Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | The sqlite3_value object now carries an sqlite3* pointer to use for recording malloc failures. This eliminates the need to pass sqlite3* pointers into many internal interfaces. Also added more mutexing. (CVS 4263) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
9287276191a582c1cf7cf6b71d839972 |
User & Date: | drh 2007-08-21 19:33:56.000 |
Context
2007-08-21
| ||
20:25 | All mutexing and locking appears to be in place. Now we just have to test it and make it all work. (CVS 4264) (check-in: 0f7941aef9 user: drh tags: trunk) | |
19:33 | The sqlite3_value object now carries an sqlite3* pointer to use for recording malloc failures. This eliminates the need to pass sqlite3* pointers into many internal interfaces. Also added more mutexing. (CVS 4263) (check-in: 9287276191 user: drh tags: trunk) | |
16:15 | Adding more thread locking code. This is an incremental check-in. (CVS 4262) (check-in: 7428732b1f user: drh tags: trunk) | |
Changes
Changes to src/auth.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** This file contains code used to implement the sqlite3_set_authorizer() ** API. This facility is an optional feature of the library. Embedded ** systems that do not need this facility may omit it by recompiling ** the library with -DSQLITE_OMIT_AUTHORIZATION=1 ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** This file contains code used to implement the sqlite3_set_authorizer() ** API. This facility is an optional feature of the library. Embedded ** systems that do not need this facility may omit it by recompiling ** the library with -DSQLITE_OMIT_AUTHORIZATION=1 ** ** $Id: auth.c,v 1.27 2007/08/21 19:33:56 drh Exp $ */ #include "sqliteInt.h" /* ** All of the code in this file may be omitted by defining a single ** macro. */ |
︙ | ︙ | |||
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | ** setting of the auth function is NULL. */ int sqlite3_set_authorizer( sqlite3 *db, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pArg ){ db->xAuth = xAuth; db->pAuthArg = pArg; sqlite3ExpirePreparedStatements(db); return SQLITE_OK; } /* ** Write an error message into pParse->zErrMsg that explains that the ** user-supplied authorization function returned an illegal value. */ | > > | 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | ** setting of the auth function is NULL. */ int sqlite3_set_authorizer( sqlite3 *db, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pArg ){ sqlite3_mutex_enter(db->mutex); db->xAuth = xAuth; db->pAuthArg = pArg; sqlite3ExpirePreparedStatements(db); sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Write an error message into pParse->zErrMsg that explains that the ** user-supplied authorization function returned an illegal value. */ |
︙ | ︙ |
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btree.c,v 1.406 2007/08/21 19:33:56 drh Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** See the header comment on "btreeInt.h" for additional information. ** Including a description of file format and an overview of operation. */ #include "btreeInt.h" |
︙ | ︙ | |||
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 | int sqlite3BtreeEof(BtCursor *pCur){ /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries ** have been deleted? This API will need to change to return an error code ** as well as the boolean result value. */ return (CURSOR_VALID!=pCur->eState); } /* ** Advance the cursor to the next entry in the database. If ** successful then set *pRes=0. If the cursor ** was already pointing to the last entry in the database before ** this routine was called, then set *pRes=1. */ | > > > > > > > | 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 | int sqlite3BtreeEof(BtCursor *pCur){ /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries ** have been deleted? This API will need to change to return an error code ** as well as the boolean result value. */ return (CURSOR_VALID!=pCur->eState); } /* ** Return the database connection handle for a cursor. */ sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){ return pCur->pBtree->pSqlite; } /* ** Advance the cursor to the next entry in the database. If ** successful then set *pRes=0. If the cursor ** was already pointing to the last entry in the database before ** this routine was called, then set *pRes=1. */ |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** ** @(#) $Id: btree.h,v 1.85 2007/08/21 19:33:56 drh Exp $ */ #ifndef _BTREE_H_ #define _BTREE_H_ /* TODO: This definition is just included so other modules compile. It ** needs to be revisited. */ |
︙ | ︙ | |||
146 147 148 149 150 151 152 153 154 155 156 157 158 159 | int sqlite3BtreeLast(BtCursor*, int *pRes); int sqlite3BtreeNext(BtCursor*, int *pRes); int sqlite3BtreeEof(BtCursor*); int sqlite3BtreeFlags(BtCursor*); int sqlite3BtreePrevious(BtCursor*, int *pRes); int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt); const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt); int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); struct Pager *sqlite3BtreePager(Btree*); | > | 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | int sqlite3BtreeLast(BtCursor*, int *pRes); int sqlite3BtreeNext(BtCursor*, int *pRes); int sqlite3BtreeEof(BtCursor*); int sqlite3BtreeFlags(BtCursor*); int sqlite3BtreePrevious(BtCursor*, int *pRes); int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); sqlite3 *sqlite3BtreeCursorDb(const BtCursor*); const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt); const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt); int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); struct Pager *sqlite3BtreePager(Btree*); |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
18 19 20 21 22 23 24 | ** CREATE INDEX ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** | | | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ** CREATE INDEX ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** ** $Id: build.c,v 1.437 2007/08/21 19:33:56 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** This routine is called when a new SQL statement is beginning to ** be parsed. Initialize the pParse structure as needed. |
︙ | ︙ | |||
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 | KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ int i; int nCol = pIdx->nColumn; int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes); if( pKey ){ pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); for(i=0; i<nCol; i++){ char *zColl = pIdx->azColl[i]; assert( zColl ); pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); pKey->aSortOrder[i] = pIdx->aSortOrder[i]; | > | 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 | KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ int i; int nCol = pIdx->nColumn; int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes); if( pKey ){ pKey->db = pParse->db; pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); for(i=0; i<nCol; i++){ char *zColl = pIdx->azColl[i]; assert( zColl ); pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); pKey->aSortOrder[i] = pIdx->aSortOrder[i]; |
︙ | ︙ |
Changes to src/callback.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains functions used to access the internal hash tables ** of user defined functions and collation sequences. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains functions used to access the internal hash tables ** of user defined functions and collation sequences. ** ** $Id: callback.c,v 1.21 2007/08/21 19:33:56 drh Exp $ */ #include "sqliteInt.h" /* ** Invoke the 'collation needed' callback to request a collation sequence ** in the database text encoding of name zName, length nName. |
︙ | ︙ | |||
32 33 34 35 36 37 38 | db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal); sqlite3_free(zExternal); } #ifndef SQLITE_OMIT_UTF16 if( db->xCollNeeded16 ){ char const *zExternal; sqlite3_value *pTmp = sqlite3ValueNew(db); | | | | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal); sqlite3_free(zExternal); } #ifndef SQLITE_OMIT_UTF16 if( db->xCollNeeded16 ){ char const *zExternal; sqlite3_value *pTmp = sqlite3ValueNew(db); sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC); zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE); if( zExternal ){ db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal); } sqlite3ValueFree(pTmp); } #endif } |
︙ | ︙ |
Changes to src/complete.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** An tokenizer for SQL ** ** This file contains C code that implements the sqlite3_complete() API. ** This code used to be part of the tokenizer.c source file. But by ** separating it out, the code will be automatically omitted from ** static links that do not use it. ** | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** An tokenizer for SQL ** ** This file contains C code that implements the sqlite3_complete() API. ** This code used to be part of the tokenizer.c source file. But by ** separating it out, the code will be automatically omitted from ** static links that do not use it. ** ** $Id: complete.c,v 1.5 2007/08/21 19:33:56 drh Exp $ */ #include "sqliteInt.h" #ifndef SQLITE_OMIT_COMPLETE /* ** This is defined in tokenize.c. We just have to import the definition. */ |
︙ | ︙ | |||
247 248 249 250 251 252 253 | */ int sqlite3_complete16(const void *zSql){ sqlite3_value *pVal; char const *zSql8; int rc = SQLITE_NOMEM; pVal = sqlite3ValueNew(0); | | | | 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | */ int sqlite3_complete16(const void *zSql){ sqlite3_value *pVal; char const *zSql8; int rc = SQLITE_NOMEM; pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC); zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zSql8 ){ rc = sqlite3_complete(zSql8); } sqlite3ValueFree(pVal); return sqlite3ApiExit(0, rc); } #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_OMIT_COMPLETE */ |
Changes to src/date.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** This file contains the C functions that implement date and time ** functions for SQLite. ** ** There is only one exported symbol in this file - the function ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. ** All other code has file scope. ** | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** This file contains the C functions that implement date and time ** functions for SQLite. ** ** There is only one exported symbol in this file - the function ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. ** All other code has file scope. ** ** $Id: date.c,v 1.71 2007/08/21 19:33:56 drh Exp $ ** ** SQLite processes all times and dates as Julian Day numbers. The ** dates and times are stored as the number of days since noon ** in Greenwich on November 24, 4714 B.C. according to the Gregorian ** calendar system. ** ** 1970-01-01 00:00:00 is JD 2440587.5 |
︙ | ︙ | |||
901 902 903 904 905 906 907 | static void ctimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3_value *pVal = sqlite3ValueNew(0); if( pVal ){ | | | | | 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 | static void ctimeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3_value *pVal = sqlite3ValueNew(0); if( pVal ){ sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC); timeFunc(context, 1, &pVal); sqlite3ValueFree(pVal); } } /* ** current_date() ** ** This function returns the same value as date('now'). */ static void cdateFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3_value *pVal = sqlite3ValueNew(0); if( pVal ){ sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC); dateFunc(context, 1, &pVal); sqlite3ValueFree(pVal); } } /* ** current_timestamp() ** ** This function returns the same value as datetime('now'). */ static void ctimestampFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3_value *pVal = sqlite3ValueNew(0); if( pVal ){ sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC); datetimeFunc(context, 1, &pVal); sqlite3ValueFree(pVal); } } #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ #ifdef SQLITE_OMIT_DATETIME_FUNCS |
︙ | ︙ |
Changes to src/func.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** ** $Id: func.c,v 1.168 2007/08/21 19:33:56 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> #include <stdlib.h> #include <assert.h> #include "vdbeInt.h" |
︙ | ︙ | |||
1058 1059 1060 1061 1062 1063 1064 | char *zVal; int len; sqlite3 *db = sqlite3_user_data(pCtx); test_destructor_count_var++; assert( nArg==1 ); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; | | | | 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 | char *zVal; int len; sqlite3 *db = sqlite3_user_data(pCtx); test_destructor_count_var++; assert( nArg==1 ); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; len = sqlite3ValueBytes(argv[0], ENC(db)); zVal = sqlite3MallocZero(len+3); zVal[len] = 0; zVal[len-1] = 0; assert( zVal ); zVal++; memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len); if( ENC(db)==SQLITE_UTF8 ){ sqlite3_result_text(pCtx, zVal, -1, destructor); #ifndef SQLITE_OMIT_UTF16 }else if( ENC(db)==SQLITE_UTF16LE ){ sqlite3_result_text16le(pCtx, zVal, -1, destructor); }else{ sqlite3_result_text16be(pCtx, zVal, -1, destructor); |
︙ | ︙ | |||
1267 1268 1269 1270 1271 1272 1273 | ** returns (void *)db, where db is the sqlite3* database pointer. ** Therefore the next statement sets variable 'max' to 1 for the max() ** aggregate, or 0 for min(). */ max = sqlite3_user_data(context)!=0; cmp = sqlite3MemCompare(pBest, pArg, pColl); if( (max && cmp<0) || (!max && cmp>0) ){ | | | | 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 | ** returns (void *)db, where db is the sqlite3* database pointer. ** Therefore the next statement sets variable 'max' to 1 for the max() ** aggregate, or 0 for min(). */ max = sqlite3_user_data(context)!=0; cmp = sqlite3MemCompare(pBest, pArg, pColl); if( (max && cmp<0) || (!max && cmp>0) ){ sqlite3VdbeMemCopy(pBest, pArg); } }else{ sqlite3VdbeMemCopy(pBest, pArg); } } static void minMaxFinalize(sqlite3_context *context){ sqlite3_value *pRes; pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); if( pRes ){ if( pRes->flags ){ |
︙ | ︙ |
Changes to src/loadext.c.
︙ | ︙ | |||
256 257 258 259 260 261 262 | ** ** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong. ** ** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with ** error message text. The calling function should free this memory ** by calling sqlite3_free(). */ | | | 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | ** ** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong. ** ** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with ** error message text. The calling function should free this memory ** by calling sqlite3_free(). */ static int sqlite3LoadExtension( sqlite3 *db, /* Load the extension into this database connection */ const char *zFile, /* Name of the shared library containing extension */ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ char **pzErrMsg /* Put error message here if not 0 */ ){ sqlite3_vfs *pVfs = db->pVfs; void *handle; |
︙ | ︙ | |||
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | } sqlite3_free(db->aExtension); db->aExtension = aHandle; db->aExtension[db->nExtension-1] = handle; return SQLITE_OK; } /* ** Call this routine when the database connection is closing in order ** to clean up loaded extensions */ void sqlite3CloseExtensions(sqlite3 *db){ int i; for(i=0; i<db->nExtension; i++){ sqlite3OsDlClose(db->pVfs, db->aExtension[i]); } sqlite3_free(db->aExtension); } /* ** Enable or disable extension loading. Extension loading is disabled by ** default so as not to open security holes in older applications. */ int sqlite3_enable_load_extension(sqlite3 *db, int onoff){ if( onoff ){ db->flags |= SQLITE_LoadExtension; }else{ db->flags &= ~SQLITE_LoadExtension; } return SQLITE_OK; } /* ** The following object holds the list of automatically loaded ** extensions. ** | > > > > > > > > > > > > > > > | 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | } sqlite3_free(db->aExtension); db->aExtension = aHandle; db->aExtension[db->nExtension-1] = handle; return SQLITE_OK; } int sqlite3_load_extension( sqlite3 *db, /* Load the extension into this database connection */ const char *zFile, /* Name of the shared library containing extension */ const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ char **pzErrMsg /* Put error message here if not 0 */ ){ int rc; sqlite3_mutex_enter(db->mutex); rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Call this routine when the database connection is closing in order ** to clean up loaded extensions */ void sqlite3CloseExtensions(sqlite3 *db){ int i; assert( sqlite3_mutex_held(db->mutex) ); for(i=0; i<db->nExtension; i++){ sqlite3OsDlClose(db->pVfs, db->aExtension[i]); } sqlite3_free(db->aExtension); } /* ** Enable or disable extension loading. Extension loading is disabled by ** default so as not to open security holes in older applications. */ int sqlite3_enable_load_extension(sqlite3 *db, int onoff){ sqlite3_mutex_enter(db->mutex); if( onoff ){ db->flags |= SQLITE_LoadExtension; }else{ db->flags &= ~SQLITE_LoadExtension; } sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** The following object holds the list of automatically loaded ** extensions. ** |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: main.c,v 1.393 2007/08/21 19:33:56 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** The version of the library */ |
︙ | ︙ | |||
815 816 817 818 819 820 821 | if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){ return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); } sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); z = sqlite3_value_text16(db->pErr); if( z==0 ){ | | | 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 | if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){ return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); } sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); z = sqlite3_value_text16(db->pErr); if( z==0 ){ sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), SQLITE_UTF8, SQLITE_STATIC); z = sqlite3_value_text16(db->pErr); } sqlite3ApiExit(0, 0); sqlite3_mutex_leave(db->mutex); return z; } |
︙ | ︙ | |||
1112 1113 1114 1115 1116 1117 1118 | sqlite3_value *pVal; int rc = SQLITE_NOMEM; assert( zFilename ); assert( ppDb ); *ppDb = 0; pVal = sqlite3ValueNew(0); | | | | 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 | sqlite3_value *pVal; int rc = SQLITE_NOMEM; assert( zFilename ); assert( ppDb ); *ppDb = 0; pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zFilename8 ){ rc = openDatabase(zFilename8, ppDb, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); if( rc==SQLITE_OK && *ppDb ){ rc = sqlite3_exec(*ppDb, "PRAGMA encoding = 'UTF-16'", 0, 0, 0); if( rc!=SQLITE_OK ){ sqlite3_close(*ppDb); |
︙ | ︙ |
Changes to src/malloc.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Memory allocation functions used throughout sqlite. ** ** | | > > > > > > > > > > > > > | | < | > | > > | > > > | > > | > > | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Memory allocation functions used throughout sqlite. ** ** ** $Id: malloc.c,v 1.8 2007/08/21 19:33:56 drh Exp $ */ #include "sqliteInt.h" #include <stdarg.h> #include <ctype.h> /* ** This routine runs when the memory allocator sees that the ** total memory allocation is about to exceed the soft heap ** limit. */ static void softHeapLimitEnforcer( void *NotUsed, sqlite3_uint64 inUse, unsigned int allocSize ){ sqlite3_release_memory(allocSize); } /* ** Set the soft heap-size limit for the current thread. Passing a ** zero or negative value indicates no limit. */ void sqlite3_soft_heap_limit(int n){ sqlite3_uint64 iLimit; int overage; if( n<0 ){ iLimit = 0; }else{ iLimit = n; } if( iLimit>0 ){ sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit); }else{ sqlite3_memory_alarm(0, 0, 0); } overage = sqlite3_memory_used() - n; if( overage>0 ){ sqlite3_release_memory(overage); } } /* ** Release memory held by SQLite instances created by the current thread. */ int sqlite3_release_memory(int n){ #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO) |
︙ | ︙ | |||
59 60 61 62 63 64 65 | ** Allocate and zero memory. If the allocation fails, make ** the mallocFailed flag in the connection pointer. */ void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){ void *p = sqlite3_malloc(n); if( p ){ memset(p, 0, n); | | | 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | ** Allocate and zero memory. If the allocation fails, make ** the mallocFailed flag in the connection pointer. */ void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){ void *p = sqlite3_malloc(n); if( p ){ memset(p, 0, n); }else if( db ){ db->mallocFailed = 1; } return p; } /* ** Allocate and zero memory. If the allocation fails, make |
︙ | ︙ | |||
192 193 194 195 196 197 198 | if( db && db->mallocFailed ){ sqlite3Error(db, SQLITE_NOMEM, 0); db->mallocFailed = 0; rc = SQLITE_NOMEM; } return rc & (db ? db->errMask : 0xff); } | < < < < < < < < < < < < < < < < < < < < < < < < < < | 214 215 216 217 218 219 220 | if( db && db->mallocFailed ){ sqlite3Error(db, SQLITE_NOMEM, 0); db->mallocFailed = 0; rc = SQLITE_NOMEM; } return rc & (db ? db->errMask : 0xff); } |
Changes to src/prepare.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_prepare() ** interface, and routines that contribute to loading the database schema ** from disk. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_prepare() ** interface, and routines that contribute to loading the database schema ** from disk. ** ** $Id: prepare.c,v 1.56 2007/08/21 19:33:56 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** Fill the InitData structure with an error message that indicates ** that the database is corrupt. |
︙ | ︙ | |||
466 467 468 469 470 471 472 473 474 475 476 477 478 479 | assert( !db->mallocFailed ); assert( ppStmt ); *ppStmt = 0; if( sqlite3SafetyOn(db) ){ return SQLITE_MISUSE; } /* If any attached database schemas are locked, do not proceed with ** compilation. Instead return SQLITE_LOCKED immediately. */ for(i=0; i<db->nDb; i++) { Btree *pBt = db->aDb[i].pBt; if( pBt && sqlite3BtreeSchemaLocked(pBt) ){ | > | 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 | assert( !db->mallocFailed ); assert( ppStmt ); *ppStmt = 0; if( sqlite3SafetyOn(db) ){ return SQLITE_MISUSE; } assert( sqlite3_mutex_held(db->mutex) ); /* If any attached database schemas are locked, do not proceed with ** compilation. Instead return SQLITE_LOCKED immediately. */ for(i=0; i<db->nDb; i++) { Btree *pBt = db->aDb[i].pBt; if( pBt && sqlite3BtreeSchemaLocked(pBt) ){ |
︙ | ︙ | |||
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 | } rc = sqlite3ApiExit(db, rc); /* sqlite3ReleaseThreadData(); */ assert( (rc&db->errMask)==rc ); return rc; } /* ** Rerun the compilation of a statement after a schema change. ** Return true if the statement was recompiled successfully. ** Return false if there is an error of some kind. */ int sqlite3Reprepare(Vdbe *p){ int rc; sqlite3_stmt *pNew; const char *zSql; sqlite3 *db; | > > > > > > > > > > > > > > | > | 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 | } rc = sqlite3ApiExit(db, rc); /* sqlite3ReleaseThreadData(); */ assert( (rc&db->errMask)==rc ); return rc; } static int sqlite3LockAndPrepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; sqlite3_mutex_enter(db->mutex); rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Rerun the compilation of a statement after a schema change. ** Return true if the statement was recompiled successfully. ** Return false if there is an error of some kind. */ int sqlite3Reprepare(Vdbe *p){ int rc; sqlite3_stmt *pNew; const char *zSql; sqlite3 *db; zSql = sqlite3VdbeGetSql(p); if( zSql==0 ){ return 0; } db = sqlite3VdbeDb(p); assert( sqlite3_mutex_held(db->mutex) ); rc = sqlite3Prepare(db, zSql, -1, 0, &pNew, 0); if( rc ){ assert( pNew==0 ); return 0; }else{ assert( pNew!=0 ); } |
︙ | ︙ | |||
606 607 608 609 610 611 612 | int sqlite3_prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ | | | | 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 | int sqlite3_prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ return sqlite3LockAndPrepare(db,zSql,nBytes,0,ppStmt,pzTail); } int sqlite3_prepare_v2( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ return sqlite3LockAndPrepare(db,zSql,nBytes,1,ppStmt,pzTail); } #ifndef SQLITE_OMIT_UTF16 /* ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. */ |
︙ | ︙ | |||
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 | char *zSql8; const char *zTail8 = 0; int rc = SQLITE_OK; if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } zSql8 = sqlite3Utf16to8(db, zSql, nBytes); if( zSql8 ){ rc = sqlite3Prepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8); } if( zTail8 && pzTail ){ /* If sqlite3_prepare returns a tail pointer, we calculate the ** equivalent pointer into the UTF-16 string by counting the unicode ** characters between zSql8 and zTail8, and then returning a pointer ** the same number of characters into the UTF-16 string. */ int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8); *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); } sqlite3_free(zSql8); | > | > > | 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | char *zSql8; const char *zTail8 = 0; int rc = SQLITE_OK; if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } sqlite3_mutex_enter(db->mutex); zSql8 = sqlite3Utf16to8(db, zSql, nBytes); if( zSql8 ){ rc = sqlite3Prepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8); } if( zTail8 && pzTail ){ /* If sqlite3_prepare returns a tail pointer, we calculate the ** equivalent pointer into the UTF-16 string by counting the unicode ** characters between zSql8 and zTail8, and then returning a pointer ** the same number of characters into the UTF-16 string. */ int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8); *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); } sqlite3_free(zSql8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Two versions of the official API. Legacy and new use. In the legacy ** version, the original SQL text is not saved in the prepared statement ** and so if a schema change occurs, SQLITE_SCHEMA is returned by ** sqlite3_step(). In the new version, the original SQL text is retained |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
26 27 28 29 30 31 32 | ** on how SQLite interfaces are suppose to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. ** | | | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | ** on how SQLite interfaces are suppose to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. ** ** @(#) $Id: sqlite.h.in,v 1.234 2007/08/21 19:33:56 drh Exp $ */ #ifndef _SQLITE3_H_ #define _SQLITE3_H_ #include <stdarg.h> /* Needed for the definition of va_list */ /* ** Make sure we can call this stuff from C++. |
︙ | ︙ | |||
2253 2254 2255 2256 2257 2258 2259 | ** ** The pUserData parameter to the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines ** used to register user functions is available to ** the implementation of the function using this call. ** ** This routine must be called from the same thread in which | | | 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 | ** ** The pUserData parameter to the [sqlite3_create_function()] ** and [sqlite3_create_function16()] routines ** used to register user functions is available to ** the implementation of the function using this call. ** ** This routine must be called from the same thread in which ** the SQL function is running. */ void *sqlite3_user_data(sqlite3_context*); /* ** CAPI3REF: Function Auxiliary Data ** ** The following two functions may be used by scalar SQL functions to |
︙ | ︙ | |||
2287 2288 2289 2290 2291 2292 2293 | ** data pointer to release it when it is no longer required. If the ** destructor is NULL, it is not invoked. ** ** In practice, meta-data is preserved between function calls for ** expressions that are constant at compile time. This includes literal ** values and SQL variables. ** | | | | 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 | ** data pointer to release it when it is no longer required. If the ** destructor is NULL, it is not invoked. ** ** In practice, meta-data is preserved between function calls for ** expressions that are constant at compile time. This includes literal ** values and SQL variables. ** ** These routines must be called from the same thread in which ** the SQL function is running. */ void *sqlite3_get_auxdata(sqlite3_context*, int); void sqlite3_set_auxdata(sqlite3_context*, int, void*, void (*)(void*)); /* ** CAPI3REF: Constants Defining Special Destructor Behavior |
︙ | ︙ | |||
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 | ** [sqlite3_release_memory()] will only be called when memory is exhausted. ** The default value for the soft heap limit is zero. ** ** SQLite makes a best effort to honor the soft heap limit. But if it ** is unable to reduce memory usage below the soft limit, execution will ** continue without error or notification. This is why the limit is ** called a "soft" limit. It is advisory only. ** ** Prior to SQLite version 3.5.0, this routine only constrained the memory ** allocated by a single thread - the same thread in which this routine ** runs. Beginning with SQLite version 3.5.0, the soft heap limit is ** applied cumulatively to all threads. */ void sqlite3_soft_heap_limit(int); | > > > > > > | 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 | ** [sqlite3_release_memory()] will only be called when memory is exhausted. ** The default value for the soft heap limit is zero. ** ** SQLite makes a best effort to honor the soft heap limit. But if it ** is unable to reduce memory usage below the soft limit, execution will ** continue without error or notification. This is why the limit is ** called a "soft" limit. It is advisory only. ** ** The soft heap limit is implemented using the [sqlite3_memory_alarm()] ** interface. Only a single memory alarm is available in the default ** implementation. This means that if the application also uses the ** memory alarm interface it will interfere with the operation of the ** soft heap limit and undefined behavior will result. ** ** Prior to SQLite version 3.5.0, this routine only constrained the memory ** allocated by a single thread - the same thread in which this routine ** runs. Beginning with SQLite version 3.5.0, the soft heap limit is ** applied cumulatively to all threads. */ void sqlite3_soft_heap_limit(int); |
︙ | ︙ |
Changes to src/sqliteInt.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.595 2007/08/21 19:33:56 drh Exp $ */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ #include "sqliteLimit.h" #if defined(SQLITE_TCL) || defined(TCLSH) |
︙ | ︙ | |||
789 790 791 792 793 794 795 796 797 798 799 800 801 802 | ** comparison of the two index keys. ** ** If the KeyInfo.incrKey value is true and the comparison would ** otherwise be equal, then return a result as if the second key ** were larger. */ struct KeyInfo { u8 enc; /* Text encoding - one of the TEXT_Utf* values */ u8 incrKey; /* Increase 2nd key by epsilon before comparison */ int nField; /* Number of entries in aColl[] */ u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ CollSeq *aColl[1]; /* Collating sequence for each term of the key */ }; | > | 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 | ** comparison of the two index keys. ** ** If the KeyInfo.incrKey value is true and the comparison would ** otherwise be equal, then return a result as if the second key ** were larger. */ struct KeyInfo { sqlite3 *db; /* The database connection */ u8 enc; /* Text encoding - one of the TEXT_Utf* values */ u8 incrKey; /* Increase 2nd key by epsilon before comparison */ int nField; /* Number of entries in aColl[] */ u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ CollSeq *aColl[1]; /* Collating sequence for each term of the key */ }; |
︙ | ︙ | |||
1740 1741 1742 1743 1744 1745 1746 | CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); int sqlite3CheckCollSeq(Parse *, CollSeq *); int sqlite3CheckObjectName(Parse *, const char *); void sqlite3VdbeSetChanges(sqlite3 *, int); | | | | | | 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 | CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); int sqlite3CheckCollSeq(Parse *, CollSeq *); int sqlite3CheckObjectName(Parse *, const char *); void sqlite3VdbeSetChanges(sqlite3 *, int); const void *sqlite3ValueText(sqlite3_value*, u8); int sqlite3ValueBytes(sqlite3_value*, u8); void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); void sqlite3ValueFree(sqlite3_value*); sqlite3_value *sqlite3ValueNew(sqlite3 *); char *sqlite3Utf16to8(sqlite3 *, const void*, int); int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); extern const unsigned char sqlite3UpperToLower[]; void sqlite3RootPageMoved(Db*, int, int); void sqlite3Reindex(Parse*, Token*, Token*); void sqlite3AlterFunctions(sqlite3*); void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); int sqlite3GetToken(const unsigned char *, int *); void sqlite3NestedParse(Parse*, const char*, ...); |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing all sorts of SQLite interfaces. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing all sorts of SQLite interfaces. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test1.c,v 1.267 2007/08/21 19:33:57 drh Exp $ */ #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> /* |
︙ | ︙ | |||
917 918 919 920 921 922 923 | if( rc==SQLITE_OK ){ sqlite3_value *pVal; #if 0 if( sqlite3_iMallocFail>0 ){ sqlite3_iMallocFail++; } #endif | | | | | 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 | if( rc==SQLITE_OK ){ sqlite3_value *pVal; #if 0 if( sqlite3_iMallocFail>0 ){ sqlite3_iMallocFail++; } #endif pVal = sqlite3ValueNew(db); sqlite3ValueSetStr(pVal, -1, "x_sqlite_exec", SQLITE_UTF8, SQLITE_STATIC); rc = sqlite3_create_function16(db, sqlite3ValueText(pVal, SQLITE_UTF16NATIVE), 1, SQLITE_UTF16, db, sqlite3ExecFunc, 0, 0); sqlite3ValueFree(pVal); } #endif if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR; Tcl_SetResult(interp, (char *)t1ErrorName(rc), 0); |
︙ | ︙ | |||
2052 2053 2054 2055 2056 2057 2058 | Tcl_ListObjAppendElement(i,pX,Tcl_NewStringObj("UTF-16BE",-1)); break; default: assert(0); } pVal = sqlite3ValueNew(0); | | | | 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 | Tcl_ListObjAppendElement(i,pX,Tcl_NewStringObj("UTF-16BE",-1)); break; default: assert(0); } pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, nA, zA, encin, SQLITE_STATIC); n = sqlite3_value_bytes(pVal); Tcl_ListObjAppendElement(i,pX, Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n)); sqlite3ValueSetStr(pVal, nB, zB, encin, SQLITE_STATIC); n = sqlite3_value_bytes(pVal); Tcl_ListObjAppendElement(i,pX, Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n)); sqlite3ValueFree(pVal); Tcl_EvalObjEx(i, pX, 0); Tcl_DecrRefCount(pX); |
︙ | ︙ | |||
2097 2098 2099 2100 2101 2102 2103 | #ifdef SQLITE_MEMDEBUG if( sqlite3_iMallocFail>0 ){ sqlite3_iMallocFail++; } #endif pVal = sqlite3ValueNew(0); | | | | 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 | #ifdef SQLITE_MEMDEBUG if( sqlite3_iMallocFail>0 ){ sqlite3_iMallocFail++; } #endif pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, "test_collate", SQLITE_UTF8, SQLITE_STATIC); rc = sqlite3_create_collation16(db, sqlite3ValueText(pVal, SQLITE_UTF16NATIVE), SQLITE_UTF16BE, (void *)SQLITE_UTF16BE, val?test_collate_func:0); sqlite3ValueFree(pVal); } if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR; if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, sqlite3TestErrorName(rc), 0); |
︙ | ︙ | |||
2266 2267 2268 2269 2270 2271 2272 | Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-8", -1)); Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1)); Tcl_EvalObjEx(interp, pX, 0); Tcl_DecrRefCount(pX); sqlite3_result_text(pCtx, Tcl_GetStringResult(interp), -1, SQLITE_TRANSIENT); pVal = sqlite3ValueNew(0); | | | 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 | Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-8", -1)); Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1)); Tcl_EvalObjEx(interp, pX, 0); Tcl_DecrRefCount(pX); sqlite3_result_text(pCtx, Tcl_GetStringResult(interp), -1, SQLITE_TRANSIENT); pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, Tcl_GetStringResult(interp), SQLITE_UTF8, SQLITE_STATIC); sqlite3_result_text16be(pCtx, sqlite3_value_text16be(pVal), -1, SQLITE_TRANSIENT); sqlite3ValueFree(pVal); } static void test_function_utf16le( sqlite3_context *pCtx, |
︙ | ︙ | |||
2289 2290 2291 2292 2293 2294 2295 | Tcl_IncrRefCount(pX); Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-16LE", -1)); Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1)); Tcl_EvalObjEx(interp, pX, 0); Tcl_DecrRefCount(pX); pVal = sqlite3ValueNew(0); | | | 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 | Tcl_IncrRefCount(pX); Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-16LE", -1)); Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1)); Tcl_EvalObjEx(interp, pX, 0); Tcl_DecrRefCount(pX); pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, Tcl_GetStringResult(interp), SQLITE_UTF8, SQLITE_STATIC); sqlite3_result_text(pCtx,(char*)sqlite3_value_text(pVal),-1,SQLITE_TRANSIENT); sqlite3ValueFree(pVal); } static void test_function_utf16be( sqlite3_context *pCtx, int nArg, |
︙ | ︙ | |||
2311 2312 2313 2314 2315 2316 2317 | Tcl_IncrRefCount(pX); Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-16BE", -1)); Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1)); Tcl_EvalObjEx(interp, pX, 0); Tcl_DecrRefCount(pX); pVal = sqlite3ValueNew(0); | | | 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 | Tcl_IncrRefCount(pX); Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-16BE", -1)); Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1)); Tcl_EvalObjEx(interp, pX, 0); Tcl_DecrRefCount(pX); pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, Tcl_GetStringResult(interp), SQLITE_UTF8, SQLITE_STATIC); sqlite3_result_text16le(pCtx, sqlite3_value_text16le(pVal), -1, SQLITE_TRANSIENT); sqlite3ValueFree(pVal); } #endif /* SQLITE_OMIT_UTF16 */ static int test_function( |
︙ | ︙ |
Changes to src/test5.c.
︙ | ︙ | |||
11 12 13 14 15 16 17 | ************************************************************************* ** Code for testing the utf.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. Specifically, the code in this file ** is used for testing the SQLite routines for converting between ** the various supported unicode encodings. ** | | | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ************************************************************************* ** Code for testing the utf.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. Specifically, the code in this file ** is used for testing the SQLite routines for converting between ** the various supported unicode encodings. ** ** $Id: test5.c,v 1.20 2007/08/21 19:33:57 drh Exp $ */ #include "sqliteInt.h" #include "vdbeInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
152 153 154 155 156 157 158 | pVal = sqlite3ValueNew(0); if( enc_from==SQLITE_UTF8 ){ z = Tcl_GetString(objv[1]); if( objc==5 ){ z = sqlite3StrDup(z); } | | | | | | 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | pVal = sqlite3ValueNew(0); if( enc_from==SQLITE_UTF8 ){ z = Tcl_GetString(objv[1]); if( objc==5 ){ z = sqlite3StrDup(z); } sqlite3ValueSetStr(pVal, -1, z, enc_from, xDel); }else{ z = (char*)Tcl_GetByteArrayFromObj(objv[1], &len); if( objc==5 ){ char *zTmp = z; z = sqlite3_malloc(len); memcpy(z, zTmp, len); } sqlite3ValueSetStr(pVal, -1, z, enc_from, xDel); } z = (char *)sqlite3ValueText(pVal, enc_to); len = sqlite3ValueBytes(pVal, enc_to) + (enc_to==SQLITE_UTF8?1:2); Tcl_SetObjResult(interp, Tcl_NewByteArrayObj((u8*)z, len)); sqlite3ValueFree(pVal); return TCL_OK; } |
︙ | ︙ |
Changes to src/utf.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE. ** ** $Id: utf.c,v 1.56 2007/08/21 19:33:57 drh Exp $ ** ** Notes on UTF-8: ** ** Byte-0 Byte-1 Byte-2 Byte-3 Value ** 0xxxxxxx 00000000 00000000 0xxxxxxx ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
︙ | ︙ | |||
183 184 185 186 187 188 189 | #ifndef SQLITE_OMIT_UTF16 /* ** This routine transforms the internal text encoding used by pMem to ** desiredEnc. It is an error if the string is already of the desired ** encoding, or if *pMem does not contain a string value. */ | | > | | 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | #ifndef SQLITE_OMIT_UTF16 /* ** This routine transforms the internal text encoding used by pMem to ** desiredEnc. It is an error if the string is already of the desired ** encoding, or if *pMem does not contain a string value. */ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ unsigned char zShort[NBFS]; /* Temporary short output buffer */ int len; /* Maximum length of output string in bytes */ unsigned char *zOut; /* Output buffer */ unsigned char *zIn; /* Input iterator */ unsigned char *zTerm; /* End of input */ unsigned char *z; /* Output iterator */ unsigned int c; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( pMem->flags&MEM_Str ); assert( pMem->enc!=desiredEnc ); assert( pMem->enc!=0 ); assert( pMem->n>=0 ); #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "INPUT: %s\n", zBuf); } #endif /* If the translation is between UTF-16 little and big endian, then ** all that is required is to swap the byte order. This case is handled ** differently from the others. */ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ u8 temp; int rc; rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc!=SQLITE_OK ){ assert( rc==SQLITE_NOMEM ); return SQLITE_NOMEM; } zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; while( zIn<zTerm ){ |
︙ | ︙ | |||
256 257 258 259 260 261 262 | ** Variable zOut is set to point at the output buffer. This may be space ** obtained from sqlite3_malloc(), or Mem.zShort, if it large enough and ** not in use, or the zShort array on the stack (see above). */ zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; if( len>NBFS ){ | | > | > | 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | ** Variable zOut is set to point at the output buffer. This may be space ** obtained from sqlite3_malloc(), or Mem.zShort, if it large enough and ** not in use, or the zShort array on the stack (see above). */ zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; if( len>NBFS ){ zOut = sqlite3DbMallocRaw(pMem->db, len); if( !zOut ){ return SQLITE_NOMEM; } }else{ zOut = zShort; } z = zOut; if( pMem->enc==SQLITE_UTF8 ){ if( desiredEnc==SQLITE_UTF16LE ){ |
︙ | ︙ | |||
332 333 334 335 336 337 338 | ** UTF-16 string stored in *pMem. If one is present, it is removed and ** the encoding of the Mem adjusted. This routine does not do any ** byte-swapping, it just sets Mem.enc appropriately. ** ** The allocation (static, dynamic etc.) and encoding of the Mem may be ** changed by this function. */ | | | 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 | ** UTF-16 string stored in *pMem. If one is present, it is removed and ** the encoding of the Mem adjusted. This routine does not do any ** byte-swapping, it just sets Mem.enc appropriately. ** ** The allocation (static, dynamic etc.) and encoding of the Mem may be ** changed by this function. */ int sqlite3VdbeMemHandleBom(Mem *pMem){ int rc = SQLITE_OK; u8 bom = 0; if( pMem->n<0 || pMem->n>1 ){ u8 b1 = *(u8 *)pMem->z; u8 b2 = *(((u8 *)pMem->z) + 1); if( b1==0xFE && b2==0xFF ){ |
︙ | ︙ | |||
360 361 362 363 364 365 366 | assert( !(pMem->flags&MEM_Short) ); assert( !(pMem->flags&MEM_Dyn) || pMem->xDel ); if( pMem->flags & MEM_Dyn ){ void (*xDel)(void*) = pMem->xDel; char *z = pMem->z; pMem->z = 0; pMem->xDel = 0; | | | | 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | assert( !(pMem->flags&MEM_Short) ); assert( !(pMem->flags&MEM_Dyn) || pMem->xDel ); if( pMem->flags & MEM_Dyn ){ void (*xDel)(void*) = pMem->xDel; char *z = pMem->z; pMem->z = 0; pMem->xDel = 0; rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT); xDel(z); }else{ rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom, SQLITE_TRANSIENT); } } return rc; } #endif /* SQLITE_OMIT_UTF16 */ |
︙ | ︙ | |||
407 408 409 410 411 412 413 | ** be freed by the calling function. ** ** NULL is returned if there is an allocation error. */ char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){ Mem m; memset(&m, 0, sizeof(m)); | > | | | 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | ** be freed by the calling function. ** ** NULL is returned if there is an allocation error. */ char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){ Mem m; memset(&m, 0, sizeof(m)); m.db = db; sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC); sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z); } /* ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero, |
︙ | ︙ |
Changes to src/util.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** ** $Id: util.c,v 1.211 2007/08/21 19:33:57 drh Exp $ */ #include "sqliteInt.h" #include <stdarg.h> #include <ctype.h> /* |
︙ | ︙ | |||
47 48 49 50 51 52 53 | db->errCode = err_code; if( zFormat ){ char *z; va_list ap; va_start(ap, zFormat); z = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); | | | | 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | db->errCode = err_code; if( zFormat ){ char *z; va_list ap; va_start(ap, zFormat); z = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free); }else{ sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); } } } /* ** Add an error message to pParse->zErrMsg and increment pParse->nErr. ** The following formatting characters are allowed: |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.644 2007/08/21 19:33:57 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> #include <math.h> #include "vdbeInt.h" /* |
︙ | ︙ | |||
101 102 103 104 105 106 107 | */ #define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); } /* ** Convert the given stack entity into a string if it isn't one ** already. Return non-zero if a malloc() fails. */ | | | | 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | */ #define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); } /* ** Convert the given stack entity into a string if it isn't one ** already. Return non-zero if a malloc() fails. */ #define Stringify(P, enc) \ if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ { goto no_mem; } /* ** The header of a record consists of a sequence variable-length integers. ** These integers are almost always small and are encoded as a single byte. ** The following macro takes advantage this fact to provide a fast decode ** of the integers in a record header. It is faster for the common case |
︙ | ︙ | |||
133 134 135 136 137 138 139 | ** does not control the string, it might be deleted without the stack ** entry knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the stack entry itself controls. In other words, it ** converts an MEM_Ephem string into an MEM_Dyn string. */ | | | | | 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | ** does not control the string, it might be deleted without the stack ** entry knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the stack entry itself controls. In other words, it ** converts an MEM_Ephem string into an MEM_Dyn string. */ #define Deephemeralize(P) \ if( ((P)->flags&MEM_Ephem)!=0 \ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} /* ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) ** P if required. */ #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) /* ** Argument pMem points at a memory cell that will be passed to a ** user-defined function or returned to the user as the result of a query. ** The second argument, 'db_enc' is the text encoding used by the vdbe for ** stack variables. This routine sets the pMem->enc and pMem->type ** variables used by the sqlite3_value_*() routines. |
︙ | ︙ | |||
205 206 207 208 209 210 211 | /* ** Try to convert a value into a numeric representation if we can ** do so without loss of information. In other words, if the string ** looks like a number, convert it into a number. If it does not ** look like a number, leave it alone. */ | | | | | 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | /* ** Try to convert a value into a numeric representation if we can ** do so without loss of information. In other words, if the string ** looks like a number, convert it into a number. If it does not ** look like a number, leave it alone. */ static void applyNumericAffinity(Mem *pRec){ if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ int realnum; sqlite3VdbeMemNulTerminate(pRec); if( (pRec->flags&MEM_Str) && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){ i64 value; sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8); if( !realnum && sqlite3Atoi64(pRec->z, &value) ){ sqlite3VdbeMemRelease(pRec); pRec->u.i = value; pRec->flags = MEM_Int; }else{ sqlite3VdbeMemRealify(pRec); } |
︙ | ︙ | |||
243 244 245 246 247 248 249 | ** SQLITE_AFF_TEXT: ** Convert pRec to a text representation. ** ** SQLITE_AFF_NONE: ** No-op. pRec is unchanged. */ static void applyAffinity( | < | | | < | | 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | ** SQLITE_AFF_TEXT: ** Convert pRec to a text representation. ** ** SQLITE_AFF_NONE: ** No-op. pRec is unchanged. */ static void applyAffinity( Mem *pRec, /* The value to apply affinity to */ char affinity, /* The affinity to be applied */ u8 enc /* Use this text encoding */ ){ if( affinity==SQLITE_AFF_TEXT ){ /* Only attempt the conversion to TEXT if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. */ if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ sqlite3VdbeMemStringify(pRec, enc); } pRec->flags &= ~(MEM_Real|MEM_Int); }else if( affinity!=SQLITE_AFF_NONE ){ assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL || affinity==SQLITE_AFF_NUMERIC ); applyNumericAffinity(pRec); if( pRec->flags & MEM_Real ){ sqlite3VdbeIntegerAffinity(pRec); } } } /* ** Try to convert the type of a function argument or a result column ** into a numeric representation. Use either INTEGER or REAL whichever ** is appropriate. But only do the conversion if it is possible without ** loss of information and return the revised type of the argument. ** ** This is an EXPERIMENTAL api and is subject to change or removal. */ int sqlite3_value_numeric_type(sqlite3_value *pVal){ Mem *pMem = (Mem*)pVal; applyNumericAffinity(pMem); storeTypeInfo(pMem, 0); return pMem->type; } /* ** Exported version of applyAffinity(). This one works on sqlite3_value*, ** not the internal Mem* type. */ void sqlite3ValueApplyAffinity( sqlite3_value *pVal, u8 affinity, u8 enc ){ applyAffinity((Mem *)pVal, affinity, enc); } #ifdef SQLITE_DEBUG /* ** Write a nice string representation of the contents of cell pMem ** into buffer zBuf, length nBuf. */ |
︙ | ︙ | |||
729 730 731 732 733 734 735 | pTos++; pTos->flags = MEM_Str|MEM_Static|MEM_Term; pTos->z = pOp->p3; pTos->n = strlen(pTos->z); pTos->enc = SQLITE_UTF8; pTos->r = sqlite3VdbeRealValue(pTos); pTos->flags |= MEM_Real; | | | | | | 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 | pTos++; pTos->flags = MEM_Str|MEM_Static|MEM_Term; pTos->z = pOp->p3; pTos->n = strlen(pTos->z); pTos->enc = SQLITE_UTF8; pTos->r = sqlite3VdbeRealValue(pTos); pTos->flags |= MEM_Real; sqlite3VdbeChangeEncoding(pTos, encoding); break; } /* Opcode: String8 * * P3 ** ** P3 points to a nul terminated UTF-8 string. This opcode is transformed ** into an OP_String before it is executed for the first time. */ case OP_String8: { /* same as TK_STRING */ assert( pOp->p3!=0 ); pOp->opcode = OP_String; pOp->p1 = strlen(pOp->p3); assert( SQLITE_MAX_SQL_LENGTH < SQLITE_MAX_LENGTH ); assert( pOp->p1 < SQLITE_MAX_LENGTH ); #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ pTos++; sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC); if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem; if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem; pTos->flags &= ~(MEM_Dyn); pTos->flags |= MEM_Static; if( pOp->p3type==P3_DYNAMIC ){ sqlite3_free(pOp->p3); } pOp->p3type = P3_DYNAMIC; pOp->p3 = pTos->z; |
︙ | ︙ | |||
838 839 840 841 842 843 844 | ** an OP_HexBlob opcode, with the hex string representation of ** the blob as P3. This opcode is transformed to an OP_Blob ** the first time it is executed. */ case OP_Blob: { pTos++; assert( pOp->p1 < SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */ | | | 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 | ** an OP_HexBlob opcode, with the hex string representation of ** the blob as P3. This opcode is transformed to an OP_Blob ** the first time it is executed. */ case OP_Blob: { pTos++; assert( pOp->p1 < SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */ sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0); pTos->enc = encoding; break; } #endif /* SQLITE_OMIT_BLOB_LITERAL */ /* Opcode: Variable P1 * * ** |
︙ | ︙ | |||
899 900 901 902 903 904 905 | */ case OP_Dup: { Mem *pFrom = &pTos[-pOp->p1]; assert( pFrom<=pTos && pFrom>=p->aStack ); pTos++; sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem); if( pOp->p2 ){ | | | | | 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 | */ case OP_Dup: { Mem *pFrom = &pTos[-pOp->p1]; assert( pFrom<=pTos && pFrom>=p->aStack ); pTos++; sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem); if( pOp->p2 ){ Deephemeralize(pTos); } break; } /* Opcode: Pull P1 * * ** ** The P1-th element is removed from its current location on ** the stack and pushed back on top of the stack. The ** top of the stack is element 0, so "Pull 0 0 0" is ** a no-op. "Pull 1 0 0" swaps the top two elements of ** the stack. ** ** See also the Dup instruction. */ case OP_Pull: { /* no-push */ Mem *pFrom = &pTos[-pOp->p1]; int i; Mem ts; ts = *pFrom; Deephemeralize(pTos); for(i=0; i<pOp->p1; i++, pFrom++){ Deephemeralize(&pFrom[1]); assert( (pFrom[1].flags & MEM_Ephem)==0 ); *pFrom = pFrom[1]; if( pFrom->flags & MEM_Short ){ assert( pFrom->flags & (MEM_Str|MEM_Blob) ); assert( pFrom->z==pFrom[1].zShort ); pFrom->z = pFrom->zShort; } |
︙ | ︙ | |||
950 951 952 953 954 955 956 | ** stack (P1==0 is the top of the stack) with the value ** of the top of the stack. Then pop the top of the stack. */ case OP_Push: { /* no-push */ Mem *pTo = &pTos[-pOp->p1]; assert( pTo>=p->aStack ); | | | 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 | ** stack (P1==0 is the top of the stack) with the value ** of the top of the stack. Then pop the top of the stack. */ case OP_Push: { /* no-push */ Mem *pTo = &pTos[-pOp->p1]; assert( pTo>=p->aStack ); sqlite3VdbeMemMove(pTo, pTos); pTos--; break; } /* Opcode: Callback P1 * * ** ** The top P1 values on the stack represent a single result row from |
︙ | ︙ | |||
978 979 980 981 982 983 984 | ** in between the return from this sqlite3_step() call and the ** next call to sqlite3_step(). So deephermeralize everything on ** the stack. Note that ephemeral data is never stored in memory ** cells so we do not have to worry about them. */ pFirstColumn = &pTos[0-pOp->p1]; for(pMem = p->aStack; pMem<pFirstColumn; pMem++){ | | | | 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 | ** in between the return from this sqlite3_step() call and the ** next call to sqlite3_step(). So deephermeralize everything on ** the stack. Note that ephemeral data is never stored in memory ** cells so we do not have to worry about them. */ pFirstColumn = &pTos[0-pOp->p1]; for(pMem = p->aStack; pMem<pFirstColumn; pMem++){ Deephemeralize(pMem); } /* Invalidate all ephemeral cursor row caches */ p->cacheCtr = (p->cacheCtr + 2)|1; /* Make sure the results of the current row are \000 terminated ** and have an assigned type. The results are deephemeralized as ** as side effect. */ for(; pMem<=pTos; pMem++ ){ sqlite3VdbeMemNulTerminate(pMem); storeTypeInfo(pMem, encoding); } /* Set up the statement structure so that it will pop the current ** results from the stack when the statement returns. */ p->resOnStack = 1; |
︙ | ︙ | |||
1031 1032 1033 1034 1035 1036 1037 | nByte = 0; for(i=0; i<nField; i++, pTerm++){ assert( pOp->p2==0 || (pTerm->flags&MEM_Str) ); if( pTerm->flags&MEM_Null ){ nByte = -1; break; } | | | | 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 | nByte = 0; for(i=0; i<nField; i++, pTerm++){ assert( pOp->p2==0 || (pTerm->flags&MEM_Str) ); if( pTerm->flags&MEM_Null ){ nByte = -1; break; } ExpandBlob(pTerm); Stringify(pTerm, encoding); nByte += pTerm->n; } if( nByte<0 ){ /* If nByte is less than zero, then there is a NULL value on the stack. ** In this case just pop the values off the stack (if required) and ** push on a NULL. |
︙ | ︙ | |||
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 | ctx.pVdbeFunc = (VdbeFunc*)pOp->p3; ctx.pFunc = ctx.pVdbeFunc->pFunc; } ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.s.xDel = 0; ctx.isError = 0; if( ctx.pFunc->needCollSeq ){ assert( pOp>p->aOp ); assert( pOp[-1].p3type==P3_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); ctx.pColl = (CollSeq *)pOp[-1].p3; } | > | 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 | ctx.pVdbeFunc = (VdbeFunc*)pOp->p3; ctx.pFunc = ctx.pVdbeFunc->pFunc; } ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.s.xDel = 0; ctx.s.db = db; ctx.isError = 0; if( ctx.pFunc->needCollSeq ){ assert( pOp>p->aOp ); assert( pOp[-1].p3type==P3_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); ctx.pColl = (CollSeq *)pOp[-1].p3; } |
︙ | ︙ | |||
1317 1318 1319 1320 1321 1322 1323 | /* If the function returned an error, throw an exception */ if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); rc = SQLITE_ERROR; } /* Copy the result of the function to the top of the stack */ | | | | 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 | /* If the function returned an error, throw an exception */ if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); rc = SQLITE_ERROR; } /* Copy the result of the function to the top of the stack */ sqlite3VdbeChangeEncoding(&ctx.s, encoding); pTos++; pTos->flags = 0; sqlite3VdbeMemMove(pTos, &ctx.s); if( sqlite3VdbeMemTooBig(pTos) ){ goto too_big; } break; } /* Opcode: BitAnd * * * |
︙ | ︙ | |||
1413 1414 1415 1416 1417 1418 1419 | ** convert it into the least integer that is greater than or equal to its ** current value if P1==0, or to the least integer that is strictly ** greater than its current value if P1==1. */ case OP_ForceInt: { /* no-push */ i64 v; assert( pTos>=p->aStack ); | | | 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 | ** convert it into the least integer that is greater than or equal to its ** current value if P1==0, or to the least integer that is strictly ** greater than its current value if P1==1. */ case OP_ForceInt: { /* no-push */ i64 v; assert( pTos>=p->aStack ); applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding); if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){ Release(pTos); pTos--; pc = pOp->p2 - 1; break; } if( pTos->flags & MEM_Int ){ |
︙ | ︙ | |||
1448 1449 1450 1451 1452 1453 1454 | ** ** If the top of the stack is not an integer and P2 is not zero and ** P1 is 1, then the stack is popped. In all other cases, the depth ** of the stack is unchanged. */ case OP_MustBeInt: { /* no-push */ assert( pTos>=p->aStack ); | | | 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 | ** ** If the top of the stack is not an integer and P2 is not zero and ** P1 is 1, then the stack is popped. In all other cases, the depth ** of the stack is unchanged. */ case OP_MustBeInt: { /* no-push */ assert( pTos>=p->aStack ); applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding); if( (pTos->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ if( pOp->p1 ) popStack(&pTos, 1); pc = pOp->p2 - 1; |
︙ | ︙ | |||
1496 1497 1498 1499 1500 1501 1502 | ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToText: { /* same as TK_TO_TEXT, no-push */ assert( pTos>=p->aStack ); if( pTos->flags & MEM_Null ) break; assert( MEM_Str==(MEM_Blob>>3) ); pTos->flags |= (pTos->flags&MEM_Blob)>>3; | | | | | 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 | ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToText: { /* same as TK_TO_TEXT, no-push */ assert( pTos>=p->aStack ); if( pTos->flags & MEM_Null ) break; assert( MEM_Str==(MEM_Blob>>3) ); pTos->flags |= (pTos->flags&MEM_Blob)>>3; applyAffinity(pTos, SQLITE_AFF_TEXT, encoding); rc = ExpandBlob(pTos); assert( pTos->flags & MEM_Str ); pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob); break; } /* Opcode: ToBlob * * * ** ** Force the value on the top of the stack to be a BLOB. ** If the value is numeric, convert it to a string first. ** Strings are simply reinterpreted as blobs with no change ** to the underlying data. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToBlob: { /* same as TK_TO_BLOB, no-push */ assert( pTos>=p->aStack ); if( pTos->flags & MEM_Null ) break; if( (pTos->flags & MEM_Blob)==0 ){ applyAffinity(pTos, SQLITE_AFF_TEXT, encoding); assert( pTos->flags & MEM_Str ); pTos->flags |= MEM_Blob; } pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str); break; } |
︙ | ︙ | |||
1697 1698 1699 1700 1701 1702 1703 | } break; } } affinity = pOp->p1 & 0xFF; if( affinity ){ | | | | | | 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 | } break; } } affinity = pOp->p1 & 0xFF; if( affinity ){ applyAffinity(pNos, affinity, encoding); applyAffinity(pTos, affinity, encoding); } assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 ); ExpandBlob(pNos); ExpandBlob(pTos); res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3); switch( pOp->opcode ){ case OP_Eq: res = res==0; break; case OP_Ne: res = res!=0; break; case OP_Lt: res = res<0; break; case OP_Le: res = res<=0; break; case OP_Gt: res = res>0; break; |
︙ | ︙ | |||
2114 2115 2116 2117 2118 2119 2120 | /* The KeyFetch() or DataFetch() above are fast and will get the entire ** record header in most cases. But they will fail to get the complete ** record header if the record header does not fit on a single page ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to ** acquire the complete header text. */ if( !zRec && avail<offset ){ | | | 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 | /* The KeyFetch() or DataFetch() above are fast and will get the entire ** record header in most cases. But they will fail to get the complete ** record header if the record header does not fit on a single page ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to ** acquire the complete header text. */ if( !zRec && avail<offset ){ rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem); if( rc!=SQLITE_OK ){ goto op_column_out; } zData = sMem.z; } zEndHdr = (u8 *)&zData[offset]; zIdx = (u8 *)&zData[szHdrSz]; |
︙ | ︙ | |||
2168 2169 2170 2171 2172 2173 2174 | */ if( aOffset[p2] ){ assert( rc==SQLITE_OK ); if( zRec ){ zData = &zRec[aOffset[p2]]; }else{ len = sqlite3VdbeSerialTypeLen(aType[p2]); | | < | 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 | */ if( aOffset[p2] ){ assert( rc==SQLITE_OK ); if( zRec ){ zData = &zRec[aOffset[p2]]; }else{ len = sqlite3VdbeSerialTypeLen(aType[p2]); rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); if( rc!=SQLITE_OK ){ goto op_column_out; } zData = sMem.z; } sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos); pTos->enc = encoding; |
︙ | ︙ | |||
2201 2202 2203 2204 2205 2206 2207 | assert( sMem.flags & MEM_Term ); pTos->flags &= ~MEM_Ephem; pTos->flags |= MEM_Dyn|MEM_Term; } /* pTos->z might be pointing to sMem.zShort[]. Fix that so that we ** can abandon sMem */ | | | 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 | assert( sMem.flags & MEM_Term ); pTos->flags &= ~MEM_Ephem; pTos->flags |= MEM_Dyn|MEM_Term; } /* pTos->z might be pointing to sMem.zShort[]. Fix that so that we ** can abandon sMem */ rc = sqlite3VdbeMemMakeWriteable(pTos); op_column_out: break; } /* Opcode: MakeRecord P1 P2 P3 ** |
︙ | ︙ | |||
2297 2298 2299 2300 2301 2302 2303 | /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ for(pRec=pData0; pRec<=pTos; pRec++){ int len; if( zAffinity ){ | | | | 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 | /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ for(pRec=pData0; pRec<=pTos; pRec++){ int len; if( zAffinity ){ applyAffinity(pRec, zAffinity[pRec-pData0], encoding); } if( pRec->flags&MEM_Null ){ containsNull = 1; } if( pRec->flags&MEM_Zero && pRec->n>0 ){ ExpandBlob(pRec); } serial_type = sqlite3VdbeSerialType(pRec, file_format); len = sqlite3VdbeSerialTypeLen(serial_type); nData += len; nHdr += sqlite3VarintLen(serial_type); if( pRec->flags & MEM_Zero ){ /* Only pure zero-filled BLOBs can be input to this Opcode. |
︙ | ︙ | |||
2969 2970 2971 2972 2973 2974 2975 | if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pC->lastRowid = pTos->u.i; pC->rowidIsValid = res==0; }else{ assert( pTos->flags & MEM_Blob ); | | | 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 | if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pC->lastRowid = pTos->u.i; pC->rowidIsValid = res==0; }else{ assert( pTos->flags & MEM_Blob ); ExpandBlob(pTos); rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pC->rowidIsValid = 0; } pC->deferredMoveto = 0; |
︙ | ︙ | |||
3077 3078 3079 3080 3081 3082 3083 | assert( pTos>=p->aStack ); assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pC = p->apCsr[i])->pCursor!=0 ){ int res, rx; assert( pC->isTable==0 ); assert( pTos->flags & MEM_Blob ); | | | 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 | assert( pTos>=p->aStack ); assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pC = p->apCsr[i])->pCursor!=0 ){ int res, rx; assert( pC->isTable==0 ); assert( pTos->flags & MEM_Blob ); Stringify(pTos, encoding); rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res); alreadyExists = rx==SQLITE_OK && res==0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } if( pOp->opcode==OP_Found ){ if( alreadyExists ) pc = pOp->p2 - 1; |
︙ | ︙ | |||
3145 3146 3147 3148 3149 3150 3151 | int nKey; /* Number of bytes in K */ int len; /* Number of bytes in K without the rowid at the end */ int szRowid; /* Size of the rowid column at the end of zKey */ /* Make sure K is a string and make zKey point to K */ assert( pNos->flags & MEM_Blob ); | | | 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 | int nKey; /* Number of bytes in K */ int len; /* Number of bytes in K without the rowid at the end */ int szRowid; /* Size of the rowid column at the end of zKey */ /* Make sure K is a string and make zKey point to K */ assert( pNos->flags & MEM_Blob ); Stringify(pNos, encoding); zKey = pNos->z; nKey = pNos->n; szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey); len = nKey-szRowid; /* Search for an entry in P1 where all but the last four bytes match K. |
︙ | ︙ | |||
3168 3169 3170 3171 3172 3173 3174 | if( res<0 ){ rc = sqlite3BtreeNext(pCrsr, &res); if( res ){ pc = pOp->p2 - 1; break; } } | | | | 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 | if( res<0 ){ rc = sqlite3BtreeNext(pCrsr, &res); if( res ){ pc = pOp->p2 - 1; break; } } rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; if( res>0 ){ pc = pOp->p2 - 1; break; } /* At this point, pCrsr is pointing to an entry in P1 where all but ** the final entry (the rowid) matches K. Check to see if the ** final rowid column is different from R. If it equals R then jump ** immediately to P2. */ rc = sqlite3VdbeIdxRowid(pCrsr, &v); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( v==R ){ pc = pOp->p2 - 1; break; } |
︙ | ︙ | |||
3872 3873 3874 3875 3876 3877 3878 | BtCursor *pCrsr; assert( pTos>=p->aStack ); assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); assert( pTos->flags & MEM_Blob ); if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ assert( pC->isTable==0 ); | | | 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 | BtCursor *pCrsr; assert( pTos>=p->aStack ); assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); assert( pTos->flags & MEM_Blob ); if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ assert( pC->isTable==0 ); rc = ExpandBlob(pTos); if( rc==SQLITE_OK ){ int nKey = pTos->n; const char *zKey = pTos->z; rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p2); assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; } |
︙ | ︙ | |||
3939 3940 3941 3942 3943 3944 3945 | i64 rowid; assert( pC->deferredMoveto==0 ); assert( pC->isTable==0 ); if( pC->nullRow ){ pTos->flags = MEM_Null; }else{ | | | 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 | i64 rowid; assert( pC->deferredMoveto==0 ); assert( pC->isTable==0 ); if( pC->nullRow ){ pTos->flags = MEM_Null; }else{ rc = sqlite3VdbeIdxRowid(pCrsr, &rowid); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pTos->flags = MEM_Int; pTos->u.i = rowid; } } |
︙ | ︙ | |||
4008 4009 4010 4011 4012 4013 4014 | assert( p->apCsr[i]!=0 ); assert( pTos>=p->aStack ); if( (pC = p->apCsr[i])->pCursor!=0 ){ int res; assert( pTos->flags & MEM_Blob ); /* Created using OP_MakeRecord */ assert( pC->deferredMoveto==0 ); | | | | 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 | assert( p->apCsr[i]!=0 ); assert( pTos>=p->aStack ); if( (pC = p->apCsr[i])->pCursor!=0 ){ int res; assert( pTos->flags & MEM_Blob ); /* Created using OP_MakeRecord */ assert( pC->deferredMoveto==0 ); ExpandBlob(pTos); *pC->pIncrKey = pOp->p3!=0; assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT ); rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res); *pC->pIncrKey = 0; if( rc!=SQLITE_OK ){ break; } if( pOp->opcode==OP_IdxLT ){ res = -res; }else if( pOp->opcode==OP_IdxGE ){ |
︙ | ︙ | |||
4333 4334 4335 4336 4337 4338 4339 | }else{ pTos->z = z; pTos->n = strlen(z); pTos->flags = MEM_Str | MEM_Dyn | MEM_Term; pTos->xDel = 0; } pTos->enc = SQLITE_UTF8; | | | 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 | }else{ pTos->z = z; pTos->n = strlen(z); pTos->flags = MEM_Str | MEM_Dyn | MEM_Term; pTos->xDel = 0; } pTos->enc = SQLITE_UTF8; sqlite3VdbeChangeEncoding(pTos, encoding); sqlite3_free(aRoot); break; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* Opcode: FifoWrite * * * ** |
︙ | ︙ | |||
4431 4432 4433 4434 4435 4436 4437 | ** After the data is stored in the memory location, the ** stack is popped once if P2 is 1. If P2 is zero, then ** the original data remains on the stack. */ case OP_MemStore: { /* no-push */ assert( pTos>=p->aStack ); assert( pOp->p1>=0 && pOp->p1<p->nMem ); | | | 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 | ** After the data is stored in the memory location, the ** stack is popped once if P2 is 1. If P2 is zero, then ** the original data remains on the stack. */ case OP_MemStore: { /* no-push */ assert( pTos>=p->aStack ); assert( pOp->p1>=0 && pOp->p1<p->nMem ); rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos); pTos--; /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will ** restore the top of the stack to its original value. */ if( pOp->p2 ){ break; |
︙ | ︙ | |||
4585 4586 4587 4588 4589 4590 4591 | ** Move the content of memory cell P2 over to memory cell P1. ** Any prior content of P1 is erased. Memory cell P2 is left ** containing a NULL. */ case OP_MemMove: { assert( pOp->p1>=0 && pOp->p1<p->nMem ); assert( pOp->p2>=0 && pOp->p2<p->nMem ); | | | 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 | ** Move the content of memory cell P2 over to memory cell P1. ** Any prior content of P1 is erased. Memory cell P2 is left ** containing a NULL. */ case OP_MemMove: { assert( pOp->p1>=0 && pOp->p1<p->nMem ); assert( pOp->p2>=0 && pOp->p2<p->nMem ); rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]); break; } /* Opcode: AggStep P1 P2 P3 ** ** Execute the step function for an aggregate. The ** function has P2 arguments. P3 is a pointer to the FuncDef |
︙ | ︙ | |||
4621 4622 4623 4624 4625 4626 4627 4628 4629 | ctx.pFunc = (FuncDef*)pOp->p3; assert( pOp->p1>=0 && pOp->p1<p->nMem ); ctx.pMem = pMem = &p->aMem[pOp->p1]; pMem->n++; ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.s.xDel = 0; ctx.isError = 0; ctx.pColl = 0; | > < | 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 | ctx.pFunc = (FuncDef*)pOp->p3; assert( pOp->p1>=0 && pOp->p1<p->nMem ); ctx.pMem = pMem = &p->aMem[pOp->p1]; pMem->n++; ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.s.xDel = 0; ctx.s.db = db; ctx.isError = 0; ctx.pColl = 0; if( ctx.pFunc->needCollSeq ){ assert( pOp>p->aOp ); assert( pOp[-1].p3type==P3_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); ctx.pColl = (CollSeq *)pOp[-1].p3; } (ctx.pFunc->xStep)(&ctx, n, apVal); |
︙ | ︙ | |||
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 | if( pModule->xColumn==0 ){ sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0); rc = SQLITE_ERROR; } else { sqlite3_context sContext; memset(&sContext, 0, sizeof(sContext)); sContext.s.flags = MEM_Null; if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); /* Copy the result of the function to the top of the stack. We ** do this regardless of whether or not an error occured to ensure any ** dynamic allocation in sContext.s (a Mem struct) is released. */ | > | | | 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 | if( pModule->xColumn==0 ){ sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0); rc = SQLITE_ERROR; } else { sqlite3_context sContext; memset(&sContext, 0, sizeof(sContext)); sContext.s.flags = MEM_Null; sContext.s.db = db; if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); /* Copy the result of the function to the top of the stack. We ** do this regardless of whether or not an error occured to ensure any ** dynamic allocation in sContext.s (a Mem struct) is released. */ sqlite3VdbeChangeEncoding(&sContext.s, encoding); pTos++; pTos->flags = 0; sqlite3VdbeMemMove(pTos, &sContext.s); if( sqlite3SafetyOn(db) ){ goto abort_due_to_misuse; } if( sqlite3VdbeMemTooBig(pTos) ){ goto too_big; } |
︙ | ︙ | |||
5024 5025 5026 5027 5028 5029 5030 | ** on the top of the stack is popped and passed as the zName argument ** to the xRename method. */ case OP_VRename: { /* no-push */ sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3); assert( pVtab->pModule->xRename ); | | | 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 | ** on the top of the stack is popped and passed as the zName argument ** to the xRename method. */ case OP_VRename: { /* no-push */ sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3); assert( pVtab->pModule->xRename ); Stringify(pTos, encoding); if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; sqlite3VtabLock(pVtab); rc = pVtab->pModule->xRename(pVtab, pTos->z); sqlite3VtabUnlock(db, pVtab); if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
︙ | ︙ | |||
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 | #ifndef NDEBUG /* Sanity checking on the top element of the stack. If the previous ** instruction was VNoChange, then the flags field of the top ** of the stack is set to 0. This is technically invalid for a memory ** cell, so avoid calling MemSanity() in this case. */ if( pTos>=p->aStack && pTos->flags ){ sqlite3VdbeMemSanity(pTos); assert( !sqlite3VdbeMemTooBig(pTos) ); } assert( pc>=-1 && pc<p->nOp ); #ifdef SQLITE_DEBUG /* Code for tracing the vdbe stack. */ | > | 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 | #ifndef NDEBUG /* Sanity checking on the top element of the stack. If the previous ** instruction was VNoChange, then the flags field of the top ** of the stack is set to 0. This is technically invalid for a memory ** cell, so avoid calling MemSanity() in this case. */ if( pTos>=p->aStack && pTos->flags ){ assert( pTos->db==db ); sqlite3VdbeMemSanity(pTos); assert( !sqlite3VdbeMemTooBig(pTos) ); } assert( pc>=-1 && pc<p->nOp ); #ifdef SQLITE_DEBUG /* Code for tracing the vdbe stack. */ |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
126 127 128 129 130 131 132 133 134 135 136 137 138 139 | */ struct Mem { union { i64 i; /* Integer value. Or FuncDef* when flags==MEM_Agg */ FuncDef *pDef; /* Used only when flags==MEM_Agg */ } u; double r; /* Real value */ char *z; /* String or BLOB value */ int n; /* Number of characters in string value, including '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ char zShort[NBFS]; /* Space for short strings */ | > | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | */ struct Mem { union { i64 i; /* Integer value. Or FuncDef* when flags==MEM_Agg */ FuncDef *pDef; /* Used only when flags==MEM_Agg */ } u; double r; /* Real value */ sqlite3 *db; /* The associated database connection */ char *z; /* String or BLOB value */ int n; /* Number of characters in string value, including '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ char zShort[NBFS]; /* Space for short strings */ |
︙ | ︙ | |||
215 216 217 218 219 220 221 | struct sqlite3_context { FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */ VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */ Mem s; /* The return value is stored here */ Mem *pMem; /* Memory cell used to store aggregate context */ u8 isError; /* Set to true for an error */ CollSeq *pColl; /* Collating sequence */ | < | 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | struct sqlite3_context { FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */ VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */ Mem s; /* The return value is stored here */ Mem *pMem; /* Memory cell used to store aggregate context */ u8 isError; /* Set to true for an error */ CollSeq *pColl; /* Collating sequence */ }; /* ** A Set structure is used for quick testing to see if a value ** is part of a small set. Sets are used to implement code like ** this: ** x.y IN ('hi','hoo','hum') |
︙ | ︙ | |||
371 372 373 374 375 376 377 | int sqlite3VdbeSerialTypeLen(u32); u32 sqlite3VdbeSerialType(Mem*, int); int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int); int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); void sqlite3VdbeDeleteAuxData(VdbeFunc*, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); | | | | | | | | | | | | | | | | | 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 | int sqlite3VdbeSerialTypeLen(u32); u32 sqlite3VdbeSerialType(Mem*, int); int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int); int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); void sqlite3VdbeDeleteAuxData(VdbeFunc*, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); int sqlite3VdbeIdxKeyCompare(Cursor*,int,const unsigned char*,int*); int sqlite3VdbeIdxRowid(BtCursor *, i64 *); int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*); int sqlite3VdbeIdxRowidLen(const u8*); int sqlite3VdbeExec(Vdbe*); int sqlite3VdbeList(Vdbe*); int sqlite3VdbeHalt(Vdbe*); int sqlite3VdbeChangeEncoding(Mem *, int); int sqlite3VdbeMemTooBig(Mem*); int sqlite3VdbeMemCopy(Mem*, const Mem*); void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int); int sqlite3VdbeMemMove(Mem*, Mem*); int sqlite3VdbeMemNulTerminate(Mem*); int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*)); void sqlite3VdbeMemSetInt64(Mem*, i64); void sqlite3VdbeMemSetDouble(Mem*, double); void sqlite3VdbeMemSetNull(Mem*); void sqlite3VdbeMemSetZeroBlob(Mem*,int); int sqlite3VdbeMemMakeWriteable(Mem*); int sqlite3VdbeMemDynamicify(Mem*); int sqlite3VdbeMemStringify(Mem*, int); i64 sqlite3VdbeIntValue(Mem*); int sqlite3VdbeMemIntegerify(Mem*); double sqlite3VdbeRealValue(Mem*); void sqlite3VdbeIntegerAffinity(Mem*); int sqlite3VdbeMemRealify(Mem*); int sqlite3VdbeMemNumerify(Mem*); int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*); void sqlite3VdbeMemRelease(Mem *p); int sqlite3VdbeMemFinalize(Mem*, FuncDef*); #ifndef NDEBUG void sqlite3VdbeMemSanity(Mem*); int sqlite3VdbeOpcodeNoPush(u8); #endif int sqlite3VdbeMemTranslate(Mem*, u8); #ifdef SQLITE_DEBUG void sqlite3VdbePrintSql(Vdbe*); void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf); #endif int sqlite3VdbeMemHandleBom(Mem *pMem); void sqlite3VdbeFifoInit(Fifo*); int sqlite3VdbeFifoPush(Fifo*, i64); int sqlite3VdbeFifoPop(Fifo*, i64*); void sqlite3VdbeFifoClear(Fifo*); #ifndef SQLITE_OMIT_INCRBLOB int sqlite3VdbeMemExpandBlob(Mem *); #else #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK #endif #endif /* !defined(_VDBEINT_H_) */ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
93 94 95 96 97 98 99 | /**************************** sqlite3_value_ ******************************* ** The following routines extract information from a Mem or sqlite3_value ** structure. */ const void *sqlite3_value_blob(sqlite3_value *pVal){ Mem *p = (Mem*)pVal; if( p->flags & (MEM_Blob|MEM_Str) ){ | | | | | | | | | | | | | | | | | 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | /**************************** sqlite3_value_ ******************************* ** The following routines extract information from a Mem or sqlite3_value ** structure. */ const void *sqlite3_value_blob(sqlite3_value *pVal){ Mem *p = (Mem*)pVal; if( p->flags & (MEM_Blob|MEM_Str) ){ sqlite3VdbeMemExpandBlob(p); p->flags &= ~MEM_Str; p->flags |= MEM_Blob; return p->z; }else{ return sqlite3_value_text(pVal); } } int sqlite3_value_bytes(sqlite3_value *pVal){ return sqlite3ValueBytes(pVal, SQLITE_UTF8); } int sqlite3_value_bytes16(sqlite3_value *pVal){ return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); } double sqlite3_value_double(sqlite3_value *pVal){ return sqlite3VdbeRealValue((Mem*)pVal); } int sqlite3_value_int(sqlite3_value *pVal){ return sqlite3VdbeIntValue((Mem*)pVal); } sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ return sqlite3VdbeIntValue((Mem*)pVal); } const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); } #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_value_text16(sqlite3_value* pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); } const void *sqlite3_value_text16be(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16BE); } const void *sqlite3_value_text16le(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16LE); } #endif /* SQLITE_OMIT_UTF16 */ int sqlite3_value_type(sqlite3_value* pVal){ return pVal->type; } /* sqlite3_value_numeric_type() defined in vdbe.c */ /**************************** sqlite3_result_ ******************************* ** The following routines are used by user-defined functions to specify ** the function result. */ void sqlite3_result_blob( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( n>=0 ); sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); } void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ sqlite3VdbeMemSetDouble(&pCtx->s, rVal); } void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ pCtx->isError = 1; sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); } #ifndef SQLITE_OMIT_UTF16 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ pCtx->isError = 1; sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); } #endif void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); } void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ sqlite3VdbeMemSetInt64(&pCtx->s, iVal); } void sqlite3_result_null(sqlite3_context *pCtx){ sqlite3VdbeMemSetNull(&pCtx->s); } void sqlite3_result_text( sqlite3_context *pCtx, const char *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); } #ifndef SQLITE_OMIT_UTF16 void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); } void sqlite3_result_text16be( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); } void sqlite3_result_text16le( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); } #endif /* SQLITE_OMIT_UTF16 */ void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ sqlite3VdbeMemCopy(&pCtx->s, pValue); } void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); } /* Force an SQLITE_TOOBIG error. */ void sqlite3_result_error_toobig(sqlite3_context *pCtx){ |
︙ | ︙ | |||
347 348 349 350 351 352 353 | /* ** This is the top-level implementation of sqlite3_step(). Call ** sqlite3Step() to do most of the work. If a schema error occurs, ** call sqlite3Reprepare() and try again. */ #ifdef SQLITE_OMIT_PARSER int sqlite3_step(sqlite3_stmt *pStmt){ | > > > > | > > > > | 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | /* ** This is the top-level implementation of sqlite3_step(). Call ** sqlite3Step() to do most of the work. If a schema error occurs, ** call sqlite3Reprepare() and try again. */ #ifdef SQLITE_OMIT_PARSER int sqlite3_step(sqlite3_stmt *pStmt){ int rc; Vdbe *v; v = (Vdbe*)pStmt; sqlite3_mutex_enter(v->db->mutex); rc = sqlite3Step(v); sqlite3_mutex_leave(v->db->mutex); return rc; } #else int sqlite3_step(sqlite3_stmt *pStmt){ int cnt = 0; int rc; Vdbe *v = (Vdbe*)pStmt; sqlite3_mutex_enter(v->db->mutex); while( (rc = sqlite3Step(v))==SQLITE_SCHEMA && cnt++ < 5 && sqlite3Reprepare(v) ){ sqlite3_reset(pStmt); v->expired = 0; } sqlite3_mutex_leave(v->db->mutex); return rc; } #endif /* ** Extract the user data from a sqlite3_context structure and return a ** pointer to it. |
︙ | ︙ | |||
400 401 402 403 404 405 406 | /* ** Allocate or return the aggregate context for a user function. A new ** context is allocated on the first call. Subsequent calls return the ** same context that was returned on prior calls. */ void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ | | > > | | > > > | 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | /* ** Allocate or return the aggregate context for a user function. A new ** context is allocated on the first call. Subsequent calls return the ** same context that was returned on prior calls. */ void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ Mem *pMem; assert( p && p->pFunc && p->pFunc->xStep ); assert( sqlite3_mutex_held(p->s.db->mutex) ); pMem = p->pMem; if( (pMem->flags & MEM_Agg)==0 ){ if( nByte==0 ){ assert( pMem->flags==MEM_Null ); pMem->z = 0; }else{ pMem->flags = MEM_Agg; pMem->xDel = sqlite3_free; pMem->u.pDef = p->pFunc; if( nByte<=NBFS ){ pMem->z = pMem->zShort; memset(pMem->z, 0, nByte); }else{ pMem->z = sqlite3DbMallocZero(p->s.db, nByte); } } } return (void*)pMem->z; } /* ** Return the auxilary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. */ void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ VdbeFunc *pVdbeFunc; assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); pVdbeFunc = pCtx->pVdbeFunc; if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ return 0; } return pVdbeFunc->apAux[iArg].pAux; } /* |
︙ | ︙ | |||
448 449 450 451 452 453 454 455 456 457 458 459 460 | void *pAux, void (*xDelete)(void*) ){ struct AuxData *pAuxData; VdbeFunc *pVdbeFunc; if( iArg<0 ) goto failed; pVdbeFunc = pCtx->pVdbeFunc; if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; pVdbeFunc = sqlite3_realloc(pVdbeFunc, nMalloc); if( !pVdbeFunc ){ | > | | 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 | void *pAux, void (*xDelete)(void*) ){ struct AuxData *pAuxData; VdbeFunc *pVdbeFunc; if( iArg<0 ) goto failed; assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); pVdbeFunc = pCtx->pVdbeFunc; if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; pVdbeFunc = sqlite3_realloc(pVdbeFunc, nMalloc); if( !pVdbeFunc ){ pCtx->s.db->mallocFailed = 1; goto failed; } pCtx->pVdbeFunc = pVdbeFunc; memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); pVdbeFunc->nAux = iArg+1; pVdbeFunc->pFunc = pCtx->pFunc; } |
︙ | ︙ | |||
520 521 522 523 524 525 526 | ** If iCol is not valid, return a pointer to a Mem which has a value ** of NULL. */ static Mem *columnMem(sqlite3_stmt *pStmt, int i){ Vdbe *pVm = (Vdbe *)pStmt; int vals = sqlite3_data_count(pStmt); if( pVm==0 || pVm->resOnStack==0 || i>=pVm->nResColumn || i<0 ){ | | | 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | ** If iCol is not valid, return a pointer to a Mem which has a value ** of NULL. */ static Mem *columnMem(sqlite3_stmt *pStmt, int i){ Vdbe *pVm = (Vdbe *)pStmt; int vals = sqlite3_data_count(pStmt); if( pVm==0 || pVm->resOnStack==0 || i>=pVm->nResColumn || i<0 ){ static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL }; sqlite3Error(pVm->db, SQLITE_RANGE, 0); return (Mem*)&nullMem; } return &pVm->pTos[(1-vals)+i]; } /* |
︙ | ︙ | |||
796 797 798 799 800 801 802 | } sqlite3_mutex_enter(p->db->mutex); rc = vdbeUnbind(p, i); if( rc || zData==0 ){ return rc; } pVar = &p->aVar[i-1]; | | | | 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 | } sqlite3_mutex_enter(p->db->mutex); rc = vdbeUnbind(p, i); if( rc || zData==0 ){ return rc; } pVar = &p->aVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); if( rc==SQLITE_OK && encoding!=0 ){ rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); } sqlite3Error(p->db, rc, 0); rc = sqlite3ApiExit(p->db, rc); sqlite3_mutex_leave(p->db->mutex); return rc; } |
︙ | ︙ | |||
878 879 880 881 882 883 884 | #endif /* SQLITE_OMIT_UTF16 */ int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ int rc; Vdbe *p = (Vdbe *)pStmt; sqlite3_mutex_enter(p->db->mutex); rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ | | | 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 | #endif /* SQLITE_OMIT_UTF16 */ int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ int rc; Vdbe *p = (Vdbe *)pStmt; sqlite3_mutex_enter(p->db->mutex); rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); } sqlite3_mutex_leave(p->db->mutex); return rc; } int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ int rc; Vdbe *p = (Vdbe *)pStmt; |
︙ | ︙ | |||
983 984 985 986 987 988 989 | return SQLITE_MISUSE; } if( pFrom->nVar!=pTo->nVar ){ return SQLITE_ERROR; } for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){ sqlite3MallocDisallow(); | | | 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 | return SQLITE_MISUSE; } if( pFrom->nVar!=pTo->nVar ){ return SQLITE_ERROR; } for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){ sqlite3MallocDisallow(); rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); sqlite3MallocAllow(); } assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); return rc; } /* |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
676 677 678 679 680 681 682 683 684 685 686 687 688 689 | /* ** Release an array of N Mem elements */ static void releaseMemArray(Mem *p, int N){ if( p ){ while( N-->0 ){ sqlite3VdbeMemRelease(p++); } } } #ifndef SQLITE_OMIT_EXPLAIN /* | > | 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | /* ** Release an array of N Mem elements */ static void releaseMemArray(Mem *p, int N){ if( p ){ while( N-->0 ){ assert( N<2 || p[0].db==p[1].db ); sqlite3VdbeMemRelease(p++); } } } #ifndef SQLITE_OMIT_EXPLAIN /* |
︙ | ︙ | |||
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 | p->okVar = 0; p->apArg = (Mem**)&p->aVar[nVar]; p->azVar = (char**)&p->apArg[nArg]; p->apCsr = (Cursor**)&p->azVar[nVar]; p->nCursor = nCursor; for(n=0; n<nVar; n++){ p->aVar[n].flags = MEM_Null; } } } for(n=0; n<p->nMem; n++){ p->aMem[n].flags = MEM_Null; } p->pTos = &p->aStack[-1]; p->pc = -1; p->rc = SQLITE_OK; p->uniqueCnt = 0; p->returnDepth = 0; | > > > > > | 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 | p->okVar = 0; p->apArg = (Mem**)&p->aVar[nVar]; p->azVar = (char**)&p->apArg[nArg]; p->apCsr = (Cursor**)&p->azVar[nVar]; p->nCursor = nCursor; for(n=0; n<nVar; n++){ p->aVar[n].flags = MEM_Null; p->aVar[n].db = db; } for(n=0; n<nStack; n++){ p->aStack[n].db = db; } } } for(n=0; n<p->nMem; n++){ p->aMem[n].flags = MEM_Null; p->aMem[n].db = db; } p->pTos = &p->aStack[-1]; p->pc = -1; p->rc = SQLITE_OK; p->uniqueCnt = 0; p->returnDepth = 0; |
︙ | ︙ | |||
1028 1029 1030 1031 1032 1033 1034 | Mem *pColName; assert( idx<p->nResColumn ); assert( var<COLNAME_N ); if( p->db->mallocFailed ) return SQLITE_NOMEM; assert( p->aColName!=0 ); pColName = &(p->aColName[idx+var*p->nResColumn]); if( N==P3_DYNAMIC || N==P3_STATIC ){ | < | | < | 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 | Mem *pColName; assert( idx<p->nResColumn ); assert( var<COLNAME_N ); if( p->db->mallocFailed ) return SQLITE_NOMEM; assert( p->aColName!=0 ); pColName = &(p->aColName[idx+var*p->nResColumn]); if( N==P3_DYNAMIC || N==P3_STATIC ){ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC); }else{ rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT); } if( rc==SQLITE_OK && N==P3_DYNAMIC ){ pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn; pColName->xDel = 0; } return rc; } |
︙ | ︙ | |||
1546 1547 1548 1549 1550 1551 1552 | /* If the VDBE has be run even partially, then transfer the error code ** and error message from the VDBE into the main database structure. But ** if the VDBE has just been set to run but has not actually executed any ** instructions yet, leave the main database error information unchanged. */ if( p->pc>=0 ){ if( p->zErrMsg ){ | | | 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 | /* If the VDBE has be run even partially, then transfer the error code ** and error message from the VDBE into the main database structure. But ** if the VDBE has just been set to run but has not actually executed any ** instructions yet, leave the main database error information unchanged. */ if( p->pc>=0 ){ if( p->zErrMsg ){ sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free); db->errCode = p->rc; p->zErrMsg = 0; }else if( p->rc ){ sqlite3Error(db, p->rc, 0); }else{ sqlite3Error(db, SQLITE_OK, 0); } |
︙ | ︙ | |||
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 | int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; const unsigned char *aKey2 = (const unsigned char *)pKey2; Mem mem1; Mem mem2; mem1.enc = pKeyInfo->enc; mem2.enc = pKeyInfo->enc; idx1 = GetVarint(aKey1, szHdr1); d1 = szHdr1; idx2 = GetVarint(aKey2, szHdr2); d2 = szHdr2; nField = pKeyInfo->nField; while( idx1<szHdr1 && idx2<szHdr2 ){ | > > | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 | int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; const unsigned char *aKey2 = (const unsigned char *)pKey2; Mem mem1; Mem mem2; mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem2.enc = pKeyInfo->enc; mem2.db = pKeyInfo->db; idx1 = GetVarint(aKey1, szHdr1); d1 = szHdr1; idx2 = GetVarint(aKey2, szHdr2); d2 = szHdr2; nField = pKeyInfo->nField; while( idx1<szHdr1 && idx2<szHdr2 ){ |
︙ | ︙ | |||
2102 2103 2104 2105 2106 2107 2108 | /* ** pCur points at an index entry created using the OP_MakeRecord opcode. ** Read the rowid (the last field in the record) and store it in *rowid. ** Return SQLITE_OK if everything works, or an error code otherwise. */ | | | | 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 | /* ** pCur points at an index entry created using the OP_MakeRecord opcode. ** Read the rowid (the last field in the record) and store it in *rowid. ** Return SQLITE_OK if everything works, or an error code otherwise. */ int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){ i64 nCellKey = 0; int rc; u32 szHdr; /* Size of the header */ u32 typeRowid; /* Serial type of the rowid */ u32 lenRowid; /* Size of the rowid */ Mem m, v; sqlite3BtreeKeySize(pCur, &nCellKey); if( nCellKey<=0 ){ return SQLITE_CORRUPT_BKPT; } rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); if( rc ){ return rc; } sqlite3GetVarint32((u8*)m.z, &szHdr); sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid); lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); |
︙ | ︙ | |||
2138 2139 2140 2141 2142 2143 2144 | ** or greater than pKey. Return SQLITE_OK on success. ** ** pKey is either created without a rowid or is truncated so that it ** omits the rowid at the end. The rowid at the end of the index entry ** is ignored as well. */ int sqlite3VdbeIdxKeyCompare( | < | > | 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 | ** or greater than pKey. Return SQLITE_OK on success. ** ** pKey is either created without a rowid or is truncated so that it ** omits the rowid at the end. The rowid at the end of the index entry ** is ignored as well. */ int sqlite3VdbeIdxKeyCompare( Cursor *pC, /* The cursor to compare against */ int nKey, const u8 *pKey, /* The key to compare */ int *res /* Write the comparison result here */ ){ i64 nCellKey = 0; int rc; BtCursor *pCur = pC->pCursor; int lenRowid; Mem m; sqlite3BtreeKeySize(pCur, &nCellKey); if( nCellKey<=0 ){ *res = 0; return SQLITE_OK; } rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); if( rc ){ return rc; } lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z); *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey); sqlite3VdbeMemRelease(&m); return SQLITE_OK; } /* ** This routine sets the value to be returned by subsequent calls to ** sqlite3_changes() on the database handle 'db'. */ void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ assert( sqlite3_mutex_held(db->mutex) ); db->nChange = nChange; db->nTotalChange += nChange; } /* ** Set a flag in the vdbe to update the change counter when it is finalised ** or reset. |
︙ | ︙ |
Changes to src/vdbeblob.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement incremental BLOB I/O. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement incremental BLOB I/O. ** ** $Id: vdbeblob.c,v 1.14 2007/08/21 19:33:57 drh Exp $ */ #include "sqliteInt.h" #include "vdbeInt.h" #ifndef SQLITE_OMIT_INCRBLOB |
︙ | ︙ | |||
243 244 245 246 247 248 249 | /* ** Close a blob handle that was previously created using ** sqlite3_blob_open(). */ int sqlite3_blob_close(sqlite3_blob *pBlob){ Incrblob *p = (Incrblob *)pBlob; | < | 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | /* ** Close a blob handle that was previously created using ** sqlite3_blob_open(). */ int sqlite3_blob_close(sqlite3_blob *pBlob){ Incrblob *p = (Incrblob *)pBlob; sqlite3_mutex *mutex = p->db->mutex; int rc; sqlite3_mutex_enter(mutex); rc = sqlite3_finalize(p->pStmt); sqlite3_mutex_leave(mutex); sqlite3_free(p); |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | #include <ctype.h> #include "vdbeInt.h" /* ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) ** P if required. */ | | | > | | > | | | > | < | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | #include <ctype.h> #include "vdbeInt.h" /* ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) ** P if required. */ #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) /* ** If pMem is an object with a valid string representation, this routine ** ensures the internal encoding for the string representation is ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. ** ** If pMem is not a string object, or the encoding of the string ** representation is already stored using the requested encoding, then this ** routine is a no-op. ** ** SQLITE_OK is returned if the conversion is successful (or not required). ** SQLITE_NOMEM may be returned if a malloc() fails during conversion ** between formats. */ int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ int rc; if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ return SQLITE_OK; } assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); #ifdef SQLITE_OMIT_UTF16 return SQLITE_ERROR; #else /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, ** then the encoding of the value may not have changed. */ rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); return rc; #endif } /* ** Make the given Mem object MEM_Dyn. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemDynamicify(Mem *pMem){ int n; u8 *z; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); expandBlob(pMem); if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){ return SQLITE_OK; } assert( (pMem->flags & MEM_Dyn)==0 ); n = pMem->n; assert( pMem->flags & (MEM_Str|MEM_Blob) ); z = sqlite3DbMallocRaw(pMem->db, n+2 ); if( z==0 ){ return SQLITE_NOMEM; } pMem->flags |= MEM_Dyn|MEM_Term; pMem->xDel = 0; memcpy(z, pMem->z, n ); z[n] = 0; z[n+1] = 0; pMem->z = (char*)z; pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short); return SQLITE_OK; } /* ** If the given Mem* has a zero-filled tail, turn it into an ordinary ** blob stored in dynamically allocated space. */ #ifndef SQLITE_OMIT_INCRBLOB int sqlite3VdbeMemExpandBlob(Mem *pMem){ if( pMem->flags & MEM_Zero ){ char *pNew; int nByte; assert( (pMem->flags & MEM_Blob)!=0 ); nByte = pMem->n + pMem->u.i; if( nByte<=0 ) nByte = 1; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pNew = sqlite3DbMallocRaw(pMem->db, nByte); if( pNew==0 ){ return SQLITE_NOMEM; } memcpy(pNew, pMem->z, pMem->n); memset(&pNew[pMem->n], 0, pMem->u.i); sqlite3VdbeMemRelease(pMem); pMem->z = pNew; pMem->n += pMem->u.i; |
︙ | ︙ | |||
121 122 123 124 125 126 127 | /* ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes ** of the Mem.z[] array can be modified. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ | | > | | < | > | | | < | 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | /* ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes ** of the Mem.z[] array can be modified. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemMakeWriteable(Mem *pMem){ int n; u8 *z; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); expandBlob(pMem); if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){ return SQLITE_OK; } assert( (pMem->flags & MEM_Dyn)==0 ); assert( pMem->flags & (MEM_Str|MEM_Blob) ); if( (n = pMem->n)+2<sizeof(pMem->zShort) ){ z = (u8*)pMem->zShort; pMem->flags |= MEM_Short|MEM_Term; }else{ z = sqlite3DbMallocRaw(pMem->db, n+2 ); if( z==0 ){ return SQLITE_NOMEM; } pMem->flags |= MEM_Dyn|MEM_Term; pMem->xDel = 0; } memcpy(z, pMem->z, n ); z[n] = 0; z[n+1] = 0; pMem->z = (char*)z; pMem->flags &= ~(MEM_Ephem|MEM_Static); assert(0==(1&(int)pMem->z)); return SQLITE_OK; } /* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ return SQLITE_OK; /* Nothing to do */ } if( pMem->flags & (MEM_Static|MEM_Ephem) ){ return sqlite3VdbeMemMakeWriteable(pMem); }else{ char *z; sqlite3VdbeMemExpandBlob(pMem); z = sqlite3DbMallocRaw(pMem->db, pMem->n+2); if( !z ){ return SQLITE_NOMEM; } memcpy(z, pMem->z, pMem->n); z[pMem->n] = 0; z[pMem->n+1] = 0; if( pMem->xDel ){ pMem->xDel(pMem->z); |
︙ | ︙ | |||
196 197 198 199 200 201 202 | ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the later is an internal programming error. */ | | > | > > | 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the later is an internal programming error. */ int sqlite3VdbeMemStringify(Mem *pMem, int enc){ int rc = SQLITE_OK; int fg = pMem->flags; char *z = pMem->zShort; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !(fg&MEM_Zero) ); assert( !(fg&(MEM_Str|MEM_Blob)) ); assert( fg&(MEM_Int|MEM_Real) ); /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 ** string representation of the value. Then, if the required encoding ** is UTF-16le or UTF-16be do a translation. ** ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. */ if( fg & MEM_Int ){ sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i); }else{ assert( fg & MEM_Real ); sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r); } pMem->n = strlen(z); pMem->z = z; pMem->enc = SQLITE_UTF8; pMem->flags |= MEM_Str | MEM_Short | MEM_Term; sqlite3VdbeChangeEncoding(pMem, enc); return rc; } /* ** Memory cell pMem contains the context of an aggregate function. ** This routine calls the finalize method for that function. The ** result of the aggregate is stored back into pMem. ** ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK ** otherwise. */ int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ int rc = SQLITE_OK; if( pFunc && pFunc->xFinalize ){ sqlite3_context ctx; assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); ctx.s.flags = MEM_Null; ctx.s.z = pMem->zShort; ctx.s.db = pMem->db; ctx.pMem = pMem; ctx.pFunc = pFunc; ctx.isError = 0; pFunc->xFinalize(&ctx); if( pMem->z && pMem->z!=pMem->zShort ){ sqlite3_free( pMem->z ); } |
︙ | ︙ | |||
264 265 266 267 268 269 270 271 272 273 274 275 276 277 | /* ** Release any memory held by the Mem. This may leave the Mem in an ** inconsistent state, for example with (Mem.z==0) and ** (Mem.type==SQLITE_TEXT). */ void sqlite3VdbeMemRelease(Mem *p){ if( p->flags & (MEM_Dyn|MEM_Agg) ){ if( p->xDel ){ if( p->flags & MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); sqlite3VdbeMemRelease(p); }else{ | > | 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | /* ** Release any memory held by the Mem. This may leave the Mem in an ** inconsistent state, for example with (Mem.z==0) and ** (Mem.type==SQLITE_TEXT). */ void sqlite3VdbeMemRelease(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); if( p->flags & (MEM_Dyn|MEM_Agg) ){ if( p->xDel ){ if( p->flags & MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); sqlite3VdbeMemRelease(p); }else{ |
︙ | ︙ | |||
292 293 294 295 296 297 298 | ** a floating-point then the value returned is the integer part. ** If pMem is a string or blob, then we make an attempt to convert ** it into a integer and return that. If pMem is NULL, return 0. ** ** If pMem is a string, its encoding might be changed. */ i64 sqlite3VdbeIntValue(Mem *pMem){ | > > | | | > | | > > > > | 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | ** a floating-point then the value returned is the integer part. ** If pMem is a string or blob, then we make an attempt to convert ** it into a integer and return that. If pMem is NULL, return 0. ** ** If pMem is a string, its encoding might be changed. */ i64 sqlite3VdbeIntValue(Mem *pMem){ int flags; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); flags = pMem->flags; if( flags & MEM_Int ){ return pMem->u.i; }else if( flags & MEM_Real ){ return (i64)pMem->r; }else if( flags & (MEM_Str|MEM_Blob) ){ i64 value; pMem->flags |= MEM_Str; if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) || sqlite3VdbeMemNulTerminate(pMem) ){ return 0; } assert( pMem->z ); sqlite3Atoi64(pMem->z, &value); return value; }else{ return 0; } } /* ** Return the best representation of pMem that we can get into a ** double. If pMem is already a double or an integer, return its ** value. If it is a string or blob, try to convert it to a double. ** If it is a NULL, return 0.0. */ double sqlite3VdbeRealValue(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); if( pMem->flags & MEM_Real ){ return pMem->r; }else if( pMem->flags & MEM_Int ){ return (double)pMem->u.i; }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ double val = 0.0; pMem->flags |= MEM_Str; if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) || sqlite3VdbeMemNulTerminate(pMem) ){ return 0.0; } assert( pMem->z ); sqlite3AtoF(pMem->z, &val); return val; }else{ return 0.0; } } /* ** The MEM structure is already a MEM_Real. Try to also make it a ** MEM_Int if we can. */ void sqlite3VdbeIntegerAffinity(Mem *pMem){ assert( pMem->flags & MEM_Real ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->u.i = pMem->r; if( ((double)pMem->u.i)==pMem->r ){ pMem->flags |= MEM_Int; } } /* ** Convert pMem to type integer. Invalidate any prior representations. */ int sqlite3VdbeMemIntegerify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->u.i = sqlite3VdbeIntValue(pMem); sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Int; return SQLITE_OK; } /* ** Convert pMem so that it is of type MEM_Real. ** Invalidate any prior representations. */ int sqlite3VdbeMemRealify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->r = sqlite3VdbeRealValue(pMem); sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Real; return SQLITE_OK; } /* ** Convert pMem so that it has types MEM_Real or MEM_Int or both. ** Invalidate any prior representations. */ int sqlite3VdbeMemNumerify(Mem *pMem){ double r1, r2; i64 i; assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ); assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); r1 = sqlite3VdbeRealValue(pMem); i = (i64)r1; r2 = (double)i; if( r1==r2 ){ sqlite3VdbeMemIntegerify(pMem); }else{ pMem->r = r1; |
︙ | ︙ | |||
479 480 481 482 483 484 485 | } } /* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ | | | | > > > | < > < | 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 | } } /* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc; if( pTo->flags & MEM_Dyn ){ sqlite3VdbeMemRelease(pTo); } sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem); if( pTo->flags & MEM_Ephem ){ rc = sqlite3VdbeMemMakeWriteable(pTo); }else{ rc = SQLITE_OK; } return rc; } /* ** Transfer the contents of pFrom to pTo. Any existing value in pTo is ** freed. If pFrom contains ephemeral data, a copy is made. ** ** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM ** might be returned if pFrom held ephemeral data and we were unable ** to allocate enough space to make a copy. */ int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ int rc; assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); if( pTo->flags & MEM_Dyn ){ sqlite3VdbeMemRelease(pTo); } memcpy(pTo, pFrom, sizeof(Mem)); if( pFrom->flags & MEM_Short ){ pTo->z = pTo->zShort; } pFrom->flags = MEM_Null; pFrom->xDel = 0; if( pTo->flags & MEM_Ephem ){ rc = sqlite3VdbeMemMakeWriteable(pTo); }else{ rc = SQLITE_OK; } return rc; } /* ** Change the value of a Mem to be a string or a BLOB. */ int sqlite3VdbeMemSetStr( Mem *pMem, /* Memory cell to set to string value */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); sqlite3VdbeMemRelease(pMem); if( !z ){ pMem->flags = MEM_Null; pMem->type = SQLITE_NULL; return SQLITE_OK; } pMem->z = (char *)z; if( xDel==SQLITE_STATIC ){ pMem->flags = MEM_Static; }else if( xDel==SQLITE_TRANSIENT ){ pMem->flags = MEM_Ephem; }else{ pMem->flags = MEM_Dyn; |
︙ | ︙ | |||
576 577 578 579 580 581 582 | case SQLITE_UTF16LE: case SQLITE_UTF16BE: pMem->flags |= MEM_Str; if( pMem->n<0 ){ pMem->n = sqlite3Utf16ByteLen(pMem->z,-1); pMem->flags |= MEM_Term; } | | | | 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 | case SQLITE_UTF16LE: case SQLITE_UTF16BE: pMem->flags |= MEM_Str; if( pMem->n<0 ){ pMem->n = sqlite3Utf16ByteLen(pMem->z,-1); pMem->flags |= MEM_Term; } if( sqlite3VdbeMemHandleBom(pMem) ){ return SQLITE_NOMEM; } #endif /* SQLITE_OMIT_UTF16 */ } if( pMem->flags&MEM_Ephem ){ return sqlite3VdbeMemMakeWriteable(pMem); } return SQLITE_OK; } /* ** Compare the values contained by the two memory cells, returning ** negative, zero or positive if pMem1 is less than, equal to, or greater |
︙ | ︙ | |||
682 683 684 685 686 687 688 | return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); }else{ u8 origEnc = pMem1->enc; const void *v1, *v2; int n1, n2; /* Convert the strings into the encoding that the comparison ** function expects */ | | | | | | | | 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 | return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); }else{ u8 origEnc = pMem1->enc; const void *v1, *v2; int n1, n2; /* Convert the strings into the encoding that the comparison ** function expects */ v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc); n1 = v1==0 ? 0 : pMem1->n; assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) ); v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc); n2 = v2==0 ? 0 : pMem2->n; assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) ); /* Do the comparison */ rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); /* Convert the strings back into the database encoding */ sqlite3ValueText((sqlite3_value*)pMem1, origEnc); sqlite3ValueText((sqlite3_value*)pMem2, origEnc); return rc; } } /* If a NULL pointer was passed as the collate function, fall through ** to the blob case and use memcmp(). */ } |
︙ | ︙ | |||
722 723 724 725 726 727 728 | ** The pMem structure is assumed to be uninitialized. Any prior content ** is overwritten without being freed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ int sqlite3VdbeMemFromBtree( | < > > > > | < | 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 | ** The pMem structure is assumed to be uninitialized. Any prior content ** is overwritten without being freed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ int offset, /* Offset from the start of data to return bytes from. */ int amt, /* Number of bytes to return. */ int key, /* If true, retrieve from the btree key, not data. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ char *zData; /* Data from the btree layer */ int available = 0; /* Number of bytes available on the local btree page */ sqlite3 *db; /* Database connection */ db = sqlite3BtreeCursorDb(pCur); assert( sqlite3_mutex_held(db->mutex) ); if( key ){ zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); }else{ zData = (char *)sqlite3BtreeDataFetch(pCur, &available); } assert( zData!=0 ); pMem->db = db; pMem->n = amt; if( offset+amt<=available ){ pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; }else{ int rc; if( amt>NBFS-2 ){ zData = (char *)sqlite3DbMallocRaw(db, amt+2); if( !zData ){ return SQLITE_NOMEM; } pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; pMem->xDel = 0; }else{ zData = &(pMem->zShort[0]); pMem->flags = MEM_Blob|MEM_Short|MEM_Term; |
︙ | ︙ | |||
843 844 845 846 847 848 849 | ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or ** SQLITE_UTF8. ** ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. ** If that is the case, then the result must be aligned on an even byte ** boundary. */ | | > > | | | | | | > > | | | | | | < < | | | | | 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 | ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or ** SQLITE_UTF8. ** ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. ** If that is the case, then the result must be aligned on an even byte ** boundary. */ const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ if( !pVal ) return 0; assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); if( pVal->flags&MEM_Null ){ return 0; } assert( (MEM_Blob>>3) == MEM_Str ); pVal->flags |= (pVal->flags & MEM_Blob)>>3; expandBlob(pVal); if( pVal->flags&MEM_Str ){ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ return 0; } } sqlite3VdbeMemNulTerminate(pVal); }else{ assert( (pVal->flags&MEM_Blob)==0 ); sqlite3VdbeMemStringify(pVal, enc); assert( 0==(1&(int)pVal->z) ); } assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 || pVal->db->mallocFailed ); if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ return pVal->z; }else{ return 0; } } /* ** Create a new sqlite3_value object. */ sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3MallocZero(sizeof(*p)); if( p ){ p->flags = MEM_Null; p->type = SQLITE_NULL; p->db = db; }else{ db->mallocFailed = 1; } return p; } /* ** Create a new sqlite3_value object, containing the value of pExpr. ** ** This only works for very simple expressions that consist of one constant ** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can ** be converted directly into a value, then the value is allocated and ** a pointer written to *ppVal. The caller is responsible for deallocating ** the value by passing it to sqlite3ValueFree() later on. If the expression ** cannot be converted to a value, then *ppVal is set to NULL. */ int sqlite3ValueFromExpr( sqlite3 *db, /* The database connection */ Expr *pExpr, /* The expression to evaluate */ u8 enc, /* Encoding to use */ u8 affinity, /* Affinity to use */ sqlite3_value **ppVal /* Write the new value here */ ){ int op; char *zVal = 0; sqlite3_value *pVal = 0; if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } op = pExpr->op; if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n); pVal = sqlite3ValueNew(db); if( !zVal || !pVal ) goto no_mem; sqlite3Dequote(zVal); sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free); if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc); }else{ sqlite3ValueApplyAffinity(pVal, affinity, enc); } }else if( op==TK_UMINUS ) { if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ pVal->u.i = -1 * pVal->u.i; pVal->r = -1.0 * pVal->r; } } #ifndef SQLITE_OMIT_BLOB_LITERAL else if( op==TK_BLOB ){ int nVal; pVal = sqlite3ValueNew(db); zVal = sqlite3StrNDup((char*)pExpr->token.z+1, pExpr->token.n-1); if( !zVal || !pVal ) goto no_mem; sqlite3Dequote(zVal); nVal = strlen(zVal)/2; sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal), nVal,0,sqlite3_free); sqlite3_free(zVal); } #endif *ppVal = pVal; return SQLITE_OK; no_mem: db->mallocFailed = 1; sqlite3_free(zVal); sqlite3ValueFree(pVal); *ppVal = 0; return SQLITE_NOMEM; } /* ** Change the string value of an sqlite3_value object */ void sqlite3ValueSetStr( sqlite3_value *v, /* Value to be set */ int n, /* Length of string z */ const void *z, /* Text of the new string */ u8 enc, /* Encoding to use */ void (*xDel)(void*) /* Destructor for the string */ ){ if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); } /* ** Free an sqlite3_value object */ void sqlite3ValueFree(sqlite3_value *v){ if( !v ) return; sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC); sqlite3_free(v); } /* ** Return the number of bytes in the sqlite3_value object assuming ** that it uses the encoding "enc" */ int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ Mem *p = (Mem*)pVal; if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ if( p->flags & MEM_Zero ){ return p->n+p->u.i; }else{ return p->n; } } return 0; } |