SQLite

Check-in [9287276191]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:The sqlite3_value object now carries an sqlite3* pointer to use for recording malloc failures. This eliminates the need to pass sqlite3* pointers into many internal interfaces. Also added more mutexing. (CVS 4263)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 9287276191a582c1cf7cf6b71d8399727d8e534d
User & Date: drh 2007-08-21 19:33:56.000
Context
2007-08-21
20:25
All mutexing and locking appears to be in place. Now we just have to test it and make it all work. (CVS 4264) (check-in: 0f7941aef9 user: drh tags: trunk)
19:33
The sqlite3_value object now carries an sqlite3* pointer to use for recording malloc failures. This eliminates the need to pass sqlite3* pointers into many internal interfaces. Also added more mutexing. (CVS 4263) (check-in: 9287276191 user: drh tags: trunk)
16:15
Adding more thread locking code. This is an incremental check-in. (CVS 4262) (check-in: 7428732b1f user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/auth.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains code used to implement the sqlite3_set_authorizer()
** API.  This facility is an optional feature of the library.  Embedded
** systems that do not need this facility may omit it by recompiling
** the library with -DSQLITE_OMIT_AUTHORIZATION=1
**
** $Id: auth.c,v 1.26 2007/05/14 11:34:47 drh Exp $
*/
#include "sqliteInt.h"

/*
** All of the code in this file may be omitted by defining a single
** macro.
*/







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains code used to implement the sqlite3_set_authorizer()
** API.  This facility is an optional feature of the library.  Embedded
** systems that do not need this facility may omit it by recompiling
** the library with -DSQLITE_OMIT_AUTHORIZATION=1
**
** $Id: auth.c,v 1.27 2007/08/21 19:33:56 drh Exp $
*/
#include "sqliteInt.h"

/*
** All of the code in this file may be omitted by defining a single
** macro.
*/
70
71
72
73
74
75
76

77
78
79

80
81
82
83
84
85
86
** setting of the auth function is NULL.
*/
int sqlite3_set_authorizer(
  sqlite3 *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){

  db->xAuth = xAuth;
  db->pAuthArg = pArg;
  sqlite3ExpirePreparedStatements(db);

  return SQLITE_OK;
}

/*
** Write an error message into pParse->zErrMsg that explains that the
** user-supplied authorization function returned an illegal value.
*/







>



>







70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
** setting of the auth function is NULL.
*/
int sqlite3_set_authorizer(
  sqlite3 *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){
  sqlite3_mutex_enter(db->mutex);
  db->xAuth = xAuth;
  db->pAuthArg = pArg;
  sqlite3ExpirePreparedStatements(db);
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Write an error message into pParse->zErrMsg that explains that the
** user-supplied authorization function returned an illegal value.
*/
Changes to src/btree.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.405 2007/08/21 13:11:01 danielk1977 Exp $
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"












|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.406 2007/08/21 19:33:56 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"

3701
3702
3703
3704
3705
3706
3707







3708
3709
3710
3711
3712
3713
3714
int sqlite3BtreeEof(BtCursor *pCur){
  /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
  ** have been deleted? This API will need to change to return an error code
  ** as well as the boolean result value.
  */
  return (CURSOR_VALID!=pCur->eState);
}








/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/







>
>
>
>
>
>
>







3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
int sqlite3BtreeEof(BtCursor *pCur){
  /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
  ** have been deleted? This API will need to change to return an error code
  ** as well as the boolean result value.
  */
  return (CURSOR_VALID!=pCur->eState);
}

/*
** Return the database connection handle for a cursor.
*/
sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
  return pCur->pBtree->pSqlite;
}

/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
Changes to src/btree.h.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem.  See comments in the source code for a detailed description
** of what each interface routine does.
**
** @(#) $Id: btree.h,v 1.84 2007/08/20 22:48:42 drh Exp $
*/
#ifndef _BTREE_H_
#define _BTREE_H_

/* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem.  See comments in the source code for a detailed description
** of what each interface routine does.
**
** @(#) $Id: btree.h,v 1.85 2007/08/21 19:33:56 drh Exp $
*/
#ifndef _BTREE_H_
#define _BTREE_H_

/* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/
146
147
148
149
150
151
152

153
154
155
156
157
158
159
int sqlite3BtreeLast(BtCursor*, int *pRes);
int sqlite3BtreeNext(BtCursor*, int *pRes);
int sqlite3BtreeEof(BtCursor*);
int sqlite3BtreeFlags(BtCursor*);
int sqlite3BtreePrevious(BtCursor*, int *pRes);
int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);

const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);

char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
struct Pager *sqlite3BtreePager(Btree*);







>







146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
int sqlite3BtreeLast(BtCursor*, int *pRes);
int sqlite3BtreeNext(BtCursor*, int *pRes);
int sqlite3BtreeEof(BtCursor*);
int sqlite3BtreeFlags(BtCursor*);
int sqlite3BtreePrevious(BtCursor*, int *pRes);
int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
sqlite3 *sqlite3BtreeCursorDb(const BtCursor*);
const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);

char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
struct Pager *sqlite3BtreePager(Btree*);
Changes to src/build.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.436 2007/08/17 01:14:38 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.







|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.437 2007/08/21 19:33:56 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.
3365
3366
3367
3368
3369
3370
3371

3372
3373
3374
3375
3376
3377
3378
KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
  int i;
  int nCol = pIdx->nColumn;
  int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
  KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes);

  if( pKey ){

    pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
    assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
    for(i=0; i<nCol; i++){
      char *zColl = pIdx->azColl[i];
      assert( zColl );
      pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
      pKey->aSortOrder[i] = pIdx->aSortOrder[i];







>







3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
  int i;
  int nCol = pIdx->nColumn;
  int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
  KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes);

  if( pKey ){
    pKey->db = pParse->db;
    pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
    assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
    for(i=0; i<nCol; i++){
      char *zColl = pIdx->azColl[i];
      assert( zColl );
      pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
      pKey->aSortOrder[i] = pIdx->aSortOrder[i];
Changes to src/callback.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains functions used to access the internal hash tables
** of user defined functions and collation sequences.
**
** $Id: callback.c,v 1.20 2007/08/16 10:09:02 danielk1977 Exp $
*/

#include "sqliteInt.h"

/*
** Invoke the 'collation needed' callback to request a collation sequence
** in the database text encoding of name zName, length nName.







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains functions used to access the internal hash tables
** of user defined functions and collation sequences.
**
** $Id: callback.c,v 1.21 2007/08/21 19:33:56 drh Exp $
*/

#include "sqliteInt.h"

/*
** Invoke the 'collation needed' callback to request a collation sequence
** in the database text encoding of name zName, length nName.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
    sqlite3_free(zExternal);
  }
#ifndef SQLITE_OMIT_UTF16
  if( db->xCollNeeded16 ){
    char const *zExternal;
    sqlite3_value *pTmp = sqlite3ValueNew(db);
    sqlite3ValueSetStr(db, pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
    zExternal = sqlite3ValueText(db, pTmp, SQLITE_UTF16NATIVE);
    if( zExternal ){
      db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
    }
    sqlite3ValueFree(pTmp);
  }
#endif
}







|
|







32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
    sqlite3_free(zExternal);
  }
#ifndef SQLITE_OMIT_UTF16
  if( db->xCollNeeded16 ){
    char const *zExternal;
    sqlite3_value *pTmp = sqlite3ValueNew(db);
    sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
    zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
    if( zExternal ){
      db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
    }
    sqlite3ValueFree(pTmp);
  }
#endif
}
Changes to src/complete.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** An tokenizer for SQL
**
** This file contains C code that implements the sqlite3_complete() API.
** This code used to be part of the tokenizer.c source file.  But by
** separating it out, the code will be automatically omitted from
** static links that do not use it.
**
** $Id: complete.c,v 1.4 2007/08/16 10:09:02 danielk1977 Exp $
*/
#include "sqliteInt.h"
#ifndef SQLITE_OMIT_COMPLETE

/*
** This is defined in tokenize.c.  We just have to import the definition.
*/







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** An tokenizer for SQL
**
** This file contains C code that implements the sqlite3_complete() API.
** This code used to be part of the tokenizer.c source file.  But by
** separating it out, the code will be automatically omitted from
** static links that do not use it.
**
** $Id: complete.c,v 1.5 2007/08/21 19:33:56 drh Exp $
*/
#include "sqliteInt.h"
#ifndef SQLITE_OMIT_COMPLETE

/*
** This is defined in tokenize.c.  We just have to import the definition.
*/
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
*/
int sqlite3_complete16(const void *zSql){
  sqlite3_value *pVal;
  char const *zSql8;
  int rc = SQLITE_NOMEM;

  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(0, pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
  zSql8 = sqlite3ValueText(0, pVal, SQLITE_UTF8);
  if( zSql8 ){
    rc = sqlite3_complete(zSql8);
  }
  sqlite3ValueFree(pVal);
  return sqlite3ApiExit(0, rc);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_COMPLETE */







|
|








247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
*/
int sqlite3_complete16(const void *zSql){
  sqlite3_value *pVal;
  char const *zSql8;
  int rc = SQLITE_NOMEM;

  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
  zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
  if( zSql8 ){
    rc = sqlite3_complete(zSql8);
  }
  sqlite3ValueFree(pVal);
  return sqlite3ApiExit(0, rc);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_COMPLETE */
Changes to src/date.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This file contains the C functions that implement date and time
** functions for SQLite.  
**
** There is only one exported symbol in this file - the function
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: date.c,v 1.70 2007/08/21 10:44:16 drh Exp $
**
** SQLite processes all times and dates as Julian Day numbers.  The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system. 
**
** 1970-01-01 00:00:00 is JD 2440587.5







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This file contains the C functions that implement date and time
** functions for SQLite.  
**
** There is only one exported symbol in this file - the function
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: date.c,v 1.71 2007/08/21 19:33:56 drh Exp $
**
** SQLite processes all times and dates as Julian Day numbers.  The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system. 
**
** 1970-01-01 00:00:00 is JD 2440587.5
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
static void ctimeFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_value *pVal = sqlite3ValueNew(0);
  if( pVal ){
    sqlite3ValueSetStr(0, pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
    timeFunc(context, 1, &pVal);
    sqlite3ValueFree(pVal);
  }
}

/*
** current_date()
**
** This function returns the same value as date('now').
*/
static void cdateFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_value *pVal = sqlite3ValueNew(0);
  if( pVal ){
    sqlite3ValueSetStr(0, pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
    dateFunc(context, 1, &pVal);
    sqlite3ValueFree(pVal);
  }
}

/*
** current_timestamp()
**
** This function returns the same value as datetime('now').
*/
static void ctimestampFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_value *pVal = sqlite3ValueNew(0);
  if( pVal ){
    sqlite3ValueSetStr(0, pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
    datetimeFunc(context, 1, &pVal);
    sqlite3ValueFree(pVal);
  }
}
#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */

#ifdef SQLITE_OMIT_DATETIME_FUNCS







|

















|

















|







901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
static void ctimeFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_value *pVal = sqlite3ValueNew(0);
  if( pVal ){
    sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
    timeFunc(context, 1, &pVal);
    sqlite3ValueFree(pVal);
  }
}

/*
** current_date()
**
** This function returns the same value as date('now').
*/
static void cdateFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_value *pVal = sqlite3ValueNew(0);
  if( pVal ){
    sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
    dateFunc(context, 1, &pVal);
    sqlite3ValueFree(pVal);
  }
}

/*
** current_timestamp()
**
** This function returns the same value as datetime('now').
*/
static void ctimestampFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_value *pVal = sqlite3ValueNew(0);
  if( pVal ){
    sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
    datetimeFunc(context, 1, &pVal);
    sqlite3ValueFree(pVal);
  }
}
#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */

#ifdef SQLITE_OMIT_DATETIME_FUNCS
Changes to src/func.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This file contains the C functions that implement various SQL
** functions of SQLite.  
**
** There is only one exported symbol in this file - the function
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: func.c,v 1.167 2007/08/21 10:44:16 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include <stdlib.h>
#include <assert.h>
#include "vdbeInt.h"








|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This file contains the C functions that implement various SQL
** functions of SQLite.  
**
** There is only one exported symbol in this file - the function
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: func.c,v 1.168 2007/08/21 19:33:56 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include <stdlib.h>
#include <assert.h>
#include "vdbeInt.h"

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
  char *zVal;
  int len;
  sqlite3 *db = sqlite3_user_data(pCtx);
 
  test_destructor_count_var++;
  assert( nArg==1 );
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  len = sqlite3ValueBytes(0, argv[0], ENC(db)); 
  zVal = sqlite3MallocZero(len+3);
  zVal[len] = 0;
  zVal[len-1] = 0;
  assert( zVal );
  zVal++;
  memcpy(zVal, sqlite3ValueText(0, argv[0], ENC(db)), len);
  if( ENC(db)==SQLITE_UTF8 ){
    sqlite3_result_text(pCtx, zVal, -1, destructor);
#ifndef SQLITE_OMIT_UTF16
  }else if( ENC(db)==SQLITE_UTF16LE ){
    sqlite3_result_text16le(pCtx, zVal, -1, destructor);
  }else{
    sqlite3_result_text16be(pCtx, zVal, -1, destructor);







|





|







1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
  char *zVal;
  int len;
  sqlite3 *db = sqlite3_user_data(pCtx);
 
  test_destructor_count_var++;
  assert( nArg==1 );
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  len = sqlite3ValueBytes(argv[0], ENC(db)); 
  zVal = sqlite3MallocZero(len+3);
  zVal[len] = 0;
  zVal[len-1] = 0;
  assert( zVal );
  zVal++;
  memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len);
  if( ENC(db)==SQLITE_UTF8 ){
    sqlite3_result_text(pCtx, zVal, -1, destructor);
#ifndef SQLITE_OMIT_UTF16
  }else if( ENC(db)==SQLITE_UTF16LE ){
    sqlite3_result_text16le(pCtx, zVal, -1, destructor);
  }else{
    sqlite3_result_text16be(pCtx, zVal, -1, destructor);
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
    ** returns (void *)db, where db is the sqlite3* database pointer.
    ** Therefore the next statement sets variable 'max' to 1 for the max()
    ** aggregate, or 0 for min().
    */
    max = sqlite3_user_data(context)!=0;
    cmp = sqlite3MemCompare(pBest, pArg, pColl);
    if( (max && cmp<0) || (!max && cmp>0) ){
      sqlite3VdbeMemCopy(0, pBest, pArg);
    }
  }else{
    sqlite3VdbeMemCopy(0, pBest, pArg);
  }
}
static void minMaxFinalize(sqlite3_context *context){
  sqlite3_value *pRes;
  pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
  if( pRes ){
    if( pRes->flags ){







|


|







1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
    ** returns (void *)db, where db is the sqlite3* database pointer.
    ** Therefore the next statement sets variable 'max' to 1 for the max()
    ** aggregate, or 0 for min().
    */
    max = sqlite3_user_data(context)!=0;
    cmp = sqlite3MemCompare(pBest, pArg, pColl);
    if( (max && cmp<0) || (!max && cmp>0) ){
      sqlite3VdbeMemCopy(pBest, pArg);
    }
  }else{
    sqlite3VdbeMemCopy(pBest, pArg);
  }
}
static void minMaxFinalize(sqlite3_context *context){
  sqlite3_value *pRes;
  pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
  if( pRes ){
    if( pRes->flags ){
Changes to src/loadext.c.
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
**
** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
**
** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with 
** error message text.  The calling function should free this memory
** by calling sqlite3_free().
*/
int sqlite3_load_extension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Use "sqlite3_extension_init" if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
){
  sqlite3_vfs *pVfs = db->pVfs;
  void *handle;







|







256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
**
** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
**
** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with 
** error message text.  The calling function should free this memory
** by calling sqlite3_free().
*/
static int sqlite3LoadExtension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Use "sqlite3_extension_init" if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
){
  sqlite3_vfs *pVfs = db->pVfs;
  void *handle;
325
326
327
328
329
330
331












332
333
334
335
336
337
338

339
340
341
342
343
344
345
346
347
348
349

350
351
352
353
354

355
356
357
358
359
360
361
  }
  sqlite3_free(db->aExtension);
  db->aExtension = aHandle;

  db->aExtension[db->nExtension-1] = handle;
  return SQLITE_OK;
}













/*
** Call this routine when the database connection is closing in order
** to clean up loaded extensions
*/
void sqlite3CloseExtensions(sqlite3 *db){
  int i;

  for(i=0; i<db->nExtension; i++){
    sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
  }
  sqlite3_free(db->aExtension);
}

/*
** Enable or disable extension loading.  Extension loading is disabled by
** default so as not to open security holes in older applications.
*/
int sqlite3_enable_load_extension(sqlite3 *db, int onoff){

  if( onoff ){
    db->flags |= SQLITE_LoadExtension;
  }else{
    db->flags &= ~SQLITE_LoadExtension;
  }

  return SQLITE_OK;
}

/*
** The following object holds the list of automatically loaded
** extensions.
**







>
>
>
>
>
>
>
>
>
>
>
>







>











>





>







325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
  }
  sqlite3_free(db->aExtension);
  db->aExtension = aHandle;

  db->aExtension[db->nExtension-1] = handle;
  return SQLITE_OK;
}
int sqlite3_load_extension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Use "sqlite3_extension_init" if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
){
  int rc;
  sqlite3_mutex_enter(db->mutex);
  rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Call this routine when the database connection is closing in order
** to clean up loaded extensions
*/
void sqlite3CloseExtensions(sqlite3 *db){
  int i;
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nExtension; i++){
    sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
  }
  sqlite3_free(db->aExtension);
}

/*
** Enable or disable extension loading.  Extension loading is disabled by
** default so as not to open security holes in older applications.
*/
int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
  sqlite3_mutex_enter(db->mutex);
  if( onoff ){
    db->flags |= SQLITE_LoadExtension;
  }else{
    db->flags &= ~SQLITE_LoadExtension;
  }
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** The following object holds the list of automatically loaded
** extensions.
**
Changes to src/main.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.392 2007/08/21 16:15:56 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** The version of the library
*/







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.393 2007/08/21 19:33:56 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** The version of the library
*/
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
  if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){
    return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
  }
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  z = sqlite3_value_text16(db->pErr);
  if( z==0 ){
    sqlite3ValueSetStr(db, db->pErr, -1, sqlite3ErrStr(db->errCode),
         SQLITE_UTF8, SQLITE_STATIC);
    z = sqlite3_value_text16(db->pErr);
  }
  sqlite3ApiExit(0, 0);
  sqlite3_mutex_leave(db->mutex);
  return z;
}







|







815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
  if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){
    return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
  }
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  z = sqlite3_value_text16(db->pErr);
  if( z==0 ){
    sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
         SQLITE_UTF8, SQLITE_STATIC);
    z = sqlite3_value_text16(db->pErr);
  }
  sqlite3ApiExit(0, 0);
  sqlite3_mutex_leave(db->mutex);
  return z;
}
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
  sqlite3_value *pVal;
  int rc = SQLITE_NOMEM;

  assert( zFilename );
  assert( ppDb );
  *ppDb = 0;
  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(0, pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
  zFilename8 = sqlite3ValueText(0, pVal, SQLITE_UTF8);
  if( zFilename8 ){
    rc = openDatabase(zFilename8, ppDb,
                      SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
    if( rc==SQLITE_OK && *ppDb ){
      rc = sqlite3_exec(*ppDb, "PRAGMA encoding = 'UTF-16'", 0, 0, 0);
      if( rc!=SQLITE_OK ){
        sqlite3_close(*ppDb);







|
|







1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
  sqlite3_value *pVal;
  int rc = SQLITE_NOMEM;

  assert( zFilename );
  assert( ppDb );
  *ppDb = 0;
  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
  zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
  if( zFilename8 ){
    rc = openDatabase(zFilename8, ppDb,
                      SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
    if( rc==SQLITE_OK && *ppDb ){
      rc = sqlite3_exec(*ppDb, "PRAGMA encoding = 'UTF-16'", 0, 0, 0);
      if( rc!=SQLITE_OK ){
        sqlite3_close(*ppDb);
Changes to src/malloc.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21













22
23
24
25
26
27

28


29
30



31


32


33
34
35
36
37
38
39
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Memory allocation functions used throughout sqlite.
**
**
** $Id: malloc.c,v 1.7 2007/08/21 10:44:16 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
#include <ctype.h>

/*













** Set the soft heap-size limit for the current thread. Passing a negative
** value indicates no limit.
*/
void sqlite3_soft_heap_limit(int n){
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  ThreadData *pTd = sqlite3ThreadData();

  if( pTd ){


    pTd->nSoftHeapLimit = n;
  }



  sqlite3ReleaseThreadData();


#endif


}

/*
** Release memory held by SQLite instances created by the current thread.
*/
int sqlite3_release_memory(int n){
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO)







|






>
>
>
>
>
>
>
>
>
>
>
>
>
|
|


<
|
>
|
>
>
|

>
>
>
|
>
>
|
>
>







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Memory allocation functions used throughout sqlite.
**
**
** $Id: malloc.c,v 1.8 2007/08/21 19:33:56 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
#include <ctype.h>

/*
** This routine runs when the memory allocator sees that the
** total memory allocation is about to exceed the soft heap
** limit.
*/
static void softHeapLimitEnforcer(
  void *NotUsed, 
  sqlite3_uint64 inUse,
  unsigned int allocSize
){
  sqlite3_release_memory(allocSize);
}

/*
** Set the soft heap-size limit for the current thread. Passing a
** zero or negative value indicates no limit.
*/
void sqlite3_soft_heap_limit(int n){

  sqlite3_uint64 iLimit;
  int overage;
  if( n<0 ){
    iLimit = 0;
  }else{
    iLimit = n;
  }
  if( iLimit>0 ){
    sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
  }else{
    sqlite3_memory_alarm(0, 0, 0);
  }
  overage = sqlite3_memory_used() - n;
  if( overage>0 ){
    sqlite3_release_memory(overage);
  }
}

/*
** Release memory held by SQLite instances created by the current thread.
*/
int sqlite3_release_memory(int n){
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO)
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){
  void *p = sqlite3_malloc(n);
  if( p ){
    memset(p, 0, n);
  }else{
    db->mallocFailed = 1;
  }
  return p;
}

/*
** Allocate and zero memory.  If the allocation fails, make







|







81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){
  void *p = sqlite3_malloc(n);
  if( p ){
    memset(p, 0, n);
  }else if( db ){
    db->mallocFailed = 1;
  }
  return p;
}

/*
** Allocate and zero memory.  If the allocation fails, make
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
  if( db && db->mallocFailed ){
    sqlite3Error(db, SQLITE_NOMEM, 0);
    db->mallocFailed = 0;
    rc = SQLITE_NOMEM;
  }
  return rc & (db ? db->errMask : 0xff);
}

#ifdef SQLITE_MEMDEBUG
/*
** This function sets a flag in the thread-specific-data structure that will
** cause an assert to fail if sqliteMalloc() or sqliteRealloc() is called.
*/
#if 0
void sqlite3MallocDisallow(){
#if 0
  assert( sqlite3_mallocDisallowed>=0 );
  sqlite3_mallocDisallowed++;
#endif
}

/*
** This function clears the flag set in the thread-specific-data structure set
** by sqlite3MallocDisallow().
*/
void sqlite3MallocAllow(){
#if 0
  assert( sqlite3_mallocDisallowed>0 );
  sqlite3_mallocDisallowed--;
#endif
}
#endif
#endif







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
214
215
216
217
218
219
220


























  if( db && db->mallocFailed ){
    sqlite3Error(db, SQLITE_NOMEM, 0);
    db->mallocFailed = 0;
    rc = SQLITE_NOMEM;
  }
  return rc & (db ? db->errMask : 0xff);
}


























Changes to src/prepare.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the implementation of the sqlite3_prepare()
** interface, and routines that contribute to loading the database schema
** from disk.
**
** $Id: prepare.c,v 1.55 2007/08/21 10:44:16 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the implementation of the sqlite3_prepare()
** interface, and routines that contribute to loading the database schema
** from disk.
**
** $Id: prepare.c,v 1.56 2007/08/21 19:33:56 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Fill the InitData structure with an error message that indicates
** that the database is corrupt.
466
467
468
469
470
471
472

473
474
475
476
477
478
479
  assert( !db->mallocFailed );

  assert( ppStmt );
  *ppStmt = 0;
  if( sqlite3SafetyOn(db) ){
    return SQLITE_MISUSE;
  }


  /* If any attached database schemas are locked, do not proceed with
  ** compilation. Instead return SQLITE_LOCKED immediately.
  */
  for(i=0; i<db->nDb; i++) {
    Btree *pBt = db->aDb[i].pBt;
    if( pBt && sqlite3BtreeSchemaLocked(pBt) ){







>







466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
  assert( !db->mallocFailed );

  assert( ppStmt );
  *ppStmt = 0;
  if( sqlite3SafetyOn(db) ){
    return SQLITE_MISUSE;
  }
  assert( sqlite3_mutex_held(db->mutex) );

  /* If any attached database schemas are locked, do not proceed with
  ** compilation. Instead return SQLITE_LOCKED immediately.
  */
  for(i=0; i<db->nDb; i++) {
    Btree *pBt = db->aDb[i].pBt;
    if( pBt && sqlite3BtreeSchemaLocked(pBt) ){
559
560
561
562
563
564
565














566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

583
584
585
586
587
588
589
  }

  rc = sqlite3ApiExit(db, rc);
  /* sqlite3ReleaseThreadData(); */
  assert( (rc&db->errMask)==rc );
  return rc;
}















/*
** Rerun the compilation of a statement after a schema change.
** Return true if the statement was recompiled successfully.
** Return false if there is an error of some kind.
*/
int sqlite3Reprepare(Vdbe *p){
  int rc;
  sqlite3_stmt *pNew;
  const char *zSql;
  sqlite3 *db;
  
  zSql = sqlite3VdbeGetSql(p);
  if( zSql==0 ){
    return 0;
  }
  db = sqlite3VdbeDb(p);

  rc = sqlite3Prepare(db, zSql, -1, 0, &pNew, 0);
  if( rc ){
    assert( pNew==0 );
    return 0;
  }else{
    assert( pNew!=0 );
  }







>
>
>
>
>
>
>
>
>
>
>
>
>
>











|





>







560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
  }

  rc = sqlite3ApiExit(db, rc);
  /* sqlite3ReleaseThreadData(); */
  assert( (rc&db->errMask)==rc );
  return rc;
}
static int sqlite3LockAndPrepare(
  sqlite3 *db,              /* Database handle. */
  const char *zSql,         /* UTF-8 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  int saveSqlFlag,          /* True to copy SQL text into the sqlite3_stmt */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  int rc;
  sqlite3_mutex_enter(db->mutex);
  rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Rerun the compilation of a statement after a schema change.
** Return true if the statement was recompiled successfully.
** Return false if there is an error of some kind.
*/
int sqlite3Reprepare(Vdbe *p){
  int rc;
  sqlite3_stmt *pNew;
  const char *zSql;
  sqlite3 *db;

  zSql = sqlite3VdbeGetSql(p);
  if( zSql==0 ){
    return 0;
  }
  db = sqlite3VdbeDb(p);
  assert( sqlite3_mutex_held(db->mutex) );
  rc = sqlite3Prepare(db, zSql, -1, 0, &pNew, 0);
  if( rc ){
    assert( pNew==0 );
    return 0;
  }else{
    assert( pNew!=0 );
  }
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
int sqlite3_prepare(
  sqlite3 *db,              /* Database handle. */
  const char *zSql,         /* UTF-8 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  return sqlite3Prepare(db,zSql,nBytes,0,ppStmt,pzTail);
}
int sqlite3_prepare_v2(
  sqlite3 *db,              /* Database handle. */
  const char *zSql,         /* UTF-8 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  return sqlite3Prepare(db,zSql,nBytes,1,ppStmt,pzTail);
}


#ifndef SQLITE_OMIT_UTF16
/*
** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
*/







|








|







622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
int sqlite3_prepare(
  sqlite3 *db,              /* Database handle. */
  const char *zSql,         /* UTF-8 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  return sqlite3LockAndPrepare(db,zSql,nBytes,0,ppStmt,pzTail);
}
int sqlite3_prepare_v2(
  sqlite3 *db,              /* Database handle. */
  const char *zSql,         /* UTF-8 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  return sqlite3LockAndPrepare(db,zSql,nBytes,1,ppStmt,pzTail);
}


#ifndef SQLITE_OMIT_UTF16
/*
** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
*/
642
643
644
645
646
647
648

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664


665
666
667
668
669
670
671
  char *zSql8;
  const char *zTail8 = 0;
  int rc = SQLITE_OK;

  if( sqlite3SafetyCheck(db) ){
    return SQLITE_MISUSE;
  }

  zSql8 = sqlite3Utf16to8(db, zSql, nBytes);
  if( zSql8 ){
    rc = sqlite3Prepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
  }

  if( zTail8 && pzTail ){
    /* If sqlite3_prepare returns a tail pointer, we calculate the
    ** equivalent pointer into the UTF-16 string by counting the unicode
    ** characters between zSql8 and zTail8, and then returning a pointer
    ** the same number of characters into the UTF-16 string.
    */
    int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8);
    *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
  }
  sqlite3_free(zSql8); 
  return sqlite3ApiExit(db, rc);


}

/*
** Two versions of the official API.  Legacy and new use.  In the legacy
** version, the original SQL text is not saved in the prepared statement
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
** sqlite3_step().  In the new version, the original SQL text is retained







>















|
>
>







658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
  char *zSql8;
  const char *zTail8 = 0;
  int rc = SQLITE_OK;

  if( sqlite3SafetyCheck(db) ){
    return SQLITE_MISUSE;
  }
  sqlite3_mutex_enter(db->mutex);
  zSql8 = sqlite3Utf16to8(db, zSql, nBytes);
  if( zSql8 ){
    rc = sqlite3Prepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
  }

  if( zTail8 && pzTail ){
    /* If sqlite3_prepare returns a tail pointer, we calculate the
    ** equivalent pointer into the UTF-16 string by counting the unicode
    ** characters between zSql8 and zTail8, and then returning a pointer
    ** the same number of characters into the UTF-16 string.
    */
    int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8);
    *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
  }
  sqlite3_free(zSql8); 
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Two versions of the official API.  Legacy and new use.  In the legacy
** version, the original SQL text is not saved in the prepared statement
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
** sqlite3_step().  In the new version, the original SQL text is retained
Changes to src/sqlite.h.in.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
** on how SQLite interfaces are suppose to operate.
**
** The name of this file under configuration management is "sqlite.h.in".
** The makefile makes some minor changes to this file (such as inserting
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.
**
** @(#) $Id: sqlite.h.in,v 1.233 2007/08/21 16:15:56 drh Exp $
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.







|







26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
** on how SQLite interfaces are suppose to operate.
**
** The name of this file under configuration management is "sqlite.h.in".
** The makefile makes some minor changes to this file (such as inserting
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.
**
** @(#) $Id: sqlite.h.in,v 1.234 2007/08/21 19:33:56 drh Exp $
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
**
** The pUserData parameter to the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines
** used to register user functions is available to
** the implementation of the function using this call.
**
** This routine must be called from the same thread in which
** the SQL function was originally invoked.
*/
void *sqlite3_user_data(sqlite3_context*);

/*
** CAPI3REF: Function Auxiliary Data
**
** The following two functions may be used by scalar SQL functions to







|







2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
**
** The pUserData parameter to the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines
** used to register user functions is available to
** the implementation of the function using this call.
**
** This routine must be called from the same thread in which
** the SQL function is running.
*/
void *sqlite3_user_data(sqlite3_context*);

/*
** CAPI3REF: Function Auxiliary Data
**
** The following two functions may be used by scalar SQL functions to
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
** data pointer to release it when it is no longer required. If the 
** destructor is NULL, it is not invoked.
**
** In practice, meta-data is preserved between function calls for
** expressions that are constant at compile time. This includes literal
** values and SQL variables.
**
** These routine must be called from the same thread in which
** the SQL function was originally invoked.
*/
void *sqlite3_get_auxdata(sqlite3_context*, int);
void sqlite3_set_auxdata(sqlite3_context*, int, void*, void (*)(void*));


/*
** CAPI3REF: Constants Defining Special Destructor Behavior







|
|







2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
** data pointer to release it when it is no longer required. If the 
** destructor is NULL, it is not invoked.
**
** In practice, meta-data is preserved between function calls for
** expressions that are constant at compile time. This includes literal
** values and SQL variables.
**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
void *sqlite3_get_auxdata(sqlite3_context*, int);
void sqlite3_set_auxdata(sqlite3_context*, int, void*, void (*)(void*));


/*
** CAPI3REF: Constants Defining Special Destructor Behavior
2653
2654
2655
2656
2657
2658
2659






2660
2661
2662
2663
2664
2665
2666
** [sqlite3_release_memory()] will only be called when memory is exhausted.
** The default value for the soft heap limit is zero.
**
** SQLite makes a best effort to honor the soft heap limit.  But if it
** is unable to reduce memory usage below the soft limit, execution will
** continue without error or notification.  This is why the limit is 
** called a "soft" limit.  It is advisory only.






**
** Prior to SQLite version 3.5.0, this routine only constrained the memory
** allocated by a single thread - the same thread in which this routine
** runs.  Beginning with SQLite version 3.5.0, the soft heap limit is
** applied cumulatively to all threads.
*/
void sqlite3_soft_heap_limit(int);







>
>
>
>
>
>







2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
** [sqlite3_release_memory()] will only be called when memory is exhausted.
** The default value for the soft heap limit is zero.
**
** SQLite makes a best effort to honor the soft heap limit.  But if it
** is unable to reduce memory usage below the soft limit, execution will
** continue without error or notification.  This is why the limit is 
** called a "soft" limit.  It is advisory only.
**
** The soft heap limit is implemented using the [sqlite3_memory_alarm()]
** interface.  Only a single memory alarm is available in the default
** implementation.  This means that if the application also uses the
** memory alarm interface it will interfere with the operation of the
** soft heap limit and undefined behavior will result.  
**
** Prior to SQLite version 3.5.0, this routine only constrained the memory
** allocated by a single thread - the same thread in which this routine
** runs.  Beginning with SQLite version 3.5.0, the soft heap limit is
** applied cumulatively to all threads.
*/
void sqlite3_soft_heap_limit(int);
Changes to src/sqliteInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.594 2007/08/21 13:51:23 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_
#include "sqliteLimit.h"


#if defined(SQLITE_TCL) || defined(TCLSH)













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.595 2007/08/21 19:33:56 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_
#include "sqliteLimit.h"


#if defined(SQLITE_TCL) || defined(TCLSH)
789
790
791
792
793
794
795

796
797
798
799
800
801
802
** comparison of the two index keys.
**
** If the KeyInfo.incrKey value is true and the comparison would
** otherwise be equal, then return a result as if the second key
** were larger.
*/
struct KeyInfo {

  u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
  u8 incrKey;         /* Increase 2nd key by epsilon before comparison */
  int nField;         /* Number of entries in aColl[] */
  u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};








>







789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
** comparison of the two index keys.
**
** If the KeyInfo.incrKey value is true and the comparison would
** otherwise be equal, then return a result as if the second key
** were larger.
*/
struct KeyInfo {
  sqlite3 *db;        /* The database connection */
  u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
  u8 incrKey;         /* Increase 2nd key by epsilon before comparison */
  int nField;         /* Number of entries in aColl[] */
  u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
int sqlite3CheckCollSeq(Parse *, CollSeq *);
int sqlite3CheckObjectName(Parse *, const char *);
void sqlite3VdbeSetChanges(sqlite3 *, int);

const void *sqlite3ValueText(sqlite3 *db, sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3 *db, sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3 *,sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int);
int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3 *, sqlite3_value *, u8, u8);
extern const unsigned char sqlite3UpperToLower[];
void sqlite3RootPageMoved(Db*, int, int);
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(sqlite3*);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);







|
|
|





|







1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
int sqlite3CheckCollSeq(Parse *, CollSeq *);
int sqlite3CheckObjectName(Parse *, const char *);
void sqlite3VdbeSetChanges(sqlite3 *, int);

const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int);
int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
extern const unsigned char sqlite3UpperToLower[];
void sqlite3RootPageMoved(Db*, int, int);
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(sqlite3*);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
Changes to src/test1.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing all sorts of SQLite interfaces.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** $Id: test1.c,v 1.266 2007/08/21 10:44:16 drh Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>

/*







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing all sorts of SQLite interfaces.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** $Id: test1.c,v 1.267 2007/08/21 19:33:57 drh Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>

/*
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
  if( rc==SQLITE_OK ){
    sqlite3_value *pVal;
#if 0
    if( sqlite3_iMallocFail>0 ){
      sqlite3_iMallocFail++;
    }
#endif 
    pVal = sqlite3ValueNew(0);
    sqlite3ValueSetStr(0,pVal, -1, "x_sqlite_exec", SQLITE_UTF8, SQLITE_STATIC);
    rc = sqlite3_create_function16(db, 
              sqlite3ValueText(0, pVal, SQLITE_UTF16NATIVE),
              1, SQLITE_UTF16, db, sqlite3ExecFunc, 0, 0);
    sqlite3ValueFree(pVal);
  }
#endif

  if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR;
  Tcl_SetResult(interp, (char *)t1ErrorName(rc), 0);







|
|

|







917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
  if( rc==SQLITE_OK ){
    sqlite3_value *pVal;
#if 0
    if( sqlite3_iMallocFail>0 ){
      sqlite3_iMallocFail++;
    }
#endif 
    pVal = sqlite3ValueNew(db);
    sqlite3ValueSetStr(pVal, -1, "x_sqlite_exec", SQLITE_UTF8, SQLITE_STATIC);
    rc = sqlite3_create_function16(db, 
              sqlite3ValueText(pVal, SQLITE_UTF16NATIVE),
              1, SQLITE_UTF16, db, sqlite3ExecFunc, 0, 0);
    sqlite3ValueFree(pVal);
  }
#endif

  if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR;
  Tcl_SetResult(interp, (char *)t1ErrorName(rc), 0);
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
      Tcl_ListObjAppendElement(i,pX,Tcl_NewStringObj("UTF-16BE",-1));
      break;
    default:
      assert(0);
  }

  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(0, pVal, nA, zA, encin, SQLITE_STATIC);
  n = sqlite3_value_bytes(pVal);
  Tcl_ListObjAppendElement(i,pX,
      Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n));
  sqlite3ValueSetStr(0, pVal, nB, zB, encin, SQLITE_STATIC);
  n = sqlite3_value_bytes(pVal);
  Tcl_ListObjAppendElement(i,pX,
      Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n));
  sqlite3ValueFree(pVal);

  Tcl_EvalObjEx(i, pX, 0);
  Tcl_DecrRefCount(pX);







|



|







2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
      Tcl_ListObjAppendElement(i,pX,Tcl_NewStringObj("UTF-16BE",-1));
      break;
    default:
      assert(0);
  }

  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(pVal, nA, zA, encin, SQLITE_STATIC);
  n = sqlite3_value_bytes(pVal);
  Tcl_ListObjAppendElement(i,pX,
      Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n));
  sqlite3ValueSetStr(pVal, nB, zB, encin, SQLITE_STATIC);
  n = sqlite3_value_bytes(pVal);
  Tcl_ListObjAppendElement(i,pX,
      Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n));
  sqlite3ValueFree(pVal);

  Tcl_EvalObjEx(i, pX, 0);
  Tcl_DecrRefCount(pX);
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113

#ifdef SQLITE_MEMDEBUG
    if( sqlite3_iMallocFail>0 ){
      sqlite3_iMallocFail++;
    }
#endif
    pVal = sqlite3ValueNew(0);
    sqlite3ValueSetStr(0, pVal, -1, "test_collate", SQLITE_UTF8, SQLITE_STATIC);
    rc = sqlite3_create_collation16(db, 
          sqlite3ValueText(0, pVal, SQLITE_UTF16NATIVE), SQLITE_UTF16BE, 
          (void *)SQLITE_UTF16BE, val?test_collate_func:0);
    sqlite3ValueFree(pVal);
  }
  if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR;
  
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, sqlite3TestErrorName(rc), 0);







|

|







2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113

#ifdef SQLITE_MEMDEBUG
    if( sqlite3_iMallocFail>0 ){
      sqlite3_iMallocFail++;
    }
#endif
    pVal = sqlite3ValueNew(0);
    sqlite3ValueSetStr(pVal, -1, "test_collate", SQLITE_UTF8, SQLITE_STATIC);
    rc = sqlite3_create_collation16(db, 
          sqlite3ValueText(pVal, SQLITE_UTF16NATIVE), SQLITE_UTF16BE, 
          (void *)SQLITE_UTF16BE, val?test_collate_func:0);
    sqlite3ValueFree(pVal);
  }
  if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR;
  
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, sqlite3TestErrorName(rc), 0);
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
  Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-8", -1));
  Tcl_ListObjAppendElement(interp, pX, 
      Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1));
  Tcl_EvalObjEx(interp, pX, 0);
  Tcl_DecrRefCount(pX);
  sqlite3_result_text(pCtx, Tcl_GetStringResult(interp), -1, SQLITE_TRANSIENT);
  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(0, pVal, -1, Tcl_GetStringResult(interp), 
      SQLITE_UTF8, SQLITE_STATIC);
  sqlite3_result_text16be(pCtx, sqlite3_value_text16be(pVal),
      -1, SQLITE_TRANSIENT);
  sqlite3ValueFree(pVal);
}
static void test_function_utf16le(
  sqlite3_context *pCtx, 







|







2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
  Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-8", -1));
  Tcl_ListObjAppendElement(interp, pX, 
      Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1));
  Tcl_EvalObjEx(interp, pX, 0);
  Tcl_DecrRefCount(pX);
  sqlite3_result_text(pCtx, Tcl_GetStringResult(interp), -1, SQLITE_TRANSIENT);
  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(pVal, -1, Tcl_GetStringResult(interp), 
      SQLITE_UTF8, SQLITE_STATIC);
  sqlite3_result_text16be(pCtx, sqlite3_value_text16be(pVal),
      -1, SQLITE_TRANSIENT);
  sqlite3ValueFree(pVal);
}
static void test_function_utf16le(
  sqlite3_context *pCtx, 
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
  Tcl_IncrRefCount(pX);
  Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-16LE", -1));
  Tcl_ListObjAppendElement(interp, pX, 
      Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1));
  Tcl_EvalObjEx(interp, pX, 0);
  Tcl_DecrRefCount(pX);
  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(0, pVal, -1, Tcl_GetStringResult(interp), 
      SQLITE_UTF8, SQLITE_STATIC);
  sqlite3_result_text(pCtx,(char*)sqlite3_value_text(pVal),-1,SQLITE_TRANSIENT);
  sqlite3ValueFree(pVal);
}
static void test_function_utf16be(
  sqlite3_context *pCtx, 
  int nArg,







|







2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
  Tcl_IncrRefCount(pX);
  Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-16LE", -1));
  Tcl_ListObjAppendElement(interp, pX, 
      Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1));
  Tcl_EvalObjEx(interp, pX, 0);
  Tcl_DecrRefCount(pX);
  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(pVal, -1, Tcl_GetStringResult(interp), 
      SQLITE_UTF8, SQLITE_STATIC);
  sqlite3_result_text(pCtx,(char*)sqlite3_value_text(pVal),-1,SQLITE_TRANSIENT);
  sqlite3ValueFree(pVal);
}
static void test_function_utf16be(
  sqlite3_context *pCtx, 
  int nArg,
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
  Tcl_IncrRefCount(pX);
  Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-16BE", -1));
  Tcl_ListObjAppendElement(interp, pX, 
      Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1));
  Tcl_EvalObjEx(interp, pX, 0);
  Tcl_DecrRefCount(pX);
  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(0, pVal, -1, Tcl_GetStringResult(interp), 
      SQLITE_UTF8, SQLITE_STATIC);
  sqlite3_result_text16le(pCtx, sqlite3_value_text16le(pVal),
      -1, SQLITE_TRANSIENT);
  sqlite3ValueFree(pVal);
}
#endif /* SQLITE_OMIT_UTF16 */
static int test_function(







|







2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
  Tcl_IncrRefCount(pX);
  Tcl_ListObjAppendElement(interp, pX, Tcl_NewStringObj("UTF-16BE", -1));
  Tcl_ListObjAppendElement(interp, pX, 
      Tcl_NewStringObj((char*)sqlite3_value_text(argv[0]), -1));
  Tcl_EvalObjEx(interp, pX, 0);
  Tcl_DecrRefCount(pX);
  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(pVal, -1, Tcl_GetStringResult(interp), 
      SQLITE_UTF8, SQLITE_STATIC);
  sqlite3_result_text16le(pCtx, sqlite3_value_text16le(pVal),
      -1, SQLITE_TRANSIENT);
  sqlite3ValueFree(pVal);
}
#endif /* SQLITE_OMIT_UTF16 */
static int test_function(
Changes to src/test5.c.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Code for testing the utf.c module in SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library. Specifically, the code in this file
** is used for testing the SQLite routines for converting between
** the various supported unicode encodings.
**
** $Id: test5.c,v 1.19 2007/08/21 10:44:16 drh Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>








|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Code for testing the utf.c module in SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library. Specifically, the code in this file
** is used for testing the SQLite routines for converting between
** the various supported unicode encodings.
**
** $Id: test5.c,v 1.20 2007/08/21 19:33:57 drh Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  pVal = sqlite3ValueNew(0);

  if( enc_from==SQLITE_UTF8 ){
    z = Tcl_GetString(objv[1]);
    if( objc==5 ){
      z = sqlite3StrDup(z);
    }
    sqlite3ValueSetStr(0, pVal, -1, z, enc_from, xDel);
  }else{
    z = (char*)Tcl_GetByteArrayFromObj(objv[1], &len);
    if( objc==5 ){
      char *zTmp = z;
      z = sqlite3_malloc(len);
      memcpy(z, zTmp, len);
    }
    sqlite3ValueSetStr(0, pVal, -1, z, enc_from, xDel);
  }

  z = (char *)sqlite3ValueText(0, pVal, enc_to);
  len = sqlite3ValueBytes(0, pVal, enc_to) + (enc_to==SQLITE_UTF8?1:2);
  Tcl_SetObjResult(interp, Tcl_NewByteArrayObj((u8*)z, len));

  sqlite3ValueFree(pVal);

  return TCL_OK;
}








|







|


|
|







152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  pVal = sqlite3ValueNew(0);

  if( enc_from==SQLITE_UTF8 ){
    z = Tcl_GetString(objv[1]);
    if( objc==5 ){
      z = sqlite3StrDup(z);
    }
    sqlite3ValueSetStr(pVal, -1, z, enc_from, xDel);
  }else{
    z = (char*)Tcl_GetByteArrayFromObj(objv[1], &len);
    if( objc==5 ){
      char *zTmp = z;
      z = sqlite3_malloc(len);
      memcpy(z, zTmp, len);
    }
    sqlite3ValueSetStr(pVal, -1, z, enc_from, xDel);
  }

  z = (char *)sqlite3ValueText(pVal, enc_to);
  len = sqlite3ValueBytes(pVal, enc_to) + (enc_to==SQLITE_UTF8?1:2);
  Tcl_SetObjResult(interp, Tcl_NewByteArrayObj((u8*)z, len));

  sqlite3ValueFree(pVal);

  return TCL_OK;
}

Changes to src/utf.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used to translate between UTF-8, 
** UTF-16, UTF-16BE, and UTF-16LE.
**
** $Id: utf.c,v 1.55 2007/08/16 10:09:03 danielk1977 Exp $
**
** Notes on UTF-8:
**
**   Byte-0    Byte-1    Byte-2    Byte-3    Value
**  0xxxxxxx                                 00000000 00000000 0xxxxxxx
**  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
**  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used to translate between UTF-8, 
** UTF-16, UTF-16BE, and UTF-16LE.
**
** $Id: utf.c,v 1.56 2007/08/21 19:33:57 drh Exp $
**
** Notes on UTF-8:
**
**   Byte-0    Byte-1    Byte-2    Byte-3    Value
**  0xxxxxxx                                 00000000 00000000 0xxxxxxx
**  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
**  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

#ifndef SQLITE_OMIT_UTF16
/*
** This routine transforms the internal text encoding used by pMem to
** desiredEnc. It is an error if the string is already of the desired
** encoding, or if *pMem does not contain a string value.
*/
int sqlite3VdbeMemTranslate(sqlite3 *db, Mem *pMem, u8 desiredEnc){
  unsigned char zShort[NBFS]; /* Temporary short output buffer */
  int len;                    /* Maximum length of output string in bytes */
  unsigned char *zOut;                  /* Output buffer */
  unsigned char *zIn;                   /* Input iterator */
  unsigned char *zTerm;                 /* End of input */
  unsigned char *z;                     /* Output iterator */
  unsigned int c;


  assert( pMem->flags&MEM_Str );
  assert( pMem->enc!=desiredEnc );
  assert( pMem->enc!=0 );
  assert( pMem->n>=0 );

#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "INPUT:  %s\n", zBuf);
  }
#endif

  /* If the translation is between UTF-16 little and big endian, then 
  ** all that is required is to swap the byte order. This case is handled
  ** differently from the others.
  */
  if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
    u8 temp;
    int rc;
    rc = sqlite3VdbeMemMakeWriteable(db, pMem);
    if( rc!=SQLITE_OK ){
      assert( rc==SQLITE_NOMEM );
      return SQLITE_NOMEM;
    }
    zIn = (u8*)pMem->z;
    zTerm = &zIn[pMem->n];
    while( zIn<zTerm ){







|








>




















|







183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

#ifndef SQLITE_OMIT_UTF16
/*
** This routine transforms the internal text encoding used by pMem to
** desiredEnc. It is an error if the string is already of the desired
** encoding, or if *pMem does not contain a string value.
*/
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
  unsigned char zShort[NBFS]; /* Temporary short output buffer */
  int len;                    /* Maximum length of output string in bytes */
  unsigned char *zOut;                  /* Output buffer */
  unsigned char *zIn;                   /* Input iterator */
  unsigned char *zTerm;                 /* End of input */
  unsigned char *z;                     /* Output iterator */
  unsigned int c;

  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( pMem->flags&MEM_Str );
  assert( pMem->enc!=desiredEnc );
  assert( pMem->enc!=0 );
  assert( pMem->n>=0 );

#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "INPUT:  %s\n", zBuf);
  }
#endif

  /* If the translation is between UTF-16 little and big endian, then 
  ** all that is required is to swap the byte order. This case is handled
  ** differently from the others.
  */
  if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
    u8 temp;
    int rc;
    rc = sqlite3VdbeMemMakeWriteable(pMem);
    if( rc!=SQLITE_OK ){
      assert( rc==SQLITE_NOMEM );
      return SQLITE_NOMEM;
    }
    zIn = (u8*)pMem->z;
    zTerm = &zIn[pMem->n];
    while( zIn<zTerm ){
256
257
258
259
260
261
262
263

264

265
266
267
268
269
270
271
  ** Variable zOut is set to point at the output buffer. This may be space
  ** obtained from sqlite3_malloc(), or Mem.zShort, if it large enough and
  ** not in use, or the zShort array on the stack (see above).
  */
  zIn = (u8*)pMem->z;
  zTerm = &zIn[pMem->n];
  if( len>NBFS ){
    zOut = sqlite3DbMallocRaw(db, len);

    if( !zOut ) return SQLITE_NOMEM;

  }else{
    zOut = zShort;
  }
  z = zOut;

  if( pMem->enc==SQLITE_UTF8 ){
    if( desiredEnc==SQLITE_UTF16LE ){







|
>
|
>







257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
  ** Variable zOut is set to point at the output buffer. This may be space
  ** obtained from sqlite3_malloc(), or Mem.zShort, if it large enough and
  ** not in use, or the zShort array on the stack (see above).
  */
  zIn = (u8*)pMem->z;
  zTerm = &zIn[pMem->n];
  if( len>NBFS ){
    zOut = sqlite3DbMallocRaw(pMem->db, len);
    if( !zOut ){
      return SQLITE_NOMEM;
    }
  }else{
    zOut = zShort;
  }
  z = zOut;

  if( pMem->enc==SQLITE_UTF8 ){
    if( desiredEnc==SQLITE_UTF16LE ){
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
** UTF-16 string stored in *pMem. If one is present, it is removed and
** the encoding of the Mem adjusted. This routine does not do any
** byte-swapping, it just sets Mem.enc appropriately.
**
** The allocation (static, dynamic etc.) and encoding of the Mem may be
** changed by this function.
*/
int sqlite3VdbeMemHandleBom(sqlite3 *db, Mem *pMem){
  int rc = SQLITE_OK;
  u8 bom = 0;

  if( pMem->n<0 || pMem->n>1 ){
    u8 b1 = *(u8 *)pMem->z;
    u8 b2 = *(((u8 *)pMem->z) + 1);
    if( b1==0xFE && b2==0xFF ){







|







335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
** UTF-16 string stored in *pMem. If one is present, it is removed and
** the encoding of the Mem adjusted. This routine does not do any
** byte-swapping, it just sets Mem.enc appropriately.
**
** The allocation (static, dynamic etc.) and encoding of the Mem may be
** changed by this function.
*/
int sqlite3VdbeMemHandleBom(Mem *pMem){
  int rc = SQLITE_OK;
  u8 bom = 0;

  if( pMem->n<0 || pMem->n>1 ){
    u8 b1 = *(u8 *)pMem->z;
    u8 b2 = *(((u8 *)pMem->z) + 1);
    if( b1==0xFE && b2==0xFF ){
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    assert( !(pMem->flags&MEM_Short) );
    assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
    if( pMem->flags & MEM_Dyn ){
      void (*xDel)(void*) = pMem->xDel;
      char *z = pMem->z;
      pMem->z = 0;
      pMem->xDel = 0;
      rc = sqlite3VdbeMemSetStr(db, pMem, &z[2], pMem->n-2, bom, 
          SQLITE_TRANSIENT);
      xDel(z);
    }else{
      rc = sqlite3VdbeMemSetStr(db, pMem, &pMem->z[2], pMem->n-2, bom, 
          SQLITE_TRANSIENT);
    }
  }
  return rc;
}
#endif /* SQLITE_OMIT_UTF16 */








|



|







363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    assert( !(pMem->flags&MEM_Short) );
    assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
    if( pMem->flags & MEM_Dyn ){
      void (*xDel)(void*) = pMem->xDel;
      char *z = pMem->z;
      pMem->z = 0;
      pMem->xDel = 0;
      rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, 
          SQLITE_TRANSIENT);
      xDel(z);
    }else{
      rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom, 
          SQLITE_TRANSIENT);
    }
  }
  return rc;
}
#endif /* SQLITE_OMIT_UTF16 */

407
408
409
410
411
412
413

414
415
416
417
418
419
420
421
422
** be freed by the calling function.
**
** NULL is returned if there is an allocation error.
*/
char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
  Mem m;
  memset(&m, 0, sizeof(m));

  sqlite3VdbeMemSetStr(db, &m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
  sqlite3VdbeChangeEncoding(db, &m, SQLITE_UTF8);
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
}

/*
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,







>
|
|







410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
** be freed by the calling function.
**
** NULL is returned if there is an allocation error.
*/
char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
  Mem m;
  memset(&m, 0, sizeof(m));
  m.db = db;
  sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
  sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
}

/*
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
Changes to src/util.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.210 2007/08/21 10:44:16 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
#include <ctype.h>


/*







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.211 2007/08/21 19:33:57 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
#include <ctype.h>


/*
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    db->errCode = err_code;
    if( zFormat ){
      char *z;
      va_list ap;
      va_start(ap, zFormat);
      z = sqlite3VMPrintf(db, zFormat, ap);
      va_end(ap);
      sqlite3ValueSetStr(db, db->pErr, -1, z, SQLITE_UTF8, sqlite3_free);
    }else{
      sqlite3ValueSetStr(db, db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
    }
  }
}

/*
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
** The following formatting characters are allowed:







|

|







47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    db->errCode = err_code;
    if( zFormat ){
      char *z;
      va_list ap;
      va_start(ap, zFormat);
      z = sqlite3VMPrintf(db, zFormat, ap);
      va_end(ap);
      sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free);
    }else{
      sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
    }
  }
}

/*
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
** The following formatting characters are allowed:
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.643 2007/08/21 10:44:16 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include <math.h>
#include "vdbeInt.h"

/*







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.644 2007/08/21 19:33:57 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
#include <math.h>
#include "vdbeInt.h"

/*
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
*/
#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }

/*
** Convert the given stack entity into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
#define Stringify(db, P, enc) \
   if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(db,P,enc)) \
     { goto no_mem; }

/*
** The header of a record consists of a sequence variable-length integers.
** These integers are almost always small and are encoded as a single byte.
** The following macro takes advantage this fact to provide a fast decode
** of the integers in a record header.  It is faster for the common case







|
|







101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
*/
#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }

/*
** Convert the given stack entity into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
#define Stringify(P, enc) \
   if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
     { goto no_mem; }

/*
** The header of a record consists of a sequence variable-length integers.
** These integers are almost always small and are encoded as a single byte.
** The following macro takes advantage this fact to provide a fast decode
** of the integers in a record header.  It is faster for the common case
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
** does not control the string, it might be deleted without the stack
** entry knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the stack entry itself controls.  In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(db,P) \
   if( ((P)->flags&MEM_Ephem)!=0 \
       && sqlite3VdbeMemMakeWriteable(db, P) ){ goto no_mem;}

/*
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
** P if required.
*/
#define ExpandBlob(D,P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(D,P):0)

/*
** Argument pMem points at a memory cell that will be passed to a
** user-defined function or returned to the user as the result of a query.
** The second argument, 'db_enc' is the text encoding used by the vdbe for
** stack variables.  This routine sets the pMem->enc and pMem->type
** variables used by the sqlite3_value_*() routines.







|

|





|







133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
** does not control the string, it might be deleted without the stack
** entry knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the stack entry itself controls.  In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 \
       && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}

/*
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
** P if required.
*/
#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)

/*
** Argument pMem points at a memory cell that will be passed to a
** user-defined function or returned to the user as the result of a query.
** The second argument, 'db_enc' is the text encoding used by the vdbe for
** stack variables.  This routine sets the pMem->enc and pMem->type
** variables used by the sqlite3_value_*() routines.
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

/*
** Try to convert a value into a numeric representation if we can
** do so without loss of information.  In other words, if the string
** looks like a number, convert it into a number.  If it does not
** look like a number, leave it alone.
*/
static void applyNumericAffinity(sqlite3 *db, Mem *pRec){
  if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
    int realnum;
    sqlite3VdbeMemNulTerminate(db, pRec);
    if( (pRec->flags&MEM_Str)
         && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
      i64 value;
      sqlite3VdbeChangeEncoding(db, pRec, SQLITE_UTF8);
      if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
        sqlite3VdbeMemRelease(pRec);
        pRec->u.i = value;
        pRec->flags = MEM_Int;
      }else{
        sqlite3VdbeMemRealify(pRec);
      }







|


|



|







205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

/*
** Try to convert a value into a numeric representation if we can
** do so without loss of information.  In other words, if the string
** looks like a number, convert it into a number.  If it does not
** look like a number, leave it alone.
*/
static void applyNumericAffinity(Mem *pRec){
  if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
    int realnum;
    sqlite3VdbeMemNulTerminate(pRec);
    if( (pRec->flags&MEM_Str)
         && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
      i64 value;
      sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
      if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
        sqlite3VdbeMemRelease(pRec);
        pRec->u.i = value;
        pRec->flags = MEM_Int;
      }else{
        sqlite3VdbeMemRealify(pRec);
      }
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
** SQLITE_AFF_TEXT:
**    Convert pRec to a text representation.
**
** SQLITE_AFF_NONE:
**    No-op.  pRec is unchanged.
*/
static void applyAffinity(
  sqlite3 *db,        /* Report malloc() errors to this db connection */
  Mem *pRec,          /* The value to apply affinity to */
  char affinity,      /* The affinity to be applied */
  u8 enc              /* Use this text encoding */
){
  if( affinity==SQLITE_AFF_TEXT ){
    /* Only attempt the conversion to TEXT if there is an integer or real
    ** representation (blob and NULL do not get converted) but no string
    ** representation.
    */
    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
      sqlite3VdbeMemStringify(db, pRec, enc);
    }
    pRec->flags &= ~(MEM_Real|MEM_Int);
  }else if( affinity!=SQLITE_AFF_NONE ){
    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
             || affinity==SQLITE_AFF_NUMERIC );
    applyNumericAffinity(db, pRec);
    if( pRec->flags & MEM_Real ){
      sqlite3VdbeIntegerAffinity(pRec);
    }
  }
}

/*
** Try to convert the type of a function argument or a result column
** into a numeric representation.  Use either INTEGER or REAL whichever
** is appropriate.  But only do the conversion if it is possible without
** loss of information and return the revised type of the argument.
**
** This is an EXPERIMENTAL api and is subject to change or removal.
*/
int sqlite3_value_numeric_type(sqlite3_value *pVal){
  Mem *pMem = (Mem*)pVal;
  applyNumericAffinity(0, pMem);
  storeTypeInfo(pMem, 0);
  return pMem->type;
}

/*
** Exported version of applyAffinity(). This one works on sqlite3_value*, 
** not the internal Mem* type.
*/
void sqlite3ValueApplyAffinity(
  sqlite3 *db, 
  sqlite3_value *pVal, 
  u8 affinity, 
  u8 enc
){
  applyAffinity(db, (Mem *)pVal, affinity, enc);
}

#ifdef SQLITE_DEBUG
/*
** Write a nice string representation of the contents of cell pMem
** into buffer zBuf, length nBuf.
*/







<










|





|
















|









<




|







243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

293
294
295
296
297
298
299
300
301
302
303
304
** SQLITE_AFF_TEXT:
**    Convert pRec to a text representation.
**
** SQLITE_AFF_NONE:
**    No-op.  pRec is unchanged.
*/
static void applyAffinity(

  Mem *pRec,          /* The value to apply affinity to */
  char affinity,      /* The affinity to be applied */
  u8 enc              /* Use this text encoding */
){
  if( affinity==SQLITE_AFF_TEXT ){
    /* Only attempt the conversion to TEXT if there is an integer or real
    ** representation (blob and NULL do not get converted) but no string
    ** representation.
    */
    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
      sqlite3VdbeMemStringify(pRec, enc);
    }
    pRec->flags &= ~(MEM_Real|MEM_Int);
  }else if( affinity!=SQLITE_AFF_NONE ){
    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
             || affinity==SQLITE_AFF_NUMERIC );
    applyNumericAffinity(pRec);
    if( pRec->flags & MEM_Real ){
      sqlite3VdbeIntegerAffinity(pRec);
    }
  }
}

/*
** Try to convert the type of a function argument or a result column
** into a numeric representation.  Use either INTEGER or REAL whichever
** is appropriate.  But only do the conversion if it is possible without
** loss of information and return the revised type of the argument.
**
** This is an EXPERIMENTAL api and is subject to change or removal.
*/
int sqlite3_value_numeric_type(sqlite3_value *pVal){
  Mem *pMem = (Mem*)pVal;
  applyNumericAffinity(pMem);
  storeTypeInfo(pMem, 0);
  return pMem->type;
}

/*
** Exported version of applyAffinity(). This one works on sqlite3_value*, 
** not the internal Mem* type.
*/
void sqlite3ValueApplyAffinity(

  sqlite3_value *pVal, 
  u8 affinity, 
  u8 enc
){
  applyAffinity((Mem *)pVal, affinity, enc);
}

#ifdef SQLITE_DEBUG
/*
** Write a nice string representation of the contents of cell pMem
** into buffer zBuf, length nBuf.
*/
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
  pTos++;
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;
  pTos->z = pOp->p3;
  pTos->n = strlen(pTos->z);
  pTos->enc = SQLITE_UTF8;
  pTos->r = sqlite3VdbeRealValue(pTos);
  pTos->flags |= MEM_Real;
  sqlite3VdbeChangeEncoding(db, pTos, encoding);
  break;
}

/* Opcode: String8 * * P3
**
** P3 points to a nul terminated UTF-8 string. This opcode is transformed 
** into an OP_String before it is executed for the first time.
*/
case OP_String8: {         /* same as TK_STRING */
  assert( pOp->p3!=0 );
  pOp->opcode = OP_String;
  pOp->p1 = strlen(pOp->p3);
  assert( SQLITE_MAX_SQL_LENGTH < SQLITE_MAX_LENGTH );
  assert( pOp->p1 < SQLITE_MAX_LENGTH );

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    pTos++;
    sqlite3VdbeMemSetStr(db, pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(db, pTos, encoding) ) goto no_mem;
    if( SQLITE_OK!=sqlite3VdbeMemDynamicify(db, pTos) ) goto no_mem;
    pTos->flags &= ~(MEM_Dyn);
    pTos->flags |= MEM_Static;
    if( pOp->p3type==P3_DYNAMIC ){
      sqlite3_free(pOp->p3);
    }
    pOp->p3type = P3_DYNAMIC;
    pOp->p3 = pTos->z;







|


















|
|
|







727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
  pTos++;
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;
  pTos->z = pOp->p3;
  pTos->n = strlen(pTos->z);
  pTos->enc = SQLITE_UTF8;
  pTos->r = sqlite3VdbeRealValue(pTos);
  pTos->flags |= MEM_Real;
  sqlite3VdbeChangeEncoding(pTos, encoding);
  break;
}

/* Opcode: String8 * * P3
**
** P3 points to a nul terminated UTF-8 string. This opcode is transformed 
** into an OP_String before it is executed for the first time.
*/
case OP_String8: {         /* same as TK_STRING */
  assert( pOp->p3!=0 );
  pOp->opcode = OP_String;
  pOp->p1 = strlen(pOp->p3);
  assert( SQLITE_MAX_SQL_LENGTH < SQLITE_MAX_LENGTH );
  assert( pOp->p1 < SQLITE_MAX_LENGTH );

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    pTos++;
    sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem;
    if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
    pTos->flags &= ~(MEM_Dyn);
    pTos->flags |= MEM_Static;
    if( pOp->p3type==P3_DYNAMIC ){
      sqlite3_free(pOp->p3);
    }
    pOp->p3type = P3_DYNAMIC;
    pOp->p3 = pTos->z;
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
** an OP_HexBlob opcode, with the hex string representation of
** the blob as P3. This opcode is transformed to an OP_Blob
** the first time it is executed.
*/
case OP_Blob: {
  pTos++;
  assert( pOp->p1 < SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
  sqlite3VdbeMemSetStr(db, pTos, pOp->p3, pOp->p1, 0, 0);
  pTos->enc = encoding;
  break;
}
#endif /* SQLITE_OMIT_BLOB_LITERAL */

/* Opcode: Variable P1 * *
**







|







836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
** an OP_HexBlob opcode, with the hex string representation of
** the blob as P3. This opcode is transformed to an OP_Blob
** the first time it is executed.
*/
case OP_Blob: {
  pTos++;
  assert( pOp->p1 < SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
  sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0);
  pTos->enc = encoding;
  break;
}
#endif /* SQLITE_OMIT_BLOB_LITERAL */

/* Opcode: Variable P1 * *
**
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
*/
case OP_Dup: {
  Mem *pFrom = &pTos[-pOp->p1];
  assert( pFrom<=pTos && pFrom>=p->aStack );
  pTos++;
  sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
  if( pOp->p2 ){
    Deephemeralize(db, pTos);
  }
  break;
}

/* Opcode: Pull P1 * *
**
** The P1-th element is removed from its current location on 
** the stack and pushed back on top of the stack.  The
** top of the stack is element 0, so "Pull 0 0 0" is
** a no-op.  "Pull 1 0 0" swaps the top two elements of
** the stack.
**
** See also the Dup instruction.
*/
case OP_Pull: {            /* no-push */
  Mem *pFrom = &pTos[-pOp->p1];
  int i;
  Mem ts;

  ts = *pFrom;
  Deephemeralize(db, pTos);
  for(i=0; i<pOp->p1; i++, pFrom++){
    Deephemeralize(db, &pFrom[1]);
    assert( (pFrom[1].flags & MEM_Ephem)==0 );
    *pFrom = pFrom[1];
    if( pFrom->flags & MEM_Short ){
      assert( pFrom->flags & (MEM_Str|MEM_Blob) );
      assert( pFrom->z==pFrom[1].zShort );
      pFrom->z = pFrom->zShort;
    }







|




















|

|







897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
*/
case OP_Dup: {
  Mem *pFrom = &pTos[-pOp->p1];
  assert( pFrom<=pTos && pFrom>=p->aStack );
  pTos++;
  sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
  if( pOp->p2 ){
    Deephemeralize(pTos);
  }
  break;
}

/* Opcode: Pull P1 * *
**
** The P1-th element is removed from its current location on 
** the stack and pushed back on top of the stack.  The
** top of the stack is element 0, so "Pull 0 0 0" is
** a no-op.  "Pull 1 0 0" swaps the top two elements of
** the stack.
**
** See also the Dup instruction.
*/
case OP_Pull: {            /* no-push */
  Mem *pFrom = &pTos[-pOp->p1];
  int i;
  Mem ts;

  ts = *pFrom;
  Deephemeralize(pTos);
  for(i=0; i<pOp->p1; i++, pFrom++){
    Deephemeralize(&pFrom[1]);
    assert( (pFrom[1].flags & MEM_Ephem)==0 );
    *pFrom = pFrom[1];
    if( pFrom->flags & MEM_Short ){
      assert( pFrom->flags & (MEM_Str|MEM_Blob) );
      assert( pFrom->z==pFrom[1].zShort );
      pFrom->z = pFrom->zShort;
    }
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack.  Then pop the top of the stack.
*/
case OP_Push: {            /* no-push */
  Mem *pTo = &pTos[-pOp->p1];

  assert( pTo>=p->aStack );
  sqlite3VdbeMemMove(db, pTo, pTos);
  pTos--;
  break;
}

/* Opcode: Callback P1 * *
**
** The top P1 values on the stack represent a single result row from







|







948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack.  Then pop the top of the stack.
*/
case OP_Push: {            /* no-push */
  Mem *pTo = &pTos[-pOp->p1];

  assert( pTo>=p->aStack );
  sqlite3VdbeMemMove(pTo, pTos);
  pTos--;
  break;
}

/* Opcode: Callback P1 * *
**
** The top P1 values on the stack represent a single result row from
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
  ** in between the return from this sqlite3_step() call and the
  ** next call to sqlite3_step().  So deephermeralize everything on 
  ** the stack.  Note that ephemeral data is never stored in memory 
  ** cells so we do not have to worry about them.
  */
  pFirstColumn = &pTos[0-pOp->p1];
  for(pMem = p->aStack; pMem<pFirstColumn; pMem++){
    Deephemeralize(db, pMem);
  }

  /* Invalidate all ephemeral cursor row caches */
  p->cacheCtr = (p->cacheCtr + 2)|1;

  /* Make sure the results of the current row are \000 terminated
  ** and have an assigned type.  The results are deephemeralized as
  ** as side effect.
  */
  for(; pMem<=pTos; pMem++ ){
    sqlite3VdbeMemNulTerminate(db, pMem);
    storeTypeInfo(pMem, encoding);
  }

  /* Set up the statement structure so that it will pop the current
  ** results from the stack when the statement returns.
  */
  p->resOnStack = 1;







|










|







976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
  ** in between the return from this sqlite3_step() call and the
  ** next call to sqlite3_step().  So deephermeralize everything on 
  ** the stack.  Note that ephemeral data is never stored in memory 
  ** cells so we do not have to worry about them.
  */
  pFirstColumn = &pTos[0-pOp->p1];
  for(pMem = p->aStack; pMem<pFirstColumn; pMem++){
    Deephemeralize(pMem);
  }

  /* Invalidate all ephemeral cursor row caches */
  p->cacheCtr = (p->cacheCtr + 2)|1;

  /* Make sure the results of the current row are \000 terminated
  ** and have an assigned type.  The results are deephemeralized as
  ** as side effect.
  */
  for(; pMem<=pTos; pMem++ ){
    sqlite3VdbeMemNulTerminate(pMem);
    storeTypeInfo(pMem, encoding);
  }

  /* Set up the statement structure so that it will pop the current
  ** results from the stack when the statement returns.
  */
  p->resOnStack = 1;
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
  nByte = 0;
  for(i=0; i<nField; i++, pTerm++){
    assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
    if( pTerm->flags&MEM_Null ){
      nByte = -1;
      break;
    }
    ExpandBlob(db, pTerm);
    Stringify(db, pTerm, encoding);
    nByte += pTerm->n;
  }

  if( nByte<0 ){
    /* If nByte is less than zero, then there is a NULL value on the stack.
    ** In this case just pop the values off the stack (if required) and
    ** push on a NULL.







|
|







1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
  nByte = 0;
  for(i=0; i<nField; i++, pTerm++){
    assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
    if( pTerm->flags&MEM_Null ){
      nByte = -1;
      break;
    }
    ExpandBlob(pTerm);
    Stringify(pTerm, encoding);
    nByte += pTerm->n;
  }

  if( nByte<0 ){
    /* If nByte is less than zero, then there is a NULL value on the stack.
    ** In this case just pop the values off the stack (if required) and
    ** push on a NULL.
1276
1277
1278
1279
1280
1281
1282

1283
1284
1285
1286
1287
1288
1289
    ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
    ctx.pFunc = ctx.pVdbeFunc->pFunc;
  }

  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.xDel = 0;

  ctx.isError = 0;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p3type==P3_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p3;
  }







>







1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
    ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
    ctx.pFunc = ctx.pVdbeFunc->pFunc;
  }

  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
  ctx.isError = 0;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p3type==P3_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p3;
  }
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
  /* If the function returned an error, throw an exception */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
    rc = SQLITE_ERROR;
  }

  /* Copy the result of the function to the top of the stack */
  sqlite3VdbeChangeEncoding(db, &ctx.s, encoding);
  pTos++;
  pTos->flags = 0;
  sqlite3VdbeMemMove(db, pTos, &ctx.s);
  if( sqlite3VdbeMemTooBig(pTos) ){
    goto too_big;
  }
  break;
}

/* Opcode: BitAnd * * *







|


|







1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
  /* If the function returned an error, throw an exception */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
    rc = SQLITE_ERROR;
  }

  /* Copy the result of the function to the top of the stack */
  sqlite3VdbeChangeEncoding(&ctx.s, encoding);
  pTos++;
  pTos->flags = 0;
  sqlite3VdbeMemMove(pTos, &ctx.s);
  if( sqlite3VdbeMemTooBig(pTos) ){
    goto too_big;
  }
  break;
}

/* Opcode: BitAnd * * *
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
** convert it into the least integer that is greater than or equal to its
** current value if P1==0, or to the least integer that is strictly
** greater than its current value if P1==1.
*/
case OP_ForceInt: {            /* no-push */
  i64 v;
  assert( pTos>=p->aStack );
  applyAffinity(db, pTos, SQLITE_AFF_NUMERIC, encoding);
  if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
    Release(pTos);
    pTos--;
    pc = pOp->p2 - 1;
    break;
  }
  if( pTos->flags & MEM_Int ){







|







1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
** convert it into the least integer that is greater than or equal to its
** current value if P1==0, or to the least integer that is strictly
** greater than its current value if P1==1.
*/
case OP_ForceInt: {            /* no-push */
  i64 v;
  assert( pTos>=p->aStack );
  applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
  if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
    Release(pTos);
    pTos--;
    pc = pOp->p2 - 1;
    break;
  }
  if( pTos->flags & MEM_Int ){
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
**
** If the top of the stack is not an integer and P2 is not zero and
** P1 is 1, then the stack is popped.  In all other cases, the depth
** of the stack is unchanged.
*/
case OP_MustBeInt: {            /* no-push */
  assert( pTos>=p->aStack );
  applyAffinity(db, pTos, SQLITE_AFF_NUMERIC, encoding);
  if( (pTos->flags & MEM_Int)==0 ){
    if( pOp->p2==0 ){
      rc = SQLITE_MISMATCH;
      goto abort_due_to_error;
    }else{
      if( pOp->p1 ) popStack(&pTos, 1);
      pc = pOp->p2 - 1;







|







1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
**
** If the top of the stack is not an integer and P2 is not zero and
** P1 is 1, then the stack is popped.  In all other cases, the depth
** of the stack is unchanged.
*/
case OP_MustBeInt: {            /* no-push */
  assert( pTos>=p->aStack );
  applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
  if( (pTos->flags & MEM_Int)==0 ){
    if( pOp->p2==0 ){
      rc = SQLITE_MISMATCH;
      goto abort_due_to_error;
    }else{
      if( pOp->p1 ) popStack(&pTos, 1);
      pc = pOp->p2 - 1;
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToText: {                  /* same as TK_TO_TEXT, no-push */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;
  assert( MEM_Str==(MEM_Blob>>3) );
  pTos->flags |= (pTos->flags&MEM_Blob)>>3;
  applyAffinity(db, pTos, SQLITE_AFF_TEXT, encoding);
  rc = ExpandBlob(db, pTos);
  assert( pTos->flags & MEM_Str );
  pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
  break;
}

/* Opcode: ToBlob * * *
**
** Force the value on the top of the stack to be a BLOB.
** If the value is numeric, convert it to a string first.
** Strings are simply reinterpreted as blobs with no change
** to the underlying data.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToBlob: {                  /* same as TK_TO_BLOB, no-push */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;
  if( (pTos->flags & MEM_Blob)==0 ){
    applyAffinity(db, pTos, SQLITE_AFF_TEXT, encoding);
    assert( pTos->flags & MEM_Str );
    pTos->flags |= MEM_Blob;
  }
  pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str);
  break;
}








|
|


















|







1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToText: {                  /* same as TK_TO_TEXT, no-push */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;
  assert( MEM_Str==(MEM_Blob>>3) );
  pTos->flags |= (pTos->flags&MEM_Blob)>>3;
  applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
  rc = ExpandBlob(pTos);
  assert( pTos->flags & MEM_Str );
  pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
  break;
}

/* Opcode: ToBlob * * *
**
** Force the value on the top of the stack to be a BLOB.
** If the value is numeric, convert it to a string first.
** Strings are simply reinterpreted as blobs with no change
** to the underlying data.
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_ToBlob: {                  /* same as TK_TO_BLOB, no-push */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;
  if( (pTos->flags & MEM_Blob)==0 ){
    applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
    assert( pTos->flags & MEM_Str );
    pTos->flags |= MEM_Blob;
  }
  pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str);
  break;
}

1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
      }
      break;
    }
  }

  affinity = pOp->p1 & 0xFF;
  if( affinity ){
    applyAffinity(db, pNos, affinity, encoding);
    applyAffinity(db, pTos, affinity, encoding);
  }

  assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
  ExpandBlob(db, pNos);
  ExpandBlob(db, pTos);
  res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
    case OP_Gt:    res = res>0;      break;







|
|



|
|







1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
      }
      break;
    }
  }

  affinity = pOp->p1 & 0xFF;
  if( affinity ){
    applyAffinity(pNos, affinity, encoding);
    applyAffinity(pTos, affinity, encoding);
  }

  assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
  ExpandBlob(pNos);
  ExpandBlob(pTos);
  res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
    case OP_Gt:    res = res>0;      break;
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
    /* The KeyFetch() or DataFetch() above are fast and will get the entire
    ** record header in most cases.  But they will fail to get the complete
    ** record header if the record header does not fit on a single page
    ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
    ** acquire the complete header text.
    */
    if( !zRec && avail<offset ){
      rc = sqlite3VdbeMemFromBtree(db, pCrsr, 0, offset, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
    }
    zEndHdr = (u8 *)&zData[offset];
    zIdx = (u8 *)&zData[szHdrSz];







|







2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
    /* The KeyFetch() or DataFetch() above are fast and will get the entire
    ** record header in most cases.  But they will fail to get the complete
    ** record header if the record header does not fit on a single page
    ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
    ** acquire the complete header text.
    */
    if( !zRec && avail<offset ){
      rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
    }
    zEndHdr = (u8 *)&zData[offset];
    zIdx = (u8 *)&zData[szHdrSz];
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      zData = &zRec[aOffset[p2]];
    }else{
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
      rc = sqlite3VdbeMemFromBtree(
          db, pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
    }
    sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos);
    pTos->enc = encoding;







|
<







2167
2168
2169
2170
2171
2172
2173
2174

2175
2176
2177
2178
2179
2180
2181
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      zData = &zRec[aOffset[p2]];
    }else{
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);

      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
    }
    sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos);
    pTos->enc = encoding;
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
    assert( sMem.flags & MEM_Term );
    pTos->flags &= ~MEM_Ephem;
    pTos->flags |= MEM_Dyn|MEM_Term;
  }

  /* pTos->z might be pointing to sMem.zShort[].  Fix that so that we
  ** can abandon sMem */
  rc = sqlite3VdbeMemMakeWriteable(db, pTos);

op_column_out:
  break;
}

/* Opcode: MakeRecord P1 P2 P3
**







|







2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
    assert( sMem.flags & MEM_Term );
    pTos->flags &= ~MEM_Ephem;
    pTos->flags |= MEM_Dyn|MEM_Term;
  }

  /* pTos->z might be pointing to sMem.zShort[].  Fix that so that we
  ** can abandon sMem */
  rc = sqlite3VdbeMemMakeWriteable(pTos);

op_column_out:
  break;
}

/* Opcode: MakeRecord P1 P2 P3
**
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  for(pRec=pData0; pRec<=pTos; pRec++){
    int len;
    if( zAffinity ){
      applyAffinity(db, pRec, zAffinity[pRec-pData0], encoding);
    }
    if( pRec->flags&MEM_Null ){
      containsNull = 1;
    }
    if( pRec->flags&MEM_Zero && pRec->n>0 ){
      ExpandBlob(db, pRec);
    }
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    len = sqlite3VdbeSerialTypeLen(serial_type);
    nData += len;
    nHdr += sqlite3VarintLen(serial_type);
    if( pRec->flags & MEM_Zero ){
      /* Only pure zero-filled BLOBs can be input to this Opcode.







|





|







2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  for(pRec=pData0; pRec<=pTos; pRec++){
    int len;
    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
    }
    if( pRec->flags&MEM_Null ){
      containsNull = 1;
    }
    if( pRec->flags&MEM_Zero && pRec->n>0 ){
      ExpandBlob(pRec);
    }
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    len = sqlite3VdbeSerialTypeLen(serial_type);
    nData += len;
    nHdr += sqlite3VarintLen(serial_type);
    if( pRec->flags & MEM_Zero ){
      /* Only pure zero-filled BLOBs can be input to this Opcode.
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pC->lastRowid = pTos->u.i;
      pC->rowidIsValid = res==0;
    }else{
      assert( pTos->flags & MEM_Blob );
      ExpandBlob(db, pTos);
      rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pC->rowidIsValid = 0;
    }
    pC->deferredMoveto = 0;







|







2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pC->lastRowid = pTos->u.i;
      pC->rowidIsValid = res==0;
    }else{
      assert( pTos->flags & MEM_Blob );
      ExpandBlob(pTos);
      rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pC->rowidIsValid = 0;
    }
    pC->deferredMoveto = 0;
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
    int res, rx;
    assert( pC->isTable==0 );
    assert( pTos->flags & MEM_Blob );
    Stringify(db, pTos, encoding);
    rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
    alreadyExists = rx==SQLITE_OK && res==0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  if( pOp->opcode==OP_Found ){
    if( alreadyExists ) pc = pOp->p2 - 1;







|







3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
    int res, rx;
    assert( pC->isTable==0 );
    assert( pTos->flags & MEM_Blob );
    Stringify(pTos, encoding);
    rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
    alreadyExists = rx==SQLITE_OK && res==0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  if( pOp->opcode==OP_Found ){
    if( alreadyExists ) pc = pOp->p2 - 1;
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
    int nKey;      /* Number of bytes in K */
    int len;       /* Number of bytes in K without the rowid at the end */
    int szRowid;   /* Size of the rowid column at the end of zKey */

    /* Make sure K is a string and make zKey point to K
    */
    assert( pNos->flags & MEM_Blob );
    Stringify(db, pNos, encoding);
    zKey = pNos->z;
    nKey = pNos->n;

    szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
    len = nKey-szRowid;

    /* Search for an entry in P1 where all but the last four bytes match K.







|







3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
    int nKey;      /* Number of bytes in K */
    int len;       /* Number of bytes in K without the rowid at the end */
    int szRowid;   /* Size of the rowid column at the end of zKey */

    /* Make sure K is a string and make zKey point to K
    */
    assert( pNos->flags & MEM_Blob );
    Stringify(pNos, encoding);
    zKey = pNos->z;
    nKey = pNos->n;

    szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
    len = nKey-szRowid;

    /* Search for an entry in P1 where all but the last four bytes match K.
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
    if( res<0 ){
      rc = sqlite3BtreeNext(pCrsr, &res);
      if( res ){
        pc = pOp->p2 - 1;
        break;
      }
    }
    rc = sqlite3VdbeIdxKeyCompare(db, pCx, len, (u8*)zKey, &res); 
    if( rc!=SQLITE_OK ) goto abort_due_to_error;
    if( res>0 ){
      pc = pOp->p2 - 1;
      break;
    }

    /* At this point, pCrsr is pointing to an entry in P1 where all but
    ** the final entry (the rowid) matches K.  Check to see if the
    ** final rowid column is different from R.  If it equals R then jump
    ** immediately to P2.
    */
    rc = sqlite3VdbeIdxRowid(db, pCrsr, &v);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    if( v==R ){
      pc = pOp->p2 - 1;
      break;
    }







|











|







3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
    if( res<0 ){
      rc = sqlite3BtreeNext(pCrsr, &res);
      if( res ){
        pc = pOp->p2 - 1;
        break;
      }
    }
    rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res); 
    if( rc!=SQLITE_OK ) goto abort_due_to_error;
    if( res>0 ){
      pc = pOp->p2 - 1;
      break;
    }

    /* At this point, pCrsr is pointing to an entry in P1 where all but
    ** the final entry (the rowid) matches K.  Check to see if the
    ** final rowid column is different from R.  If it equals R then jump
    ** immediately to P2.
    */
    rc = sqlite3VdbeIdxRowid(pCrsr, &v);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    if( v==R ){
      pc = pOp->p2 - 1;
      break;
    }
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pTos->flags & MEM_Blob );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    assert( pC->isTable==0 );
    rc = ExpandBlob(db, pTos);
    if( rc==SQLITE_OK ){
      int nKey = pTos->n;
      const char *zKey = pTos->z;
      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p2);
      assert( pC->deferredMoveto==0 );
      pC->cacheStatus = CACHE_STALE;
    }







|







3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pTos->flags & MEM_Blob );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    assert( pC->isTable==0 );
    rc = ExpandBlob(pTos);
    if( rc==SQLITE_OK ){
      int nKey = pTos->n;
      const char *zKey = pTos->z;
      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p2);
      assert( pC->deferredMoveto==0 );
      pC->cacheStatus = CACHE_STALE;
    }
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
    i64 rowid;

    assert( pC->deferredMoveto==0 );
    assert( pC->isTable==0 );
    if( pC->nullRow ){
      pTos->flags = MEM_Null;
    }else{
      rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pTos->flags = MEM_Int;
      pTos->u.i = rowid;
    }
  }







|







3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
    i64 rowid;

    assert( pC->deferredMoveto==0 );
    assert( pC->isTable==0 );
    if( pC->nullRow ){
      pTos->flags = MEM_Null;
    }else{
      rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pTos->flags = MEM_Int;
      pTos->u.i = rowid;
    }
  }
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
  assert( p->apCsr[i]!=0 );
  assert( pTos>=p->aStack );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
    int res;
 
    assert( pTos->flags & MEM_Blob );  /* Created using OP_MakeRecord */
    assert( pC->deferredMoveto==0 );
    ExpandBlob(db, pTos);
    *pC->pIncrKey = pOp->p3!=0;
    assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
    rc = sqlite3VdbeIdxKeyCompare(db, pC, pTos->n, (u8*)pTos->z, &res);
    *pC->pIncrKey = 0;
    if( rc!=SQLITE_OK ){
      break;
    }
    if( pOp->opcode==OP_IdxLT ){
      res = -res;
    }else if( pOp->opcode==OP_IdxGE ){







|


|







4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
  assert( p->apCsr[i]!=0 );
  assert( pTos>=p->aStack );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
    int res;
 
    assert( pTos->flags & MEM_Blob );  /* Created using OP_MakeRecord */
    assert( pC->deferredMoveto==0 );
    ExpandBlob(pTos);
    *pC->pIncrKey = pOp->p3!=0;
    assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
    rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res);
    *pC->pIncrKey = 0;
    if( rc!=SQLITE_OK ){
      break;
    }
    if( pOp->opcode==OP_IdxLT ){
      res = -res;
    }else if( pOp->opcode==OP_IdxGE ){
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
  }else{
    pTos->z = z;
    pTos->n = strlen(z);
    pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
    pTos->xDel = 0;
  }
  pTos->enc = SQLITE_UTF8;
  sqlite3VdbeChangeEncoding(db, pTos, encoding);
  sqlite3_free(aRoot);
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: FifoWrite * * *
**







|







4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
  }else{
    pTos->z = z;
    pTos->n = strlen(z);
    pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
    pTos->xDel = 0;
  }
  pTos->enc = SQLITE_UTF8;
  sqlite3VdbeChangeEncoding(pTos, encoding);
  sqlite3_free(aRoot);
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: FifoWrite * * *
**
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
** After the data is stored in the memory location, the
** stack is popped once if P2 is 1.  If P2 is zero, then
** the original data remains on the stack.
*/
case OP_MemStore: {        /* no-push */
  assert( pTos>=p->aStack );
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  rc = sqlite3VdbeMemMove(db, &p->aMem[pOp->p1], pTos);
  pTos--;

  /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
  ** restore the top of the stack to its original value.
  */
  if( pOp->p2 ){
    break;







|







4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
** After the data is stored in the memory location, the
** stack is popped once if P2 is 1.  If P2 is zero, then
** the original data remains on the stack.
*/
case OP_MemStore: {        /* no-push */
  assert( pTos>=p->aStack );
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
  pTos--;

  /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
  ** restore the top of the stack to its original value.
  */
  if( pOp->p2 ){
    break;
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
** Move the content of memory cell P2 over to memory cell P1.
** Any prior content of P1 is erased.  Memory cell P2 is left
** containing a NULL.
*/
case OP_MemMove: {
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  assert( pOp->p2>=0 && pOp->p2<p->nMem );
  rc = sqlite3VdbeMemMove(db, &p->aMem[pOp->p1], &p->aMem[pOp->p2]);
  break;
}

/* Opcode: AggStep P1 P2 P3
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P3 is a pointer to the FuncDef







|







4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
** Move the content of memory cell P2 over to memory cell P1.
** Any prior content of P1 is erased.  Memory cell P2 is left
** containing a NULL.
*/
case OP_MemMove: {
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  assert( pOp->p2>=0 && pOp->p2<p->nMem );
  rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]);
  break;
}

/* Opcode: AggStep P1 P2 P3
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P3 is a pointer to the FuncDef
4621
4622
4623
4624
4625
4626
4627

4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
  ctx.pFunc = (FuncDef*)pOp->p3;
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  ctx.pMem = pMem = &p->aMem[pOp->p1];
  pMem->n++;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.xDel = 0;

  ctx.isError = 0;
  ctx.pColl = 0;
  ctx.db = db;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p3type==P3_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p3;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal);







>


<







4619
4620
4621
4622
4623
4624
4625
4626
4627
4628

4629
4630
4631
4632
4633
4634
4635
  ctx.pFunc = (FuncDef*)pOp->p3;
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  ctx.pMem = pMem = &p->aMem[pOp->p1];
  pMem->n++;
  ctx.s.flags = MEM_Null;
  ctx.s.z = 0;
  ctx.s.xDel = 0;
  ctx.s.db = db;
  ctx.isError = 0;
  ctx.pColl = 0;

  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p3type==P3_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p3;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal);
4945
4946
4947
4948
4949
4950
4951

4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
  if( pModule->xColumn==0 ){
    sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0);
    rc = SQLITE_ERROR;
  } else {
    sqlite3_context sContext;
    memset(&sContext, 0, sizeof(sContext));
    sContext.s.flags = MEM_Null;

    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);

    /* Copy the result of the function to the top of the stack. We
    ** do this regardless of whether or not an error occured to ensure any
    ** dynamic allocation in sContext.s (a Mem struct) is  released.
    */
    sqlite3VdbeChangeEncoding(db, &sContext.s, encoding);
    pTos++;
    pTos->flags = 0;
    sqlite3VdbeMemMove(db, pTos, &sContext.s);

    if( sqlite3SafetyOn(db) ){
      goto abort_due_to_misuse;
    }
    if( sqlite3VdbeMemTooBig(pTos) ){
      goto too_big;
    }







>







|


|







4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
  if( pModule->xColumn==0 ){
    sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0);
    rc = SQLITE_ERROR;
  } else {
    sqlite3_context sContext;
    memset(&sContext, 0, sizeof(sContext));
    sContext.s.flags = MEM_Null;
    sContext.s.db = db;
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);

    /* Copy the result of the function to the top of the stack. We
    ** do this regardless of whether or not an error occured to ensure any
    ** dynamic allocation in sContext.s (a Mem struct) is  released.
    */
    sqlite3VdbeChangeEncoding(&sContext.s, encoding);
    pTos++;
    pTos->flags = 0;
    sqlite3VdbeMemMove(pTos, &sContext.s);

    if( sqlite3SafetyOn(db) ){
      goto abort_due_to_misuse;
    }
    if( sqlite3VdbeMemTooBig(pTos) ){
      goto too_big;
    }
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
** on the top of the stack is popped and passed as the zName argument
** to the xRename method.
*/
case OP_VRename: {   /* no-push */
  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
  assert( pVtab->pModule->xRename );

  Stringify(db, pTos, encoding);

  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  sqlite3VtabLock(pVtab);
  rc = pVtab->pModule->xRename(pVtab, pTos->z);
  sqlite3VtabUnlock(db, pVtab);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;








|







5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
** on the top of the stack is popped and passed as the zName argument
** to the xRename method.
*/
case OP_VRename: {   /* no-push */
  sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
  assert( pVtab->pModule->xRename );

  Stringify(pTos, encoding);

  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  sqlite3VtabLock(pVtab);
  rc = pVtab->pModule->xRename(pVtab, pTos->z);
  sqlite3VtabUnlock(db, pVtab);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;

5145
5146
5147
5148
5149
5150
5151

5152
5153
5154
5155
5156
5157
5158
#ifndef NDEBUG
    /* Sanity checking on the top element of the stack. If the previous
    ** instruction was VNoChange, then the flags field of the top
    ** of the stack is set to 0. This is technically invalid for a memory
    ** cell, so avoid calling MemSanity() in this case.
    */
    if( pTos>=p->aStack && pTos->flags ){

      sqlite3VdbeMemSanity(pTos);
      assert( !sqlite3VdbeMemTooBig(pTos) );
    }
    assert( pc>=-1 && pc<p->nOp );

#ifdef SQLITE_DEBUG
    /* Code for tracing the vdbe stack. */







>







5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
#ifndef NDEBUG
    /* Sanity checking on the top element of the stack. If the previous
    ** instruction was VNoChange, then the flags field of the top
    ** of the stack is set to 0. This is technically invalid for a memory
    ** cell, so avoid calling MemSanity() in this case.
    */
    if( pTos>=p->aStack && pTos->flags ){
      assert( pTos->db==db );
      sqlite3VdbeMemSanity(pTos);
      assert( !sqlite3VdbeMemTooBig(pTos) );
    }
    assert( pc>=-1 && pc<p->nOp );

#ifdef SQLITE_DEBUG
    /* Code for tracing the vdbe stack. */
Changes to src/vdbeInt.h.
126
127
128
129
130
131
132

133
134
135
136
137
138
139
*/
struct Mem {
  union {
    i64 i;              /* Integer value. Or FuncDef* when flags==MEM_Agg */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
  } u;
  double r;           /* Real value */

  char *z;            /* String or BLOB value */
  int n;              /* Number of characters in string value, including '\0' */
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  type;           /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
  void (*xDel)(void *);  /* If not null, call this function to delete Mem.z */
  char zShort[NBFS];  /* Space for short strings */







>







126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
*/
struct Mem {
  union {
    i64 i;              /* Integer value. Or FuncDef* when flags==MEM_Agg */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
  } u;
  double r;           /* Real value */
  sqlite3 *db;        /* The associated database connection */
  char *z;            /* String or BLOB value */
  int n;              /* Number of characters in string value, including '\0' */
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  type;           /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
  void (*xDel)(void *);  /* If not null, call this function to delete Mem.z */
  char zShort[NBFS];  /* Space for short strings */
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
struct sqlite3_context {
  FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */
  VdbeFunc *pVdbeFunc;  /* Auxilary data, if created. */
  Mem s;                /* The return value is stored here */
  Mem *pMem;            /* Memory cell used to store aggregate context */
  u8 isError;           /* Set to true for an error */
  CollSeq *pColl;       /* Collating sequence */
  sqlite3 *db;          /* Database connection */
};

/*
** A Set structure is used for quick testing to see if a value
** is part of a small set.  Sets are used to implement code like
** this:
**            x.y IN ('hi','hoo','hum')







<







216
217
218
219
220
221
222

223
224
225
226
227
228
229
struct sqlite3_context {
  FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */
  VdbeFunc *pVdbeFunc;  /* Auxilary data, if created. */
  Mem s;                /* The return value is stored here */
  Mem *pMem;            /* Memory cell used to store aggregate context */
  u8 isError;           /* Set to true for an error */
  CollSeq *pColl;       /* Collating sequence */

};

/*
** A Set structure is used for quick testing to see if a value
** is part of a small set.  Sets are used to implement code like
** this:
**            x.y IN ('hi','hoo','hum')
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
int sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(sqlite3*,Cursor*,int,const unsigned char*,int*);
int sqlite3VdbeIdxRowid(sqlite3 *, BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*);
int sqlite3VdbeIdxRowidLen(const u8*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeHalt(Vdbe*);
int sqlite3VdbeChangeEncoding(sqlite3 *, Mem *, int);
int sqlite3VdbeMemTooBig(Mem*);
int sqlite3VdbeMemCopy(sqlite3*, Mem*, const Mem*);
void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
int sqlite3VdbeMemMove(sqlite3*, Mem*, Mem*);
int sqlite3VdbeMemNulTerminate(sqlite3 *, Mem*);
int sqlite3VdbeMemSetStr(sqlite3 *, Mem*, const char*, int, u8, void(*)(void*));
void sqlite3VdbeMemSetInt64(Mem*, i64);
void sqlite3VdbeMemSetDouble(Mem*, double);
void sqlite3VdbeMemSetNull(Mem*);
void sqlite3VdbeMemSetZeroBlob(Mem*,int);
int sqlite3VdbeMemMakeWriteable(sqlite3 *, Mem*);
int sqlite3VdbeMemDynamicify(sqlite3 *, Mem*);
int sqlite3VdbeMemStringify(sqlite3*, Mem*, int);
i64 sqlite3VdbeIntValue(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
int sqlite3VdbeMemFromBtree(sqlite3*,BtCursor*,int,int,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
#ifndef NDEBUG
  void sqlite3VdbeMemSanity(Mem*);
  int sqlite3VdbeOpcodeNoPush(u8);
#endif
int sqlite3VdbeMemTranslate(sqlite3 *, Mem*, u8);
#ifdef SQLITE_DEBUG
  void sqlite3VdbePrintSql(Vdbe*);
  void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
#endif
int sqlite3VdbeMemHandleBom(sqlite3 *, Mem *pMem);
void sqlite3VdbeFifoInit(Fifo*);
int sqlite3VdbeFifoPush(Fifo*, i64);
int sqlite3VdbeFifoPop(Fifo*, i64*);
void sqlite3VdbeFifoClear(Fifo*);

#ifndef SQLITE_OMIT_INCRBLOB
  int sqlite3VdbeMemExpandBlob(sqlite3 *, Mem *);
#else
  #define sqlite3VdbeMemExpandBlob(d,x) SQLITE_OK
#endif

#endif /* !defined(_VDBEINT_H_) */







|
|






|

|

|
|
|




|
|
|






|






|




|






|

|



371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
int sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(Cursor*,int,const unsigned char*,int*);
int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*);
int sqlite3VdbeIdxRowidLen(const u8*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeHalt(Vdbe*);
int sqlite3VdbeChangeEncoding(Mem *, int);
int sqlite3VdbeMemTooBig(Mem*);
int sqlite3VdbeMemCopy(Mem*, const Mem*);
void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
int sqlite3VdbeMemMove(Mem*, Mem*);
int sqlite3VdbeMemNulTerminate(Mem*);
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
void sqlite3VdbeMemSetInt64(Mem*, i64);
void sqlite3VdbeMemSetDouble(Mem*, double);
void sqlite3VdbeMemSetNull(Mem*);
void sqlite3VdbeMemSetZeroBlob(Mem*,int);
int sqlite3VdbeMemMakeWriteable(Mem*);
int sqlite3VdbeMemDynamicify(Mem*);
int sqlite3VdbeMemStringify(Mem*, int);
i64 sqlite3VdbeIntValue(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
#ifndef NDEBUG
  void sqlite3VdbeMemSanity(Mem*);
  int sqlite3VdbeOpcodeNoPush(u8);
#endif
int sqlite3VdbeMemTranslate(Mem*, u8);
#ifdef SQLITE_DEBUG
  void sqlite3VdbePrintSql(Vdbe*);
  void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
#endif
int sqlite3VdbeMemHandleBom(Mem *pMem);
void sqlite3VdbeFifoInit(Fifo*);
int sqlite3VdbeFifoPush(Fifo*, i64);
int sqlite3VdbeFifoPop(Fifo*, i64*);
void sqlite3VdbeFifoClear(Fifo*);

#ifndef SQLITE_OMIT_INCRBLOB
  int sqlite3VdbeMemExpandBlob(Mem *);
#else
  #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
#endif

#endif /* !defined(_VDBEINT_H_) */
Changes to src/vdbeapi.c.
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/**************************** sqlite3_value_  *******************************
** The following routines extract information from a Mem or sqlite3_value
** structure.
*/
const void *sqlite3_value_blob(sqlite3_value *pVal){
  Mem *p = (Mem*)pVal;
  if( p->flags & (MEM_Blob|MEM_Str) ){
    sqlite3VdbeMemExpandBlob(0, p);
    p->flags &= ~MEM_Str;
    p->flags |= MEM_Blob;
    return p->z;
  }else{
    return sqlite3_value_text(pVal);
  }
}
int sqlite3_value_bytes(sqlite3_value *pVal){
  return sqlite3ValueBytes(0, pVal, SQLITE_UTF8);
}
int sqlite3_value_bytes16(sqlite3_value *pVal){
  return sqlite3ValueBytes(0, pVal, SQLITE_UTF16NATIVE);
}
double sqlite3_value_double(sqlite3_value *pVal){
  return sqlite3VdbeRealValue((Mem*)pVal);
}
int sqlite3_value_int(sqlite3_value *pVal){
  return sqlite3VdbeIntValue((Mem*)pVal);
}
sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
  return sqlite3VdbeIntValue((Mem*)pVal);
}
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
  return (const unsigned char *)sqlite3ValueText(0, pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_value_text16(sqlite3_value* pVal){
  return sqlite3ValueText(0, pVal, SQLITE_UTF16NATIVE);
}
const void *sqlite3_value_text16be(sqlite3_value *pVal){
  return sqlite3ValueText(0, pVal, SQLITE_UTF16BE);
}
const void *sqlite3_value_text16le(sqlite3_value *pVal){
  return sqlite3ValueText(0, pVal, SQLITE_UTF16LE);
}
#endif /* SQLITE_OMIT_UTF16 */
int sqlite3_value_type(sqlite3_value* pVal){
  return pVal->type;
}
/* sqlite3_value_numeric_type() defined in vdbe.c */

/**************************** sqlite3_result_  *******************************
** The following routines are used by user-defined functions to specify
** the function result.
*/
void sqlite3_result_blob(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( n>=0 );
  sqlite3VdbeMemSetStr(0, &pCtx->s, z, n, 0, xDel);
}
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
  sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
}
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
  pCtx->isError = 1;
  sqlite3VdbeMemSetStr(0, &pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_UTF16
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
  pCtx->isError = 1;
  sqlite3VdbeMemSetStr(0, &pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
}
#endif
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
  sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
}
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
  sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
}
void sqlite3_result_null(sqlite3_context *pCtx){
  sqlite3VdbeMemSetNull(&pCtx->s);
}
void sqlite3_result_text(
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  void (*xDel)(void *)
){
  sqlite3VdbeMemSetStr(0, &pCtx->s, z, n, SQLITE_UTF8, xDel);
}
#ifndef SQLITE_OMIT_UTF16
void sqlite3_result_text16(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  sqlite3VdbeMemSetStr(0, &pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
}
void sqlite3_result_text16be(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  sqlite3VdbeMemSetStr(0, &pCtx->s, z, n, SQLITE_UTF16BE, xDel);
}
void sqlite3_result_text16le(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  sqlite3VdbeMemSetStr(0, &pCtx->s, z, n, SQLITE_UTF16LE, xDel);
}
#endif /* SQLITE_OMIT_UTF16 */
void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
  sqlite3VdbeMemCopy(0, &pCtx->s, pValue);
}
void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
  sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
}

/* Force an SQLITE_TOOBIG error. */
void sqlite3_result_error_toobig(sqlite3_context *pCtx){







|








|


|











|



|


|


|


















|






|




|

















|








|







|







|



|







93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/**************************** sqlite3_value_  *******************************
** The following routines extract information from a Mem or sqlite3_value
** structure.
*/
const void *sqlite3_value_blob(sqlite3_value *pVal){
  Mem *p = (Mem*)pVal;
  if( p->flags & (MEM_Blob|MEM_Str) ){
    sqlite3VdbeMemExpandBlob(p);
    p->flags &= ~MEM_Str;
    p->flags |= MEM_Blob;
    return p->z;
  }else{
    return sqlite3_value_text(pVal);
  }
}
int sqlite3_value_bytes(sqlite3_value *pVal){
  return sqlite3ValueBytes(pVal, SQLITE_UTF8);
}
int sqlite3_value_bytes16(sqlite3_value *pVal){
  return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
}
double sqlite3_value_double(sqlite3_value *pVal){
  return sqlite3VdbeRealValue((Mem*)pVal);
}
int sqlite3_value_int(sqlite3_value *pVal){
  return sqlite3VdbeIntValue((Mem*)pVal);
}
sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
  return sqlite3VdbeIntValue((Mem*)pVal);
}
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
  return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_value_text16(sqlite3_value* pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
}
const void *sqlite3_value_text16be(sqlite3_value *pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16BE);
}
const void *sqlite3_value_text16le(sqlite3_value *pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16LE);
}
#endif /* SQLITE_OMIT_UTF16 */
int sqlite3_value_type(sqlite3_value* pVal){
  return pVal->type;
}
/* sqlite3_value_numeric_type() defined in vdbe.c */

/**************************** sqlite3_result_  *******************************
** The following routines are used by user-defined functions to specify
** the function result.
*/
void sqlite3_result_blob(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( n>=0 );
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
}
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
  sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
}
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
  pCtx->isError = 1;
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_UTF16
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
  pCtx->isError = 1;
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
}
#endif
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
  sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
}
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
  sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
}
void sqlite3_result_null(sqlite3_context *pCtx){
  sqlite3VdbeMemSetNull(&pCtx->s);
}
void sqlite3_result_text(
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  void (*xDel)(void *)
){
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
}
#ifndef SQLITE_OMIT_UTF16
void sqlite3_result_text16(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
}
void sqlite3_result_text16be(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
}
void sqlite3_result_text16le(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
}
#endif /* SQLITE_OMIT_UTF16 */
void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
  sqlite3VdbeMemCopy(&pCtx->s, pValue);
}
void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
  sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
}

/* Force an SQLITE_TOOBIG error. */
void sqlite3_result_error_toobig(sqlite3_context *pCtx){
347
348
349
350
351
352
353




354


355
356
357
358
359
360

361
362
363
364
365
366

367
368
369
370
371
372
373
/*
** This is the top-level implementation of sqlite3_step().  Call
** sqlite3Step() to do most of the work.  If a schema error occurs,
** call sqlite3Reprepare() and try again.
*/
#ifdef SQLITE_OMIT_PARSER
int sqlite3_step(sqlite3_stmt *pStmt){




  return sqlite3Step((Vdbe*)pStmt);


}
#else
int sqlite3_step(sqlite3_stmt *pStmt){
  int cnt = 0;
  int rc;
  Vdbe *v = (Vdbe*)pStmt;

  while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
         && cnt++ < 5
         && sqlite3Reprepare(v) ){
    sqlite3_reset(pStmt);
    v->expired = 0;
  }

  return rc;
}
#endif

/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.







>
>
>
>
|
>
>






>






>







347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/*
** This is the top-level implementation of sqlite3_step().  Call
** sqlite3Step() to do most of the work.  If a schema error occurs,
** call sqlite3Reprepare() and try again.
*/
#ifdef SQLITE_OMIT_PARSER
int sqlite3_step(sqlite3_stmt *pStmt){
  int rc;
  Vdbe *v;
  v = (Vdbe*)pStmt;
  sqlite3_mutex_enter(v->db->mutex);
  rc = sqlite3Step(v);
  sqlite3_mutex_leave(v->db->mutex);
  return rc;
}
#else
int sqlite3_step(sqlite3_stmt *pStmt){
  int cnt = 0;
  int rc;
  Vdbe *v = (Vdbe*)pStmt;
  sqlite3_mutex_enter(v->db->mutex);
  while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
         && cnt++ < 5
         && sqlite3Reprepare(v) ){
    sqlite3_reset(pStmt);
    v->expired = 0;
  }
  sqlite3_mutex_leave(v->db->mutex);
  return rc;
}
#endif

/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
400
401
402
403
404
405
406
407
408


409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433



434
435
436
437
438
439
440

/*
** Allocate or return the aggregate context for a user function.  A new
** context is allocated on the first call.  Subsequent calls return the
** same context that was returned on prior calls.
*/
void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
  Mem *pMem = p->pMem;
  assert( p && p->pFunc && p->pFunc->xStep );


  if( (pMem->flags & MEM_Agg)==0 ){
    if( nByte==0 ){
      assert( pMem->flags==MEM_Null );
      pMem->z = 0;
    }else{
      pMem->flags = MEM_Agg;
      pMem->xDel = sqlite3_free;
      pMem->u.pDef = p->pFunc;
      if( nByte<=NBFS ){
        pMem->z = pMem->zShort;
        memset(pMem->z, 0, nByte);
      }else{
        pMem->z = sqlite3DbMallocZero(p->db, nByte);
      }
    }
  }
  return (void*)pMem->z;
}

/*
** Return the auxilary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
*/
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
  VdbeFunc *pVdbeFunc = pCtx->pVdbeFunc;



  if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
    return 0;
  }
  return pVdbeFunc->apAux[iArg].pAux;
}

/*







|

>
>












|











|
>
>
>







408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

/*
** Allocate or return the aggregate context for a user function.  A new
** context is allocated on the first call.  Subsequent calls return the
** same context that was returned on prior calls.
*/
void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
  Mem *pMem;
  assert( p && p->pFunc && p->pFunc->xStep );
  assert( sqlite3_mutex_held(p->s.db->mutex) );
  pMem = p->pMem;
  if( (pMem->flags & MEM_Agg)==0 ){
    if( nByte==0 ){
      assert( pMem->flags==MEM_Null );
      pMem->z = 0;
    }else{
      pMem->flags = MEM_Agg;
      pMem->xDel = sqlite3_free;
      pMem->u.pDef = p->pFunc;
      if( nByte<=NBFS ){
        pMem->z = pMem->zShort;
        memset(pMem->z, 0, nByte);
      }else{
        pMem->z = sqlite3DbMallocZero(p->s.db, nByte);
      }
    }
  }
  return (void*)pMem->z;
}

/*
** Return the auxilary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
*/
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
  VdbeFunc *pVdbeFunc;

  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  pVdbeFunc = pCtx->pVdbeFunc;
  if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
    return 0;
  }
  return pVdbeFunc->apAux[iArg].pAux;
}

/*
448
449
450
451
452
453
454

455
456
457
458
459
460
461
462
463
464
465
466
467
468
  void *pAux, 
  void (*xDelete)(void*)
){
  struct AuxData *pAuxData;
  VdbeFunc *pVdbeFunc;
  if( iArg<0 ) goto failed;


  pVdbeFunc = pCtx->pVdbeFunc;
  if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
    int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
    int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
    pVdbeFunc = sqlite3_realloc(pVdbeFunc, nMalloc);
    if( !pVdbeFunc ){
      pCtx->db->mallocFailed = 1;
      goto failed;
    }
    pCtx->pVdbeFunc = pVdbeFunc;
    memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
    pVdbeFunc->nAux = iArg+1;
    pVdbeFunc->pFunc = pCtx->pFunc;
  }







>






|







461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
  void *pAux, 
  void (*xDelete)(void*)
){
  struct AuxData *pAuxData;
  VdbeFunc *pVdbeFunc;
  if( iArg<0 ) goto failed;

  assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
  pVdbeFunc = pCtx->pVdbeFunc;
  if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
    int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
    int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
    pVdbeFunc = sqlite3_realloc(pVdbeFunc, nMalloc);
    if( !pVdbeFunc ){
      pCtx->s.db->mallocFailed = 1;
      goto failed;
    }
    pCtx->pVdbeFunc = pVdbeFunc;
    memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
    pVdbeFunc->nAux = iArg+1;
    pVdbeFunc->pFunc = pCtx->pFunc;
  }
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
** If iCol is not valid, return a pointer to a Mem which has a value
** of NULL.
*/
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
  Vdbe *pVm = (Vdbe *)pStmt;
  int vals = sqlite3_data_count(pStmt);
  if( pVm==0 || pVm->resOnStack==0 || i>=pVm->nResColumn || i<0 ){
    static const Mem nullMem = {{0}, 0.0, "", 0, MEM_Null, SQLITE_NULL };
    sqlite3Error(pVm->db, SQLITE_RANGE, 0);
    return (Mem*)&nullMem;
  }
  return &pVm->pTos[(1-vals)+i];
}

/*







|







534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
** If iCol is not valid, return a pointer to a Mem which has a value
** of NULL.
*/
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
  Vdbe *pVm = (Vdbe *)pStmt;
  int vals = sqlite3_data_count(pStmt);
  if( pVm==0 || pVm->resOnStack==0 || i>=pVm->nResColumn || i<0 ){
    static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL };
    sqlite3Error(pVm->db, SQLITE_RANGE, 0);
    return (Mem*)&nullMem;
  }
  return &pVm->pTos[(1-vals)+i];
}

/*
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
  }
  sqlite3_mutex_enter(p->db->mutex);
  rc = vdbeUnbind(p, i);
  if( rc || zData==0 ){
    return rc;
  }
  pVar = &p->aVar[i-1];
  rc = sqlite3VdbeMemSetStr(p->db, pVar, zData, nData, encoding, xDel);
  if( rc==SQLITE_OK && encoding!=0 ){
    rc = sqlite3VdbeChangeEncoding(p->db, pVar, ENC(p->db));
  }
  sqlite3Error(p->db, rc, 0);
  rc = sqlite3ApiExit(p->db, rc);
  sqlite3_mutex_leave(p->db->mutex);
  return rc;
}








|

|







810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
  }
  sqlite3_mutex_enter(p->db->mutex);
  rc = vdbeUnbind(p, i);
  if( rc || zData==0 ){
    return rc;
  }
  pVar = &p->aVar[i-1];
  rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
  if( rc==SQLITE_OK && encoding!=0 ){
    rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
  }
  sqlite3Error(p->db, rc, 0);
  rc = sqlite3ApiExit(p->db, rc);
  sqlite3_mutex_leave(p->db->mutex);
  return rc;
}

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
#endif /* SQLITE_OMIT_UTF16 */
int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  sqlite3_mutex_enter(p->db->mutex);
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    rc = sqlite3VdbeMemCopy(0, &p->aVar[i-1], pValue);
  }
  sqlite3_mutex_leave(p->db->mutex);
  return rc;
}
int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;







|







892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
#endif /* SQLITE_OMIT_UTF16 */
int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  sqlite3_mutex_enter(p->db->mutex);
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
  }
  sqlite3_mutex_leave(p->db->mutex);
  return rc;
}
int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
    return SQLITE_MISUSE;
  }
  if( pFrom->nVar!=pTo->nVar ){
    return SQLITE_ERROR;
  }
  for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
    sqlite3MallocDisallow();
    rc = sqlite3VdbeMemMove(0, &pTo->aVar[i], &pFrom->aVar[i]);
    sqlite3MallocAllow();
  }
  assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
  return rc;
}

/*







|







997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
    return SQLITE_MISUSE;
  }
  if( pFrom->nVar!=pTo->nVar ){
    return SQLITE_ERROR;
  }
  for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
    sqlite3MallocDisallow();
    rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
    sqlite3MallocAllow();
  }
  assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
  return rc;
}

/*
Changes to src/vdbeaux.c.
676
677
678
679
680
681
682

683
684
685
686
687
688
689

/*
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
  if( p ){
    while( N-->0 ){

      sqlite3VdbeMemRelease(p++);
    }
  }
}

#ifndef SQLITE_OMIT_EXPLAIN
/*







>







676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

/*
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
  if( p ){
    while( N-->0 ){
      assert( N<2 || p[0].db==p[1].db );
      sqlite3VdbeMemRelease(p++);
    }
  }
}

#ifndef SQLITE_OMIT_EXPLAIN
/*
883
884
885
886
887
888
889




890
891
892
893
894

895
896
897
898
899
900
901
      p->okVar = 0;
      p->apArg = (Mem**)&p->aVar[nVar];
      p->azVar = (char**)&p->apArg[nArg];
      p->apCsr = (Cursor**)&p->azVar[nVar];
      p->nCursor = nCursor;
      for(n=0; n<nVar; n++){
        p->aVar[n].flags = MEM_Null;




      }
    }
  }
  for(n=0; n<p->nMem; n++){
    p->aMem[n].flags = MEM_Null;

  }

  p->pTos = &p->aStack[-1];
  p->pc = -1;
  p->rc = SQLITE_OK;
  p->uniqueCnt = 0;
  p->returnDepth = 0;







>
>
>
>





>







884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
      p->okVar = 0;
      p->apArg = (Mem**)&p->aVar[nVar];
      p->azVar = (char**)&p->apArg[nArg];
      p->apCsr = (Cursor**)&p->azVar[nVar];
      p->nCursor = nCursor;
      for(n=0; n<nVar; n++){
        p->aVar[n].flags = MEM_Null;
        p->aVar[n].db = db;
      }
      for(n=0; n<nStack; n++){
        p->aStack[n].db = db;
      }
    }
  }
  for(n=0; n<p->nMem; n++){
    p->aMem[n].flags = MEM_Null;
    p->aMem[n].db = db;
  }

  p->pTos = &p->aStack[-1];
  p->pc = -1;
  p->rc = SQLITE_OK;
  p->uniqueCnt = 0;
  p->returnDepth = 0;
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
  Mem *pColName;
  assert( idx<p->nResColumn );
  assert( var<COLNAME_N );
  if( p->db->mallocFailed ) return SQLITE_NOMEM;
  assert( p->aColName!=0 );
  pColName = &(p->aColName[idx+var*p->nResColumn]);
  if( N==P3_DYNAMIC || N==P3_STATIC ){
    rc = sqlite3VdbeMemSetStr(p->db, 
        pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
  }else{
    rc = sqlite3VdbeMemSetStr(p->db, 
        pColName, zName, N, SQLITE_UTF8, SQLITE_TRANSIENT);
  }
  if( rc==SQLITE_OK && N==P3_DYNAMIC ){
    pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
    pColName->xDel = 0;
  }
  return rc;
}







<
|

|
<







1034
1035
1036
1037
1038
1039
1040

1041
1042
1043

1044
1045
1046
1047
1048
1049
1050
  Mem *pColName;
  assert( idx<p->nResColumn );
  assert( var<COLNAME_N );
  if( p->db->mallocFailed ) return SQLITE_NOMEM;
  assert( p->aColName!=0 );
  pColName = &(p->aColName[idx+var*p->nResColumn]);
  if( N==P3_DYNAMIC || N==P3_STATIC ){

    rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
  }else{
    rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);

  }
  if( rc==SQLITE_OK && N==P3_DYNAMIC ){
    pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
    pColName->xDel = 0;
  }
  return rc;
}
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
  /* If the VDBE has be run even partially, then transfer the error code
  ** and error message from the VDBE into the main database structure.  But
  ** if the VDBE has just been set to run but has not actually executed any
  ** instructions yet, leave the main database error information unchanged.
  */
  if( p->pc>=0 ){
    if( p->zErrMsg ){
      sqlite3ValueSetStr(db,db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
      db->errCode = p->rc;
      p->zErrMsg = 0;
    }else if( p->rc ){
      sqlite3Error(db, p->rc, 0);
    }else{
      sqlite3Error(db, SQLITE_OK, 0);
    }







|







1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
  /* If the VDBE has be run even partially, then transfer the error code
  ** and error message from the VDBE into the main database structure.  But
  ** if the VDBE has just been set to run but has not actually executed any
  ** instructions yet, leave the main database error information unchanged.
  */
  if( p->pc>=0 ){
    if( p->zErrMsg ){
      sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
      db->errCode = p->rc;
      p->zErrMsg = 0;
    }else if( p->rc ){
      sqlite3Error(db, p->rc, 0);
    }else{
      sqlite3Error(db, SQLITE_OK, 0);
    }
2028
2029
2030
2031
2032
2033
2034

2035

2036
2037
2038
2039
2040
2041
2042
  int rc = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  const unsigned char *aKey2 = (const unsigned char *)pKey2;

  Mem mem1;
  Mem mem2;
  mem1.enc = pKeyInfo->enc;

  mem2.enc = pKeyInfo->enc;

  
  idx1 = GetVarint(aKey1, szHdr1);
  d1 = szHdr1;
  idx2 = GetVarint(aKey2, szHdr2);
  d2 = szHdr2;
  nField = pKeyInfo->nField;
  while( idx1<szHdr1 && idx2<szHdr2 ){







>

>







2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
  int rc = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  const unsigned char *aKey2 = (const unsigned char *)pKey2;

  Mem mem1;
  Mem mem2;
  mem1.enc = pKeyInfo->enc;
  mem1.db = pKeyInfo->db;
  mem2.enc = pKeyInfo->enc;
  mem2.db = pKeyInfo->db;
  
  idx1 = GetVarint(aKey1, szHdr1);
  d1 = szHdr1;
  idx2 = GetVarint(aKey2, szHdr2);
  d2 = szHdr2;
  nField = pKeyInfo->nField;
  while( idx1<szHdr1 && idx2<szHdr2 ){
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
  

/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
*/
int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
  i64 nCellKey = 0;
  int rc;
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */
  u32 lenRowid;     /* Size of the rowid */
  Mem m, v;

  sqlite3BtreeKeySize(pCur, &nCellKey);
  if( nCellKey<=0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = sqlite3VdbeMemFromBtree(db, pCur, 0, nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  sqlite3GetVarint32((u8*)m.z, &szHdr);
  sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
  lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);







|











|







2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
  

/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
*/
int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
  i64 nCellKey = 0;
  int rc;
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */
  u32 lenRowid;     /* Size of the rowid */
  Mem m, v;

  sqlite3BtreeKeySize(pCur, &nCellKey);
  if( nCellKey<=0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  sqlite3GetVarint32((u8*)m.z, &szHdr);
  sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
  lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175

2176
2177
2178
2179
2180
2181
2182
** or greater than pKey.  Return SQLITE_OK on success.
**
** pKey is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.
*/
int sqlite3VdbeIdxKeyCompare(
  sqlite3 *db,
  Cursor *pC,                 /* The cursor to compare against */
  int nKey, const u8 *pKey,   /* The key to compare */
  int *res                    /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
  int lenRowid;
  Mem m;

  sqlite3BtreeKeySize(pCur, &nCellKey);
  if( nCellKey<=0 ){
    *res = 0;
    return SQLITE_OK;
  }
  rc = sqlite3VdbeMemFromBtree(db, pC->pCursor, 0, nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
  *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'. 
*/
void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){

  db->nChange = nChange;
  db->nTotalChange += nChange;
}

/*
** Set a flag in the vdbe to update the change counter when it is finalised
** or reset.







<















|














>







2144
2145
2146
2147
2148
2149
2150

2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
** or greater than pKey.  Return SQLITE_OK on success.
**
** pKey is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.
*/
int sqlite3VdbeIdxKeyCompare(

  Cursor *pC,                 /* The cursor to compare against */
  int nKey, const u8 *pKey,   /* The key to compare */
  int *res                    /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
  int lenRowid;
  Mem m;

  sqlite3BtreeKeySize(pCur, &nCellKey);
  if( nCellKey<=0 ){
    *res = 0;
    return SQLITE_OK;
  }
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
  *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'. 
*/
void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
  assert( sqlite3_mutex_held(db->mutex) );
  db->nChange = nChange;
  db->nTotalChange += nChange;
}

/*
** Set a flag in the vdbe to update the change counter when it is finalised
** or reset.
Changes to src/vdbeblob.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code used to implement incremental BLOB I/O.
**
** $Id: vdbeblob.c,v 1.13 2007/08/21 15:13:19 drh Exp $
*/

#include "sqliteInt.h"
#include "vdbeInt.h"

#ifndef SQLITE_OMIT_INCRBLOB








|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code used to implement incremental BLOB I/O.
**
** $Id: vdbeblob.c,v 1.14 2007/08/21 19:33:57 drh Exp $
*/

#include "sqliteInt.h"
#include "vdbeInt.h"

#ifndef SQLITE_OMIT_INCRBLOB

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

/*
** Close a blob handle that was previously created using
** sqlite3_blob_open().
*/
int sqlite3_blob_close(sqlite3_blob *pBlob){
  Incrblob *p = (Incrblob *)pBlob;
  sqlite3_stmt *pStmt;
  sqlite3_mutex *mutex = p->db->mutex;
  int rc;

  sqlite3_mutex_enter(mutex);
  rc = sqlite3_finalize(p->pStmt);
  sqlite3_mutex_leave(mutex);
  sqlite3_free(p);







<







243
244
245
246
247
248
249

250
251
252
253
254
255
256

/*
** Close a blob handle that was previously created using
** sqlite3_blob_open().
*/
int sqlite3_blob_close(sqlite3_blob *pBlob){
  Incrblob *p = (Incrblob *)pBlob;

  sqlite3_mutex *mutex = p->db->mutex;
  int rc;

  sqlite3_mutex_enter(mutex);
  rc = sqlite3_finalize(p->pStmt);
  sqlite3_mutex_leave(mutex);
  sqlite3_free(p);
Changes to src/vdbemem.c.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
#include <ctype.h>
#include "vdbeInt.h"

/*
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
** P if required.
*/
#define expandBlob(D,P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(D,P):0)

/*
** If pMem is an object with a valid string representation, this routine
** ensures the internal encoding for the string representation is
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
**
** If pMem is not a string object, or the encoding of the string
** representation is already stored using the requested encoding, then this
** routine is a no-op.
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
int sqlite3VdbeChangeEncoding(sqlite3 *db, Mem *pMem, int desiredEnc){
  int rc;
  if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
    return SQLITE_OK;
  }

#ifdef SQLITE_OMIT_UTF16
  return SQLITE_ERROR;
#else

  /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
  ** then the encoding of the value may not have changed.
  */
  rc = sqlite3VdbeMemTranslate(db, pMem, desiredEnc);
  assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
  assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
  assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
  return rc;
#endif
}

/*
** Make the given Mem object MEM_Dyn.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemDynamicify(sqlite3 *db, Mem *pMem){
  int n;
  u8 *z;

  expandBlob(db, pMem);
  if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
    return SQLITE_OK;
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  n = pMem->n;
  assert( pMem->flags & (MEM_Str|MEM_Blob) );
  z = sqlite3_malloc( n+2 );
  if( z==0 ){
    return SQLITE_NOMEM;
  }
  pMem->flags |= MEM_Dyn|MEM_Term;
  pMem->xDel = 0;
  memcpy(z, pMem->z, n );
  z[n] = 0;
  z[n+1] = 0;
  pMem->z = (char*)z;
  pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
  return SQLITE_OK;
}

/*
** If the given Mem* has a zero-filled tail, turn it into an ordinary
** blob stored in dynamically allocated space.
*/
#ifndef SQLITE_OMIT_INCRBLOB
int sqlite3VdbeMemExpandBlob(sqlite3 *db, Mem *pMem){
  if( pMem->flags & MEM_Zero ){
    char *pNew;
    int nByte;
    assert( (pMem->flags & MEM_Blob)!=0 );
    nByte = pMem->n + pMem->u.i;
    if( nByte<=0 ) nByte = 1;

    pNew = sqlite3_malloc(nByte);
    if( pNew==0 ){
      if( db ) db->mallocFailed = 1;
      return SQLITE_NOMEM;
    }
    memcpy(pNew, pMem->z, pMem->n);
    memset(&pNew[pMem->n], 0, pMem->u.i);
    sqlite3VdbeMemRelease(pMem);
    pMem->z = pNew;
    pMem->n += pMem->u.i;







|














|




>







|












|


>
|






|


















|






>
|

<







20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
#include <ctype.h>
#include "vdbeInt.h"

/*
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
** P if required.
*/
#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)

/*
** If pMem is an object with a valid string representation, this routine
** ensures the internal encoding for the string representation is
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
**
** If pMem is not a string object, or the encoding of the string
** representation is already stored using the requested encoding, then this
** routine is a no-op.
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
  int rc;
  if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
    return SQLITE_OK;
  }
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
#ifdef SQLITE_OMIT_UTF16
  return SQLITE_ERROR;
#else

  /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
  ** then the encoding of the value may not have changed.
  */
  rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
  assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
  assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
  assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
  return rc;
#endif
}

/*
** Make the given Mem object MEM_Dyn.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemDynamicify(Mem *pMem){
  int n;
  u8 *z;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  expandBlob(pMem);
  if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
    return SQLITE_OK;
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  n = pMem->n;
  assert( pMem->flags & (MEM_Str|MEM_Blob) );
  z = sqlite3DbMallocRaw(pMem->db, n+2 );
  if( z==0 ){
    return SQLITE_NOMEM;
  }
  pMem->flags |= MEM_Dyn|MEM_Term;
  pMem->xDel = 0;
  memcpy(z, pMem->z, n );
  z[n] = 0;
  z[n+1] = 0;
  pMem->z = (char*)z;
  pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
  return SQLITE_OK;
}

/*
** If the given Mem* has a zero-filled tail, turn it into an ordinary
** blob stored in dynamically allocated space.
*/
#ifndef SQLITE_OMIT_INCRBLOB
int sqlite3VdbeMemExpandBlob(Mem *pMem){
  if( pMem->flags & MEM_Zero ){
    char *pNew;
    int nByte;
    assert( (pMem->flags & MEM_Blob)!=0 );
    nByte = pMem->n + pMem->u.i;
    if( nByte<=0 ) nByte = 1;
    assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    pNew = sqlite3DbMallocRaw(pMem->db, nByte);
    if( pNew==0 ){

      return SQLITE_NOMEM;
    }
    memcpy(pNew, pMem->z, pMem->n);
    memset(&pNew[pMem->n], 0, pMem->u.i);
    sqlite3VdbeMemRelease(pMem);
    pMem->z = pNew;
    pMem->n += pMem->u.i;
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

/*
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
** of the Mem.z[] array can be modified.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(sqlite3 *db, Mem *pMem){
  int n;
  u8 *z;

  expandBlob(db, pMem);
  if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
    return SQLITE_OK;
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  assert( pMem->flags & (MEM_Str|MEM_Blob) );
  if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
    z = (u8*)pMem->zShort;
    pMem->flags |= MEM_Short|MEM_Term;
  }else{
    z = sqlite3_malloc( n+2 );
    if( z==0 ){
      db->mallocFailed = 1;
      return SQLITE_NOMEM;
    }
    pMem->flags |= MEM_Dyn|MEM_Term;
    pMem->xDel = 0;
  }
  memcpy(z, pMem->z, n );
  z[n] = 0;
  z[n+1] = 0;
  pMem->z = (char*)z;
  pMem->flags &= ~(MEM_Ephem|MEM_Static);
  assert(0==(1&(int)pMem->z));
  return SQLITE_OK;
}

/*
** Make sure the given Mem is \u0000 terminated.
*/
int sqlite3VdbeMemNulTerminate(sqlite3 *db, Mem *pMem){

  if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
    return SQLITE_OK;   /* Nothing to do */
  }
  if( pMem->flags & (MEM_Static|MEM_Ephem) ){
    return sqlite3VdbeMemMakeWriteable(db, pMem);
  }else{
    char *z; 
    sqlite3VdbeMemExpandBlob(db, pMem);
    z = sqlite3_malloc(pMem->n+2);
    if( !z ){
       db->mallocFailed = 1;
       return SQLITE_NOMEM;
    }
    memcpy(z, pMem->z, pMem->n);
    z[pMem->n] = 0;
    z[pMem->n+1] = 0;
    if( pMem->xDel ){
      pMem->xDel(pMem->z);







|


>
|









|

<

















|
>




|


|
|

<







123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175
176
177
178
179
180
181

/*
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
** of the Mem.z[] array can be modified.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
  int n;
  u8 *z;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  expandBlob(pMem);
  if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
    return SQLITE_OK;
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  assert( pMem->flags & (MEM_Str|MEM_Blob) );
  if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
    z = (u8*)pMem->zShort;
    pMem->flags |= MEM_Short|MEM_Term;
  }else{
    z = sqlite3DbMallocRaw(pMem->db, n+2 );
    if( z==0 ){

      return SQLITE_NOMEM;
    }
    pMem->flags |= MEM_Dyn|MEM_Term;
    pMem->xDel = 0;
  }
  memcpy(z, pMem->z, n );
  z[n] = 0;
  z[n+1] = 0;
  pMem->z = (char*)z;
  pMem->flags &= ~(MEM_Ephem|MEM_Static);
  assert(0==(1&(int)pMem->z));
  return SQLITE_OK;
}

/*
** Make sure the given Mem is \u0000 terminated.
*/
int sqlite3VdbeMemNulTerminate(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
    return SQLITE_OK;   /* Nothing to do */
  }
  if( pMem->flags & (MEM_Static|MEM_Ephem) ){
    return sqlite3VdbeMemMakeWriteable(pMem);
  }else{
    char *z; 
    sqlite3VdbeMemExpandBlob(pMem);
    z = sqlite3DbMallocRaw(pMem->db, pMem->n+2);
    if( !z ){

       return SQLITE_NOMEM;
    }
    memcpy(z, pMem->z, pMem->n);
    z[pMem->n] = 0;
    z[pMem->n+1] = 0;
    if( pMem->xDel ){
      pMem->xDel(pMem->z);
196
197
198
199
200
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

245
246

247
248
249
250
251
252
253
**
** A MEM_Null value will never be passed to this function. This function is
** used for converting values to text for returning to the user (i.e. via
** sqlite3_value_text()), or for ensuring that values to be used as btree
** keys are strings. In the former case a NULL pointer is returned the
** user and the later is an internal programming error.
*/
int sqlite3VdbeMemStringify(sqlite3 *db, Mem *pMem, int enc){
  int rc = SQLITE_OK;
  int fg = pMem->flags;
  char *z = pMem->zShort;


  assert( !(fg&MEM_Zero) );
  assert( !(fg&(MEM_Str|MEM_Blob)) );
  assert( fg&(MEM_Int|MEM_Real) );

  /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
  ** string representation of the value. Then, if the required encoding
  ** is UTF-16le or UTF-16be do a translation.
  ** 
  ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
  */
  if( fg & MEM_Int ){
    sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i);
  }else{
    assert( fg & MEM_Real );
    sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r);
  }
  pMem->n = strlen(z);
  pMem->z = z;
  pMem->enc = SQLITE_UTF8;
  pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
  sqlite3VdbeChangeEncoding(db, pMem, enc);
  return rc;
}

/*
** Memory cell pMem contains the context of an aggregate function.
** This routine calls the finalize method for that function.  The
** result of the aggregate is stored back into pMem.
**
** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
** otherwise.
*/
int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
  int rc = SQLITE_OK;
  if( pFunc && pFunc->xFinalize ){
    sqlite3_context ctx;
    assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );

    ctx.s.flags = MEM_Null;
    ctx.s.z = pMem->zShort;

    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    ctx.isError = 0;
    pFunc->xFinalize(&ctx);
    if( pMem->z && pMem->z!=pMem->zShort ){
      sqlite3_free( pMem->z );
    }







|




>




















|
















>


>







198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
**
** A MEM_Null value will never be passed to this function. This function is
** used for converting values to text for returning to the user (i.e. via
** sqlite3_value_text()), or for ensuring that values to be used as btree
** keys are strings. In the former case a NULL pointer is returned the
** user and the later is an internal programming error.
*/
int sqlite3VdbeMemStringify(Mem *pMem, int enc){
  int rc = SQLITE_OK;
  int fg = pMem->flags;
  char *z = pMem->zShort;

  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( !(fg&MEM_Zero) );
  assert( !(fg&(MEM_Str|MEM_Blob)) );
  assert( fg&(MEM_Int|MEM_Real) );

  /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
  ** string representation of the value. Then, if the required encoding
  ** is UTF-16le or UTF-16be do a translation.
  ** 
  ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
  */
  if( fg & MEM_Int ){
    sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i);
  }else{
    assert( fg & MEM_Real );
    sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r);
  }
  pMem->n = strlen(z);
  pMem->z = z;
  pMem->enc = SQLITE_UTF8;
  pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
  sqlite3VdbeChangeEncoding(pMem, enc);
  return rc;
}

/*
** Memory cell pMem contains the context of an aggregate function.
** This routine calls the finalize method for that function.  The
** result of the aggregate is stored back into pMem.
**
** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
** otherwise.
*/
int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
  int rc = SQLITE_OK;
  if( pFunc && pFunc->xFinalize ){
    sqlite3_context ctx;
    assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
    assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    ctx.s.flags = MEM_Null;
    ctx.s.z = pMem->zShort;
    ctx.s.db = pMem->db;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    ctx.isError = 0;
    pFunc->xFinalize(&ctx);
    if( pMem->z && pMem->z!=pMem->zShort ){
      sqlite3_free( pMem->z );
    }
264
265
266
267
268
269
270

271
272
273
274
275
276
277

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
void sqlite3VdbeMemRelease(Mem *p){

  if( p->flags & (MEM_Dyn|MEM_Agg) ){
    if( p->xDel ){
      if( p->flags & MEM_Agg ){
        sqlite3VdbeMemFinalize(p, p->u.pDef);
        assert( (p->flags & MEM_Agg)==0 );
        sqlite3VdbeMemRelease(p);
      }else{







>







269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
void sqlite3VdbeMemRelease(Mem *p){
  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
  if( p->flags & (MEM_Dyn|MEM_Agg) ){
    if( p->xDel ){
      if( p->flags & MEM_Agg ){
        sqlite3VdbeMemFinalize(p, p->u.pDef);
        assert( (p->flags & MEM_Agg)==0 );
        sqlite3VdbeMemRelease(p);
      }else{
292
293
294
295
296
297
298


299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

351
352
353
354
355
356
357
358
359
360

361
362
363
364
365
366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

387
388
389
390
391
392
393
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
** it into a integer and return that.  If pMem is NULL, return 0.
**
** If pMem is a string, its encoding might be changed.
*/
i64 sqlite3VdbeIntValue(Mem *pMem){


  int flags = pMem->flags;
  if( flags & MEM_Int ){
    return pMem->u.i;
  }else if( flags & MEM_Real ){
    return (i64)pMem->r;
  }else if( flags & (MEM_Str|MEM_Blob) ){
    i64 value;
    pMem->flags |= MEM_Str;
    if( sqlite3VdbeChangeEncoding(0, pMem, SQLITE_UTF8)
       || sqlite3VdbeMemNulTerminate(0, pMem) ){
      return 0;
    }
    assert( pMem->z );
    sqlite3Atoi64(pMem->z, &value);
    return value;
  }else{
    return 0;
  }
}

/*
** Return the best representation of pMem that we can get into a
** double.  If pMem is already a double or an integer, return its
** value.  If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
double sqlite3VdbeRealValue(Mem *pMem){

  if( pMem->flags & MEM_Real ){
    return pMem->r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->u.i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    double val = 0.0;
    pMem->flags |= MEM_Str;
    if( sqlite3VdbeChangeEncoding(0, pMem, SQLITE_UTF8)
       || sqlite3VdbeMemNulTerminate(0, pMem) ){
      return 0.0;
    }
    assert( pMem->z );
    sqlite3AtoF(pMem->z, &val);
    return val;
  }else{
    return 0.0;
  }
}

/*
** The MEM structure is already a MEM_Real.  Try to also make it a
** MEM_Int if we can.
*/
void sqlite3VdbeIntegerAffinity(Mem *pMem){
  assert( pMem->flags & MEM_Real );

  pMem->u.i = pMem->r;
  if( ((double)pMem->u.i)==pMem->r ){
    pMem->flags |= MEM_Int;
  }
}

/*
** Convert pMem to type integer.  Invalidate any prior representations.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){

  pMem->u.i = sqlite3VdbeIntValue(pMem);
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Int;
  return SQLITE_OK;
}

/*
** Convert pMem so that it is of type MEM_Real.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemRealify(Mem *pMem){

  pMem->r = sqlite3VdbeRealValue(pMem);
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Real;
  return SQLITE_OK;
}

/*
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemNumerify(Mem *pMem){
  double r1, r2;
  i64 i;
  assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
  assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );

  r1 = sqlite3VdbeRealValue(pMem);
  i = (i64)r1;
  r2 = (double)i;
  if( r1==r2 ){
    sqlite3VdbeMemIntegerify(pMem);
  }else{
    pMem->r = r1;







>
>
|







|
|

















>







|
|
















>










>











>















>







298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
** it into a integer and return that.  If pMem is NULL, return 0.
**
** If pMem is a string, its encoding might be changed.
*/
i64 sqlite3VdbeIntValue(Mem *pMem){
  int flags;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  flags = pMem->flags;
  if( flags & MEM_Int ){
    return pMem->u.i;
  }else if( flags & MEM_Real ){
    return (i64)pMem->r;
  }else if( flags & (MEM_Str|MEM_Blob) ){
    i64 value;
    pMem->flags |= MEM_Str;
    if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
       || sqlite3VdbeMemNulTerminate(pMem) ){
      return 0;
    }
    assert( pMem->z );
    sqlite3Atoi64(pMem->z, &value);
    return value;
  }else{
    return 0;
  }
}

/*
** Return the best representation of pMem that we can get into a
** double.  If pMem is already a double or an integer, return its
** value.  If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
double sqlite3VdbeRealValue(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  if( pMem->flags & MEM_Real ){
    return pMem->r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->u.i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    double val = 0.0;
    pMem->flags |= MEM_Str;
    if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
       || sqlite3VdbeMemNulTerminate(pMem) ){
      return 0.0;
    }
    assert( pMem->z );
    sqlite3AtoF(pMem->z, &val);
    return val;
  }else{
    return 0.0;
  }
}

/*
** The MEM structure is already a MEM_Real.  Try to also make it a
** MEM_Int if we can.
*/
void sqlite3VdbeIntegerAffinity(Mem *pMem){
  assert( pMem->flags & MEM_Real );
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  pMem->u.i = pMem->r;
  if( ((double)pMem->u.i)==pMem->r ){
    pMem->flags |= MEM_Int;
  }
}

/*
** Convert pMem to type integer.  Invalidate any prior representations.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  pMem->u.i = sqlite3VdbeIntValue(pMem);
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Int;
  return SQLITE_OK;
}

/*
** Convert pMem so that it is of type MEM_Real.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemRealify(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  pMem->r = sqlite3VdbeRealValue(pMem);
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Real;
  return SQLITE_OK;
}

/*
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemNumerify(Mem *pMem){
  double r1, r2;
  i64 i;
  assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
  assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  r1 = sqlite3VdbeRealValue(pMem);
  i = (i64)r1;
  r2 = (double)i;
  if( r1==r2 ){
    sqlite3VdbeMemIntegerify(pMem);
  }else{
    pMem->r = r1;
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509



510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

538
539
540
541
542
543
544
545
546
547
548
549
550
551
  }
}

/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(sqlite3 *db, Mem *pTo, const Mem *pFrom){
  int rc;
  if( pTo->flags & MEM_Dyn ){
    sqlite3VdbeMemRelease(pTo);
  }
  sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem);
  if( pTo->flags & MEM_Ephem ){
    rc = sqlite3VdbeMemMakeWriteable(db, pTo);
  }else{
    rc = SQLITE_OK;
  }
  return rc;
}

/*
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
** freed. If pFrom contains ephemeral data, a copy is made.
**
** pFrom contains an SQL NULL when this routine returns.  SQLITE_NOMEM
** might be returned if pFrom held ephemeral data and we were unable
** to allocate enough space to make a copy.
*/
int sqlite3VdbeMemMove(sqlite3 *db, Mem *pTo, Mem *pFrom){
  int rc;



  if( pTo->flags & MEM_Dyn ){
    sqlite3VdbeMemRelease(pTo);
  }
  memcpy(pTo, pFrom, sizeof(Mem));
  if( pFrom->flags & MEM_Short ){
    pTo->z = pTo->zShort;
  }
  pFrom->flags = MEM_Null;
  pFrom->xDel = 0;
  if( pTo->flags & MEM_Ephem ){
    rc = sqlite3VdbeMemMakeWriteable(db, pTo);
  }else{
    rc = SQLITE_OK;
  }
  return rc;
}

/*
** Change the value of a Mem to be a string or a BLOB.
*/
int sqlite3VdbeMemSetStr(
  sqlite3 *db,
  Mem *pMem,          /* Memory cell to set to string value */
  const char *z,      /* String pointer */
  int n,              /* Bytes in string, or negative */
  u8 enc,             /* Encoding of z.  0 for BLOBs */
  void (*xDel)(void*) /* Destructor function */
){

  sqlite3VdbeMemRelease(pMem);
  if( !z ){
    pMem->flags = MEM_Null;
    pMem->type = SQLITE_NULL;
    return SQLITE_OK;
  }

  pMem->z = (char *)z;
  if( xDel==SQLITE_STATIC ){
    pMem->flags = MEM_Static;
  }else if( xDel==SQLITE_TRANSIENT ){
    pMem->flags = MEM_Ephem;
  }else{
    pMem->flags = MEM_Dyn;







|






|














|

>
>
>










|










<






>






<







492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

547
548
549
550
551
552
553
554
555
556
557
558
559

560
561
562
563
564
565
566
  }
}

/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
  int rc;
  if( pTo->flags & MEM_Dyn ){
    sqlite3VdbeMemRelease(pTo);
  }
  sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem);
  if( pTo->flags & MEM_Ephem ){
    rc = sqlite3VdbeMemMakeWriteable(pTo);
  }else{
    rc = SQLITE_OK;
  }
  return rc;
}

/*
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
** freed. If pFrom contains ephemeral data, a copy is made.
**
** pFrom contains an SQL NULL when this routine returns.  SQLITE_NOMEM
** might be returned if pFrom held ephemeral data and we were unable
** to allocate enough space to make a copy.
*/
int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
  int rc;
  assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
  assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
  assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
  if( pTo->flags & MEM_Dyn ){
    sqlite3VdbeMemRelease(pTo);
  }
  memcpy(pTo, pFrom, sizeof(Mem));
  if( pFrom->flags & MEM_Short ){
    pTo->z = pTo->zShort;
  }
  pFrom->flags = MEM_Null;
  pFrom->xDel = 0;
  if( pTo->flags & MEM_Ephem ){
    rc = sqlite3VdbeMemMakeWriteable(pTo);
  }else{
    rc = SQLITE_OK;
  }
  return rc;
}

/*
** Change the value of a Mem to be a string or a BLOB.
*/
int sqlite3VdbeMemSetStr(

  Mem *pMem,          /* Memory cell to set to string value */
  const char *z,      /* String pointer */
  int n,              /* Bytes in string, or negative */
  u8 enc,             /* Encoding of z.  0 for BLOBs */
  void (*xDel)(void*) /* Destructor function */
){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  sqlite3VdbeMemRelease(pMem);
  if( !z ){
    pMem->flags = MEM_Null;
    pMem->type = SQLITE_NULL;
    return SQLITE_OK;
  }

  pMem->z = (char *)z;
  if( xDel==SQLITE_STATIC ){
    pMem->flags = MEM_Static;
  }else if( xDel==SQLITE_TRANSIENT ){
    pMem->flags = MEM_Ephem;
  }else{
    pMem->flags = MEM_Dyn;
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    case SQLITE_UTF16LE:
    case SQLITE_UTF16BE:
      pMem->flags |= MEM_Str;
      if( pMem->n<0 ){
        pMem->n = sqlite3Utf16ByteLen(pMem->z,-1);
        pMem->flags |= MEM_Term;
      }
      if( sqlite3VdbeMemHandleBom(db, pMem) ){
        return SQLITE_NOMEM;
      }
#endif /* SQLITE_OMIT_UTF16 */
  }
  if( pMem->flags&MEM_Ephem ){
    return sqlite3VdbeMemMakeWriteable(db, pMem);
  }
  return SQLITE_OK;
}

/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater







|





|







591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    case SQLITE_UTF16LE:
    case SQLITE_UTF16BE:
      pMem->flags |= MEM_Str;
      if( pMem->n<0 ){
        pMem->n = sqlite3Utf16ByteLen(pMem->z,-1);
        pMem->flags |= MEM_Term;
      }
      if( sqlite3VdbeMemHandleBom(pMem) ){
        return SQLITE_NOMEM;
      }
#endif /* SQLITE_OMIT_UTF16 */
  }
  if( pMem->flags&MEM_Ephem ){
    return sqlite3VdbeMemMakeWriteable(pMem);
  }
  return SQLITE_OK;
}

/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
        return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
      }else{
        u8 origEnc = pMem1->enc;
        const void *v1, *v2;
        int n1, n2;
        /* Convert the strings into the encoding that the comparison
        ** function expects */
        v1 = sqlite3ValueText(0, (sqlite3_value*)pMem1, pColl->enc);
        n1 = v1==0 ? 0 : pMem1->n;
        assert( n1==sqlite3ValueBytes(0, (sqlite3_value*)pMem1, pColl->enc) );
        v2 = sqlite3ValueText(0, (sqlite3_value*)pMem2, pColl->enc);
        n2 = v2==0 ? 0 : pMem2->n;
        assert( n2==sqlite3ValueBytes(0, (sqlite3_value*)pMem2, pColl->enc) );
        /* Do the comparison */
        rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
        /* Convert the strings back into the database encoding */
        sqlite3ValueText(0, (sqlite3_value*)pMem1, origEnc);
        sqlite3ValueText(0, (sqlite3_value*)pMem2, origEnc);
        return rc;
      }
    }
    /* If a NULL pointer was passed as the collate function, fall through
    ** to the blob case and use memcmp().  */
  }
 







|

|
|

|



|
|







697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
      }else{
        u8 origEnc = pMem1->enc;
        const void *v1, *v2;
        int n1, n2;
        /* Convert the strings into the encoding that the comparison
        ** function expects */
        v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
        n1 = v1==0 ? 0 : pMem1->n;
        assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
        v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
        n2 = v2==0 ? 0 : pMem2->n;
        assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
        /* Do the comparison */
        rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
        /* Convert the strings back into the database encoding */
        sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
        sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
        return rc;
      }
    }
    /* If a NULL pointer was passed as the collate function, fall through
    ** to the blob case and use memcmp().  */
  }
 
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737

738


739
740
741
742
743
744
745

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
** The pMem structure is assumed to be uninitialized.  Any prior content
** is overwritten without being freed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite3VdbeMemFromBtree(
  sqlite3 *db,      /* Database connect to report malloc errors to */
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  int offset,       /* Offset from the start of data to return bytes from. */
  int amt,          /* Number of bytes to return. */
  int key,          /* If true, retrieve from the btree key, not data. */
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;       /* Data from the btree layer */
  int available = 0; /* Number of bytes available on the local btree page */




  if( key ){
    zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
  }else{
    zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
  }
  assert( zData!=0 );


  pMem->n = amt;
  if( offset+amt<=available ){
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
  }else{
    int rc;
    if( amt>NBFS-2 ){
      zData = (char *)sqlite3_malloc(amt+2);
      if( !zData ){
        db->mallocFailed = 1;
        return SQLITE_NOMEM;
      }
      pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
      pMem->xDel = 0;
    }else{
      zData = &(pMem->zShort[0]);
      pMem->flags = MEM_Blob|MEM_Short|MEM_Term;







<








>

>
>







>







|

<







737
738
739
740
741
742
743

744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

773
774
775
776
777
778
779
** The pMem structure is assumed to be uninitialized.  Any prior content
** is overwritten without being freed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite3VdbeMemFromBtree(

  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  int offset,       /* Offset from the start of data to return bytes from. */
  int amt,          /* Number of bytes to return. */
  int key,          /* If true, retrieve from the btree key, not data. */
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;       /* Data from the btree layer */
  int available = 0; /* Number of bytes available on the local btree page */
  sqlite3 *db;       /* Database connection */

  db = sqlite3BtreeCursorDb(pCur);
  assert( sqlite3_mutex_held(db->mutex) );
  if( key ){
    zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
  }else{
    zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
  }
  assert( zData!=0 );

  pMem->db = db;
  pMem->n = amt;
  if( offset+amt<=available ){
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
  }else{
    int rc;
    if( amt>NBFS-2 ){
      zData = (char *)sqlite3DbMallocRaw(db, amt+2);
      if( !zData ){

        return SQLITE_NOMEM;
      }
      pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
      pMem->xDel = 0;
    }else{
      zData = &(pMem->zShort[0]);
      pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
843
844
845
846
847
848
849
850
851


852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
** SQLITE_UTF8.
**
** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
** If that is the case, then the result must be aligned on an even byte
** boundary.
*/
const void *sqlite3ValueText(sqlite3 *db, sqlite3_value* pVal, u8 enc){
  if( !pVal ) return 0;


  assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );

  if( pVal->flags&MEM_Null ){
    return 0;
  }
  assert( (MEM_Blob>>3) == MEM_Str );
  pVal->flags |= (pVal->flags & MEM_Blob)>>3;
  expandBlob(db, pVal);
  if( pVal->flags&MEM_Str ){
    sqlite3VdbeChangeEncoding(db, pVal, enc & ~SQLITE_UTF16_ALIGNED);
    if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
      assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
      if( sqlite3VdbeMemMakeWriteable(db, pVal)!=SQLITE_OK ){
        return 0;
      }
    }
    sqlite3VdbeMemNulTerminate(db, pVal);
  }else{
    assert( (pVal->flags&MEM_Blob)==0 );
    sqlite3VdbeMemStringify(db, pVal, enc);
    assert( 0==(1&(int)pVal->z) );
  }
  assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || db->mallocFailed );

  if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
    return pVal->z;
  }else{
    return 0;
  }
}

/*
** Create a new sqlite3_value object.
*/
sqlite3_value *sqlite3ValueNew(sqlite3 *db){
  Mem *p = sqlite3MallocZero(sizeof(*p));
  if( p ){
    p->flags = MEM_Null;
    p->type = SQLITE_NULL;

  }else{
    db->mallocFailed = 1;
  }
  return p;
}

/*
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
int sqlite3ValueFromExpr(
  sqlite3 *db,              /* Report malloc() errors here */
  Expr *pExpr,              /* The expression to evaluate */
  u8 enc,                   /* Encoding to use */
  u8 affinity,              /* Affinity to use */
  sqlite3_value **ppVal     /* Write the new value here */
){
  int op;
  char *zVal = 0;
  sqlite3_value *pVal = 0;

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n);
    pVal = sqlite3ValueNew(db);
    if( !zVal || !pVal ) goto no_mem;
    sqlite3Dequote(zVal);
    sqlite3ValueSetStr(db, pVal, -1, zVal, SQLITE_UTF8, sqlite3_free);
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(db, pVal, SQLITE_AFF_NUMERIC, enc);
    }else{
      sqlite3ValueApplyAffinity(db, pVal, affinity, enc);
    }
  }else if( op==TK_UMINUS ) {
    if( SQLITE_OK==sqlite3ValueFromExpr(db, pExpr->pLeft, enc, affinity, &pVal) ){
      pVal->u.i = -1 * pVal->u.i;
      pVal->r = -1.0 * pVal->r;
    }
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    pVal = sqlite3ValueNew(db);
    zVal = sqlite3StrNDup((char*)pExpr->token.z+1, pExpr->token.n-1);
    if( !zVal || !pVal ) goto no_mem;
    sqlite3Dequote(zVal);
    nVal = strlen(zVal)/2;
    sqlite3VdbeMemSetStr(
        db, pVal, sqlite3HexToBlob(db, zVal), nVal, 0, sqlite3_free);
    sqlite3_free(zVal);
  }
#endif

  *ppVal = pVal;
  return SQLITE_OK;

no_mem:
  db->mallocFailed = 1;
  sqlite3_free(zVal);
  sqlite3ValueFree(pVal);
  *ppVal = 0;
  return SQLITE_NOMEM;
}

/*
** Change the string value of an sqlite3_value object
*/
void sqlite3ValueSetStr(
  sqlite3 *db,          /* Report malloc errors here */
  sqlite3_value *v,     /* Value to be set */
  int n,                /* Length of string z */
  const void *z,        /* Text of the new string */
  u8 enc,               /* Encoding to use */
  void (*xDel)(void*)   /* Destructor for the string */
){
  if( v ) sqlite3VdbeMemSetStr(db, (Mem *)v, z, n, enc, xDel);
}

/*
** Free an sqlite3_value object
*/
void sqlite3ValueFree(sqlite3_value *v){
  if( !v ) return;
  sqlite3ValueSetStr(0, v, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
  sqlite3_free(v);
}

/*
** Return the number of bytes in the sqlite3_value object assuming
** that it uses the encoding "enc"
*/
int sqlite3ValueBytes(sqlite3 *db, sqlite3_value *pVal, u8 enc){
  Mem *p = (Mem*)pVal;
  if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(db, pVal, enc) ){
    if( p->flags & MEM_Zero ){
      return p->n+p->u.i;
    }else{
      return p->n;
    }
  }
  return 0;
}







|

>
>







|

|


|



|


|


|
>















>

















|




















|

|

|


|












|
<



















<






|







|







|

|








860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
** SQLITE_UTF8.
**
** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
** If that is the case, then the result must be aligned on an even byte
** boundary.
*/
const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
  if( !pVal ) return 0;

  assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
  assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );

  if( pVal->flags&MEM_Null ){
    return 0;
  }
  assert( (MEM_Blob>>3) == MEM_Str );
  pVal->flags |= (pVal->flags & MEM_Blob)>>3;
  expandBlob(pVal);
  if( pVal->flags&MEM_Str ){
    sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
    if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
      assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
      if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
        return 0;
      }
    }
    sqlite3VdbeMemNulTerminate(pVal);
  }else{
    assert( (pVal->flags&MEM_Blob)==0 );
    sqlite3VdbeMemStringify(pVal, enc);
    assert( 0==(1&(int)pVal->z) );
  }
  assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
              || pVal->db->mallocFailed );
  if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
    return pVal->z;
  }else{
    return 0;
  }
}

/*
** Create a new sqlite3_value object.
*/
sqlite3_value *sqlite3ValueNew(sqlite3 *db){
  Mem *p = sqlite3MallocZero(sizeof(*p));
  if( p ){
    p->flags = MEM_Null;
    p->type = SQLITE_NULL;
    p->db = db;
  }else{
    db->mallocFailed = 1;
  }
  return p;
}

/*
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
int sqlite3ValueFromExpr(
  sqlite3 *db,              /* The database connection */
  Expr *pExpr,              /* The expression to evaluate */
  u8 enc,                   /* Encoding to use */
  u8 affinity,              /* Affinity to use */
  sqlite3_value **ppVal     /* Write the new value here */
){
  int op;
  char *zVal = 0;
  sqlite3_value *pVal = 0;

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n);
    pVal = sqlite3ValueNew(db);
    if( !zVal || !pVal ) goto no_mem;
    sqlite3Dequote(zVal);
    sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free);
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_UMINUS ) {
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
      pVal->u.i = -1 * pVal->u.i;
      pVal->r = -1.0 * pVal->r;
    }
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    pVal = sqlite3ValueNew(db);
    zVal = sqlite3StrNDup((char*)pExpr->token.z+1, pExpr->token.n-1);
    if( !zVal || !pVal ) goto no_mem;
    sqlite3Dequote(zVal);
    nVal = strlen(zVal)/2;
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal), nVal,0,sqlite3_free);

    sqlite3_free(zVal);
  }
#endif

  *ppVal = pVal;
  return SQLITE_OK;

no_mem:
  db->mallocFailed = 1;
  sqlite3_free(zVal);
  sqlite3ValueFree(pVal);
  *ppVal = 0;
  return SQLITE_NOMEM;
}

/*
** Change the string value of an sqlite3_value object
*/
void sqlite3ValueSetStr(

  sqlite3_value *v,     /* Value to be set */
  int n,                /* Length of string z */
  const void *z,        /* Text of the new string */
  u8 enc,               /* Encoding to use */
  void (*xDel)(void*)   /* Destructor for the string */
){
  if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
}

/*
** Free an sqlite3_value object
*/
void sqlite3ValueFree(sqlite3_value *v){
  if( !v ) return;
  sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
  sqlite3_free(v);
}

/*
** Return the number of bytes in the sqlite3_value object assuming
** that it uses the encoding "enc"
*/
int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
  Mem *p = (Mem*)pVal;
  if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
    if( p->flags & MEM_Zero ){
      return p->n+p->u.i;
    }else{
      return p->n;
    }
  }
  return 0;
}