpace(zLine[h]) ){ h++; } if( zLine[h] ) zLine[h++] = 0; resolve_backslashes(azArg[nArg-1]); } } /* Process the input line. */ if( nArg==0 ) return 0; /* no tokens, no error */ |
︙ | ︙ | |||
2982 2983 2984 2985 2986 2987 2988 | fprintf(stderr, "Error: out of memory\n"); xCloser(sCtx.in); return 1; } nByte = strlen30(zSql); rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); import_append_char(&sCtx, 0); /* To ensure sCtx.z is allocated */ | | | | | 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 | fprintf(stderr, "Error: out of memory\n"); xCloser(sCtx.in); return 1; } nByte = strlen30(zSql); rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); import_append_char(&sCtx, 0); /* To ensure sCtx.z is allocated */ if( rc && sqlite3_strglob("no such table: *", sqlite3_errmsg(p->db))==0 ){ char *zCreate = sqlite3_mprintf("CREATE TABLE %s", zTable); char cSep = '('; while( xRead(&sCtx) ){ zCreate = sqlite3_mprintf("%z%c\n \"%s\" TEXT", zCreate, cSep, sCtx.z); cSep = ','; if( sCtx.cTerm!=sCtx.cColSep ) break; } if( cSep=='(' ){ sqlite3_free(zCreate); sqlite3_free(sCtx.z); xCloser(sCtx.in); fprintf(stderr,"%s: empty file\n", sCtx.zFile); return 1; } zCreate = sqlite3_mprintf("%z\n)", zCreate); rc = sqlite3_exec(p->db, zCreate, 0, 0, 0); sqlite3_free(zCreate); if( rc ){ fprintf(stderr, "CREATE TABLE %s(...) failed: %s\n", zTable, sqlite3_errmsg(p->db)); sqlite3_free(sCtx.z); xCloser(sCtx.in); return 1; } rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); } sqlite3_free(zSql); if( rc ){ if (pStmt) sqlite3_finalize(pStmt); fprintf(stderr,"Error: %s\n", sqlite3_errmsg(p->db)); xCloser(sCtx.in); return 1; } nCol = sqlite3_column_count(pStmt); sqlite3_finalize(pStmt); pStmt = 0; if( nCol==0 ) return 0; /* no columns, no error */ |
︙ | ︙ | |||
3037 3038 3039 3040 3041 3042 3043 | zSql[j++] = '?'; } zSql[j++] = ')'; zSql[j] = 0; rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( rc ){ | | | | | 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 | zSql[j++] = '?'; } zSql[j++] = ')'; zSql[j] = 0; rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( rc ){ fprintf(stderr, "Error: %s\n", sqlite3_errmsg(p->db)); if (pStmt) sqlite3_finalize(pStmt); xCloser(sCtx.in); return 1; } needCommit = sqlite3_get_autocommit(p->db); if( needCommit ) sqlite3_exec(p->db, "BEGIN", 0, 0, 0); do{ int startLine = sCtx.nLine; for(i=0; i<nCol; i++){ char *z = xRead(&sCtx); /* ** Did we reach end-of-file before finding any columns? ** If so, stop instead of NULL filling the remaining columns. |
︙ | ︙ | |||
3082 3083 3084 3085 3086 3087 3088 | sCtx.zFile, startLine, nCol, i); } if( i>=nCol ){ sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ){ fprintf(stderr, "%s:%d: INSERT failed: %s\n", sCtx.zFile, startLine, | | | | 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 | sCtx.zFile, startLine, nCol, i); } if( i>=nCol ){ sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ){ fprintf(stderr, "%s:%d: INSERT failed: %s\n", sCtx.zFile, startLine, sqlite3_errmsg(p->db)); } } }while( sCtx.cTerm!=EOF ); xCloser(sCtx.in); sqlite3_free(sCtx.z); sqlite3_finalize(pStmt); if( needCommit ) sqlite3_exec(p->db, "COMMIT", 0, 0, 0); }else if( c=='i' && (strncmp(azArg[0], "indices", n)==0 || strncmp(azArg[0], "indexes", n)==0) ){ ShellState data; char *zErrMsg = 0; open_db(p, 0); |
︙ | ︙ | |||
3140 3141 3142 3143 3144 3145 3146 | fprintf(stderr,"Error: querying sqlite_master and sqlite_temp_master\n"); rc = 1; } }else #ifdef SQLITE_ENABLE_IOTRACE if( c=='i' && strncmp(azArg[0], "iotrace", n)==0 ){ | | | 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 | fprintf(stderr,"Error: querying sqlite_master and sqlite_temp_master\n"); rc = 1; } }else #ifdef SQLITE_ENABLE_IOTRACE if( c=='i' && strncmp(azArg[0], "iotrace", n)==0 ){ SQLITE_API extern void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...); if( iotrace && iotrace!=stdout ) fclose(iotrace); iotrace = 0; if( nArg<2 ){ sqlite3IoTrace = 0; }else if( strcmp(azArg[1], "-")==0 ){ sqlite3IoTrace = iotracePrintf; iotrace = stdout; |
︙ | ︙ | |||
3644 3645 3646 3647 3648 3649 3650 | sqlite3_bind_text(pStmt, 1, azArg[1], -1, SQLITE_TRANSIENT); }else{ sqlite3_bind_text(pStmt, 1, "%", -1, SQLITE_STATIC); } while( sqlite3_step(pStmt)==SQLITE_ROW ){ if( nRow>=nAlloc ){ char **azNew; | | | | | 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 | sqlite3_bind_text(pStmt, 1, azArg[1], -1, SQLITE_TRANSIENT); }else{ sqlite3_bind_text(pStmt, 1, "%", -1, SQLITE_STATIC); } while( sqlite3_step(pStmt)==SQLITE_ROW ){ if( nRow>=nAlloc ){ char **azNew; int n2 = nAlloc*2 + 10; azNew = sqlite3_realloc(azResult, sizeof(azResult[0])*n2); if( azNew==0 ){ fprintf(stderr, "Error: out of memory\n"); break; } nAlloc = n2; azResult = azNew; } azResult[nRow] = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0)); if( azResult[nRow] ) nRow++; } sqlite3_finalize(pStmt); if( nRow>0 ){ |
︙ | ︙ | |||
3703 3704 3705 3706 3707 3708 3709 | { "iskeyword", SQLITE_TESTCTRL_ISKEYWORD }, { "scratchmalloc", SQLITE_TESTCTRL_SCRATCHMALLOC }, { "byteorder", SQLITE_TESTCTRL_BYTEORDER }, { "never_corrupt", SQLITE_TESTCTRL_NEVER_CORRUPT }, { "imposter", SQLITE_TESTCTRL_IMPOSTER }, }; int testctrl = -1; | | | | | | | | | | | | | | | | > | < | 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 | { "iskeyword", SQLITE_TESTCTRL_ISKEYWORD }, { "scratchmalloc", SQLITE_TESTCTRL_SCRATCHMALLOC }, { "byteorder", SQLITE_TESTCTRL_BYTEORDER }, { "never_corrupt", SQLITE_TESTCTRL_NEVER_CORRUPT }, { "imposter", SQLITE_TESTCTRL_IMPOSTER }, }; int testctrl = -1; int rc2 = 0; int i, n2; open_db(p, 0); /* convert testctrl text option to value. allow any unique prefix ** of the option name, or a numerical value. */ n2 = strlen30(azArg[1]); for(i=0; i<(int)(sizeof(aCtrl)/sizeof(aCtrl[0])); i++){ if( strncmp(azArg[1], aCtrl[i].zCtrlName, n2)==0 ){ if( testctrl<0 ){ testctrl = aCtrl[i].ctrlCode; }else{ fprintf(stderr, "ambiguous option name: \"%s\"\n", azArg[1]); testctrl = -1; break; } } } if( testctrl<0 ) testctrl = (int)integerValue(azArg[1]); if( (testctrl<SQLITE_TESTCTRL_FIRST) || (testctrl>SQLITE_TESTCTRL_LAST) ){ fprintf(stderr,"Error: invalid testctrl option: %s\n", azArg[1]); }else{ switch(testctrl){ /* sqlite3_test_control(int, db, int) */ case SQLITE_TESTCTRL_OPTIMIZATIONS: case SQLITE_TESTCTRL_RESERVE: if( nArg==3 ){ int opt = (int)strtol(azArg[2], 0, 0); rc2 = sqlite3_test_control(testctrl, p->db, opt); fprintf(p->out, "%d (0x%08x)\n", rc2, rc2); } else { fprintf(stderr,"Error: testctrl %s takes a single int option\n", azArg[1]); } break; /* sqlite3_test_control(int) */ case SQLITE_TESTCTRL_PRNG_SAVE: case SQLITE_TESTCTRL_PRNG_RESTORE: case SQLITE_TESTCTRL_PRNG_RESET: case SQLITE_TESTCTRL_BYTEORDER: if( nArg==2 ){ rc2 = sqlite3_test_control(testctrl); fprintf(p->out, "%d (0x%08x)\n", rc2, rc2); } else { fprintf(stderr,"Error: testctrl %s takes no options\n", azArg[1]); } break; /* sqlite3_test_control(int, uint) */ case SQLITE_TESTCTRL_PENDING_BYTE: if( nArg==3 ){ unsigned int opt = (unsigned int)integerValue(azArg[2]); rc2 = sqlite3_test_control(testctrl, opt); fprintf(p->out, "%d (0x%08x)\n", rc2, rc2); } else { fprintf(stderr,"Error: testctrl %s takes a single unsigned" " int option\n", azArg[1]); } break; /* sqlite3_test_control(int, int) */ case SQLITE_TESTCTRL_ASSERT: case SQLITE_TESTCTRL_ALWAYS: case SQLITE_TESTCTRL_NEVER_CORRUPT: if( nArg==3 ){ int opt = booleanValue(azArg[2]); rc2 = sqlite3_test_control(testctrl, opt); fprintf(p->out, "%d (0x%08x)\n", rc2, rc2); } else { fprintf(stderr,"Error: testctrl %s takes a single int option\n", azArg[1]); } break; /* sqlite3_test_control(int, char *) */ #ifdef SQLITE_N_KEYWORD case SQLITE_TESTCTRL_ISKEYWORD: if( nArg==3 ){ const char *opt = azArg[2]; rc2 = sqlite3_test_control(testctrl, opt); fprintf(p->out, "%d (0x%08x)\n", rc2, rc2); } else { fprintf(stderr,"Error: testctrl %s takes a single char * option\n", azArg[1]); } break; #endif case SQLITE_TESTCTRL_IMPOSTER: if( nArg==5 ){ rc2 = sqlite3_test_control(testctrl, p->db, azArg[2], integerValue(azArg[3]), integerValue(azArg[4])); fprintf(p->out, "%d (0x%08x)\n", rc2, rc2); }else{ fprintf(stderr,"Usage: .testctrl imposter dbName onoff tnum\n"); } break; case SQLITE_TESTCTRL_BITVEC_TEST: case SQLITE_TESTCTRL_FAULT_INSTALL: case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: case SQLITE_TESTCTRL_SCRATCHMALLOC: |
︙ | ︙ | |||
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 | memcpy(zSql+nSql, zLine, nLine+1); nSql += nLine; } if( nSql && line_contains_semicolon(&zSql[nSqlPrior], nSql-nSqlPrior) && sqlite3_complete(zSql) ){ p->cnt = 0; open_db(p, 0); BEGIN_TIMER; rc = shell_exec(p->db, zSql, shell_callback, p, &zErrMsg); END_TIMER; if( rc || zErrMsg ){ char zPrefix[100]; if( in!=0 || !stdin_is_interactive ){ sqlite3_snprintf(sizeof(zPrefix), zPrefix, | > | 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 | memcpy(zSql+nSql, zLine, nLine+1); nSql += nLine; } if( nSql && line_contains_semicolon(&zSql[nSqlPrior], nSql-nSqlPrior) && sqlite3_complete(zSql) ){ p->cnt = 0; open_db(p, 0); if( p->backslashOn ) resolve_backslashes(zSql); BEGIN_TIMER; rc = shell_exec(p->db, zSql, shell_callback, p, &zErrMsg); END_TIMER; if( rc || zErrMsg ){ char zPrefix[100]; if( in!=0 || !stdin_is_interactive ){ sqlite3_snprintf(sizeof(zPrefix), zPrefix, |
︙ | ︙ | |||
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 | data.echoOn = 1; }else if( strcmp(z,"-eqp")==0 ){ data.autoEQP = 1; }else if( strcmp(z,"-stats")==0 ){ data.statsOn = 1; }else if( strcmp(z,"-scanstats")==0 ){ data.scanstatsOn = 1; }else if( strcmp(z,"-bail")==0 ){ bail_on_error = 1; }else if( strcmp(z,"-version")==0 ){ printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid()); return 0; }else if( strcmp(z,"-interactive")==0 ){ stdin_is_interactive = 1; | > > > > > > > | 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 | data.echoOn = 1; }else if( strcmp(z,"-eqp")==0 ){ data.autoEQP = 1; }else if( strcmp(z,"-stats")==0 ){ data.statsOn = 1; }else if( strcmp(z,"-scanstats")==0 ){ data.scanstatsOn = 1; }else if( strcmp(z,"-backslash")==0 ){ /* Undocumented command-line option: -backslash ** Causes C-style backslash escapes to be evaluated in SQL statements ** prior to sending the SQL into SQLite. Useful for injecting ** crazy bytes in the middle of SQL statements for testing and debugging. */ data.backslashOn = 1; }else if( strcmp(z,"-bail")==0 ){ bail_on_error = 1; }else if( strcmp(z,"-version")==0 ){ printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid()); return 0; }else if( strcmp(z,"-interactive")==0 ){ stdin_is_interactive = 1; |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
39 40 41 42 43 44 45 | */ #ifdef __cplusplus extern "C" { #endif /* | | | < > | < > > > | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | */ #ifdef __cplusplus extern "C" { #endif /* ** Provide the ability to override linkage features of the interface. */ #ifndef SQLITE_EXTERN # define SQLITE_EXTERN extern #endif #ifndef SQLITE_API # define SQLITE_API #endif #ifndef SQLITE_CDECL # define SQLITE_CDECL #endif #ifndef SQLITE_STDCALL # define SQLITE_STDCALL #endif /* ** These no-op macros are used in front of interfaces to mark those ** interfaces as either deprecated or experimental. New applications ** should not use deprecated interfaces - they are supported for backwards ** compatibility only. Application writers should be aware that ** experimental interfaces are subject to change in point releases. |
︙ | ︙ | |||
264 265 266 267 268 269 270 271 272 273 274 275 276 277 | */ #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite3_int64 #endif /* ** CAPI3REF: Closing A Database Connection ** ** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors ** for the [sqlite3] object. ** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if ** the [sqlite3] object is successfully destroyed and all associated ** resources are deallocated. ** | > | 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | */ #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite3_int64 #endif /* ** CAPI3REF: Closing A Database Connection ** DESTRUCTOR: sqlite3 ** ** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors ** for the [sqlite3] object. ** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if ** the [sqlite3] object is successfully destroyed and all associated ** resources are deallocated. ** |
︙ | ︙ | |||
315 316 317 318 319 320 321 322 323 324 325 326 327 328 | ** This is legacy and deprecated. It is included for historical ** compatibility and is not documented. */ typedef int (*sqlite3_callback)(void*,int,char**, char**); /* ** CAPI3REF: One-Step Query Execution Interface ** ** The sqlite3_exec() interface is a convenience wrapper around ** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()], ** that allows an application to run multiple statements of SQL ** without having to use a lot of C code. ** ** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded, | > | 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | ** This is legacy and deprecated. It is included for historical ** compatibility and is not documented. */ typedef int (*sqlite3_callback)(void*,int,char**, char**); /* ** CAPI3REF: One-Step Query Execution Interface ** METHOD: sqlite3 ** ** The sqlite3_exec() interface is a convenience wrapper around ** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()], ** that allows an application to run multiple statements of SQL ** without having to use a lot of C code. ** ** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded, |
︙ | ︙ | |||
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 | ** ^If the option is unknown or SQLite is unable to set the option ** then this routine returns a non-zero [error code]. */ int sqlite3_config(int, ...); /* ** CAPI3REF: Configure database connections ** ** The sqlite3_db_config() interface is used to make configuration ** changes to a [database connection]. The interface is similar to ** [sqlite3_config()] except that the changes apply to a single ** [database connection] (specified in the first argument). ** ** The second argument to sqlite3_db_config(D,V,...) is the | > | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 | ** ^If the option is unknown or SQLite is unable to set the option ** then this routine returns a non-zero [error code]. */ int sqlite3_config(int, ...); /* ** CAPI3REF: Configure database connections ** METHOD: sqlite3 ** ** The sqlite3_db_config() interface is used to make configuration ** changes to a [database connection]. The interface is similar to ** [sqlite3_config()] except that the changes apply to a single ** [database connection] (specified in the first argument). ** ** The second argument to sqlite3_db_config(D,V,...) is the |
︙ | ︙ | |||
1546 1547 1548 1549 1550 1551 1552 | ** interpreted as a boolean, which enables or disables the collection of ** memory allocation statistics. ^(When memory allocation statistics are ** disabled, the following SQLite interfaces become non-operational: ** <ul> ** <li> [sqlite3_memory_used()] ** <li> [sqlite3_memory_highwater()] ** <li> [sqlite3_soft_heap_limit64()] | | | 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 | ** interpreted as a boolean, which enables or disables the collection of ** memory allocation statistics. ^(When memory allocation statistics are ** disabled, the following SQLite interfaces become non-operational: ** <ul> ** <li> [sqlite3_memory_used()] ** <li> [sqlite3_memory_highwater()] ** <li> [sqlite3_soft_heap_limit64()] ** <li> [sqlite3_status64()] ** </ul>)^ ** ^Memory allocation statistics are enabled by default unless SQLite is ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory ** allocation statistics are disabled by default. ** </dd> ** ** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt> |
︙ | ︙ | |||
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 | #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ /* ** CAPI3REF: Enable Or Disable Extended Result Codes ** ** ^The sqlite3_extended_result_codes() routine enables or disables the ** [extended result codes] feature of SQLite. ^The extended result ** codes are disabled by default for historical compatibility. */ int sqlite3_extended_result_codes(sqlite3*, int onoff); /* ** CAPI3REF: Last Insert Rowid ** ** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables) ** has a unique 64-bit signed ** integer key called the [ROWID | "rowid"]. ^The rowid is always available ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those ** names are not also used by explicitly declared columns. ^If ** the table has a column of type [INTEGER PRIMARY KEY] then that column | > > | 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 | #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ /* ** CAPI3REF: Enable Or Disable Extended Result Codes ** METHOD: sqlite3 ** ** ^The sqlite3_extended_result_codes() routine enables or disables the ** [extended result codes] feature of SQLite. ^The extended result ** codes are disabled by default for historical compatibility. */ int sqlite3_extended_result_codes(sqlite3*, int onoff); /* ** CAPI3REF: Last Insert Rowid ** METHOD: sqlite3 ** ** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables) ** has a unique 64-bit signed ** integer key called the [ROWID | "rowid"]. ^The rowid is always available ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those ** names are not also used by explicitly declared columns. ^If ** the table has a column of type [INTEGER PRIMARY KEY] then that column |
︙ | ︙ | |||
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 | ** unpredictable and might not equal either the old or the new ** last insert [rowid]. */ sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); /* ** CAPI3REF: Count The Number Of Rows Modified ** ** ^This function returns the number of rows modified, inserted or ** deleted by the most recently completed INSERT, UPDATE or DELETE ** statement on the database connection specified by the only parameter. ** ^Executing any other type of SQL statement does not modify the value ** returned by this function. ** | > | 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 | ** unpredictable and might not equal either the old or the new ** last insert [rowid]. */ sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); /* ** CAPI3REF: Count The Number Of Rows Modified ** METHOD: sqlite3 ** ** ^This function returns the number of rows modified, inserted or ** deleted by the most recently completed INSERT, UPDATE or DELETE ** statement on the database connection specified by the only parameter. ** ^Executing any other type of SQL statement does not modify the value ** returned by this function. ** |
︙ | ︙ | |||
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 | ** while [sqlite3_changes()] is running then the value returned ** is unpredictable and not meaningful. */ int sqlite3_changes(sqlite3*); /* ** CAPI3REF: Total Number Of Rows Modified ** ** ^This function returns the total number of rows inserted, modified or ** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed ** since the database connection was opened, including those executed as ** part of trigger programs. ^Executing any other type of SQL statement ** does not affect the value returned by sqlite3_total_changes(). ** | > | 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 | ** while [sqlite3_changes()] is running then the value returned ** is unpredictable and not meaningful. */ int sqlite3_changes(sqlite3*); /* ** CAPI3REF: Total Number Of Rows Modified ** METHOD: sqlite3 ** ** ^This function returns the total number of rows inserted, modified or ** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed ** since the database connection was opened, including those executed as ** part of trigger programs. ^Executing any other type of SQL statement ** does not affect the value returned by sqlite3_total_changes(). ** |
︙ | ︙ | |||
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 | ** while [sqlite3_total_changes()] is running then the value ** returned is unpredictable and not meaningful. */ int sqlite3_total_changes(sqlite3*); /* ** CAPI3REF: Interrupt A Long-Running Query ** ** ^This function causes any pending database operation to abort and ** return at its earliest opportunity. This routine is typically ** called in response to a user action such as pressing "Cancel" ** or Ctrl-C where the user wants a long query operation to halt ** immediately. ** | > | 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 | ** while [sqlite3_total_changes()] is running then the value ** returned is unpredictable and not meaningful. */ int sqlite3_total_changes(sqlite3*); /* ** CAPI3REF: Interrupt A Long-Running Query ** METHOD: sqlite3 ** ** ^This function causes any pending database operation to abort and ** return at its earliest opportunity. This routine is typically ** called in response to a user action such as pressing "Cancel" ** or Ctrl-C where the user wants a long query operation to halt ** immediately. ** |
︙ | ︙ | |||
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 | */ int sqlite3_complete(const char *sql); int sqlite3_complete16(const void *sql); /* ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors ** KEYWORDS: {busy-handler callback} {busy handler} ** ** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X ** that might be invoked with argument P whenever ** an attempt is made to access a database table associated with ** [database connection] D when another thread ** or process has the table locked. ** The sqlite3_busy_handler() interface is used to implement | > | 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 | */ int sqlite3_complete(const char *sql); int sqlite3_complete16(const void *sql); /* ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors ** KEYWORDS: {busy-handler callback} {busy handler} ** METHOD: sqlite3 ** ** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X ** that might be invoked with argument P whenever ** an attempt is made to access a database table associated with ** [database connection] D when another thread ** or process has the table locked. ** The sqlite3_busy_handler() interface is used to implement |
︙ | ︙ | |||
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 | ** A busy handler must not close the database connection ** or [prepared statement] that invoked the busy handler. */ int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); /* ** CAPI3REF: Set A Busy Timeout ** ** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps ** for a specified amount of time when a table is locked. ^The handler ** will sleep multiple times until at least "ms" milliseconds of sleeping ** have accumulated. ^After at least "ms" milliseconds of sleeping, ** the handler returns 0 which causes [sqlite3_step()] to return ** [SQLITE_BUSY]. | > | 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 | ** A busy handler must not close the database connection ** or [prepared statement] that invoked the busy handler. */ int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); /* ** CAPI3REF: Set A Busy Timeout ** METHOD: sqlite3 ** ** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps ** for a specified amount of time when a table is locked. ^The handler ** will sleep multiple times until at least "ms" milliseconds of sleeping ** have accumulated. ^After at least "ms" milliseconds of sleeping, ** the handler returns 0 which causes [sqlite3_step()] to return ** [SQLITE_BUSY]. |
︙ | ︙ | |||
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 | ** ** See also: [PRAGMA busy_timeout] */ int sqlite3_busy_timeout(sqlite3*, int ms); /* ** CAPI3REF: Convenience Routines For Running Queries ** ** This is a legacy interface that is preserved for backwards compatibility. ** Use of this interface is not recommended. ** ** Definition: A <b>result table</b> is memory data structure created by the ** [sqlite3_get_table()] interface. A result table records the ** complete query results from one or more queries. | > | 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 | ** ** See also: [PRAGMA busy_timeout] */ int sqlite3_busy_timeout(sqlite3*, int ms); /* ** CAPI3REF: Convenience Routines For Running Queries ** METHOD: sqlite3 ** ** This is a legacy interface that is preserved for backwards compatibility. ** Use of this interface is not recommended. ** ** Definition: A <b>result table</b> is memory data structure created by the ** [sqlite3_get_table()] interface. A result table records the ** complete query results from one or more queries. |
︙ | ︙ | |||
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 | ** internally and without recourse to the [sqlite3_vfs] xRandomness ** method. */ void sqlite3_randomness(int N, void *P); /* ** CAPI3REF: Compile-Time Authorization Callbacks ** ** ^This routine registers an authorizer callback with a particular ** [database connection], supplied in the first argument. ** ^The authorizer callback is invoked as SQL statements are being compiled ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], ** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. ^At various ** points during the compilation process, as logic is being created | > | 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 | ** internally and without recourse to the [sqlite3_vfs] xRandomness ** method. */ void sqlite3_randomness(int N, void *P); /* ** CAPI3REF: Compile-Time Authorization Callbacks ** METHOD: sqlite3 ** ** ^This routine registers an authorizer callback with a particular ** [database connection], supplied in the first argument. ** ^The authorizer callback is invoked as SQL statements are being compiled ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], ** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. ^At various ** points during the compilation process, as logic is being created |
︙ | ︙ | |||
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 | #define SQLITE_FUNCTION 31 /* NULL Function Name */ #define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */ #define SQLITE_COPY 0 /* No longer used */ #define SQLITE_RECURSIVE 33 /* NULL NULL */ /* ** CAPI3REF: Tracing And Profiling Functions ** ** These routines register callback functions that can be used for ** tracing and profiling the execution of SQL statements. ** ** ^The callback function registered by sqlite3_trace() is invoked at ** various times when an SQL statement is being run by [sqlite3_step()]. ** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the | > | 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 | #define SQLITE_FUNCTION 31 /* NULL Function Name */ #define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */ #define SQLITE_COPY 0 /* No longer used */ #define SQLITE_RECURSIVE 33 /* NULL NULL */ /* ** CAPI3REF: Tracing And Profiling Functions ** METHOD: sqlite3 ** ** These routines register callback functions that can be used for ** tracing and profiling the execution of SQL statements. ** ** ^The callback function registered by sqlite3_trace() is invoked at ** various times when an SQL statement is being run by [sqlite3_step()]. ** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the |
︙ | ︙ | |||
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 | */ void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*, void(*xProfile)(void*,const char*,sqlite3_uint64), void*); /* ** CAPI3REF: Query Progress Callbacks ** ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback ** function X to be invoked periodically during long running calls to ** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for ** database connection D. An example use for this ** interface is to keep a GUI updated during a large query. ** | > | 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 | */ void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*, void(*xProfile)(void*,const char*,sqlite3_uint64), void*); /* ** CAPI3REF: Query Progress Callbacks ** METHOD: sqlite3 ** ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback ** function X to be invoked periodically during long running calls to ** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for ** database connection D. An example use for this ** interface is to keep a GUI updated during a large query. ** |
︙ | ︙ | |||
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 | ** database connections for the meaning of "modify" in this paragraph. ** */ void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); /* ** CAPI3REF: Opening A New Database Connection ** ** ^These routines open an SQLite database file as specified by the ** filename argument. ^The filename argument is interpreted as UTF-8 for ** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte ** order for sqlite3_open16(). ^(A [database connection] handle is usually ** returned in *ppDb, even if an error occurs. The only exception is that ** if SQLite is unable to allocate memory to hold the [sqlite3] object, | > | 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 | ** database connections for the meaning of "modify" in this paragraph. ** */ void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); /* ** CAPI3REF: Opening A New Database Connection ** CONSTRUCTOR: sqlite3 ** ** ^These routines open an SQLite database file as specified by the ** filename argument. ^The filename argument is interpreted as UTF-8 for ** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte ** order for sqlite3_open16(). ^(A [database connection] handle is usually ** returned in *ppDb, even if an error occurs. The only exception is that ** if SQLite is unable to allocate memory to hold the [sqlite3] object, |
︙ | ︙ | |||
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 | const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam); int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault); sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64); /* ** CAPI3REF: Error Codes And Messages ** ** ^If the most recent sqlite3_* API call associated with ** [database connection] D failed, then the sqlite3_errcode(D) interface ** returns the numeric [result code] or [extended result code] for that ** API call. ** If the most recent API call was successful, ** then the return value from sqlite3_errcode() is undefined. | > | 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 | const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam); int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault); sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64); /* ** CAPI3REF: Error Codes And Messages ** METHOD: sqlite3 ** ** ^If the most recent sqlite3_* API call associated with ** [database connection] D failed, then the sqlite3_errcode(D) interface ** returns the numeric [result code] or [extended result code] for that ** API call. ** If the most recent API call was successful, ** then the return value from sqlite3_errcode() is undefined. |
︙ | ︙ | |||
3047 3048 3049 3050 3051 3052 3053 | int sqlite3_errcode(sqlite3 *db); int sqlite3_extended_errcode(sqlite3 *db); const char *sqlite3_errmsg(sqlite3*); const void *sqlite3_errmsg16(sqlite3*); const char *sqlite3_errstr(int); /* | | | > > > | > | | | < | | < < < > | 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 | int sqlite3_errcode(sqlite3 *db); int sqlite3_extended_errcode(sqlite3 *db); const char *sqlite3_errmsg(sqlite3*); const void *sqlite3_errmsg16(sqlite3*); const char *sqlite3_errstr(int); /* ** CAPI3REF: Prepared Statement Object ** KEYWORDS: {prepared statement} {prepared statements} ** ** An instance of this object represents a single SQL statement that ** has been compiled into binary form and is ready to be evaluated. ** ** Think of each SQL statement as a separate computer program. The ** original SQL text is source code. A prepared statement object ** is the compiled object code. All SQL must be converted into a ** prepared statement before it can be run. ** ** The life-cycle of a prepared statement object usually goes like this: ** ** <ol> ** <li> Create the prepared statement object using [sqlite3_prepare_v2()]. ** <li> Bind values to [parameters] using the sqlite3_bind_*() ** interfaces. ** <li> Run the SQL by calling [sqlite3_step()] one or more times. ** <li> Reset the prepared statement using [sqlite3_reset()] then go back ** to step 2. Do this zero or more times. ** <li> Destroy the object using [sqlite3_finalize()]. ** </ol> */ typedef struct sqlite3_stmt sqlite3_stmt; /* ** CAPI3REF: Run-time Limits ** METHOD: sqlite3 ** ** ^(This interface allows the size of various constructs to be limited ** on a connection by connection basis. The first parameter is the ** [database connection] whose limit is to be set or queried. The ** second parameter is one of the [limit categories] that define a ** class of constructs to be size limited. The third parameter is the ** new limit for that construct.)^ |
︙ | ︙ | |||
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 | #define SQLITE_LIMIT_VARIABLE_NUMBER 9 #define SQLITE_LIMIT_TRIGGER_DEPTH 10 #define SQLITE_LIMIT_WORKER_THREADS 11 /* ** CAPI3REF: Compiling An SQL Statement ** KEYWORDS: {SQL statement compiler} ** ** To execute an SQL query, it must first be compiled into a byte-code ** program using one of these routines. ** ** The first argument, "db", is a [database connection] obtained from a ** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or ** [sqlite3_open16()]. The database connection must not have been closed. | > > | 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 | #define SQLITE_LIMIT_VARIABLE_NUMBER 9 #define SQLITE_LIMIT_TRIGGER_DEPTH 10 #define SQLITE_LIMIT_WORKER_THREADS 11 /* ** CAPI3REF: Compiling An SQL Statement ** KEYWORDS: {SQL statement compiler} ** METHOD: sqlite3 ** CONSTRUCTOR: sqlite3_stmt ** ** To execute an SQL query, it must first be compiled into a byte-code ** program using one of these routines. ** ** The first argument, "db", is a [database connection] obtained from a ** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or ** [sqlite3_open16()]. The database connection must not have been closed. |
︙ | ︙ | |||
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 | int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); /* ** CAPI3REF: Retrieving Statement SQL ** ** ^This interface can be used to retrieve a saved copy of the original ** SQL text used to create a [prepared statement] if that statement was ** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. */ const char *sqlite3_sql(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If An SQL Statement Writes The Database ** ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if ** and only if the [prepared statement] X makes no direct changes to ** the content of the database file. ** ** Note that [application-defined SQL functions] or ** [virtual tables] might change the database indirectly as a side effect. | > > | 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 | int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); /* ** CAPI3REF: Retrieving Statement SQL ** METHOD: sqlite3_stmt ** ** ^This interface can be used to retrieve a saved copy of the original ** SQL text used to create a [prepared statement] if that statement was ** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()]. */ const char *sqlite3_sql(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If An SQL Statement Writes The Database ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if ** and only if the [prepared statement] X makes no direct changes to ** the content of the database file. ** ** Note that [application-defined SQL functions] or ** [virtual tables] might change the database indirectly as a side effect. |
︙ | ︙ | |||
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 | ** change the configuration of a database connection, they do not make ** changes to the content of the database files on disk. */ int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset ** ** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the ** [prepared statement] S has been stepped at least once using ** [sqlite3_step(S)] but has not run to completion and/or has not ** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S) ** interface returns false if S is a NULL pointer. If S is not a ** NULL pointer and is not a pointer to a valid [prepared statement] | > | 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 | ** change the configuration of a database connection, they do not make ** changes to the content of the database files on disk. */ int sqlite3_stmt_readonly(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If A Prepared Statement Has Been Reset ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the ** [prepared statement] S has been stepped at least once using ** [sqlite3_step(S)] but has not run to completion and/or has not ** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S) ** interface returns false if S is a NULL pointer. If S is not a ** NULL pointer and is not a pointer to a valid [prepared statement] |
︙ | ︙ | |||
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 | */ typedef struct sqlite3_context sqlite3_context; /* ** CAPI3REF: Binding Values To Prepared Statements ** KEYWORDS: {host parameter} {host parameters} {host parameter name} ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} ** ** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants, ** literals may be replaced by a [parameter] that matches one of following ** templates: ** ** <ul> ** <li> ? | > | 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 | */ typedef struct sqlite3_context sqlite3_context; /* ** CAPI3REF: Binding Values To Prepared Statements ** KEYWORDS: {host parameter} {host parameters} {host parameter name} ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding} ** METHOD: sqlite3_stmt ** ** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants, ** literals may be replaced by a [parameter] that matches one of following ** templates: ** ** <ul> ** <li> ? |
︙ | ︙ | |||
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 | int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64, void(*)(void*), unsigned char encoding); int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); /* ** CAPI3REF: Number Of SQL Parameters ** ** ^This routine can be used to find the number of [SQL parameters] ** in a [prepared statement]. SQL parameters are tokens of the ** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as ** placeholders for values that are [sqlite3_bind_blob | bound] ** to the parameters at a later time. ** ** ^(This routine actually returns the index of the largest (rightmost) ** parameter. For all forms except ?NNN, this will correspond to the ** number of unique parameters. If parameters of the ?NNN form are used, ** there may be gaps in the list.)^ ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_name()], and ** [sqlite3_bind_parameter_index()]. */ int sqlite3_bind_parameter_count(sqlite3_stmt*); /* ** CAPI3REF: Name Of A Host Parameter ** ** ^The sqlite3_bind_parameter_name(P,N) interface returns ** the name of the N-th [SQL parameter] in the [prepared statement] P. ** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" ** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA" ** respectively. ** In other words, the initial ":" or "$" or "@" or "?" | > > | 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 | int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64, void(*)(void*), unsigned char encoding); int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); /* ** CAPI3REF: Number Of SQL Parameters ** METHOD: sqlite3_stmt ** ** ^This routine can be used to find the number of [SQL parameters] ** in a [prepared statement]. SQL parameters are tokens of the ** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as ** placeholders for values that are [sqlite3_bind_blob | bound] ** to the parameters at a later time. ** ** ^(This routine actually returns the index of the largest (rightmost) ** parameter. For all forms except ?NNN, this will correspond to the ** number of unique parameters. If parameters of the ?NNN form are used, ** there may be gaps in the list.)^ ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_name()], and ** [sqlite3_bind_parameter_index()]. */ int sqlite3_bind_parameter_count(sqlite3_stmt*); /* ** CAPI3REF: Name Of A Host Parameter ** METHOD: sqlite3_stmt ** ** ^The sqlite3_bind_parameter_name(P,N) interface returns ** the name of the N-th [SQL parameter] in the [prepared statement] P. ** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" ** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA" ** respectively. ** In other words, the initial ":" or "$" or "@" or "?" |
︙ | ︙ | |||
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 | ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_index()]. */ const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); /* ** CAPI3REF: Index Of A Parameter With A Given Name ** ** ^Return the index of an SQL parameter given its name. ^The ** index value returned is suitable for use as the second ** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero ** is returned if no matching parameter is found. ^The parameter ** name must be given in UTF-8 even if the original statement ** was prepared from UTF-16 text using [sqlite3_prepare16_v2()]. ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_index()]. */ int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); /* ** CAPI3REF: Reset All Bindings On A Prepared Statement ** ** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset ** the [sqlite3_bind_blob | bindings] on a [prepared statement]. ** ^Use this routine to reset all host parameters to NULL. */ int sqlite3_clear_bindings(sqlite3_stmt*); /* ** CAPI3REF: Number Of Columns In A Result Set ** ** ^Return the number of columns in the result set returned by the ** [prepared statement]. ^This routine returns 0 if pStmt is an SQL ** statement that does not return data (for example an [UPDATE]). ** ** See also: [sqlite3_data_count()] */ int sqlite3_column_count(sqlite3_stmt *pStmt); /* ** CAPI3REF: Column Names In A Result Set ** ** ^These routines return the name assigned to a particular column ** in the result set of a [SELECT] statement. ^The sqlite3_column_name() ** interface returns a pointer to a zero-terminated UTF-8 string ** and sqlite3_column_name16() returns a pointer to a zero-terminated ** UTF-16 string. ^The first parameter is the [prepared statement] ** that implements the [SELECT] statement. ^The second parameter is the | > > > > | 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 | ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_index()]. */ const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); /* ** CAPI3REF: Index Of A Parameter With A Given Name ** METHOD: sqlite3_stmt ** ** ^Return the index of an SQL parameter given its name. ^The ** index value returned is suitable for use as the second ** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero ** is returned if no matching parameter is found. ^The parameter ** name must be given in UTF-8 even if the original statement ** was prepared from UTF-16 text using [sqlite3_prepare16_v2()]. ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_index()]. */ int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); /* ** CAPI3REF: Reset All Bindings On A Prepared Statement ** METHOD: sqlite3_stmt ** ** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset ** the [sqlite3_bind_blob | bindings] on a [prepared statement]. ** ^Use this routine to reset all host parameters to NULL. */ int sqlite3_clear_bindings(sqlite3_stmt*); /* ** CAPI3REF: Number Of Columns In A Result Set ** METHOD: sqlite3_stmt ** ** ^Return the number of columns in the result set returned by the ** [prepared statement]. ^This routine returns 0 if pStmt is an SQL ** statement that does not return data (for example an [UPDATE]). ** ** See also: [sqlite3_data_count()] */ int sqlite3_column_count(sqlite3_stmt *pStmt); /* ** CAPI3REF: Column Names In A Result Set ** METHOD: sqlite3_stmt ** ** ^These routines return the name assigned to a particular column ** in the result set of a [SELECT] statement. ^The sqlite3_column_name() ** interface returns a pointer to a zero-terminated UTF-8 string ** and sqlite3_column_name16() returns a pointer to a zero-terminated ** UTF-16 string. ^The first parameter is the [prepared statement] ** that implements the [SELECT] statement. ^The second parameter is the |
︙ | ︙ | |||
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 | ** one release of SQLite to the next. */ const char *sqlite3_column_name(sqlite3_stmt*, int N); const void *sqlite3_column_name16(sqlite3_stmt*, int N); /* ** CAPI3REF: Source Of Data In A Query Result ** ** ^These routines provide a means to determine the database, table, and ** table column that is the origin of a particular result column in ** [SELECT] statement. ** ^The name of the database or table or column can be returned as ** either a UTF-8 or UTF-16 string. ^The _database_ routines return ** the database name, the _table_ routines return the table name, and | > | 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 | ** one release of SQLite to the next. */ const char *sqlite3_column_name(sqlite3_stmt*, int N); const void *sqlite3_column_name16(sqlite3_stmt*, int N); /* ** CAPI3REF: Source Of Data In A Query Result ** METHOD: sqlite3_stmt ** ** ^These routines provide a means to determine the database, table, and ** table column that is the origin of a particular result column in ** [SELECT] statement. ** ^The name of the database or table or column can be returned as ** either a UTF-8 or UTF-16 string. ^The _database_ routines return ** the database name, the _table_ routines return the table name, and |
︙ | ︙ | |||
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 | const char *sqlite3_column_table_name(sqlite3_stmt*,int); const void *sqlite3_column_table_name16(sqlite3_stmt*,int); const char *sqlite3_column_origin_name(sqlite3_stmt*,int); const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); /* ** CAPI3REF: Declared Datatype Of A Query Result ** ** ^(The first parameter is a [prepared statement]. ** If this statement is a [SELECT] statement and the Nth column of the ** returned result set of that [SELECT] is a table column (not an ** expression or subquery) then the declared type of the table ** column is returned.)^ ^If the Nth column of the result set is an ** expression or subquery, then a NULL pointer is returned. | > | 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 | const char *sqlite3_column_table_name(sqlite3_stmt*,int); const void *sqlite3_column_table_name16(sqlite3_stmt*,int); const char *sqlite3_column_origin_name(sqlite3_stmt*,int); const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); /* ** CAPI3REF: Declared Datatype Of A Query Result ** METHOD: sqlite3_stmt ** ** ^(The first parameter is a [prepared statement]. ** If this statement is a [SELECT] statement and the Nth column of the ** returned result set of that [SELECT] is a table column (not an ** expression or subquery) then the declared type of the table ** column is returned.)^ ^If the Nth column of the result set is an ** expression or subquery, then a NULL pointer is returned. |
︙ | ︙ | |||
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 | ** used to hold those values. */ const char *sqlite3_column_decltype(sqlite3_stmt*,int); const void *sqlite3_column_decltype16(sqlite3_stmt*,int); /* ** CAPI3REF: Evaluate An SQL Statement ** ** After a [prepared statement] has been prepared using either ** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy ** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function ** must be called one or more times to evaluate the statement. ** ** The details of the behavior of the sqlite3_step() interface depend | > | 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 | ** used to hold those values. */ const char *sqlite3_column_decltype(sqlite3_stmt*,int); const void *sqlite3_column_decltype16(sqlite3_stmt*,int); /* ** CAPI3REF: Evaluate An SQL Statement ** METHOD: sqlite3_stmt ** ** After a [prepared statement] has been prepared using either ** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy ** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function ** must be called one or more times to evaluate the statement. ** ** The details of the behavior of the sqlite3_step() interface depend |
︙ | ︙ | |||
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 | ** then the more specific [error codes] are returned directly ** by sqlite3_step(). The use of the "v2" interface is recommended. */ int sqlite3_step(sqlite3_stmt*); /* ** CAPI3REF: Number of columns in a result set ** ** ^The sqlite3_data_count(P) interface returns the number of columns in the ** current row of the result set of [prepared statement] P. ** ^If prepared statement P does not have results ready to return ** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of ** interfaces) then sqlite3_data_count(P) returns 0. ** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer. | > | 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 | ** then the more specific [error codes] are returned directly ** by sqlite3_step(). The use of the "v2" interface is recommended. */ int sqlite3_step(sqlite3_stmt*); /* ** CAPI3REF: Number of columns in a result set ** METHOD: sqlite3_stmt ** ** ^The sqlite3_data_count(P) interface returns the number of columns in the ** current row of the result set of [prepared statement] P. ** ^If prepared statement P does not have results ready to return ** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of ** interfaces) then sqlite3_data_count(P) returns 0. ** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer. |
︙ | ︙ | |||
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 | # define SQLITE_TEXT 3 #endif #define SQLITE3_TEXT 3 /* ** CAPI3REF: Result Values From A Query ** KEYWORDS: {column access functions} ** ** These routines form the "result set" interface. ** ** ^These routines return information about a single column of the current ** result row of a query. ^In every case the first argument is a pointer ** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] ** that was returned from [sqlite3_prepare_v2()] or one of its variants) | > | 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 | # define SQLITE_TEXT 3 #endif #define SQLITE3_TEXT 3 /* ** CAPI3REF: Result Values From A Query ** KEYWORDS: {column access functions} ** METHOD: sqlite3_stmt ** ** These routines form the "result set" interface. ** ** ^These routines return information about a single column of the current ** result row of a query. ^In every case the first argument is a pointer ** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*] ** that was returned from [sqlite3_prepare_v2()] or one of its variants) |
︙ | ︙ | |||
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 | const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); int sqlite3_column_type(sqlite3_stmt*, int iCol); sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); /* ** CAPI3REF: Destroy A Prepared Statement Object ** ** ^The sqlite3_finalize() function is called to delete a [prepared statement]. ** ^If the most recent evaluation of the statement encountered no errors ** or if the statement is never been evaluated, then sqlite3_finalize() returns ** SQLITE_OK. ^If the most recent evaluation of statement S failed, then ** sqlite3_finalize(S) returns the appropriate [error code] or ** [extended error code]. | > | 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 | const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); int sqlite3_column_type(sqlite3_stmt*, int iCol); sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); /* ** CAPI3REF: Destroy A Prepared Statement Object ** DESTRUCTOR: sqlite3_stmt ** ** ^The sqlite3_finalize() function is called to delete a [prepared statement]. ** ^If the most recent evaluation of the statement encountered no errors ** or if the statement is never been evaluated, then sqlite3_finalize() returns ** SQLITE_OK. ^If the most recent evaluation of statement S failed, then ** sqlite3_finalize(S) returns the appropriate [error code] or ** [extended error code]. |
︙ | ︙ | |||
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 | ** statement after it has been finalized can result in undefined and ** undesirable behavior such as segfaults and heap corruption. */ int sqlite3_finalize(sqlite3_stmt *pStmt); /* ** CAPI3REF: Reset A Prepared Statement Object ** ** The sqlite3_reset() function is called to reset a [prepared statement] ** object back to its initial state, ready to be re-executed. ** ^Any SQL statement variables that had values bound to them using ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. ** Use [sqlite3_clear_bindings()] to reset the bindings. ** | > | 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 | ** statement after it has been finalized can result in undefined and ** undesirable behavior such as segfaults and heap corruption. */ int sqlite3_finalize(sqlite3_stmt *pStmt); /* ** CAPI3REF: Reset A Prepared Statement Object ** METHOD: sqlite3_stmt ** ** The sqlite3_reset() function is called to reset a [prepared statement] ** object back to its initial state, ready to be re-executed. ** ^Any SQL statement variables that had values bound to them using ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. ** Use [sqlite3_clear_bindings()] to reset the bindings. ** |
︙ | ︙ | |||
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 | int sqlite3_reset(sqlite3_stmt *pStmt); /* ** CAPI3REF: Create Or Redefine SQL Functions ** KEYWORDS: {function creation routines} ** KEYWORDS: {application-defined SQL function} ** KEYWORDS: {application-defined SQL functions} ** ** ^These functions (collectively known as "function creation routines") ** are used to add SQL functions or aggregates or to redefine the behavior ** of existing SQL functions or aggregates. The only differences between ** these routines are the text encoding expected for ** the second parameter (the name of the function being created) ** and the presence or absence of a destructor callback for | > | 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 | int sqlite3_reset(sqlite3_stmt *pStmt); /* ** CAPI3REF: Create Or Redefine SQL Functions ** KEYWORDS: {function creation routines} ** KEYWORDS: {application-defined SQL function} ** KEYWORDS: {application-defined SQL functions} ** METHOD: sqlite3 ** ** ^These functions (collectively known as "function creation routines") ** are used to add SQL functions or aggregates or to redefine the behavior ** of existing SQL functions or aggregates. The only differences between ** these routines are the text encoding expected for ** the second parameter (the name of the function being created) ** and the presence or absence of a destructor callback for |
︙ | ︙ | |||
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 | SQLITE_DEPRECATED void sqlite3_thread_cleanup(void); SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int), void*,sqlite3_int64); #endif /* ** CAPI3REF: Obtaining SQL Function Parameter Values ** ** The C-language implementation of SQL functions and aggregates uses ** this set of interface routines to access the parameter values on ** the function or aggregate. ** ** The xFunc (for scalar functions) or xStep (for aggregates) parameters ** to [sqlite3_create_function()] and [sqlite3_create_function16()] | > | 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 | SQLITE_DEPRECATED void sqlite3_thread_cleanup(void); SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int), void*,sqlite3_int64); #endif /* ** CAPI3REF: Obtaining SQL Function Parameter Values ** METHOD: sqlite3_value ** ** The C-language implementation of SQL functions and aggregates uses ** this set of interface routines to access the parameter values on ** the function or aggregate. ** ** The xFunc (for scalar functions) or xStep (for aggregates) parameters ** to [sqlite3_create_function()] and [sqlite3_create_function16()] |
︙ | ︙ | |||
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 | const void *sqlite3_value_text16le(sqlite3_value*); const void *sqlite3_value_text16be(sqlite3_value*); int sqlite3_value_type(sqlite3_value*); int sqlite3_value_numeric_type(sqlite3_value*); /* ** CAPI3REF: Obtain Aggregate Function Context ** ** Implementations of aggregate SQL functions use this ** routine to allocate memory for storing their state. ** ** ^The first time the sqlite3_aggregate_context(C,N) routine is called ** for a particular aggregate function, SQLite ** allocates N of memory, zeroes out that memory, and returns a pointer | > | 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 | const void *sqlite3_value_text16le(sqlite3_value*); const void *sqlite3_value_text16be(sqlite3_value*); int sqlite3_value_type(sqlite3_value*); int sqlite3_value_numeric_type(sqlite3_value*); /* ** CAPI3REF: Obtain Aggregate Function Context ** METHOD: sqlite3_context ** ** Implementations of aggregate SQL functions use this ** routine to allocate memory for storing their state. ** ** ^The first time the sqlite3_aggregate_context(C,N) routine is called ** for a particular aggregate function, SQLite ** allocates N of memory, zeroes out that memory, and returns a pointer |
︙ | ︙ | |||
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 | ** This routine must be called from the same thread in which ** the aggregate SQL function is running. */ void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); /* ** CAPI3REF: User Data For Functions ** ** ^The sqlite3_user_data() interface returns a copy of ** the pointer that was the pUserData parameter (the 5th parameter) ** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally ** registered the application defined function. ** ** This routine must be called from the same thread in which ** the application-defined function is running. */ void *sqlite3_user_data(sqlite3_context*); /* ** CAPI3REF: Database Connection For Functions ** ** ^The sqlite3_context_db_handle() interface returns a copy of ** the pointer to the [database connection] (the 1st parameter) ** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally ** registered the application defined function. */ sqlite3 *sqlite3_context_db_handle(sqlite3_context*); /* ** CAPI3REF: Function Auxiliary Data ** ** These functions may be used by (non-aggregate) SQL functions to ** associate metadata with argument values. If the same value is passed to ** multiple invocations of the same SQL function during query execution, under ** some circumstances the associated metadata may be preserved. An example ** of where this might be useful is in a regular-expression matching ** function. The compiled version of the regular expression can be stored as | > > > | 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 | ** This routine must be called from the same thread in which ** the aggregate SQL function is running. */ void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); /* ** CAPI3REF: User Data For Functions ** METHOD: sqlite3_context ** ** ^The sqlite3_user_data() interface returns a copy of ** the pointer that was the pUserData parameter (the 5th parameter) ** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally ** registered the application defined function. ** ** This routine must be called from the same thread in which ** the application-defined function is running. */ void *sqlite3_user_data(sqlite3_context*); /* ** CAPI3REF: Database Connection For Functions ** METHOD: sqlite3_context ** ** ^The sqlite3_context_db_handle() interface returns a copy of ** the pointer to the [database connection] (the 1st parameter) ** of the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines that originally ** registered the application defined function. */ sqlite3 *sqlite3_context_db_handle(sqlite3_context*); /* ** CAPI3REF: Function Auxiliary Data ** METHOD: sqlite3_context ** ** These functions may be used by (non-aggregate) SQL functions to ** associate metadata with argument values. If the same value is passed to ** multiple invocations of the same SQL function during query execution, under ** some circumstances the associated metadata may be preserved. An example ** of where this might be useful is in a regular-expression matching ** function. The compiled version of the regular expression can be stored as |
︙ | ︙ | |||
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 | */ typedef void (*sqlite3_destructor_type)(void*); #define SQLITE_STATIC ((sqlite3_destructor_type)0) #define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) /* ** CAPI3REF: Setting The Result Of An SQL Function ** ** These routines are used by the xFunc or xFinal callbacks that ** implement SQL functions and aggregates. See ** [sqlite3_create_function()] and [sqlite3_create_function16()] ** for additional information. ** ** These functions work very much like the [parameter binding] family of | > | 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 | */ typedef void (*sqlite3_destructor_type)(void*); #define SQLITE_STATIC ((sqlite3_destructor_type)0) #define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) /* ** CAPI3REF: Setting The Result Of An SQL Function ** METHOD: sqlite3_context ** ** These routines are used by the xFunc or xFinal callbacks that ** implement SQL functions and aggregates. See ** [sqlite3_create_function()] and [sqlite3_create_function16()] ** for additional information. ** ** These functions work very much like the [parameter binding] family of |
︙ | ︙ | |||
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 | void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); void sqlite3_result_value(sqlite3_context*, sqlite3_value*); void sqlite3_result_zeroblob(sqlite3_context*, int n); /* ** CAPI3REF: Define New Collating Sequences ** ** ^These functions add, remove, or modify a [collation] associated ** with the [database connection] specified as the first argument. ** ** ^The name of the collation is a UTF-8 string ** for sqlite3_create_collation() and sqlite3_create_collation_v2() ** and a UTF-16 string in native byte order for sqlite3_create_collation16(). | > | 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 | void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); void sqlite3_result_value(sqlite3_context*, sqlite3_value*); void sqlite3_result_zeroblob(sqlite3_context*, int n); /* ** CAPI3REF: Define New Collating Sequences ** METHOD: sqlite3 ** ** ^These functions add, remove, or modify a [collation] associated ** with the [database connection] specified as the first argument. ** ** ^The name of the collation is a UTF-8 string ** for sqlite3_create_collation() and sqlite3_create_collation_v2() ** and a UTF-16 string in native byte order for sqlite3_create_collation16(). |
︙ | ︙ | |||
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 | int eTextRep, void *pArg, int(*xCompare)(void*,int,const void*,int,const void*) ); /* ** CAPI3REF: Collation Needed Callbacks ** ** ^To avoid having to register all collation sequences before a database ** can be used, a single callback function may be registered with the ** [database connection] to be invoked whenever an undefined collation ** sequence is required. ** ** ^If the function is registered using the sqlite3_collation_needed() API, | > | 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 | int eTextRep, void *pArg, int(*xCompare)(void*,int,const void*,int,const void*) ); /* ** CAPI3REF: Collation Needed Callbacks ** METHOD: sqlite3 ** ** ^To avoid having to register all collation sequences before a database ** can be used, a single callback function may be registered with the ** [database connection] to be invoked whenever an undefined collation ** sequence is required. ** ** ^If the function is registered using the sqlite3_collation_needed() API, |
︙ | ︙ | |||
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 | ** or else the use of the [data_store_directory pragma] should be avoided. */ SQLITE_EXTERN char *sqlite3_data_directory; /* ** CAPI3REF: Test For Auto-Commit Mode ** KEYWORDS: {autocommit mode} ** ** ^The sqlite3_get_autocommit() interface returns non-zero or ** zero if the given database connection is or is not in autocommit mode, ** respectively. ^Autocommit mode is on by default. ** ^Autocommit mode is disabled by a [BEGIN] statement. ** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK]. ** | > | 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 | ** or else the use of the [data_store_directory pragma] should be avoided. */ SQLITE_EXTERN char *sqlite3_data_directory; /* ** CAPI3REF: Test For Auto-Commit Mode ** KEYWORDS: {autocommit mode} ** METHOD: sqlite3 ** ** ^The sqlite3_get_autocommit() interface returns non-zero or ** zero if the given database connection is or is not in autocommit mode, ** respectively. ^Autocommit mode is on by default. ** ^Autocommit mode is disabled by a [BEGIN] statement. ** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK]. ** |
︙ | ︙ | |||
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 | ** connection while this routine is running, then the return value ** is undefined. */ int sqlite3_get_autocommit(sqlite3*); /* ** CAPI3REF: Find The Database Handle Of A Prepared Statement ** ** ^The sqlite3_db_handle interface returns the [database connection] handle ** to which a [prepared statement] belongs. ^The [database connection] ** returned by sqlite3_db_handle is the same [database connection] ** that was the first argument ** to the [sqlite3_prepare_v2()] call (or its variants) that was used to ** create the statement in the first place. */ sqlite3 *sqlite3_db_handle(sqlite3_stmt*); /* ** CAPI3REF: Return The Filename For A Database Connection ** ** ^The sqlite3_db_filename(D,N) interface returns a pointer to a filename ** associated with database N of connection D. ^The main database file ** has the name "main". If there is no attached database N on the database ** connection D, or if database N is a temporary or in-memory database, then ** a NULL pointer is returned. ** ** ^The filename returned by this function is the output of the ** xFullPathname method of the [VFS]. ^In other words, the filename ** will be an absolute pathname, even if the filename used ** to open the database originally was a URI or relative pathname. */ const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName); /* ** CAPI3REF: Determine if a database is read-only ** ** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N ** of connection D is read-only, 0 if it is read/write, or -1 if N is not ** the name of a database on connection D. */ int sqlite3_db_readonly(sqlite3 *db, const char *zDbName); /* ** CAPI3REF: Find the next prepared statement ** ** ^This interface returns a pointer to the next [prepared statement] after ** pStmt associated with the [database connection] pDb. ^If pStmt is NULL ** then this interface returns a pointer to the first prepared statement ** associated with the database connection pDb. ^If no prepared statement ** satisfies the conditions of this routine, it returns NULL. ** ** The [database connection] pointer D in a call to ** [sqlite3_next_stmt(D,S)] must refer to an open database ** connection and in particular must not be a NULL pointer. */ sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt); /* ** CAPI3REF: Commit And Rollback Notification Callbacks ** ** ^The sqlite3_commit_hook() interface registers a callback ** function to be invoked whenever a transaction is [COMMIT | committed]. ** ^Any callback set by a previous call to sqlite3_commit_hook() ** for the same database connection is overridden. ** ^The sqlite3_rollback_hook() interface registers a callback ** function to be invoked whenever a transaction is [ROLLBACK | rolled back]. | > > > > > | 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 | ** connection while this routine is running, then the return value ** is undefined. */ int sqlite3_get_autocommit(sqlite3*); /* ** CAPI3REF: Find The Database Handle Of A Prepared Statement ** METHOD: sqlite3_stmt ** ** ^The sqlite3_db_handle interface returns the [database connection] handle ** to which a [prepared statement] belongs. ^The [database connection] ** returned by sqlite3_db_handle is the same [database connection] ** that was the first argument ** to the [sqlite3_prepare_v2()] call (or its variants) that was used to ** create the statement in the first place. */ sqlite3 *sqlite3_db_handle(sqlite3_stmt*); /* ** CAPI3REF: Return The Filename For A Database Connection ** METHOD: sqlite3 ** ** ^The sqlite3_db_filename(D,N) interface returns a pointer to a filename ** associated with database N of connection D. ^The main database file ** has the name "main". If there is no attached database N on the database ** connection D, or if database N is a temporary or in-memory database, then ** a NULL pointer is returned. ** ** ^The filename returned by this function is the output of the ** xFullPathname method of the [VFS]. ^In other words, the filename ** will be an absolute pathname, even if the filename used ** to open the database originally was a URI or relative pathname. */ const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName); /* ** CAPI3REF: Determine if a database is read-only ** METHOD: sqlite3 ** ** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N ** of connection D is read-only, 0 if it is read/write, or -1 if N is not ** the name of a database on connection D. */ int sqlite3_db_readonly(sqlite3 *db, const char *zDbName); /* ** CAPI3REF: Find the next prepared statement ** METHOD: sqlite3 ** ** ^This interface returns a pointer to the next [prepared statement] after ** pStmt associated with the [database connection] pDb. ^If pStmt is NULL ** then this interface returns a pointer to the first prepared statement ** associated with the database connection pDb. ^If no prepared statement ** satisfies the conditions of this routine, it returns NULL. ** ** The [database connection] pointer D in a call to ** [sqlite3_next_stmt(D,S)] must refer to an open database ** connection and in particular must not be a NULL pointer. */ sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt); /* ** CAPI3REF: Commit And Rollback Notification Callbacks ** METHOD: sqlite3 ** ** ^The sqlite3_commit_hook() interface registers a callback ** function to be invoked whenever a transaction is [COMMIT | committed]. ** ^Any callback set by a previous call to sqlite3_commit_hook() ** for the same database connection is overridden. ** ^The sqlite3_rollback_hook() interface registers a callback ** function to be invoked whenever a transaction is [ROLLBACK | rolled back]. |
︙ | ︙ | |||
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 | ** See also the [sqlite3_update_hook()] interface. */ void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); /* ** CAPI3REF: Data Change Notification Callbacks ** ** ^The sqlite3_update_hook() interface registers a callback function ** with the [database connection] identified by the first argument ** to be invoked whenever a row is updated, inserted or deleted in ** a rowid table. ** ^Any callback set by a previous call to this function ** for the same database connection is overridden. | > | 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 | ** See also the [sqlite3_update_hook()] interface. */ void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); /* ** CAPI3REF: Data Change Notification Callbacks ** METHOD: sqlite3 ** ** ^The sqlite3_update_hook() interface registers a callback function ** with the [database connection] identified by the first argument ** to be invoked whenever a row is updated, inserted or deleted in ** a rowid table. ** ^Any callback set by a previous call to this function ** for the same database connection is overridden. |
︙ | ︙ | |||
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 | ** ** See also: [sqlite3_db_release_memory()] */ int sqlite3_release_memory(int); /* ** CAPI3REF: Free Memory Used By A Database Connection ** ** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap ** memory as possible from database connection D. Unlike the ** [sqlite3_release_memory()] interface, this interface is in effect even ** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is ** omitted. ** | > | 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 | ** ** See also: [sqlite3_db_release_memory()] */ int sqlite3_release_memory(int); /* ** CAPI3REF: Free Memory Used By A Database Connection ** METHOD: sqlite3 ** ** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap ** memory as possible from database connection D. Unlike the ** [sqlite3_release_memory()] interface, this interface is in effect even ** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is ** omitted. ** |
︙ | ︙ | |||
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 | ** [sqlite3_soft_heap_limit64()] interface rather than this one. */ SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N); /* ** CAPI3REF: Extract Metadata About A Column Of A Table ** ** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns ** information about column C of table T in database D ** on [database connection] X.)^ ^The sqlite3_table_column_metadata() ** interface returns SQLITE_OK and fills in the non-NULL pointers in ** the final five arguments with appropriate values if the specified ** column exists. ^The sqlite3_table_column_metadata() interface returns | > | 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 | ** [sqlite3_soft_heap_limit64()] interface rather than this one. */ SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N); /* ** CAPI3REF: Extract Metadata About A Column Of A Table ** METHOD: sqlite3 ** ** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns ** information about column C of table T in database D ** on [database connection] X.)^ ^The sqlite3_table_column_metadata() ** interface returns SQLITE_OK and fills in the non-NULL pointers in ** the final five arguments with appropriate values if the specified ** column exists. ^The sqlite3_table_column_metadata() interface returns |
︙ | ︙ | |||
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 | int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ int *pPrimaryKey, /* OUTPUT: True if column part of PK */ int *pAutoinc /* OUTPUT: True if column is auto-increment */ ); /* ** CAPI3REF: Load An Extension ** ** ^This interface loads an SQLite extension library from the named file. ** ** ^The sqlite3_load_extension() interface attempts to load an ** [SQLite extension] library contained in the file zFile. If ** the file cannot be loaded directly, attempts are made to load ** with various operating-system specific extensions added. | > | 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 | int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ int *pPrimaryKey, /* OUTPUT: True if column part of PK */ int *pAutoinc /* OUTPUT: True if column is auto-increment */ ); /* ** CAPI3REF: Load An Extension ** METHOD: sqlite3 ** ** ^This interface loads an SQLite extension library from the named file. ** ** ^The sqlite3_load_extension() interface attempts to load an ** [SQLite extension] library contained in the file zFile. If ** the file cannot be loaded directly, attempts are made to load ** with various operating-system specific extensions added. |
︙ | ︙ | |||
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 | const char *zFile, /* Name of the shared library containing extension */ const char *zProc, /* Entry point. Derived from zFile if 0 */ char **pzErrMsg /* Put error message here if not 0 */ ); /* ** CAPI3REF: Enable Or Disable Extension Loading ** ** ^So as not to open security holes in older applications that are ** unprepared to deal with [extension loading], and as a means of disabling ** [extension loading] while evaluating user-entered SQL, the following API ** is provided to turn the [sqlite3_load_extension()] mechanism on and off. ** ** ^Extension loading is off by default. | > | 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 | const char *zFile, /* Name of the shared library containing extension */ const char *zProc, /* Entry point. Derived from zFile if 0 */ char **pzErrMsg /* Put error message here if not 0 */ ); /* ** CAPI3REF: Enable Or Disable Extension Loading ** METHOD: sqlite3 ** ** ^So as not to open security holes in older applications that are ** unprepared to deal with [extension loading], and as a means of disabling ** [extension loading] while evaluating user-entered SQL, the following API ** is provided to turn the [sqlite3_load_extension()] mechanism on and off. ** ** ^Extension loading is off by default. |
︙ | ︙ | |||
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 | #define SQLITE_INDEX_CONSTRAINT_LE 8 #define SQLITE_INDEX_CONSTRAINT_LT 16 #define SQLITE_INDEX_CONSTRAINT_GE 32 #define SQLITE_INDEX_CONSTRAINT_MATCH 64 /* ** CAPI3REF: Register A Virtual Table Implementation ** ** ^These routines are used to register a new [virtual table module] name. ** ^Module names must be registered before ** creating a new [virtual table] using the module and before using a ** preexisting [virtual table] for the module. ** ** ^The module name is registered on the [database connection] specified | > | 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 | #define SQLITE_INDEX_CONSTRAINT_LE 8 #define SQLITE_INDEX_CONSTRAINT_LT 16 #define SQLITE_INDEX_CONSTRAINT_GE 32 #define SQLITE_INDEX_CONSTRAINT_MATCH 64 /* ** CAPI3REF: Register A Virtual Table Implementation ** METHOD: sqlite3 ** ** ^These routines are used to register a new [virtual table module] name. ** ^Module names must be registered before ** creating a new [virtual table] using the module and before using a ** preexisting [virtual table] for the module. ** ** ^The module name is registered on the [database connection] specified |
︙ | ︙ | |||
5623 5624 5625 5626 5627 5628 5629 | ** take care that any prior string is freed by a call to [sqlite3_free()] ** prior to assigning a new string to zErrMsg. ^After the error message ** is delivered up to the client application, the string will be automatically ** freed by sqlite3_free() and the zErrMsg field will be zeroed. */ struct sqlite3_vtab { const sqlite3_module *pModule; /* The module for this virtual table */ | | | 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 | ** take care that any prior string is freed by a call to [sqlite3_free()] ** prior to assigning a new string to zErrMsg. ^After the error message ** is delivered up to the client application, the string will be automatically ** freed by sqlite3_free() and the zErrMsg field will be zeroed. */ struct sqlite3_vtab { const sqlite3_module *pModule; /* The module for this virtual table */ int nRef; /* Number of open cursors */ char *zErrMsg; /* Error message from sqlite3_mprintf() */ /* Virtual table implementations will typically add additional fields */ }; /* ** CAPI3REF: Virtual Table Cursor Object ** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor} |
︙ | ︙ | |||
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 | ** to declare the format (the names and datatypes of the columns) of ** the virtual tables they implement. */ int sqlite3_declare_vtab(sqlite3*, const char *zSQL); /* ** CAPI3REF: Overload A Function For A Virtual Table ** ** ^(Virtual tables can provide alternative implementations of functions ** using the [xFindFunction] method of the [virtual table module]. ** But global versions of those functions ** must exist in order to be overloaded.)^ ** ** ^(This API makes sure a global version of a function with a particular | > | 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 | ** to declare the format (the names and datatypes of the columns) of ** the virtual tables they implement. */ int sqlite3_declare_vtab(sqlite3*, const char *zSQL); /* ** CAPI3REF: Overload A Function For A Virtual Table ** METHOD: sqlite3 ** ** ^(Virtual tables can provide alternative implementations of functions ** using the [xFindFunction] method of the [virtual table module]. ** But global versions of those functions ** must exist in order to be overloaded.)^ ** ** ^(This API makes sure a global version of a function with a particular |
︙ | ︙ | |||
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 | ** can be used to read or write small subsections of the BLOB. ** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes. */ typedef struct sqlite3_blob sqlite3_blob; /* ** CAPI3REF: Open A BLOB For Incremental I/O ** ** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located ** in row iRow, column zColumn, table zTable in database zDb; ** in other words, the same BLOB that would be selected by: ** ** <pre> ** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow; | > > | 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 | ** can be used to read or write small subsections of the BLOB. ** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes. */ typedef struct sqlite3_blob sqlite3_blob; /* ** CAPI3REF: Open A BLOB For Incremental I/O ** METHOD: sqlite3 ** CONSTRUCTOR: sqlite3_blob ** ** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located ** in row iRow, column zColumn, table zTable in database zDb; ** in other words, the same BLOB that would be selected by: ** ** <pre> ** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow; |
︙ | ︙ | |||
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 | sqlite3_int64 iRow, int flags, sqlite3_blob **ppBlob ); /* ** CAPI3REF: Move a BLOB Handle to a New Row ** ** ^This function is used to move an existing blob handle so that it points ** to a different row of the same database table. ^The new row is identified ** by the rowid value passed as the second argument. Only the row can be ** changed. ^The database, table and column on which the blob handle is open ** remain the same. Moving an existing blob handle to a new row can be ** faster than closing the existing handle and opening a new one. | > | 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 | sqlite3_int64 iRow, int flags, sqlite3_blob **ppBlob ); /* ** CAPI3REF: Move a BLOB Handle to a New Row ** METHOD: sqlite3_blob ** ** ^This function is used to move an existing blob handle so that it points ** to a different row of the same database table. ^The new row is identified ** by the rowid value passed as the second argument. Only the row can be ** changed. ^The database, table and column on which the blob handle is open ** remain the same. Moving an existing blob handle to a new row can be ** faster than closing the existing handle and opening a new one. |
︙ | ︙ | |||
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 | ** ** ^This function sets the database handle error code and message. */ SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); /* ** CAPI3REF: Close A BLOB Handle ** ** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed ** unconditionally. Even if this routine returns an error code, the ** handle is still closed.)^ ** ** ^If the blob handle being closed was opened for read-write access, and if ** the database is in auto-commit mode and there are no other open read-write | > | 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 | ** ** ^This function sets the database handle error code and message. */ SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); /* ** CAPI3REF: Close A BLOB Handle ** DESTRUCTOR: sqlite3_blob ** ** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed ** unconditionally. Even if this routine returns an error code, the ** handle is still closed.)^ ** ** ^If the blob handle being closed was opened for read-write access, and if ** the database is in auto-commit mode and there are no other open read-write |
︙ | ︙ | |||
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 | ** is passed a valid open blob handle, the values returned by the ** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning. */ int sqlite3_blob_close(sqlite3_blob *); /* ** CAPI3REF: Return The Size Of An Open BLOB ** ** ^Returns the size in bytes of the BLOB accessible via the ** successfully opened [BLOB handle] in its only argument. ^The ** incremental blob I/O routines can only read or overwriting existing ** blob content; they cannot change the size of a blob. ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not ** been closed by [sqlite3_blob_close()]. Passing any other pointer in ** to this routine results in undefined and probably undesirable behavior. */ int sqlite3_blob_bytes(sqlite3_blob *); /* ** CAPI3REF: Read Data From A BLOB Incrementally ** ** ^(This function is used to read data from an open [BLOB handle] into a ** caller-supplied buffer. N bytes of data are copied into buffer Z ** from the open BLOB, starting at offset iOffset.)^ ** ** ^If offset iOffset is less than N bytes from the end of the BLOB, ** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is | > > | 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 | ** is passed a valid open blob handle, the values returned by the ** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning. */ int sqlite3_blob_close(sqlite3_blob *); /* ** CAPI3REF: Return The Size Of An Open BLOB ** METHOD: sqlite3_blob ** ** ^Returns the size in bytes of the BLOB accessible via the ** successfully opened [BLOB handle] in its only argument. ^The ** incremental blob I/O routines can only read or overwriting existing ** blob content; they cannot change the size of a blob. ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not ** been closed by [sqlite3_blob_close()]. Passing any other pointer in ** to this routine results in undefined and probably undesirable behavior. */ int sqlite3_blob_bytes(sqlite3_blob *); /* ** CAPI3REF: Read Data From A BLOB Incrementally ** METHOD: sqlite3_blob ** ** ^(This function is used to read data from an open [BLOB handle] into a ** caller-supplied buffer. N bytes of data are copied into buffer Z ** from the open BLOB, starting at offset iOffset.)^ ** ** ^If offset iOffset is less than N bytes from the end of the BLOB, ** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is |
︙ | ︙ | |||
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 | ** ** See also: [sqlite3_blob_write()]. */ int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); /* ** CAPI3REF: Write Data Into A BLOB Incrementally ** ** ^(This function is used to write data into an open [BLOB handle] from a ** caller-supplied buffer. N bytes of data are copied from the buffer Z ** into the open BLOB, starting at offset iOffset.)^ ** ** ^(On success, sqlite3_blob_write() returns SQLITE_OK. ** Otherwise, an [error code] or an [extended error code] is returned.)^ | > | 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 | ** ** See also: [sqlite3_blob_write()]. */ int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); /* ** CAPI3REF: Write Data Into A BLOB Incrementally ** METHOD: sqlite3_blob ** ** ^(This function is used to write data into an open [BLOB handle] from a ** caller-supplied buffer. N bytes of data are copied from the buffer Z ** into the open BLOB, starting at offset iOffset.)^ ** ** ^(On success, sqlite3_blob_write() returns SQLITE_OK. ** Otherwise, an [error code] or an [extended error code] is returned.)^ |
︙ | ︙ | |||
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 | #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ #define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */ /* ** CAPI3REF: Retrieve the mutex for a database connection ** ** ^This interface returns a pointer the [sqlite3_mutex] object that ** serializes access to the [database connection] given in the argument ** when the [threading mode] is Serialized. ** ^If the [threading mode] is Single-thread or Multi-thread then this ** routine returns a NULL pointer. */ sqlite3_mutex *sqlite3_db_mutex(sqlite3*); /* ** CAPI3REF: Low-Level Control Of Database Files ** ** ^The [sqlite3_file_control()] interface makes a direct call to the ** xFileControl method for the [sqlite3_io_methods] object associated ** with a particular database identified by the second argument. ^The ** name of the database is "main" for the main database or "temp" for the ** TEMP database, or the name that appears after the AS keyword for ** databases that are added using the [ATTACH] SQL command. | > > | 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 | #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */ #define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */ #define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */ /* ** CAPI3REF: Retrieve the mutex for a database connection ** METHOD: sqlite3 ** ** ^This interface returns a pointer the [sqlite3_mutex] object that ** serializes access to the [database connection] given in the argument ** when the [threading mode] is Serialized. ** ^If the [threading mode] is Single-thread or Multi-thread then this ** routine returns a NULL pointer. */ sqlite3_mutex *sqlite3_db_mutex(sqlite3*); /* ** CAPI3REF: Low-Level Control Of Database Files ** METHOD: sqlite3 ** ** ^The [sqlite3_file_control()] interface makes a direct call to the ** xFileControl method for the [sqlite3_io_methods] object associated ** with a particular database identified by the second argument. ^The ** name of the database is "main" for the main database or "temp" for the ** TEMP database, or the name that appears after the AS keyword for ** databases that are added using the [ATTACH] SQL command. |
︙ | ︙ | |||
6301 6302 6303 6304 6305 6306 6307 | #define SQLITE_TESTCTRL_SORTER_MMAP 24 #define SQLITE_TESTCTRL_IMPOSTER 25 #define SQLITE_TESTCTRL_LAST 25 /* ** CAPI3REF: SQLite Runtime Status ** | | | | < | | < < < > > > > > > > | 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 | #define SQLITE_TESTCTRL_SORTER_MMAP 24 #define SQLITE_TESTCTRL_IMPOSTER 25 #define SQLITE_TESTCTRL_LAST 25 /* ** CAPI3REF: SQLite Runtime Status ** ** ^These interfaces are used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for ** the specific parameter to measure. ^(Recognized integer codes ** are of the form [status parameters | SQLITE_STATUS_...].)^ ** ^The current value of the parameter is returned into *pCurrent. ** ^The highest recorded value is returned in *pHighwater. ^If the ** resetFlag is true, then the highest record value is reset after ** *pHighwater is written. ^(Some parameters do not record the highest ** value. For those parameters ** nothing is written into *pHighwater and the resetFlag is ignored.)^ ** ^(Other parameters record only the highwater mark and not the current ** value. For these latter parameters nothing is written into *pCurrent.)^ ** ** ^The sqlite3_status() and sqlite3_status64() routines return ** SQLITE_OK on success and a non-zero [error code] on failure. ** ** If either the current value or the highwater mark is too large to ** be represented by a 32-bit integer, then the values returned by ** sqlite3_status() are undefined. ** ** See also: [sqlite3_db_status()] */ int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag); int sqlite3_status64( int op, sqlite3_int64 *pCurrent, sqlite3_int64 *pHighwater, int resetFlag ); /* ** CAPI3REF: Status Parameters ** KEYWORDS: {status parameters} ** ** These integer constants designate various run-time status parameters |
︙ | ︙ | |||
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 | #define SQLITE_STATUS_PARSER_STACK 6 #define SQLITE_STATUS_PAGECACHE_SIZE 7 #define SQLITE_STATUS_SCRATCH_SIZE 8 #define SQLITE_STATUS_MALLOC_COUNT 9 /* ** CAPI3REF: Database Connection Status ** ** ^This interface is used to retrieve runtime status information ** about a single [database connection]. ^The first argument is the ** database connection object to be interrogated. ^The second argument ** is an integer constant, taken from the set of ** [SQLITE_DBSTATUS options], that ** determines the parameter to interrogate. The set of | > | 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 | #define SQLITE_STATUS_PARSER_STACK 6 #define SQLITE_STATUS_PAGECACHE_SIZE 7 #define SQLITE_STATUS_SCRATCH_SIZE 8 #define SQLITE_STATUS_MALLOC_COUNT 9 /* ** CAPI3REF: Database Connection Status ** METHOD: sqlite3 ** ** ^This interface is used to retrieve runtime status information ** about a single [database connection]. ^The first argument is the ** database connection object to be interrogated. ^The second argument ** is an integer constant, taken from the set of ** [SQLITE_DBSTATUS options], that ** determines the parameter to interrogate. The set of |
︙ | ︙ | |||
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 | #define SQLITE_DBSTATUS_CACHE_WRITE 9 #define SQLITE_DBSTATUS_DEFERRED_FKS 10 #define SQLITE_DBSTATUS_MAX 10 /* Largest defined DBSTATUS */ /* ** CAPI3REF: Prepared Statement Status ** ** ^(Each prepared statement maintains various ** [SQLITE_STMTSTATUS counters] that measure the number ** of times it has performed specific operations.)^ These counters can ** be used to monitor the performance characteristics of the prepared ** statements. For example, if the number of table steps greatly exceeds ** the number of table searches or result rows, that would tend to indicate | > | 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 | #define SQLITE_DBSTATUS_CACHE_WRITE 9 #define SQLITE_DBSTATUS_DEFERRED_FKS 10 #define SQLITE_DBSTATUS_MAX 10 /* Largest defined DBSTATUS */ /* ** CAPI3REF: Prepared Statement Status ** METHOD: sqlite3_stmt ** ** ^(Each prepared statement maintains various ** [SQLITE_STMTSTATUS counters] that measure the number ** of times it has performed specific operations.)^ These counters can ** be used to monitor the performance characteristics of the prepared ** statements. For example, if the number of table steps greatly exceeds ** the number of table searches or result rows, that would tend to indicate |
︙ | ︙ | |||
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 | int sqlite3_backup_step(sqlite3_backup *p, int nPage); int sqlite3_backup_finish(sqlite3_backup *p); int sqlite3_backup_remaining(sqlite3_backup *p); int sqlite3_backup_pagecount(sqlite3_backup *p); /* ** CAPI3REF: Unlock Notification ** ** ^When running in shared-cache mode, a database operation may fail with ** an [SQLITE_LOCKED] error if the required locks on the shared-cache or ** individual tables within the shared-cache cannot be obtained. See ** [SQLite Shared-Cache Mode] for a description of shared-cache locking. ** ^This API may be used to register a callback that SQLite will invoke ** when the connection currently holding the required lock relinquishes it. | > | 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 | int sqlite3_backup_step(sqlite3_backup *p, int nPage); int sqlite3_backup_finish(sqlite3_backup *p); int sqlite3_backup_remaining(sqlite3_backup *p); int sqlite3_backup_pagecount(sqlite3_backup *p); /* ** CAPI3REF: Unlock Notification ** METHOD: sqlite3 ** ** ^When running in shared-cache mode, a database operation may fail with ** an [SQLITE_LOCKED] error if the required locks on the shared-cache or ** individual tables within the shared-cache cannot be obtained. See ** [SQLite Shared-Cache Mode] for a description of shared-cache locking. ** ^This API may be used to register a callback that SQLite will invoke ** when the connection currently holding the required lock relinquishes it. |
︙ | ︙ | |||
7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 | ** a few hundred characters, it will be truncated to the length of the ** buffer. */ void sqlite3_log(int iErrCode, const char *zFormat, ...); /* ** CAPI3REF: Write-Ahead Log Commit Hook ** ** ^The [sqlite3_wal_hook()] function is used to register a callback that ** is invoked each time data is committed to a database in wal mode. ** ** ^(The callback is invoked by SQLite after the commit has taken place and ** the associated write-lock on the database released)^, so the implementation ** may read, write or [checkpoint] the database as required. | > | 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 | ** a few hundred characters, it will be truncated to the length of the ** buffer. */ void sqlite3_log(int iErrCode, const char *zFormat, ...); /* ** CAPI3REF: Write-Ahead Log Commit Hook ** METHOD: sqlite3 ** ** ^The [sqlite3_wal_hook()] function is used to register a callback that ** is invoked each time data is committed to a database in wal mode. ** ** ^(The callback is invoked by SQLite after the commit has taken place and ** the associated write-lock on the database released)^, so the implementation ** may read, write or [checkpoint] the database as required. |
︙ | ︙ | |||
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 | sqlite3*, int(*)(void *,sqlite3*,const char*,int), void* ); /* ** CAPI3REF: Configure an auto-checkpoint ** ** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around ** [sqlite3_wal_hook()] that causes any database on [database connection] D ** to automatically [checkpoint] ** after committing a transaction if there are N or ** more frames in the [write-ahead log] file. ^Passing zero or ** a negative value as the nFrame parameter disables automatic | > | 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 | sqlite3*, int(*)(void *,sqlite3*,const char*,int), void* ); /* ** CAPI3REF: Configure an auto-checkpoint ** METHOD: sqlite3 ** ** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around ** [sqlite3_wal_hook()] that causes any database on [database connection] D ** to automatically [checkpoint] ** after committing a transaction if there are N or ** more frames in the [write-ahead log] file. ^Passing zero or ** a negative value as the nFrame parameter disables automatic |
︙ | ︙ | |||
7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 | ** is only necessary if the default setting is found to be suboptimal ** for a particular application. */ int sqlite3_wal_autocheckpoint(sqlite3 *db, int N); /* ** CAPI3REF: Checkpoint a database ** ** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to ** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^ ** ** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the ** [write-ahead log] for database X on [database connection] D to be ** transferred into the database file and for the write-ahead log to | > | 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 | ** is only necessary if the default setting is found to be suboptimal ** for a particular application. */ int sqlite3_wal_autocheckpoint(sqlite3 *db, int N); /* ** CAPI3REF: Checkpoint a database ** METHOD: sqlite3 ** ** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to ** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^ ** ** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the ** [write-ahead log] for database X on [database connection] D to be ** transferred into the database file and for the write-ahead log to |
︙ | ︙ | |||
7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 | ** start a callback but which do not need the full power (and corresponding ** complication) of [sqlite3_wal_checkpoint_v2()]. */ int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* ** CAPI3REF: Checkpoint a database ** ** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint ** operation on database X of [database connection] D in mode M. Status ** information is written back into integers pointed to by L and C.)^ ** ^(The M parameter must be a valid [checkpoint mode]:)^ ** ** <dl> | > | 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 | ** start a callback but which do not need the full power (and corresponding ** complication) of [sqlite3_wal_checkpoint_v2()]. */ int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb); /* ** CAPI3REF: Checkpoint a database ** METHOD: sqlite3 ** ** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint ** operation on database X of [database connection] D in mode M. Status ** information is written back into integers pointed to by L and C.)^ ** ^(The M parameter must be a valid [checkpoint mode]:)^ ** ** <dl> |
︙ | ︙ | |||
7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 | #define SQLITE_SCANSTAT_EST 2 #define SQLITE_SCANSTAT_NAME 3 #define SQLITE_SCANSTAT_EXPLAIN 4 #define SQLITE_SCANSTAT_SELECTID 5 /* ** CAPI3REF: Prepared Statement Scan Status ** ** This interface returns information about the predicted and measured ** performance for pStmt. Advanced applications can use this ** interface to compare the predicted and the measured performance and ** issue warnings and/or rerun [ANALYZE] if discrepancies are found. ** ** Since this interface is expected to be rarely used, it is only | > | 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 | #define SQLITE_SCANSTAT_EST 2 #define SQLITE_SCANSTAT_NAME 3 #define SQLITE_SCANSTAT_EXPLAIN 4 #define SQLITE_SCANSTAT_SELECTID 5 /* ** CAPI3REF: Prepared Statement Scan Status ** METHOD: sqlite3_stmt ** ** This interface returns information about the predicted and measured ** performance for pStmt. Advanced applications can use this ** interface to compare the predicted and the measured performance and ** issue warnings and/or rerun [ANALYZE] if discrepancies are found. ** ** Since this interface is expected to be rarely used, it is only |
︙ | ︙ | |||
7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 | int idx, /* Index of loop to report on */ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */ void *pOut /* Result written here */ ); /* ** CAPI3REF: Zero Scan-Status Counters ** ** ^Zero all [sqlite3_stmt_scanstatus()] related event counters. ** ** This API is only available if the library is built with pre-processor ** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined. */ SQLITE_EXPERIMENTAL void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*); | > | 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 | int idx, /* Index of loop to report on */ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */ void *pOut /* Result written here */ ); /* ** CAPI3REF: Zero Scan-Status Counters ** METHOD: sqlite3_stmt ** ** ^Zero all [sqlite3_stmt_scanstatus()] related event counters. ** ** This API is only available if the library is built with pre-processor ** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined. */ SQLITE_EXPERIMENTAL void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*); |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
590 591 592 593 594 595 596 597 598 599 600 601 602 603 | ** The LogEst can be negative to indicate fractional values. ** Examples: ** ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 */ typedef INT16_TYPE LogEst; /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined | > > > > > > > > > > > > > > | 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 | ** The LogEst can be negative to indicate fractional values. ** Examples: ** ** 0.5 -> -10 0.1 -> -33 0.0625 -> -40 */ typedef INT16_TYPE LogEst; /* ** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer */ #ifndef SQLITE_PTRSIZE # if defined(__SIZEOF_POINTER__) # define SQLITE_PTRSIZE __SIZEOF_POINTER__ # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(_M_ARM) || defined(__arm__) || defined(__x86) # define SQLITE_PTRSIZE 4 # else # define SQLITE_PTRSIZE 8 # endif #endif /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined |
︙ | ︙ | |||
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 | u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ u8 imposterTable; /* Building an imposter table */ } init; int nVdbeActive; /* Number of VDBEs currently running */ int nVdbeRead; /* Number of active VDBEs that read or write */ int nVdbeWrite; /* Number of active VDBEs that read and write */ int nVdbeExec; /* Number of nested calls to VdbeExec() */ int nExtension; /* Number of loaded extensions */ void **aExtension; /* Array of shared library handles */ void (*xTrace)(void*,const char*); /* Trace function */ void *pTraceArg; /* Argument to the trace function */ void (*xProfile)(void*,const char*,u64); /* Profiling function */ void *pProfileArg; /* Argument to profile function */ void *pCommitArg; /* Argument to xCommitCallback() */ | > | 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 | u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ u8 imposterTable; /* Building an imposter table */ } init; int nVdbeActive; /* Number of VDBEs currently running */ int nVdbeRead; /* Number of active VDBEs that read or write */ int nVdbeWrite; /* Number of active VDBEs that read and write */ int nVdbeExec; /* Number of nested calls to VdbeExec() */ int nVDestroy; /* Number of active OP_VDestroy operations */ int nExtension; /* Number of loaded extensions */ void **aExtension; /* Array of shared library handles */ void (*xTrace)(void*,const char*); /* Trace function */ void *pTraceArg; /* Argument to the trace function */ void (*xProfile)(void*,const char*,u64); /* Profiling function */ void *pProfileArg; /* Argument to profile function */ void *pCommitArg; /* Argument to xCommitCallback() */ |
︙ | ︙ | |||
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 | #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ /* ** Bits of the sqlite3.dbOptFlags field that are used by the ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to ** selectively disable various optimizations. */ | > | 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 | #define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */ #define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */ #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ #define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */ #define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */ #define SQLITE_QueryOnly 0x02000000 /* Disable database changes */ #define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */ #define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */ /* ** Bits of the sqlite3.dbOptFlags field that are used by the ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to ** selectively disable various optimizations. */ |
︙ | ︙ | |||
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 | Trigger *pTrigger; /* List of triggers stored in pSchema */ Schema *pSchema; /* Schema that contains this table */ Table *pNextZombie; /* Next on the Parse.pZombieTab list */ }; /* ** Allowed values for Table.tabFlags. */ #define TF_Readonly 0x01 /* Read-only system table */ #define TF_Ephemeral 0x02 /* An ephemeral table */ #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ #define TF_Virtual 0x10 /* Is a virtual table */ #define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */ /* ** Test to see whether or not a table is a virtual table. This is ** done as a macro so that it will be optimized out when virtual ** table support is omitted from the build. */ | > > > > > > > | 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 | Trigger *pTrigger; /* List of triggers stored in pSchema */ Schema *pSchema; /* Schema that contains this table */ Table *pNextZombie; /* Next on the Parse.pZombieTab list */ }; /* ** Allowed values for Table.tabFlags. ** ** TF_OOOHidden applies to virtual tables that have hidden columns that are ** followed by non-hidden columns. Example: "CREATE VIRTUAL TABLE x USING ** vtab1(a HIDDEN, b);". Since "b" is a non-hidden column but "a" is hidden, ** the TF_OOOHidden attribute would apply in this case. Such tables require ** special handling during INSERT processing. */ #define TF_Readonly 0x01 /* Read-only system table */ #define TF_Ephemeral 0x02 /* An ephemeral table */ #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ #define TF_Virtual 0x10 /* Is a virtual table */ #define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */ #define TF_OOOHidden 0x40 /* Out-of-Order hidden columns */ /* ** Test to see whether or not a table is a virtual table. This is ** done as a macro so that it will be optimized out when virtual ** table support is omitted from the build. */ |
︙ | ︙ | |||
2365 2366 2367 2368 2369 2370 2371 | #define SF_Resolved 0x0002 /* Identifiers have been resolved */ #define SF_Aggregate 0x0004 /* Contains aggregate functions */ #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ #define SF_Compound 0x0040 /* Part of a compound query */ #define SF_Values 0x0080 /* Synthesized from VALUES clause */ | | > | 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 | #define SF_Resolved 0x0002 /* Identifiers have been resolved */ #define SF_Aggregate 0x0004 /* Contains aggregate functions */ #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ #define SF_Compound 0x0040 /* Part of a compound query */ #define SF_Values 0x0080 /* Synthesized from VALUES clause */ #define SF_MultiValue 0x0100 /* Single VALUES term with multiple rows */ #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ #define SF_Converted 0x2000 /* By convertCompoundSelectToSubquery() */ /* ** The results of a SELECT can be distributed in several ways, as defined ** by one of the following macros. The "SRT" prefix means "SELECT Result ** Type". ** |
︙ | ︙ | |||
2748 2749 2750 2751 2752 2753 2754 | * "SELECT" statement. The meanings of the other members is determined by the * value of "op" as follows: * * (op == TK_INSERT) * orconf -> stores the ON CONFLICT algorithm * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then * this stores a pointer to the SELECT statement. Otherwise NULL. | | | | | | | 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 | * "SELECT" statement. The meanings of the other members is determined by the * value of "op" as follows: * * (op == TK_INSERT) * orconf -> stores the ON CONFLICT algorithm * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then * this stores a pointer to the SELECT statement. Otherwise NULL. * zTarget -> Dequoted name of the table to insert into. * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then * this stores values to be inserted. Otherwise NULL. * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... * statement, then this stores the column-names to be * inserted into. * * (op == TK_DELETE) * zTarget -> Dequoted name of the table to delete from. * pWhere -> The WHERE clause of the DELETE statement if one is specified. * Otherwise NULL. * * (op == TK_UPDATE) * zTarget -> Dequoted name of the table to update. * pWhere -> The WHERE clause of the UPDATE statement if one is specified. * Otherwise NULL. * pExprList -> A list of the columns to update and the expressions to update * them to. See sqlite3Update() documentation of "pChanges" * argument. * */ struct TriggerStep { u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ u8 orconf; /* OE_Rollback etc. */ Trigger *pTrig; /* The trigger that this step is a part of */ Select *pSelect; /* SELECT statement or RHS of INSERT INTO SELECT ... */ char *zTarget; /* Target table for DELETE, UPDATE, INSERT */ Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ ExprList *pExprList; /* SET clause for UPDATE. */ IdList *pIdList; /* Column names for INSERT */ TriggerStep *pNext; /* Next in the link-list */ TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ }; |
︙ | ︙ | |||
3093 3094 3095 3096 3097 3098 3099 | sqlite3_mutex_methods const *sqlite3DefaultMutex(void); sqlite3_mutex_methods const *sqlite3NoopMutex(void); sqlite3_mutex *sqlite3MutexAlloc(int); int sqlite3MutexInit(void); int sqlite3MutexEnd(void); #endif | | | > > > > > | 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 | sqlite3_mutex_methods const *sqlite3DefaultMutex(void); sqlite3_mutex_methods const *sqlite3NoopMutex(void); sqlite3_mutex *sqlite3MutexAlloc(int); int sqlite3MutexInit(void); int sqlite3MutexEnd(void); #endif sqlite3_int64 sqlite3StatusValue(int); void sqlite3StatusUp(int, int); void sqlite3StatusDown(int, int); void sqlite3StatusSet(int, int); /* Access to mutexes used by sqlite3_status() */ sqlite3_mutex *sqlite3Pcache1Mutex(void); sqlite3_mutex *sqlite3MallocMutex(void); #ifndef SQLITE_OMIT_FLOATING_POINT int sqlite3IsNaN(double); #else # define sqlite3IsNaN(X) 0 #endif |
︙ | ︙ | |||
3779 3780 3781 3782 3783 3784 3785 | ** If the SQLITE_ENABLE IOTRACE exists then the global variable ** sqlite3IoTrace is a pointer to a printf-like routine used to ** print I/O tracing messages. */ #ifdef SQLITE_ENABLE_IOTRACE # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } void sqlite3VdbeIOTraceSql(Vdbe*); | | | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 | ** If the SQLITE_ENABLE IOTRACE exists then the global variable ** sqlite3IoTrace is a pointer to a printf-like routine used to ** print I/O tracing messages. */ #ifdef SQLITE_ENABLE_IOTRACE # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } void sqlite3VdbeIOTraceSql(Vdbe*); SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...); #else # define IOTRACE(A) # define sqlite3VdbeIOTraceSql(X) #endif /* ** These routines are available for the mem2.c debugging memory allocator |
︙ | ︙ |
Changes to src/status.c.
︙ | ︙ | |||
17 18 19 20 21 22 23 | #include "vdbeInt.h" /* ** Variables in which to record status information. */ typedef struct sqlite3StatType sqlite3StatType; static SQLITE_WSD struct sqlite3StatType { | > | | > > > > > > > > > > > > > > > > > > > > > | > | > > > | | > > > > > > > | > > > > > > > > > > > | > | > > > > < < < < | > > > > > > > > > > > > > > > > > > > > > > > | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | #include "vdbeInt.h" /* ** Variables in which to record status information. */ typedef struct sqlite3StatType sqlite3StatType; static SQLITE_WSD struct sqlite3StatType { #if SQLITE_PTRSIZE>4 sqlite3_int64 nowValue[10]; /* Current value */ sqlite3_int64 mxValue[10]; /* Maximum value */ #else u32 nowValue[10]; /* Current value */ u32 mxValue[10]; /* Maximum value */ #endif } sqlite3Stat = { {0,}, {0,} }; /* ** Elements of sqlite3Stat[] are protected by either the memory allocator ** mutex, or by the pcache1 mutex. The following array determines which. */ static const char statMutex[] = { 0, /* SQLITE_STATUS_MEMORY_USED */ 1, /* SQLITE_STATUS_PAGECACHE_USED */ 1, /* SQLITE_STATUS_PAGECACHE_OVERFLOW */ 0, /* SQLITE_STATUS_SCRATCH_USED */ 0, /* SQLITE_STATUS_SCRATCH_OVERFLOW */ 0, /* SQLITE_STATUS_MALLOC_SIZE */ 0, /* SQLITE_STATUS_PARSER_STACK */ 1, /* SQLITE_STATUS_PAGECACHE_SIZE */ 0, /* SQLITE_STATUS_SCRATCH_SIZE */ 0, /* SQLITE_STATUS_MALLOC_COUNT */ }; /* The "wsdStat" macro will resolve to the status information ** state vector. If writable static data is unsupported on the target, ** we have to locate the state vector at run-time. In the more common ** case where writable static data is supported, wsdStat can refer directly ** to the "sqlite3Stat" state vector declared above. */ #ifdef SQLITE_OMIT_WSD # define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat) # define wsdStat x[0] #else # define wsdStatInit # define wsdStat sqlite3Stat #endif /* ** Return the current value of a status parameter. The caller must ** be holding the appropriate mutex. */ sqlite3_int64 sqlite3StatusValue(int op){ wsdStatInit; assert( op>=0 && op<ArraySize(wsdStat.nowValue) ); assert( op>=0 && op<ArraySize(statMutex) ); assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex()) ); return wsdStat.nowValue[op]; } /* ** Add N to the value of a status record. The caller must hold the ** appropriate mutex. (Locking is checked by assert()). ** ** The StatusUp() routine can accept positive or negative values for N. ** The value of N is added to the current status value and the high-water ** mark is adjusted if necessary. ** ** The StatusDown() routine lowers the current value by N. The highwater ** mark is unchanged. N must be non-negative for StatusDown(). */ void sqlite3StatusUp(int op, int N){ wsdStatInit; assert( op>=0 && op<ArraySize(wsdStat.nowValue) ); assert( op>=0 && op<ArraySize(statMutex) ); assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex()) ); wsdStat.nowValue[op] += N; if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){ wsdStat.mxValue[op] = wsdStat.nowValue[op]; } } void sqlite3StatusDown(int op, int N){ wsdStatInit; assert( N>=0 ); assert( op>=0 && op<ArraySize(statMutex) ); assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex()) ); assert( op>=0 && op<ArraySize(wsdStat.nowValue) ); wsdStat.nowValue[op] -= N; } /* ** Set the value of a status to X. The highwater mark is adjusted if ** necessary. The caller must hold the appropriate mutex. */ void sqlite3StatusSet(int op, int X){ wsdStatInit; assert( op>=0 && op<ArraySize(wsdStat.nowValue) ); assert( op>=0 && op<ArraySize(statMutex) ); assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex()) ); wsdStat.nowValue[op] = X; if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){ wsdStat.mxValue[op] = wsdStat.nowValue[op]; } } /* ** Query status information. */ int sqlite3_status64( int op, sqlite3_int64 *pCurrent, sqlite3_int64 *pHighwater, int resetFlag ){ sqlite3_mutex *pMutex; wsdStatInit; if( op<0 || op>=ArraySize(wsdStat.nowValue) ){ return SQLITE_MISUSE_BKPT; } #ifdef SQLITE_ENABLE_API_ARMOR if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT; #endif pMutex = statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex(); sqlite3_mutex_enter(pMutex); *pCurrent = wsdStat.nowValue[op]; *pHighwater = wsdStat.mxValue[op]; if( resetFlag ){ wsdStat.mxValue[op] = wsdStat.nowValue[op]; } sqlite3_mutex_leave(pMutex); (void)pMutex; /* Prevent warning when SQLITE_THREADSAFE=0 */ return SQLITE_OK; } int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){ sqlite3_int64 iCur, iHwtr; int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT; #endif rc = sqlite3_status64(op, &iCur, &iHwtr, resetFlag); if( rc==0 ){ *pCurrent = (int)iCur; *pHighwater = (int)iHwtr; } return rc; } /* ** Query status information for a single database connection */ int sqlite3_db_status( sqlite3 *db, /* The database connection whose status is desired */ |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
1187 1188 1189 1190 1191 1192 1193 | const char *zVar = sqlite3_bind_parameter_name(pStmt, i); if( zVar!=0 && (zVar[0]=='$' || zVar[0]==':' || zVar[0]=='@') ){ Tcl_Obj *pVar = Tcl_GetVar2Ex(interp, &zVar[1], 0, 0); if( pVar ){ int n; u8 *data; const char *zType = (pVar->typePtr ? pVar->typePtr->name : ""); | | | 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 | const char *zVar = sqlite3_bind_parameter_name(pStmt, i); if( zVar!=0 && (zVar[0]=='$' || zVar[0]==':' || zVar[0]=='@') ){ Tcl_Obj *pVar = Tcl_GetVar2Ex(interp, &zVar[1], 0, 0); if( pVar ){ int n; u8 *data; const char *zType = (pVar->typePtr ? pVar->typePtr->name : ""); c = zType[0]; if( zVar[0]=='@' || (c=='b' && strcmp(zType,"bytearray")==0 && pVar->bytes==0) ){ /* Load a BLOB type if the Tcl variable is a bytearray and ** it has no string representation or the host ** parameter name begins with "@". */ data = Tcl_GetByteArrayFromObj(pVar, &n); sqlite3_bind_blob(pStmt, i, data, n, SQLITE_STATIC); |
︙ | ︙ | |||
2294 2295 2296 2297 2298 2299 2300 | dbEvalFinalize(&sEval); if( rc==TCL_BREAK ){ Tcl_SetObjResult(interp, pRet); rc = TCL_OK; } Tcl_DecrRefCount(pRet); }else{ | | | | | | 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 | dbEvalFinalize(&sEval); if( rc==TCL_BREAK ){ Tcl_SetObjResult(interp, pRet); rc = TCL_OK; } Tcl_DecrRefCount(pRet); }else{ ClientData cd2[2]; DbEvalContext *p; Tcl_Obj *pArray = 0; Tcl_Obj *pScript; if( objc==5 && *(char *)Tcl_GetString(objv[3]) ){ pArray = objv[3]; } pScript = objv[objc-1]; Tcl_IncrRefCount(pScript); p = (DbEvalContext *)Tcl_Alloc(sizeof(DbEvalContext)); dbEvalInit(p, pDb, objv[2], pArray); cd2[0] = (void *)p; cd2[1] = (void *)pScript; rc = DbEvalNextCmd(cd2, interp, TCL_OK); } break; } /* ** $db function NAME [-argcount N] [-deterministic] SCRIPT ** |
︙ | ︙ |
Changes to src/test_malloc.c.
︙ | ︙ | |||
207 208 209 210 211 212 213 | if( rc==SQLITE_OK ){ rc = sqlite3_config(SQLITE_CONFIG_MALLOC, &m); } sqlite3_test_control(SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS, faultsimBeginBenign, faultsimEndBenign ); }else{ | | | | | | | 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | if( rc==SQLITE_OK ){ rc = sqlite3_config(SQLITE_CONFIG_MALLOC, &m); } sqlite3_test_control(SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS, faultsimBeginBenign, faultsimEndBenign ); }else{ sqlite3_mem_methods m2; assert(memfault.m.xMalloc); /* One should be able to reset the default memory allocator by storing ** a zeroed allocator then calling GETMALLOC. */ memset(&m2, 0, sizeof(m2)); sqlite3_config(SQLITE_CONFIG_MALLOC, &m2); sqlite3_config(SQLITE_CONFIG_GETMALLOC, &m2); assert( memcmp(&m2, &memfault.m, sizeof(m2))==0 ); rc = sqlite3_config(SQLITE_CONFIG_MALLOC, &memfault.m); sqlite3_test_control(SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS, 0, 0); } if( rc==SQLITE_OK ){ memfault.isInstalled = 1; |
︙ | ︙ |
Changes to src/test_multiplex.c.
︙ | ︙ | |||
564 565 566 567 568 569 570 | pGroup->flags = flags; rc = multiplexSubFilename(pGroup, 1); if( rc==SQLITE_OK ){ pSubOpen = multiplexSubOpen(pGroup, 0, &rc, pOutFlags, 0); if( pSubOpen==0 && rc==SQLITE_OK ) rc = SQLITE_CANTOPEN; } if( rc==SQLITE_OK ){ | | | | | 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 | pGroup->flags = flags; rc = multiplexSubFilename(pGroup, 1); if( rc==SQLITE_OK ){ pSubOpen = multiplexSubOpen(pGroup, 0, &rc, pOutFlags, 0); if( pSubOpen==0 && rc==SQLITE_OK ) rc = SQLITE_CANTOPEN; } if( rc==SQLITE_OK ){ sqlite3_int64 sz64; rc = pSubOpen->pMethods->xFileSize(pSubOpen, &sz64); if( rc==SQLITE_OK && zName ){ int bExists; if( flags & SQLITE_OPEN_MASTER_JOURNAL ){ pGroup->bEnabled = 0; }else if( sz64==0 ){ if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ /* If opening a main journal file and the first chunk is zero ** bytes in size, delete any subsequent chunks from the ** file-system. */ int iChunk = 1; do { rc = pOrigVfs->xAccess(pOrigVfs, |
︙ | ︙ | |||
603 604 605 606 607 608 609 | ** larger than the chunk size, that means the chunk size is too small. ** But we have no way of determining the intended chunk size, so ** just disable the multiplexor all togethre. */ rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[1].z, SQLITE_ACCESS_EXISTS, &bExists); bExists = multiplexSubSize(pGroup, 1, &rc)>0; | | | | | | 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 | ** larger than the chunk size, that means the chunk size is too small. ** But we have no way of determining the intended chunk size, so ** just disable the multiplexor all togethre. */ rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[1].z, SQLITE_ACCESS_EXISTS, &bExists); bExists = multiplexSubSize(pGroup, 1, &rc)>0; if( rc==SQLITE_OK && bExists && sz64==(sz64&0xffff0000) && sz64>0 && sz64!=pGroup->szChunk ){ pGroup->szChunk = (int)sz64; }else if( rc==SQLITE_OK && !bExists && sz64>pGroup->szChunk ){ pGroup->bEnabled = 0; } } } } if( rc==SQLITE_OK ){ |
︙ | ︙ |
Changes to src/test_onefile.c.
︙ | ︙ | |||
591 592 593 594 595 596 597 | fs_file *p = (fs_file *)pFile; fs_real_file *pReal = 0; int eType; int nName; int rc = SQLITE_OK; if( 0==(flags&(SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_MAIN_JOURNAL)) ){ | | | | | 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 | fs_file *p = (fs_file *)pFile; fs_real_file *pReal = 0; int eType; int nName; int rc = SQLITE_OK; if( 0==(flags&(SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_MAIN_JOURNAL)) ){ tmp_file *p2 = (tmp_file *)pFile; memset(p2, 0, sizeof(*p2)); p2->base.pMethods = &tmp_io_methods; return SQLITE_OK; } eType = ((flags&(SQLITE_OPEN_MAIN_DB))?DATABASE_FILE:JOURNAL_FILE); p->base.pMethods = &fs_io_methods; p->eType = eType; |
︙ | ︙ |
Changes to src/test_osinst.c.
︙ | ︙ | |||
1127 1128 1129 1130 1131 1132 1133 | } if( Tcl_GetIndexFromObj(interp, objv[1], strs, "sub-command", 0, &iSub) ){ return TCL_ERROR; } switch( (enum VL_enum)iSub ){ case VL_ANNOTATE: { | < < < | 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 | } if( Tcl_GetIndexFromObj(interp, objv[1], strs, "sub-command", 0, &iSub) ){ return TCL_ERROR; } switch( (enum VL_enum)iSub ){ case VL_ANNOTATE: { char *zVfs; char *zMsg; if( objc!=4 ){ Tcl_WrongNumArgs(interp, 3, objv, "VFS"); return TCL_ERROR; } zVfs = Tcl_GetString(objv[2]); zMsg = Tcl_GetString(objv[3]); rc = sqlite3_vfslog_annotate(zVfs, zMsg); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, "failed", 0); return TCL_ERROR; } break; } case VL_FINALIZE: { char *zVfs; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 2, objv, "VFS"); return TCL_ERROR; } zVfs = Tcl_GetString(objv[2]); rc = sqlite3_vfslog_finalize(zVfs); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, "failed", 0); return TCL_ERROR; } break; }; case VL_NEW: { char *zVfs; char *zParent; char *zLog; if( objc!=5 ){ Tcl_WrongNumArgs(interp, 2, objv, "VFS PARENT LOGFILE"); return TCL_ERROR; } |
︙ | ︙ |
Changes to src/test_vfs.c.
︙ | ︙ | |||
1076 1077 1078 1079 1080 1081 1082 | return TCL_ERROR; } Tcl_ResetResult(interp); switch( aSubcmd[i].eCmd ){ case CMD_SHM: { Tcl_Obj *pObj; | | | 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 | return TCL_ERROR; } Tcl_ResetResult(interp); switch( aSubcmd[i].eCmd ){ case CMD_SHM: { Tcl_Obj *pObj; int rc; TestvfsBuffer *pBuffer; char *zName; if( objc!=3 && objc!=4 ){ Tcl_WrongNumArgs(interp, 2, objv, "FILE ?VALUE?"); return TCL_ERROR; } zName = ckalloc(p->pParent->mxPathname); |
︙ | ︙ | |||
1156 1157 1158 1159 1160 1161 1162 | { "xFullPathname", TESTVFS_FULLPATHNAME_MASK }, { "xUnlock", TESTVFS_UNLOCK_MASK }, { "xLock", TESTVFS_LOCK_MASK }, { "xCheckReservedLock", TESTVFS_CKLOCK_MASK }, }; Tcl_Obj **apElem = 0; int nElem = 0; | < | 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 | { "xFullPathname", TESTVFS_FULLPATHNAME_MASK }, { "xUnlock", TESTVFS_UNLOCK_MASK }, { "xLock", TESTVFS_LOCK_MASK }, { "xCheckReservedLock", TESTVFS_CKLOCK_MASK }, }; Tcl_Obj **apElem = 0; int nElem = 0; int mask = 0; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 2, objv, "LIST"); return TCL_ERROR; } if( Tcl_ListObjGetElements(interp, objv[2], &nElem, &apElem) ){ return TCL_ERROR; |
︙ | ︙ |
Changes to src/tokenize.c.
︙ | ︙ | |||
426 427 428 429 430 431 432 | sqlite3ErrorMsg(pParse, "interrupt"); pParse->rc = SQLITE_INTERRUPT; goto abort_parse; } break; } case TK_ILLEGAL: { | < | < > | > > | 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | sqlite3ErrorMsg(pParse, "interrupt"); pParse->rc = SQLITE_INTERRUPT; goto abort_parse; } break; } case TK_ILLEGAL: { sqlite3ErrorMsg(pParse, "unrecognized token: \"%T\"", &pParse->sLastToken); goto abort_parse; } case TK_SEMI: { pParse->zTail = &zSql[i]; /* Fall thru into the default case */ } default: { sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse); lastTokenParsed = tokenType; if( pParse->rc!=SQLITE_OK ){ goto abort_parse; } break; } } } abort_parse: assert( nErr==0 ); if( zSql[i]==0 && pParse->rc==SQLITE_OK ){ if( lastTokenParsed!=TK_SEMI ){ sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse); pParse->zTail = &zSql[i]; } sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse); } #ifdef YYTRACKMAXSTACKDEPTH sqlite3_mutex_enter(sqlite3MallocMutex()); sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK, sqlite3ParserStackPeak(pEngine) ); sqlite3_mutex_leave(sqlite3MallocMutex()); #endif /* YYDEBUG */ sqlite3ParserFree(pEngine, sqlite3_free); db->lookaside.bEnabled = enableLookaside; if( db->mallocFailed ){ pParse->rc = SQLITE_NOMEM; } if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){ |
︙ | ︙ | |||
511 512 513 514 515 516 517 | sqlite3DbFree(db, p); } while( pParse->pZombieTab ){ Table *p = pParse->pZombieTab; pParse->pZombieTab = p->pNextZombie; sqlite3DeleteTable(db, p); } | < | < | 512 513 514 515 516 517 518 519 520 521 | sqlite3DbFree(db, p); } while( pParse->pZombieTab ){ Table *p = pParse->pZombieTab; pParse->pZombieTab = p->pNextZombie; sqlite3DeleteTable(db, p); } assert( nErr==0 || pParse->rc!=SQLITE_OK ); return nErr; } |
Changes to src/trigger.c.
︙ | ︙ | |||
189 190 191 192 193 194 195 | } goto trigger_cleanup; } /* Do not create a trigger on a system table */ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ sqlite3ErrorMsg(pParse, "cannot create trigger on system table"); | < | 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | } goto trigger_cleanup; } /* Do not create a trigger on a system table */ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ sqlite3ErrorMsg(pParse, "cannot create trigger on system table"); goto trigger_cleanup; } /* INSTEAD of triggers are only for views and views only support INSTEAD ** of triggers. */ if( pTab->pSelect && tr_tm!=TK_INSTEAD ){ |
︙ | ︙ | |||
369 370 371 372 373 374 375 | static TriggerStep *triggerStepAllocate( sqlite3 *db, /* Database connection */ u8 op, /* Trigger opcode */ Token *pName /* The target name */ ){ TriggerStep *pTriggerStep; | | > | < | 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | static TriggerStep *triggerStepAllocate( sqlite3 *db, /* Database connection */ u8 op, /* Trigger opcode */ Token *pName /* The target name */ ){ TriggerStep *pTriggerStep; pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n + 1); if( pTriggerStep ){ char *z = (char*)&pTriggerStep[1]; memcpy(z, pName->z, pName->n); sqlite3Dequote(z); pTriggerStep->zTarget = z; pTriggerStep->op = op; } return pTriggerStep; } /* ** Build a trigger step out of an INSERT statement. Return a pointer |
︙ | ︙ | |||
657 658 659 660 661 662 663 | if( pMask ){ *pMask = mask; } return (mask ? pList : 0); } /* | | > | | | < | | 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 | if( pMask ){ *pMask = mask; } return (mask ? pList : 0); } /* ** Convert the pStep->zTarget string into a SrcList and return a pointer ** to that SrcList. ** ** This routine adds a specific database name, if needed, to the target when ** forming the SrcList. This prevents a trigger in one database from ** referring to a target in another database. An exception is when the ** trigger is in TEMP in which case it can refer to any other database it ** wants. */ static SrcList *targetSrcList( Parse *pParse, /* The parsing context */ TriggerStep *pStep /* The trigger containing the target token */ ){ sqlite3 *db = pParse->db; int iDb; /* Index of the database to use */ SrcList *pSrc; /* SrcList to be returned */ pSrc = sqlite3SrcListAppend(db, 0, 0, 0); if( pSrc ){ assert( pSrc->nSrc>0 ); pSrc->a[pSrc->nSrc-1].zName = sqlite3DbStrDup(db, pStep->zTarget); iDb = sqlite3SchemaToIndex(db, pStep->pTrig->pSchema); if( iDb==0 || iDb>=2 ){ assert( iDb<db->nDb ); pSrc->a[pSrc->nSrc-1].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName); } } return pSrc; } /* |
︙ | ︙ | |||
792 793 794 795 796 797 798 799 800 801 802 803 804 805 | */ static void transferParseError(Parse *pTo, Parse *pFrom){ assert( pFrom->zErrMsg==0 || pFrom->nErr ); assert( pTo->zErrMsg==0 || pTo->nErr ); if( pTo->nErr==0 ){ pTo->zErrMsg = pFrom->zErrMsg; pTo->nErr = pFrom->nErr; }else{ sqlite3DbFree(pFrom->db, pFrom->zErrMsg); } } /* ** Create and populate a new TriggerPrg object with a sub-program | > | 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 | */ static void transferParseError(Parse *pTo, Parse *pFrom){ assert( pFrom->zErrMsg==0 || pFrom->nErr ); assert( pTo->zErrMsg==0 || pTo->nErr ); if( pTo->nErr==0 ){ pTo->zErrMsg = pFrom->zErrMsg; pTo->nErr = pFrom->nErr; pTo->rc = pFrom->rc; }else{ sqlite3DbFree(pFrom->db, pFrom->zErrMsg); } } /* ** Create and populate a new TriggerPrg object with a sub-program |
︙ | ︙ |
Changes to src/util.c.
︙ | ︙ | |||
651 652 653 654 655 656 657 658 659 660 661 662 663 664 | memcpy(pValue, &u, 4); return 1; }else{ return 0; } } #endif for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ v = v*10 + c; } /* The longest decimal representation of a 32 bit integer is 10 digits: ** ** 1234567890 | > | 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 | memcpy(pValue, &u, 4); return 1; }else{ return 0; } } #endif while( zNum[0]=='0' ) zNum++; for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ v = v*10 + c; } /* The longest decimal representation of a 32 bit integer is 10 digits: ** ** 1234567890 |
︙ | ︙ |
Changes to src/vacuum.c.
︙ | ︙ | |||
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy ** the contents to the temporary database. */ rc = execExecSql(db, pzErrMsg, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM main.' || quote(name) || ';'" "FROM main.sqlite_master " "WHERE type = 'table' AND name!='sqlite_sequence' " " AND coalesce(rootpage,1)>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy over the sequence table */ rc = execExecSql(db, pzErrMsg, "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' " | > > > > | 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy ** the contents to the temporary database. */ assert( (db->flags & SQLITE_Vacuum)==0 ); db->flags |= SQLITE_Vacuum; rc = execExecSql(db, pzErrMsg, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM main.' || quote(name) || ';'" "FROM main.sqlite_master " "WHERE type = 'table' AND name!='sqlite_sequence' " " AND coalesce(rootpage,1)>0" ); assert( (db->flags & SQLITE_Vacuum)!=0 ); db->flags &= ~SQLITE_Vacuum; if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy over the sequence table */ rc = execExecSql(db, pzErrMsg, "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' " |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 | Savepoint *p; for(p=db->pSavepoint; p; p=p->pNext) n++; assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* ** Execute as much of a VDBE program as we can. ** This is the core of sqlite3_step(). */ int sqlite3VdbeExec( Vdbe *p /* The VDBE */ ){ | > > > > > > > > > > > > > > > < | > > > | 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 | Savepoint *p; for(p=db->pSavepoint; p; p=p->pNext) n++; assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); return 1; } #endif /* ** Return the register of pOp->p2 after first preparing it to be ** overwritten with an integer value. */ static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ Mem *pOut; assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem-p->nCursor) ); pOut = &p->aMem[pOp->p2]; memAboutToChange(p, pOut); if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); pOut->flags = MEM_Int; return pOut; } /* ** Execute as much of a VDBE program as we can. ** This is the core of sqlite3_step(). */ int sqlite3VdbeExec( Vdbe *p /* The VDBE */ ){ Op *aOp = p->aOp; /* Copy of p->aOp */ Op *pOp = aOp; /* Current operation */ #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) Op *pOrigOp; /* Value of pOp at the top of the loop */ #endif int rc = SQLITE_OK; /* Value to return */ sqlite3 *db = p->db; /* The database */ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ u8 encoding = ENC(db); /* The database encoding */ int iCompare = 0; /* Result of last OP_Compare operation */ unsigned nVmStep = 0; /* Number of virtual machine steps */ #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
︙ | ︙ | |||
596 597 598 599 600 601 602 | } } } if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); } sqlite3EndBenignMalloc(); #endif | | | < | | < < < < < < < < < < < < < < < > | 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 | } } } if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); } sqlite3EndBenignMalloc(); #endif for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){ assert( pOp>=aOp && pOp<&aOp[p->nOp]); if( db->mallocFailed ) goto no_mem; #ifdef VDBE_PROFILE start = sqlite3Hwtime(); #endif nVmStep++; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; #endif /* Only allow tracing if SQLITE_DEBUG is defined. */ #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); } #endif /* Check to see if we need to simulate an interrupt. This only happens ** if we have a special test build. */ #ifdef SQLITE_TEST if( sqlite3_interrupt_count>0 ){ sqlite3_interrupt_count--; if( sqlite3_interrupt_count==0 ){ sqlite3_interrupt(db); } } #endif /* Sanity checking on other operands */ #ifdef SQLITE_DEBUG assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); if( (pOp->opflags & OPFLG_IN1)!=0 ){ assert( pOp->p1>0 ); assert( pOp->p1<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p1]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); } |
︙ | ︙ | |||
678 679 680 681 682 683 684 685 686 687 688 689 690 691 | } if( (pOp->opflags & OPFLG_OUT3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem-p->nCursor) ); memAboutToChange(p, &aMem[pOp->p3]); } #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a ** separate instruction in the virtual machine. If we follow the usual ** indentation conventions, each case should be indented by 6 spaces. But | > > > | 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 | } if( (pOp->opflags & OPFLG_OUT3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem-p->nCursor) ); memAboutToChange(p, &aMem[pOp->p3]); } #endif #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) pOrigOp = pOp; #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a ** separate instruction in the virtual machine. If we follow the usual ** indentation conventions, each case should be indented by 6 spaces. But |
︙ | ︙ | |||
701 702 703 704 705 706 707 | ** opcode and the opcodes.c file is filled with an array of strings where ** each string is the symbolic name for the corresponding opcode. If the ** case statement is followed by a comment of the form "/# same as ... #/" ** that comment is used to determine the particular value of the opcode. ** ** Other keywords in the comment that follows each case are used to ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. | | | 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 | ** opcode and the opcodes.c file is filled with an array of strings where ** each string is the symbolic name for the corresponding opcode. If the ** case statement is followed by a comment of the form "/# same as ... #/" ** that comment is used to determine the particular value of the opcode. ** ** Other keywords in the comment that follows each case are used to ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. ** Keywords include: in1, in2, in3, out2, out3. See ** the mkopcodeh.awk script for additional information. ** ** Documentation about VDBE opcodes is generated by scanning this file ** for lines of that contain "Opcode:". That line and all subsequent ** comment lines are used in the generation of the opcode.html documentation ** file. ** |
︙ | ︙ | |||
729 730 731 732 733 734 735 | ** ** The P1 parameter is not actually used by this opcode. However, it ** is sometimes set to 1 instead of 0 as a hint to the command-line shell ** that this Goto is the bottom of a loop and that the lines from P2 down ** to the current line should be indented for EXPLAIN output. */ case OP_Goto: { /* jump */ | > | | 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 | ** ** The P1 parameter is not actually used by this opcode. However, it ** is sometimes set to 1 instead of 0 as a hint to the command-line shell ** that this Goto is the bottom of a loop and that the lines from P2 down ** to the current line should be indented for EXPLAIN output. */ case OP_Goto: { /* jump */ jump_to_p2_and_check_for_interrupt: pOp = &aOp[pOp->p2 - 1]; /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon ** completion. Check to see if sqlite3_interrupt() has been called ** or if the progress callback needs to be invoked. ** ** This code uses unstructured "goto" statements and does not look clean. |
︙ | ︙ | |||
774 775 776 777 778 779 780 | */ case OP_Gosub: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); memAboutToChange(p, pIn1); pIn1->flags = MEM_Int; | | > > > > | | | 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 | */ case OP_Gosub: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); memAboutToChange(p, pIn1); pIn1->flags = MEM_Int; pIn1->u.i = (int)(pOp-aOp); REGISTER_TRACE(pOp->p1, pIn1); /* Most jump operations do a goto to this spot in order to update ** the pOp pointer. */ jump_to_p2: pOp = &aOp[pOp->p2 - 1]; break; } /* Opcode: Return P1 * * * * ** ** Jump to the next instruction after the address in register P1. After ** the jump, register P1 becomes undefined. */ case OP_Return: { /* in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags==MEM_Int ); pOp = &aOp[pIn1->u.i]; pIn1->flags = MEM_Undefined; break; } /* Opcode: InitCoroutine P1 P2 P3 * * ** ** Set up register P1 so that it will Yield to the coroutine |
︙ | ︙ | |||
812 813 814 815 816 817 818 | assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); assert( pOp->p2>=0 && pOp->p2<p->nOp ); assert( pOp->p3>=0 && pOp->p3<p->nOp ); pOut = &aMem[pOp->p1]; assert( !VdbeMemDynamic(pOut) ); pOut->u.i = pOp->p3 - 1; pOut->flags = MEM_Int; | | | | 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 | assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); assert( pOp->p2>=0 && pOp->p2<p->nOp ); assert( pOp->p3>=0 && pOp->p3<p->nOp ); pOut = &aMem[pOp->p1]; assert( !VdbeMemDynamic(pOut) ); pOut->u.i = pOp->p3 - 1; pOut->flags = MEM_Int; if( pOp->p2 ) goto jump_to_p2; break; } /* Opcode: EndCoroutine P1 * * * * ** ** The instruction at the address in register P1 is a Yield. ** Jump to the P2 parameter of that Yield. ** After the jump, register P1 becomes undefined. ** ** See also: InitCoroutine */ case OP_EndCoroutine: { /* in1 */ VdbeOp *pCaller; pIn1 = &aMem[pOp->p1]; assert( pIn1->flags==MEM_Int ); assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); pCaller = &aOp[pIn1->u.i]; assert( pCaller->opcode==OP_Yield ); assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); pOp = &aOp[pCaller->p2 - 1]; pIn1->flags = MEM_Undefined; break; } /* Opcode: Yield P1 P2 * * * ** ** Swap the program counter with the value in register P1. This |
︙ | ︙ | |||
856 857 858 859 860 861 862 | */ case OP_Yield: { /* in1, jump */ int pcDest; pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); pIn1->flags = MEM_Int; pcDest = (int)pIn1->u.i; | | | | 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 | */ case OP_Yield: { /* in1, jump */ int pcDest; pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); pIn1->flags = MEM_Int; pcDest = (int)pIn1->u.i; pIn1->u.i = (int)(pOp - aOp); REGISTER_TRACE(pOp->p1, pIn1); pOp = &aOp[pcDest]; break; } /* Opcode: HaltIfNull P1 P2 P3 P4 P5 ** Synopsis: if r[P3]=null halt ** ** Check the value in register P3. If it is NULL then Halt using |
︙ | ︙ | |||
909 910 911 912 913 914 915 916 917 918 | ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { const char *zType; const char *zLogFmt; if( pOp->p1==SQLITE_OK && p->pFrame ){ /* Halt the sub-program. Return control to the parent frame. */ | > > > | | | | > | | 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 | ** There is an implied "Halt 0 0 0" instruction inserted at the very end of ** every program. So a jump past the last instruction of the program ** is the same as executing Halt. */ case OP_Halt: { const char *zType; const char *zLogFmt; VdbeFrame *pFrame; int pcx; pcx = (int)(pOp - aOp); if( pOp->p1==SQLITE_OK && p->pFrame ){ /* Halt the sub-program. Return control to the parent frame. */ pFrame = p->pFrame; p->pFrame = pFrame->pParent; p->nFrame--; sqlite3VdbeSetChanges(db, p->nChange); pcx = sqlite3VdbeFrameRestore(pFrame); lastRowid = db->lastRowid; if( pOp->p2==OE_Ignore ){ /* Instruction pcx is the OP_Program that invoked the sub-program ** currently being halted. If the p2 instruction of this OP_Halt ** instruction is set to OE_Ignore, then the sub-program is throwing ** an IGNORE exception. In this case jump to the address specified ** as the p2 of the calling OP_Program. */ pcx = p->aOp[pcx].p2-1; } aOp = p->aOp; aMem = p->aMem; pOp = &aOp[pcx]; break; } p->rc = pOp->p1; p->errorAction = (u8)pOp->p2; p->pc = pcx; if( p->rc ){ if( pOp->p5 ){ static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", "FOREIGN KEY" }; assert( pOp->p5>=1 && pOp->p5<=4 ); testcase( pOp->p5==1 ); testcase( pOp->p5==2 ); |
︙ | ︙ | |||
956 957 958 959 960 961 962 | sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", zType, pOp->p4.z); }else if( pOp->p4.z ){ sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); }else{ sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); } | | > | > | > | > | > | 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 | sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", zType, pOp->p4.z); }else if( pOp->p4.z ){ sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); }else{ sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); } sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg); } rc = sqlite3VdbeHalt(p); assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); if( rc==SQLITE_BUSY ){ p->rc = rc = SQLITE_BUSY; }else{ assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; } pOp = &aOp[pcx]; goto vdbe_return; } /* Opcode: Integer P1 P2 * * * ** Synopsis: r[P2]=P1 ** ** The 32-bit integer value P1 is written into register P2. */ case OP_Integer: { /* out2 */ pOut = out2Prerelease(p, pOp); pOut->u.i = pOp->p1; break; } /* Opcode: Int64 * P2 * P4 * ** Synopsis: r[P2]=P4 ** ** P4 is a pointer to a 64-bit integer value. ** Write that value into register P2. */ case OP_Int64: { /* out2 */ pOut = out2Prerelease(p, pOp); assert( pOp->p4.pI64!=0 ); pOut->u.i = *pOp->p4.pI64; break; } #ifndef SQLITE_OMIT_FLOATING_POINT /* Opcode: Real * P2 * P4 * ** Synopsis: r[P2]=P4 ** ** P4 is a pointer to a 64-bit floating point value. ** Write that value into register P2. */ case OP_Real: { /* same as TK_FLOAT, out2 */ pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Real; assert( !sqlite3IsNaN(*pOp->p4.pReal) ); pOut->u.r = *pOp->p4.pReal; break; } #endif /* Opcode: String8 * P2 * P4 * ** Synopsis: r[P2]='P4' ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed ** into a String opcode before it is executed for the first time. During ** this transformation, the length of string P4 is computed and stored ** as the P1 parameter. */ case OP_String8: { /* same as TK_STRING, out2 */ assert( pOp->p4.z!=0 ); pOut = out2Prerelease(p, pOp); pOp->opcode = OP_String; pOp->p1 = sqlite3Strlen30(pOp->p4.z); #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); if( rc==SQLITE_TOOBIG ) goto too_big; |
︙ | ︙ | |||
1053 1054 1055 1056 1057 1058 1059 | ** The string value P4 of length P1 (bytes) is stored in register P2. ** ** If P5!=0 and the content of register P3 is greater than zero, then ** the datatype of the register P2 is converted to BLOB. The content is ** the same sequence of bytes, it is merely interpreted as a BLOB instead ** of a string, as if it had been CAST. */ | | > | 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 | ** The string value P4 of length P1 (bytes) is stored in register P2. ** ** If P5!=0 and the content of register P3 is greater than zero, then ** the datatype of the register P2 is converted to BLOB. The content is ** the same sequence of bytes, it is merely interpreted as a BLOB instead ** of a string, as if it had been CAST. */ case OP_String: { /* out2 */ assert( pOp->p4.z!=0 ); pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Str|MEM_Static|MEM_Term; pOut->z = pOp->p4.z; pOut->n = pOp->p1; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); if( pOp->p5 ){ assert( pOp->p3>0 ); |
︙ | ︙ | |||
1082 1083 1084 1085 1086 1087 1088 | ** is less than P2 (typically P3 is zero) then only register P2 is ** set to NULL. ** ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that ** NULL values will not compare equal even if SQLITE_NULLEQ is set on ** OP_Ne or OP_Eq. */ | | > | 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 | ** is less than P2 (typically P3 is zero) then only register P2 is ** set to NULL. ** ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that ** NULL values will not compare equal even if SQLITE_NULLEQ is set on ** OP_Ne or OP_Eq. */ case OP_Null: { /* out2 */ int cnt; u16 nullFlag; pOut = out2Prerelease(p, pOp); cnt = pOp->p3-pOp->p2; assert( pOp->p3<=(p->nMem-p->nCursor) ); pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; while( cnt>0 ){ pOut++; memAboutToChange(p, pOut); sqlite3VdbeMemSetNull(pOut); |
︙ | ︙ | |||
1119 1120 1121 1122 1123 1124 1125 | /* Opcode: Blob P1 P2 * P4 * ** Synopsis: r[P2]=P4 (len=P1) ** ** P4 points to a blob of data P1 bytes long. Store this ** blob in register P2. */ | | > | > | 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 | /* Opcode: Blob P1 P2 * P4 * ** Synopsis: r[P2]=P4 (len=P1) ** ** P4 points to a blob of data P1 bytes long. Store this ** blob in register P2. */ case OP_Blob: { /* out2 */ assert( pOp->p1 <= SQLITE_MAX_LENGTH ); pOut = out2Prerelease(p, pOp); sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Variable P1 P2 * P4 * ** Synopsis: r[P2]=parameter(P1,P4) ** ** Transfer the values of bound parameter P1 into register P2 ** ** If the parameter is named, then its name appears in P4. ** The P4 value is used by sqlite3_bind_parameter_name(). */ case OP_Variable: { /* out2 */ Mem *pVar; /* Value being transferred */ assert( pOp->p1>0 && pOp->p1<=p->nVar ); assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); pVar = &p->aVar[pOp->p1 - 1]; if( sqlite3VdbeMemTooBig(pVar) ){ goto too_big; } pOut = out2Prerelease(p, pOp); sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Move P1 P2 P3 * * ** Synopsis: r[P2@P3]=r[P1@P3] |
︙ | ︙ | |||
1320 1321 1322 1323 1324 1325 1326 | sqlite3VdbeMemNulTerminate(&pMem[i]); REGISTER_TRACE(pOp->p1+i, &pMem[i]); } if( db->mallocFailed ) goto no_mem; /* Return SQLITE_ROW */ | | | 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 | sqlite3VdbeMemNulTerminate(&pMem[i]); REGISTER_TRACE(pOp->p1+i, &pMem[i]); } if( db->mallocFailed ) goto no_mem; /* Return SQLITE_ROW */ p->pc = (int)(pOp - aOp) + 1; rc = SQLITE_ROW; goto vdbe_return; } /* Opcode: Concat P1 P2 P3 * * ** Synopsis: r[P3]=r[P2]+r[P1] ** |
︙ | ︙ | |||
1566 1567 1568 1569 1570 1571 1572 | apVal[i] = pArg; Deephemeralize(pArg); REGISTER_TRACE(pOp->p2+i, pArg); } assert( pOp->p4type==P4_FUNCDEF ); ctx.pFunc = pOp->p4.pFunc; | | | | 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 | apVal[i] = pArg; Deephemeralize(pArg); REGISTER_TRACE(pOp->p2+i, pArg); } assert( pOp->p4type==P4_FUNCDEF ); ctx.pFunc = pOp->p4.pFunc; ctx.iOp = (int)(pOp - aOp); ctx.pVdbe = p; MemSetTypeFlag(ctx.pOut, MEM_Null); ctx.fErrorOrAux = 0; db->lastRowid = lastRowid; (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ /* If the function returned an error, throw an exception */ if( ctx.fErrorOrAux ){ if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut)); rc = ctx.isError; } sqlite3VdbeDeleteAuxData(p, (int)(pOp - aOp), pOp->p1); } /* Copy the result of the function into register P3 */ sqlite3VdbeChangeEncoding(ctx.pOut, encoding); if( sqlite3VdbeMemTooBig(ctx.pOut) ){ goto too_big; } |
︙ | ︙ | |||
1709 1710 1711 1712 1713 1714 1715 | applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ | | < | 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 | applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ goto jump_to_p2; } } } MemSetTypeFlag(pIn1, MEM_Int); break; } |
︙ | ︙ | |||
1896 1897 1898 1899 1900 1901 1902 | if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; MemSetTypeFlag(pOut, MEM_Null); REGISTER_TRACE(pOp->p2, pOut); }else{ VdbeBranchTaken(2,3); if( pOp->p5 & SQLITE_JUMPIFNULL ){ | | > > > > | 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 | if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; MemSetTypeFlag(pOut, MEM_Null); REGISTER_TRACE(pOp->p2, pOut); }else{ VdbeBranchTaken(2,3); if( pOp->p5 & SQLITE_JUMPIFNULL ){ goto jump_to_p2; } } break; } }else{ /* Neither operand is NULL. Do a comparison. */ affinity = pOp->p5 & SQLITE_AFF_MASK; if( affinity>=SQLITE_AFF_NUMERIC ){ if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn1,0); } if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3,0); } }else if( affinity==SQLITE_AFF_TEXT ){ if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){ testcase( pIn1->flags & MEM_Int ); testcase( pIn1->flags & MEM_Real ); sqlite3VdbeMemStringify(pIn1, encoding, 1); testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); } if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){ testcase( pIn3->flags & MEM_Int ); testcase( pIn3->flags & MEM_Real ); sqlite3VdbeMemStringify(pIn3, encoding, 1); testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); } } assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); if( pIn1->flags & MEM_Zero ){ sqlite3VdbeMemExpandBlob(pIn1); flags1 &= ~MEM_Zero; } |
︙ | ︙ | |||
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 | case OP_Eq: res = res==0; break; case OP_Ne: res = res!=0; break; case OP_Lt: res = res<0; break; case OP_Le: res = res<=0; break; case OP_Gt: res = res>0; break; default: res = res>=0; break; } if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = res; REGISTER_TRACE(pOp->p2, pOut); }else{ VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); if( res ){ | > > > > > > | < < < | 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 | case OP_Eq: res = res==0; break; case OP_Ne: res = res!=0; break; case OP_Lt: res = res<0; break; case OP_Le: res = res<=0; break; case OP_Gt: res = res>0; break; default: res = res>=0; break; } /* Undo any changes made by applyAffinity() to the input registers. */ assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); pIn1->flags = flags1; assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); pIn3->flags = flags3; if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = res; REGISTER_TRACE(pOp->p2, pOut); }else{ VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); if( res ){ goto jump_to_p2; } } break; } /* Opcode: Permutation * * * P4 * ** ** Set the permutation used by the OP_Compare operator to be the array ** of integers in P4. |
︙ | ︙ | |||
2053 2054 2055 2056 2057 2058 2059 | ** ** Jump to the instruction at address P1, P2, or P3 depending on whether ** in the most recent OP_Compare instruction the P1 vector was less than ** equal to, or greater than the P2 vector, respectively. */ case OP_Jump: { /* jump */ if( iCompare<0 ){ | | | | | 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 | ** ** Jump to the instruction at address P1, P2, or P3 depending on whether ** in the most recent OP_Compare instruction the P1 vector was less than ** equal to, or greater than the P2 vector, respectively. */ case OP_Jump: { /* jump */ if( iCompare<0 ){ VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1]; }else if( iCompare==0 ){ VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1]; }else{ VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1]; } break; } /* Opcode: And P1 P2 P3 * * ** Synopsis: r[P3]=(r[P1] && r[P2]) ** |
︙ | ︙ | |||
2167 2168 2169 2170 2171 2172 2173 | ** All "once" flags are initially cleared whenever a prepared statement ** first begins to run. */ case OP_Once: { /* jump */ assert( pOp->p1<p->nOnceFlag ); VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); if( p->aOnceFlag[pOp->p1] ){ | | | 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 | ** All "once" flags are initially cleared whenever a prepared statement ** first begins to run. */ case OP_Once: { /* jump */ assert( pOp->p1<p->nOnceFlag ); VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); if( p->aOnceFlag[pOp->p1] ){ goto jump_to_p2; }else{ p->aOnceFlag[pOp->p1] = 1; } break; } /* Opcode: If P1 P2 P3 * * |
︙ | ︙ | |||
2202 2203 2204 2205 2206 2207 2208 | #else c = sqlite3VdbeRealValue(pIn1)!=0.0; #endif if( pOp->opcode==OP_IfNot ) c = !c; } VdbeBranchTaken(c!=0, 2); if( c ){ | | | | | 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 | #else c = sqlite3VdbeRealValue(pIn1)!=0.0; #endif if( pOp->opcode==OP_IfNot ) c = !c; } VdbeBranchTaken(c!=0, 2); if( c ){ goto jump_to_p2; } break; } /* Opcode: IsNull P1 P2 * * * ** Synopsis: if r[P1]==NULL goto P2 ** ** Jump to P2 if the value in register P1 is NULL. */ case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); if( (pIn1->flags & MEM_Null)!=0 ){ goto jump_to_p2; } break; } /* Opcode: NotNull P1 P2 * * * ** Synopsis: if r[P1]!=NULL goto P2 ** ** Jump to P2 if the value in register P1 is not NULL. */ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); if( (pIn1->flags & MEM_Null)==0 ){ goto jump_to_p2; } break; } /* Opcode: Column P1 P2 P3 P4 P5 ** Synopsis: r[P3]=PX ** |
︙ | ︙ | |||
2568 2569 2570 2571 2572 2573 2574 | */ case OP_MakeRecord: { u8 *zNewRecord; /* A buffer to hold the data for the new record */ Mem *pRec; /* The new record */ u64 nData; /* Number of bytes of data space */ int nHdr; /* Number of bytes of header space */ i64 nByte; /* Data space required for this record */ | | | 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 | */ case OP_MakeRecord: { u8 *zNewRecord; /* A buffer to hold the data for the new record */ Mem *pRec; /* The new record */ u64 nData; /* Number of bytes of data space */ int nHdr; /* Number of bytes of header space */ i64 nByte; /* Data space required for this record */ i64 nZero; /* Number of zero bytes at the end of the record */ int nVarint; /* Number of bytes in a varint */ u32 serial_type; /* Type field */ Mem *pData0; /* First field to be combined into the record */ Mem *pLast; /* Last field of the record */ int nField; /* Number of fields in the record */ char *zAffinity; /* The affinity string for the record */ int file_format; /* File format to use for encoding */ |
︙ | ︙ | |||
2660 2661 2662 2663 2664 2665 2666 | }else{ /* Rare case of a really large header */ nVarint = sqlite3VarintLen(nHdr); nHdr += nVarint; if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; } nByte = nHdr+nData; | | | 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 | }else{ /* Rare case of a really large header */ nVarint = sqlite3VarintLen(nHdr); nHdr += nVarint; if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; } nByte = nHdr+nData; if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } /* Make sure the output register has a buffer large enough to store ** the new record. The output register (pOp->p3) is not allowed to ** be one of the input registers (because the following call to ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). |
︙ | ︙ | |||
2711 2712 2713 2714 2715 2716 2717 | /* Opcode: Count P1 P2 * * * ** Synopsis: r[P2]=count() ** ** Store the number of entries (an integer value) in the table or index ** opened by cursor P1 in register P2 */ #ifndef SQLITE_OMIT_BTREECOUNT | | > | 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 | /* Opcode: Count P1 P2 * * * ** Synopsis: r[P2]=count() ** ** Store the number of entries (an integer value) in the table or index ** opened by cursor P1 in register P2 */ #ifndef SQLITE_OMIT_BTREECOUNT case OP_Count: { /* out2 */ i64 nEntry; BtCursor *pCrsr; pCrsr = p->apCsr[pOp->p1]->pCursor; assert( pCrsr ); nEntry = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3BtreeCount(pCrsr, &nEntry); pOut = out2Prerelease(p, pOp); pOut->u.i = nEntry; break; } #endif /* Opcode: Savepoint P1 * * P4 * ** |
︙ | ︙ | |||
2832 2833 2834 2835 2836 2837 2838 | int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; if( isTransaction && p1==SAVEPOINT_RELEASE ){ if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ goto vdbe_return; } db->autoCommit = 1; if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ | | | 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 | int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; if( isTransaction && p1==SAVEPOINT_RELEASE ){ if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ goto vdbe_return; } db->autoCommit = 1; if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); db->autoCommit = 0; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } db->isTransactionSavepoint = 0; rc = p->rc; }else{ |
︙ | ︙ | |||
2891 2892 2893 2894 2895 2896 2897 | db->nSavepoint--; } }else{ db->nDeferredCons = pSavepoint->nDeferredCons; db->nDeferredImmCons = pSavepoint->nDeferredImmCons; } | | | 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 | db->nSavepoint--; } }else{ db->nDeferredCons = pSavepoint->nDeferredCons; db->nDeferredImmCons = pSavepoint->nDeferredImmCons; } if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ rc = sqlite3VtabSavepoint(db, p1, iSavepoint); if( rc!=SQLITE_OK ) goto abort_due_to_error; } } } break; |
︙ | ︙ | |||
2951 2952 2953 2954 2955 2956 2957 | sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); db->autoCommit = 1; }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ goto vdbe_return; }else{ db->autoCommit = (u8)desiredAutoCommit; if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ | | | 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 | sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); db->autoCommit = 1; }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ goto vdbe_return; }else{ db->autoCommit = (u8)desiredAutoCommit; if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); db->autoCommit = (u8)(1-desiredAutoCommit); p->rc = rc = SQLITE_BUSY; goto vdbe_return; } } assert( db->nStatement==0 ); sqlite3CloseSavepoints(db); |
︙ | ︙ | |||
3028 3029 3030 3031 3032 3033 3034 | goto abort_due_to_error; } pBt = db->aDb[pOp->p1].pBt; if( pBt ){ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); if( rc==SQLITE_BUSY ){ | | | 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 | goto abort_due_to_error; } pBt = db->aDb[pOp->p1].pBt; if( pBt ){ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); if( rc==SQLITE_BUSY ){ p->pc = (int)(pOp - aOp); p->rc = rc = SQLITE_BUSY; goto vdbe_return; } if( rc!=SQLITE_OK ){ goto abort_due_to_error; } |
︙ | ︙ | |||
3107 3108 3109 3110 3111 3112 3113 | ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ | | > | 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 | ** the main database file and P1==1 is the database file used to store ** temporary tables. ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { /* out2 */ int iMeta; int iDb; int iCookie; assert( p->bIsReader ); iDb = pOp->p1; iCookie = pOp->p3; assert( pOp->p3<SQLITE_N_BTREE_META ); assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 ); assert( DbMaskTest(p->btreeMask, iDb) ); sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); pOut = out2Prerelease(p, pOp); pOut->u.i = iMeta; break; } /* Opcode: SetCookie P1 P2 P3 * * ** ** Write the content of register P3 (interpreted as an integer) |
︙ | ︙ | |||
3442 3443 3444 3445 3446 3447 3448 | */ case OP_SequenceTest: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC->pSorter ); if( (pC->seqCount++)==0 ){ | | | 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 | */ case OP_SequenceTest: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC->pSorter ); if( (pC->seqCount++)==0 ){ goto jump_to_p2; } break; } /* Opcode: OpenPseudo P1 P2 P3 * * ** Synopsis: P3 columns in r[P2] ** |
︙ | ︙ | |||
3619 3620 3621 3622 3623 3624 3625 | /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (pIn3->flags & MEM_Int)==0 ){ if( (pIn3->flags & MEM_Real)==0 ){ /* If the P3 value cannot be converted into any kind of a number, ** then the seek is not possible, so jump to P2 */ | | | 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 | /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (pIn3->flags & MEM_Int)==0 ){ if( (pIn3->flags & MEM_Real)==0 ){ /* If the P3 value cannot be converted into any kind of a number, ** then the seek is not possible, so jump to P2 */ VdbeBranchTaken(1,2); goto jump_to_p2; break; } /* If the approximation iKey is larger than the actual real search ** term, substitute >= for > and < for <=. e.g. if the search term ** is 4.9 and the integer approximation 5: ** |
︙ | ︙ | |||
3710 3711 3712 3713 3714 3715 3716 | */ res = sqlite3BtreeEof(pC->pCursor); } } assert( pOp->p2>0 ); VdbeBranchTaken(res!=0,2); if( res ){ | | | 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 | */ res = sqlite3BtreeEof(pC->pCursor); } } assert( pOp->p2>0 ); VdbeBranchTaken(res!=0,2); if( res ){ goto jump_to_p2; } break; } /* Opcode: Seek P1 P2 * * * ** Synopsis: intkey=r[P2] ** |
︙ | ︙ | |||
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 | ** ** See also: NotFound, Found, NotExists */ case OP_NoConflict: /* jump, in3 */ case OP_NotFound: /* jump, in3 */ case OP_Found: { /* jump, in3 */ int alreadyExists; int ii; VdbeCursor *pC; int res; char *pFree; UnpackedRecord *pIdxKey; UnpackedRecord r; char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; | > | 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 | ** ** See also: NotFound, Found, NotExists */ case OP_NoConflict: /* jump, in3 */ case OP_NotFound: /* jump, in3 */ case OP_Found: { /* jump, in3 */ int alreadyExists; int takeJump; int ii; VdbeCursor *pC; int res; char *pFree; UnpackedRecord *pIdxKey; UnpackedRecord r; char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; |
︙ | ︙ | |||
3826 3827 3828 3829 3830 3831 3832 | assert( pC!=0 ); #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif pIn3 = &aMem[pOp->p3]; assert( pC->pCursor!=0 ); assert( pC->isTable==0 ); | | | 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 | assert( pC!=0 ); #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif pIn3 = &aMem[pOp->p3]; assert( pC->pCursor!=0 ); assert( pC->isTable==0 ); pFree = 0; if( pOp->p4.i>0 ){ r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; r.aMem = pIn3; for(ii=0; ii<r.nField; ii++){ assert( memIsValid(&r.aMem[ii]) ); ExpandBlob(&r.aMem[ii]); |
︙ | ︙ | |||
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 | ); if( pIdxKey==0 ) goto no_mem; assert( pIn3->flags & MEM_Blob ); ExpandBlob(pIn3); sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); } pIdxKey->default_rc = 0; if( pOp->opcode==OP_NoConflict ){ /* For the OP_NoConflict opcode, take the jump if any of the ** input fields are NULL, since any key with a NULL will not ** conflict */ for(ii=0; ii<pIdxKey->nField; ii++){ if( pIdxKey->aMem[ii].flags & MEM_Null ){ | > | < | < | | | | 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 | ); if( pIdxKey==0 ) goto no_mem; assert( pIn3->flags & MEM_Blob ); ExpandBlob(pIn3); sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); } pIdxKey->default_rc = 0; takeJump = 0; if( pOp->opcode==OP_NoConflict ){ /* For the OP_NoConflict opcode, take the jump if any of the ** input fields are NULL, since any key with a NULL will not ** conflict */ for(ii=0; ii<pIdxKey->nField; ii++){ if( pIdxKey->aMem[ii].flags & MEM_Null ){ takeJump = 1; break; } } } rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); sqlite3DbFree(db, pFree); if( rc!=SQLITE_OK ){ break; } pC->seekResult = res; alreadyExists = (res==0); pC->nullRow = 1-alreadyExists; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( pOp->opcode==OP_Found ){ VdbeBranchTaken(alreadyExists!=0,2); if( alreadyExists ) goto jump_to_p2; }else{ VdbeBranchTaken(takeJump||alreadyExists==0,2); if( takeJump || !alreadyExists ) goto jump_to_p2; } break; } /* Opcode: NotExists P1 P2 P3 * * ** Synopsis: intkey=r[P3] ** |
︙ | ︙ | |||
3926 3927 3928 3929 3930 3931 3932 | iKey = pIn3->u.i; rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); pC->movetoTarget = iKey; /* Used by OP_Delete */ pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; pC->deferredMoveto = 0; VdbeBranchTaken(res!=0,2); | < < < > | > | > | 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 | iKey = pIn3->u.i; rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); pC->movetoTarget = iKey; /* Used by OP_Delete */ pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; pC->deferredMoveto = 0; VdbeBranchTaken(res!=0,2); pC->seekResult = res; if( res!=0 ) goto jump_to_p2; break; } /* Opcode: Sequence P1 P2 * * * ** Synopsis: r[P2]=cursor[P1].ctr++ ** ** Find the next available sequence number for cursor P1. ** Write the sequence number into register P2. ** The sequence number on the cursor is incremented after this ** instruction. */ case OP_Sequence: { /* out2 */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( p->apCsr[pOp->p1]!=0 ); pOut = out2Prerelease(p, pOp); pOut->u.i = p->apCsr[pOp->p1]->seqCount++; break; } /* Opcode: NewRowid P1 P2 P3 * * ** Synopsis: r[P2]=rowid ** ** Get a new integer record number (a.k.a "rowid") used as the key to a table. ** The record number is not previously used as a key in the database ** table that cursor P1 points to. The new record number is written ** written to register P2. ** ** If P3>0 then P3 is a register in the root frame of this VDBE that holds ** the largest previously generated record number. No new record numbers are ** allowed to be less than this value. When this value reaches its maximum, ** an SQLITE_FULL error is generated. The P3 register is updated with the ' ** generated record number. This P3 mechanism is used to help implement the ** AUTOINCREMENT feature. */ case OP_NewRowid: { /* out2 */ i64 v; /* The new rowid */ VdbeCursor *pC; /* Cursor of table to get the new rowid */ int res; /* Result of an sqlite3BtreeLast() */ int cnt; /* Counter to limit the number of searches */ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ VdbeFrame *pFrame; /* Root frame of VDBE */ v = 0; res = 0; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); if( NEVER(pC->pCursor==0) ){ /* The zero initialization above is all that is needed */ }else{ /* The next rowid or record number (different terms for the same |
︙ | ︙ | |||
4287 4288 4289 4290 4291 4292 4293 | assert( isSorter(pC) ); assert( pOp->p4type==P4_INT32 ); pIn3 = &aMem[pOp->p3]; nKeyCol = pOp->p4.i; res = 0; rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); VdbeBranchTaken(res!=0,2); | | < < | 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 | assert( isSorter(pC) ); assert( pOp->p4type==P4_INT32 ); pIn3 = &aMem[pOp->p3]; nKeyCol = pOp->p4.i; res = 0; rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; break; }; /* Opcode: SorterData P1 P2 P3 * * ** Synopsis: r[P2]=data ** ** Write into register P2 the current sorter data for sorter cursor P1. |
︙ | ︙ | |||
4418 4419 4420 4421 4422 4423 4424 | ** Store in register P2 an integer which is the key of the table entry that ** P1 is currently point to. ** ** P1 can be either an ordinary table or a virtual table. There used to ** be a separate OP_VRowid opcode for use with virtual tables, but this ** one opcode now works for both table types. */ | | > | 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 | ** Store in register P2 an integer which is the key of the table entry that ** P1 is currently point to. ** ** P1 can be either an ordinary table or a virtual table. There used to ** be a separate OP_VRowid opcode for use with virtual tables, but this ** one opcode now works for both table types. */ case OP_Rowid: { /* out2 */ VdbeCursor *pC; i64 v; sqlite3_vtab *pVtab; const sqlite3_module *pModule; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->pseudoTableReg==0 || pC->nullRow ); if( pC->nullRow ){ pOut->flags = MEM_Null; break; |
︙ | ︙ | |||
4476 4477 4478 4479 4480 4481 4482 | pC->cacheStatus = CACHE_STALE; if( pC->pCursor ){ sqlite3BtreeClearCursor(pC->pCursor); } break; } | | | 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 | pC->cacheStatus = CACHE_STALE; if( pC->pCursor ){ sqlite3BtreeClearCursor(pC->pCursor); } break; } /* Opcode: Last P1 P2 P3 * * ** ** The next use of the Rowid or Column or Prev instruction for P1 ** will refer to the last entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. ** |
︙ | ︙ | |||
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 | pCrsr = pC->pCursor; res = 0; assert( pCrsr!=0 ); rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; #ifdef SQLITE_DEBUG pC->seekOp = OP_Last; #endif if( pOp->p2>0 ){ VdbeBranchTaken(res!=0,2); | > | | 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 | pCrsr = pC->pCursor; res = 0; assert( pCrsr!=0 ); rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; pC->seekResult = pOp->p3; #ifdef SQLITE_DEBUG pC->seekOp = OP_Last; #endif if( pOp->p2>0 ){ VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; } break; } /* Opcode: Sort P1 P2 * * * ** |
︙ | ︙ | |||
4572 4573 4574 4575 4576 4577 4578 | rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } pC->nullRow = (u8)res; assert( pOp->p2>0 && pOp->p2<p->nOp ); VdbeBranchTaken(res!=0,2); | | < < | 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 | rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } pC->nullRow = (u8)res; assert( pOp->p2>0 && pOp->p2<p->nOp ); VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; break; } /* Opcode: Next P1 P2 P3 P4 P5 ** ** Advance cursor P1 so that it points to the next key/data pair in its ** table or index. If there are no more key/value pairs then fall through |
︙ | ︙ | |||
4685 4686 4687 4688 4689 4690 4691 | rc = pOp->p4.xAdvance(pC->pCursor, &res); next_tail: pC->cacheStatus = CACHE_STALE; VdbeBranchTaken(res==0,2); if( res==0 ){ pC->nullRow = 0; | < > | 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 | rc = pOp->p4.xAdvance(pC->pCursor, &res); next_tail: pC->cacheStatus = CACHE_STALE; VdbeBranchTaken(res==0,2); if( res==0 ){ pC->nullRow = 0; p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif goto jump_to_p2_and_check_for_interrupt; }else{ pC->nullRow = 1; } goto check_for_interrupt; } /* Opcode: IdxInsert P1 P2 P3 * P5 |
︙ | ︙ | |||
4797 4798 4799 4800 4801 4802 4803 | ** ** Write into register P2 an integer which is the last entry in the record at ** the end of the index key pointed to by cursor P1. This integer should be ** the rowid of the table entry to which this index entry points. ** ** See also: Rowid, MakeRecord. */ | | > | 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 | ** ** Write into register P2 an integer which is the last entry in the record at ** the end of the index key pointed to by cursor P1. This integer should be ** the rowid of the table entry to which this index entry points. ** ** See also: Rowid, MakeRecord. */ case OP_IdxRowid: { /* out2 */ BtCursor *pCrsr; VdbeCursor *pC; i64 rowid; pOut = out2Prerelease(p, pOp); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pCrsr = pC->pCursor; assert( pCrsr!=0 ); pOut->flags = MEM_Null; assert( pC->isTable==0 ); |
︙ | ︙ | |||
4914 4915 4916 4917 4918 4919 4920 | assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); res = -res; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); res++; } VdbeBranchTaken(res>0,2); | | < < | 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 | assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); res = -res; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); res++; } VdbeBranchTaken(res>0,2); if( res>0 ) goto jump_to_p2; break; } /* Opcode: Destroy P1 P2 P3 * * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. |
︙ | ︙ | |||
4940 4941 4942 4943 4944 4945 4946 | ** is stored in register P2. If no page ** movement was required (because the table being dropped was already ** the last one in the database) then a zero is stored in register P2. ** If AUTOVACUUM is disabled then a zero is stored in register P2. ** ** See also: Clear */ | | < < < | < < < < < < < < < < | < | 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 | ** is stored in register P2. If no page ** movement was required (because the table being dropped was already ** the last one in the database) then a zero is stored in register P2. ** If AUTOVACUUM is disabled then a zero is stored in register P2. ** ** See also: Clear */ case OP_Destroy: { /* out2 */ int iMoved; int iDb; assert( p->readOnly==0 ); pOut = out2Prerelease(p, pOp); pOut->flags = MEM_Null; if( db->nVdbeRead > db->nVDestroy+1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; }else{ iDb = pOp->p3; assert( DbMaskTest(p->btreeMask, iDb) ); iMoved = 0; /* Not needed. Only to silence a warning. */ rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); pOut->flags = MEM_Int; pOut->u.i = iMoved; #ifndef SQLITE_OMIT_AUTOVACUUM if( rc==SQLITE_OK && iMoved!=0 ){ |
︙ | ︙ | |||
5068 5069 5070 5071 5072 5073 5074 | ** Allocate a new index in the main database file if P1==0 or in the ** auxiliary database file if P1==1 or in an attached database if ** P1>1. Write the root page number of the new table into ** register P2. ** ** See documentation on OP_CreateTable for additional information. */ | | | > | 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 | ** Allocate a new index in the main database file if P1==0 or in the ** auxiliary database file if P1==1 or in an attached database if ** P1>1. Write the root page number of the new table into ** register P2. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: /* out2 */ case OP_CreateTable: { /* out2 */ int pgno; int flags; Db *pDb; pOut = out2Prerelease(p, pOp); pgno = 0; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); if( pOp->opcode==OP_CreateTable ){ |
︙ | ︙ | |||
5299 5300 5301 5302 5303 5304 5305 | pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_RowSet)==0 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(pIn1); | < > < > | 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 | pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_RowSet)==0 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(pIn1); VdbeBranchTaken(1,2); goto jump_to_p2_and_check_for_interrupt; }else{ /* A value was pulled from the index */ VdbeBranchTaken(0,2); sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); } goto check_for_interrupt; } /* Opcode: RowSetTest P1 P2 P3 P4 ** Synopsis: if r[P3] in rowset(P1) goto P2 ** |
︙ | ︙ | |||
5355 5356 5357 5358 5359 5360 5361 | } assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); VdbeBranchTaken(exists!=0,2); | | < < < | 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 | } assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); VdbeBranchTaken(exists!=0,2); if( exists ) goto jump_to_p2; } if( iSet>=0 ){ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); } break; } |
︙ | ︙ | |||
5447 5448 5449 5450 5451 5452 5453 | sqlite3VdbeMemRelease(pRt); pRt->flags = MEM_Frame; pRt->u.pFrame = pFrame; pFrame->v = p; pFrame->nChildMem = nMem; pFrame->nChildCsr = pProgram->nCsr; | | | 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 | sqlite3VdbeMemRelease(pRt); pRt->flags = MEM_Frame; pRt->u.pFrame = pFrame; pFrame->v = p; pFrame->nChildMem = nMem; pFrame->nChildCsr = pProgram->nCsr; pFrame->pc = (int)(pOp - aOp); pFrame->aMem = p->aMem; pFrame->nMem = p->nMem; pFrame->apCsr = p->apCsr; pFrame->nCursor = p->nCursor; pFrame->aOp = p->aOp; pFrame->nOp = p->nOp; pFrame->token = pProgram->token; |
︙ | ︙ | |||
5470 5471 5472 5473 5474 5475 5476 | pMem->flags = MEM_Undefined; pMem->db = db; } }else{ pFrame = pRt->u.pFrame; assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); assert( pProgram->nCsr==pFrame->nChildCsr ); | | | | > | 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 | pMem->flags = MEM_Undefined; pMem->db = db; } }else{ pFrame = pRt->u.pFrame; assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); assert( pProgram->nCsr==pFrame->nChildCsr ); assert( (int)(pOp - aOp)==pFrame->pc ); } p->nFrame++; pFrame->pParent = p->pFrame; pFrame->lastRowid = lastRowid; pFrame->nChange = p->nChange; pFrame->nDbChange = p->db->nChange; p->nChange = 0; p->pFrame = pFrame; p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; p->nMem = pFrame->nChildMem; p->nCursor = (u16)pFrame->nChildCsr; p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; p->aOp = aOp = pProgram->aOp; p->nOp = pProgram->nOp; p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; p->nOnceFlag = pProgram->nOnce; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS p->anExec = 0; #endif pOp = &aOp[-1]; memset(p->aOnceFlag, 0, p->nOnceFlag); break; } /* Opcode: Param P1 P2 * * * ** ** This opcode is only ever present in sub-programs called via the ** OP_Program instruction. Copy a value currently stored in a memory ** cell of the calling (parent) frame to cell P2 in the current frames ** address space. This is used by trigger programs to access the new.* ** and old.* values. ** ** The address of the cell in the parent frame is determined by adding ** the value of the P1 argument to the value of the P1 argument to the ** calling OP_Program instruction. */ case OP_Param: { /* out2 */ VdbeFrame *pFrame; Mem *pIn; pOut = out2Prerelease(p, pOp); pFrame = p->pFrame; pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); break; } #endif /* #ifndef SQLITE_OMIT_TRIGGER */ |
︙ | ︙ | |||
5555 5556 5557 5558 5559 5560 5561 | ** is zero (the one that counts deferred constraint violations). If P1 is ** zero, the jump is taken if the statement constraint-counter is zero ** (immediate foreign key constraint violations). */ case OP_FkIfZero: { /* jump */ if( pOp->p1 ){ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); | | | | 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 | ** is zero (the one that counts deferred constraint violations). If P1 is ** zero, the jump is taken if the statement constraint-counter is zero ** (immediate foreign key constraint violations). */ case OP_FkIfZero: { /* jump */ if( pOp->p1 ){ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; }else{ VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; } break; } #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ #ifndef SQLITE_OMIT_AUTOINCREMENT /* Opcode: MemMax P1 P2 * * * |
︙ | ︙ | |||
5609 5610 5611 5612 5613 5614 5615 | ** If the initial value of register P1 is less than 1, then the ** value is unchanged and control passes through to the next instruction. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken( pIn1->u.i>0, 2); | | < < | < < | | < < | < < | 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 | ** If the initial value of register P1 is less than 1, then the ** value is unchanged and control passes through to the next instruction. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken( pIn1->u.i>0, 2); if( pIn1->u.i>0 ) goto jump_to_p2; break; } /* Opcode: IfNeg P1 P2 P3 * * ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2 ** ** Register P1 must contain an integer. Add literal P3 to the value in ** register P1 then if the value of register P1 is less than zero, jump to P2. */ case OP_IfNeg: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); pIn1->u.i += pOp->p3; VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i<0 ) goto jump_to_p2; break; } /* Opcode: IfNotZero P1 P2 P3 * * ** Synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2 ** ** Register P1 must contain an integer. If the content of register P1 is ** initially nonzero, then add P3 to P1 and jump to P2. If register P1 is ** initially zero, leave it unchanged and fall through. */ case OP_IfNotZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i ){ pIn1->u.i += pOp->p3; goto jump_to_p2; } break; } /* Opcode: DecrJumpZero P1 P2 * * * ** Synopsis: if (--r[P1])==0 goto P2 ** ** Register P1 must hold an integer. Decrement the value in register P1 ** then jump to P2 if the new value is exactly zero. */ case OP_DecrJumpZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); pIn1->u.i--; VdbeBranchTaken(pIn1->u.i==0, 2); if( pIn1->u.i==0 ) goto jump_to_p2; break; } /* Opcode: JumpZeroIncr P1 P2 * * * ** Synopsis: if (r[P1]++)==0 ) goto P2 ** ** The register P1 must contain an integer. If register P1 is initially ** zero, then jump to P2. Increment register P1 regardless of whether or ** not the jump is taken. */ case OP_JumpZeroIncr: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i==0, 2); if( (pIn1->u.i++)==0 ) goto jump_to_p2; break; } /* Opcode: AggStep * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the step function for an aggregate. The |
︙ | ︙ | |||
5723 5724 5725 5726 5727 5728 5729 | assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); ctx.pMem = pMem = &aMem[pOp->p3]; pMem->n++; sqlite3VdbeMemInit(&t, db, MEM_Null); ctx.pOut = &t; ctx.isError = 0; ctx.pVdbe = p; | | | 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 | assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); ctx.pMem = pMem = &aMem[pOp->p3]; pMem->n++; sqlite3VdbeMemInit(&t, db, MEM_Null); ctx.pOut = &t; ctx.isError = 0; ctx.pVdbe = p; ctx.iOp = (int)(pOp - aOp); ctx.skipFlag = 0; (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t)); rc = ctx.isError; } if( ctx.skipFlag ){ |
︙ | ︙ | |||
5818 5819 5820 5821 5822 5823 5824 | ** modes (delete, truncate, persist, off and memory), this is a simple ** operation. No IO is required. ** ** If changing into or out of WAL mode the procedure is more complicated. ** ** Write a string containing the final journal-mode to register P2. */ | | > | 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 | ** modes (delete, truncate, persist, off and memory), this is a simple ** operation. No IO is required. ** ** If changing into or out of WAL mode the procedure is more complicated. ** ** Write a string containing the final journal-mode to register P2. */ case OP_JournalMode: { /* out2 */ Btree *pBt; /* Btree to change journal mode of */ Pager *pPager; /* Pager associated with pBt */ int eNew; /* New journal mode */ int eOld; /* The old journal mode */ #ifndef SQLITE_OMIT_WAL const char *zFilename; /* Name of database file for pPager */ #endif pOut = out2Prerelease(p, pOp); eNew = pOp->p3; assert( eNew==PAGER_JOURNALMODE_DELETE || eNew==PAGER_JOURNALMODE_TRUNCATE || eNew==PAGER_JOURNALMODE_PERSIST || eNew==PAGER_JOURNALMODE_OFF || eNew==PAGER_JOURNALMODE_MEMORY || eNew==PAGER_JOURNALMODE_WAL |
︙ | ︙ | |||
5943 5944 5945 5946 5947 5948 5949 | assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(pBt); VdbeBranchTaken(rc==SQLITE_DONE,2); if( rc==SQLITE_DONE ){ | < > | 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 | assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( DbMaskTest(p->btreeMask, pOp->p1) ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(pBt); VdbeBranchTaken(rc==SQLITE_DONE,2); if( rc==SQLITE_DONE ){ rc = SQLITE_OK; goto jump_to_p2; } break; } #endif /* Opcode: Expire P1 * * * * ** |
︙ | ︙ | |||
6056 6057 6058 6059 6060 6061 6062 | #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VDestroy P1 * * P4 * ** ** P4 is the name of a virtual table in database P1. Call the xDestroy method ** of that table. */ case OP_VDestroy: { | | | | | > > > | > | 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 | #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VDestroy P1 * * P4 * ** ** P4 is the name of a virtual table in database P1. Call the xDestroy method ** of that table. */ case OP_VDestroy: { db->nVDestroy++; rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); db->nVDestroy--; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VOpen P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** P1 is a cursor number. This opcode opens a cursor to the virtual ** table and stores that cursor in P1. */ case OP_VOpen: { VdbeCursor *pCur; sqlite3_vtab_cursor *pVtabCursor; sqlite3_vtab *pVtab; const sqlite3_module *pModule; assert( p->bIsReader ); pCur = 0; pVtabCursor = 0; pVtab = pOp->p4.pVtab->pVtab; if( pVtab==0 || NEVER(pVtab->pModule==0) ){ rc = SQLITE_LOCKED; break; } pModule = pVtab->pModule; rc = pModule->xOpen(pVtab, &pVtabCursor); sqlite3VtabImportErrmsg(p, pVtab); if( SQLITE_OK==rc ){ /* Initialize sqlite3_vtab_cursor base class */ pVtabCursor->pVtab = pVtab; /* Initialize vdbe cursor object */ pCur = allocateCursor(p, pOp->p1, 0, -1, 0); if( pCur ){ pCur->pVtabCursor = pVtabCursor; pVtab->nRef++; }else{ db->mallocFailed = 1; pModule->xClose(pVtabCursor); } } break; } |
︙ | ︙ | |||
6150 6151 6152 6153 6154 6155 6156 | /* Grab the index number and argc parameters */ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); nArg = (int)pArgc->u.i; iQuery = (int)pQuery->u.i; /* Invoke the xFilter method */ | < | | | | | < < | < | | | | > | | < < < < < | 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 | /* Grab the index number and argc parameters */ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); nArg = (int)pArgc->u.i; iQuery = (int)pQuery->u.i; /* Invoke the xFilter method */ res = 0; apArg = p->apArg; for(i = 0; i<nArg; i++){ apArg[i] = &pArgc[i+1]; } rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pVtabCursor); } pCur->nullRow = 0; VdbeBranchTaken(res!=0,2); if( res ) goto jump_to_p2; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VColumn P1 P2 P3 * * ** Synopsis: r[P3]=vcolumn(P2) |
︙ | ︙ | |||
6249 6250 6251 6252 6253 6254 6255 | /* Invoke the xNext() method of the module. There is no way for the ** underlying implementation to return an error if one occurs during ** xNext(). Instead, if an error occurs, true is returned (indicating that ** data is available) and the error code returned when xColumn or ** some other method is next invoked on the save virtual table cursor. */ | < < | | 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 | /* Invoke the xNext() method of the module. There is no way for the ** underlying implementation to return an error if one occurs during ** xNext(). Instead, if an error occurs, true is returned (indicating that ** data is available) and the error code returned when xColumn or ** some other method is next invoked on the save virtual table cursor. */ rc = pModule->xNext(pCur->pVtabCursor); sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pCur->pVtabCursor); } VdbeBranchTaken(!res,2); if( !res ){ /* If there is data, jump to P2 */ goto jump_to_p2_and_check_for_interrupt; } goto check_for_interrupt; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VRename P1 * * P4 * |
︙ | ︙ | |||
6326 6327 6328 6329 6330 6331 6332 | ** is set to the value of the rowid for the row just inserted. ** ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to ** apply in the case of a constraint failure on an insert or update. */ case OP_VUpdate: { sqlite3_vtab *pVtab; | | > > > > | | 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 | ** is set to the value of the rowid for the row just inserted. ** ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to ** apply in the case of a constraint failure on an insert or update. */ case OP_VUpdate: { sqlite3_vtab *pVtab; const sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid; Mem **apArg; Mem *pX; assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace ); assert( p->readOnly==0 ); pVtab = pOp->p4.pVtab->pVtab; if( pVtab==0 || NEVER(pVtab->pModule==0) ){ rc = SQLITE_LOCKED; break; } pModule = pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(pModule->xUpdate) ){ u8 vtabOnConflict = db->vtabOnConflict; apArg = p->apArg; pX = &aMem[pOp->p3]; for(i=0; i<nArg; i++){ |
︙ | ︙ | |||
6378 6379 6380 6381 6382 6383 6384 | #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: Pagecount P1 P2 * * * ** ** Write the current number of pages in database P1 to memory cell P2. */ | | > | > | 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 | #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: Pagecount P1 P2 * * * ** ** Write the current number of pages in database P1 to memory cell P2. */ case OP_Pagecount: { /* out2 */ pOut = out2Prerelease(p, pOp); pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); break; } #endif #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: MaxPgcnt P1 P2 P3 * * ** ** Try to set the maximum page count for database P1 to the value in P3. ** Do not let the maximum page count fall below the current page count and ** do not change the maximum page count value if P3==0. ** ** Store the maximum page count after the change in register P2. */ case OP_MaxPgcnt: { /* out2 */ unsigned int newMax; Btree *pBt; pOut = out2Prerelease(p, pOp); pBt = db->aDb[pOp->p1].pBt; newMax = 0; if( pOp->p3 ){ newMax = sqlite3BtreeLastPage(pBt); if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; } pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); |
︙ | ︙ | |||
6426 6427 6428 6429 6430 6431 6432 | ** ** If P2 is not zero, jump to instruction P2. */ case OP_Init: { /* jump */ char *zTrace; char *z; | < < < | 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 | ** ** If P2 is not zero, jump to instruction P2. */ case OP_Init: { /* jump */ char *zTrace; char *z; #ifndef SQLITE_OMIT_TRACE if( db->xTrace && !p->doingRerun && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ z = sqlite3VdbeExpandSql(p, zTrace); db->xTrace(db->pTraceArg, z); |
︙ | ︙ | |||
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 | if( (db->flags & SQLITE_SqlTrace)!=0 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); } #endif /* SQLITE_DEBUG */ #endif /* SQLITE_OMIT_TRACE */ break; } /* Opcode: Noop * * * * * ** ** Do nothing. This instruction is often useful as a jump | > | 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 | if( (db->flags & SQLITE_SqlTrace)!=0 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); } #endif /* SQLITE_DEBUG */ #endif /* SQLITE_OMIT_TRACE */ if( pOp->p2 ) goto jump_to_p2; break; } /* Opcode: Noop * * * * * ** ** Do nothing. This instruction is often useful as a jump |
︙ | ︙ | |||
6487 6488 6489 6490 6491 6492 6493 | ** restored. *****************************************************************************/ } #ifdef VDBE_PROFILE { u64 endTime = sqlite3Hwtime(); | | | | | | | | | | 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 | ** restored. *****************************************************************************/ } #ifdef VDBE_PROFILE { u64 endTime = sqlite3Hwtime(); if( endTime>start ) pOrigOp->cycles += endTime - start; pOrigOp->cnt++; } #endif /* The following code adds nothing to the actual functionality ** of the program. It is only here for testing and debugging. ** On the other hand, it does burn CPU cycles every time through ** the evaluator loop. So we can leave it out when NDEBUG is defined. */ #ifndef NDEBUG assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ if( rc!=0 ) printf("rc=%d\n",rc); if( pOrigOp->opflags & (OPFLG_OUT2) ){ registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); } if( pOrigOp->opflags & OPFLG_OUT3 ){ registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); } } #endif /* SQLITE_DEBUG */ #endif /* NDEBUG */ } /* The end of the for(;;) loop the loops through opcodes */ /* If we reach this point, it means that execution is finished with ** an error of some kind. */ vdbe_error_halt: assert( rc ); p->rc = rc; testcase( sqlite3GlobalConfig.xLog!=0 ); sqlite3_log(rc, "statement aborts at %d: [%s] %s", (int)(pOp - aOp), p->zSql, p->zErrMsg); sqlite3VdbeHalt(p); if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; rc = SQLITE_ERROR; if( resetSchemaOnFault>0 ){ sqlite3ResetOneSchema(db, resetSchemaOnFault-1); } |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
209 210 211 212 213 214 215 216 217 218 219 220 221 222 | #ifndef SQLITE_OMIT_TRACE char *sqlite3VdbeExpandSql(Vdbe*, const char*); #endif int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **); typedef int (*RecordCompare)(int,const void*,UnpackedRecord*); RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*); #ifndef SQLITE_OMIT_TRIGGER void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); | > | 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | #ifndef SQLITE_OMIT_TRACE char *sqlite3VdbeExpandSql(Vdbe*, const char*); #endif int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); int sqlite3VdbeRecordCompareWithSkip(int, const void *, UnpackedRecord *, int); UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **); typedef int (*RecordCompare)(int,const void*,UnpackedRecord*); RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*); #ifndef SQLITE_OMIT_TRIGGER void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
309 310 311 312 313 314 315 | /* ** An instance of the virtual machine. This structure contains the complete ** state of the virtual machine. ** ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare() ** is really a pointer to an instance of this structure. | < < < < < < < < | 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | /* ** An instance of the virtual machine. This structure contains the complete ** state of the virtual machine. ** ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare() ** is really a pointer to an instance of this structure. */ struct Vdbe { sqlite3 *db; /* The database connection that owns this statement */ Op *aOp; /* Space to hold the virtual machine's program */ Mem *aMem; /* The memory locations */ Mem **apArg; /* Arguments to currently executing user function */ Mem *aColName; /* Column names to return */ |
︙ | ︙ | |||
347 348 349 350 351 352 353 | #ifdef SQLITE_DEBUG int rcApp; /* errcode set by sqlite3_result_error_code() */ #endif u16 nResColumn; /* Number of columns in one row of the result set */ u8 errorAction; /* Recovery action to do in case of an error */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ bft explain:2; /* True if EXPLAIN present on SQL command */ | < | 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | #ifdef SQLITE_DEBUG int rcApp; /* errcode set by sqlite3_result_error_code() */ #endif u16 nResColumn; /* Number of columns in one row of the result set */ u8 errorAction; /* Recovery action to do in case of an error */ u8 minWriteFileFormat; /* Minimum file format for writable database files */ bft explain:2; /* True if EXPLAIN present on SQL command */ bft changeCntOn:1; /* True to update the change-counter */ bft expired:1; /* True if the VM needs to be recompiled */ bft runOnlyOnce:1; /* Automatically expire on reset */ bft usesStmtJournal:1; /* True if uses a statement journal */ bft readOnly:1; /* True for statements that do not write */ bft bIsReader:1; /* True for statements that read */ bft isPrepareV2:1; /* True if prepared with prepare_v2() */ |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1114 1115 1116 1117 1118 1119 1120 | zP4 = "(blob)"; } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; | | | 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 | zP4 = "(blob)"; } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab); break; } #endif case P4_INTARRAY: { sqlite3_snprintf(nTemp, zTemp, "intarray"); break; } |
︙ | ︙ | |||
1778 1779 1780 1781 1782 1783 1784 | }else if( pCx->pCursor ){ sqlite3BtreeCloseCursor(pCx->pCursor); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( pCx->pVtabCursor ){ sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; const sqlite3_module *pModule = pVtabCursor->pVtab->pModule; | > | < > > > > > > > > > > > > > > > > > | 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 | }else if( pCx->pCursor ){ sqlite3BtreeCloseCursor(pCx->pCursor); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( pCx->pVtabCursor ){ sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; const sqlite3_module *pModule = pVtabCursor->pVtab->pModule; assert( pVtabCursor->pVtab->nRef>0 ); pVtabCursor->pVtab->nRef--; pModule->xClose(pVtabCursor); } #endif } /* ** Close all cursors in the current frame. */ static void closeCursorsInFrame(Vdbe *p){ if( p->apCsr ){ int i; for(i=0; i<p->nCursor; i++){ VdbeCursor *pC = p->apCsr[i]; if( pC ){ sqlite3VdbeFreeCursor(p, pC); p->apCsr[i] = 0; } } } } /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ Vdbe *v = pFrame->v; closeCursorsInFrame(v); #ifdef SQLITE_ENABLE_STMT_SCANSTATUS v->anExec = pFrame->anExec; #endif v->aOnceFlag = pFrame->aOnceFlag; v->nOnceFlag = pFrame->nOnceFlag; v->aOp = pFrame->aOp; v->nOp = pFrame->nOp; |
︙ | ︙ | |||
1826 1827 1828 1829 1830 1831 1832 | VdbeFrame *pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); sqlite3VdbeFrameRestore(pFrame); p->pFrame = 0; p->nFrame = 0; } assert( p->nFrame==0 ); | | < < < < < < < < < < | 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 | VdbeFrame *pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); sqlite3VdbeFrameRestore(pFrame); p->pFrame = 0; p->nFrame = 0; } assert( p->nFrame==0 ); closeCursorsInFrame(p); if( p->aMem ){ releaseMemArray(&p->aMem[1], p->nMem); } while( p->pDelFrame ){ VdbeFrame *pDel = p->pDelFrame; p->pDelFrame = pDel->pParent; sqlite3VdbeFrameDelete(pDel); |
︙ | ︙ | |||
3581 3582 3583 3584 3585 3586 3587 | ** returned. ** ** If database corruption is discovered, set pPKey2->errCode to ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). */ | | | 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 | ** returned. ** ** If database corruption is discovered, set pPKey2->errCode to ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). */ int sqlite3VdbeRecordCompareWithSkip( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2, /* Right key */ int bSkip /* If true, skip the first field */ ){ u32 d1; /* Offset into aKey[] of next data element */ int i; /* Index of next field to compare */ u32 szHdr1; /* Size of record header in bytes */ |
︙ | ︙ | |||
3767 3768 3769 3770 3771 3772 3773 | ); return pPKey2->default_rc; } int sqlite3VdbeRecordCompare( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ | | | 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 | ); return pPKey2->default_rc; } int sqlite3VdbeRecordCompare( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is an integer, and (b) the ** size-of-header varint at the start of (pKey1/nKey1) fits in a single |
︙ | ︙ | |||
3855 3856 3857 3858 3859 3860 3861 | if( v>lhs ){ res = pPKey2->r1; }else if( v<lhs ){ res = pPKey2->r2; }else if( pPKey2->nField>1 ){ /* The first fields of the two keys are equal. Compare the trailing ** fields. */ | | | 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 | if( v>lhs ){ res = pPKey2->r1; }else if( v<lhs ){ res = pPKey2->r2; }else if( pPKey2->nField>1 ){ /* The first fields of the two keys are equal. Compare the trailing ** fields. */ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); }else{ /* The first fields of the two keys are equal and there are no trailing ** fields. Return pPKey2->default_rc in this case. */ res = pPKey2->default_rc; } assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); |
︙ | ︙ | |||
3903 3904 3905 3906 3907 3908 3909 | nCmp = MIN( pPKey2->aMem[0].n, nStr ); res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); if( res==0 ){ res = nStr - pPKey2->aMem[0].n; if( res==0 ){ if( pPKey2->nField>1 ){ | | | 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 | nCmp = MIN( pPKey2->aMem[0].n, nStr ); res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); if( res==0 ){ res = nStr - pPKey2->aMem[0].n; if( res==0 ){ if( pPKey2->nField>1 ){ res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); }else{ res = pPKey2->default_rc; } }else if( res>0 ){ res = pPKey2->r2; }else{ res = pPKey2->r1; |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
1643 1644 1645 1646 1647 1648 1649 | void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ if( pRec ){ int i; int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField; Mem *aMem = pRec->aMem; sqlite3 *db = aMem[0].db; for(i=0; i<nCol; i++){ | | | 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 | void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ if( pRec ){ int i; int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField; Mem *aMem = pRec->aMem; sqlite3 *db = aMem[0].db; for(i=0; i<nCol; i++){ sqlite3VdbeMemRelease(&aMem[i]); } sqlite3KeyInfoUnref(pRec->pKeyInfo); sqlite3DbFree(db, pRec); } } #endif /* ifdef SQLITE_ENABLE_STAT4 */ |
︙ | ︙ |
Changes to src/vdbesort.c.
︙ | ︙ | |||
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 | ** to sqlite3ThreadJoin() is likely to block. Cases that are likely to ** block provoke debugging output. ** ** In both cases, the effects of the main thread seeing (bDone==0) even ** after the thread has finished are not dire. So we don't worry about ** memory barriers and such here. */ struct SortSubtask { SQLiteThread *pThread; /* Background thread, if any */ int bDone; /* Set if thread is finished but not joined */ VdbeSorter *pSorter; /* Sorter that owns this sub-task */ UnpackedRecord *pUnpacked; /* Space to unpack a record */ SorterList list; /* List for thread to write to a PMA */ int nPMA; /* Number of PMAs currently in file */ SorterFile file; /* Temp file for level-0 PMAs */ SorterFile file2; /* Space for other PMAs */ }; /* ** Main sorter structure. A single instance of this is allocated for each ** sorter cursor created by the VDBE. ** ** mxKeysize: ** As records are added to the sorter by calls to sqlite3VdbeSorterWrite(), | > > > | 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | ** to sqlite3ThreadJoin() is likely to block. Cases that are likely to ** block provoke debugging output. ** ** In both cases, the effects of the main thread seeing (bDone==0) even ** after the thread has finished are not dire. So we don't worry about ** memory barriers and such here. */ typedef int (*SorterCompare)(SortSubtask*,int*,const void*,int,const void*,int); struct SortSubtask { SQLiteThread *pThread; /* Background thread, if any */ int bDone; /* Set if thread is finished but not joined */ VdbeSorter *pSorter; /* Sorter that owns this sub-task */ UnpackedRecord *pUnpacked; /* Space to unpack a record */ SorterList list; /* List for thread to write to a PMA */ int nPMA; /* Number of PMAs currently in file */ SorterCompare xCompare; /* Compare function to use */ SorterFile file; /* Temp file for level-0 PMAs */ SorterFile file2; /* Space for other PMAs */ }; /* ** Main sorter structure. A single instance of this is allocated for each ** sorter cursor created by the VDBE. ** ** mxKeysize: ** As records are added to the sorter by calls to sqlite3VdbeSorterWrite(), |
︙ | ︙ | |||
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | SorterList list; /* List of in-memory records */ int iMemory; /* Offset of free space in list.aMemory */ int nMemory; /* Size of list.aMemory allocation in bytes */ u8 bUsePMA; /* True if one or more PMAs created */ u8 bUseThreads; /* True to use background threads */ u8 iPrev; /* Previous thread used to flush PMA */ u8 nTask; /* Size of aTask[] array */ SortSubtask aTask[1]; /* One or more subtasks */ }; /* ** An instance of the following object is used to read records out of a ** PMA, in sorted order. The next key to be read is cached in nKey/aKey. ** aKey might point into aMap or into aBuffer. If neither of those locations ** contain a contiguous representation of the key, then aAlloc is allocated ** and the key is copied into aAlloc and aKey is made to poitn to aAlloc. | > > > > | 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | SorterList list; /* List of in-memory records */ int iMemory; /* Offset of free space in list.aMemory */ int nMemory; /* Size of list.aMemory allocation in bytes */ u8 bUsePMA; /* True if one or more PMAs created */ u8 bUseThreads; /* True to use background threads */ u8 iPrev; /* Previous thread used to flush PMA */ u8 nTask; /* Size of aTask[] array */ u8 typeMask; SortSubtask aTask[1]; /* One or more subtasks */ }; #define SORTER_TYPE_INTEGER 0x01 #define SORTER_TYPE_TEXT 0x02 /* ** An instance of the following object is used to read records out of a ** PMA, in sorted order. The next key to be read is cached in nKey/aKey. ** aKey might point into aMap or into aBuffer. If neither of those locations ** contain a contiguous representation of the key, then aAlloc is allocated ** and the key is copied into aAlloc and aKey is made to poitn to aAlloc. |
︙ | ︙ | |||
738 739 740 741 742 743 744 745 746 747 748 749 750 | if( rc==SQLITE_OK ){ rc = vdbePmaReaderNext(pReadr); } return rc; } /* ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, ** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences ** used by the comparison. Return the result of the comparison. ** | > > > > > > > > > > > > > > > > > > > > | | < < > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 | if( rc==SQLITE_OK ){ rc = vdbePmaReaderNext(pReadr); } return rc; } /* ** A version of vdbeSorterCompare() that assumes that it has already been ** determined that the first field of key1 is equal to the first field of ** key2. */ static int vdbeSorterCompareTail( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ UnpackedRecord *r2 = pTask->pUnpacked; if( *pbKey2Cached==0 ){ sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); *pbKey2Cached = 1; } return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, r2, 1); } /* ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, ** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences ** used by the comparison. Return the result of the comparison. ** ** If IN/OUT parameter *pbKey2Cached is true when this function is called, ** it is assumed that (pTask->pUnpacked) contains the unpacked version ** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked ** version of key2 and *pbKey2Cached set to true before returning. ** ** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set ** to SQLITE_NOMEM. */ static int vdbeSorterCompare( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ UnpackedRecord *r2 = pTask->pUnpacked; if( !*pbKey2Cached ){ sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2); *pbKey2Cached = 1; } return sqlite3VdbeRecordCompare(nKey1, pKey1, r2); } /* ** A specially optimized version of vdbeSorterCompare() that assumes that ** the first field of each key is a TEXT value and that the collation ** sequence to compare them with is BINARY. */ static int vdbeSorterCompareText( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ const u8 * const p1 = (const u8 * const)pKey1; const u8 * const p2 = (const u8 * const)pKey2; const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ int n1; int n2; int res; getVarint32(&p1[1], n1); n1 = (n1 - 13) / 2; getVarint32(&p2[1], n2); n2 = (n2 - 13) / 2; res = memcmp(v1, v2, MIN(n1, n2)); if( res==0 ){ res = n1 - n2; } if( res==0 ){ if( pTask->pSorter->pKeyInfo->nField>1 ){ res = vdbeSorterCompareTail( pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 ); } }else{ if( pTask->pSorter->pKeyInfo->aSortOrder[0] ){ res = res * -1; } } return res; } /* ** A specially optimized version of vdbeSorterCompare() that assumes that ** the first field of each key is an INTEGER value. */ static int vdbeSorterCompareInt( SortSubtask *pTask, /* Subtask context (for pKeyInfo) */ int *pbKey2Cached, /* True if pTask->pUnpacked is pKey2 */ const void *pKey1, int nKey1, /* Left side of comparison */ const void *pKey2, int nKey2 /* Right side of comparison */ ){ const u8 * const p1 = (const u8 * const)pKey1; const u8 * const p2 = (const u8 * const)pKey2; const int s1 = p1[1]; /* Left hand serial type */ const int s2 = p2[1]; /* Right hand serial type */ const u8 * const v1 = &p1[ p1[0] ]; /* Pointer to value 1 */ const u8 * const v2 = &p2[ p2[0] ]; /* Pointer to value 2 */ int res; /* Return value */ assert( (s1>0 && s1<7) || s1==8 || s1==9 ); assert( (s2>0 && s2<7) || s2==8 || s2==9 ); if( s1>7 && s2>7 ){ res = s1 - s2; }else{ if( s1==s2 ){ if( (*v1 ^ *v2) & 0x80 ){ /* The two values have different signs */ res = (*v1 & 0x80) ? -1 : +1; }else{ /* The two values have the same sign. Compare using memcmp(). */ static const u8 aLen[] = {0, 1, 2, 3, 4, 6, 8 }; int i; res = 0; for(i=0; i<aLen[s1]; i++){ if( (res = v1[i] - v2[i]) ) break; } } }else{ if( s2>7 ){ res = +1; }else if( s1>7 ){ res = -1; }else{ res = s1 - s2; } assert( res!=0 ); if( res>0 ){ if( *v1 & 0x80 ) res = -1; }else{ if( *v2 & 0x80 ) res = +1; } } } if( res==0 ){ if( pTask->pSorter->pKeyInfo->nField>1 ){ res = vdbeSorterCompareTail( pTask, pbKey2Cached, pKey1, nKey1, pKey2, nKey2 ); } }else if( pTask->pSorter->pKeyInfo->aSortOrder[0] ){ res = res * -1; } return res; } /* ** Initialize the temporary index cursor just opened as a sorter cursor. ** ** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nField) ** to determine the number of fields that should be compared from the ** records being sorted. However, if the value passed as argument nField |
︙ | ︙ | |||
831 832 833 834 835 836 837 | pCsr->pSorter = pSorter; if( pSorter==0 ){ rc = SQLITE_NOMEM; }else{ pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz); memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo); pKeyInfo->db = 0; | | > > > > | 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 | pCsr->pSorter = pSorter; if( pSorter==0 ){ rc = SQLITE_NOMEM; }else{ pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz); memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo); pKeyInfo->db = 0; if( nField && nWorker==0 ){ pKeyInfo->nXField += (pKeyInfo->nField - nField); pKeyInfo->nField = nField; } pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt); pSorter->nTask = nWorker + 1; pSorter->iPrev = nWorker-1; pSorter->bUseThreads = (pSorter->nTask>1); pSorter->db = db; for(i=0; i<pSorter->nTask; i++){ SortSubtask *pTask = &pSorter->aTask[i]; pTask->pSorter = pSorter; } |
︙ | ︙ | |||
859 860 861 862 863 864 865 866 867 868 869 870 871 872 | if( sqlite3GlobalConfig.pScratch==0 ){ assert( pSorter->iMemory==0 ); pSorter->nMemory = pgsz; pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz); if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM; } } } return rc; } #undef nWorker /* Defined at the top of this function */ /* | > > > > > > | 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 | if( sqlite3GlobalConfig.pScratch==0 ){ assert( pSorter->iMemory==0 ); pSorter->nMemory = pgsz; pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz); if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM; } } if( (pKeyInfo->nField+pKeyInfo->nXField)<13 && (pKeyInfo->aColl[0]==0 || pKeyInfo->aColl[0]==db->pDfltColl) ){ pSorter->typeMask = SORTER_TYPE_INTEGER | SORTER_TYPE_TEXT; } } return rc; } #undef nWorker /* Defined at the top of this function */ /* |
︙ | ︙ | |||
883 884 885 886 887 888 889 | /* ** Free all resources owned by the object indicated by argument pTask. All ** fields of *pTask are zeroed before returning. */ static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){ sqlite3DbFree(db, pTask->pUnpacked); | < < < < < < < > | 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 | /* ** Free all resources owned by the object indicated by argument pTask. All ** fields of *pTask are zeroed before returning. */ static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){ sqlite3DbFree(db, pTask->pUnpacked); #if SQLITE_MAX_WORKER_THREADS>0 /* pTask->list.aMemory can only be non-zero if it was handed memory ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */ if( pTask->list.aMemory ){ sqlite3_free(pTask->list.aMemory); }else #endif { assert( pTask->list.aMemory==0 ); vdbeSorterRecordFree(0, pTask->list.pList); } if( pTask->file.pFd ){ sqlite3OsCloseFree(pTask->file.pFd); } if( pTask->file2.pFd ){ sqlite3OsCloseFree(pTask->file2.pFd); } memset(pTask, 0, sizeof(SortSubtask)); } #ifdef SQLITE_DEBUG_SORTER_THREADS static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){ i64 t; int iTask = (pTask - pTask->pSorter->aTask); sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t); |
︙ | ︙ | |||
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 | } #endif vdbeMergeEngineFree(pSorter->pMerger); pSorter->pMerger = 0; for(i=0; i<pSorter->nTask; i++){ SortSubtask *pTask = &pSorter->aTask[i]; vdbeSortSubtaskCleanup(db, pTask); } if( pSorter->list.aMemory==0 ){ vdbeSorterRecordFree(0, pSorter->list.pList); } pSorter->list.pList = 0; pSorter->list.szPMA = 0; pSorter->bUsePMA = 0; | > | 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 | } #endif vdbeMergeEngineFree(pSorter->pMerger); pSorter->pMerger = 0; for(i=0; i<pSorter->nTask; i++){ SortSubtask *pTask = &pSorter->aTask[i]; vdbeSortSubtaskCleanup(db, pTask); pTask->pSorter = pSorter; } if( pSorter->list.aMemory==0 ){ vdbeSorterRecordFree(0, pSorter->list.pList); } pSorter->list.pList = 0; pSorter->list.szPMA = 0; pSorter->bUsePMA = 0; |
︙ | ︙ | |||
1195 1196 1197 1198 1199 1200 1201 | SortSubtask *pTask, /* Calling thread context */ SorterRecord *p1, /* First list to merge */ SorterRecord *p2, /* Second list to merge */ SorterRecord **ppOut /* OUT: Head of merged list */ ){ SorterRecord *pFinal = 0; SorterRecord **pp = &pFinal; | | > | > > < | < | > > > > > > > > > > > > > > > > < | 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 | SortSubtask *pTask, /* Calling thread context */ SorterRecord *p1, /* First list to merge */ SorterRecord *p2, /* Second list to merge */ SorterRecord **ppOut /* OUT: Head of merged list */ ){ SorterRecord *pFinal = 0; SorterRecord **pp = &pFinal; int bCached = 0; while( p1 && p2 ){ int res; res = pTask->xCompare( pTask, &bCached, SRVAL(p1), p1->nVal, SRVAL(p2), p2->nVal ); if( res<=0 ){ *pp = p1; pp = &p1->u.pNext; p1 = p1->u.pNext; }else{ *pp = p2; pp = &p2->u.pNext; p2 = p2->u.pNext; bCached = 0; } } *pp = p1 ? p1 : p2; *ppOut = pFinal; } /* ** Return the SorterCompare function to compare values collected by the ** sorter object passed as the only argument. */ static SorterCompare vdbeSorterGetCompare(VdbeSorter *p){ if( p->typeMask==SORTER_TYPE_INTEGER ){ return vdbeSorterCompareInt; }else if( p->typeMask==SORTER_TYPE_TEXT ){ return vdbeSorterCompareText; } return vdbeSorterCompare; } /* ** Sort the linked list of records headed at pTask->pList. Return ** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if ** an error occurs. */ static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){ int i; SorterRecord **aSlot; SorterRecord *p; int rc; rc = vdbeSortAllocUnpacked(pTask); if( rc!=SQLITE_OK ) return rc; p = pList->pList; pTask->xCompare = vdbeSorterGetCompare(pTask->pSorter); aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *)); if( !aSlot ){ return SQLITE_NOMEM; } while( p ){ SorterRecord *pNext; if( pList->aMemory ){ if( (u8*)p==pList->aMemory ){ pNext = 0; }else{ assert( p->u.iNext<sqlite3MallocSize(pList->aMemory) ); |
︙ | ︙ | |||
1450 1451 1452 1453 1454 1455 1456 | rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]); /* Update contents of aTree[] */ if( rc==SQLITE_OK ){ int i; /* Index of aTree[] to recalculate */ PmaReader *pReadr1; /* First PmaReader to compare */ PmaReader *pReadr2; /* Second PmaReader to compare */ | | < | | | 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 | rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]); /* Update contents of aTree[] */ if( rc==SQLITE_OK ){ int i; /* Index of aTree[] to recalculate */ PmaReader *pReadr1; /* First PmaReader to compare */ PmaReader *pReadr2; /* Second PmaReader to compare */ int bCached = 0; /* Find the first two PmaReaders to compare. The one that was just ** advanced (iPrev) and the one next to it in the array. */ pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)]; pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)]; for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){ /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */ int iRes; if( pReadr1->pFd==0 ){ iRes = +1; }else if( pReadr2->pFd==0 ){ iRes = -1; }else{ iRes = pTask->xCompare(pTask, &bCached, pReadr1->aKey, pReadr1->nKey, pReadr2->aKey, pReadr2->nKey ); } /* If pReadr1 contained the smaller value, set aTree[i] to its index. ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this ** case there is no cache of pReadr2 in pTask->pUnpacked, so set ** pKey2 to point to the record belonging to pReadr2. |
︙ | ︙ | |||
1489 1490 1491 1492 1493 1494 1495 | ** If the two values were equal, then the value from the oldest ** PMA should be considered smaller. The VdbeSorter.aReadr[] array ** is sorted from oldest to newest, so pReadr1 contains older values ** than pReadr2 iff (pReadr1<pReadr2). */ if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){ pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr); pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; | | | | 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 | ** If the two values were equal, then the value from the oldest ** PMA should be considered smaller. The VdbeSorter.aReadr[] array ** is sorted from oldest to newest, so pReadr1 contains older values ** than pReadr2 iff (pReadr1<pReadr2). */ if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){ pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr); pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; bCached = 0; }else{ if( pReadr1->pFd ) bCached = 0; pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr); pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ]; } } *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0); } |
︙ | ︙ | |||
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 | VdbeSorter *pSorter = pCsr->pSorter; int rc = SQLITE_OK; /* Return Code */ SorterRecord *pNew; /* New list element */ int bFlush; /* True to flush contents of memory to PMA */ int nReq; /* Bytes of memory required */ int nPMA; /* Bytes of PMA space required */ assert( pSorter ); /* Figure out whether or not the current contents of memory should be ** flushed to a PMA before continuing. If so, do so. ** ** If using the single large allocation mode (pSorter->aMemory!=0), then | > > > > > > > > > > | 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 | VdbeSorter *pSorter = pCsr->pSorter; int rc = SQLITE_OK; /* Return Code */ SorterRecord *pNew; /* New list element */ int bFlush; /* True to flush contents of memory to PMA */ int nReq; /* Bytes of memory required */ int nPMA; /* Bytes of PMA space required */ int t; /* serial type of first record field */ getVarint32((const u8*)&pVal->z[1], t); if( t>0 && t<10 && t!=7 ){ pSorter->typeMask &= SORTER_TYPE_INTEGER; }else if( t>10 && (t & 0x01) ){ pSorter->typeMask &= SORTER_TYPE_TEXT; }else{ pSorter->typeMask = 0; } assert( pSorter ); /* Figure out whether or not the current contents of memory should be ** flushed to a PMA before continuing. If so, do so. ** ** If using the single large allocation mode (pSorter->aMemory!=0), then |
︙ | ︙ | |||
1863 1864 1865 1866 1867 1868 1869 1870 | p2 = &pMerger->aReadr[i2]; if( p1->pFd==0 ){ iRes = i2; }else if( p2->pFd==0 ){ iRes = i1; }else{ int res; | > > | | | | 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 | p2 = &pMerger->aReadr[i2]; if( p1->pFd==0 ){ iRes = i2; }else if( p2->pFd==0 ){ iRes = i1; }else{ SortSubtask *pTask = pMerger->pTask; int bCached = 0; int res; assert( pTask->pUnpacked!=0 ); /* from vdbeSortSubtaskMain() */ res = pTask->xCompare( pTask, &bCached, p1->aKey, p1->nKey, p2->aKey, p2->nKey ); if( res<=0 ){ iRes = i1; }else{ iRes = i2; } } |
︙ | ︙ | |||
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 | */ static int vdbeSorterSetupMerge(VdbeSorter *pSorter){ int rc; /* Return code */ SortSubtask *pTask0 = &pSorter->aTask[0]; MergeEngine *pMain = 0; #if SQLITE_MAX_WORKER_THREADS sqlite3 *db = pTask0->pSorter->db; #endif rc = vdbeSorterMergeTreeBuild(pSorter, &pMain); if( rc==SQLITE_OK ){ #if SQLITE_MAX_WORKER_THREADS assert( pSorter->bUseThreads==0 || pSorter->nTask>1 ); if( pSorter->bUseThreads ){ | > > > > > | 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 | */ static int vdbeSorterSetupMerge(VdbeSorter *pSorter){ int rc; /* Return code */ SortSubtask *pTask0 = &pSorter->aTask[0]; MergeEngine *pMain = 0; #if SQLITE_MAX_WORKER_THREADS sqlite3 *db = pTask0->pSorter->db; int i; SorterCompare xCompare = vdbeSorterGetCompare(pSorter); for(i=0; i<pSorter->nTask; i++){ pSorter->aTask[i].xCompare = xCompare; } #endif rc = vdbeSorterMergeTreeBuild(pSorter, &pMain); if( rc==SQLITE_OK ){ #if SQLITE_MAX_WORKER_THREADS assert( pSorter->bUseThreads==0 || pSorter->nTask>1 ); if( pSorter->bUseThreads ){ |
︙ | ︙ |
Changes to src/vdbetrace.c.
︙ | ︙ | |||
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | while( *zRawSql ){ const char *zStart = zRawSql; while( *(zRawSql++)!='\n' && *zRawSql ); sqlite3StrAccumAppend(&out, "-- ", 3); assert( (zRawSql - zStart) > 0 ); sqlite3StrAccumAppend(&out, zStart, (int)(zRawSql-zStart)); } }else{ while( zRawSql[0] ){ n = findNextHostParameter(zRawSql, &nToken); assert( n>0 ); sqlite3StrAccumAppend(&out, zRawSql, n); zRawSql += n; assert( zRawSql[0] || nToken==0 ); if( nToken==0 ) break; if( zRawSql[0]=='?' ){ if( nToken>1 ){ assert( sqlite3Isdigit(zRawSql[1]) ); sqlite3GetInt32(&zRawSql[1], &idx); }else{ idx = nextIndex; } }else{ | > > | > > | 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | while( *zRawSql ){ const char *zStart = zRawSql; while( *(zRawSql++)!='\n' && *zRawSql ); sqlite3StrAccumAppend(&out, "-- ", 3); assert( (zRawSql - zStart) > 0 ); sqlite3StrAccumAppend(&out, zStart, (int)(zRawSql-zStart)); } }else if( p->nVar==0 ){ sqlite3StrAccumAppend(&out, zRawSql, sqlite3Strlen30(zRawSql)); }else{ while( zRawSql[0] ){ n = findNextHostParameter(zRawSql, &nToken); assert( n>0 ); sqlite3StrAccumAppend(&out, zRawSql, n); zRawSql += n; assert( zRawSql[0] || nToken==0 ); if( nToken==0 ) break; if( zRawSql[0]=='?' ){ if( nToken>1 ){ assert( sqlite3Isdigit(zRawSql[1]) ); sqlite3GetInt32(&zRawSql[1], &idx); }else{ idx = nextIndex; } }else{ assert( zRawSql[0]==':' || zRawSql[0]=='$' || zRawSql[0]=='@' || zRawSql[0]=='#' ); testcase( zRawSql[0]==':' ); testcase( zRawSql[0]=='$' ); testcase( zRawSql[0]=='@' ); testcase( zRawSql[0]=='#' ); idx = sqlite3VdbeParameterIndex(p, zRawSql, nToken); assert( idx>0 ); } zRawSql += nToken; nextIndex = idx + 1; assert( idx>0 && idx<=p->nVar ); pVar = &p->aVar[idx-1]; |
︙ | ︙ |
Changes to src/vtab.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ** this struct allocated on the stack. It is used by the implementation of ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which ** are invoked only from within xCreate and xConnect methods. */ struct VtabCtx { VTable *pVTable; /* The virtual table being constructed */ Table *pTab; /* The Table object to which the virtual table belongs */ }; /* ** The actual function that does the work of creating a new module. ** This function implements the sqlite3_create_module() and ** sqlite3_create_module_v2() interfaces. */ | > > | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ** this struct allocated on the stack. It is used by the implementation of ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which ** are invoked only from within xCreate and xConnect methods. */ struct VtabCtx { VTable *pVTable; /* The virtual table being constructed */ Table *pTab; /* The Table object to which the virtual table belongs */ VtabCtx *pPrior; /* Parent context (if any) */ int bDeclared; /* True after sqlite3_declare_vtab() is called */ }; /* ** The actual function that does the work of creating a new module. ** This function implements the sqlite3_create_module() and ** sqlite3_create_module_v2() interfaces. */ |
︙ | ︙ | |||
466 467 468 469 470 471 472 | */ void sqlite3VtabArgExtend(Parse *pParse, Token *p){ Token *pArg = &pParse->sArg; if( pArg->z==0 ){ pArg->z = p->z; pArg->n = p->n; }else{ | | | | > > > > > > > > > > > > | > | > | > | > > > | 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 | */ void sqlite3VtabArgExtend(Parse *pParse, Token *p){ Token *pArg = &pParse->sArg; if( pArg->z==0 ){ pArg->z = p->z; pArg->n = p->n; }else{ assert(pArg->z <= p->z); pArg->n = (int)(&p->z[p->n] - pArg->z); } } /* ** Invoke a virtual table constructor (either xCreate or xConnect). The ** pointer to the function to invoke is passed as the fourth parameter ** to this procedure. */ static int vtabCallConstructor( sqlite3 *db, Table *pTab, Module *pMod, int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), char **pzErr ){ VtabCtx sCtx; VTable *pVTable; int rc; const char *const*azArg = (const char *const*)pTab->azModuleArg; int nArg = pTab->nModuleArg; char *zErr = 0; char *zModuleName; int iDb; VtabCtx *pCtx; /* Check that the virtual-table is not already being initialized */ for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ if( pCtx->pTab==pTab ){ *pzErr = sqlite3MPrintf(db, "vtable constructor called recursively: %s", pTab->zName ); return SQLITE_LOCKED; } } zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); if( !zModuleName ){ return SQLITE_NOMEM; } pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); if( !pVTable ){ sqlite3DbFree(db, zModuleName); return SQLITE_NOMEM; } pVTable->db = db; pVTable->pMod = pMod; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); pTab->azModuleArg[1] = db->aDb[iDb].zName; /* Invoke the virtual table constructor */ assert( &db->pVtabCtx ); assert( xConstruct ); sCtx.pTab = pTab; sCtx.pVTable = pVTable; sCtx.pPrior = db->pVtabCtx; sCtx.bDeclared = 0; db->pVtabCtx = &sCtx; rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); db->pVtabCtx = sCtx.pPrior; if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; assert( sCtx.pTab==pTab ); if( SQLITE_OK!=rc ){ if( zErr==0 ){ *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); }else { *pzErr = sqlite3MPrintf(db, "%s", zErr); sqlite3_free(zErr); } sqlite3DbFree(db, pVTable); }else if( ALWAYS(pVTable->pVtab) ){ /* Justification of ALWAYS(): A correct vtab constructor must allocate ** the sqlite3_vtab object if successful. */ memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); pVTable->pVtab->pModule = pMod->pModule; pVTable->nRef = 1; if( sCtx.bDeclared==0 ){ const char *zFormat = "vtable constructor did not declare schema: %s"; *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); sqlite3VtabUnlock(pVTable); rc = SQLITE_ERROR; }else{ int iCol; u8 oooHidden = 0; /* If everything went according to plan, link the new VTable structure ** into the linked list headed by pTab->pVTable. Then loop through the ** columns of the table to see if any of them contain the token "hidden". ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from ** the type string. */ pVTable->pNext = pTab->pVTable; pTab->pVTable = pVTable; for(iCol=0; iCol<pTab->nCol; iCol++){ char *zType = pTab->aCol[iCol].zType; int nType; int i = 0; if( !zType ){ pTab->tabFlags |= oooHidden; continue; } nType = sqlite3Strlen30(zType); if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){ for(i=0; i<nType; i++){ if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) && (zType[i+7]=='\0' || zType[i+7]==' ') ){ i++; |
︙ | ︙ | |||
574 575 576 577 578 579 580 581 582 583 584 585 586 587 | zType[j] = zType[j+nDel]; } if( zType[i]=='\0' && i>0 ){ assert(zType[i-1]==' '); zType[i-1] = '\0'; } pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; } } } } sqlite3DbFree(db, zModuleName); return rc; | > > > | 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 | zType[j] = zType[j+nDel]; } if( zType[i]=='\0' && i>0 ){ assert(zType[i-1]==' '); zType[i-1] = '\0'; } pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; oooHidden = TF_OOOHidden; }else{ pTab->tabFlags |= oooHidden; } } } } sqlite3DbFree(db, zModuleName); return rc; |
︙ | ︙ | |||
702 703 704 705 706 707 708 709 | /* ** This function is used to set the schema of a virtual table. It is only ** valid to call this function from within the xCreate() or xConnect() of a ** virtual table module. */ int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ Parse *pParse; | > < | > > | 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 | /* ** This function is used to set the schema of a virtual table. It is only ** valid to call this function from within the xCreate() or xConnect() of a ** virtual table module. */ int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ VtabCtx *pCtx; Parse *pParse; int rc = SQLITE_OK; Table *pTab; char *zErr = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); pCtx = db->pVtabCtx; if( !pCtx || pCtx->bDeclared ){ sqlite3Error(db, SQLITE_MISUSE); sqlite3_mutex_leave(db->mutex); return SQLITE_MISUSE_BKPT; } pTab = pCtx->pTab; assert( (pTab->tabFlags & TF_Virtual)!=0 ); pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); if( pParse==0 ){ rc = SQLITE_NOMEM; }else{ pParse->declareVtab = 1; |
︙ | ︙ | |||
741 742 743 744 745 746 747 | ){ if( !pTab->aCol ){ pTab->aCol = pParse->pNewTable->aCol; pTab->nCol = pParse->pNewTable->nCol; pParse->pNewTable->nCol = 0; pParse->pNewTable->aCol = 0; } | | | 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 | ){ if( !pTab->aCol ){ pTab->aCol = pParse->pNewTable->aCol; pTab->nCol = pParse->pNewTable->nCol; pParse->pNewTable->nCol = 0; pParse->pNewTable->aCol = 0; } pCtx->bDeclared = 1; }else{ sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); sqlite3DbFree(db, zErr); rc = SQLITE_ERROR; } pParse->declareVtab = 0; |
︙ | ︙ | |||
776 777 778 779 780 781 782 | */ int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ int rc = SQLITE_OK; Table *pTab; pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ | | > > > > | < < | > > | 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 | */ int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ int rc = SQLITE_OK; Table *pTab; pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ VTable *p; for(p=pTab->pVTable; p; p=p->pNext){ assert( p->pVtab ); if( p->pVtab->nRef>0 ){ return SQLITE_LOCKED; } } p = vtabDisconnectAll(db, pTab); rc = p->pMod->pModule->xDestroy(p->pVtab); /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ if( rc==SQLITE_OK ){ assert( pTab->pVTable==p && p->pNext==0 ); p->pVtab = 0; pTab->pVTable = 0; sqlite3VtabUnlock(p); } |
︙ | ︙ | |||
932 933 934 935 936 937 938 | ** function immediately. If all calls to virtual table methods are successful, ** SQLITE_OK is returned. */ int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ int rc = SQLITE_OK; assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); | | | 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 | ** function immediately. If all calls to virtual table methods are successful, ** SQLITE_OK is returned. */ int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ int rc = SQLITE_OK; assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); assert( iSavepoint>=-1 ); if( db->aVTrans ){ int i; for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ VTable *pVTab = db->aVTrans[i]; const sqlite3_module *pMod = pVTab->pMod->pModule; if( pVTab->pVtab && pMod->iVersion>=2 ){ int (*xMethod)(sqlite3_vtab *, int); |
︙ | ︙ |
Changes to src/wal.c.
︙ | ︙ | |||
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 | ** safe to write into the database. Frames beyond mxSafeFrame might ** overwrite database pages that are in use by active readers and thus ** cannot be backfilled from the WAL. */ mxSafeFrame = pWal->hdr.mxFrame; mxPage = pWal->hdr.nPage; for(i=1; i<WAL_NREADER; i++){ u32 y = pInfo->aReadMark[i]; if( mxSafeFrame>y ){ assert( y<=pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); | > > > > > > > > | 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 | ** safe to write into the database. Frames beyond mxSafeFrame might ** overwrite database pages that are in use by active readers and thus ** cannot be backfilled from the WAL. */ mxSafeFrame = pWal->hdr.mxFrame; mxPage = pWal->hdr.nPage; for(i=1; i<WAL_NREADER; i++){ /* Thread-sanitizer reports that the following is an unsafe read, ** as some other thread may be in the process of updating the value ** of the aReadMark[] slot. The assumption here is that if that is ** happening, the other client may only be increasing the value, ** not decreasing it. So assuming either that either the "old" or ** "new" version of the value is read, and not some arbitrary value ** that would never be written by a real client, things are still ** safe. */ u32 y = pInfo->aReadMark[i]; if( mxSafeFrame>y ){ assert( y<=pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
251 252 253 254 255 256 257 258 | ** does is make slot[] entries point to substructure within pExpr. ** ** In the previous sentence and in the diagram, "slot[]" refers to ** the WhereClause.a[] array. The slot[] array grows as needed to contain ** all terms of the WHERE clause. */ static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ pWC->op = op; | > | | | | | 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | ** does is make slot[] entries point to substructure within pExpr. ** ** In the previous sentence and in the diagram, "slot[]" refers to ** the WhereClause.a[] array. The slot[] array grows as needed to contain ** all terms of the WHERE clause. */ static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ Expr *pE2 = sqlite3ExprSkipCollate(pExpr); pWC->op = op; if( pE2==0 ) return; if( pE2->op!=op ){ whereClauseInsert(pWC, pExpr, 0); }else{ whereSplit(pWC, pE2->pLeft, op); whereSplit(pWC, pE2->pRight, op); } } /* ** Initialize a WhereMaskSet object */ #define initMaskSet(P) (P)->n=0 |
︙ | ︙ | |||
1528 1529 1530 1531 1532 1533 1534 | for(i=0; i<pList->nExpr; i++){ Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); if( p->op==TK_COLUMN && p->iColumn==pIdx->aiColumn[iCol] && p->iTable==iBase ){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); | | | 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 | for(i=0; i<pList->nExpr; i++){ Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); if( p->op==TK_COLUMN && p->iColumn==pIdx->aiColumn[iCol] && p->iTable==iBase ){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ return i; } } } return -1; } |
︙ | ︙ | |||
1802 1803 1804 1805 1806 1807 1808 | testcase( iCol==BMS-1 ); testcase( iCol==BMS ); if( (idxCols & cMask)==0 ){ Expr *pX = pTerm->pExpr; idxCols |= cMask; pIdx->aiColumn[n] = pTerm->u.leftColumn; pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); | | | 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 | testcase( iCol==BMS-1 ); testcase( iCol==BMS ); if( (idxCols & cMask)==0 ){ Expr *pX = pTerm->pExpr; idxCols |= cMask; pIdx->aiColumn[n] = pTerm->u.leftColumn; pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); pIdx->azColl[n] = pColl ? pColl->zName : "BINARY"; n++; } } } assert( (u32)n==pLoop->u.btree.nEq ); /* Add additional columns needed to make the automatic index into |
︙ | ︙ | |||
4777 4778 4779 4780 4781 4782 4783 | } assert( nIn>0 ); /* RHS always has 2 or more terms... The parser ** changes "x IN (?)" into "x=?". */ }else if( eOp & (WO_EQ) ){ pNew->wsFlags |= WHERE_COLUMN_EQ; if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ | | | 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 | } assert( nIn>0 ); /* RHS always has 2 or more terms... The parser ** changes "x IN (?)" into "x=?". */ }else if( eOp & (WO_EQ) ){ pNew->wsFlags |= WHERE_COLUMN_EQ; if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ if( iCol>=0 && pProbe->uniqNotNull==0 ){ pNew->wsFlags |= WHERE_UNQ_WANTED; }else{ pNew->wsFlags |= WHERE_ONEROW; } } }else if( eOp & WO_ISNULL ){ pNew->wsFlags |= WHERE_COLUMN_NULL; |
︙ | ︙ | |||
6237 6238 6239 6240 6241 6242 6243 | } }else{ pWInfo->nOBSat = pFrom->isOrdered; if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; pWInfo->revMask = pFrom->revLoop; } if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) | | | 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 | } }else{ pWInfo->nOBSat = pFrom->isOrdered; if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; pWInfo->revMask = pFrom->revLoop; } if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 ){ Bitmask revMask = 0; int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask ); assert( pWInfo->sorted==0 ); if( nOrder==pWInfo->pOrderBy->nExpr ){ |
︙ | ︙ | |||
6642 6643 6644 6645 6646 6647 6648 | pWInfo->revMask = (Bitmask)(-1); } if( pParse->nErr || NEVER(db->mallocFailed) ){ goto whereBeginError; } #ifdef WHERETRACE_ENABLED /* !=0 */ if( sqlite3WhereTrace ){ | < | 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 | pWInfo->revMask = (Bitmask)(-1); } if( pParse->nErr || NEVER(db->mallocFailed) ){ goto whereBeginError; } #ifdef WHERETRACE_ENABLED /* !=0 */ if( sqlite3WhereTrace ){ sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); if( pWInfo->nOBSat>0 ){ sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); } switch( pWInfo->eDistinct ){ case WHERE_DISTINCT_UNIQUE: { sqlite3DebugPrintf(" DISTINCT=unique"); |
︙ | ︙ |
Changes to test/analyze.test.
︙ | ︙ | |||
355 356 357 358 359 360 361 | UPDATE sqlite_master SET sql='nonsense' WHERE name='sqlite_stat1'; } db close catch { sqlite3 db test.db } catchsql { ANALYZE } | | | 355 356 357 358 359 360 361 362 363 364 | UPDATE sqlite_master SET sql='nonsense' WHERE name='sqlite_stat1'; } db close catch { sqlite3 db test.db } catchsql { ANALYZE } } {1 {malformed database schema (sqlite_stat1)}} finish_test |
Changes to test/analyze3.test.
︙ | ︙ | |||
12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # This file implements regression tests for SQLite library. This file # implements tests for range and LIKE constraints that use bound variables # instead of literal constant arguments. # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable !stat4&&!stat3 { finish_test return } #---------------------------------------------------------------------- | > | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # This file implements regression tests for SQLite library. This file # implements tests for range and LIKE constraints that use bound variables # instead of literal constant arguments. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix analyze3 ifcapable !stat4&&!stat3 { finish_test return } #---------------------------------------------------------------------- |
︙ | ︙ | |||
41 42 43 44 45 46 47 48 49 50 51 52 53 54 | # within sqlite3Reprepare() are handled correctly. # # analyze3-5.*: Check that the query plans of applicable statements are # invalidated if the values of SQL parameter are modified # using the clear_bindings() or transfer_bindings() APIs. # # analyze3-6.*: Test that the problem fixed by commit [127a5b776d] is fixed. # proc getvar {varname} { uplevel #0 set $varname } db function var getvar proc eqp {sql {db db}} { uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db | > > > | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | # within sqlite3Reprepare() are handled correctly. # # analyze3-5.*: Check that the query plans of applicable statements are # invalidated if the values of SQL parameter are modified # using the clear_bindings() or transfer_bindings() APIs. # # analyze3-6.*: Test that the problem fixed by commit [127a5b776d] is fixed. # # analyze3-7.*: Test that some memory leaks discovered by fuzz testing # have been fixed. # proc getvar {varname} { uplevel #0 set $varname } db function var getvar proc eqp {sql {db db}} { uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db |
︙ | ︙ | |||
657 658 659 660 661 662 663 664 665 | do_eqp_test analyze3-6-3 { SELECT * FROM t1 WHERE a = 5 AND c = 13; } {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}} do_eqp_test analyze3-6-2 { SELECT * FROM t1 WHERE a = 5 AND b > 'w' AND c = 13; } {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > | 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 | do_eqp_test analyze3-6-3 { SELECT * FROM t1 WHERE a = 5 AND c = 13; } {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}} do_eqp_test analyze3-6-2 { SELECT * FROM t1 WHERE a = 5 AND b > 'w' AND c = 13; } {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (c=?)}} #----------------------------------------------------------------------------- # 2015-04-20. # Memory leak in sqlite3Stat4ProbeFree(). (Discovered while fuzzing.) # do_execsql_test analyze-7.1 { DROP TABLE IF EXISTS t1; CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c); INSERT INTO t1 VALUES(1,1,'0000'); CREATE INDEX t0b ON t1(b); ANALYZE; SELECT c FROM t1 WHERE b=3 AND a BETWEEN 30 AND hex(1); } {} # At one point duplicate stat1 entries were causing a memory leak. # reset_db do_execsql_test 7.2 { CREATE TABLE t1(a,b,c); CREATE INDEX t1a ON t1(a); ANALYZE; SELECT * FROM sqlite_stat1; INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t1','t1a','12000'); INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t1','t1a','12000'); ANALYZE sqlite_master; } finish_test |
Changes to test/attach.test.
︙ | ︙ | |||
854 855 856 857 858 859 860 861 862 | } } {noname inmem} do_test attach-10.2 { lrange [execsql { PRAGMA database_list; }] 9 end } {4 noname {} 5 inmem {}} finish_test | > > > > > > > > > > > > | 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 | } } {noname inmem} do_test attach-10.2 { lrange [execsql { PRAGMA database_list; }] 9 end } {4 noname {} 5 inmem {}} # Attach with a very long URI filename. # db close sqlite3 db test.db -uri 1 do_execsql_test attach-11.1 { ATTACH printf('file:%09000x/x.db?mode=memory&cache=shared',1) AS aux1; CREATE TABLE aux1.t1(x,y); INSERT INTO aux1.t1(x,y) VALUES(1,2),(3,4); SELECT * FROM aux1.t1; } {1 2 3 4} finish_test |
Changes to test/autoindex1.test.
︙ | ︙ | |||
508 509 510 511 512 513 514 515 516 | CREATE VIEW agg2 AS SELECT a, sum(b) AS m FROM t2 GROUP BY a; EXPLAIN QUERY PLAN SELECT t1.z, agg2.m FROM t1 JOIN agg2 ON t1.y=agg2.m WHERE t1.x IN (1,2,3); } {/USING AUTOMATIC COVERING INDEX/} finish_test | > > > > > > > | 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 | CREATE VIEW agg2 AS SELECT a, sum(b) AS m FROM t2 GROUP BY a; EXPLAIN QUERY PLAN SELECT t1.z, agg2.m FROM t1 JOIN agg2 ON t1.y=agg2.m WHERE t1.x IN (1,2,3); } {/USING AUTOMATIC COVERING INDEX/} # 2015-04-15: A NULL CollSeq pointer in automatic index creation. # do_execsql_test autoindex1-920 { CREATE TABLE t920(x); INSERT INTO t920 VALUES(3),(4),(5); SELECT * FROM t920,(SELECT 0 FROM t920),(VALUES(9)) WHERE 5 IN (x); } {5 0 9 5 0 9 5 0 9} finish_test |
Added test/btree02.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | # 2015-03-25 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. # # The focus of this script is making multiple calls to saveCursorPosition() # and restoreCursorPosition() when cursors have eState==CURSOR_SKIPNEXT # set testdir [file dirname $argv0] source $testdir/tester.tcl load_static_extension db eval do_execsql_test btree02-100 { CREATE TABLE t1(a TEXT, ax INTEGER, b INT, PRIMARY KEY(a,ax)) WITHOUT ROWID; WITH RECURSIVE c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<10) INSERT INTO t1(a,ax,b) SELECT printf('%02x',i), random(), i FROM c; CREATE INDEX t1a ON t1(a); CREATE TABLE t2(x,y); CREATE TABLE t3(cnt); WITH RECURSIVE c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<4) INSERT INTO t3(cnt) SELECT i FROM c; SELECT count(*) FROM t1; } {10} do_test btree02-110 { db eval BEGIN set i 0 db eval {SELECT a, ax, b, cnt FROM t1 CROSS JOIN t3 WHERE b IS NOT NULL} { db eval {INSERT INTO t2(x,y) VALUES($b,$cnt)} # puts "a,b,cnt = ($a,$b,$cnt)" incr i if {$i%2==1} { set bx [expr {$b+1000}] # puts "INSERT ($a),$bx" db eval {INSERT INTO t1(a,ax,b) VALUES(printf('(%s)',$a),random(),$bx)} } else { # puts "DELETE a=$a" db eval {DELETE FROM t1 WHERE a=$a} } db eval {COMMIT; BEGIN} } db one {COMMIT; SELECT count(*) FROM t1;} } {20} finish_test |
Changes to test/collate1.test.
︙ | ︙ | |||
381 382 383 384 385 386 387 | INSERT INTO c1 VALUES(2, 'abb'); INSERT INTO c1 VALUES(3, 'wxz'); INSERT INTO c1 VALUES(4, 'WXY'); SELECT x, y FROM c1 ORDER BY y COLLATE """"""""; } {2 abb 1 ABC 4 WXY 3 wxz} | > > | > > > > > > > > > > > > | 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 | INSERT INTO c1 VALUES(2, 'abb'); INSERT INTO c1 VALUES(3, 'wxz'); INSERT INTO c1 VALUES(4, 'WXY'); SELECT x, y FROM c1 ORDER BY y COLLATE """"""""; } {2 abb 1 ABC 4 WXY 3 wxz} # 2015-04-15: Nested COLLATE operators # do_execsql_test 7.0 { SELECT 'abc' UNION ALL SELECT 'DEF' ORDER BY 1 COLLATE nocase COLLATE nocase COLLATE nocase COLLATE nocase; } {abc DEF} do_execsql_test 7.1 { SELECT 'abc' UNION ALL SELECT 'DEF' ORDER BY 1 COLLATE nocase COLLATE nocase COLLATE nocase COLLATE binary; } {DEF abc} do_execsql_test 7.2 { SELECT 'abc' UNION ALL SELECT 'DEF' ORDER BY 1 COLLATE binary COLLATE binary COLLATE binary COLLATE nocase; } {abc DEF} finish_test |
Changes to test/collate3.test.
︙ | ︙ | |||
28 29 30 31 32 33 34 | # # These tests ensure that when a user executes a statement with an # unknown collation sequence an error is returned. # do_test collate3-1.0 { execsql { | | > > > > > | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | # # These tests ensure that when a user executes a statement with an # unknown collation sequence an error is returned. # do_test collate3-1.0 { execsql { CREATE TABLE collate3t1(c1 UNIQUE); } } {} do_test collate3-1.1 { catchsql { SELECT * FROM collate3t1 ORDER BY 1 collate garbage; } } {1 {no such collation sequence: garbage}} do_test collate3-1.1.2 { catchsql { SELECT DISTINCT c1 COLLATE garbage FROM collate3t1; } } {1 {no such collation sequence: garbage}} do_test collate3-1.2 { catchsql { CREATE TABLE collate3t2(c1 collate garbage); } } {1 {no such collation sequence: garbage}} do_test collate3-1.3 { |
︙ | ︙ |
Changes to test/corruptC.test.
︙ | ︙ | |||
288 289 290 291 292 293 294 | # do_test corruptC-2.15 { db close forcecopy test.bu test.db hexio_write test.db 986 b9 sqlite3 db test.db catchsql {SELECT count(*) FROM sqlite_master;} | | | 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | # do_test corruptC-2.15 { db close forcecopy test.bu test.db hexio_write test.db 986 b9 sqlite3 db test.db catchsql {SELECT count(*) FROM sqlite_master;} } {1 {database disk image is malformed}} # # Now test for a series of quasi-random seeds. # We loop over the entire file size and touch # each byte at least once. for {set tn 0} {$tn<$fsize} {incr tn 1} { |
︙ | ︙ |
Added test/corruptJ.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | # 2015-03-30 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Corruption consisting of a database page that thinks it is a child # of itself. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix corruptJ if {[permutation]=="mmap"} { finish_test return } # Do not use a codec for tests in this file, as the database file is # manipulated directly using tcl scripts (using the [hexio_write] command). # do_not_use_codec database_may_be_corrupt # Initialize the database. # do_execsql_test 1.1 { PRAGMA page_size=1024; PRAGMA auto_vacuum=0; CREATE TABLE t1(a,b); WITH RECURSIVE c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<10) INSERT INTO t1(a,b) SELECT i, zeroblob(700) FROM c; } {} db close # Corrupt the root page of the t1 table such that the left-child pointer # for the very first cell points back to the root. Then try to DROP the # table. The clearDatabasePage() routine should not loop. # do_test 1.2 { hexio_write test.db [expr {2*1024-2}] 02 sqlite3 db test.db catchsql { DROP TABLE t1 } } {1 {database disk image is malformed}} # Similar test using a WITHOUT ROWID table # do_test 2.1 { db close forcedelete test.db sqlite3 db test.db db eval { PRAGMA page_size=1024; PRAGMA auto_vacuum=0; CREATE TABLE t1(a,b,PRIMARY KEY(a,b)) WITHOUT ROWID; WITH RECURSIVE c(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM c WHERE i<100) INSERT INTO t1(a,b) SELECT i, zeroblob(200) FROM c; } } {} # The table is three levels deep. Corrupt the left child of an intermediate # page so that it points back to the root page. # do_test 2.2 { db close hexio_read test.db [expr {9*1024+391}] 8 } {00000008814D0401} do_test 2.2b { hexio_write test.db [expr {9*1024+391}] 00000002 sqlite3 db test.db catchsql { PRAGMA secure_delete=ON; DROP TABLE t1; } } {1 {database disk image is malformed}} finish_test |
Changes to test/count.test.
︙ | ︙ | |||
187 188 189 190 191 192 193 194 | do_execsql_test count-5.1 { CREATE TABLE t5(a TEXT PRIMARY KEY, b VARCHAR(50)) WITHOUT ROWID; INSERT INTO t5 VALUES('bison','jazz'); SELECT count(*) FROM t5; } {1} finish_test | > > > > > | 187 188 189 190 191 192 193 194 195 196 197 198 199 | do_execsql_test count-5.1 { CREATE TABLE t5(a TEXT PRIMARY KEY, b VARCHAR(50)) WITHOUT ROWID; INSERT INTO t5 VALUES('bison','jazz'); SELECT count(*) FROM t5; } {1} do_catchsql_test count-6.1 { CREATE TABLE t6(x); SELECT count(DISTINCT) FROM t6 GROUP BY x; } {1 {DISTINCT aggregates must have exactly one argument}} finish_test |
Changes to test/e_reindex.test.
︙ | ︙ | |||
44 45 46 47 48 49 50 51 | # Test this by corrupting some database indexes, running REINDEX, and # observing that the corruption is gone. # do_execsql_test e_reindex-1.1 { INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); PRAGMA writable_schema = 1; | > > > | | > | 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | # Test this by corrupting some database indexes, running REINDEX, and # observing that the corruption is gone. # do_execsql_test e_reindex-1.1 { INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); CREATE TABLE saved(a,b,c,d,e); INSERT INTO saved SELECT * FROM sqlite_master WHERE type = 'index'; PRAGMA writable_schema = 1; DELETE FROM sqlite_master WHERE type = 'index'; } {} db close sqlite3 db test.db do_execsql_test e_reindex-1.2 { DELETE FROM t1 WHERE a = 3; INSERT INTO t1 VALUES(7, 8); INSERT INTO t1 VALUES(9, 10); PRAGMA writable_schema = 1; INSERT INTO sqlite_master SELECT * FROM saved; DROP TABLE saved; } {} db close sqlite3 db test.db do_execsql_test e_reindex-1.3 { PRAGMA integrity_check; } [list \ |
︙ | ︙ |
Changes to test/e_walauto.test.
︙ | ︙ | |||
11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/wal_common.tcl set testprefix e_walauto proc read_nbackfill {} { seek $::shmfd 96 binary scan [read $::shmfd 4] n nBackfill set nBackfill } proc read_mxframe {} { | > > > > > > > > | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/wal_common.tcl set testprefix e_walauto # Do not run this test on OpenBSD, as it depends on read() and mmap both # accessing the same coherent view of the "test.db-shm" file. This doesn't # work on OpenBSD. # if {$tcl_platform(os) == "OpenBSD"} { finish_test return } proc read_nbackfill {} { seek $::shmfd 96 binary scan [read $::shmfd 4] n nBackfill set nBackfill } proc read_mxframe {} { |
︙ | ︙ |
Changes to test/expr.test.
︙ | ︙ | |||
938 939 940 941 942 943 944 945 946 947 | } } {9.22337203685478e+18} do_realnum_test expr-13.7 { execsql { SELECT '9223372036854775807.0'+0 } } {9.22337203685478e+18} finish_test | > > > > > > > > | 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | } } {9.22337203685478e+18} do_realnum_test expr-13.7 { execsql { SELECT '9223372036854775807.0'+0 } } {9.22337203685478e+18} do_execsql_test expr-13.8 { SELECT "" <= ''; } {1} do_execsql_test expr-13.9 { SELECT '' <= ""; } {1} finish_test |
Changes to test/fkey1.test.
︙ | ︙ | |||
116 117 118 119 120 121 122 123 124 | } [concat \ {0 0 t5 d {} {SET DEFAULT} CASCADE NONE} \ {0 1 t5 e {} {SET DEFAULT} CASCADE NONE} \ ] do_test fkey1-3.5 { sqlite3_db_status db DBSTATUS_DEFERRED_FKS 0 } {0 0 0} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | } [concat \ {0 0 t5 d {} {SET DEFAULT} CASCADE NONE} \ {0 1 t5 e {} {SET DEFAULT} CASCADE NONE} \ ] do_test fkey1-3.5 { sqlite3_db_status db DBSTATUS_DEFERRED_FKS 0 } {0 0 0} # Stress the dequoting logic. The first test is not so bad. do_execsql_test fkey1-4.0 { PRAGMA foreign_keys=ON; CREATE TABLE "xx1"("xx2" TEXT PRIMARY KEY, "xx3" TEXT); INSERT INTO "xx1"("xx2","xx3") VALUES('abc','def'); CREATE TABLE "xx4"("xx5" TEXT REFERENCES "xx1" ON DELETE CASCADE); INSERT INTO "xx4"("xx5") VALUES('abc'); INSERT INTO "xx1"("xx2","xx3") VALUES('uvw','xyz'); SELECT 1, "xx5" FROM "xx4"; DELETE FROM "xx1"; SELECT 2, "xx5" FROM "xx4"; } {1 abc} # This case is identical to the previous except the "xx" in each name # is changed to a single escaped double-quote character. do_execsql_test fkey1-4.1 { PRAGMA foreign_keys=ON; CREATE TABLE """1"("""2" TEXT PRIMARY KEY, """3" TEXT); INSERT INTO """1"("""2","""3") VALUES('abc','def'); CREATE TABLE """4"("""5" TEXT REFERENCES """1" ON DELETE CASCADE); INSERT INTO """4"("""5") VALUES('abc'); INSERT INTO """1"("""2","""3") VALUES('uvw','xyz'); SELECT 1, """5" FROM """4"; DELETE FROM """1"; SELECT 2, """5" FROM """4"; } {1 abc} do_execsql_test fkey1-4.2 { PRAGMA table_info="""1"; } {0 {"2} TEXT 0 {} 1 1 {"3} TEXT 0 {} 0} finish_test |
Changes to test/fkey2.test.
︙ | ︙ | |||
672 673 674 675 676 677 678 679 680 681 682 683 684 685 | } {6 A 5 6 B 5 3 A 2 3 B 2} do_test fkey2-9.2.3 { execsql { DELETE FROM pp WHERE a = 4; SELECT * FROM cc; } } {{} A {} {} B {} 3 A 2 3 B 2} #------------------------------------------------------------------------- # The following tests, fkey2-10.*, test "foreign key mismatch" and # other errors. # set tn 0 foreach zSql [list { | > > > > > | 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | } {6 A 5 6 B 5 3 A 2 3 B 2} do_test fkey2-9.2.3 { execsql { DELETE FROM pp WHERE a = 4; SELECT * FROM cc; } } {{} A {} {} B {} 3 A 2 3 B 2} do_execsql_test fkey2-9.3.0 { CREATE TABLE t3(x PRIMARY KEY REFERENCES t3 ON DELETE SET NULL); INSERT INTO t3(x) VALUES(12345); DROP TABLE t3; } {} #------------------------------------------------------------------------- # The following tests, fkey2-10.*, test "foreign key mismatch" and # other errors. # set tn 0 foreach zSql [list { |
︙ | ︙ | |||
742 743 744 745 746 747 748 | #------------------------------------------------------------------------- # The following tests, fkey2-11.*, test CASCADE actions. # drop_all_tables do_test fkey2-11.1.1 { execsql { | | | | 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 | #------------------------------------------------------------------------- # The following tests, fkey2-11.*, test CASCADE actions. # drop_all_tables do_test fkey2-11.1.1 { execsql { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, rowid, _rowid_, oid); CREATE TABLE t2(c, d, FOREIGN KEY(c) REFERENCES t1(a) ON UPDATE CASCADE); INSERT INTO t1 VALUES(10, 100, 'abc', 'def', 'ghi'); INSERT INTO t2 VALUES(10, 100); UPDATE t1 SET a = 15; SELECT * FROM t2; } } {15 100} #------------------------------------------------------------------------- |
︙ | ︙ | |||
2009 2010 2011 2012 2013 2014 2015 2016 2017 | } } {1 {FOREIGN KEY constraint failed}} do_test fkey2-ce7c13.1.6 { catchsql { UPDATE tce73 set a = 101 where a = 100; } } {1 {FOREIGN KEY constraint failed}} finish_test | > > > > > > > > > > > > > > | 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 | } } {1 {FOREIGN KEY constraint failed}} do_test fkey2-ce7c13.1.6 { catchsql { UPDATE tce73 set a = 101 where a = 100; } } {1 {FOREIGN KEY constraint failed}} # 2015-04-16: Foreign key errors propagate back up to the parser. # do_test fkey2-20150416-100 { db close sqlite3 db :memory: catchsql { PRAGMA foreign_keys=1; CREATE TABLE t1(x PRIMARY KEY); CREATE TABLE t(y REFERENCES t0(x)ON DELETE SET DEFAULT); CREATE TABLE t0(y REFERENCES t1 ON DELETE SET NULL); REPLACE INTO t1 SELECT(0);CREATE TABLE t2(x);CREATE TABLE t3; } } {1 {foreign key mismatch - "t" referencing "t0"}} finish_test |
Changes to test/fts3aa.test.
︙ | ︙ | |||
12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # focus of this script is testing the FTS3 module. # # $Id: fts3aa.test,v 1.1 2007/08/20 17:38:42 shess Exp $ # set testdir [file dirname $argv0] source $testdir/tester.tcl # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } | > | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # focus of this script is testing the FTS3 module. # # $Id: fts3aa.test,v 1.1 2007/08/20 17:38:42 shess Exp $ # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix fts3aa # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } |
︙ | ︙ | |||
216 217 218 219 220 221 222 223 224 225 | do_execsql_test fts3aa-7.4 { CREATE VIRTUAL TABLE t3 USING fts3(tokenize=simple, tokenize=simple); SELECT tokenize FROM t3; } {} do_catchsql_test fts3aa-7.5 { CREATE VIRTUAL TABLE t4 USING fts4(tokenize=simple, tokenize=simple); } {1 {unrecognized parameter: tokenize=simple}} finish_test | > > > > > > > > > > > > > > > > > > > > > | 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | do_execsql_test fts3aa-7.4 { CREATE VIRTUAL TABLE t3 USING fts3(tokenize=simple, tokenize=simple); SELECT tokenize FROM t3; } {} do_catchsql_test fts3aa-7.5 { CREATE VIRTUAL TABLE t4 USING fts4(tokenize=simple, tokenize=simple); } {1 {unrecognized parameter: tokenize=simple}} do_execsql_test 8.0 { CREATE VIRTUAL TABLE t0 USING fts4(order=desc); BEGIN; INSERT INTO t0(rowid, content) VALUES(1, 'abc'); UPDATE t0 SET docid=5 WHERE docid=1; INSERT INTO t0(rowid, content) VALUES(6, 'abc'); } do_execsql_test 8.1 { SELECT docid FROM t0 WHERE t0 MATCH 'abc'; } {6 5} do_execsql_test 8.2 { SELECT docid FROM t0 WHERE t0 MATCH '"abc abc"'; } {} do_execsql_test 8.3 { COMMIT } do_execsql_test 8.4 { SELECT docid FROM t0 WHERE t0 MATCH 'abc'; } {6 5} do_execsql_test 8.5 { SELECT docid FROM t0 WHERE t0 MATCH '"abc abc"'; } {} finish_test |
Changes to test/fts3atoken.test.
︙ | ︙ | |||
199 200 201 202 203 204 205 206 207 | do_catchsql_test 6.1.2 { CREATE VIRTUAL TABLE t3 USING fts4(tokenize=); } {1 {unknown tokenizer: }} do_catchsql_test 6.1.3 { CREATE VIRTUAL TABLE t3 USING fts4(tokenize=" "); } {1 {unknown tokenizer: }} finish_test | > > > > > > > > > > | 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | do_catchsql_test 6.1.2 { CREATE VIRTUAL TABLE t3 USING fts4(tokenize=); } {1 {unknown tokenizer: }} do_catchsql_test 6.1.3 { CREATE VIRTUAL TABLE t3 USING fts4(tokenize=" "); } {1 {unknown tokenizer: }} do_catchsql_test 6.2.1 { SELECT fts3_tokenizer(NULL); } {1 {unknown tokenizer: }} do_catchsql_test 6.2.2 { SELECT fts3_tokenizer(NULL, X'1234567812345678'); } {1 {argument type mismatch}} do_catchsql_test 6.2.3 { SELECT fts3_tokenizer(NULL, X'12345678'); } {1 {argument type mismatch}} finish_test |
Added test/fts3expr5.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | # 2006 September 9 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing the FTS3 module. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix fts3expr5 # If SQLITE_ENABLE_FTS3 is defined, omit this file. ifcapable !fts3 { finish_test return } #------------------------------------------------------------------------- # Various forms of empty phrase expressions. # do_execsql_test 1.0 { CREATE VIRTUAL TABLE t0 USING fts3(x); SELECT rowid FROM t0 WHERE x MATCH ''; } {} do_execsql_test 1.1 { SELECT rowid FROM t0 WHERE x MATCH '""'; } {} do_execsql_test 1.2 { SELECT rowid FROM t0 WHERE x MATCH '"" ""'; } {} do_execsql_test 1.3 { SELECT rowid FROM t0 WHERE x MATCH '"" OR ""'; } {} do_execsql_test 1.4 { SELECT rowid FROM t0 WHERE x MATCH '"" NOT ""'; } {} do_execsql_test 1.5 { SELECT rowid FROM t0 WHERE x MATCH '""""'; } {} finish_test |
Changes to test/fts3fault2.test.
︙ | ︙ | |||
150 151 152 153 154 155 156 157 158 | ); } execsql { SELECT docid FROM ft WHERE ft MATCH 'th*' } } -test { faultsim_test_result {0 {1 2}} } } finish_test | > > > > > > > > > > > > > > > > > > > | 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | ); } execsql { SELECT docid FROM ft WHERE ft MATCH 'th*' } } -test { faultsim_test_result {0 {1 2}} } } reset_db do_test 6.0 { execsql { CREATE VIRTUAL TABLE t6 USING fts4(x,order=DESC); INSERT INTO t6(docid, x) VALUES(-1,'a b'); INSERT INTO t6(docid, x) VALUES(1, 'b'); } faultsim_save_and_close } {} do_faultsim_test 6.1 -faults oom* -prep { faultsim_restore_and_reopen db eval {SELECT * FROM sqlite_master} } -body { execsql { SELECT docid FROM t6 WHERE t6 MATCH '"a* b"' } } -test { faultsim_test_result {0 -1} } finish_test |
Changes to test/fts3prefix.test.
︙ | ︙ | |||
269 270 271 272 273 274 275 276 277 | CREATE VIRTUAL TABLE t2 USING fts4(prefix=); INSERT INTO t1 VALUES('He dressed himself in cycling clothes'); INSERT INTO t2 VALUES('He dressed himself in cycling clothes'); } {} do_execsql_test 6.5.2 { SELECT md5sum(quote(root)) FROM t1_segdir; } [db eval {SELECT md5sum(quote(root)) FROM t2_segdir}] finish_test | > > > > > > > > > > > > > > > > > > | 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | CREATE VIRTUAL TABLE t2 USING fts4(prefix=); INSERT INTO t1 VALUES('He dressed himself in cycling clothes'); INSERT INTO t2 VALUES('He dressed himself in cycling clothes'); } {} do_execsql_test 6.5.2 { SELECT md5sum(quote(root)) FROM t1_segdir; } [db eval {SELECT md5sum(quote(root)) FROM t2_segdir}] do_execsql_test 7.0 { CREATE VIRTUAL TABLE t6 USING fts4(x,order=DESC); INSERT INTO t6(docid, x) VALUES(-1,'a b'); INSERT INTO t6(docid, x) VALUES(1, 'b'); } do_execsql_test 7.1 { SELECT docid FROM t6 WHERE t6 MATCH '"a* b"'; } {-1} do_execsql_test 7.2 { SELECT docid FROM t6 WHERE t6 MATCH 'a*'; } {-1} do_execsql_test 7.3 { SELECT docid FROM t6 WHERE t6 MATCH 'a* b'; } {-1} finish_test |
Changes to test/fts3snippet.test.
︙ | ︙ | |||
533 534 535 536 537 538 539 540 541 542 543 | } {{[one <b>two</b> three]}} do_execsql_test 3.3 { SELECT snippet(t3) FROM t3 WHERE t3 MATCH 'three'; } {{[one two <b>three</b>]}} do_execsql_test 3.4 { SELECT snippet(t3) FROM t3 WHERE t3 MATCH 'one OR two OR three'; } {{[<b>one</b> <b>two</b> <b>three</b>]}} set sqlite_fts3_enable_parentheses 0 finish_test | > > > > > > > > > > > > > > > > > > > | 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 | } {{[one <b>two</b> three]}} do_execsql_test 3.3 { SELECT snippet(t3) FROM t3 WHERE t3 MATCH 'three'; } {{[one two <b>three</b>]}} do_execsql_test 3.4 { SELECT snippet(t3) FROM t3 WHERE t3 MATCH 'one OR two OR three'; } {{[<b>one</b> <b>two</b> <b>three</b>]}} #------------------------------------------------------------------------- # Request a snippet 0 tokens in size. This is always an empty string. do_execsql_test 4.1 { CREATE VIRTUAL TABLE t4 USING fts4; INSERT INTO t4 VALUES('a b c d'); SELECT snippet(t4, '[', ']', '...', 0, 0) FROM t4 WHERE t4 MATCH 'b'; } {{}} do_test 4.2 { set x35 [string trim [string repeat "x " 35]] execsql "INSERT INTO t4 VALUES('$x35 E $x35 F $x35 G $x35');" llength [db one { SELECT snippet(t4, '', '', '', 0, 64) FROM t4 WHERE t4 MATCH 'E' }] } {64} set sqlite_fts3_enable_parentheses 0 finish_test |
Changes to test/fts3tok1.test.
︙ | ︙ | |||
105 106 107 108 109 110 111 112 113 114 | CREATE VIRTUAL TABLE tX USING fts3tokenize(nosuchtokenizer); } {1 {unknown tokenizer: nosuchtokenizer}} do_catchsql_test 2.1 { CREATE VIRTUAL TABLE t4 USING fts3tokenize; SELECT * FROM t4; } {1 {SQL logic error or missing database}} finish_test | > > > > > > > > > > | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | CREATE VIRTUAL TABLE tX USING fts3tokenize(nosuchtokenizer); } {1 {unknown tokenizer: nosuchtokenizer}} do_catchsql_test 2.1 { CREATE VIRTUAL TABLE t4 USING fts3tokenize; SELECT * FROM t4; } {1 {SQL logic error or missing database}} do_catchsql_test 2.2 { CREATE VIRTUAL TABLE t USING fts4(tokenize=simple""); } {0 {}} ifcapable fts3_unicode { do_catchsql_test 2.3 { CREATE VIRTUAL TABLE u USING fts4(tokenize=unicode61""); } {1 {unknown tokenizer}} } finish_test |
Changes to test/fts4content.test.
︙ | ︙ | |||
44 45 46 47 48 49 50 51 52 53 54 55 56 57 | # SELECT statements. # # 8.* - Test that if the content=xxx and prefix options are used together, # the 'rebuild' command still works. # # 9.* - Test using content=xxx where xxx is a virtual table. # do_execsql_test 1.1.1 { CREATE TABLE t1(a, b, c); INSERT INTO t1 VALUES('w x', 'x y', 'y z'); CREATE VIRTUAL TABLE ft1 USING fts4(content=t1); } | > > > | 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | # SELECT statements. # # 8.* - Test that if the content=xxx and prefix options are used together, # the 'rebuild' command still works. # # 9.* - Test using content=xxx where xxx is a virtual table. # # 11.* - Test that circular references (e.g. "t1(content=t1)") are # detected. # do_execsql_test 1.1.1 { CREATE TABLE t1(a, b, c); INSERT INTO t1 VALUES('w x', 'x y', 'y z'); CREATE VIRTUAL TABLE ft1 USING fts4(content=t1); } |
︙ | ︙ | |||
402 403 404 405 406 407 408 | } #------------------------------------------------------------------------- # Test cases 6.* test # do_catchsql_test 6.1.1 { CREATE VIRTUAL TABLE ft7 USING fts4(content=t7); | | | 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | } #------------------------------------------------------------------------- # Test cases 6.* test # do_catchsql_test 6.1.1 { CREATE VIRTUAL TABLE ft7 USING fts4(content=t7); } {1 {no such table: main.t7}} do_execsql_test 6.2.1 { CREATE TABLE t7(one, two); CREATE VIRTUAL TABLE ft7 USING fts4(content=t7); INSERT INTO t7 VALUES('A B', 'B A'); INSERT INTO t7 VALUES('C D', 'A A'); SELECT * FROM ft7; |
︙ | ︙ | |||
429 430 431 432 433 434 435 | SELECT name FROM sqlite_master WHERE name LIKE '%t7%' } { ft7 ft7_segments ft7_segdir sqlite_autoindex_ft7_segdir_1 ft7_docsize ft7_stat } do_catchsql_test 6.2.4 { SELECT * FROM ft7; | | | 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | SELECT name FROM sqlite_master WHERE name LIKE '%t7%' } { ft7 ft7_segments ft7_segdir sqlite_autoindex_ft7_segdir_1 ft7_docsize ft7_stat } do_catchsql_test 6.2.4 { SELECT * FROM ft7; } {1 {no such table: main.t7}} do_execsql_test 6.2.5 { CREATE TABLE t7(x, y); INSERT INTO t7 VALUES('A B', 'B A'); INSERT INTO t7 VALUES('C D', 'A A'); SELECT * FROM ft7; } { {A B} {B A} {C D} {A A} |
︙ | ︙ | |||
617 618 619 620 621 622 623 624 625 | do_execsql_test 10.6 { DELETE FROM ft WHERE docid=2 } do_execsql_test 10.7 { SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 'e' } { {...c d [e] f g...} } finish_test | > > > > > > > > > > > | 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 | do_execsql_test 10.6 { DELETE FROM ft WHERE docid=2 } do_execsql_test 10.7 { SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 'e' } { {...c d [e] f g...} } #------------------------------------------------------------------------- # Test cases 11.* # reset_db do_catchsql_test 11.1 { CREATE VIRTUAL TABLE x1 USING fts4(content=x1); } {1 {vtable constructor called recursively: x1}} finish_test |
Changes to test/hexlit.test.
︙ | ︙ | |||
105 106 107 108 109 110 111 112 113 114 | } {0} # Oversized hex literals are rejected # do_catchsql_test hexlist-400 { SELECT 0x10000000000000000; } {1 {hex literal too big: 0x10000000000000000}} finish_test | > > > > > | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | } {0} # Oversized hex literals are rejected # do_catchsql_test hexlist-400 { SELECT 0x10000000000000000; } {1 {hex literal too big: 0x10000000000000000}} do_catchsql_test hexlist-410 { DROP TABLE IF EXISTS t1; CREATE TABLE t1(x); INSERT INTO t1 VALUES(1+0x10000000000000000); } {1 {hex literal too big: 0x10000000000000000}} finish_test |
Changes to test/in.test.
︙ | ︙ | |||
611 612 613 614 615 616 617 618 619 620 621 622 623 | do_test in-13.14 { execsql { CREATE INDEX i5 ON b(id); SELECT * FROM a WHERE id NOT IN (SELECT id FROM b); } } {} do_test in-13.X { db nullvalue "" } {} finish_test | > > > > > > | 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 | do_test in-13.14 { execsql { CREATE INDEX i5 ON b(id); SELECT * FROM a WHERE id NOT IN (SELECT id FROM b); } } {} do_test in-13.15 { catchsql { SELECT 0 WHERE (SELECT 0,0) OR (0 IN (1,2)); } } {1 {only a single result allowed for a SELECT that is part of an expression}} do_test in-13.X { db nullvalue "" } {} finish_test |
Changes to test/index3.test.
︙ | ︙ | |||
47 48 49 50 51 52 53 | execsql { PRAGMA writable_schema=on; UPDATE sqlite_master SET sql='nonsense'; } db close catch { sqlite3 db test.db } catchsql { DROP INDEX i1 } | | | 47 48 49 50 51 52 53 54 55 56 | execsql { PRAGMA writable_schema=on; UPDATE sqlite_master SET sql='nonsense'; } db close catch { sqlite3 db test.db } catchsql { DROP INDEX i1 } } {1 {malformed database schema (t1)}} finish_test |
Changes to test/index7.test.
︙ | ︙ | |||
307 308 309 310 311 312 313 314 315 | def xyz } do_eqp_test index7-6.4 { SELECT * FROM v4 WHERE d='xyz' AND c='def' } { 0 0 0 {SEARCH TABLE t4 USING INDEX i4 (c=?)} } finish_test | > > > > | 307 308 309 310 311 312 313 314 315 316 317 318 319 | def xyz } do_eqp_test index7-6.4 { SELECT * FROM v4 WHERE d='xyz' AND c='def' } { 0 0 0 {SEARCH TABLE t4 USING INDEX i4 (c=?)} } do_catchsql_test index7-6.5 { CREATE INDEX t5a ON t5(a) WHERE a=#1; } {1 {near "#1": syntax error}} finish_test |
Changes to test/insert2.test.
︙ | ︙ | |||
12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # focus of this file is testing the INSERT statement that takes is # result from a SELECT. # # $Id: insert2.test,v 1.19 2008/01/16 18:20:42 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Create some tables with data that we can select against # do_test insert2-1.0 { execsql {CREATE TABLE d1(n int, log int);} for {set i 1} {$i<=20} {incr i} { for {set j 0} {(1<<$j)<$i} {incr j} {} | > | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # focus of this file is testing the INSERT statement that takes is # result from a SELECT. # # $Id: insert2.test,v 1.19 2008/01/16 18:20:42 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix insert2 # Create some tables with data that we can select against # do_test insert2-1.0 { execsql {CREATE TABLE d1(n int, log int);} for {set i 1} {$i<=20} {incr i} { for {set j 0} {(1<<$j)<$i} {incr j} {} |
︙ | ︙ | |||
270 271 272 273 274 275 276 277 278 | do_test insert2-5.2 { execsql { INSERT INTO t2 SELECT (SELECT a FROM t2), 4; SELECT * FROM t2; } } {1 2 1 3 1 4} } finish_test | > > > > > > > > > > > > > > > > > > > | 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | do_test insert2-5.2 { execsql { INSERT INTO t2 SELECT (SELECT a FROM t2), 4; SELECT * FROM t2; } } {1 2 1 3 1 4} } do_execsql_test 6.0 { CREATE TABLE t5(a, b, c DEFAULT 'c', d); } do_execsql_test 6.1 { INSERT INTO t5(a) SELECT 456 UNION ALL SELECT 123 ORDER BY 1; SELECT * FROM t5 ORDER BY rowid; } {123 {} c {} 456 {} c {}} ifcapable fts3 { do_execsql_test 6.2 { CREATE VIRTUAL TABLE t0 USING fts4(a); } do_execsql_test 6.3 { INSERT INTO t0 SELECT 0 UNION SELECT 0 AS 'x' ORDER BY x; SELECT * FROM t0; } {0} } finish_test |
Changes to test/insert4.test.
︙ | ︙ | |||
556 557 558 559 560 561 562 563 564 | CREATE TABLE t2(x INTEGER PRIMARY KEY ON CONFLICT ROLLBACK, y); INSERT INTO t2 VALUES(1,3); INSERT INTO t1 SELECT * FROM t2; SELECT * FROM t1; } } {1 3} finish_test | > > > > > | 556 557 558 559 560 561 562 563 564 565 566 567 568 569 | CREATE TABLE t2(x INTEGER PRIMARY KEY ON CONFLICT ROLLBACK, y); INSERT INTO t2 VALUES(1,3); INSERT INTO t1 SELECT * FROM t2; SELECT * FROM t1; } } {1 3} do_catchsql_test insert4-9.1 { DROP TABLE IF EXISTS t1; CREATE TABLE t1(x); INSERT INTO t1(x) VALUES(5 COLLATE xyzzy) UNION SELECT 0; } {1 {no such collation sequence: xyzzy}} finish_test |
Changes to test/misc1.test.
︙ | ︙ | |||
9 10 11 12 13 14 15 | # #*********************************************************************** # This file implements regression tests for SQLite library. # # This file implements tests for miscellanous features that were # left out of other test files. # | < | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # #*********************************************************************** # This file implements regression tests for SQLite library. # # This file implements tests for miscellanous features that were # left out of other test files. # set testdir [file dirname $argv0] source $testdir/tester.tcl # Mimic the SQLite 2 collation type NUMERIC. db collate numeric numeric_collate proc numeric_collate {lhs rhs} { |
︙ | ︙ | |||
626 627 628 629 630 631 632 633 634 | # presumably. # do_execsql_test misc1-20.1 { CREATE TABLE t0(x INTEGER DEFAULT(0==0) NOT NULL); REPLACE INTO t0(x) VALUES(''); SELECT rowid, quote(x) FROM t0; } {1 ''} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 | # presumably. # do_execsql_test misc1-20.1 { CREATE TABLE t0(x INTEGER DEFAULT(0==0) NOT NULL); REPLACE INTO t0(x) VALUES(''); SELECT rowid, quote(x) FROM t0; } {1 ''} # 2015-03-22: NULL pointer dereference after a syntax error # do_catchsql_test misc1-21.1 { select''like''like''like#0; } {1 {near "#0": syntax error}} do_catchsql_test misc1-21.2 { VALUES(0,0x0MATCH#0; } {1 {near ";": syntax error}} # 2015-04-15 do_execsql_test misc1-22.1 { SELECT ""+3 FROM (SELECT ""+5); } {3} # 2015-04-19: NULL pointer dereference on a corrupt schema # db close sqlite3 db :memory: do_execsql_test misc1-23.1 { CREATE TABLE t1(x); PRAGMA writable_schema=ON; UPDATE sqlite_master SET sql='CREATE table t(d CHECK(T(#0)'; BEGIN; CREATE TABLE t2(y); ROLLBACK; DROP TABLE IF EXISTS t3; } {} # 2015-04-19: Faulty assert() statement # db close database_may_be_corrupt sqlite3 db :memory: do_catchsql_test misc1-23.2 { CREATE TABLE t1(x UNIQUE); PRAGMA writable_schema=ON; UPDATE sqlite_master SET sql='CREATE TABLE IF not EXISTS t(c)'; BEGIN; CREATE TABLE t2(x); ROLLBACK; DROP TABLE F; } {1 {no such table: F}} db close sqlite3 db :memory: do_catchsql_test misc1-23.3 { CREATE TABLE t1(x UNIQUE); PRAGMA writable_schema=ON; UPDATE sqlite_master SET sql='CREATE table y(a TEXT, a TEXT)'; BEGIN; CREATE TABLE t2(y); ROLLBACK; DROP TABLE IF EXISTS t; } {0 {}} finish_test |
Changes to test/misc5.test.
︙ | ︙ | |||
578 579 580 581 582 583 584 585 586 587 588 589 590 591 | for {set i 0} {$i<200} {incr i} { append sql "(1+" append tail ")" } append sql 2$tail catchsql $sql } {1 {parser stack overflow}} # Ticket #1911 # ifcapable compound { do_test misc5-9.1 { execsql { SELECT name, type FROM sqlite_master WHERE name IS NULL | > > > > > > > > > > > > > > > > > > | 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | for {set i 0} {$i<200} {incr i} { append sql "(1+" append tail ")" } append sql 2$tail catchsql $sql } {1 {parser stack overflow}} # Parser stack overflow is silently ignored when it occurs while parsing the # schema and PRAGMA writable_schema is turned on. # do_test misc5-7.2 { sqlite3 db2 :memory: catchsql { CREATE TABLE t1(x UNIQUE); PRAGMA writable_schema=ON; UPDATE sqlite_master SET sql='CREATE table t(o CHECK(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((;VALUES(o)'; BEGIN; CREATE TABLE t2(y); ROLLBACK; DROP TABLE IF EXISTS D; } db2 } {0 {}} db2 close # Ticket #1911 # ifcapable compound { do_test misc5-9.1 { execsql { SELECT name, type FROM sqlite_master WHERE name IS NULL |
︙ | ︙ |
Changes to test/null.test.
︙ | ︙ | |||
274 275 276 277 278 279 280 281 282 283 | } {1} do_test null-8.15 { execsql { SELECT x FROM t4 WHERE y!=33 ORDER BY x; } } {1} finish_test | > > > > > > > > > > > > > > > > > | 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | } {1} do_test null-8.15 { execsql { SELECT x FROM t4 WHERE y!=33 ORDER BY x; } } {1} do_execsql_test null-9.1 { CREATE TABLE t5(a, b, c); CREATE UNIQUE INDEX t5ab ON t5(a, b); INSERT INTO t5 VALUES(1, NULL, 'one'); INSERT INTO t5 VALUES(1, NULL, 'i'); INSERT INTO t5 VALUES(NULL, 'x', 'two'); INSERT INTO t5 VALUES(NULL, 'x', 'ii'); } do_execsql_test null-9.2 { SELECT * FROM t5 WHERE a = 1 AND b IS NULL; } {1 {} one 1 {} i} do_execsql_test null-9.3 { SELECT * FROM t5 WHERE a IS NULL AND b = 'x'; } {{} x two {} x ii} finish_test |
Changes to test/orderby1.test.
︙ | ︙ | |||
459 460 461 462 463 464 465 466 467 468 469 470 471 472 | } {} do_execsql_test 5.1 { EXPLAIN QUERY PLAN SELECT 5 UNION ALL SELECT 3 ORDER BY 1 } {~/B-TREE/} do_execsql_test 5.2 { SELECT 5 UNION ALL SELECT 3 ORDER BY 1 } {3 5} # The following test (originally derived from a single test within fuzz.test) # verifies that a PseudoTable cursor is not closed prematurely in a deeply # nested query. This test caused a segfault on 3.8.5 beta. # do_execsql_test 6.0 { CREATE TABLE abc(a, b, c); | > > > | 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | } {} do_execsql_test 5.1 { EXPLAIN QUERY PLAN SELECT 5 UNION ALL SELECT 3 ORDER BY 1 } {~/B-TREE/} do_execsql_test 5.2 { SELECT 5 UNION ALL SELECT 3 ORDER BY 1 } {3 5} do_execsql_test 5.3 { SELECT 986 AS x GROUP BY X ORDER BY X } {986} # The following test (originally derived from a single test within fuzz.test) # verifies that a PseudoTable cursor is not closed prematurely in a deeply # nested query. This test caused a segfault on 3.8.5 beta. # do_execsql_test 6.0 { CREATE TABLE abc(a, b, c); |
︙ | ︙ | |||
491 492 493 494 495 496 497 | CREATE TABLE t7(a,b); CREATE INDEX t7a ON t7(a); CREATE INDEX t7ab ON t7(a,b); EXPLAIN QUERY PLAN SELECT * FROM t7 WHERE a=?1 ORDER BY rowid; } {~/ORDER BY/} | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > | 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 | CREATE TABLE t7(a,b); CREATE INDEX t7a ON t7(a); CREATE INDEX t7ab ON t7(a,b); EXPLAIN QUERY PLAN SELECT * FROM t7 WHERE a=?1 ORDER BY rowid; } {~/ORDER BY/} #------------------------------------------------------------------------- # Test a partial sort large enough to cause the sorter to spill data # to disk. # reset_db do_execsql_test 8.0 { PRAGMA cache_size = 5; CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a); } do_eqp_test 8.1 { SELECT * FROM t1 ORDER BY a, b; } { 0 0 0 {SCAN TABLE t1 USING INDEX i1} 0 0 0 {USE TEMP B-TREE FOR RIGHT PART OF ORDER BY} } do_execsql_test 8.2 { WITH cnt(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM cnt WHERE i<10000 ) INSERT INTO t1 SELECT i%2, randomblob(500) FROM cnt; } do_test 8.3 { db eval { SELECT * FROM t1 ORDER BY a, b } { incr res $a } set res } 5000 finish_test |
Changes to test/pragma.test.
︙ | ︙ | |||
214 215 216 217 218 219 220 221 222 223 224 225 226 227 | } } {0} do_test pragma-1.14 { execsql { PRAGMA synchronous=2; PRAGMA synchronous; } } {2} } ;# ifcapable pager_pragmas # Test turning "flag" pragmas on and off. # ifcapable debug { # Pragma "vdbe_listing" is only available if compiled with SQLITE_DEBUG | > > > > > > > > > > > > > > > > > > | 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | } } {0} do_test pragma-1.14 { execsql { PRAGMA synchronous=2; PRAGMA synchronous; } } {2} do_test pragma-1.14.1 { execsql { PRAGMA synchronous=4; PRAGMA synchronous; } } {0} do_test pragma-1.14.2 { execsql { PRAGMA synchronous=3; PRAGMA synchronous; } } {0} do_test pragma-1.14.3 { execsql { PRAGMA synchronous=10; PRAGMA synchronous; } } {2} } ;# ifcapable pager_pragmas # Test turning "flag" pragmas on and off. # ifcapable debug { # Pragma "vdbe_listing" is only available if compiled with SQLITE_DEBUG |
︙ | ︙ | |||
747 748 749 750 751 752 753 754 755 756 757 758 759 760 | ORDER BY cid} } [concat \ {0 one INT 1 -1 0} \ {1 two text 0 {} 0} \ {2 three {VARCHAR(45, 65)} 0 'abcde' 0} \ {3 four REAL 0 X'abcdef' 0} \ {4 five {} 0 CURRENT_TIME 0} \ ] } ;# ifcapable schema_pragmas # Miscellaneous tests # ifcapable schema_pragmas { # EVIDENCE-OF: R-63500-32024 PRAGMA database.index_list(table-name); # This pragma returns one row for each index associated with the given | > > > > > > > > > > | 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 | ORDER BY cid} } [concat \ {0 one INT 1 -1 0} \ {1 two text 0 {} 0} \ {2 three {VARCHAR(45, 65)} 0 'abcde' 0} \ {3 four REAL 0 X'abcdef' 0} \ {4 five {} 0 CURRENT_TIME 0} \ ] do_test pragma-6.8 { execsql { CREATE TABLE t68(a,b,c,PRIMARY KEY(a,b,a,c)); PRAGMA table_info(t68); } } [concat \ {0 a {} 0 {} 1} \ {1 b {} 0 {} 2} \ {2 c {} 0 {} 4} \ ] } ;# ifcapable schema_pragmas # Miscellaneous tests # ifcapable schema_pragmas { # EVIDENCE-OF: R-63500-32024 PRAGMA database.index_list(table-name); # This pragma returns one row for each index associated with the given |
︙ | ︙ |
Changes to test/printf.test.
︙ | ︙ | |||
468 469 470 471 472 473 474 475 476 477 478 479 480 481 | sqlite3_mprintf_int {abc: (% 6d) (% 6x) (% 6o) :xyz}\ 0xff676981 0xff676981 0xff676981 } {abc: (-9999999) (ff676981) (37731664601) :xyz} do_test printf-1.16.7 { sqlite3_mprintf_int {abc: (%#6d) (%#6x) (%#6o) :xyz}\ 0xff676981 0xff676981 0xff676981 } {abc: (-9999999) (0xff676981) (037731664601) :xyz} do_test printf-2.1.1.1 { sqlite3_mprintf_double {abc: (%*.*f) :xyz} 1 1 0.001 } {abc: (0.0) :xyz} do_test printf-2.1.1.2 { sqlite3_mprintf_double {abc: (%*.*e) :xyz} 1 1 0.001 } {abc: (1.0e-03) :xyz} do_test printf-2.1.1.3 { | > > > > > > > > > > > > | 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | sqlite3_mprintf_int {abc: (% 6d) (% 6x) (% 6o) :xyz}\ 0xff676981 0xff676981 0xff676981 } {abc: (-9999999) (ff676981) (37731664601) :xyz} do_test printf-1.16.7 { sqlite3_mprintf_int {abc: (%#6d) (%#6x) (%#6o) :xyz}\ 0xff676981 0xff676981 0xff676981 } {abc: (-9999999) (0xff676981) (037731664601) :xyz} do_test printf-1.17.1 { sqlite3_mprintf_int {abd: %2147483647d %2147483647x %2147483647o} 1 1 1 } {} do_test printf-1.17.2 { sqlite3_mprintf_int {abd: %*d %x} 2147483647 1 1 } {} do_test printf-1.17.3 { sqlite3_mprintf_int {abd: %*d %x} -2147483648 1 1 } {abd: 1 1} do_test printf-1.17.4 { sqlite3_mprintf_int {abd: %.2147483648d %x %x} 1 1 1 } {/.*/} do_test printf-2.1.1.1 { sqlite3_mprintf_double {abc: (%*.*f) :xyz} 1 1 0.001 } {abc: (0.0) :xyz} do_test printf-2.1.1.2 { sqlite3_mprintf_double {abc: (%*.*e) :xyz} 1 1 0.001 } {abc: (1.0e-03) :xyz} do_test printf-2.1.1.3 { |
︙ | ︙ | |||
522 523 524 525 526 527 528 529 530 531 532 533 534 535 | } {abc: 1 1 (0.0) :xyz} do_test printf-2.1.2.8 { sqlite3_mprintf_double {abc: %d %d (%1.1e) :xyz} 1 1 1.0e-20 } {abc: 1 1 (1.0e-20) :xyz} do_test printf-2.1.2.9 { sqlite3_mprintf_double {abc: %d %d (%1.1g) :xyz} 1 1 1.0e-20 } {abc: 1 1 (1e-20) :xyz} do_test printf-2.1.3.1 { sqlite3_mprintf_double {abc: (%*.*f) :xyz} 1 1 1.0 } {abc: (1.0) :xyz} do_test printf-2.1.3.2 { sqlite3_mprintf_double {abc: (%*.*e) :xyz} 1 1 1.0 } {abc: (1.0e+00) :xyz} do_test printf-2.1.3.3 { | > > > | 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 | } {abc: 1 1 (0.0) :xyz} do_test printf-2.1.2.8 { sqlite3_mprintf_double {abc: %d %d (%1.1e) :xyz} 1 1 1.0e-20 } {abc: 1 1 (1.0e-20) :xyz} do_test printf-2.1.2.9 { sqlite3_mprintf_double {abc: %d %d (%1.1g) :xyz} 1 1 1.0e-20 } {abc: 1 1 (1e-20) :xyz} do_test printf-2.1.2.10 { sqlite3_mprintf_double {abc: %*.*f} 2000000000 1000000000 1.0e-20 } {abc: } do_test printf-2.1.3.1 { sqlite3_mprintf_double {abc: (%*.*f) :xyz} 1 1 1.0 } {abc: (1.0) :xyz} do_test printf-2.1.3.2 { sqlite3_mprintf_double {abc: (%*.*e) :xyz} 1 1 1.0 } {abc: (1.0e+00) :xyz} do_test printf-2.1.3.3 { |
︙ | ︙ | |||
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 | } [format {%d %d A String: (%s)} 1 2 {This is the string}] do_test printf-3.5 { sqlite3_mprintf_str {%d %d A String: (%30s)} 1 2 {This is the string} } [format {%d %d A String: (%30s)} 1 2 {This is the string}] do_test printf-3.6 { sqlite3_mprintf_str {%d %d A String: (%-30s)} 1 2 {This is the string} } [format {%d %d A String: (%-30s)} 1 2 {This is the string}] do_test snprintf-3.11 { sqlite3_snprintf_str 2 {x%d %d %s} 10 10 {This is the string} } {x} do_test snprintf-3.12 { sqlite3_snprintf_str 3 {x%d %d %s} 10 10 {This is the string} } {x1} do_test snprintf-3.13 { | > > > > > > > > > | 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 | } [format {%d %d A String: (%s)} 1 2 {This is the string}] do_test printf-3.5 { sqlite3_mprintf_str {%d %d A String: (%30s)} 1 2 {This is the string} } [format {%d %d A String: (%30s)} 1 2 {This is the string}] do_test printf-3.6 { sqlite3_mprintf_str {%d %d A String: (%-30s)} 1 2 {This is the string} } [format {%d %d A String: (%-30s)} 1 2 {This is the string}] do_test printf-3.7 { sqlite3_mprintf_str {%d A String: (%*s)} 1 2147483647 {This is the string} } [] do_test printf-3.8 { sqlite3_mprintf_str {%d A String: (%*s)} 1 -2147483648 {This is the string} } {1 A String: (This is the string)} do_test printf-3.9 { sqlite3_mprintf_str {%d A String: (%.*s)} 1 -2147483648 {This is the string} } {1 A String: (This is the string)} do_test snprintf-3.11 { sqlite3_snprintf_str 2 {x%d %d %s} 10 10 {This is the string} } {x} do_test snprintf-3.12 { sqlite3_snprintf_str 3 {x%d %d %s} 10 10 {This is the string} } {x1} do_test snprintf-3.13 { |
︙ | ︙ | |||
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 | } {Inf} do_test printf-13.5 { sqlite3_mprintf_hexdouble %.20f fff0000000000000 } {-Inf} do_test printf-13.6 { sqlite3_mprintf_hexdouble %.20f fff8000000000000 } {NaN} do_test printf-14.1 { sqlite3_mprintf_str {abc-%y-123} 0 0 {not used} } {abc-} do_test printf-14.2 { sqlite3_mprintf_n_test {xyzzy} } 5 | > > > | 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 | } {Inf} do_test printf-13.5 { sqlite3_mprintf_hexdouble %.20f fff0000000000000 } {-Inf} do_test printf-13.6 { sqlite3_mprintf_hexdouble %.20f fff8000000000000 } {NaN} do_test printf-13.7 { sqlite3_mprintf_hexdouble %2147483648.10000f 4693b8b5b5056e17 } {/100000000000000000000000000000000.00/} do_test printf-14.1 { sqlite3_mprintf_str {abc-%y-123} 0 0 {not used} } {abc-} do_test printf-14.2 { sqlite3_mprintf_n_test {xyzzy} } 5 |
︙ | ︙ |
Changes to test/printf2.test.
︙ | ︙ | |||
54 55 56 57 58 59 60 61 62 63 64 65 66 67 | } {314159} do_execsql_test printf2-1.10 { SELECT printf('%lld',314159.2653); } {314159} do_execsql_test printf2-1.11 { SELECT printf('%lld%n',314159.2653,'hi'); } {314159} # EVIDENCE-OF: R-17002-27534 The %z format is interchangeable with %s. # do_execsql_test printf2-1.12 { SELECT printf('%.*z',5,'abcdefghijklmnop'); } {abcde} do_execsql_test printf2-1.13 { | > > > | 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | } {314159} do_execsql_test printf2-1.10 { SELECT printf('%lld',314159.2653); } {314159} do_execsql_test printf2-1.11 { SELECT printf('%lld%n',314159.2653,'hi'); } {314159} do_execsql_test printf2-1.12 { SELECT printf('%n',0); } {{}} # EVIDENCE-OF: R-17002-27534 The %z format is interchangeable with %s. # do_execsql_test printf2-1.12 { SELECT printf('%.*z',5,'abcdefghijklmnop'); } {abcde} do_execsql_test printf2-1.13 { |
︙ | ︙ |
Changes to test/releasetest.tcl.
︙ | ︙ | |||
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | optional) are: --srcdir TOP-OF-SQLITE-TREE (see below) --platform PLATFORM (see below) --config CONFIGNAME (Run only CONFIGNAME) --quick (Run "veryquick.test" only) --veryquick (Run "make smoketest" only) --buildonly (Just build testfixture - do not run) --dryrun (Print what would have happened) --info (Show diagnostic info) The default value for --srcdir is the parent of the directory holding this script. The script determines the default value for --platform using the | > | | > | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | optional) are: --srcdir TOP-OF-SQLITE-TREE (see below) --platform PLATFORM (see below) --config CONFIGNAME (Run only CONFIGNAME) --quick (Run "veryquick.test" only) --veryquick (Run "make smoketest" only) --msvc (Use MSVC as the compiler) --buildonly (Just build testfixture - do not run) --dryrun (Print what would have happened) --info (Show diagnostic info) The default value for --srcdir is the parent of the directory holding this script. The script determines the default value for --platform using the $tcl_platform(os) and $tcl_platform(machine) variables. Supported platforms are "Linux-x86", "Linux-x86_64", "Darwin-i386", "Darwin-x86_64", "Windows NT-intel", and "Windows NT-amd64". Every test begins with a fresh run of the configure script at the top of the SQLite source tree. } # Omit comments (text between # and \n) in a long multi-line string. # |
︙ | ︙ | |||
234 235 236 237 238 239 240 241 242 243 244 245 246 247 | "Have-Not" test "OS-X" "threadtest fulltest" } "Windows NT-intel" { "Default" "mptest fulltestonly" "Have-Not" test } # The Failure-Detection platform runs various tests that deliberately # fail. This is used as a test of this script to verify that this script # correctly identifies failures. # Failure-Detection { Fail0 "TEST_FAILURE=0 test" | > > > > | 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | "Have-Not" test "OS-X" "threadtest fulltest" } "Windows NT-intel" { "Default" "mptest fulltestonly" "Have-Not" test } "Windows NT-amd64" { "Default" "mptest fulltestonly" "Have-Not" test } # The Failure-Detection platform runs various tests that deliberately # fail. This is used as a test of this script to verify that this script # correctly identifies failures. # Failure-Detection { Fail0 "TEST_FAILURE=0 test" |
︙ | ︙ | |||
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | } if {[regexp {runtime error: +(.*)} $line all msg]} { incr ::NERRCASE if {$rc==0} { set rc 1 set errmsg $msg } } if {[regexp {ERROR SUMMARY: (\d+) errors.*} $line all cnt] && $cnt>0} { incr ::NERRCASE if {$rc==0} { set rc 1 set errmsg $all } } if {[regexp {^VERSION: 3\.\d+.\d+} $line]} { set v [string range $line 9 end] if {$::SQLITE_VERSION eq ""} { set ::SQLITE_VERSION $v } elseif {$::SQLITE_VERSION ne $v} { set rc 1 set errmsg "version conflict: {$::SQLITE_VERSION} vs. {$v}" } } } close $fd | > > > > > > > > > > > > > | | | > > > > > > > | 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | } if {[regexp {runtime error: +(.*)} $line all msg]} { incr ::NERRCASE if {$rc==0} { set rc 1 set errmsg $msg } } if {[regexp {fatal error +(.*)} $line all msg]} { incr ::NERRCASE if {$rc==0} { set rc 1 set errmsg $msg } } if {[regexp {ERROR SUMMARY: (\d+) errors.*} $line all cnt] && $cnt>0} { incr ::NERRCASE if {$rc==0} { set rc 1 set errmsg $all } } if {[regexp {^VERSION: 3\.\d+.\d+} $line]} { set v [string range $line 9 end] if {$::SQLITE_VERSION eq ""} { set ::SQLITE_VERSION $v } elseif {$::SQLITE_VERSION ne $v} { set rc 1 set errmsg "version conflict: {$::SQLITE_VERSION} vs. {$v}" } } } close $fd if {$::BUILDONLY} { if {$rc==0} { set errmsg "Build complete" } else { set errmsg "Build failed" } } elseif {!$seen} { set rc 1 set errmsg "Test did not complete" if {[file readable core]} { append errmsg " - core file exists" } } } proc run_test_suite {name testtarget config} { # Tcl variable $opts is used to build up the value used to set the # OPTS Makefile variable. Variable $cflags holds the value for # CFLAGS. The makefile will pass OPTS to both gcc and lemon, but # CFLAGS is only passed to gcc. # set cflags [expr {$::MSVC ? "-Zi" : "-g"}] set opts "" set title ${name}($testtarget) set configOpts "" regsub -all {#[^\n]*\n} $config \n config foreach arg $config { if {[regexp {^-[UD]} $arg]} { lappend opts $arg } elseif {[regexp {^[A-Z]+=} $arg]} { lappend testtarget $arg } elseif {[regexp {^--(enable|disable)-} $arg]} { lappend configOpts $arg } else { lappend cflags $arg } } set cflags [join $cflags " "] set opts [join $opts " "] append opts " -DSQLITE_NO_SYNC=1" # Some configurations already set HAVE_USLEEP; in that case, skip it. # if {![regexp { -DHAVE_USLEEP$} $opts] && ![regexp { -DHAVE_USLEEP[ =]+} $opts]} { append opts " -DHAVE_USLEEP=1" } # Set the sub-directory to use. # set dir [string tolower [string map {- _ " " _} $name]] if {$::tcl_platform(platform)=="windows"} { append opts " -DSQLITE_OS_WIN=1" |
︙ | ︙ | |||
386 387 388 389 390 391 392 | set hours [expr {($tm2-$tm1)/3600}] set minutes [expr {(($tm2-$tm1)/60)%60}] set seconds [expr {($tm2-$tm1)%60}] set tm [format (%02d:%02d:%02d) $hours $minutes $seconds] if {$rc} { puts " FAIL $tm" incr ::NERR | < > > | > > > > > > > | 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 | set hours [expr {($tm2-$tm1)/3600}] set minutes [expr {(($tm2-$tm1)/60)%60}] set seconds [expr {($tm2-$tm1)%60}] set tm [format (%02d:%02d:%02d) $hours $minutes $seconds] if {$rc} { puts " FAIL $tm" incr ::NERR } else { puts " Ok $tm" } if {$errmsg!=""} {puts " $errmsg"} } } # The following procedure returns the "configure" command to be exectued for # the current platform, which may be Windows (via MinGW, etc). # proc configureCommand {opts} { if {$::MSVC} return [list]; # This is not needed for MSVC. set result [list trace_cmd exec] if {$::tcl_platform(platform)=="windows"} { lappend result sh } lappend result $::SRCDIR/configure --enable-load-extension foreach x $opts {lappend result $x} lappend result >& test.log } # The following procedure returns the "make" command to be executed for the # specified targets, compiler flags, and options. # proc makeCommand { targets cflags opts } { set result [list trace_cmd exec] if {$::MSVC} { set nmakeDir [file nativename $::SRCDIR] set nmakeFile [file join $nmakeDir Makefile.msc] lappend result nmake /f $nmakeFile TOP=$nmakeDir clean } else { lappend result make clean } foreach target $targets { lappend result $target } lappend result CFLAGS=$cflags OPTS=$opts >>& test.log } # The following procedure prints its arguments if ::TRACE is true. |
︙ | ︙ | |||
439 440 441 442 443 444 445 446 447 448 449 450 451 452 | # Currently the only option supported is "-makefile", default # "releasetest.mk". Set the ::MAKEFILE variable to the value of this # option. # proc process_options {argv} { set ::SRCDIR [file normalize [file dirname [file dirname $::argv0]]] set ::QUICK 0 set ::BUILDONLY 0 set ::DRYRUN 0 set ::EXEC exec set ::TRACE 0 set config {} set platform $::tcl_platform(os)-$::tcl_platform(machine) | > | 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 | # Currently the only option supported is "-makefile", default # "releasetest.mk". Set the ::MAKEFILE variable to the value of this # option. # proc process_options {argv} { set ::SRCDIR [file normalize [file dirname [file dirname $::argv0]]] set ::QUICK 0 set ::MSVC 0 set ::BUILDONLY 0 set ::DRYRUN 0 set ::EXEC exec set ::TRACE 0 set config {} set platform $::tcl_platform(os)-$::tcl_platform(machine) |
︙ | ︙ | |||
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | set ::QUICK 2 } -config { incr i set config [lindex $argv $i] } -buildonly { set ::BUILDONLY 1 } -dryrun { set ::DRYRUN 1 } -trace { set ::TRACE 1 } -info { puts "Command-line Options:" puts " --srcdir $::SRCDIR" puts " --platform [list $platform]" puts " --config [list $config]" if {$::QUICK} {puts " --quick"} if {$::BUILDONLY} {puts " --buildonly"} if {$::DRYRUN} {puts " --dryrun"} if {$::TRACE} {puts " --trace"} puts "\nAvailable --platform options:" foreach y [lsort [array names ::Platforms]] { puts " [list $y]" } puts "\nAvailable --config options:" foreach y [lsort [array names ::Configs]] { puts " [list $y]" } exit } | > > > > > > | > > > > > > > | 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 | set ::QUICK 2 } -config { incr i set config [lindex $argv $i] } -msvc { set ::MSVC 1 } -buildonly { set ::BUILDONLY 1 } -dryrun { set ::DRYRUN 1 } -trace { set ::TRACE 1 } -info { puts "Command-line Options:" puts " --srcdir $::SRCDIR" puts " --platform [list $platform]" puts " --config [list $config]" if {$::QUICK} {puts " --quick"} if {$::MSVC} {puts " --msvc"} if {$::BUILDONLY} {puts " --buildonly"} if {$::DRYRUN} {puts " --dryrun"} if {$::TRACE} {puts " --trace"} puts "\nAvailable --platform options:" foreach y [lsort [array names ::Platforms]] { puts " [list $y]" } puts "\nAvailable --config options:" foreach y [lsort [array names ::Configs]] { puts " [list $y]" } exit } -g { if {$::MSVC} { lappend ::EXTRACONFIG -Zi } else { lappend ::EXTRACONFIG [lindex $argv $i] } } -D* - -O* - -enable-* - -disable-* - *=* { lappend ::EXTRACONFIG [lindex $argv $i] } |
︙ | ︙ | |||
543 544 545 546 547 548 549 550 551 552 553 554 555 556 | set ::CONFIGLIST $::Platforms($platform) } puts "Running the following test configurations for $platform:" puts " [string trim $::CONFIGLIST]" puts -nonewline "Flags:" if {$::DRYRUN} {puts -nonewline " --dryrun"} if {$::BUILDONLY} {puts -nonewline " --buildonly"} switch -- $::QUICK { 1 {puts -nonewline " --quick"} 2 {puts -nonewline " --veryquick"} } puts "" } | > | 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 | set ::CONFIGLIST $::Platforms($platform) } puts "Running the following test configurations for $platform:" puts " [string trim $::CONFIGLIST]" puts -nonewline "Flags:" if {$::DRYRUN} {puts -nonewline " --dryrun"} if {$::BUILDONLY} {puts -nonewline " --buildonly"} if {$::MSVC} {puts -nonewline " --msvc"} switch -- $::QUICK { 1 {puts -nonewline " --quick"} 2 {puts -nonewline " --veryquick"} } puts "" } |
︙ | ︙ | |||
566 567 568 569 570 571 572 573 574 575 576 577 | set ::NERR 0 set ::NTEST 0 set ::NTESTCASE 0 set ::NERRCASE 0 set ::SQLITE_VERSION {} set STARTTIME [clock seconds] foreach {zConfig target} $::CONFIGLIST { if {$target ne "checksymbols"} { switch -- $::QUICK { 1 {set target test} 2 {set target smoketest} } | > > > > > | > > > | 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 | set ::NERR 0 set ::NTEST 0 set ::NTESTCASE 0 set ::NERRCASE 0 set ::SQLITE_VERSION {} set STARTTIME [clock seconds] foreach {zConfig target} $::CONFIGLIST { if {$::MSVC && ($zConfig eq "Sanitize" || "checksymbols" in $target || "valgrindtest" in $target)} { puts "Skipping $zConfig / $target for MSVC..." continue } if {$target ne "checksymbols"} { switch -- $::QUICK { 1 {set target test} 2 {set target smoketest} } if {$::BUILDONLY} { set target testfixture if {$::MSVC} {append target .exe} } } set config_options [concat $::Configs($zConfig) $::EXTRACONFIG] incr NTEST run_test_suite $zConfig $target $config_options # If the configuration included the SQLITE_DEBUG option, then remove |
︙ | ︙ |
Changes to test/select1.test.
︙ | ︙ | |||
303 304 305 306 307 308 309 310 311 312 313 314 315 316 | set v [catch {execsql {SELECT f1 FROM test1 ORDER BY min(f1,f2)}} msg] lappend v $msg } {0 {11 33}} do_test select1-4.4 { set v [catch {execsql {SELECT f1 FROM test1 ORDER BY min(f1)}} msg] lappend v $msg } {1 {misuse of aggregate: min()}} # The restriction not allowing constants in the ORDER BY clause # has been removed. See ticket #1768 #do_test select1-4.5 { # catchsql { # SELECT f1 FROM test1 ORDER BY 8.4; # } | > > > | 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | set v [catch {execsql {SELECT f1 FROM test1 ORDER BY min(f1,f2)}} msg] lappend v $msg } {0 {11 33}} do_test select1-4.4 { set v [catch {execsql {SELECT f1 FROM test1 ORDER BY min(f1)}} msg] lappend v $msg } {1 {misuse of aggregate: min()}} do_catchsql_test select1-4.5 { INSERT INTO test1(f1) SELECT f1 FROM test1 ORDER BY min(f1); } {1 {misuse of aggregate: min()}} # The restriction not allowing constants in the ORDER BY clause # has been removed. See ticket #1768 #do_test select1-4.5 { # catchsql { # SELECT f1 FROM test1 ORDER BY 8.4; # } |
︙ | ︙ | |||
1068 1069 1070 1071 1072 1073 1074 | } # Crash bug reported on the mailing list on 2012-02-23 # do_test select1-16.1 { catchsql {SELECT 1 FROM (SELECT *)} } {1 {no tables specified}} | | > > > > > | 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 | } # Crash bug reported on the mailing list on 2012-02-23 # do_test select1-16.1 { catchsql {SELECT 1 FROM (SELECT *)} } {1 {no tables specified}} # 2015-04-17: assertion fix. do_catchsql_test select1-16.2 { SELECT 1 FROM sqlite_master LIMIT 1,#1; } {1 {near "#1": syntax error}} finish_test |
Changes to test/select4.test.
︙ | ︙ | |||
114 115 116 117 118 119 120 121 122 123 124 125 126 127 | SELECT DISTINCT log FROM t1 ORDER BY log UNION ALL SELECT n FROM t1 WHERE log=3 ORDER BY log; }} msg] lappend v $msg } {1 {ORDER BY clause should come after UNION ALL not before}} # Union operator # do_test select4-2.1 { execsql { SELECT DISTINCT log FROM t1 UNION | > > > > | 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | SELECT DISTINCT log FROM t1 ORDER BY log UNION ALL SELECT n FROM t1 WHERE log=3 ORDER BY log; }} msg] lappend v $msg } {1 {ORDER BY clause should come after UNION ALL not before}} do_catchsql_test select4-1.4 { SELECT (VALUES(0) INTERSECT SELECT(0) UNION SELECT(0) ORDER BY 1 UNION SELECT 0 UNION SELECT 0 ORDER BY 1); } {1 {ORDER BY clause should come after UNION not before}} # Union operator # do_test select4-2.1 { execsql { SELECT DISTINCT log FROM t1 UNION |
︙ | ︙ | |||
142 143 144 145 146 147 148 149 150 151 152 153 154 155 | do_test select4-2.3 { set v [catch {execsql { SELECT DISTINCT log FROM t1 ORDER BY log UNION SELECT n FROM t1 WHERE log=3 ORDER BY log; }} msg] lappend v $msg } {1 {ORDER BY clause should come after UNION not before}} # Except operator # do_test select4-3.1.1 { execsql { | > > > > > > | 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | do_test select4-2.3 { set v [catch {execsql { SELECT DISTINCT log FROM t1 ORDER BY log UNION SELECT n FROM t1 WHERE log=3 ORDER BY log; }} msg] lappend v $msg } {1 {ORDER BY clause should come after UNION not before}} do_test select4-2.4 { set v [catch {execsql { SELECT 0 ORDER BY (SELECT 0) UNION SELECT 0; }} msg] lappend v $msg } {1 {ORDER BY clause should come after UNION not before}} # Except operator # do_test select4-3.1.1 { execsql { |
︙ | ︙ | |||
795 796 797 798 799 800 801 802 803 804 805 806 807 808 | SELECT x FROM t2 UNION ALL SELECT x FROM t2 EXCEPT SELECT x FROM t2 } } {1 {SELECTs to the left and right of UNION do not have the same number of result columns}} do_test select4-12.1 { sqlite3 db2 :memory: catchsql { SELECT 1 UNION SELECT 2,3 UNION SELECT 4,5 ORDER BY 1; } db2 } {1 {SELECTs to the left and right of UNION do not have the same number of result columns}} | > > > > > | 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 | SELECT x FROM t2 UNION ALL SELECT x FROM t2 EXCEPT SELECT x FROM t2 } } {1 {SELECTs to the left and right of UNION do not have the same number of result columns}} do_test select4-11.16 { catchsql { INSERT INTO t2(rowid) VALUES(2) UNION SELECT 3,4 UNION SELECT 5,6 ORDER BY 1; } } {1 {SELECTs to the left and right of UNION do not have the same number of result columns}} do_test select4-12.1 { sqlite3 db2 :memory: catchsql { SELECT 1 UNION SELECT 2,3 UNION SELECT 4,5 ORDER BY 1; } db2 } {1 {SELECTs to the left and right of UNION do not have the same number of result columns}} |
︙ | ︙ | |||
859 860 861 862 863 864 865 866 867 | } {} do_execsql_test select4-14.8 { SELECT * FROM t14 EXCEPT VALUES('a','b','c') EXCEPT VALUES(4,5,6) } {1 2 3} do_execsql_test select4-14.9 { SELECT * FROM t14 UNION ALL VALUES(3,2,1),(2,3,1),(1,2,3),(2,1,3); } {1 2 3 4 5 6 3 2 1 2 3 1 1 2 3 2 1 3} finish_test | > > > > > > > > > > > > > > > > > > | 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 | } {} do_execsql_test select4-14.8 { SELECT * FROM t14 EXCEPT VALUES('a','b','c') EXCEPT VALUES(4,5,6) } {1 2 3} do_execsql_test select4-14.9 { SELECT * FROM t14 UNION ALL VALUES(3,2,1),(2,3,1),(1,2,3),(2,1,3); } {1 2 3 4 5 6 3 2 1 2 3 1 1 2 3 2 1 3} do_execsql_test select4-14.10 { SELECT (VALUES(1),(2),(3),(4)) } {1} do_execsql_test select4-14.11 { SELECT (SELECT 1 UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT 4) } {1} do_execsql_test select4-14.12 { VALUES(1) UNION VALUES(2); } {1 2} do_execsql_test select4-14.13 { VALUES(1),(2),(3) EXCEPT VALUES(2); } {1 3} do_execsql_test select4-14.14 { VALUES(1),(2),(3) EXCEPT VALUES(1),(3); } {2} do_execsql_test select4-14.15 { SELECT * FROM (SELECT 123), (SELECT 456) ON likely(0 OR 1) OR 0; } {123 456} finish_test |
Changes to test/selectA.test.
︙ | ︙ | |||
1370 1371 1372 1373 1374 1375 1376 1377 1378 | do_execsql_test 4.2.2 { SELECT c, f(d,c,d,c,d) FROM t7 UNION ALL SELECT a, b FROM t6 ORDER BY 1,2 } {/2 . 3 . 4 . 5 . 6 . 7 ./} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 | do_execsql_test 4.2.2 { SELECT c, f(d,c,d,c,d) FROM t7 UNION ALL SELECT a, b FROM t6 ORDER BY 1,2 } {/2 . 3 . 4 . 5 . 6 . 7 ./} proc strip_rnd {explain} { regexp -all {sqlite_sq_[0123456789ABCDEF]*} $explain sqlite_sq } proc do_same_test {tn q1 args} { set r2 [strip_rnd [db eval "EXPLAIN $q1"]] set i 1 foreach q $args { set tst [subst -nocommands {strip_rnd [db eval "EXPLAIN $q"]}] uplevel do_test $tn.$i [list $tst] [list $r2] incr i } } do_execsql_test 5.0 { CREATE TABLE t8(a, b); CREATE TABLE t9(c, d); } {} do_same_test 5.1 { SELECT a, b FROM t8 INTERSECT SELECT c, d FROM t9 ORDER BY a; } { SELECT a, b FROM t8 INTERSECT SELECT c, d FROM t9 ORDER BY t8.a; } { SELECT a, b FROM t8 INTERSECT SELECT c, d FROM t9 ORDER BY 1; } { SELECT a, b FROM t8 INTERSECT SELECT c, d FROM t9 ORDER BY c; } { SELECT a, b FROM t8 INTERSECT SELECT c, d FROM t9 ORDER BY t9.c; } do_same_test 5.2 { SELECT a, b FROM t8 UNION SELECT c, d FROM t9 ORDER BY a COLLATE NOCASE } { SELECT a, b FROM t8 UNION SELECT c, d FROM t9 ORDER BY t8.a COLLATE NOCASE } { SELECT a, b FROM t8 UNION SELECT c, d FROM t9 ORDER BY 1 COLLATE NOCASE } { SELECT a, b FROM t8 UNION SELECT c, d FROM t9 ORDER BY c COLLATE NOCASE } { SELECT a, b FROM t8 UNION SELECT c, d FROM t9 ORDER BY t9.c COLLATE NOCASE } do_same_test 5.3 { SELECT a, b FROM t8 EXCEPT SELECT c, d FROM t9 ORDER BY b, c COLLATE NOCASE } { SELECT a, b FROM t8 EXCEPT SELECT c, d FROM t9 ORDER BY 2, 1 COLLATE NOCASE } { SELECT a, b FROM t8 EXCEPT SELECT c, d FROM t9 ORDER BY d, a COLLATE NOCASE } { SELECT a, b FROM t8 EXCEPT SELECT * FROM t9 ORDER BY t9.d, c COLLATE NOCASE } { SELECT * FROM t8 EXCEPT SELECT c, d FROM t9 ORDER BY d, t8.a COLLATE NOCASE } do_catchsql_test 5.4 { SELECT * FROM t8 UNION SELECT * FROM t9 ORDER BY a+b COLLATE NOCASE } {1 {1st ORDER BY term does not match any column in the result set}} finish_test |
Changes to test/selectE.test.
︙ | ︙ | |||
87 88 89 90 91 92 93 94 95 | } {} do_test selectE-2.2 { db eval { SELECT a COLLATE nocase FROM t2 EXCEPT SELECT a FROM t3 ORDER BY 1 COLLATE binary } } {} finish_test | > > > > > | 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | } {} do_test selectE-2.2 { db eval { SELECT a COLLATE nocase FROM t2 EXCEPT SELECT a FROM t3 ORDER BY 1 COLLATE binary } } {} do_catchsql_test selectE-3.1 { SELECT 1 EXCEPT SELECT 2 ORDER BY 1 COLLATE nocase EXCEPT SELECT 3; } {1 {ORDER BY clause should come after EXCEPT not before}} finish_test |
Changes to test/subquery.test.
︙ | ︙ | |||
579 580 581 582 583 584 585 586 587 | } {30101 30102 30103} do_test subquery-7.11 { execsql { SELECT (SELECT (SELECT max(c7)+max(c8)+max(c9) FROM t9) FROM t8) FROM t7 } } {30303} } ;############# Disabled finish_test | > > > > > > > > > > | 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | } {30101 30102 30103} do_test subquery-7.11 { execsql { SELECT (SELECT (SELECT max(c7)+max(c8)+max(c9) FROM t9) FROM t8) FROM t7 } } {30303} } ;############# Disabled # 2015-04-21. # Verify that a memory leak in the table column type and collation analysis # is plugged. # do_execsql_test subquery-8.1 { CREATE TABLE t8(a TEXT, b INT); SELECT (SELECT 0 FROM (SELECT * FROM t1)) AS x WHERE x; SELECT (SELECT 0 FROM (SELECT * FROM (SELECT 0))) AS x WHERE x; } {} finish_test |
Changes to test/table.test.
︙ | ︙ | |||
267 268 269 270 271 272 273 274 275 276 277 278 279 280 | DROP TABLE IF EXISTS sqlite_stat1; DROP TABLE IF EXISTS sqlite_stat2; DROP TABLE IF EXISTS sqlite_stat3; DROP TABLE IF EXISTS sqlite_stat4; SELECT name FROM sqlite_master WHERE name GLOB 'sqlite_stat*'; } } {} # Make sure an EXPLAIN does not really create a new table # do_test table-5.3 { ifcapable {explain} { execsql {EXPLAIN CREATE TABLE test1(f1 int)} } | > > > > > > > > > > > > > > > > > > > | 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | DROP TABLE IF EXISTS sqlite_stat1; DROP TABLE IF EXISTS sqlite_stat2; DROP TABLE IF EXISTS sqlite_stat3; DROP TABLE IF EXISTS sqlite_stat4; SELECT name FROM sqlite_master WHERE name GLOB 'sqlite_stat*'; } } {} do_test table-5.2.2 { db close forcedelete test.db sqlite3 db test.db db eval { CREATE TABLE t0(a,b); CREATE INDEX t ON t0(a); PRAGMA writable_schema=ON; UPDATE sqlite_master SET sql='CREATE TABLE a.b(a UNIQUE'; BEGIN; CREATE TABLE t1(x); ROLLBACK; DROP TABLE IF EXISTS t99; } } {} db close forcedelete test.db sqlite3 db test.db # Make sure an EXPLAIN does not really create a new table # do_test table-5.3 { ifcapable {explain} { execsql {EXPLAIN CREATE TABLE test1(f1 int)} } |
︙ | ︙ |
Changes to test/trigger7.test.
︙ | ︙ | |||
110 111 112 113 114 115 116 | execsql { PRAGMA writable_schema=on; UPDATE sqlite_master SET sql='nonsense'; } db close catch { sqlite3 db test.db } catchsql { DROP TRIGGER t2r5 } | | | 110 111 112 113 114 115 116 117 118 119 | execsql { PRAGMA writable_schema=on; UPDATE sqlite_master SET sql='nonsense'; } db close catch { sqlite3 db test.db } catchsql { DROP TRIGGER t2r5 } } {1 {malformed database schema (t2r12)}} finish_test |
Changes to test/triggerC.test.
︙ | ︙ | |||
8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable {!trigger} { finish_test return } #------------------------------------------------------------------------- # Test organization: | > | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix triggerC ifcapable {!trigger} { finish_test return } #------------------------------------------------------------------------- # Test organization: |
︙ | ︙ | |||
988 989 990 991 992 993 994 995 996 | } reset_db do_execsql_test triggerC-14.1 $SQL {1 2 3} reset_db optimization_control db factor-constants 0 do_execsql_test triggerC-14.2 $SQL {1 2 3} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 | } reset_db do_execsql_test triggerC-14.1 $SQL {1 2 3} reset_db optimization_control db factor-constants 0 do_execsql_test triggerC-14.2 $SQL {1 2 3} #------------------------------------------------------------------------- # Check that table names used by trigger programs are dequoted exactly # once. # do_execsql_test 15.1.1 { PRAGMA recursive_triggers = 1; CREATE TABLE node( id int not null primary key, pid int not null default 0 references node, key varchar not null, path varchar default '', unique(pid, key) ); CREATE TRIGGER node_delete_referencing AFTER DELETE ON "node" BEGIN DELETE FROM "node" WHERE pid = old."id"; END; } do_execsql_test 15.1.2 { INSERT INTO node(id, pid, key) VALUES(9, 0, 'test'); INSERT INTO node(id, pid, key) VALUES(90, 9, 'test1'); INSERT INTO node(id, pid, key) VALUES(900, 90, 'test2'); DELETE FROM node WHERE id=9; SELECT * FROM node; } do_execsql_test 15.2.1 { CREATE TABLE x1 (x); CREATE TABLE x2 (a, b); CREATE TABLE '"x2"'(a, b); INSERT INTO x2 VALUES(1, 2); INSERT INTO x2 VALUES(3, 4); INSERT INTO '"x2"' SELECT * FROM x2; CREATE TRIGGER x1ai AFTER INSERT ON x1 BEGIN INSERT INTO """x2""" VALUES('x', 'y'); DELETE FROM """x2""" WHERE a=1; UPDATE """x2""" SET b = 11 WHERE a = 3; END; INSERT INTO x1 VALUES('go!'); } do_execsql_test 15.2.2 { SELECT * FROM x2; } {1 2 3 4} do_execsql_test 15.2.3 { SELECT * FROM """x2"""; } {3 11 x y} finish_test |
Changes to test/vacuum2.test.
︙ | ︙ | |||
11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # This file implements regression tests for SQLite library. The # focus of this file is testing the VACUUM statement. # # $Id: vacuum2.test,v 1.10 2009/02/18 20:31:18 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Do not use a codec for tests in this file, as the database file is # manipulated directly using tcl scripts (using the [hexio_write] command). # do_not_use_codec # If the VACUUM statement is disabled in the current build, skip all | > | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # This file implements regression tests for SQLite library. The # focus of this file is testing the VACUUM statement. # # $Id: vacuum2.test,v 1.10 2009/02/18 20:31:18 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix vacuum2 # Do not use a codec for tests in this file, as the database file is # manipulated directly using tcl scripts (using the [hexio_write] command). # do_not_use_codec # If the VACUUM statement is disabled in the current build, skip all |
︙ | ︙ | |||
223 224 225 226 227 228 229 230 231 | db eval {SELECT a, b FROM t1 WHERE a<=10} { if {$a==6} { set res [catchsql VACUUM] } lappend res2 $a } lappend res2 $res } {1 2 3 4 5 6 7 8 9 10 {1 {cannot VACUUM - SQL statements in progress}}} finish_test | > > > > > > > > > > > > > > > > > > > | 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | db eval {SELECT a, b FROM t1 WHERE a<=10} { if {$a==6} { set res [catchsql VACUUM] } lappend res2 $a } lappend res2 $res } {1 2 3 4 5 6 7 8 9 10 {1 {cannot VACUUM - SQL statements in progress}}} #------------------------------------------------------------------------- # Check that if the definition of a collation sequence is changed and # VACUUM run, records are store in the (new) correct order following the # VACUUM. Even if the modified collation is attached to a PK of a WITHOUT # ROWID table. proc cmp {lhs rhs} { string compare $lhs $rhs } db collate cmp cmp do_execsql_test 6.0 { CREATE TABLE t6(x PRIMARY KEY COLLATE cmp, y) WITHOUT ROWID; CREATE INDEX t6y ON t6(y); INSERT INTO t6 VALUES('i', 'one'); INSERT INTO t6 VALUES('ii', 'one'); INSERT INTO t6 VALUES('iii', 'one'); } integrity_check 6.1 proc cmp {lhs rhs} { string compare $rhs $lhs } do_execsql_test 6.2 VACUUM integrity_check 6.3 finish_test |
Changes to test/vtab1.test.
︙ | ︙ | |||
1433 1434 1435 1436 1437 1438 1439 1440 | } {SQLITE_DONE} do_test 22.4.2 { sqlite3_finalize $stmt } {SQLITE_OK} } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 | } {SQLITE_DONE} do_test 22.4.2 { sqlite3_finalize $stmt } {SQLITE_OK} } #------------------------------------------------------------------------- # The following tests verify that a DROP TABLE command on a virtual # table does not cause other operations to crash. # # 23.1: Dropping a vtab while a SELECT is running on it. # # 23.2: Dropping a vtab while a SELECT that will, but has not yet, # open a cursor on the vtab, is running. In this case the # DROP TABLE succeeds and the SELECT hits an error. # # 23.3: Dropping a vtab from within a user-defined-function callback # in the middle of an "INSERT INTO vtab SELECT ..." statement. # reset_db load_static_extension db wholenumber load_static_extension db eval register_echo_module db do_test 23.1 { execsql { CREATE VIRTUAL TABLE t1 USING wholenumber } set res "" db eval { SELECT value FROM t1 WHERE value<10 } { if {$value == 5} { set res [catchsql { DROP TABLE t1 }] } } set res } {1 {database table is locked}} do_test 23.2 { execsql { CREATE TABLE t2(value); INSERT INTO t2 VALUES(1), (2), (3); } set res2 [list [catch { db eval { SELECT value FROM t2 UNION ALL SELECT value FROM t1 WHERE value<10 } { if {$value == 2} { set res1 [catchsql { DROP TABLE t1 }] } } } msg] $msg] list $res1 $res2 } {{0 {}} {1 {database table is locked}}} do_test 23.3.1 { execsql { CREATE VIRTUAL TABLE t1e USING echo(t2) } execsql { INSERT INTO t1e SELECT 4 } catchsql { INSERT INTO t1e SELECT eval('DROP TABLE t1e') } } {1 {database table is locked}} do_execsql_test 23.3.2 { SELECT * FROM t1e } {1 2 3 4} #------------------------------------------------------------------------- # At one point SQL like this: # # SAVEPOINT xyz; -- Opens SQL transaction # INSERT INTO vtab -- Write to virtual table # ROLLBACK TO xyz; # RELEASE xyz; # # was not invoking the xRollbackTo() callback for the ROLLBACK TO # operation. Which meant that virtual tables like FTS3 would incorrectly # commit the results of the INSERT as part of the "RELEASE xyz" command. # # The following tests check that this has been fixed. # ifcapable fts3 { do_execsql_test 24.0 { CREATE VIRTUAL TABLE t4 USING fts3(); SAVEPOINT a; INSERT INTO t4 VALUES('a b c'); ROLLBACK TO a; RELEASE a; SELECT * FROM t4; } {} do_execsql_test 24.1 { SELECT * FROM t4 WHERE t4 MATCH 'b' } {} do_execsql_test 24.2 { INSERT INTO t4(t4) VALUES('integrity-check') } {} do_execsql_test 24.3 { SAVEPOINT a; CREATE VIRTUAL TABLE t5 USING fts3(); SAVEPOINT b; ROLLBACK TO a; SAVEPOINT c; RELEASE a; } } finish_test |
Changes to test/vtabA.test.
︙ | ︙ | |||
70 71 72 73 74 75 76 77 78 79 80 | } {{value a} {} {value c}} do_test vtabA-1.6 { execsql { SELECT * FROM t1e; } } {{value a} {value c}} # Test that the expansion of a '*' expression in the result set of # a SELECT does not include the hidden column. # | > > > > > > > > > > > | | | | | | | 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | } {{value a} {} {value c}} do_test vtabA-1.6 { execsql { SELECT * FROM t1e; } } {{value a} {value c}} do_execsql_test vtabA-1.7 { DELETE FROM t1e; INSERT INTO t1e SELECT 'abc','def'; } {} do_execsql_test vtabA-1.8 { INSERT INTO t1e VALUES('ghi','jkl'),('mno','pqr'),('stu','vwx'); } {} do_execsql_test vtabA-1.9 { SELECT a,b,c, '|' FROM t1e ORDER BY 1; } {abc {} def | ghi {} jkl | mno {} pqr | stu {} vwx |} # Test that the expansion of a '*' expression in the result set of # a SELECT does not include the hidden column. # do_test vtabA-1.20 { execsql { INSERT INTO t1e SELECT * FROM t1e; } } {} do_test vtabA-1.21 { execsql { SELECT * FROM t1e ORDER BY 1; } } {abc def abc def ghi jkl ghi jkl mno pqr mno pqr stu vwx stu vwx} # Test that the declaration type of the hidden column does not include # the token "HIDDEN". # do_test vtabA-1.22 { get_decltype t1e b } {VARCHAR} do_test vtabA-1.23 { get_collist t1e } {a c} #---------------------------------------------------------------------- # These tests vtabA-2.* concentrate on testing that the HIDDEN token # is detected and handled correctly in various declarations. # |
︙ | ︙ |
Changes to test/walblock.test.
︙ | ︙ | |||
11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/wal_common.tcl ifcapable !wal {finish_test ; return } if {$::tcl_platform(platform)!="unix"} { finish_test ; return } set testprefix walblock catch { db close } testvfs tvfs -fullshm 1 foreach f [glob test.db*] { forcedelete $f } | > | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/wal_common.tcl finish_test; return; # Feature currently not implemented. ifcapable !wal {finish_test ; return } if {$::tcl_platform(platform)!="unix"} { finish_test ; return } set testprefix walblock catch { db close } testvfs tvfs -fullshm 1 foreach f [glob test.db*] { forcedelete $f } |
︙ | ︙ | |||
88 89 90 91 92 93 94 | tvfs script barrier_callback tvfs filter xShmBarrier proc barrier_callback {method args} { set ::out "" testfixture $::C { db eval { SELECT * FROM t1 } } {set ::out} | | | < < < < | 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | tvfs script barrier_callback tvfs filter xShmBarrier proc barrier_callback {method args} { set ::out "" testfixture $::C { db eval { SELECT * FROM t1 } } {set ::out} do_test "1.2.2.(blocking 10 seconds)" { set ::continue 0 after 10000 {set ::continue 1} vwait ::continue set ::out } {} } execsql COMMIT do_test "1.2.3.(blocking 0.5 seconds)" { set ::continue 0 after 500 {set ::continue 1} vwait ::continue set ::out } {1 2 3 4 5 6 7 8 9 10} finish_test |
Changes to test/whereD.test.
︙ | ︙ | |||
125 126 127 128 129 130 131 | CREATE TABLE t4(x PRIMARY KEY, y); INSERT INTO t4 VALUES('a', 'one'); INSERT INTO t4 VALUES('b', 'two'); } do_searchcount_test 3.1 { SELECT a, b FROM t3 WHERE (a=1 AND b='one') OR (a=2 AND b='two') | | | | | | | | | 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | CREATE TABLE t4(x PRIMARY KEY, y); INSERT INTO t4 VALUES('a', 'one'); INSERT INTO t4 VALUES('b', 'two'); } do_searchcount_test 3.1 { SELECT a, b FROM t3 WHERE (a=1 AND b='one') OR (a=2 AND b='two') } {1 one 2 two search 4} do_searchcount_test 3.2 { SELECT a, c FROM t3 WHERE (a=1 AND b='one') OR (a=2 AND b='two') } {1 i 2 ii search 6} do_searchcount_test 3.4.1 { SELECT y FROM t4 WHERE x='a' } {one search 2} do_searchcount_test 3.4.2 { SELECT a, b FROM t3 WHERE (a=1 AND b=(SELECT y FROM t4 WHERE x='a')) OR (a=2 AND b='two') } {1 one 2 two search 6} do_searchcount_test 3.4.3 { SELECT a, b FROM t3 WHERE (a=2 AND b='two') OR (a=1 AND b=(SELECT y FROM t4 WHERE x='a')) } {2 two 1 one search 6} do_searchcount_test 3.4.4 { SELECT a, b FROM t3 WHERE (a=2 AND b=(SELECT y FROM t4 WHERE x='b')) OR (a=1 AND b=(SELECT y FROM t4 WHERE x='a')) } {2 two 1 one search 8} do_searchcount_test 3.5.1 { SELECT a, b FROM t3 WHERE (a=1 AND b='one') OR rowid=4 } {1 one 2 two search 3} do_searchcount_test 3.5.2 { SELECT a, c FROM t3 WHERE (a=1 AND b='one') OR rowid=4 } {1 i 2 ii search 3} # Ticket [d02e1406a58ea02d] (2012-10-04) # LEFT JOIN with an OR in the ON clause causes segfault # do_test 4.1 { db eval { CREATE TABLE t41(a,b,c); |
︙ | ︙ |
Changes to test/win32lock.test.
︙ | ︙ | |||
60 61 62 63 64 65 66 67 68 69 70 71 72 73 | lappend win32_lock_ok $::delay1 do_test win32lock-1.2-$delay1-ok { set ::msg } {1 100000 2 50000 3 25000 4 12500} if {[info exists ::log] && $::log!=""} { do_test win32lock-1.2-$delay1-log1 { regsub {\d+} $::log # x set x } {{delayed #ms for lock/sharing conflict}} } } if {[llength $win32_lock_ok] && [llength $win32_lock_error]} break incr delay1 25 if {$delay1 > 12500} { | > | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | lappend win32_lock_ok $::delay1 do_test win32lock-1.2-$delay1-ok { set ::msg } {1 100000 2 50000 3 25000 4 12500} if {[info exists ::log] && $::log!=""} { do_test win32lock-1.2-$delay1-log1 { regsub {\d+} $::log # x regsub { at line \d+} $x "" x set x } {{delayed #ms for lock/sharing conflict}} } } if {[llength $win32_lock_ok] && [llength $win32_lock_error]} break incr delay1 25 if {$delay1 > 12500} { |
︙ | ︙ | |||
108 109 110 111 112 113 114 115 116 117 118 119 120 121 | lappend win32_lock_ok $::delay1 do_test win32lock-2.2-$delay1-ok { set ::msg } {1 100000 2 50000 3 25000 4 12500} if {[info exists ::log] && $::log!=""} { do_test win32lock-2.2-$delay1-log1 { regsub {\d+} $::log # x set x } {{delayed #ms for lock/sharing conflict}} } } if {[llength $win32_lock_ok] && [llength $win32_lock_error]} break incr delay1 1 if {$delay1 > 500} { | > | 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | lappend win32_lock_ok $::delay1 do_test win32lock-2.2-$delay1-ok { set ::msg } {1 100000 2 50000 3 25000 4 12500} if {[info exists ::log] && $::log!=""} { do_test win32lock-2.2-$delay1-log1 { regsub {\d+} $::log # x regsub { at line \d+} $x "" x set x } {{delayed #ms for lock/sharing conflict}} } } if {[llength $win32_lock_ok] && [llength $win32_lock_error]} break incr delay1 1 if {$delay1 > 500} { |
︙ | ︙ |
Changes to test/with1.test.
︙ | ︙ | |||
838 839 840 841 842 843 844 845 846 | WITH RECURSIVE c(i) AS (SELECT 5,* UNION ALL SELECT i+1 FROM c WHERE i<10) SELECT i FROM c; } {1 {no tables specified}} do_catchsql_test 13.3 { WITH RECURSIVE c(i,j) AS (SELECT 5,* UNION ALL SELECT i+1,11 FROM c WHERE i<10) SELECT i FROM c; } {1 {table c has 1 values for 2 columns}} finish_test | > > > > > > | 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 | WITH RECURSIVE c(i) AS (SELECT 5,* UNION ALL SELECT i+1 FROM c WHERE i<10) SELECT i FROM c; } {1 {no tables specified}} do_catchsql_test 13.3 { WITH RECURSIVE c(i,j) AS (SELECT 5,* UNION ALL SELECT i+1,11 FROM c WHERE i<10) SELECT i FROM c; } {1 {table c has 1 values for 2 columns}} # 2015-04-12 # do_execsql_test 14.1 { WITH x AS (SELECT * FROM t) SELECT 0 EXCEPT SELECT 0 ORDER BY 1 COLLATE binary; } {} finish_test |
Changes to test/zeroblob.test.
︙ | ︙ | |||
251 252 253 254 255 256 257 258 259 | do_test zeroblob-9.7 { db eval {SELECT zeroblob(2) IN (zeroblob(3))} } {0} do_test zeroblob-9.8 { db eval {SELECT zeroblob(2) IN (zeroblob(2))} } {1} finish_test | > > > > > > > > > | 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | do_test zeroblob-9.7 { db eval {SELECT zeroblob(2) IN (zeroblob(3))} } {0} do_test zeroblob-9.8 { db eval {SELECT zeroblob(2) IN (zeroblob(2))} } {1} # Oversized zeroblob records # do_test zeroblob-10.1 { db eval { CREATE TABLE t10(a,b,c); } catchsql {INSERT INTO t10 VALUES(zeroblob(1e9),zeroblob(1e9),zeroblob(1e9))} } {1 {string or blob too big}} finish_test |
Changes to tool/build-all-msvc.bat.
︙ | ︙ | |||
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | REM CD /D C:\dev\sqlite\core REM tool\build-all-msvc.bat C:\Temp REM REM In the example above, "C:\dev\sqlite\core" represents the root of the REM source tree for SQLite and "C:\Temp" represents the final destination REM directory for the generated output files. REM REM There are several environment variables that may be set to modify the REM behavior of this batch script and its associated Makefile. The list of REM platforms to build may be overriden by using the PLATFORMS environment REM variable, which should contain a list of platforms ^(e.g. x86 x86_amd64 REM x86_arm^). All platforms must be supported by the version of Visual Studio REM being used. The list of configurations to build may be overridden by REM setting the CONFIGURATIONS environment variable, which should contain a REM list of configurations to build ^(e.g. Debug Retail^). Neither of these REM variable values may contain any double quotes, surrounding or embedded. | > > > > > > | | > | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > | < > > > | > > > > > > > > > > | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | REM CD /D C:\dev\sqlite\core REM tool\build-all-msvc.bat C:\Temp REM REM In the example above, "C:\dev\sqlite\core" represents the root of the REM source tree for SQLite and "C:\Temp" represents the final destination REM directory for the generated output files. REM REM Please note that the SQLite build process performed by the Makefile REM associated with this batch script requires both Gawk ^(gawk.exe^) and Tcl REM 8.5 ^(tclsh85.exe^) to be present in a directory contained in the PATH REM environment variable unless a pre-existing amalgamation file is used. REM REM There are several environment variables that may be set to modify the REM behavior of this batch script and its associated Makefile. The list of REM platforms to build may be overriden by using the PLATFORMS environment REM variable, which should contain a list of platforms ^(e.g. x86 x86_amd64 REM x86_arm^). All platforms must be supported by the version of Visual Studio REM being used. The list of configurations to build may be overridden by REM setting the CONFIGURATIONS environment variable, which should contain a REM list of configurations to build ^(e.g. Debug Retail^). Neither of these REM variable values may contain any double quotes, surrounding or embedded. REM REM Finally, the NCRTLIBPATH, NUCRTLIBPATH, and NSDKLIBPATH environment REM variables may be set to specify the location of the CRT, Universal CRT, and REM Windows SDK, respectively, that may be needed to compile executables native REM to the architecture of the build machine during any cross-compilation that REM may be necessary, depending on the platforms to be built. These values in REM these three variables should be surrounded by double quotes if they contain REM spaces. REM REM There are a few other environment variables that impact the build process REM when set ^(to anything^), they are: REM REM NOCLEAN REM REM When set, the "clean" target will not be used during each build iteration. REM However, the target binaries, if any, will still be deleted manually prior REM to being rebuilt. Setting this environment variable is only rarely needed REM and could cause issues in some circumstances; therefore, setting it is not REM recommended. REM REM NOSYMBOLS REM REM When set, copying of symbol files ^(*.pdb^) created during the build will REM be skipped and they will not appear in the final destination directory. REM Setting this environment variable is never strictly needed and could cause REM issues in some circumstances; therefore, setting it is not recommended. REM REM BUILD_ALL_SHELL REM REM When set, the command line shell will be built for each selected platform REM and configuration as well. In addition, the command line shell binaries REM will be copied, with their symbols, to the final destination directory. REM REM USE_WINV63_NSDKLIBPATH REM REM When set, modifies how the NSDKLIBPATH environment variable is built, based REM on the WindowsSdkDir environment variable. It forces this batch script to REM assume the Windows 8.1 SDK location should be used. REM REM USE_WINV100_NSDKLIBPATH REM REM When set, modifies how the NSDKLIBPATH environment variable is built, based REM on the WindowsSdkDir environment variable. It causes this batch script to REM assume the Windows 10.0 SDK location should be used. REM REM NMAKE_ARGS REM REM When set, the value is expanded and passed to the NMAKE command line, after REM its other arguments. This is used to specify additional NMAKE options, for REM example: REM REM SET NMAKE_ARGS=FOR_WINRT=1 REM SETLOCAL REM SET __ECHO=ECHO REM SET __ECHO2=ECHO REM SET __ECHO3=ECHO IF NOT DEFINED _AECHO (SET _AECHO=REM) |
︙ | ︙ | |||
213 214 215 216 217 218 219 | REM external tools were found in the search above. REM SET TOOLPATH=%gawk.exe_PATH%;%tclsh85.exe_PATH% %_VECHO% ToolPath = '%TOOLPATH%' REM | > > > > > > > > > > > > | | | > > > > > | > > > > > > > > > | 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | REM external tools were found in the search above. REM SET TOOLPATH=%gawk.exe_PATH%;%tclsh85.exe_PATH% %_VECHO% ToolPath = '%TOOLPATH%' REM REM NOTE: Setting the Windows SDK library path is only required for MSVC REM 2012, 2013, and 2015. REM CALL :fn_UnsetVariable SET_NSDKLIBPATH REM REM NOTE: Setting the Universal CRT library path is only required for MSVC REM 2015. REM CALL :fn_UnsetVariable SET_NUCRTLIBPATH REM REM NOTE: Check for MSVC 2012, 2013, and 2015 specially because the Windows REM SDK directory handling is slightly different for those versions. REM IF "%VisualStudioVersion%" == "11.0" ( REM REM NOTE: If the Windows SDK library path has already been set, do not set REM it to something else later on. REM IF NOT DEFINED NSDKLIBPATH ( SET SET_NSDKLIBPATH=1 ) ) ELSE IF "%VisualStudioVersion%" == "12.0" ( REM REM NOTE: If the Windows SDK library path has already been set, do not set REM it to something else later on. REM IF NOT DEFINED NSDKLIBPATH ( SET SET_NSDKLIBPATH=1 ) ) ELSE IF "%VisualStudioVersion%" == "14.0" ( REM REM NOTE: If the Windows SDK library path has already been set, do not set REM it to something else later on. REM IF NOT DEFINED NSDKLIBPATH ( SET SET_NSDKLIBPATH=1 ) REM REM NOTE: If the Universal CRT library path has already been set, do not set REM it to something else later on. REM IF NOT DEFINED NUCRTLIBPATH ( SET SET_NUCRTLIBPATH=1 ) ) REM REM NOTE: Check if this is the Windows Phone SDK. If so, a different batch REM file is necessary to setup the build environment. Since the variable REM values involved here may contain parenthesis, using GOTO instead of REM an IF block is required. |
︙ | ︙ | |||
290 291 292 293 294 295 296 297 298 299 300 301 302 303 | CALL :fn_UnsetVariable FrameworkVersion CALL :fn_UnsetVariable FrameworkVersion32 CALL :fn_UnsetVariable FSHARPINSTALLDIR CALL :fn_UnsetVariable INCLUDE CALL :fn_UnsetVariable LIB CALL :fn_UnsetVariable LIBPATH CALL :fn_UnsetVariable Platform REM CALL :fn_UnsetVariable VCINSTALLDIR CALL :fn_UnsetVariable VSINSTALLDIR CALL :fn_UnsetVariable WindowsPhoneKitDir CALL :fn_UnsetVariable WindowsSdkDir CALL :fn_UnsetVariable WindowsSdkDir_35 CALL :fn_UnsetVariable WindowsSdkDir_old CALL :fn_UnsetVariable WindowsSDK_ExecutablePath_x86 | > | 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | CALL :fn_UnsetVariable FrameworkVersion CALL :fn_UnsetVariable FrameworkVersion32 CALL :fn_UnsetVariable FSHARPINSTALLDIR CALL :fn_UnsetVariable INCLUDE CALL :fn_UnsetVariable LIB CALL :fn_UnsetVariable LIBPATH CALL :fn_UnsetVariable Platform CALL :fn_UnsetVariable UniversalCRTSdkDir REM CALL :fn_UnsetVariable VCINSTALLDIR CALL :fn_UnsetVariable VSINSTALLDIR CALL :fn_UnsetVariable WindowsPhoneKitDir CALL :fn_UnsetVariable WindowsSdkDir CALL :fn_UnsetVariable WindowsSdkDir_35 CALL :fn_UnsetVariable WindowsSdkDir_old CALL :fn_UnsetVariable WindowsSDK_ExecutablePath_x86 |
︙ | ︙ | |||
317 318 319 320 321 322 323 | REM NOTE: When preparing the debug build, set the DEBUG and MEMDEBUG REM environment variables to be picked up by the MSVC makefile REM itself. REM %_AECHO% Building the %%B configuration for platform %%P with name %%D... IF /I "%%B" == "Debug" ( | > > > > > > | > > > > > | 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | REM NOTE: When preparing the debug build, set the DEBUG and MEMDEBUG REM environment variables to be picked up by the MSVC makefile REM itself. REM %_AECHO% Building the %%B configuration for platform %%P with name %%D... IF /I "%%B" == "Debug" ( REM REM NOTE: Using this level for the DEBUG environment variable should REM disable all compiler optimizations and prevent use of the REM NDEBUG define. Additionally, both SQLITE_ENABLE_API_ARMOR REM and SQLITE_DEBUG defines should be enabled. REM SET DEBUG=3 REM REM NOTE: Setting this to non-zero should enable the SQLITE_MEMDEBUG REM define. REM SET MEMDEBUG=1 ) ELSE ( CALL :fn_UnsetVariable DEBUG CALL :fn_UnsetVariable MEMDEBUG ) REM |
︙ | ︙ | |||
370 371 372 373 374 375 376 | ECHO Cannot build, Windows SDK not found for platform %%P. GOTO errors ) ) ) REM | | | | | > > > > | > > > > > > > > > > > > > > > > | 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 | ECHO Cannot build, Windows SDK not found for platform %%P. GOTO errors ) ) ) REM REM NOTE: When using MSVC 2012, 2013, or 2015, the native SDK path REM cannot simply be the "lib" sub-directory beneath the location REM specified in the WindowsSdkDir environment variable because REM that location does not actually contain the necessary library REM files for x86. This must be done for each iteration because REM it relies upon the WindowsSdkDir environment variable being REM set by the batch file used to setup the MSVC environment. REM IF DEFINED SET_NSDKLIBPATH ( REM REM NOTE: The Windows Phone SDK has a slightly different directory REM structure and must be handled specially here. REM IF DEFINED WindowsPhoneKitDir ( CALL :fn_CopyVariable WindowsPhoneKitDir NSDKLIBPATH CALL :fn_AppendVariable NSDKLIBPATH \lib\x86 ) ELSE IF DEFINED WindowsSdkDir ( CALL :fn_CopyVariable WindowsSdkDir NSDKLIBPATH REM REM NOTE: The Windows 8.x and Windows 10.0 SDKs have a slightly REM different directory naming conventions. REM IF DEFINED USE_WINV100_NSDKLIBPATH ( CALL :fn_AppendVariable NSDKLIBPATH \..\10\lib\10.0.10030.0\um\x86 CALL :fn_CopyVariable UniversalCRTSdkDir PSDKLIBPATH CALL :fn_AppendVariable PSDKLIBPATH Lib\10.0.10030.0\um\%%D ) ELSE IF DEFINED USE_WINV63_NSDKLIBPATH ( CALL :fn_AppendVariable NSDKLIBPATH \lib\winv6.3\um\x86 ) ELSE IF "%VisualStudioVersion%" == "12.0" ( CALL :fn_AppendVariable NSDKLIBPATH \..\8.0\lib\win8\um\x86 ) ELSE IF "%VisualStudioVersion%" == "14.0" ( CALL :fn_AppendVariable NSDKLIBPATH \..\8.0\lib\win8\um\x86 ) ELSE ( CALL :fn_AppendVariable NSDKLIBPATH \lib\win8\um\x86 ) ) ) REM REM NOTE: When using MSVC 2015, setting the Universal CRT library path REM for x86 may be required as well. This must also be done for REM each iteration because it relies upon the UniversalCRTSdkDir REM environment variable being set by the batch file used to REM setup the MSVC environment. REM IF DEFINED SET_NUCRTLIBPATH ( IF DEFINED UniversalCRTSdkDir ( CALL :fn_CopyVariable UniversalCRTSdkDir NUCRTLIBPATH CALL :fn_AppendVariable NUCRTLIBPATH \lib\winv10.0\ucrt\x86 ) ) REM REM NOTE: Unless prevented from doing so, invoke NMAKE with the MSVC REM makefile to clean any stale build output from previous REM iterations of this loop and/or previous runs of this batch REM file, etc. REM |
︙ | ︙ | |||
559 560 561 562 563 564 565 566 567 568 569 570 571 572 | GOTO errors ) REM REM NOTE: If we get to this point, we have succeeded. REM GOTO no_errors :fn_ResetErrorLevel VERIFY > NUL GOTO :EOF :fn_SetErrorLevel VERIFY MAYBE 2> NUL | > > > > > > > > > > > > > | 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 | GOTO errors ) REM REM NOTE: If we get to this point, we have succeeded. REM GOTO no_errors :fn_ShowVariable SETLOCAL SET __ECHO_CMD=ECHO %%%2%% FOR /F "delims=" %%V IN ('%__ECHO_CMD%') DO ( IF NOT "%%V" == "" ( IF NOT "%%V" == "%%%2%%" ( %_VECHO% %1 = '%%V' ) ) ) ENDLOCAL GOTO :EOF :fn_ResetErrorLevel VERIFY > NUL GOTO :EOF :fn_SetErrorLevel VERIFY MAYBE 2> NUL |
︙ | ︙ |
Added tool/fuzzershell.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 | /* ** 2015-04-17 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This is a utility program designed to aid running the SQLite library ** against an external fuzzer, such as American Fuzzy Lop (AFL) ** (http://lcamtuf.coredump.cx/afl/). Basically, this program reads ** SQL text from standard input and passes it through to SQLite for evaluation, ** just like the "sqlite3" command-line shell. Differences from the ** command-line shell: ** ** (1) The complex "dot-command" extensions are omitted. This ** prevents the fuzzer from discovering that it can run things ** like ".shell rm -rf ~" ** ** (2) The database is opened with the SQLITE_OPEN_MEMORY flag so that ** no disk I/O from the database is permitted. The ATTACH command ** with a filename still uses an in-memory database. ** ** (3) The main in-memory database can be initialized from a template ** disk database so that the fuzzer starts with a database containing ** content. ** ** (4) The eval() SQL function is added, allowing the fuzzer to do ** interesting recursive operations. ** ** 2015-04-20: The input text can be divided into separate SQL chunks using ** lines of the form: ** ** |****<...>****| ** ** where the "..." is arbitrary text, except the "|" should really be "/". ** ("|" is used here to avoid compiler warnings about nested comments.) ** Each such SQL comment is printed as it is encountered. A separate ** in-memory SQLite database is created to run each chunk of SQL. This ** feature allows the "queue" of AFL to be captured into a single big ** file using a command like this: ** ** (for i in id:*; do echo '|****<'$i'>****|'; cat $i; done) >~/all-queue.txt ** ** (Once again, change the "|" to "/") Then all elements of the AFL queue ** can be run in a single go (for regression testing, for example) by typing: ** ** fuzzershell -f ~/all-queue.txt >out.txt ** ** After running each chunk of SQL, the database connection is closed. The ** program aborts if the close fails or if there is any unfreed memory after ** the close. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdarg.h> #include <ctype.h> #include "sqlite3.h" /* ** All global variables are gathered into the "g" singleton. */ struct GlobalVars { const char *zArgv0; /* Name of program */ } g; /* ** Print an error message and abort in such a way to indicate to the ** fuzzer that this counts as a crash. */ static void abendError(const char *zFormat, ...){ va_list ap; fprintf(stderr, "%s: ", g.zArgv0); va_start(ap, zFormat); vfprintf(stderr, zFormat, ap); va_end(ap); fprintf(stderr, "\n"); abort(); } /* ** Print an error message and quit, but not in a way that would look ** like a crash. */ static void fatalError(const char *zFormat, ...){ va_list ap; fprintf(stderr, "%s: ", g.zArgv0); va_start(ap, zFormat); vfprintf(stderr, zFormat, ap); va_end(ap); fprintf(stderr, "\n"); exit(1); } /* ** Evaluate some SQL. Abort if unable. */ static void sqlexec(sqlite3 *db, const char *zFormat, ...){ va_list ap; char *zSql; char *zErrMsg = 0; int rc; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); va_end(ap); rc = sqlite3_exec(db, zSql, 0, 0, &zErrMsg); if( rc ) abendError("failed sql [%s]: %s", zSql, zErrMsg); sqlite3_free(zSql); } /* ** This callback is invoked by sqlite3_log(). */ static void shellLog(void *pNotUsed, int iErrCode, const char *zMsg){ printf("LOG: (%d) %s\n", iErrCode, zMsg); } /* ** This callback is invoked by sqlite3_exec() to return query results. */ static int execCallback(void *NotUsed, int argc, char **argv, char **colv){ int i; static unsigned cnt = 0; printf("ROW #%u:\n", ++cnt); for(i=0; i<argc; i++){ printf(" %s=", colv[i]); if( argv[i] ){ printf("[%s]\n", argv[i]); }else{ printf("NULL\n"); } } return 0; } /* ** This callback is invoked by sqlite3_trace() as each SQL statement ** starts. */ static void traceCallback(void *NotUsed, const char *zMsg){ printf("TRACE: %s\n", zMsg); } /*************************************************************************** ** eval() implementation copied from ../ext/misc/eval.c */ /* ** Structure used to accumulate the output */ struct EvalResult { char *z; /* Accumulated output */ const char *zSep; /* Separator */ int szSep; /* Size of the separator string */ sqlite3_int64 nAlloc; /* Number of bytes allocated for z[] */ sqlite3_int64 nUsed; /* Number of bytes of z[] actually used */ }; /* ** Callback from sqlite_exec() for the eval() function. */ static int callback(void *pCtx, int argc, char **argv, char **colnames){ struct EvalResult *p = (struct EvalResult*)pCtx; int i; for(i=0; i<argc; i++){ const char *z = argv[i] ? argv[i] : ""; size_t sz = strlen(z); if( (sqlite3_int64)sz+p->nUsed+p->szSep+1 > p->nAlloc ){ char *zNew; p->nAlloc = p->nAlloc*2 + sz + p->szSep + 1; /* Using sqlite3_realloc64() would be better, but it is a recent ** addition and will cause a segfault if loaded by an older version ** of SQLite. */ zNew = p->nAlloc<=0x7fffffff ? sqlite3_realloc(p->z, (int)p->nAlloc) : 0; if( zNew==0 ){ sqlite3_free(p->z); memset(p, 0, sizeof(*p)); return 1; } p->z = zNew; } if( p->nUsed>0 ){ memcpy(&p->z[p->nUsed], p->zSep, p->szSep); p->nUsed += p->szSep; } memcpy(&p->z[p->nUsed], z, sz); p->nUsed += sz; } return 0; } /* ** Implementation of the eval(X) and eval(X,Y) SQL functions. ** ** Evaluate the SQL text in X. Return the results, using string ** Y as the separator. If Y is omitted, use a single space character. */ static void sqlEvalFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zSql; sqlite3 *db; char *zErr = 0; int rc; struct EvalResult x; memset(&x, 0, sizeof(x)); x.zSep = " "; zSql = (const char*)sqlite3_value_text(argv[0]); if( zSql==0 ) return; if( argc>1 ){ x.zSep = (const char*)sqlite3_value_text(argv[1]); if( x.zSep==0 ) return; } x.szSep = (int)strlen(x.zSep); db = sqlite3_context_db_handle(context); rc = sqlite3_exec(db, zSql, callback, &x, &zErr); if( rc!=SQLITE_OK ){ sqlite3_result_error(context, zErr, -1); sqlite3_free(zErr); }else if( x.zSep==0 ){ sqlite3_result_error_nomem(context); sqlite3_free(x.z); }else{ sqlite3_result_text(context, x.z, (int)x.nUsed, sqlite3_free); } } /* End of the eval() implementation ******************************************************************************/ /* ** Print sketchy documentation for this utility program */ static void showHelp(void){ printf("Usage: %s [options]\n", g.zArgv0); printf( "Read SQL text from standard input and evaluate it.\n" "Options:\n" " --autovacuum Enable AUTOVACUUM mode\n" " -f FILE Read SQL text from FILE instead of standard input\n" " --heap SZ MIN Memory allocator uses SZ bytes & min allocation MIN\n" " --help Show this help text\n" " --initdb DBFILE Initialize the in-memory database using template DBFILE\n" " --lookaside N SZ Configure lookaside for N slots of SZ bytes each\n" " --pagesize N Set the page size to N\n" " --pcache N SZ Configure N pages of pagecache each of size SZ bytes\n" " --scratch N SZ Configure scratch memory for N slots of SZ bytes each\n" " --utf16be Set text encoding to UTF-16BE\n" " --utf16le Set text encoding to UTF-16LE\n" ); } /* ** Return the value of a hexadecimal digit. Return -1 if the input ** is not a hex digit. */ static int hexDigitValue(char c){ if( c>='0' && c<='9' ) return c - '0'; if( c>='a' && c<='f' ) return c - 'a' + 10; if( c>='A' && c<='F' ) return c - 'A' + 10; return -1; } /* ** Interpret zArg as an integer value, possibly with suffixes. */ static int integerValue(const char *zArg){ sqlite3_int64 v = 0; static const struct { char *zSuffix; int iMult; } aMult[] = { { "KiB", 1024 }, { "MiB", 1024*1024 }, { "GiB", 1024*1024*1024 }, { "KB", 1000 }, { "MB", 1000000 }, { "GB", 1000000000 }, { "K", 1000 }, { "M", 1000000 }, { "G", 1000000000 }, }; int i; int isNeg = 0; if( zArg[0]=='-' ){ isNeg = 1; zArg++; }else if( zArg[0]=='+' ){ zArg++; } if( zArg[0]=='0' && zArg[1]=='x' ){ int x; zArg += 2; while( (x = hexDigitValue(zArg[0]))>=0 ){ v = (v<<4) + x; zArg++; } }else{ while( isdigit(zArg[0]) ){ v = v*10 + zArg[0] - '0'; zArg++; } } for(i=0; i<sizeof(aMult)/sizeof(aMult[0]); i++){ if( sqlite3_stricmp(aMult[i].zSuffix, zArg)==0 ){ v *= aMult[i].iMult; break; } } if( v>0x7fffffff ) abendError("parameter too large - max 2147483648"); return (int)(isNeg? -v : v); } /* ** Various operating modes */ #define FZMODE_Generic 1 #define FZMODE_Strftime 2 #define FZMODE_Printf 3 #define FZMODE_Glob 4 int main(int argc, char **argv){ char *zIn = 0; /* Input text */ int nAlloc = 0; /* Number of bytes allocated for zIn[] */ int nIn = 0; /* Number of bytes of zIn[] used */ size_t got; /* Bytes read from input */ FILE *in = stdin; /* Where to read SQL text from */ int rc = SQLITE_OK; /* Result codes from API functions */ int i; /* Loop counter */ int iNext; /* Next block of SQL */ sqlite3 *db; /* Open database */ sqlite3 *dbInit = 0; /* On-disk database used to initialize the in-memory db */ const char *zInitDb = 0;/* Name of the initialization database file */ char *zErrMsg = 0; /* Error message returned from sqlite3_exec() */ const char *zEncoding = 0; /* --utf16be or --utf16le */ int nHeap = 0, mnHeap = 0; /* Heap size from --heap */ int nLook = 0, szLook = 0; /* --lookaside configuration */ int nPCache = 0, szPCache = 0;/* --pcache configuration */ int nScratch = 0, szScratch=0;/* --scratch configuration */ int pageSize = 0; /* Desired page size. 0 means default */ void *pHeap = 0; /* Allocated heap space */ void *pLook = 0; /* Allocated lookaside space */ void *pPCache = 0; /* Allocated storage for pcache */ void *pScratch = 0; /* Allocated storage for scratch */ int doAutovac = 0; /* True for --autovacuum */ char *zSql; /* SQL to run */ char *zToFree = 0; /* Call sqlite3_free() on this afte running zSql */ int iMode = FZMODE_Generic; /* Operating mode */ g.zArgv0 = argv[0]; for(i=1; i<argc; i++){ const char *z = argv[i]; if( z[0]=='-' ){ z++; if( z[0]=='-' ) z++; if( strcmp(z,"autovacuum")==0 ){ doAutovac = 1; }else if( strcmp(z, "f")==0 && i+1<argc ){ if( in!=stdin ) abendError("only one -f allowed"); in = fopen(argv[++i],"rb"); if( in==0 ) abendError("cannot open input file \"%s\"", argv[i]); }else if( strcmp(z,"heap")==0 ){ if( i>=argc-2 ) abendError("missing arguments on %s\n", argv[i]); nHeap = integerValue(argv[i+1]); mnHeap = integerValue(argv[i+2]); i += 2; }else if( strcmp(z,"help")==0 ){ showHelp(); return 0; }else if( strcmp(z, "initdb")==0 && i+1<argc ){ if( zInitDb!=0 ) abendError("only one --initdb allowed"); zInitDb = argv[++i]; }else if( strcmp(z,"lookaside")==0 ){ if( i>=argc-2 ) abendError("missing arguments on %s", argv[i]); nLook = integerValue(argv[i+1]); szLook = integerValue(argv[i+2]); i += 2; }else if( strcmp(z,"mode")==0 ){ if( i>=argc-1 ) abendError("missing argument on %s", argv[i]); z = argv[++i]; if( strcmp(z,"generic")==0 ){ iMode = FZMODE_Printf; }else if( strcmp(z, "glob")==0 ){ iMode = FZMODE_Glob; }else if( strcmp(z, "printf")==0 ){ iMode = FZMODE_Printf; }else if( strcmp(z, "strftime")==0 ){ iMode = FZMODE_Strftime; }else{ abendError("unknown --mode: %s", z); } }else if( strcmp(z,"pagesize")==0 ){ if( i>=argc-1 ) abendError("missing argument on %s", argv[i]); pageSize = integerValue(argv[++i]); }else if( strcmp(z,"pcache")==0 ){ if( i>=argc-2 ) abendError("missing arguments on %s", argv[i]); nPCache = integerValue(argv[i+1]); szPCache = integerValue(argv[i+2]); i += 2; }else if( strcmp(z,"scratch")==0 ){ if( i>=argc-2 ) abendError("missing arguments on %s", argv[i]); nScratch = integerValue(argv[i+1]); szScratch = integerValue(argv[i+2]); i += 2; }else if( strcmp(z,"utf16le")==0 ){ zEncoding = "utf16le"; }else if( strcmp(z,"utf16be")==0 ){ zEncoding = "utf16be"; }else { abendError("unknown option: %s", argv[i]); } }else{ abendError("unknown argument: %s", argv[i]); } } sqlite3_config(SQLITE_CONFIG_LOG, shellLog, 0); if( nHeap>0 ){ pHeap = malloc( nHeap ); if( pHeap==0 ) fatalError("cannot allocate %d-byte heap\n", nHeap); rc = sqlite3_config(SQLITE_CONFIG_HEAP, pHeap, nHeap, mnHeap); if( rc ) abendError("heap configuration failed: %d\n", rc); } if( nLook>0 ){ sqlite3_config(SQLITE_CONFIG_LOOKASIDE, 0, 0); if( szLook>0 ){ pLook = malloc( nLook*szLook ); if( pLook==0 ) fatalError("out of memory"); } } if( nScratch>0 && szScratch>0 ){ pScratch = malloc( nScratch*(sqlite3_int64)szScratch ); if( pScratch==0 ) fatalError("cannot allocate %lld-byte scratch", nScratch*(sqlite3_int64)szScratch); rc = sqlite3_config(SQLITE_CONFIG_SCRATCH, pScratch, szScratch, nScratch); if( rc ) abendError("scratch configuration failed: %d\n", rc); } if( nPCache>0 && szPCache>0 ){ pPCache = malloc( nPCache*(sqlite3_int64)szPCache ); if( pPCache==0 ) fatalError("cannot allocate %lld-byte pcache", nPCache*(sqlite3_int64)szPCache); rc = sqlite3_config(SQLITE_CONFIG_PAGECACHE, pPCache, szPCache, nPCache); if( rc ) abendError("pcache configuration failed: %d", rc); } while( !feof(in) ){ nAlloc += nAlloc+1000; zIn = realloc(zIn, nAlloc); if( zIn==0 ) fatalError("out of memory"); got = fread(zIn+nIn, 1, nAlloc-nIn-1, in); nIn += (int)got; zIn[nIn] = 0; if( got==0 ) break; } if( zInitDb ){ rc = sqlite3_open_v2(zInitDb, &dbInit, SQLITE_OPEN_READONLY, 0); if( rc!=SQLITE_OK ){ abendError("unable to open initialization database \"%s\"", zInitDb); } } for(i=0; i<nIn; i=iNext){ char cSaved; if( strncmp(&zIn[i], "/****<",6)==0 ){ char *z = strstr(&zIn[i], ">****/"); if( z ){ z += 6; printf("%.*s\n", (int)(z-&zIn[i]), &zIn[i]); i += (int)(z-&zIn[i]); } } for(iNext=i; iNext<nIn && strncmp(&zIn[iNext],"/****<",6)!=0; iNext++){} rc = sqlite3_open_v2( "main.db", &db, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY, 0); if( rc!=SQLITE_OK ){ abendError("Unable to open the in-memory database"); } if( pLook ){ rc = sqlite3_db_config(db, SQLITE_DBCONFIG_LOOKASIDE, pLook, szLook, nLook); if( rc!=SQLITE_OK ) abendError("lookaside configuration filed: %d", rc); } if( zInitDb ){ sqlite3_backup *pBackup; pBackup = sqlite3_backup_init(db, "main", dbInit, "main"); rc = sqlite3_backup_step(pBackup, -1); if( rc!=SQLITE_DONE ){ abendError("attempt to initialize the in-memory database failed (rc=%d)", rc); } sqlite3_backup_finish(pBackup); } sqlite3_trace(db, traceCallback, 0); sqlite3_create_function(db, "eval", 1, SQLITE_UTF8, 0, sqlEvalFunc, 0, 0); sqlite3_create_function(db, "eval", 2, SQLITE_UTF8, 0, sqlEvalFunc, 0, 0); sqlite3_limit(db, SQLITE_LIMIT_LENGTH, 1000000); if( zEncoding ) sqlexec(db, "PRAGMA encoding=%s", zEncoding); if( pageSize ) sqlexec(db, "PRAGMA pagesize=%d", pageSize); if( doAutovac ) sqlexec(db, "PRAGMA auto_vacuum=FULL"); cSaved = zIn[iNext]; zIn[iNext] = 0; printf("INPUT (offset: %d, size: %d): [%s]\n", i, (int)strlen(&zIn[i]), &zIn[i]); zSql = &zIn[i]; switch( iMode ){ case FZMODE_Glob: zSql = zToFree = sqlite3_mprintf("SELECT glob(%s);", zSql); break; case FZMODE_Printf: zSql = zToFree = sqlite3_mprintf("SELECT printf(%s);", zSql); break; case FZMODE_Strftime: zSql = zToFree = sqlite3_mprintf("SELECT strftime(%s);", zSql); break; } rc = sqlite3_exec(db, zSql, execCallback, 0, &zErrMsg); if( zToFree ){ sqlite3_free(zToFree); zToFree = 0; } zIn[iNext] = cSaved; printf("RESULT-CODE: %d\n", rc); if( zErrMsg ){ printf("ERROR-MSG: [%s]\n", zErrMsg); sqlite3_free(zErrMsg); } rc = sqlite3_close(db); if( rc ){ abendError("sqlite3_close() failed with rc=%d", rc); } if( sqlite3_memory_used()>0 ){ abendError("memory in use after close: %lld bytes", sqlite3_memory_used()); } } free(zIn); free(pHeap); free(pLook); free(pScratch); free(pPCache); return 0; } |
Changes to tool/lemon.c.
︙ | ︙ | |||
1110 1111 1112 1113 1114 1115 1116 | ** finite state machine) an action to ACCEPT if the lookahead is the ** start nonterminal. */ Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); /* Resolve conflicts */ for(i=0; i<lemp->nstate; i++){ struct action *ap, *nap; | < | 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 | ** finite state machine) an action to ACCEPT if the lookahead is the ** start nonterminal. */ Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); /* Resolve conflicts */ for(i=0; i<lemp->nstate; i++){ struct action *ap, *nap; stp = lemp->sorted[i]; /* assert( stp->ap ); */ stp->ap = Action_sort(stp->ap); for(ap=stp->ap; ap && ap->next; ap=ap->next){ for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ /* The two actions "ap" and "nap" have the same lookahead. ** Figure out which one should be used */ |
︙ | ︙ | |||
1727 1728 1729 1730 1731 1732 1733 | char **next, int (*cmp)(const char*,const char*) ){ unsigned long offset; char *ep; char *set[LISTSIZE]; int i; | | | 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 | char **next, int (*cmp)(const char*,const char*) ){ unsigned long offset; char *ep; char *set[LISTSIZE]; int i; offset = (unsigned long)((char*)next - (char*)list); for(i=0; i<LISTSIZE; i++) set[i] = 0; while( list ){ ep = list; list = NEXT(list); NEXT(ep) = 0; for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ ep = merge(ep,set[i],cmp,offset); |
︙ | ︙ | |||
1871 1872 1873 1874 1875 1876 1877 | break; case OPT_DBL: case OPT_FDBL: dv = strtod(cp,&end); if( *end ){ if( err ){ fprintf(err,"%sillegal character in floating-point argument.\n",emsg); | | | | 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 | break; case OPT_DBL: case OPT_FDBL: dv = strtod(cp,&end); if( *end ){ if( err ){ fprintf(err,"%sillegal character in floating-point argument.\n",emsg); errline(i,(int)((char*)end-(char*)argv[i]),err); } errcnt++; } break; case OPT_INT: case OPT_FINT: lv = strtol(cp,&end,0); if( *end ){ if( err ){ fprintf(err,"%sillegal character in integer argument.\n",emsg); errline(i,(int)((char*)end-(char*)argv[i]),err); } errcnt++; } break; case OPT_STR: case OPT_FSTR: sv = cp; |
︙ | ︙ | |||
3744 3745 3746 3747 3748 3749 3750 | } lineno = 1; tplt_xfer(lemp->name,in,out,&lineno); /* Generate the include code, if any */ tplt_print(out,lemp,lemp->include,&lineno); if( mhflag ){ | | | | | 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 | } lineno = 1; tplt_xfer(lemp->name,in,out,&lineno); /* Generate the include code, if any */ tplt_print(out,lemp,lemp->include,&lineno); if( mhflag ){ char *incName = file_makename(lemp, ".h"); fprintf(out,"#include \"%s\"\n", incName); lineno++; free(incName); } tplt_xfer(lemp->name,in,out,&lineno); /* Generate #defines for all tokens */ if( mhflag ){ const char *prefix; fprintf(out,"#if INTERFACE\n"); lineno++; |
︙ | ︙ | |||
3787 3788 3789 3790 3791 3792 3793 | } fprintf(out, "#endif\n"); lineno++; if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } name = lemp->name ? lemp->name : "Parse"; if( lemp->arg && lemp->arg[0] ){ | < | 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 | } fprintf(out, "#endif\n"); lineno++; if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } name = lemp->name ? lemp->name : "Parse"; if( lemp->arg && lemp->arg[0] ){ i = lemonStrlen(lemp->arg); while( i>=1 && isspace(lemp->arg[i-1]) ) i--; while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", name,lemp->arg,&lemp->arg[i]); lineno++; |
︙ | ︙ | |||
4475 4476 4477 4478 4479 4480 4481 | /* Fail because overwrite is not allows. */ return 0; } np = np->next; } if( x1a->count>=x1a->size ){ /* Need to make the hash table bigger */ | | | | | | | | 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 | /* Fail because overwrite is not allows. */ return 0; } np = np->next; } if( x1a->count>=x1a->size ){ /* Need to make the hash table bigger */ int i,arrSize; struct s_x1 array; array.size = arrSize = x1a->size*2; array.count = x1a->count; array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*)); if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ array.ht = (x1node**)&(array.tbl[arrSize]); for(i=0; i<arrSize; i++) array.ht[i] = 0; for(i=0; i<x1a->count; i++){ x1node *oldnp, *newnp; oldnp = &(x1a->tbl[i]); h = strhash(oldnp->data) & (arrSize-1); newnp = &(array.tbl[i]); if( array.ht[h] ) array.ht[h]->from = &(newnp->next); newnp->next = array.ht[h]; newnp->data = oldnp->data; newnp->from = &(array.ht[h]); array.ht[h] = newnp; } |
︙ | ︙ | |||
4642 4643 4644 4645 4646 4647 4648 | /* Fail because overwrite is not allows. */ return 0; } np = np->next; } if( x2a->count>=x2a->size ){ /* Need to make the hash table bigger */ | | | | | | | | 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 | /* Fail because overwrite is not allows. */ return 0; } np = np->next; } if( x2a->count>=x2a->size ){ /* Need to make the hash table bigger */ int i,arrSize; struct s_x2 array; array.size = arrSize = x2a->size*2; array.count = x2a->count; array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*)); if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ array.ht = (x2node**)&(array.tbl[arrSize]); for(i=0; i<arrSize; i++) array.ht[i] = 0; for(i=0; i<x2a->count; i++){ x2node *oldnp, *newnp; oldnp = &(x2a->tbl[i]); h = strhash(oldnp->key) & (arrSize-1); newnp = &(array.tbl[i]); if( array.ht[h] ) array.ht[h]->from = &(newnp->next); newnp->next = array.ht[h]; newnp->key = oldnp->key; newnp->data = oldnp->data; newnp->from = &(array.ht[h]); array.ht[h] = newnp; |
︙ | ︙ | |||
4718 4719 4720 4721 4722 4723 4724 | /* Return an array of pointers to all data in the table. ** The array is obtained from malloc. Return NULL if memory allocation ** problems, or if the array is empty. */ struct symbol **Symbol_arrayof() { struct symbol **array; | | | | | | 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 | /* Return an array of pointers to all data in the table. ** The array is obtained from malloc. Return NULL if memory allocation ** problems, or if the array is empty. */ struct symbol **Symbol_arrayof() { struct symbol **array; int i,arrSize; if( x2a==0 ) return 0; arrSize = x2a->count; array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *)); if( array ){ for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data; } return array; } /* Compare two configurations */ int Configcmp(const char *_a,const char *_b) { |
︙ | ︙ | |||
4839 4840 4841 4842 4843 4844 4845 | /* Fail because overwrite is not allows. */ return 0; } np = np->next; } if( x3a->count>=x3a->size ){ /* Need to make the hash table bigger */ | | | | | | | | 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 | /* Fail because overwrite is not allows. */ return 0; } np = np->next; } if( x3a->count>=x3a->size ){ /* Need to make the hash table bigger */ int i,arrSize; struct s_x3 array; array.size = arrSize = x3a->size*2; array.count = x3a->count; array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*)); if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ array.ht = (x3node**)&(array.tbl[arrSize]); for(i=0; i<arrSize; i++) array.ht[i] = 0; for(i=0; i<x3a->count; i++){ x3node *oldnp, *newnp; oldnp = &(x3a->tbl[i]); h = statehash(oldnp->key) & (arrSize-1); newnp = &(array.tbl[i]); if( array.ht[h] ) array.ht[h]->from = &(newnp->next); newnp->next = array.ht[h]; newnp->key = oldnp->key; newnp->data = oldnp->data; newnp->from = &(array.ht[h]); array.ht[h] = newnp; |
︙ | ︙ | |||
4897 4898 4899 4900 4901 4902 4903 | /* Return an array of pointers to all data in the table. ** The array is obtained from malloc. Return NULL if memory allocation ** problems, or if the array is empty. */ struct state **State_arrayof() { struct state **array; | | | | | | 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 | /* Return an array of pointers to all data in the table. ** The array is obtained from malloc. Return NULL if memory allocation ** problems, or if the array is empty. */ struct state **State_arrayof() { struct state **array; int i,arrSize; if( x3a==0 ) return 0; arrSize = x3a->count; array = (struct state **)calloc(arrSize, sizeof(struct state *)); if( array ){ for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data; } return array; } /* Hash a configuration */ PRIVATE unsigned confighash(struct config *a) { |
︙ | ︙ | |||
4979 4980 4981 4982 4983 4984 4985 | /* Fail because overwrite is not allows. */ return 0; } np = np->next; } if( x4a->count>=x4a->size ){ /* Need to make the hash table bigger */ | | | | | | | | 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 | /* Fail because overwrite is not allows. */ return 0; } np = np->next; } if( x4a->count>=x4a->size ){ /* Need to make the hash table bigger */ int i,arrSize; struct s_x4 array; array.size = arrSize = x4a->size*2; array.count = x4a->count; array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*)); if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ array.ht = (x4node**)&(array.tbl[arrSize]); for(i=0; i<arrSize; i++) array.ht[i] = 0; for(i=0; i<x4a->count; i++){ x4node *oldnp, *newnp; oldnp = &(x4a->tbl[i]); h = confighash(oldnp->data) & (arrSize-1); newnp = &(array.tbl[i]); if( array.ht[h] ) array.ht[h]->from = &(newnp->next); newnp->next = array.ht[h]; newnp->data = oldnp->data; newnp->from = &(array.ht[h]); array.ht[h] = newnp; } |
︙ | ︙ |
Changes to tool/mksqlite3c-noext.tcl.
︙ | ︙ | |||
13 14 15 16 17 18 19 | # For example, the "parse.c" and "parse.h" files to implement the # the parser are derived from "parse.y" using lemon. And the # "keywordhash.h" files is generated by a program named "mkkeywordhash". # # After the "tsrc" directory has been created and populated, run # this script: # | | | | 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # For example, the "parse.c" and "parse.h" files to implement the # the parser are derived from "parse.y" using lemon. And the # "keywordhash.h" files is generated by a program named "mkkeywordhash". # # After the "tsrc" directory has been created and populated, run # this script: # # tclsh mksqlite3c-noext.tcl # # The amalgamated SQLite code will be written into sqlite3.c # # Begin by reading the "sqlite3.h" header file. Extract the version number # from in this file. The version number is needed to generate the header # comment of the amalgamation. # if {[lsearch $argv --nostatic]>=0} { set addstatic 0 } else { set addstatic 1 } |
︙ | ︙ | |||
76 77 78 79 80 81 82 | */ #define SQLITE_CORE 1 #define SQLITE_AMALGAMATION 1}] if {$addstatic} { puts $out \ {#ifndef SQLITE_PRIVATE # define SQLITE_PRIVATE static | < < < | 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | */ #define SQLITE_CORE 1 #define SQLITE_AMALGAMATION 1}] if {$addstatic} { puts $out \ {#ifndef SQLITE_PRIVATE # define SQLITE_PRIVATE static #endif} } # These are the header files used by SQLite. The first time any of these # files are seen in a #include statement in the C code, include the complete # text of the file in-line. The file only needs to be included once. # |
︙ | ︙ | |||
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | os_common.h os_setup.h os_win.h os.h pager.h parse.h pcache.h sqlite3ext.h sqlite3.h sqliteicu.h sqliteInt.h sqliteLimit.h vdbe.h vdbeInt.h wal.h } { set available_hdr($hdr) 1 } set available_hdr(sqliteInt.h) 0 # 78 stars used for comment formatting. set s78 \ {*****************************************************************************} # Insert a comment into the code # proc section_comment {text} { global out s78 set n [string length $text] set nstar [expr {60 - $n}] set stars [string range $s78 0 $nstar] puts $out "/************** $text $stars/" } # Read the source file named $filename and write it into the # sqlite3.c output file. If any #include statements are seen, | > > > > > > > > > > > > > > > > > > > > | | | | > | > > > > > > > | > > > > | < > > > > > > > > > > > | | | > | | | | | | | | | | > | > | 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | os_common.h os_setup.h os_win.h os.h pager.h parse.h pcache.h pragma.h sqlite3ext.h sqlite3.h sqliteicu.h sqliteInt.h sqliteLimit.h vdbe.h vdbeInt.h vxworks.h wal.h whereInt.h } { set available_hdr($hdr) 1 } set available_hdr(sqliteInt.h) 0 # These headers should be copied into the amalgamation without modifying any # of their function declarations or definitions. set varonly_hdr(sqlite3.h) 1 # These are the functions that accept a variable number of arguments. They # always need to use the "cdecl" calling convention even when another calling # convention (e.g. "stcall") is being used for the rest of the library. set cdecllist { sqlite3_config sqlite3_db_config sqlite3_log sqlite3_mprintf sqlite3_snprintf sqlite3_test_control sqlite3_vtab_config } # 78 stars used for comment formatting. set s78 \ {*****************************************************************************} # Insert a comment into the code # proc section_comment {text} { global out s78 set n [string length $text] set nstar [expr {60 - $n}] set stars [string range $s78 0 $nstar] puts $out "/************** $text $stars/" } # Read the source file named $filename and write it into the # sqlite3.c output file. If any #include statements are seen, # process them appropriately. # proc copy_file {filename} { global seen_hdr available_hdr varonly_hdr cdecllist out addstatic linemacros set ln 0 set tail [file tail $filename] section_comment "Begin file $tail" if {$linemacros} {puts $out "#line 1 \"$filename\""} set in [open $filename r] set varpattern {^[a-zA-Z][a-zA-Z_0-9 *]+(sqlite3[_a-zA-Z0-9]+)(\[|;| =)} set declpattern {([a-zA-Z][a-zA-Z_0-9 ]+ \**)(sqlite3[_a-zA-Z0-9]+)(\(.*)} if {[file extension $filename]==".h"} { set declpattern " *$declpattern" } set declpattern ^$declpattern\$ while {![eof $in]} { set line [gets $in] incr ln if {[regexp {^\s*#\s*include\s+["<]([^">]+)[">]} $line all hdr]} { if {[info exists available_hdr($hdr)]} { if {$available_hdr($hdr)} { if {$hdr!="os_common.h" && $hdr!="hwtime.h"} { set available_hdr($hdr) 0 } section_comment "Include $hdr in the middle of $tail" copy_file tsrc/$hdr section_comment "Continuing where we left off in $tail" if {$linemacros} {puts $out "#line [expr {$ln+1}] \"$filename\""} } } elseif {![info exists seen_hdr($hdr)]} { if {![regexp {/\*\s+amalgamator:\s+dontcache\s+\*/} $line]} { set seen_hdr($hdr) 1 } puts $out $line } elseif {[regexp {/\*\s+amalgamator:\s+keep\s+\*/} $line]} { # This include file must be kept because there was a "keep" # directive inside of a line comment. puts $out $line } else { # Comment out the entire line, replacing any nested comment # begin/end markers with the harmless substring "**". puts $out "/* [string map [list /* ** */ **] $line] */" } } elseif {[regexp {^#ifdef __cplusplus} $line]} { puts $out "#if 0" } elseif {!$linemacros && [regexp {^#line} $line]} { # Skip #line directives. } elseif {$addstatic && ![regexp {^(static|typedef)} $line]} { # Skip adding the SQLITE_PRIVATE or SQLITE_API keyword before # functions if this header file does not need it. if {![info exists varonly_hdr($tail)] && [regexp $declpattern $line all rettype funcname rest]} { regsub {^SQLITE_API } $line {} line # Add the SQLITE_PRIVATE or SQLITE_API keyword before functions. # so that linkage can be modified at compile-time. if {[regexp {^sqlite3_} $funcname]} { set line SQLITE_API append line " " [string trim $rettype] if {[string index $rettype end] ne "*"} { append line " " } if {[lsearch -exact $cdecllist $funcname] >= 0} { append line SQLITE_CDECL } else { append line SQLITE_STDCALL } append line " " $funcname $rest puts $out $line } else { puts $out "SQLITE_PRIVATE $line" } } elseif {[regexp $varpattern $line all varname]} { # Add the SQLITE_PRIVATE before variable declarations or # definitions for internal use regsub {^SQLITE_API } $line {} line if {![regexp {^sqlite3_} $varname]} { regsub {^extern } $line {} line puts $out "SQLITE_PRIVATE $line" } else { if {[regexp {const char sqlite3_version\[\];} $line]} { set line {const char sqlite3_version[] = SQLITE_VERSION;} } regsub {^SQLITE_EXTERN } $line {} line puts $out "SQLITE_API $line" } } elseif {[regexp {^(SQLITE_EXTERN )?void \(\*sqlite3IoTrace\)} $line]} { regsub {^SQLITE_API } $line {} line regsub {^SQLITE_EXTERN } $line {} line puts $out $line } elseif {[regexp {^void \(\*sqlite3Os} $line]} { regsub {^SQLITE_API } $line {} line puts $out "SQLITE_PRIVATE $line" } else { puts $out $line } } else { puts $out $line } |
︙ | ︙ |
Changes to tool/mksqlite3c.tcl.
︙ | ︙ | |||
76 77 78 79 80 81 82 | */ #define SQLITE_CORE 1 #define SQLITE_AMALGAMATION 1}] if {$addstatic} { puts $out \ {#ifndef SQLITE_PRIVATE # define SQLITE_PRIVATE static | < < < | 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | */ #define SQLITE_CORE 1 #define SQLITE_AMALGAMATION 1}] if {$addstatic} { puts $out \ {#ifndef SQLITE_PRIVATE # define SQLITE_PRIVATE static #endif} } # These are the header files used by SQLite. The first time any of these # files are seen in a #include statement in the C code, include the complete # text of the file in-line. The file only needs to be included once. # |
︙ | ︙ | |||
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | vxworks.h wal.h whereInt.h } { set available_hdr($hdr) 1 } set available_hdr(sqliteInt.h) 0 # 78 stars used for comment formatting. set s78 \ {*****************************************************************************} # Insert a comment into the code # proc section_comment {text} { global out s78 set n [string length $text] set nstar [expr {60 - $n}] set stars [string range $s78 0 $nstar] puts $out "/************** $text $stars/" } # Read the source file named $filename and write it into the # sqlite3.c output file. If any #include statements are seen, # process them appropriately. # proc copy_file {filename} { | > > > > > > > > > > > > > > > > > | | | | 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | vxworks.h wal.h whereInt.h } { set available_hdr($hdr) 1 } set available_hdr(sqliteInt.h) 0 # These headers should be copied into the amalgamation without modifying any # of their function declarations or definitions. set varonly_hdr(sqlite3.h) 1 # These are the functions that accept a variable number of arguments. They # always need to use the "cdecl" calling convention even when another calling # convention (e.g. "stcall") is being used for the rest of the library. set cdecllist { sqlite3_config sqlite3_db_config sqlite3_log sqlite3_mprintf sqlite3_snprintf sqlite3_test_control sqlite3_vtab_config } # 78 stars used for comment formatting. set s78 \ {*****************************************************************************} # Insert a comment into the code # proc section_comment {text} { global out s78 set n [string length $text] set nstar [expr {60 - $n}] set stars [string range $s78 0 $nstar] puts $out "/************** $text $stars/" } # Read the source file named $filename and write it into the # sqlite3.c output file. If any #include statements are seen, # process them appropriately. # proc copy_file {filename} { global seen_hdr available_hdr varonly_hdr cdecllist out addstatic linemacros set ln 0 set tail [file tail $filename] section_comment "Begin file $tail" if {$linemacros} {puts $out "#line 1 \"$filename\""} set in [open $filename r] set varpattern {^[a-zA-Z][a-zA-Z_0-9 *]+(sqlite3[_a-zA-Z0-9]+)(\[|;| =)} set declpattern {([a-zA-Z][a-zA-Z_0-9 ]+ \**)(sqlite3[_a-zA-Z0-9]+)(\(.*)} if {[file extension $filename]==".h"} { set declpattern " *$declpattern" } set declpattern ^$declpattern\$ while {![eof $in]} { set line [gets $in] incr ln if {[regexp {^\s*#\s*include\s+["<]([^">]+)[">]} $line all hdr]} { if {[info exists available_hdr($hdr)]} { if {$available_hdr($hdr)} { if {$hdr!="os_common.h" && $hdr!="hwtime.h"} { |
︙ | ︙ | |||
190 191 192 193 194 195 196 | puts $out "/* [string map [list /* ** */ **] $line] */" } } elseif {[regexp {^#ifdef __cplusplus} $line]} { puts $out "#if 0" } elseif {!$linemacros && [regexp {^#line} $line]} { # Skip #line directives. } elseif {$addstatic && ![regexp {^(static|typedef)} $line]} { | > > > > | < > > > > > > > > > > > | | | > | | | | | | | | | | > > | 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | puts $out "/* [string map [list /* ** */ **] $line] */" } } elseif {[regexp {^#ifdef __cplusplus} $line]} { puts $out "#if 0" } elseif {!$linemacros && [regexp {^#line} $line]} { # Skip #line directives. } elseif {$addstatic && ![regexp {^(static|typedef)} $line]} { # Skip adding the SQLITE_PRIVATE or SQLITE_API keyword before # functions if this header file does not need it. if {![info exists varonly_hdr($tail)] && [regexp $declpattern $line all rettype funcname rest]} { regsub {^SQLITE_API } $line {} line # Add the SQLITE_PRIVATE or SQLITE_API keyword before functions. # so that linkage can be modified at compile-time. if {[regexp {^sqlite3_} $funcname]} { set line SQLITE_API append line " " [string trim $rettype] if {[string index $rettype end] ne "*"} { append line " " } if {[lsearch -exact $cdecllist $funcname] >= 0} { append line SQLITE_CDECL } else { append line SQLITE_STDCALL } append line " " $funcname $rest puts $out $line } else { puts $out "SQLITE_PRIVATE $line" } } elseif {[regexp $varpattern $line all varname]} { # Add the SQLITE_PRIVATE before variable declarations or # definitions for internal use regsub {^SQLITE_API } $line {} line if {![regexp {^sqlite3_} $varname]} { regsub {^extern } $line {} line puts $out "SQLITE_PRIVATE $line" } else { if {[regexp {const char sqlite3_version\[\];} $line]} { set line {const char sqlite3_version[] = SQLITE_VERSION;} } regsub {^SQLITE_EXTERN } $line {} line puts $out "SQLITE_API $line" } } elseif {[regexp {^(SQLITE_EXTERN )?void \(\*sqlite3IoTrace\)} $line]} { regsub {^SQLITE_API } $line {} line regsub {^SQLITE_EXTERN } $line {} line puts $out $line } elseif {[regexp {^void \(\*sqlite3Os} $line]} { regsub {^SQLITE_API } $line {} line puts $out "SQLITE_PRIVATE $line" } else { puts $out $line } } else { puts $out $line } |
︙ | ︙ |
Changes to tool/mksqlite3h.tcl.
︙ | ︙ | |||
59 60 61 62 63 64 65 | } } close $in # Set up patterns for recognizing API declarations. # set varpattern {^[a-zA-Z][a-zA-Z_0-9 *]+sqlite3_[_a-zA-Z0-9]+(\[|;| =)} | | > > > > > > > > > > > > > | | | < | < > | | > | | > > > > | < < < | > | 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | } } close $in # Set up patterns for recognizing API declarations. # set varpattern {^[a-zA-Z][a-zA-Z_0-9 *]+sqlite3_[_a-zA-Z0-9]+(\[|;| =)} set declpattern {^ *([a-zA-Z][a-zA-Z_0-9 ]+ \**)(sqlite3_[_a-zA-Z0-9]+)(\(.*)$} # Force the output to use unix line endings, even on Windows. fconfigure stdout -translation lf set filelist [subst { $TOP/src/sqlite.h.in $TOP/ext/rtree/sqlite3rtree.h }] # These are the functions that accept a variable number of arguments. They # always need to use the "cdecl" calling convention even when another calling # convention (e.g. "stcall") is being used for the rest of the library. set cdecllist { sqlite3_config sqlite3_db_config sqlite3_log sqlite3_mprintf sqlite3_snprintf sqlite3_test_control sqlite3_vtab_config } # Process the source files. # foreach file $filelist { set in [open $file] while {![eof $in]} { set line [gets $in] # File sqlite3rtree.h contains a line "#include <sqlite3.h>". Omit this # line when copying sqlite3rtree.h into sqlite3.h. # if {[string match {*#include*<sqlite3.h>*} $line]} continue regsub -- --VERS-- $line $zVersion line regsub -- --VERSION-NUMBER-- $line $nVersion line regsub -- --SOURCE-ID-- $line "$zDate $zUuid" line if {[regexp $varpattern $line] && ![regexp {^ *typedef} $line]} { set line "SQLITE_API $line" } else { if {[regexp $declpattern $line all rettype funcname rest]} { set line SQLITE_API append line " " [string trim $rettype] if {[string index $rettype end] ne "*"} { append line " " } if {[lsearch -exact $cdecllist $funcname] >= 0} { append line SQLITE_CDECL } else { append line SQLITE_STDCALL } append line " " $funcname $rest } } puts $line } close $in } |
Changes to tool/mkvsix.tcl.
︙ | ︙ | |||
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | set file_id [open $fileName {WRONLY CREAT TRUNC}] fconfigure $file_id -encoding binary -translation binary puts -nonewline $file_id $data close $file_id return "" } proc getMinVsVersionXmlChunk { vsVersion } { switch -exact $vsVersion { 2012 { return [appendArgs \ "\r\n " {MinVSVersion="11.0"}] } 2013 { return [appendArgs \ "\r\n " {MinVSVersion="12.0"}] } default { return "" } } } proc getMaxPlatformVersionXmlChunk { packageFlavor vsVersion } { # | > > > > > > > > > > | > | > | 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 | set file_id [open $fileName {WRONLY CREAT TRUNC}] fconfigure $file_id -encoding binary -translation binary puts -nonewline $file_id $data close $file_id return "" } # # TODO: Modify this procedure when a new version of Visual Studio is released. # proc getMinVsVersionXmlChunk { vsVersion } { switch -exact $vsVersion { 2012 { return [appendArgs \ "\r\n " {MinVSVersion="11.0"}] } 2013 { return [appendArgs \ "\r\n " {MinVSVersion="12.0"}] } 2015 { return [appendArgs \ "\r\n " {MinVSVersion="14.0"}] } default { return "" } } } # # TODO: Modify this procedure when a new version of Visual Studio is released. # proc getMaxPlatformVersionXmlChunk { packageFlavor vsVersion } { # # NOTE: Only Visual Studio 2013 and later support this attribute within the # SDK manifest. # if {![string equal $vsVersion 2013] && \ ![string equal $vsVersion 2015]} then { return "" } switch -exact $packageFlavor { WinRT { return [appendArgs \ "\r\n " {MaxPlatformVersion="8.0"}] |
︙ | ︙ | |||
217 218 219 220 221 222 223 224 225 226 227 228 229 230 | } default { return "" } } } proc getExtraFileListXmlChunk { packageFlavor vsVersion } { # # NOTE: Windows Phone 8.0 does not require any extra attributes in its VSIX # package SDK manifests; however, it appears that Windows Phone 8.1 # does. # if {[string equal $packageFlavor WP80]} then { | > > > | 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | } default { return "" } } } # # TODO: Modify this procedure when a new version of Visual Studio is released. # proc getExtraFileListXmlChunk { packageFlavor vsVersion } { # # NOTE: Windows Phone 8.0 does not require any extra attributes in its VSIX # package SDK manifests; however, it appears that Windows Phone 8.1 # does. # if {[string equal $packageFlavor WP80]} then { |
︙ | ︙ | |||
241 242 243 244 245 246 247 248 249 250 251 252 253 254 | "\r\n " {DependsOn="Microsoft.VCLibs, version=11.0"}] } 2013 { return [appendArgs \ "\r\n " AppliesTo=\" $appliesTo \" \ "\r\n " {DependsOn="Microsoft.VCLibs, version=12.0"}] } default { return "" } } } proc replaceFileNameTokens { fileName name buildName platformName } { | > > > > > > > > | 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | "\r\n " {DependsOn="Microsoft.VCLibs, version=11.0"}] } 2013 { return [appendArgs \ "\r\n " AppliesTo=\" $appliesTo \" \ "\r\n " {DependsOn="Microsoft.VCLibs, version=12.0"}] } 2015 { # # TODO: Is the ".AppLocal" suffix always needed here? # return [appendArgs \ "\r\n " AppliesTo=\" $appliesTo \" \ "\r\n " {DependsOn="Microsoft.VCLibs.AppLocal, version=14.0"}] } default { return "" } } } proc replaceFileNameTokens { fileName name buildName platformName } { |
︙ | ︙ | |||
350 351 352 353 354 355 356 | set vsVersion 2012 } if {[string length $vsVersion] == 0} then { fail "invalid Visual Studio version" } | | > | > > | 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | set vsVersion 2012 } if {[string length $vsVersion] == 0} then { fail "invalid Visual Studio version" } if {![string equal $vsVersion 2012] && ![string equal $vsVersion 2013] && \ ![string equal $vsVersion 2015]} then { fail [appendArgs \ "unsupported Visual Studio version, must be one of: " \ [list 2012 2013 2015]] } set shortNames(WinRT,2012) SQLite.WinRT set shortNames(WinRT,2013) SQLite.WinRT.2013 set shortNames(WinRT81,2013) SQLite.WinRT81 set shortNames(WP80,2012) SQLite.WP80 set shortNames(WP80,2013) SQLite.WP80.2013 set shortNames(WP81,2013) SQLite.WP81 set shortNames(Win32,2012) SQLite.Win32 set shortNames(Win32,2013) SQLite.Win32.2013 set shortNames(UAP,2015) SQLite.UAP.2015 set displayNames(WinRT,2012) "SQLite for Windows Runtime" set displayNames(WinRT,2013) "SQLite for Windows Runtime" set displayNames(WinRT81,2013) "SQLite for Windows Runtime (Windows 8.1)" set displayNames(WP80,2012) "SQLite for Windows Phone" set displayNames(WP80,2013) "SQLite for Windows Phone" set displayNames(WP81,2013) "SQLite for Windows Phone 8.1" set displayNames(Win32,2012) "SQLite for Windows" set displayNames(Win32,2013) "SQLite for Windows" set displayNames(UAP,2015) "SQLite for Universal App Platform" if {[string equal $packageFlavor WinRT]} then { set shortName $shortNames($packageFlavor,$vsVersion) set displayName $displayNames($packageFlavor,$vsVersion) set targetPlatformIdentifier Windows set targetPlatformVersion v8.0 set minVsVersion [getMinVsVersionXmlChunk $vsVersion] |
︙ | ︙ | |||
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | set displayName $displayNames($packageFlavor,$vsVersion) set targetPlatformIdentifier WindowsPhoneApp set targetPlatformVersion v8.1 set minVsVersion [getMinVsVersionXmlChunk $vsVersion] set maxPlatformVersion \ [getMaxPlatformVersionXmlChunk $packageFlavor $vsVersion] set extraSdkPath "\\..\\$targetPlatformIdentifier" set extraFileListAttributes \ [getExtraFileListXmlChunk $packageFlavor $vsVersion] } elseif {[string equal $packageFlavor Win32]} then { set shortName $shortNames($packageFlavor,$vsVersion) set displayName $displayNames($packageFlavor,$vsVersion) set targetPlatformIdentifier Windows set targetPlatformVersion v8.0 set minVsVersion [getMinVsVersionXmlChunk $vsVersion] set maxPlatformVersion \ [getMaxPlatformVersionXmlChunk $packageFlavor $vsVersion] set extraSdkPath "" set extraFileListAttributes \ [getExtraFileListXmlChunk $packageFlavor $vsVersion] } else { fail [appendArgs \ "unsupported package flavor, must be one of: " \ | > > > > > > > > > > > > > > > > | | 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 | set displayName $displayNames($packageFlavor,$vsVersion) set targetPlatformIdentifier WindowsPhoneApp set targetPlatformVersion v8.1 set minVsVersion [getMinVsVersionXmlChunk $vsVersion] set maxPlatformVersion \ [getMaxPlatformVersionXmlChunk $packageFlavor $vsVersion] set extraSdkPath "\\..\\$targetPlatformIdentifier" set extraFileListAttributes \ [getExtraFileListXmlChunk $packageFlavor $vsVersion] } elseif {[string equal $packageFlavor UAP]} then { if {$vsVersion ne "2015"} then { fail [appendArgs \ "unsupported combination, package flavor " $packageFlavor \ " is only supported with Visual Studio 2015"] } set shortName $shortNames($packageFlavor,$vsVersion) set displayName $displayNames($packageFlavor,$vsVersion) set targetPlatformIdentifier UAP set targetPlatformVersion v0.8.0.0 set minVsVersion [getMinVsVersionXmlChunk $vsVersion] set maxPlatformVersion \ [getMaxPlatformVersionXmlChunk $packageFlavor $vsVersion] set extraSdkPath "\\..\\$targetPlatformIdentifier" set extraFileListAttributes \ [getExtraFileListXmlChunk $packageFlavor $vsVersion] } elseif {[string equal $packageFlavor Win32]} then { set shortName $shortNames($packageFlavor,$vsVersion) set displayName $displayNames($packageFlavor,$vsVersion) set targetPlatformIdentifier Windows set targetPlatformVersion v8.0 set minVsVersion [getMinVsVersionXmlChunk $vsVersion] set maxPlatformVersion \ [getMaxPlatformVersionXmlChunk $packageFlavor $vsVersion] set extraSdkPath "" set extraFileListAttributes \ [getExtraFileListXmlChunk $packageFlavor $vsVersion] } else { fail [appendArgs \ "unsupported package flavor, must be one of: " \ [list WinRT WinRT81 WP80 WP81 UAP Win32]] } ############################################################################### # # NOTE: Evaluate the user-specific customizations file, if it exists. # |
︙ | ︙ |
Changes to tool/showdb.c.
︙ | ︙ | |||
60 61 62 63 64 65 66 67 68 69 70 | ** Read content from the file. ** ** Space to hold the content is obtained from malloc() and needs to be ** freed by the caller. */ static unsigned char *getContent(int ofst, int nByte){ unsigned char *aData; aData = malloc(nByte+32); if( aData==0 ) out_of_memory(); memset(aData, 0, nByte+32); lseek(db, ofst, SEEK_SET); | > | > | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | ** Read content from the file. ** ** Space to hold the content is obtained from malloc() and needs to be ** freed by the caller. */ static unsigned char *getContent(int ofst, int nByte){ unsigned char *aData; int got; aData = malloc(nByte+32); if( aData==0 ) out_of_memory(); memset(aData, 0, nByte+32); lseek(db, ofst, SEEK_SET); got = read(db, aData, nByte); if( got>0 && got<nByte ) memset(aData+got, 0, nByte-got); return aData; } /* ** Print a range of bytes as hex and as ascii. */ static unsigned char *print_byte_range( |
︙ | ︙ | |||
977 978 979 980 981 982 983 | zPgSz[1] = 0; lseek(db, 16, SEEK_SET); if( read(db, zPgSz, 2)<2 ) memset(zPgSz, 0, 2); pagesize = zPgSz[0]*256 + zPgSz[1]*65536; if( pagesize==0 ) pagesize = 1024; printf("Pagesize: %d\n", pagesize); fstat(db, &sbuf); | | | 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 | zPgSz[1] = 0; lseek(db, 16, SEEK_SET); if( read(db, zPgSz, 2)<2 ) memset(zPgSz, 0, 2); pagesize = zPgSz[0]*256 + zPgSz[1]*65536; if( pagesize==0 ) pagesize = 1024; printf("Pagesize: %d\n", pagesize); fstat(db, &sbuf); mxPage = (sbuf.st_size+pagesize-1)/pagesize; printf("Available pages: 1..%d\n", mxPage); if( argc==2 ){ int i; for(i=1; i<=mxPage; i++) print_page(i); }else{ int i; for(i=2; i<argc; i++){ |
︙ | ︙ |
Added tool/showlocks.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | /* ** This file implements a simple command-line utility that shows all of the ** Posix Advisory Locks on a file. ** ** Usage: ** ** showlocks FILENAME ** ** To compile: gcc -o showlocks showlocks.c */ #include <stdio.h> #include <unistd.h> #include <fcntl.h> #include <stdlib.h> #include <string.h> /* This utility only looks for locks in the first 2 billion bytes */ #define MX_LCK 2147483647 /* ** Print all locks on the inode of "fd" that occur in between ** lwr and upr, inclusive. */ static int showLocksInRange(int fd, off_t lwr, off_t upr){ int cnt = 0; struct flock x; x.l_type = F_WRLCK; x.l_whence = SEEK_SET; x.l_start = lwr; x.l_len = upr-lwr; fcntl(fd, F_GETLK, &x); if( x.l_type==F_UNLCK ) return 0; printf("start: %-12d len: %-5d pid: %-5d type: %s\n", (int)x.l_start, (int)x.l_len, x.l_pid, x.l_type==F_WRLCK ? "WRLCK" : "RDLCK"); cnt++; if( x.l_start>lwr ){ cnt += showLocksInRange(fd, lwr, x.l_start-1); } if( x.l_start+x.l_len<upr ){ cnt += showLocksInRange(fd, x.l_start+x.l_len+1, upr); } return cnt; } int main(int argc, char **argv){ int fd; int cnt; if( argc!=2 ){ fprintf(stderr, "Usage: %s FILENAME\n", argv[0]); return 1; } fd = open(argv[1], O_RDWR, 0); if( fd<0 ){ fprintf(stderr, "%s: cannot open %s\n", argv[0], argv[1]); return 1; } cnt = showLocksInRange(fd, 0, MX_LCK); if( cnt==0 ) printf("no locks\n"); close(fd); return 0; } |
Added tool/sqldiff.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 | /* ** 2015-04-06 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This is a utility program that computes the differences in content ** between two SQLite databases. ** ** To compile, simply link against SQLite. ** ** See the showHelp() routine below for a brief description of how to ** run the utility. */ #include <stdio.h> #include <stdlib.h> #include <stdarg.h> #include <ctype.h> #include <string.h> #include "sqlite3.h" /* ** All global variables are gathered into the "g" singleton. */ struct GlobalVars { const char *zArgv0; /* Name of program */ int bSchemaOnly; /* Only show schema differences */ int bSchemaPK; /* Use the schema-defined PK, not the true PK */ unsigned fDebug; /* Debug flags */ sqlite3 *db; /* The database connection */ } g; /* ** Allowed values for g.fDebug */ #define DEBUG_COLUMN_NAMES 0x000001 #define DEBUG_DIFF_SQL 0x000002 /* ** Dynamic string object */ typedef struct Str Str; struct Str { char *z; /* Text of the string */ int nAlloc; /* Bytes allocated in z[] */ int nUsed; /* Bytes actually used in z[] */ }; /* ** Initialize a Str object */ static void strInit(Str *p){ p->z = 0; p->nAlloc = 0; p->nUsed = 0; } /* ** Print an error resulting from faulting command-line arguments and ** abort the program. */ static void cmdlineError(const char *zFormat, ...){ va_list ap; fprintf(stderr, "%s: ", g.zArgv0); va_start(ap, zFormat); vfprintf(stderr, zFormat, ap); va_end(ap); fprintf(stderr, "\n\"%s --help\" for more help\n", g.zArgv0); exit(1); } /* ** Print an error message for an error that occurs at runtime, then ** abort the program. */ static void runtimeError(const char *zFormat, ...){ va_list ap; fprintf(stderr, "%s: ", g.zArgv0); va_start(ap, zFormat); vfprintf(stderr, zFormat, ap); va_end(ap); fprintf(stderr, "\n"); exit(1); } /* ** Free all memory held by a Str object */ static void strFree(Str *p){ sqlite3_free(p->z); strInit(p); } /* ** Add formatted text to the end of a Str object */ static void strPrintf(Str *p, const char *zFormat, ...){ int nNew; for(;;){ if( p->z ){ va_list ap; va_start(ap, zFormat); sqlite3_vsnprintf(p->nAlloc-p->nUsed, p->z+p->nUsed, zFormat, ap); va_end(ap); nNew = (int)strlen(p->z + p->nUsed); }else{ nNew = p->nAlloc; } if( p->nUsed+nNew < p->nAlloc-1 ){ p->nUsed += nNew; break; } p->nAlloc = p->nAlloc*2 + 1000; p->z = sqlite3_realloc(p->z, p->nAlloc); if( p->z==0 ) runtimeError("out of memory"); } } /* Safely quote an SQL identifier. Use the minimum amount of transformation ** necessary to allow the string to be used with %s. ** ** Space to hold the returned string is obtained from sqlite3_malloc(). The ** caller is responsible for ensuring this space is freed when no longer ** needed. */ static char *safeId(const char *zId){ /* All SQLite keywords, in alphabetical order */ static const char *azKeywords[] = { "ABORT", "ACTION", "ADD", "AFTER", "ALL", "ALTER", "ANALYZE", "AND", "AS", "ASC", "ATTACH", "AUTOINCREMENT", "BEFORE", "BEGIN", "BETWEEN", "BY", "CASCADE", "CASE", "CAST", "CHECK", "COLLATE", "COLUMN", "COMMIT", "CONFLICT", "CONSTRAINT", "CREATE", "CROSS", "CURRENT_DATE", "CURRENT_TIME", "CURRENT_TIMESTAMP", "DATABASE", "DEFAULT", "DEFERRABLE", "DEFERRED", "DELETE", "DESC", "DETACH", "DISTINCT", "DROP", "EACH", "ELSE", "END", "ESCAPE", "EXCEPT", "EXCLUSIVE", "EXISTS", "EXPLAIN", "FAIL", "FOR", "FOREIGN", "FROM", "FULL", "GLOB", "GROUP", "HAVING", "IF", "IGNORE", "IMMEDIATE", "IN", "INDEX", "INDEXED", "INITIALLY", "INNER", "INSERT", "INSTEAD", "INTERSECT", "INTO", "IS", "ISNULL", "JOIN", "KEY", "LEFT", "LIKE", "LIMIT", "MATCH", "NATURAL", "NO", "NOT", "NOTNULL", "NULL", "OF", "OFFSET", "ON", "OR", "ORDER", "OUTER", "PLAN", "PRAGMA", "PRIMARY", "QUERY", "RAISE", "RECURSIVE", "REFERENCES", "REGEXP", "REINDEX", "RELEASE", "RENAME", "REPLACE", "RESTRICT", "RIGHT", "ROLLBACK", "ROW", "SAVEPOINT", "SELECT", "SET", "TABLE", "TEMP", "TEMPORARY", "THEN", "TO", "TRANSACTION", "TRIGGER", "UNION", "UNIQUE", "UPDATE", "USING", "VACUUM", "VALUES", "VIEW", "VIRTUAL", "WHEN", "WHERE", "WITH", "WITHOUT", }; int lwr, upr, mid, c, i, x; for(i=x=0; (c = zId[i])!=0; i++){ if( !isalpha(c) && c!='_' ){ if( i>0 && isdigit(c) ){ x++; }else{ return sqlite3_mprintf("\"%w\"", zId); } } } if( x ) return sqlite3_mprintf("%s", zId); lwr = 0; upr = sizeof(azKeywords)/sizeof(azKeywords[0]) - 1; while( lwr<=upr ){ mid = (lwr+upr)/2; c = sqlite3_stricmp(azKeywords[mid], zId); if( c==0 ) return sqlite3_mprintf("\"%w\"", zId); if( c<0 ){ lwr = mid+1; }else{ upr = mid-1; } } return sqlite3_mprintf("%s", zId); } /* ** Prepare a new SQL statement. Print an error and abort if anything ** goes wrong. */ static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){ char *zSql; int rc; sqlite3_stmt *pStmt; zSql = sqlite3_vmprintf(zFormat, ap); if( zSql==0 ) runtimeError("out of memory"); rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0); if( rc ){ runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db), zSql); } sqlite3_free(zSql); return pStmt; } static sqlite3_stmt *db_prepare(const char *zFormat, ...){ va_list ap; sqlite3_stmt *pStmt; va_start(ap, zFormat); pStmt = db_vprepare(zFormat, ap); va_end(ap); return pStmt; } /* ** Free a list of strings */ static void namelistFree(char **az){ if( az ){ int i; for(i=0; az[i]; i++) sqlite3_free(az[i]); sqlite3_free(az); } } /* ** Return a list of column names for the table zDb.zTab. Space to ** hold the list is obtained from sqlite3_malloc() and should released ** using namelistFree() when no longer needed. ** ** Primary key columns are listed first, followed by data columns. ** The number of columns in the primary key is returned in *pnPkey. ** ** Normally, the "primary key" in the previous sentence is the true ** primary key - the rowid or INTEGER PRIMARY KEY for ordinary tables ** or the declared PRIMARY KEY for WITHOUT ROWID tables. However, if ** the g.bSchemaPK flag is set, then the schema-defined PRIMARY KEY is ** used in all cases. In that case, entries that have NULL values in ** any of their primary key fields will be excluded from the analysis. ** ** If the primary key for a table is the rowid but rowid is inaccessible, ** then this routine returns a NULL pointer. ** ** Examples: ** CREATE TABLE t1(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(c)); ** *pnPKey = 1; ** az = { "rowid", "a", "b", "c", 0 } // Normal case ** az = { "c", "a", "b", 0 } // g.bSchemaPK==1 ** ** CREATE TABLE t2(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(b)); ** *pnPKey = 1; ** az = { "b", "a", "c", 0 } ** ** CREATE TABLE t3(x,y,z,PRIMARY KEY(y,z)); ** *pnPKey = 1 // Normal case ** az = { "rowid", "x", "y", "z", 0 } // Normal case ** *pnPKey = 2 // g.bSchemaPK==1 ** az = { "y", "x", "z", 0 } // g.bSchemaPK==1 ** ** CREATE TABLE t4(x,y,z,PRIMARY KEY(y,z)) WITHOUT ROWID; ** *pnPKey = 2 ** az = { "y", "z", "x", 0 } ** ** CREATE TABLE t5(rowid,_rowid_,oid); ** az = 0 // The rowid is not accessible */ static char **columnNames(const char *zDb, const char *zTab, int *pnPKey){ char **az = 0; /* List of column names to be returned */ int naz = 0; /* Number of entries in az[] */ sqlite3_stmt *pStmt; /* SQL statement being run */ char *zPkIdxName = 0; /* Name of the PRIMARY KEY index */ int truePk = 0; /* PRAGMA table_info indentifies the PK to use */ int nPK = 0; /* Number of PRIMARY KEY columns */ int i, j; /* Loop counters */ if( g.bSchemaPK==0 ){ /* Normal case: Figure out what the true primary key is for the table. ** * For WITHOUT ROWID tables, the true primary key is the same as ** the schema PRIMARY KEY, which is guaranteed to be present. ** * For rowid tables with an INTEGER PRIMARY KEY, the true primary ** key is the INTEGER PRIMARY KEY. ** * For all other rowid tables, the rowid is the true primary key. */ pStmt = db_prepare("PRAGMA %s.index_list=%Q", zDb, zTab); while( SQLITE_ROW==sqlite3_step(pStmt) ){ if( sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,3),"pk")==0 ){ zPkIdxName = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1)); break; } } sqlite3_finalize(pStmt); if( zPkIdxName ){ int nKey = 0; int nCol = 0; truePk = 0; pStmt = db_prepare("PRAGMA %s.index_xinfo=%Q", zDb, zPkIdxName); while( SQLITE_ROW==sqlite3_step(pStmt) ){ nCol++; if( sqlite3_column_int(pStmt,5) ){ nKey++; continue; } if( sqlite3_column_int(pStmt,1)>=0 ) truePk = 1; } if( nCol==nKey ) truePk = 1; if( truePk ){ nPK = nKey; }else{ nPK = 1; } sqlite3_finalize(pStmt); sqlite3_free(zPkIdxName); }else{ truePk = 1; nPK = 1; } pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab); }else{ /* The g.bSchemaPK==1 case: Use whatever primary key is declared ** in the schema. The "rowid" will still be used as the primary key ** if the table definition does not contain a PRIMARY KEY. */ nPK = 0; pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab); while( SQLITE_ROW==sqlite3_step(pStmt) ){ if( sqlite3_column_int(pStmt,5)>0 ) nPK++; } sqlite3_reset(pStmt); if( nPK==0 ) nPK = 1; truePk = 1; } *pnPKey = nPK; naz = nPK; az = sqlite3_malloc( sizeof(char*)*(nPK+1) ); if( az==0 ) runtimeError("out of memory"); memset(az, 0, sizeof(char*)*(nPK+1)); while( SQLITE_ROW==sqlite3_step(pStmt) ){ int iPKey; if( truePk && (iPKey = sqlite3_column_int(pStmt,5))>0 ){ az[iPKey-1] = safeId((char*)sqlite3_column_text(pStmt,1)); }else{ az = sqlite3_realloc(az, sizeof(char*)*(naz+2) ); if( az==0 ) runtimeError("out of memory"); az[naz++] = safeId((char*)sqlite3_column_text(pStmt,1)); } } sqlite3_finalize(pStmt); if( az ) az[naz] = 0; if( az[0]==0 ){ const char *azRowid[] = { "rowid", "_rowid_", "oid" }; for(i=0; i<sizeof(azRowid)/sizeof(azRowid[0]); i++){ for(j=1; j<naz; j++){ if( sqlite3_stricmp(az[j], azRowid[i])==0 ) break; } if( j>=naz ){ az[0] = sqlite3_mprintf("%s", azRowid[i]); break; } } if( az[0]==0 ){ for(i=1; i<naz; i++) sqlite3_free(az[i]); sqlite3_free(az); az = 0; } } return az; } /* ** Print the sqlite3_value X as an SQL literal. */ static void printQuoted(FILE *out, sqlite3_value *X){ switch( sqlite3_value_type(X) ){ case SQLITE_FLOAT: { double r1; char zBuf[50]; r1 = sqlite3_value_double(X); sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1); fprintf(out, "%s", zBuf); break; } case SQLITE_INTEGER: { fprintf(out, "%lld", sqlite3_value_int64(X)); break; } case SQLITE_BLOB: { const unsigned char *zBlob = sqlite3_value_blob(X); int nBlob = sqlite3_value_bytes(X); if( zBlob ){ int i; fprintf(out, "x'"); for(i=0; i<nBlob; i++){ fprintf(out, "%02x", zBlob[i]); } fprintf(out, "'"); }else{ fprintf(out, "NULL"); } break; } case SQLITE_TEXT: { const unsigned char *zArg = sqlite3_value_text(X); int i, j; if( zArg==0 ){ fprintf(out, "NULL"); }else{ fprintf(out, "'"); for(i=j=0; zArg[i]; i++){ if( zArg[i]=='\'' ){ fprintf(out, "%.*s'", i-j+1, &zArg[j]); j = i+1; } } fprintf(out, "%s'", &zArg[j]); } break; } case SQLITE_NULL: { fprintf(out, "NULL"); break; } } } /* ** Output SQL that will recreate the aux.zTab table. */ static void dump_table(const char *zTab, FILE *out){ char *zId = safeId(zTab); /* Name of the table */ char **az = 0; /* List of columns */ int nPk; /* Number of true primary key columns */ int nCol; /* Number of data columns */ int i; /* Loop counter */ sqlite3_stmt *pStmt; /* SQL statement */ const char *zSep; /* Separator string */ Str ins; /* Beginning of the INSERT statement */ pStmt = db_prepare("SELECT sql FROM aux.sqlite_master WHERE name=%Q", zTab); if( SQLITE_ROW==sqlite3_step(pStmt) ){ fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); } sqlite3_finalize(pStmt); if( !g.bSchemaOnly ){ az = columnNames("aux", zTab, &nPk); strInit(&ins); if( az==0 ){ pStmt = db_prepare("SELECT * FROM aux.%s", zId); strPrintf(&ins,"INSERT INTO %s VALUES", zId); }else{ Str sql; strInit(&sql); zSep = "SELECT"; for(i=0; az[i]; i++){ strPrintf(&sql, "%s %s", zSep, az[i]); zSep = ","; } strPrintf(&sql," FROM aux.%s", zId); zSep = " ORDER BY"; for(i=1; i<=nPk; i++){ strPrintf(&sql, "%s %d", zSep, i); zSep = ","; } pStmt = db_prepare("%s", sql.z); strFree(&sql); strPrintf(&ins, "INSERT INTO %s", zId); zSep = "("; for(i=0; az[i]; i++){ strPrintf(&ins, "%s%s", zSep, az[i]); zSep = ","; } strPrintf(&ins,") VALUES"); namelistFree(az); } nCol = sqlite3_column_count(pStmt); while( SQLITE_ROW==sqlite3_step(pStmt) ){ fprintf(out, "%s",ins.z); zSep = "("; for(i=0; i<nCol; i++){ fprintf(out, "%s",zSep); printQuoted(out, sqlite3_column_value(pStmt,i)); zSep = ","; } fprintf(out, ");\n"); } sqlite3_finalize(pStmt); strFree(&ins); } /* endif !g.bSchemaOnly */ pStmt = db_prepare("SELECT sql FROM aux.sqlite_master" " WHERE type='index' AND tbl_name=%Q AND sql IS NOT NULL", zTab); while( SQLITE_ROW==sqlite3_step(pStmt) ){ fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); } sqlite3_finalize(pStmt); } /* ** Compute all differences for a single table. */ static void diff_one_table(const char *zTab, FILE *out){ char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */ char **az = 0; /* Columns in main */ char **az2 = 0; /* Columns in aux */ int nPk; /* Primary key columns in main */ int nPk2; /* Primary key columns in aux */ int n; /* Number of columns in main */ int n2; /* Number of columns in aux */ int nQ; /* Number of output columns in the diff query */ int i; /* Loop counter */ const char *zSep; /* Separator string */ Str sql; /* Comparison query */ sqlite3_stmt *pStmt; /* Query statement to do the diff */ strInit(&sql); if( g.fDebug==DEBUG_COLUMN_NAMES ){ /* Simply run columnNames() on all tables of the origin ** database and show the results. This is used for testing ** and debugging of the columnNames() function. */ az = columnNames("aux",zTab, &nPk); if( az==0 ){ printf("Rowid not accessible for %s\n", zId); }else{ printf("%s:", zId); for(i=0; az[i]; i++){ printf(" %s", az[i]); if( i+1==nPk ) printf(" *"); } printf("\n"); } goto end_diff_one_table; } if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){ if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ /* Table missing from second database. */ fprintf(out, "DROP TABLE %s;\n", zId); } goto end_diff_one_table; } if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ /* Table missing from source */ dump_table(zTab, out); goto end_diff_one_table; } az = columnNames("main", zTab, &nPk); az2 = columnNames("aux", zTab, &nPk2); if( az && az2 ){ for(n=0; az[n]; n++){ if( sqlite3_stricmp(az[n],az2[n])!=0 ) break; } } if( az==0 || az2==0 || nPk!=nPk2 || az[n] ){ /* Schema mismatch */ fprintf(out, "DROP TABLE %s;\n", zId); dump_table(zTab, out); goto end_diff_one_table; } /* Build the comparison query */ for(n2=n; az[n2]; n2++){} nQ = nPk2+1+2*(n2-nPk2); if( n2>nPk2 ){ zSep = "SELECT "; for(i=0; i<nPk; i++){ strPrintf(&sql, "%sB.%s", zSep, az[i]); zSep = ", "; } strPrintf(&sql, ", 1%s -- changed row\n", nPk==n ? "" : ","); while( az[i] ){ strPrintf(&sql, " A.%s IS NOT B.%s, B.%s%s\n", az[i], az[i], az[i], i==n2-1 ? "" : ","); i++; } strPrintf(&sql, " FROM main.%s A, aux.%s B\n", zId, zId); zSep = " WHERE"; for(i=0; i<nPk; i++){ strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); zSep = " AND"; } zSep = "\n AND ("; while( az[i] ){ strPrintf(&sql, "%sA.%s IS NOT B.%s%s\n", zSep, az[i], az[i], i==n2-1 ? ")" : ""); zSep = " OR "; i++; } strPrintf(&sql, " UNION ALL\n"); } zSep = "SELECT "; for(i=0; i<nPk; i++){ strPrintf(&sql, "%sA.%s", zSep, az[i]); zSep = ", "; } strPrintf(&sql, ", 2%s -- deleted row\n", nPk==n ? "" : ","); while( az[i] ){ strPrintf(&sql, " NULL, NULL%s\n", i==n2-1 ? "" : ","); i++; } strPrintf(&sql, " FROM main.%s A\n", zId); strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId); zSep = " WHERE"; for(i=0; i<nPk; i++){ strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); zSep = " AND"; } strPrintf(&sql, ")\n"); zSep = " UNION ALL\nSELECT "; for(i=0; i<nPk; i++){ strPrintf(&sql, "%sB.%s", zSep, az[i]); zSep = ", "; } strPrintf(&sql, ", 3%s -- inserted row\n", nPk==n ? "" : ","); while( az2[i] ){ strPrintf(&sql, " 1, B.%s%s\n", az[i], i==n2-1 ? "" : ","); i++; } strPrintf(&sql, " FROM aux.%s B\n", zId); strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId); zSep = " WHERE"; for(i=0; i<nPk; i++){ strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); zSep = " AND"; } strPrintf(&sql, ")\n ORDER BY"); zSep = " "; for(i=1; i<=nPk; i++){ strPrintf(&sql, "%s%d", zSep, i); zSep = ", "; } strPrintf(&sql, ";\n"); if( g.fDebug & DEBUG_DIFF_SQL ){ printf("SQL for %s:\n%s\n", zId, sql.z); goto end_diff_one_table; } /* Drop indexes that are missing in the destination */ pStmt = db_prepare( "SELECT name FROM main.sqlite_master" " WHERE type='index' AND tbl_name=%Q" " AND sql IS NOT NULL" " AND sql NOT IN (SELECT sql FROM aux.sqlite_master" " WHERE type='index' AND tbl_name=%Q" " AND sql IS NOT NULL)", zTab, zTab); while( SQLITE_ROW==sqlite3_step(pStmt) ){ char *z = safeId((const char*)sqlite3_column_text(pStmt,0)); fprintf(out, "DROP INDEX %s;\n", z); sqlite3_free(z); } sqlite3_finalize(pStmt); /* Run the query and output differences */ if( !g.bSchemaOnly ){ pStmt = db_prepare(sql.z); while( SQLITE_ROW==sqlite3_step(pStmt) ){ int iType = sqlite3_column_int(pStmt, nPk); if( iType==1 || iType==2 ){ if( iType==1 ){ /* Change the content of a row */ fprintf(out, "UPDATE %s", zId); zSep = " SET"; for(i=nPk+1; i<nQ; i+=2){ if( sqlite3_column_int(pStmt,i)==0 ) continue; fprintf(out, "%s %s=", zSep, az2[(i+nPk-1)/2]); zSep = ","; printQuoted(out, sqlite3_column_value(pStmt,i+1)); } }else{ /* Delete a row */ fprintf(out, "DELETE FROM %s", zId); } zSep = " WHERE"; for(i=0; i<nPk; i++){ fprintf(out, "%s %s=", zSep, az2[i]); printQuoted(out, sqlite3_column_value(pStmt,i)); zSep = ","; } fprintf(out, ";\n"); }else{ /* Insert a row */ fprintf(out, "INSERT INTO %s(%s", zId, az2[0]); for(i=1; az2[i]; i++) fprintf(out, ",%s", az2[i]); fprintf(out, ") VALUES"); zSep = "("; for(i=0; i<nPk2; i++){ fprintf(out, "%s", zSep); zSep = ","; printQuoted(out, sqlite3_column_value(pStmt,i)); } for(i=nPk2+2; i<nQ; i+=2){ fprintf(out, ","); printQuoted(out, sqlite3_column_value(pStmt,i)); } fprintf(out, ");\n"); } } sqlite3_finalize(pStmt); } /* endif !g.bSchemaOnly */ /* Create indexes that are missing in the source */ pStmt = db_prepare( "SELECT sql FROM aux.sqlite_master" " WHERE type='index' AND tbl_name=%Q" " AND sql IS NOT NULL" " AND sql NOT IN (SELECT sql FROM main.sqlite_master" " WHERE type='index' AND tbl_name=%Q" " AND sql IS NOT NULL)", zTab, zTab); while( SQLITE_ROW==sqlite3_step(pStmt) ){ fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); } sqlite3_finalize(pStmt); end_diff_one_table: strFree(&sql); sqlite3_free(zId); namelistFree(az); namelistFree(az2); return; } /* ** Display a summary of differences between two versions of the same ** table table. ** ** * Number of rows changed ** * Number of rows added ** * Number of rows deleted ** * Number of identical rows */ static void summarize_one_table(const char *zTab, FILE *out){ char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */ char **az = 0; /* Columns in main */ char **az2 = 0; /* Columns in aux */ int nPk; /* Primary key columns in main */ int nPk2; /* Primary key columns in aux */ int n; /* Number of columns in main */ int n2; /* Number of columns in aux */ int i; /* Loop counter */ const char *zSep; /* Separator string */ Str sql; /* Comparison query */ sqlite3_stmt *pStmt; /* Query statement to do the diff */ sqlite3_int64 nUpdate; /* Number of updated rows */ sqlite3_int64 nUnchanged; /* Number of unmodified rows */ sqlite3_int64 nDelete; /* Number of deleted rows */ sqlite3_int64 nInsert; /* Number of inserted rows */ strInit(&sql); if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){ if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ /* Table missing from second database. */ fprintf(out, "%s: missing from second database\n", zTab); } goto end_summarize_one_table; } if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ /* Table missing from source */ fprintf(out, "%s: missing from first database\n", zTab); goto end_summarize_one_table; } az = columnNames("main", zTab, &nPk); az2 = columnNames("aux", zTab, &nPk2); if( az && az2 ){ for(n=0; az[n]; n++){ if( sqlite3_stricmp(az[n],az2[n])!=0 ) break; } } if( az==0 || az2==0 || nPk!=nPk2 || az[n] ){ /* Schema mismatch */ fprintf(out, "%s: incompatible schema\n", zTab); goto end_summarize_one_table; } /* Build the comparison query */ for(n2=n; az[n2]; n2++){} strPrintf(&sql, "SELECT 1, count(*)"); if( n2==nPk2 ){ strPrintf(&sql, ", 0\n"); }else{ zSep = ", sum("; for(i=nPk; az[i]; i++){ strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, az[i], az[i]); zSep = " OR "; } strPrintf(&sql, ")\n"); } strPrintf(&sql, " FROM main.%s A, aux.%s B\n", zId, zId); zSep = " WHERE"; for(i=0; i<nPk; i++){ strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); zSep = " AND"; } strPrintf(&sql, " UNION ALL\n"); strPrintf(&sql, "SELECT 2, count(*), 0\n"); strPrintf(&sql, " FROM main.%s A\n", zId); strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B ", zId); zSep = "WHERE"; for(i=0; i<nPk; i++){ strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); zSep = " AND"; } strPrintf(&sql, ")\n"); strPrintf(&sql, " UNION ALL\n"); strPrintf(&sql, "SELECT 3, count(*), 0\n"); strPrintf(&sql, " FROM aux.%s B\n", zId); strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A ", zId); zSep = "WHERE"; for(i=0; i<nPk; i++){ strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); zSep = " AND"; } strPrintf(&sql, ")\n ORDER BY 1;\n"); if( (g.fDebug & DEBUG_DIFF_SQL)!=0 ){ printf("SQL for %s:\n%s\n", zId, sql.z); goto end_summarize_one_table; } /* Run the query and output difference summary */ pStmt = db_prepare(sql.z); nUpdate = 0; nInsert = 0; nDelete = 0; nUnchanged = 0; while( SQLITE_ROW==sqlite3_step(pStmt) ){ switch( sqlite3_column_int(pStmt,0) ){ case 1: nUpdate = sqlite3_column_int64(pStmt,2); nUnchanged = sqlite3_column_int64(pStmt,1) - nUpdate; break; case 2: nDelete = sqlite3_column_int64(pStmt,1); break; case 3: nInsert = sqlite3_column_int64(pStmt,1); break; } } sqlite3_finalize(pStmt); fprintf(out, "%s: %lld changes, %lld inserts, %lld deletes, %lld unchanged\n", zTab, nUpdate, nInsert, nDelete, nUnchanged); end_summarize_one_table: strFree(&sql); sqlite3_free(zId); namelistFree(az); namelistFree(az2); return; } /* ** Write a 64-bit signed integer as a varint onto out */ static void putsVarint(FILE *out, sqlite3_uint64 v){ int i, n; unsigned char p[12]; if( v & (((sqlite3_uint64)0xff000000)<<32) ){ p[8] = (unsigned char)v; v >>= 8; for(i=7; i>=0; i--){ p[i] = (unsigned char)((v & 0x7f) | 0x80); v >>= 7; } fwrite(p, 8, 1, out); }else{ n = 9; do{ p[n--] = (unsigned char)((v & 0x7f) | 0x80); v >>= 7; }while( v!=0 ); p[9] &= 0x7f; fwrite(p+n+1, 9-n, 1, out); } } /* ** Write an SQLite value onto out. */ static void putValue(FILE *out, sqlite3_value *pVal){ int iDType = sqlite3_value_type(pVal); sqlite3_int64 iX; double rX; sqlite3_uint64 uX; int j; putc(iDType, out); switch( iDType ){ case SQLITE_INTEGER: iX = sqlite3_value_int64(pVal); memcpy(&uX, &iX, 8); for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out); break; case SQLITE_FLOAT: rX = sqlite3_value_int64(pVal); memcpy(&uX, &rX, 8); for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out); break; case SQLITE_TEXT: iX = sqlite3_value_bytes(pVal); putsVarint(out, (sqlite3_uint64)iX); fwrite(sqlite3_value_text(pVal),1,iX,out); break; case SQLITE_BLOB: iX = sqlite3_value_bytes(pVal); putsVarint(out, (sqlite3_uint64)iX); fwrite(sqlite3_value_blob(pVal),1,iX,out); break; case SQLITE_NULL: break; } } /* ** Generate a CHANGESET for all differences from main.zTab to aux.zTab. */ static void changeset_one_table(const char *zTab, FILE *out){ sqlite3_stmt *pStmt; /* SQL statment */ char *zId = safeId(zTab); /* Escaped name of the table */ char **azCol = 0; /* List of escaped column names */ int nCol = 0; /* Number of columns */ int *aiFlg = 0; /* 0 if column is not part of PK */ int *aiPk = 0; /* Column numbers for each PK column */ int nPk = 0; /* Number of PRIMARY KEY columns */ Str sql; /* SQL for the diff query */ int i, k; /* Loop counters */ const char *zSep; /* List separator */ pStmt = db_prepare( "SELECT A.sql=B.sql FROM main.sqlite_master A, aux.sqlite_master B" " WHERE A.name=%Q AND B.name=%Q", zTab, zTab ); if( SQLITE_ROW==sqlite3_step(pStmt) ){ if( sqlite3_column_int(pStmt,0)==0 ){ runtimeError("schema changes for table %s", safeId(zTab)); } }else{ runtimeError("table %s missing from one or both databases", safeId(zTab)); } sqlite3_finalize(pStmt); pStmt = db_prepare("PRAGMA main.table_info=%Q", zTab); while( SQLITE_ROW==sqlite3_step(pStmt) ){ nCol++; azCol = sqlite3_realloc(azCol, sizeof(char*)*nCol); if( azCol==0 ) runtimeError("out of memory"); aiFlg = sqlite3_realloc(aiFlg, sizeof(int)*nCol); if( aiFlg==0 ) runtimeError("out of memory"); azCol[nCol-1] = safeId((const char*)sqlite3_column_text(pStmt,1)); aiFlg[nCol-1] = i = sqlite3_column_int(pStmt,5); if( i>0 ){ if( i>nPk ){ nPk = i; aiPk = sqlite3_realloc(aiPk, sizeof(int)*nPk); if( aiPk==0 ) runtimeError("out of memory"); } aiPk[i-1] = nCol-1; } } sqlite3_finalize(pStmt); if( nPk==0 ) goto end_changeset_one_table; strInit(&sql); if( nCol>nPk ){ strPrintf(&sql, "SELECT %d", SQLITE_UPDATE); for(i=0; i<nCol; i++){ if( aiFlg[i] ){ strPrintf(&sql, ",\n A.%s", azCol[i]); }else{ strPrintf(&sql, ",\n A.%s IS NOT B.%s, A.%s, B.%s", azCol[i], azCol[i], azCol[i], azCol[i]); } } strPrintf(&sql,"\n FROM main.%s A, aux.%s B\n", zId, zId); zSep = " WHERE"; for(i=0; i<nPk; i++){ strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); zSep = " AND"; } zSep = "\n AND ("; for(i=0; i<nCol; i++){ if( aiFlg[i] ) continue; strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, azCol[i], azCol[i]); zSep = " OR\n "; } strPrintf(&sql,")\n UNION ALL\n"); } strPrintf(&sql, "SELECT %d", SQLITE_DELETE); for(i=0; i<nCol; i++){ if( aiFlg[i] ){ strPrintf(&sql, ",\n A.%s", azCol[i]); }else{ strPrintf(&sql, ",\n 1, A.%s, NULL", azCol[i]); } } strPrintf(&sql, "\n FROM main.%s A\n", zId); strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId); zSep = " WHERE"; for(i=0; i<nPk; i++){ strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); zSep = " AND"; } strPrintf(&sql, ")\n UNION ALL\n"); strPrintf(&sql, "SELECT %d", SQLITE_INSERT); for(i=0; i<nCol; i++){ if( aiFlg[i] ){ strPrintf(&sql, ",\n B.%s", azCol[i]); }else{ strPrintf(&sql, ",\n 1, NULL, B.%s", azCol[i]); } } strPrintf(&sql, "\n FROM aux.%s B\n", zId); strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId); zSep = " WHERE"; for(i=0; i<nPk; i++){ strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); zSep = " AND"; } strPrintf(&sql, ")\n"); strPrintf(&sql, " ORDER BY"); zSep = " "; for(i=0; i<nPk; i++){ strPrintf(&sql, "%s %d", zSep, aiPk[i]+2); zSep = ","; } strPrintf(&sql, ";\n"); if( g.fDebug & DEBUG_DIFF_SQL ){ printf("SQL for %s:\n%s\n", zId, sql.z); goto end_changeset_one_table; } putc('T', out); putsVarint(out, (sqlite3_uint64)nCol); for(i=0; i<nCol; i++) putc(aiFlg[i]!=0, out); fwrite(zTab, 1, strlen(zTab), out); putc(0, out); pStmt = db_prepare("%s", sql.z); while( SQLITE_ROW==sqlite3_step(pStmt) ){ int iType = sqlite3_column_int(pStmt,0); putc(iType, out); putc(0, out); switch( sqlite3_column_int(pStmt,0) ){ case SQLITE_UPDATE: { for(k=1, i=0; i<nCol; i++){ if( aiFlg[i] ){ putValue(out, sqlite3_column_value(pStmt,k)); k++; }else if( sqlite3_column_int(pStmt,k) ){ putValue(out, sqlite3_column_value(pStmt,k+1)); k += 3; }else{ putc(0, out); k += 3; } } for(k=1, i=0; i<nCol; i++){ if( aiFlg[i] ){ putc(0, out); k++; }else if( sqlite3_column_int(pStmt,k) ){ putValue(out, sqlite3_column_value(pStmt,k+2)); k += 3; }else{ putc(0, out); k += 3; } } break; } case SQLITE_INSERT: { for(k=1, i=0; i<nCol; i++){ if( aiFlg[i] ){ putValue(out, sqlite3_column_value(pStmt,k)); k++; }else{ putValue(out, sqlite3_column_value(pStmt,k+2)); k += 3; } } break; } case SQLITE_DELETE: { for(k=1, i=0; i<nCol; i++){ if( aiFlg[i] ){ putValue(out, sqlite3_column_value(pStmt,k)); k++; }else{ putValue(out, sqlite3_column_value(pStmt,k+1)); k += 3; } } break; } } } sqlite3_finalize(pStmt); end_changeset_one_table: while( nCol>0 ) sqlite3_free(azCol[--nCol]); sqlite3_free(azCol); sqlite3_free(aiPk); sqlite3_free(zId); } /* ** Print sketchy documentation for this utility program */ static void showHelp(void){ printf("Usage: %s [options] DB1 DB2\n", g.zArgv0); printf( "Output SQL text that would transform DB1 into DB2.\n" "Options:\n" " --changeset FILE Write a CHANGESET into FILE\n" " --primarykey Use schema-defined PRIMARY KEYs\n" " --schema Show only differences in the schema\n" " --summary Show only a summary of the differences\n" " --table TAB Show only differences in table TAB\n" ); } int main(int argc, char **argv){ const char *zDb1 = 0; const char *zDb2 = 0; int i; int rc; char *zErrMsg = 0; char *zSql; sqlite3_stmt *pStmt; char *zTab = 0; FILE *out = stdout; void (*xDiff)(const char*,FILE*) = diff_one_table; g.zArgv0 = argv[0]; for(i=1; i<argc; i++){ const char *z = argv[i]; if( z[0]=='-' ){ z++; if( z[0]=='-' ) z++; if( strcmp(z,"changeset")==0 ){ out = fopen(argv[++i], "wb"); if( out==0 ) cmdlineError("cannot open: %s", argv[i]); xDiff = changeset_one_table; }else if( strcmp(z,"debug")==0 ){ g.fDebug = strtol(argv[++i], 0, 0); }else if( strcmp(z,"help")==0 ){ showHelp(); return 0; }else if( strcmp(z,"primarykey")==0 ){ g.bSchemaPK = 1; }else if( strcmp(z,"schema")==0 ){ g.bSchemaOnly = 1; }else if( strcmp(z,"summary")==0 ){ xDiff = summarize_one_table; }else if( strcmp(z,"table")==0 ){ zTab = argv[++i]; }else { cmdlineError("unknown option: %s", argv[i]); } }else if( zDb1==0 ){ zDb1 = argv[i]; }else if( zDb2==0 ){ zDb2 = argv[i]; }else{ cmdlineError("unknown argument: %s", argv[i]); } } if( zDb2==0 ){ cmdlineError("two database arguments required"); } rc = sqlite3_open(zDb1, &g.db); if( rc ){ cmdlineError("cannot open database file \"%s\"", zDb1); } rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_master", 0, 0, &zErrMsg); if( rc || zErrMsg ){ cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb1); } zSql = sqlite3_mprintf("ATTACH %Q as aux;", zDb2); rc = sqlite3_exec(g.db, zSql, 0, 0, &zErrMsg); if( rc || zErrMsg ){ cmdlineError("cannot attach database \"%s\"", zDb2); } rc = sqlite3_exec(g.db, "SELECT * FROM aux.sqlite_master", 0, 0, &zErrMsg); if( rc || zErrMsg ){ cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb2); } if( zTab ){ xDiff(zTab, out); }else{ /* Handle tables one by one */ pStmt = db_prepare( "SELECT name FROM main.sqlite_master\n" " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n" " UNION\n" "SELECT name FROM aux.sqlite_master\n" " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n" " ORDER BY name" ); while( SQLITE_ROW==sqlite3_step(pStmt) ){ xDiff((const char*)sqlite3_column_text(pStmt,0), out); } sqlite3_finalize(pStmt); } /* TBD: Handle trigger differences */ /* TBD: Handle view differences */ sqlite3_close(g.db); return 0; } |