SQLite

Check-in [967ab229af]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Clean up the locking in the btree logic. (CVS 4316)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 967ab229af462a8ae663090ea36b4cc10e351653
User & Date: drh 2007-08-28 22:24:35.000
Context
2007-08-28
23:28
The shared_err test runs with no errors. But a potential deadlock has been discovered and is still unfixed. (CVS 4317) (check-in: f84550be0a user: drh tags: trunk)
22:24
Clean up the locking in the btree logic. (CVS 4316) (check-in: 967ab229af user: drh tags: trunk)
20:36
Fix memory leak of InteriorReader.term. Comes up when doing queries against large segments. (CVS 4315) (check-in: 6c617bd89f user: shess tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.413 2007/08/28 02:27:52 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"












|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.414 2007/08/28 22:24:35 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"

92
93
94
95
96
97
98

99
100
101
102
103
104
105
** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
** SQLITE_LOCKED if not.
*/
static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pIter;


  assert( sqlite3BtreeMutexHeld(pBt->mutex) );
  
  /* This is a no-op if the shared-cache is not enabled */
  if( !p->sharable ){
    return SQLITE_OK;
  }








>







92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
** SQLITE_LOCKED if not.
*/
static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pIter;

  assert( sqlite3BtreeMutexHeld(p->pSqlite->mutex) );
  assert( sqlite3BtreeMutexHeld(pBt->mutex) );
  
  /* This is a no-op if the shared-cache is not enabled */
  if( !p->sharable ){
    return SQLITE_OK;
  }

144
145
146
147
148
149
150

151
152
153
154
155
156
157
** SQLITE_NOMEM may also be returned.
*/
static int lockTable(Btree *p, Pgno iTable, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pLock = 0;
  BtLock *pIter;


  assert( sqlite3BtreeMutexHeld(pBt->mutex) );

  /* This is a no-op if the shared-cache is not enabled */
  if( !p->sharable ){
    return SQLITE_OK;
  }








>







145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
** SQLITE_NOMEM may also be returned.
*/
static int lockTable(Btree *p, Pgno iTable, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pLock = 0;
  BtLock *pIter;

  assert( sqlite3BtreeMutexHeld(p->pSqlite->mutex) );
  assert( sqlite3BtreeMutexHeld(pBt->mutex) );

  /* This is a no-op if the shared-cache is not enabled */
  if( !p->sharable ){
    return SQLITE_OK;
  }

210
211
212
213
214
215
216

217
218
219
220
221
222
223
/*
** Release all the table locks (locks obtained via calls to the lockTable()
** procedure) held by Btree handle p.
*/
static void unlockAllTables(Btree *p){
  BtLock **ppIter = &p->pBt->pLock;


  assert( sqlite3BtreeMutexHeld(p->pBt->mutex) );
  assert( p->sharable || 0==*ppIter );

  while( *ppIter ){
    BtLock *pLock = *ppIter;
    if( pLock->pBtree==p ){
      *ppIter = pLock->pNext;







>







212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
** Release all the table locks (locks obtained via calls to the lockTable()
** procedure) held by Btree handle p.
*/
static void unlockAllTables(Btree *p){
  BtLock **ppIter = &p->pBt->pLock;

  assert( sqlite3BtreeMutexHeld(p->pSqlite->mutex) );
  assert( sqlite3BtreeMutexHeld(p->pBt->mutex) );
  assert( p->sharable || 0==*ppIter );

  while( *ppIter ){
    BtLock *pLock = *ppIter;
    if( pLock->pBtree==p ){
      *ppIter = pLock->pNext;
232
233
234
235
236
237
238

239
240
241
242
243
244
245
static void releasePage(MemPage *pPage);  /* Forward reference */

#ifndef SQLITE_OMIT_INCRBLOB
/*
** Invalidate the overflow page-list cache for cursor pCur, if any.
*/
static void invalidateOverflowCache(BtCursor *pCur){

  sqlite3_free(pCur->aOverflow);
  pCur->aOverflow = 0;
}

/*
** Invalidate the overflow page-list cache for all cursors opened
** on the shared btree structure pBt.







>







235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
static void releasePage(MemPage *pPage);  /* Forward reference */

#ifndef SQLITE_OMIT_INCRBLOB
/*
** Invalidate the overflow page-list cache for cursor pCur, if any.
*/
static void invalidateOverflowCache(BtCursor *pCur){
  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );
  sqlite3_free(pCur->aOverflow);
  pCur->aOverflow = 0;
}

/*
** Invalidate the overflow page-list cache for all cursors opened
** on the shared btree structure pBt.
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc;

  assert( CURSOR_VALID==pCur->eState );
  assert( 0==pCur->pKey );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );

  rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);

  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 







|







265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc;

  assert( CURSOR_VALID==pCur->eState );
  assert( 0==pCur->pKey );
  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );

  rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);

  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

346
347
348
349
350
351
352
** Save the positions of all cursors except pExcept open on the table 
** with root-page iRoot. Usually, this is called just before cursor
** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
  BtCursor *p;
  assert( sqlite3BtreeMutexHeld(pBt->mutex) );

  for(p=pBt->pCursor; p; p=p->pNext){
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && 
        p->eState==CURSOR_VALID ){
      int rc = saveCursorPosition(p);
      if( SQLITE_OK!=rc ){
        return rc;
      }
    }
  }
  return SQLITE_OK;
}

/*
** Clear the current cursor position.
*/
static void clearCursorPosition(BtCursor *pCur){
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );
  sqlite3_free(pCur->pKey);
  pCur->pKey = 0;
  pCur->eState = CURSOR_INVALID;
}

/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the 
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreOrClearCursorPosition() call after each 
** saveCursorPosition().
**
** If the second argument argument - doSeek - is false, then instead of 
** returning the cursor to it's saved position, any saved position is deleted
** and the cursor state set to CURSOR_INVALID.
*/
int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
  int rc;

  assert( pCur->eState==CURSOR_REQUIRESEEK );
#ifndef SQLITE_OMIT_INCRBLOB
  if( pCur->isIncrblobHandle ){
    return SQLITE_ABORT;
  }
#endif
  pCur->eState = CURSOR_INVALID;







>
















|


















>







308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
** Save the positions of all cursors except pExcept open on the table 
** with root-page iRoot. Usually, this is called just before cursor
** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
  BtCursor *p;
  assert( sqlite3BtreeMutexHeld(pBt->mutex) );
  assert( pExcept==0 || pExcept->pBt==pBt );
  for(p=pBt->pCursor; p; p=p->pNext){
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && 
        p->eState==CURSOR_VALID ){
      int rc = saveCursorPosition(p);
      if( SQLITE_OK!=rc ){
        return rc;
      }
    }
  }
  return SQLITE_OK;
}

/*
** Clear the current cursor position.
*/
static void clearCursorPosition(BtCursor *pCur){
  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );
  sqlite3_free(pCur->pKey);
  pCur->pKey = 0;
  pCur->eState = CURSOR_INVALID;
}

/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the 
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreOrClearCursorPosition() call after each 
** saveCursorPosition().
**
** If the second argument argument - doSeek - is false, then instead of 
** returning the cursor to it's saved position, any saved position is deleted
** and the cursor state set to CURSOR_INVALID.
*/
int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
  int rc;
  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );
  assert( pCur->eState==CURSOR_REQUIRESEEK );
#ifndef SQLITE_OMIT_INCRBLOB
  if( pCur->isIncrblobHandle ){
    return SQLITE_ABORT;
  }
#endif
  pCur->eState = CURSOR_INVALID;
1048
1049
1050
1051
1052
1053
1054

1055
1056
1057

1058
1059
1060
1061
1062
1063
1064
** reaches zero.  We need to unref the pParent pointer when that
** happens.
*/
static void pageDestructor(DbPage *pData, int pageSize){
  MemPage *pPage;
  assert( (pageSize & 7)==0 );
  pPage = (MemPage *)sqlite3PagerGetExtra(pData);

  if( pPage->pParent ){
    MemPage *pParent = pPage->pParent;
    assert( sqlite3BtreeMutexHeld(pPage->pBt->mutex) );

    pPage->pParent = 0;
    releasePage(pParent);
  }
  pPage->isInit = 0;
}

/*







>


|
>







1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
** reaches zero.  We need to unref the pParent pointer when that
** happens.
*/
static void pageDestructor(DbPage *pData, int pageSize){
  MemPage *pPage;
  assert( (pageSize & 7)==0 );
  pPage = (MemPage *)sqlite3PagerGetExtra(pData);
  assert( pPage->isInit==0 || sqlite3BtreeMutexHeld(pPage->pBt->mutex) );
  if( pPage->pParent ){
    MemPage *pParent = pPage->pParent;
    assert( pPage->isInit==1 );
    assert( pParent->pBt==pPage->pBt );
    pPage->pParent = 0;
    releasePage(pParent);
  }
  pPage->isInit = 0;
}

/*
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

1159
1160
1161
1162
1163
1164
1165
  #ifdef SQLITE_OMIT_MEMORYDB
    const int isMemdb = 0;
  #else
    const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
  #endif
#endif

  if( pSqlite ){
    pVfs = pSqlite->pVfs;
  }else{
    pVfs = sqlite3_vfs_find(0);
  }
  assert( sqlite3BtreeMutexHeld(pSqlite->mutex) );

  p = sqlite3MallocZero(sizeof(Btree));
  if( !p ){
    return SQLITE_NOMEM;
  }
  p->inTrans = TRANS_NONE;
  p->pSqlite = pSqlite;

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /*
  ** If this Btree is a candidate for shared cache, try to find an
  ** existing BtShared object that we can share with
  */
  if( (flags & BTREE_PRIVATE)==0
   && isMemdb==0
   && (pSqlite==0 || (pSqlite->flags &SQLITE_Vtab)==0)
   && zFilename && zFilename[0]
   && sqlite3SharedCacheEnabled
  ){
    char *zFullPathname = (char *)sqlite3_malloc(pVfs->mxPathname);
    sqlite3_mutex *mutexShared;
    p->sharable = 1;
    if( pSqlite ){
      pSqlite->flags |= SQLITE_SharedCache;
    }
    if( !zFullPathname ){
      sqlite3_free(p);
      return SQLITE_NOMEM;
    }
    sqlite3OsFullPathname(pVfs, zFilename, zFullPathname);
    mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
    sqlite3_mutex_enter(mutexShared);
    for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
      assert( pBt->nRef>0 );
      if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager)) ){

        p->pBt = pBt;
        pBt->nRef++;
        break;
      }
    }
    sqlite3_mutex_leave(mutexShared);
    sqlite3_free(zFullPathname);







|
|
<
<
|
<
|














|


















|
>







1119
1120
1121
1122
1123
1124
1125
1126
1127


1128

1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
  #ifdef SQLITE_OMIT_MEMORYDB
    const int isMemdb = 0;
  #else
    const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
  #endif
#endif

  assert( pSqlite!=0 );
  assert( sqlite3_mutex_held(pSqlite->mutex) );




  pVfs = pSqlite->pVfs;
  p = sqlite3MallocZero(sizeof(Btree));
  if( !p ){
    return SQLITE_NOMEM;
  }
  p->inTrans = TRANS_NONE;
  p->pSqlite = pSqlite;

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /*
  ** If this Btree is a candidate for shared cache, try to find an
  ** existing BtShared object that we can share with
  */
  if( (flags & BTREE_PRIVATE)==0
   && isMemdb==0
   && (pSqlite->flags & SQLITE_Vtab)==0
   && zFilename && zFilename[0]
   && sqlite3SharedCacheEnabled
  ){
    char *zFullPathname = (char *)sqlite3_malloc(pVfs->mxPathname);
    sqlite3_mutex *mutexShared;
    p->sharable = 1;
    if( pSqlite ){
      pSqlite->flags |= SQLITE_SharedCache;
    }
    if( !zFullPathname ){
      sqlite3_free(p);
      return SQLITE_NOMEM;
    }
    sqlite3OsFullPathname(pVfs, zFilename, zFullPathname);
    mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
    sqlite3_mutex_enter(mutexShared);
    for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
      assert( pBt->nRef>0 );
      if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
               && sqlite3PagerVfs(pBt->pPager)==pVfs ){
        p->pBt = pBt;
        pBt->nRef++;
        break;
      }
    }
    sqlite3_mutex_leave(mutexShared);
    sqlite3_free(zFullPathname);
1334
1335
1336
1337
1338
1339
1340

1341
1342
1343
1344
1345
1346
1347
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *p){
  BtShared *pBt = p->pBt;
  BtCursor *pCur;

  /* Close all cursors opened via this handle.  */

  sqlite3BtreeEnter(p);
  pCur = pBt->pCursor;
  while( pCur ){
    BtCursor *pTmp = pCur;
    pCur = pCur->pNext;
    if( pTmp->pBtree==p ){
      sqlite3BtreeCloseCursor(pTmp);







>







1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *p){
  BtShared *pBt = p->pBt;
  BtCursor *pCur;

  /* Close all cursors opened via this handle.  */
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  sqlite3BtreeEnter(p);
  pCur = pBt->pCursor;
  while( pCur ){
    BtCursor *pTmp = pCur;
    pCur = pCur->pNext;
    if( pTmp->pBtree==p ){
      sqlite3BtreeCloseCursor(pTmp);
1386
1387
1388
1389
1390
1391
1392

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

1409
1410
1411
1412
1413
1414
1415
  return SQLITE_OK;
}

#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** Short-cuts for entering and leaving mutexes on a cursor.
*/

static void cursorLeave(BtCursor *p){
  sqlite3BtreeLeave(p->pBtree);
}
static void cursorEnter(BtCursor *pCur){
  sqlite3BtreeEnter(pCur->pBtree);
}
#else
# define cursorEnter(X)
# define cursorLeave(X)
#endif /* !SQLITE_OMIT_SHARED_CACHE */

/*
** Change the busy handler callback function.
*/
int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  pBt->pBusyHandler = pHandler;
  sqlite3PagerSetBusyhandler(pBt->pPager, pHandler);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}








>
|
<
<
<
<
<










>







1393
1394
1395
1396
1397
1398
1399
1400
1401





1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
  return SQLITE_OK;
}

#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** Short-cuts for entering and leaving mutexes on a cursor.
*/
# define cursorEnter(X) assert( sqlite3_mutex_held(X->pBt->mutex) )
# define cursorLeave(X)





#else
# define cursorEnter(X)
# define cursorLeave(X)
#endif /* !SQLITE_OMIT_SHARED_CACHE */

/*
** Change the busy handler callback function.
*/
int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  sqlite3BtreeEnter(p);
  pBt->pBusyHandler = pHandler;
  sqlite3PagerSetBusyhandler(pBt->pPager, pHandler);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

1426
1427
1428
1429
1430
1431
1432

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465

1466
1467
1468
1469
1470
1471
1472
** an abrupt power failure when synchronous is off, the database
** could be left in an inconsistent and unrecoverable state.
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures.  Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage)  Level 2 is the default.  There
** is a very low but non-zero probability of damage.  Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}
#endif

/*
** Return TRUE if the given btree is set to safety level 1.  In other
** words, return TRUE if no sync() occurs on the disk files.
*/
int sqlite3BtreeSyncDisabled(Btree *p){
  BtShared *pBt = p->pBt;
  int rc;
  assert( pBt && pBt->pPager );
  sqlite3BtreeEnter(p);

  rc = sqlite3PagerNosync(pBt->pPager);
  sqlite3BtreeLeave(p);
  return rc;
}

#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
/*







>

















>














|

>







1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
** an abrupt power failure when synchronous is off, the database
** could be left in an inconsistent and unrecoverable state.
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures.  Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage)  Level 2 is the default.  There
** is a very low but non-zero probability of damage.  Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}
#endif

/*
** Return TRUE if the given btree is set to safety level 1.  In other
** words, return TRUE if no sync() occurs on the disk files.
*/
int sqlite3BtreeSyncDisabled(Btree *p){
  BtShared *pBt = p->pBt;
  int rc;
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );  
  sqlite3BtreeEnter(p);
  assert( pBt && pBt->pPager );
  rc = sqlite3PagerNosync(pBt->pPager);
  sqlite3BtreeLeave(p);
  return rc;
}

#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
/*
1982
1983
1984
1985
1986
1987
1988

1989
1990
1991
1992
1993
1994
1995
  Pgno iDbPage = pDbPage->pgno;
  Pager *pPager = pBt->pPager;
  int rc;

  assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
      eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  assert( sqlite3BtreeMutexHeld(pBt->mutex) );


  /* Move page iDbPage from it's current location to page number iFreePage */
  TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
      iDbPage, iFreePage, iPtrPage, eType));
  rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
  if( rc!=SQLITE_OK ){
    return rc;







>







1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
  Pgno iDbPage = pDbPage->pgno;
  Pager *pPager = pBt->pPager;
  int rc;

  assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
      eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  assert( sqlite3BtreeMutexHeld(pBt->mutex) );
  assert( pDbPage->pBt==pBt );

  /* Move page iDbPage from it's current location to page number iFreePage */
  TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
      iDbPage, iFreePage, iPtrPage, eType));
  rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
  if( rc!=SQLITE_OK ){
    return rc;
2591
2592
2593
2594
2595
2596
2597

2598
2599
2600
2601
2602
2603
2604
  BtCursor **ppCur                            /* Write new cursor here */
){
  int rc;
  BtCursor *pCur;
  BtShared *pBt = p->pBt;

  assert( sqlite3BtreeMutexHeld(pBt->mutex) );

  *ppCur = 0;
  if( wrFlag ){
    if( pBt->readOnly ){
      return SQLITE_READONLY;
    }
    if( checkReadLocks(p, iTable, 0) ){
      return SQLITE_LOCKED;







>







2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
  BtCursor **ppCur                            /* Write new cursor here */
){
  int rc;
  BtCursor *pCur;
  BtShared *pBt = p->pBt;

  assert( sqlite3BtreeMutexHeld(pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(p->pSqlite->mutex) );
  *ppCur = 0;
  if( wrFlag ){
    if( pBt->readOnly ){
      return SQLITE_READONLY;
    }
    if( checkReadLocks(p, iTable, 0) ){
      return SQLITE_LOCKED;
2632
2633
2634
2635
2636
2637
2638

2639
2640
2641
2642
2643
2644
2645
  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables, link the cursor into the BtShared list and set *ppCur (the
  ** output argument to this function).
  */
  pCur->xCompare = xCmp ? xCmp : dfltCompare;
  pCur->pArg = pArg;
  pCur->pBtree = p;

  pCur->wrFlag = wrFlag;
  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur;
  }
  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;







>







2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables, link the cursor into the BtShared list and set *ppCur (the
  ** output argument to this function).
  */
  pCur->xCompare = xCmp ? xCmp : dfltCompare;
  pCur->pArg = pArg;
  pCur->pBtree = p;
  pCur->pBt = pBt;
  pCur->wrFlag = wrFlag;
  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur;
  }
  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681

2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703

2704
2705
2706
2707
2708
2709
2710
2711

2712
2713
2714
2715
2716
2717
2718
2719
2720

2721
2722
2723

2724
2725
2726
2727
2728
2729
2730


/*
** Close a cursor.  The read lock on the database file is released
** when the last cursor is closed.
*/
int sqlite3BtreeCloseCursor(BtCursor *pCur){
  BtShared *pBt = pCur->pBtree->pBt;

  cursorEnter(pCur);

  clearCursorPosition(pCur);
  if( pCur->pPrev ){
    pCur->pPrev->pNext = pCur->pNext;
  }else{
    pBt->pCursor = pCur->pNext;
  }
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur->pPrev;
  }
  releasePage(pCur->pPage);
  unlockBtreeIfUnused(pBt);
  invalidateOverflowCache(pCur);
  cursorLeave(pCur);
  sqlite3_free(pCur);
  return SQLITE_OK;
}

/*
** Make a temporary cursor by filling in the fields of pTempCur.
** The temporary cursor is not on the cursor list for the Btree.
*/
void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){

  memcpy(pTempCur, pCur, sizeof(*pCur));
  pTempCur->pNext = 0;
  pTempCur->pPrev = 0;
  if( pTempCur->pPage ){
    cursorEnter(pCur);
    sqlite3PagerRef(pTempCur->pPage->pDbPage);
    cursorLeave(pCur);
  }

}

/*
** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
** function above.
*/
void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
  if( pCur->pPage ){
    cursorEnter(pCur);

    sqlite3PagerUnref(pCur->pPage->pDbPage);
    cursorLeave(pCur);
  }

}

/*
** Make sure the BtCursor* given in the argument has a valid
** BtCursor.info structure.  If it is not already valid, call
** sqlite3BtreeParseCell() to fill it in.
**







|

|
>












<









>




<

<

>







<
|
>

<

>







2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704

2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718

2719

2720
2721
2722
2723
2724
2725
2726
2727
2728

2729
2730
2731

2732
2733
2734
2735
2736
2737
2738
2739
2740


/*
** Close a cursor.  The read lock on the database file is released
** when the last cursor is closed.
*/
int sqlite3BtreeCloseCursor(BtCursor *pCur){
  BtShared *pBt = pCur->pBt;

  assert( sqlite3_mutex_held(pCur->pBt->mutex) );
  assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
  clearCursorPosition(pCur);
  if( pCur->pPrev ){
    pCur->pPrev->pNext = pCur->pNext;
  }else{
    pBt->pCursor = pCur->pNext;
  }
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur->pPrev;
  }
  releasePage(pCur->pPage);
  unlockBtreeIfUnused(pBt);
  invalidateOverflowCache(pCur);

  sqlite3_free(pCur);
  return SQLITE_OK;
}

/*
** Make a temporary cursor by filling in the fields of pTempCur.
** The temporary cursor is not on the cursor list for the Btree.
*/
void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
  cursorEnter(pCur);
  memcpy(pTempCur, pCur, sizeof(*pCur));
  pTempCur->pNext = 0;
  pTempCur->pPrev = 0;
  if( pTempCur->pPage ){

    sqlite3PagerRef(pTempCur->pPage->pDbPage);

  }
  cursorLeave(pCur);
}

/*
** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
** function above.
*/
void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){

  cursorEnter(pCur);
  if( pCur->pPage ){
    sqlite3PagerUnref(pCur->pPage->pDbPage);

  }
  cursorLeave(pCur);
}

/*
** Make sure the BtCursor* given in the argument has a valid
** BtCursor.info structure.  If it is not already valid, call
** sqlite3BtreeParseCell() to fill it in.
**
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
**
** For a table with the INTKEY flag set, this routine returns the key
** itself, not the number of bytes in the key.
*/
int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
  int rc;

  sqlite3BtreeEnter(pCur->pBtree);
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
    if( pCur->eState==CURSOR_INVALID ){
      *pSize = 0;
    }else{
      getCellInfo(pCur);
      *pSize = pCur->info.nKey;
    }
  }
  sqlite3BtreeLeave(pCur->pBtree);
  return rc;
}

/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to.  Always return SQLITE_OK.
** Failure is not possible.  If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  int rc;

  sqlite3BtreeEnter(pCur->pBtree);
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
    if( pCur->eState==CURSOR_INVALID ){
      /* Not pointing at a valid entry - set *pSize to 0. */
      *pSize = 0;
    }else{
      getCellInfo(pCur);
      *pSize = pCur->info.nData;
    }
  }
  sqlite3BtreeLeave(pCur->pBtree);
  return rc;
}

/*
** Given the page number of an overflow page in the database (parameter
** ovfl), this function finds the page number of the next page in the 
** linked list of overflow pages. If possible, it uses the auto-vacuum







|










<













|











<







2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801

2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826

2827
2828
2829
2830
2831
2832
2833
**
** For a table with the INTKEY flag set, this routine returns the key
** itself, not the number of bytes in the key.
*/
int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
  int rc;

  assert( sqlite3_mutex_held(pCur->pBt->mutex) );
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
    if( pCur->eState==CURSOR_INVALID ){
      *pSize = 0;
    }else{
      getCellInfo(pCur);
      *pSize = pCur->info.nKey;
    }
  }

  return rc;
}

/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to.  Always return SQLITE_OK.
** Failure is not possible.  If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  int rc;

  assert( sqlite3_mutex_held(pCur->pBt->mutex) );
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
    if( pCur->eState==CURSOR_INVALID ){
      /* Not pointing at a valid entry - set *pSize to 0. */
      *pSize = 0;
    }else{
      getCellInfo(pCur);
      *pSize = pCur->info.nData;
    }
  }

  return rc;
}

/*
** Given the page number of an overflow page in the database (parameter
** ovfl), this function finds the page number of the next page in the 
** linked list of overflow pages. If possible, it uses the auto-vacuum
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
  int skipKey,         /* offset begins at data if this is true */
  int eOp              /* zero to read. non-zero to write. */
){
  unsigned char *aPayload;
  int rc = SQLITE_OK;
  u32 nKey;
  int iIdx = 0;
  MemPage *pPage = pCur->pPage;        /* Btree page of current cursor entry */
  BtShared *pBt = pCur->pBtree->pBt;   /* Btree this cursor belongs to */

  assert( pPage );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  assert( offset>=0 );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );

  getCellInfo(pCur);
  aPayload = pCur->info.pCell + pCur->info.nHeader;
  nKey = (pPage->intKey ? 0 : pCur->info.nKey);

  if( skipKey ){
    offset += nKey;







|
|





|







2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
  int skipKey,         /* offset begins at data if this is true */
  int eOp              /* zero to read. non-zero to write. */
){
  unsigned char *aPayload;
  int rc = SQLITE_OK;
  u32 nKey;
  int iIdx = 0;
  MemPage *pPage = pCur->pPage;     /* Btree page of current cursor entry */
  BtShared *pBt = pCur->pBt;        /* Btree this cursor belongs to */

  assert( pPage );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  assert( offset>=0 );
  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );

  getCellInfo(pCur);
  aPayload = pCur->info.pCell + pCur->info.nHeader;
  nKey = (pPage->intKey ? 0 : pCur->info.nKey);

  if( skipKey ){
    offset += nKey;
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc;

  sqlite3BtreeEnter(pCur->pBtree);
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->pPage!=0 );
    if( pCur->pPage->intKey ){
      sqlite3BtreeLeave(pCur->pBtree);
      return SQLITE_CORRUPT_BKPT;
    }
    assert( pCur->pPage->intKey==0 );
    assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
    rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
  }
  sqlite3BtreeLeave(pCur->pBtree);
  return rc;
}

/*
** Read part of the data associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc;

  sqlite3BtreeEnter(pCur->pBtree);
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->pPage!=0 );
    assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
  }
  sqlite3BtreeLeave(pCur->pBtree);
  return rc;
}

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if skipKey==0 and it points to the beginning of data if







|





|






|















|







|







3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc;

  cursorEnter(pCur);
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->pPage!=0 );
    if( pCur->pPage->intKey ){
      cursorLeave(pCur);
      return SQLITE_CORRUPT_BKPT;
    }
    assert( pCur->pPage->intKey==0 );
    assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
    rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
  }
  cursorLeave(pCur);
  return rc;
}

/*
** Read part of the data associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc;

  cursorEnter(pCur);
  rc = restoreOrClearCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->pPage!=0 );
    assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
  }
  cursorLeave(pCur);
  return rc;
}

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if skipKey==0 and it points to the beginning of data if
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
  unsigned char *aPayload;
  MemPage *pPage;
  u32 nKey;
  int nLocal;

  assert( pCur!=0 && pCur->pPage!=0 );
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );
  pPage = pCur->pPage;
  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  getCellInfo(pCur);
  aPayload = pCur->info.pCell;
  aPayload += pCur->info.nHeader;
  if( pPage->intKey ){
    nKey = 0;







|







3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
  unsigned char *aPayload;
  MemPage *pPage;
  u32 nKey;
  int nLocal;

  assert( pCur!=0 && pCur->pPage!=0 );
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );
  pPage = pCur->pPage;
  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  getCellInfo(pCur);
  aPayload = pCur->info.pCell;
  aPayload += pCur->info.nHeader;
  if( pPage->intKey ){
    nKey = 0;
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
** Hence, a mutex on the BtShared should be held prior to calling
** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );
  if( pCur->eState==CURSOR_VALID ){
    return (const void*)fetchPayload(pCur, pAmt, 0);
  }
  return 0;
}
const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );
  if( pCur->eState==CURSOR_VALID ){
    return (const void*)fetchPayload(pCur, pAmt, 1);
  }
  return 0;
}


/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page to move to.
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  int rc;
  MemPage *pNewPage;
  MemPage *pOldPage;
  BtShared *pBt = pCur->pBtree->pBt;

  assert( sqlite3BtreeMutexHeld(pBt->mutex) );
  assert( pCur->eState==CURSOR_VALID );
  rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
  if( rc ) return rc;
  pNewPage->idxParent = pCur->idx;
  pOldPage = pCur->pPage;







|






|















|







3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
** Hence, a mutex on the BtShared should be held prior to calling
** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );
  if( pCur->eState==CURSOR_VALID ){
    return (const void*)fetchPayload(pCur, pAmt, 0);
  }
  return 0;
}
const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );
  if( pCur->eState==CURSOR_VALID ){
    return (const void*)fetchPayload(pCur, pAmt, 1);
  }
  return 0;
}


/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page to move to.
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  int rc;
  MemPage *pNewPage;
  MemPage *pOldPage;
  BtShared *pBt = pCur->pBt;

  assert( sqlite3BtreeMutexHeld(pBt->mutex) );
  assert( pCur->eState==CURSOR_VALID );
  rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
  if( rc ) return rc;
  pNewPage->idxParent = pCur->idx;
  pOldPage = pCur->pPage;
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
** the largest cell index.
*/
void sqlite3BtreeMoveToParent(BtCursor *pCur){
  MemPage *pParent;
  MemPage *pPage;
  int idxParent;

  sqlite3BtreeEnter(pCur->pBtree);
  assert( pCur->eState==CURSOR_VALID );
  pPage = pCur->pPage;
  assert( pPage!=0 );
  assert( !sqlite3BtreeIsRootPage(pPage) );
  pParent = pPage->pParent;
  assert( pParent!=0 );
  idxParent = pPage->idxParent;
  sqlite3PagerRef(pParent->pDbPage);
  releasePage(pPage);
  pCur->pPage = pParent;
  pCur->info.nSize = 0;
  assert( pParent->idxShift==0 );
  pCur->idx = idxParent;
  sqlite3BtreeLeave(pCur->pBtree);
}

/*
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc = SQLITE_OK;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;

  assert( sqlite3BtreeMutexHeld(p->pSqlite->mutex) );
  assert( sqlite3BtreeMutexHeld(pBt->mutex) );
  if( pCur->eState==CURSOR_REQUIRESEEK ){
    clearCursorPosition(pCur);
  }
  pRoot = pCur->pPage;
  if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
    assert( pRoot->isInit );







|













|











<







3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334

3335
3336
3337
3338
3339
3340
3341
** the largest cell index.
*/
void sqlite3BtreeMoveToParent(BtCursor *pCur){
  MemPage *pParent;
  MemPage *pPage;
  int idxParent;

  cursorEnter(pCur);
  assert( pCur->eState==CURSOR_VALID );
  pPage = pCur->pPage;
  assert( pPage!=0 );
  assert( !sqlite3BtreeIsRootPage(pPage) );
  pParent = pPage->pParent;
  assert( pParent!=0 );
  idxParent = pPage->idxParent;
  sqlite3PagerRef(pParent->pDbPage);
  releasePage(pPage);
  pCur->pPage = pParent;
  pCur->info.nSize = 0;
  assert( pParent->idxShift==0 );
  pCur->idx = idxParent;
  cursorLeave(pCur);
}

/*
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc = SQLITE_OK;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;


  assert( sqlite3BtreeMutexHeld(pBt->mutex) );
  if( pCur->eState==CURSOR_REQUIRESEEK ){
    clearCursorPosition(pCur);
  }
  pRoot = pCur->pPage;
  if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
    assert( pRoot->isInit );
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pSqlite->mutex) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
    assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->idx));
    rc = moveToChild(pCur, pgno);
  }
  return rc;







|
<







3371
3372
3373
3374
3375
3376
3377
3378

3379
3380
3381
3382
3383
3384
3385
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );

  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
    assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->idx));
    rc = moveToChild(pCur, pgno);
  }
  return rc;
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pSqlite->mutex) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->idx = pPage->nCell;
    rc = moveToChild(pCur, pgno);
  }
  if( rc==SQLITE_OK ){
    pCur->idx = pPage->nCell - 1;
    pCur->info.nSize = 0;
  }
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;

  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pSqlite->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pPage->nCell==0 );
      *pRes = 1;
      rc = SQLITE_OK;







|
<




















|







3396
3397
3398
3399
3400
3401
3402
3403

3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );

  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->idx = pPage->nCell;
    rc = moveToChild(pCur, pgno);
  }
  if( rc==SQLITE_OK ){
    pCur->idx = pPage->nCell - 1;
    pCur->info.nSize = 0;
  }
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;

  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pSqlite->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pPage->nCell==0 );
      *pRes = 1;
      rc = SQLITE_OK;
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
 
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pSqlite->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( CURSOR_INVALID==pCur->eState ){
      assert( pCur->pPage->nCell==0 );
      *pRes = 1;
    }else{







|







3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
 
  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pSqlite->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( CURSOR_INVALID==pCur->eState ){
      assert( pCur->pPage->nCell==0 );
      *pRes = 1;
    }else{
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
  const void *pKey,      /* The key content for indices.  Not used by tables */
  i64 nKey,              /* Size of pKey.  Or the key for tables */
  int biasRight,         /* If true, bias the search to the high end */
  int *pRes              /* Search result flag */
){
  int rc;

  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pSqlite->mutex) );
  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->pPage );
  assert( pCur->pPage->isInit );







|







3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
  const void *pKey,      /* The key content for indices.  Not used by tables */
  i64 nKey,              /* Size of pKey.  Or the key for tables */
  int biasRight,         /* If true, bias the search to the high end */
  int *pRes              /* Search result flag */
){
  int rc;

  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pSqlite->mutex) );
  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->pPage );
  assert( pCur->pPage->isInit );
3617
3618
3619
3620
3621
3622
3623

3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636

3637
3638
3639
3640
3641
3642
3643
  return (CURSOR_VALID!=pCur->eState);
}

/*
** Return the database connection handle for a cursor.
*/
sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){

  return pCur->pBtree->pSqlite;
}

/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
static int btreeNext(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;


  rc = restoreOrClearCursorPosition(pCur);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pRes!=0 );
  pPage = pCur->pPage;
  if( CURSOR_INVALID==pCur->eState ){







>













>







3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
  return (CURSOR_VALID!=pCur->eState);
}

/*
** Return the database connection handle for a cursor.
*/
sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
  assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
  return pCur->pBtree->pSqlite;
}

/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
static int btreeNext(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;

  assert( sqlite3_mutex_held(pCur->pBt->mutex) );
  rc = restoreOrClearCursorPosition(pCur);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pRes!=0 );
  pPage = pCur->pPage;
  if( CURSOR_INVALID==pCur->eState ){
3704
3705
3706
3707
3708
3709
3710

3711
3712
3713
3714
3715
3716
3717
** this routine was called, then set *pRes=1.
*/
static int btreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  Pgno pgno;
  MemPage *pPage;


  rc = restoreOrClearCursorPosition(pCur);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  if( CURSOR_INVALID==pCur->eState ){
    *pRes = 1;
    return SQLITE_OK;







>







3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
** this routine was called, then set *pRes=1.
*/
static int btreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  Pgno pgno;
  MemPage *pPage;

  assert( sqlite3_mutex_held(pCur->pBt->mutex) );
  rc = restoreOrClearCursorPosition(pCur);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  if( CURSOR_INVALID==pCur->eState ){
    *pRes = 1;
    return SQLITE_OK;
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
  int szNew;
  MemPage *pPage;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  unsigned char *oldCell;
  unsigned char *newCell = 0;

  sqlite3BtreeEnter(p);
  if( pBt->inTransaction!=TRANS_WRITE ){
    /* Must start a transaction before doing an insert */
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
    sqlite3BtreeLeave(p);
    return rc;
  }
  assert( !pBt->readOnly );
  if( !pCur->wrFlag ){
    sqlite3BtreeLeave(p);
    return SQLITE_PERM;   /* Cursor not open for writing */
  }
  if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
    sqlite3BtreeLeave(p);
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  /* Save the positions of any other cursors open on this table */
  clearCursorPosition(pCur);
  if( 
    SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
    SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
  ){
    sqlite3BtreeLeave(p);
    return rc;
  }

  pPage = pCur->pPage;
  assert( pPage->intKey || nKey>=0 );
  assert( pPage->leaf || !pPage->leafData );
  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",







|



|




|



|









|







5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
  int szNew;
  MemPage *pPage;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  unsigned char *oldCell;
  unsigned char *newCell = 0;

  cursorEnter(pCur);
  if( pBt->inTransaction!=TRANS_WRITE ){
    /* Must start a transaction before doing an insert */
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
    cursorLeave(pCur);
    return rc;
  }
  assert( !pBt->readOnly );
  if( !pCur->wrFlag ){
    cursorLeave(pCur);
    return SQLITE_PERM;   /* Cursor not open for writing */
  }
  if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
    cursorLeave(pCur);
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  /* Save the positions of any other cursors open on this table */
  clearCursorPosition(pCur);
  if( 
    SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
    SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
  ){
    cursorLeave(pCur);
    return rc;
  }

  pPage = pCur->pPage;
  assert( pPage->intKey || nKey>=0 );
  assert( pPage->leaf || !pPage->leafData );
  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
  /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
  /* fflush(stdout); */
  if( rc==SQLITE_OK ){
    moveToRoot(pCur);
  }
end_insert:
  sqlite3_free(newCell);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Delete the entry that the cursor is pointing to.  The cursor
** is left pointing at a random location.
*/
int sqlite3BtreeDelete(BtCursor *pCur){
  MemPage *pPage = pCur->pPage;
  unsigned char *pCell;
  int rc;
  Pgno pgnoChild = 0;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  assert( pPage->isInit );
  if( pBt->inTransaction!=TRANS_WRITE ){
    /* Must start a transaction before doing a delete */
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
    sqlite3BtreeLeave(p);
    return rc;
  }
  assert( !pBt->readOnly );
  if( pCur->idx >= pPage->nCell ){
    sqlite3BtreeLeave(p);
    return SQLITE_ERROR;  /* The cursor is not pointing to anything */
  }
  if( !pCur->wrFlag ){
    sqlite3BtreeLeave(p);
    return SQLITE_PERM;   /* Did not open this cursor for writing */
  }
  if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
    sqlite3BtreeLeave(p);
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  /* Restore the current cursor position (a no-op if the cursor is not in 
  ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors 
  ** open on the same table. Then call sqlite3PagerWrite() on the page
  ** that the entry will be deleted from.
  */
  if( 
    (rc = restoreOrClearCursorPosition(pCur))!=0 ||
    (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
    (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
  ){
    sqlite3BtreeLeave(p);
    return rc;
  }

  /* Locate the cell within it's page and leave pCell pointing to the
  ** data. The clearCell() call frees any overflow pages associated with the
  ** cell. The cell itself is still intact.
  */
  pCell = findCell(pPage, pCur->idx);
  if( !pPage->leaf ){
    pgnoChild = get4byte(pCell);
  }
  rc = clearCell(pPage, pCell);
  if( rc ){
    sqlite3BtreeLeave(p);
    return rc;
  }

  if( !pPage->leaf ){
    /*
    ** The entry we are about to delete is not a leaf so if we do not
    ** do something we will leave a hole on an internal page.







|















|




|




|



|



|













|













|







5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
  /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
  /* fflush(stdout); */
  if( rc==SQLITE_OK ){
    moveToRoot(pCur);
  }
end_insert:
  sqlite3_free(newCell);
  cursorLeave(pCur);
  return rc;
}

/*
** Delete the entry that the cursor is pointing to.  The cursor
** is left pointing at a random location.
*/
int sqlite3BtreeDelete(BtCursor *pCur){
  MemPage *pPage = pCur->pPage;
  unsigned char *pCell;
  int rc;
  Pgno pgnoChild = 0;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;

  cursorEnter(pCur);
  assert( pPage->isInit );
  if( pBt->inTransaction!=TRANS_WRITE ){
    /* Must start a transaction before doing a delete */
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
    cursorLeave(pCur);
    return rc;
  }
  assert( !pBt->readOnly );
  if( pCur->idx >= pPage->nCell ){
    cursorLeave(pCur);
    return SQLITE_ERROR;  /* The cursor is not pointing to anything */
  }
  if( !pCur->wrFlag ){
    cursorLeave(pCur);
    return SQLITE_PERM;   /* Did not open this cursor for writing */
  }
  if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
    cursorLeave(pCur);
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  /* Restore the current cursor position (a no-op if the cursor is not in 
  ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors 
  ** open on the same table. Then call sqlite3PagerWrite() on the page
  ** that the entry will be deleted from.
  */
  if( 
    (rc = restoreOrClearCursorPosition(pCur))!=0 ||
    (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
    (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
  ){
    cursorLeave(pCur);
    return rc;
  }

  /* Locate the cell within it's page and leave pCell pointing to the
  ** data. The clearCell() call frees any overflow pages associated with the
  ** cell. The cell itself is still intact.
  */
  pCell = findCell(pPage, pCur->idx);
  if( !pPage->leaf ){
    pgnoChild = get4byte(pCell);
  }
  rc = clearCell(pPage, pCell);
  if( rc ){
    cursorLeave(pCur);
    return rc;
  }

  if( !pPage->leaf ){
    /*
    ** The entry we are about to delete is not a leaf so if we do not
    ** do something we will leave a hole on an internal page.
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702


5703
5704
5705
5706
5707
5708
5709
       pCur->pgnoRoot, pPage->pgno));
    dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
    rc = balance(pPage, 0);
  }
  if( rc==SQLITE_OK ){
    moveToRoot(pCur);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Create a new BTree table.  Write into *piTable the page
** number for the root page of the new table.
**
** The type of type is determined by the flags parameter.  Only the
** following values of flags are currently in use.  Other values for
** flags might not work:
**
**     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
**     BTREE_ZERODATA                  Used for SQL indices
*/
static int btreeCreateTable(Btree *p, int *piTable, int flags){
  BtShared *pBt = p->pBt;
  MemPage *pRoot;
  Pgno pgnoRoot;
  int rc;



  if( pBt->inTransaction!=TRANS_WRITE ){
    /* Must start a transaction first */
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
    return rc;
  }
  assert( !pBt->readOnly );








|




















>
>







5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
       pCur->pgnoRoot, pPage->pgno));
    dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
    rc = balance(pPage, 0);
  }
  if( rc==SQLITE_OK ){
    moveToRoot(pCur);
  }
  cursorLeave(pCur);
  return rc;
}

/*
** Create a new BTree table.  Write into *piTable the page
** number for the root page of the new table.
**
** The type of type is determined by the flags parameter.  Only the
** following values of flags are currently in use.  Other values for
** flags might not work:
**
**     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
**     BTREE_ZERODATA                  Used for SQL indices
*/
static int btreeCreateTable(Btree *p, int *piTable, int flags){
  BtShared *pBt = p->pBt;
  MemPage *pRoot;
  Pgno pgnoRoot;
  int rc;

  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pBt->inTransaction!=TRANS_WRITE ){
    /* Must start a transaction first */
    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
    return rc;
  }
  assert( !pBt->readOnly );

6127
6128
6129
6130
6131
6132
6133

6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
*/
int sqlite3BtreeFlags(BtCursor *pCur){
  /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
  ** restoreOrClearCursorPosition() here.
  */
  MemPage *pPage = pCur->pPage;
  assert( sqlite3BtreeMutexHeld(pPage->pBt->mutex) );

  return pPage ? pPage->aData[pPage->hdrOffset] : 0;
}


/*
** Return the pager associated with a BTree.  This routine is used for
** testing and debugging only.
*/
Pager *sqlite3BtreePager(Btree *p){
  assert( sqlite3BtreeMutexHeld(p->pSqlite->mutex) );
  assert( sqlite3BtreeMutexHeld(p->pBt->mutex) );
  return p->pBt->pPager;
}

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
*/







>









<
<







6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153


6154
6155
6156
6157
6158
6159
6160
*/
int sqlite3BtreeFlags(BtCursor *pCur){
  /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
  ** restoreOrClearCursorPosition() here.
  */
  MemPage *pPage = pCur->pPage;
  assert( sqlite3BtreeMutexHeld(pPage->pBt->mutex) );
  assert( pPage->pBt==pCur->pBt );
  return pPage ? pPage->aData[pPage->hdrOffset] : 0;
}


/*
** Return the pager associated with a BTree.  This routine is used for
** testing and debugging only.
*/
Pager *sqlite3BtreePager(Btree *p){


  return p->pBt->pPager;
}

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
*/
6581
6582
6583
6584
6585
6586
6587



6588
6589
6590

6591
6592
6593
6594
6595



6596
6597
6598

6599
6600
6601
6602
6603
6604
6605



6606
6607
6608

6609
6610
6611
6612
6613
6614
6615
  *pnErr = sCheck.nErr;
  return sCheck.zErrMsg;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/*
** Return the full pathname of the underlying database file.



*/
const char *sqlite3BtreeGetFilename(Btree *p){
  assert( p->pBt->pPager!=0 );

  return sqlite3PagerFilename(p->pBt->pPager);
}

/*
** Return the pathname of the directory that contains the database file.



*/
const char *sqlite3BtreeGetDirname(Btree *p){
  assert( p->pBt->pPager!=0 );

  return sqlite3PagerDirname(p->pBt->pPager);
}

/*
** Return the pathname of the journal file for this database. The return
** value of this routine is the same regardless of whether the journal file
** has been created or not.



*/
const char *sqlite3BtreeGetJournalname(Btree *p){
  assert( p->pBt->pPager!=0 );

  return sqlite3PagerJournalname(p->pBt->pPager);
}

#ifndef SQLITE_OMIT_VACUUM
/*
** Copy the complete content of pBtFrom into pBtTo.  A transaction
** must be active for both files.







>
>
>



>





>
>
>



>







>
>
>



>







6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
  *pnErr = sCheck.nErr;
  return sCheck.zErrMsg;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/*
** Return the full pathname of the underlying database file.
**
** The pager filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetFilename(Btree *p){
  assert( p->pBt->pPager!=0 );
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  return sqlite3PagerFilename(p->pBt->pPager);
}

/*
** Return the pathname of the directory that contains the database file.
**
** The pager directory name is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetDirname(Btree *p){
  assert( p->pBt->pPager!=0 );
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  return sqlite3PagerDirname(p->pBt->pPager);
}

/*
** Return the pathname of the journal file for this database. The return
** value of this routine is the same regardless of whether the journal file
** has been created or not.
**
** The pager journal filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetJournalname(Btree *p){
  assert( p->pBt->pPager!=0 );
  assert( sqlite3_mutex_held(p->pSqlite->mutex) );
  return sqlite3PagerJournalname(p->pBt->pPager);
}

#ifndef SQLITE_OMIT_VACUUM
/*
** Copy the complete content of pBtFrom into pBtTo.  A transaction
** must be active for both files.
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695

#endif /* SQLITE_OMIT_VACUUM */

/*
** Return non-zero if a transaction is active.
*/
int sqlite3BtreeIsInTrans(Btree *p){
  assert( sqlite3BtreeMutexHeld(p->pSqlite->mutex) );
  return (p && (p->inTrans==TRANS_WRITE));
}

/*
** Return non-zero if a statement transaction is active.
*/
int sqlite3BtreeIsInStmt(Btree *p){







|







6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716

#endif /* SQLITE_OMIT_VACUUM */

/*
** Return non-zero if a transaction is active.
*/
int sqlite3BtreeIsInTrans(Btree *p){
  assert( p==0 || sqlite3BtreeMutexHeld(p->pSqlite->mutex) );
  return (p && (p->inTrans==TRANS_WRITE));
}

/*
** Return non-zero if a statement transaction is active.
*/
int sqlite3BtreeIsInStmt(Btree *p){
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
** Just before the shared-btree is closed, the function passed as the 
** xFree argument when the memory allocation was made is invoked on the 
** blob of allocated memory. This function should not call sqlite3_free()
** on the memory, the btree layer does that.
*/
void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
  BtShared *pBt = p->pBt;
  assert( sqlite3BtreeMutexHeld(p->pSqlite->mutex) );
  sqlite3BtreeEnter(p);
  if( !pBt->pSchema ){
    pBt->pSchema = sqlite3MallocZero(nBytes);
    pBt->xFreeSchema = xFree;
  }
  sqlite3BtreeLeave(p);
  return pBt->pSchema;







<







6741
6742
6743
6744
6745
6746
6747

6748
6749
6750
6751
6752
6753
6754
** Just before the shared-btree is closed, the function passed as the 
** xFree argument when the memory allocation was made is invoked on the 
** blob of allocated memory. This function should not call sqlite3_free()
** on the memory, the btree layer does that.
*/
void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  if( !pBt->pSchema ){
    pBt->pSchema = sqlite3MallocZero(nBytes);
    pBt->xFreeSchema = xFree;
  }
  sqlite3BtreeLeave(p);
  return pBt->pSchema;
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
** Argument pCsr must be a cursor opened for writing on an 
** INTKEY table currently pointing at a valid table entry. 
** This function modifies the data stored as part of that entry.
** Only the data content may only be modified, it is not possible
** to change the length of the data stored.
*/
int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  assert( sqlite3BtreeMutexHeld(pCsr->pBtree->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCsr->pBtree->pSqlite->mutex) );
  assert(pCsr->isIncrblobHandle);
  if( pCsr->eState==CURSOR_REQUIRESEEK ){
    return SQLITE_ABORT;
  }

  /* Check some preconditions: 
  **   (a) the cursor is open for writing,
  **   (b) there is no read-lock on the table being modified and
  **   (c) the cursor points at a valid row of an intKey table.
  */
  if( !pCsr->wrFlag ){
    return SQLITE_READONLY;
  }
  assert( !pCsr->pBtree->pBt->readOnly 
          && pCsr->pBtree->pBt->inTransaction==TRANS_WRITE );
  if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }
  if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
    return SQLITE_ERROR;
  }








|














|
|







6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
** Argument pCsr must be a cursor opened for writing on an 
** INTKEY table currently pointing at a valid table entry. 
** This function modifies the data stored as part of that entry.
** Only the data content may only be modified, it is not possible
** to change the length of the data stored.
*/
int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  assert( sqlite3BtreeMutexHeld(pCsr->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCsr->pBtree->pSqlite->mutex) );
  assert(pCsr->isIncrblobHandle);
  if( pCsr->eState==CURSOR_REQUIRESEEK ){
    return SQLITE_ABORT;
  }

  /* Check some preconditions: 
  **   (a) the cursor is open for writing,
  **   (b) there is no read-lock on the table being modified and
  **   (c) the cursor points at a valid row of an intKey table.
  */
  if( !pCsr->wrFlag ){
    return SQLITE_READONLY;
  }
  assert( !pCsr->pBt->readOnly 
          && pCsr->pBt->inTransaction==TRANS_WRITE );
  if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }
  if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
    return SQLITE_ERROR;
  }

6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
**
** This function sets a flag only. The actual page location cache
** (stored in BtCursor.aOverflow[]) is allocated and used by function
** accessPayload() (the worker function for sqlite3BtreeData() and
** sqlite3BtreePutData()).
*/
void sqlite3BtreeCacheOverflow(BtCursor *pCur){
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pSqlite->mutex) );
  assert(!pCur->isIncrblobHandle);
  assert(!pCur->aOverflow);
  pCur->isIncrblobHandle = 1;
}
#endif







|






6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
**
** This function sets a flag only. The actual page location cache
** (stored in BtCursor.aOverflow[]) is allocated and used by function
** accessPayload() (the worker function for sqlite3BtreeData() and
** sqlite3BtreePutData()).
*/
void sqlite3BtreeCacheOverflow(BtCursor *pCur){
  assert( sqlite3BtreeMutexHeld(pCur->pBt->mutex) );
  assert( sqlite3BtreeMutexHeld(pCur->pBtree->pSqlite->mutex) );
  assert(!pCur->isIncrblobHandle);
  assert(!pCur->aOverflow);
  pCur->isIncrblobHandle = 1;
}
#endif
Changes to src/btreeInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btreeInt.h,v 1.10 2007/08/27 21:49:34 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.











|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btreeInt.h,v 1.11 2007/08/28 22:24:35 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.
314
315
316
317
318
319
320
321




322
323
324
325
326
327
328
** For some database files, the same underlying database cache might be 
** shared between multiple connections.  In that case, each contection
** has it own pointer to this object.  But each instance of this object
** points to the same BtShared object.  The database cache and the
** schema associated with the database file are all contained within
** the BtShared object.
**
** All fields in this structure are accessed under the sqlite3.mutex.




*/
struct Btree {
  sqlite3 *pSqlite;  /* The database connection holding this btree */
  BtShared *pBt;     /* Sharable content of this btree */
  u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
  u8 sharable;       /* True if we can share pBt with other pSqlite */
  u8 locked;         /* True if pSqlite currently has pBt locked */







|
>
>
>
>







314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
** For some database files, the same underlying database cache might be 
** shared between multiple connections.  In that case, each contection
** has it own pointer to this object.  But each instance of this object
** points to the same BtShared object.  The database cache and the
** schema associated with the database file are all contained within
** the BtShared object.
**
** All fields in this structure are accessed under sqlite3.mutex.
** The pBt pointer itself may not be changed while there exists cursors 
** in the referenced BtShared that point back to this Btree since those
** cursors have to do go through this Btree to find their BtShared and
** they often do so without holding sqlite3.mutex.
*/
struct Btree {
  sqlite3 *pSqlite;  /* The database connection holding this btree */
  BtShared *pBt;     /* Sharable content of this btree */
  u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
  u8 sharable;       /* True if we can share pBt with other pSqlite */
  u8 locked;         /* True if pSqlite currently has pBt locked */
415
416
417
418
419
420
421
422
423
424
425
426

427
428
429
430
431
432
433
** MemPage.aCell[] of the entry.
**
** When a single database file can shared by two more database connections,
** but cursors cannot be shared.  Each cursor is associated with a
** particular database connection identified BtCursor.pBtree.pSqlite.
**
** Fields in this structure are accessed under the BtShared.mutex
** mutex.  The pBtree field is safe to access under the
** BtShared->pBtree->pSqlite->mutex mutex.
*/
struct BtCursor {
  Btree *pBtree;            /* The Btree to which this cursor belongs */

  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
  int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
  void *pArg;               /* First arg to xCompare() */
  Pgno pgnoRoot;            /* The root page of this tree */
  MemPage *pPage;           /* Page that contains the entry */
  int idx;                  /* Index of the entry in pPage->aCell[] */
  CellInfo info;            /* A parse of the cell we are pointing at */







|
<



>







419
420
421
422
423
424
425
426

427
428
429
430
431
432
433
434
435
436
437
** MemPage.aCell[] of the entry.
**
** When a single database file can shared by two more database connections,
** but cursors cannot be shared.  Each cursor is associated with a
** particular database connection identified BtCursor.pBtree.pSqlite.
**
** Fields in this structure are accessed under the BtShared.mutex
** found at self->pBt->mutex. 

*/
struct BtCursor {
  Btree *pBtree;            /* The Btree to which this cursor belongs */
  BtShared *pBt;            /* The BtShared this cursor points to */
  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
  int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
  void *pArg;               /* First arg to xCompare() */
  Pgno pgnoRoot;            /* The root page of this tree */
  MemPage *pPage;           /* Page that contains the entry */
  int idx;                  /* Index of the entry in pPage->aCell[] */
  CellInfo info;            /* A parse of the cell we are pointing at */
Changes to src/build.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.439 2007/08/28 02:27:52 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.







|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.440 2007/08/28 22:24:35 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    */
    if( pParse->cookieGoto>0 ){
      u32 mask;
      int iDb;
      sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
      for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
        if( (mask & pParse->cookieMask)==0 ) continue;
        sqlite3VdbeAddMutexBtree(v, db->aDb[iDb].pBt);
        sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
        sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      if( pParse->pVirtualLock ){
        char *vtab = (char *)pParse->pVirtualLock->pVtab;
        sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB);







|







160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    */
    if( pParse->cookieGoto>0 ){
      u32 mask;
      int iDb;
      sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
      for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
        if( (mask & pParse->cookieMask)==0 ) continue;
        sqlite3VdbeUsesBtree(v, iDb, db->aDb[iDb].pBt);
        sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
        sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      if( pParse->pVirtualLock ){
        char *vtab = (char *)pParse->pVirtualLock->pVtab;
        sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB);
Changes to src/mutex_unix.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2007 August 28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes for pthreads
**
** $Id: mutex_unix.c,v 1.1 2007/08/28 16:34:43 drh Exp $
*/
#include "sqliteInt.h"

/*
** The code in this file is only used if we are compiling threadsafe
** under unix with pthreads.
**













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2007 August 28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes for pthreads
**
** $Id: mutex_unix.c,v 1.2 2007/08/28 22:24:35 drh Exp $
*/
#include "sqliteInt.h"

/*
** The code in this file is only used if we are compiling threadsafe
** under unix with pthreads.
**
30
31
32
33
34
35
36



37
38
39
40
41
42
43
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex {
  pthread_mutex_t mutex;     /* Mutex controlling the lock */
  int id;                    /* Mutex type */
  int nRef;                  /* Number of entrances */
  pthread_t owner;           /* Thread that is within this mutex */



};

/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument







>
>
>







30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex {
  pthread_mutex_t mutex;     /* Mutex controlling the lock */
  int id;                    /* Mutex type */
  int nRef;                  /* Number of entrances */
  pthread_t owner;           /* Thread that is within this mutex */
#ifdef SQLITE_DEBUG
  int trace;                 /* True to trace changes */
#endif
};

/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
145
146
147
148
149
150
151





152
153
154
155
156
157
158
159
160





161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177





178
179
180
181
182
183
184
*/
void sqlite3_mutex_enter(sqlite3_mutex *p){
  assert( p );
  assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
  pthread_mutex_lock(&p->mutex);
  p->owner = pthread_self();
  p->nRef++;





}
int sqlite3_mutex_try(sqlite3_mutex *p){
  int rc;
  assert( p );
  assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
  if( pthread_mutex_trylock(&p->mutex)==0 ){
    p->owner = pthread_self();
    p->nRef++;
    rc = SQLITE_OK;





  }else{
    rc = SQLITE_BUSY;
  }
  return rc;
}

/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.  The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated.  SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *p){
  assert( p );
  assert( sqlite3_mutex_held(p) );
  p->nRef--;
  assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );





  pthread_mutex_unlock(&p->mutex);
}

/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use only inside assert() statements.  On some platforms,
** there might be race conditions that can cause these routines to







>
>
>
>
>









>
>
>
>
>

















>
>
>
>
>







148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
*/
void sqlite3_mutex_enter(sqlite3_mutex *p){
  assert( p );
  assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
  pthread_mutex_lock(&p->mutex);
  p->owner = pthread_self();
  p->nRef++;
#ifdef SQLITE_DEBUG
  if( p->trace ){
    printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
  }
#endif
}
int sqlite3_mutex_try(sqlite3_mutex *p){
  int rc;
  assert( p );
  assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
  if( pthread_mutex_trylock(&p->mutex)==0 ){
    p->owner = pthread_self();
    p->nRef++;
    rc = SQLITE_OK;
#ifdef SQLITE_DEBUG
    if( p->trace ){
      printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
    }
#endif
  }else{
    rc = SQLITE_BUSY;
  }
  return rc;
}

/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.  The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated.  SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *p){
  assert( p );
  assert( sqlite3_mutex_held(p) );
  p->nRef--;
  assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
#ifdef SQLITE_DEBUG
  if( p->trace ){
    printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
  }
#endif
  pthread_mutex_unlock(&p->mutex);
}

/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use only inside assert() statements.  On some platforms,
** there might be race conditions that can cause these routines to
Changes to src/pager.c.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
** The pager is used to access a database disk file.  It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file.  The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
**
** @(#) $Id: pager.c,v 1.378 2007/08/28 08:00:18 danielk1977 Exp $
*/
#ifndef SQLITE_OMIT_DISKIO
#include "sqliteInt.h"
#include <assert.h>
#include <string.h>

/*







|







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
** The pager is used to access a database disk file.  It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file.  The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
**
** @(#) $Id: pager.c,v 1.379 2007/08/28 22:24:35 drh Exp $
*/
#ifndef SQLITE_OMIT_DISKIO
#include "sqliteInt.h"
#include <assert.h>
#include <string.h>

/*
4791
4792
4793
4794
4795
4796
4797







4798
4799
4800
4801
4802
4803
4804

/*
** Return the full pathname of the database file.
*/
const char *sqlite3PagerFilename(Pager *pPager){
  return pPager->zFilename;
}








/*
** Return the directory of the database file.
*/
const char *sqlite3PagerDirname(Pager *pPager){
  return pPager->zDirectory;
}







>
>
>
>
>
>
>







4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811

/*
** Return the full pathname of the database file.
*/
const char *sqlite3PagerFilename(Pager *pPager){
  return pPager->zFilename;
}

/*
** Return the VFS structure for the pager.
*/
const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
  return pPager->pVfs;
}

/*
** Return the directory of the database file.
*/
const char *sqlite3PagerDirname(Pager *pPager){
  return pPager->zDirectory;
}
Changes to src/pager.h.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite page cache
** subsystem.  The page cache subsystem reads and writes a file a page
** at a time and provides a journal for rollback.
**
** @(#) $Id: pager.h,v 1.62 2007/08/17 15:53:37 danielk1977 Exp $
*/

#ifndef _PAGER_H_
#define _PAGER_H_

/*
** The type used to represent a page number.  The first page in a file







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite page cache
** subsystem.  The page cache subsystem reads and writes a file a page
** at a time and provides a journal for rollback.
**
** @(#) $Id: pager.h,v 1.63 2007/08/28 22:24:35 drh Exp $
*/

#ifndef _PAGER_H_
#define _PAGER_H_

/*
** The type used to represent a page number.  The first page in a file
81
82
83
84
85
86
87

88
89
90
91
92
93
94
int sqlite3PagerStmtCommit(Pager*);
int sqlite3PagerStmtRollback(Pager*);
void sqlite3PagerDontRollback(DbPage*);
void sqlite3PagerDontWrite(DbPage*);
int sqlite3PagerRefcount(Pager*);
void sqlite3PagerSetSafetyLevel(Pager*,int,int);
const char *sqlite3PagerFilename(Pager*);

const char *sqlite3PagerDirname(Pager*);
const char *sqlite3PagerJournalname(Pager*);
int sqlite3PagerNosync(Pager*);
int sqlite3PagerMovepage(Pager*,DbPage*,Pgno);
void *sqlite3PagerGetData(DbPage *); 
void *sqlite3PagerGetExtra(DbPage *); 
int sqlite3PagerLockingMode(Pager *, int);







>







81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
int sqlite3PagerStmtCommit(Pager*);
int sqlite3PagerStmtRollback(Pager*);
void sqlite3PagerDontRollback(DbPage*);
void sqlite3PagerDontWrite(DbPage*);
int sqlite3PagerRefcount(Pager*);
void sqlite3PagerSetSafetyLevel(Pager*,int,int);
const char *sqlite3PagerFilename(Pager*);
const sqlite3_vfs *sqlite3PagerVfs(Pager*);
const char *sqlite3PagerDirname(Pager*);
const char *sqlite3PagerJournalname(Pager*);
int sqlite3PagerNosync(Pager*);
int sqlite3PagerMovepage(Pager*,DbPage*,Pgno);
void *sqlite3PagerGetData(DbPage *); 
void *sqlite3PagerGetExtra(DbPage *); 
int sqlite3PagerLockingMode(Pager *, int);
Changes to src/vdbe.h.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.111 2007/08/28 02:27:52 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines







|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.112 2007/08/28 22:24:35 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
int sqlite3VdbeOp3(Vdbe*,int,int,int,const char *zP3,int);
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
void sqlite3VdbeAddMutexBtree(Vdbe*, Btree*);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);







|







116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
int sqlite3VdbeOp3(Vdbe*,int,int,int,const char *zP3,int);
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
void sqlite3VdbeUsesBtree(Vdbe*, int, Btree*);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
Changes to src/vdbeInt.h.
328
329
330
331
332
333
334

335
336
337
338
339
340
341
  u8 changeCntOn;         /* True to update the change-counter */
  u8 aborted;             /* True if ROLLBACK in another VM causes an abort */
  u8 expired;             /* True if the VM needs to be recompiled */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 inVtabMethod;        /* See comments above */
  int nChange;            /* Number of db changes made since last reset */
  i64 startTime;          /* Time when query started - used for profiling */

  BtreeMutexSet mtxSet;   /* Set of Btree mutexes */
  int nSql;             /* Number of bytes in zSql */
  char *zSql;           /* Text of the SQL statement that generated this */
#ifdef SQLITE_DEBUG
  FILE *trace;        /* Write an execution trace here, if not NULL */
#endif
  int openedStatement;  /* True if this VM has opened a statement journal */







>







328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
  u8 changeCntOn;         /* True to update the change-counter */
  u8 aborted;             /* True if ROLLBACK in another VM causes an abort */
  u8 expired;             /* True if the VM needs to be recompiled */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 inVtabMethod;        /* See comments above */
  int nChange;            /* Number of db changes made since last reset */
  i64 startTime;          /* Time when query started - used for profiling */
  int btreeMask;          /* Bitmask of db->aDb[] entries referenced */
  BtreeMutexSet mtxSet;   /* Set of Btree mutexes */
  int nSql;             /* Number of bytes in zSql */
  char *zSql;           /* Text of the SQL statement that generated this */
#ifdef SQLITE_DEBUG
  FILE *trace;        /* Write an execution trace here, if not NULL */
#endif
  int openedStatement;  /* True if this VM has opened a statement journal */
Changes to src/vdbeaux.c.
655
656
657
658
659
660
661
662

663
664




665
666
667
668
669
670
671
  }
  assert( zP3!=0 );
  return zP3;
}
#endif

/*
** Add a btree to the set of btrees that might need a mutex.

*/
void sqlite3VdbeAddMutexBtree(Vdbe *p, Btree *pBtree){




  sqlite3BtreeMutexSetInsert(&p->mtxSet, pBtree);
}


#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode.  This routine is used for debugging only.







|
>

|
>
>
>
>







655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
  }
  assert( zP3!=0 );
  return zP3;
}
#endif

/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
*/
void sqlite3VdbeUsesBtree(Vdbe *p, int i, Btree *pBtree){
  assert( i>=0 && i<p->db->nDb );
  assert( i<sizeof(p->btreeMask)*8 );
  assert( p->db->aDb[i].pBt==pBtree );
  p->btreeMask |= 1<<i;
  sqlite3BtreeMutexSetInsert(&p->mtxSet, pBtree);
}


#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode.  This routine is used for debugging only.
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
  ** (b) how many database files have open write transactions, not 
  ** including the temp database. (b) is important because if more than 
  ** one database file has an open write transaction, a master journal
  ** file is required for an atomic commit.
  */ 
  for(i=0; i<db->nDb; i++){ 
    Btree *pBt = db->aDb[i].pBt;
    if( pBt && sqlite3BtreeIsInTrans(pBt) ){
      needXcommit = 1;
      if( i!=1 ) nTrans++;
    }
  }

  /* If there are any write-transactions at all, invoke the commit hook */
  if( needXcommit && db->xCommitCallback ){







|







1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
  ** (b) how many database files have open write transactions, not 
  ** including the temp database. (b) is important because if more than 
  ** one database file has an open write transaction, a master journal
  ** file is required for an atomic commit.
  */ 
  for(i=0; i<db->nDb; i++){ 
    Btree *pBt = db->aDb[i].pBt;
    if( sqlite3BtreeIsInTrans(pBt) ){
      needXcommit = 1;
      if( i!=1 ) nTrans++;
    }
  }

  /* If there are any write-transactions at all, invoke the commit hook */
  if( needXcommit && db->xCommitCallback ){
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
    ** and delete the master journal file. All the individual journal files
    ** still have 'null' as the master journal pointer, so they will roll
    ** back independently if a failure occurs.
    */
    for(i=0; i<db->nDb; i++){
      Btree *pBt = db->aDb[i].pBt;
      if( i==1 ) continue;   /* Ignore the TEMP database */
      if( pBt && sqlite3BtreeIsInTrans(pBt) ){
        char const *zFile = sqlite3BtreeGetJournalname(pBt);
        if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
        if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
          needSync = 1;
        }
        rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
        offset += strlen(zFile)+1;







|







1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
    ** and delete the master journal file. All the individual journal files
    ** still have 'null' as the master journal pointer, so they will roll
    ** back independently if a failure occurs.
    */
    for(i=0; i<db->nDb; i++){
      Btree *pBt = db->aDb[i].pBt;
      if( i==1 ) continue;   /* Ignore the TEMP database */
      if( sqlite3BtreeIsInTrans(pBt) ){
        char const *zFile = sqlite3BtreeGetJournalname(pBt);
        if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
        if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
          needSync = 1;
        }
        rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
        offset += strlen(zFile)+1;
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
    ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
    ** master journal file will be orphaned. But we cannot delete it,
    ** in case the master journal file name was written into the journal
    ** file before the failure occured.
    */
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
      Btree *pBt = db->aDb[i].pBt;
      if( pBt && sqlite3BtreeIsInTrans(pBt) ){
        rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
      }
    }
    sqlite3OsCloseFree(pMaster);
    if( rc!=SQLITE_OK ){
      sqlite3_free(zMaster);
      return rc;







|







1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
    ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
    ** master journal file will be orphaned. But we cannot delete it,
    ** in case the master journal file name was written into the journal
    ** file before the failure occured.
    */
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
      Btree *pBt = db->aDb[i].pBt;
      if( pBt ){
        rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
      }
    }
    sqlite3OsCloseFree(pMaster);
    if( rc!=SQLITE_OK ){
      sqlite3_free(zMaster);
      return rc;
Changes to test/shared_err.test.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
#
# The focus of the tests in this file are IO errors that occur in a shared
# cache context. What happens to connection B if one connection A encounters
# an IO-error whilst reading or writing the file-system?
#
# $Id: shared_err.test,v 1.12 2007/08/25 13:37:49 danielk1977 Exp $

proc skip {args} {}


set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
#
# The focus of the tests in this file are IO errors that occur in a shared
# cache context. What happens to connection B if one connection A encounters
# an IO-error whilst reading or writing the file-system?
#
# $Id: shared_err.test,v 1.13 2007/08/28 22:24:35 drh Exp $

proc skip {args} {}


set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/malloc_common.tcl
152
153
154
155
156
157
158

159
160
161
162
163
164
165
  execsql {COMMIT} db2
  set ::DB2 [sqlite3_connection_pointer db2]
  set ::STMT [sqlite3_prepare $::DB2 "SELECT a FROM t1 ORDER BY a" -1 DUMMY]
  sqlite3_step $::STMT       ;# Cursor points at 000.000.000.000
  sqlite3_step $::STMT       ;# Cursor points at 001.001.001.001

} -tclbody {

  execsql {
    BEGIN;
    INSERT INTO t1 VALUES('201.201.201.201.201', NULL);
    UPDATE t1 SET a = '202.202.202.202.202' WHERE a LIKE '201%';
    COMMIT;
  }
} -cleanup {







>







152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
  execsql {COMMIT} db2
  set ::DB2 [sqlite3_connection_pointer db2]
  set ::STMT [sqlite3_prepare $::DB2 "SELECT a FROM t1 ORDER BY a" -1 DUMMY]
  sqlite3_step $::STMT       ;# Cursor points at 000.000.000.000
  sqlite3_step $::STMT       ;# Cursor points at 001.001.001.001

} -tclbody {
btree_breakpoint
  execsql {
    BEGIN;
    INSERT INTO t1 VALUES('201.201.201.201.201', NULL);
    UPDATE t1 SET a = '202.202.202.202.202' WHERE a LIKE '201%';
    COMMIT;
  }
} -cleanup {