Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge the patch that enables reading a read-only WAL-mode database, without any special query parameters, as long as the -shm and -wal files are on disk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | apple-osx |
Files: | files | file ages | folders |
SHA3-256: |
8c2a769c4ac331c20134eb3d0e96f6af |
User & Date: | drh 2017-11-14 20:36:33.703 |
Context
2017-11-14
| ||
21:06 | Fix a typo that prevented successful builds on macs. (check-in: adf83060a6 user: drh tags: apple-osx) | |
20:36 | Merge the patch that enables reading a read-only WAL-mode database, without any special query parameters, as long as the -shm and -wal files are on disk. (check-in: 8c2a769c4a user: drh tags: apple-osx) | |
20:00 | Merge all changes from trunk prior to the read-only WAL enhancement. (check-in: 1754faefcc user: drh tags: apple-osx) | |
19:34 | Add the ability to read from read-only WAL-mode database files as long as the -wal and -shm files are present on disk. (check-in: 00ec95fcd0 user: drh tags: trunk) | |
Changes
Changes to src/main.c.
︙ | ︙ | |||
1317 1318 1319 1320 1321 1322 1323 | case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; | | | 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 | case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; case SQLITE_READONLY_CANTINIT: zName = "SQLITE_READONLY_CANTINIT"; break; case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 | unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ sqlite3_mutex *mutex; /* Mutex to access this object */ char *zFilename; /* Name of the mmapped file */ int h; /* Open file descriptor */ int szRegion; /* Size of shared-memory regions */ u16 nRegion; /* Size of array apRegion */ u8 isReadonly; /* True if read-only */ char **apRegion; /* Array of mapped shared-memory regions */ int nRef; /* Number of unixShm objects pointing to this */ unixShm *pFirst; /* All unixShm objects pointing to this */ #ifdef SQLITE_DEBUG u8 exclMask; /* Mask of exclusive locks held */ u8 sharedMask; /* Mask of shared locks held */ u8 nextShmId; /* Next available unixShm.id value */ | > | 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 | unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ sqlite3_mutex *mutex; /* Mutex to access this object */ char *zFilename; /* Name of the mmapped file */ int h; /* Open file descriptor */ int szRegion; /* Size of shared-memory regions */ u16 nRegion; /* Size of array apRegion */ u8 isReadonly; /* True if read-only */ u8 isUnlocked; /* True if no DMS lock held */ char **apRegion; /* Array of mapped shared-memory regions */ int nRef; /* Number of unixShm objects pointing to this */ unixShm *pFirst; /* All unixShm objects pointing to this */ #ifdef SQLITE_DEBUG u8 exclMask; /* Mask of exclusive locks held */ u8 sharedMask; /* Mask of shared locks held */ u8 nextShmId; /* Next available unixShm.id value */ |
︙ | ︙ | |||
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 | robust_close(pFd, p->h, __LINE__); p->h = -1; } p->pInode->pShmNode = 0; sqlite3_free(p); } } #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE static const char *proxySharedMemoryBasePath(unixFile *); #endif /* ** Open a shared-memory area associated with open database file pDbFd. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 | robust_close(pFd, p->h, __LINE__); p->h = -1; } p->pInode->pShmNode = 0; sqlite3_free(p); } } /* ** The DMS lock has not yet been taken on shm file pShmNode. Attempt to ** take it now. Return SQLITE_OK if successful, or an SQLite error ** code otherwise. ** ** If the DMS cannot be locked because this is a readonly_shm=1 ** connection and no other process already holds a lock, return ** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1. */ static int unixLockSharedMemory(unixFile *pDbFd, unixShmNode *pShmNode){ struct flock lock; int rc = SQLITE_OK; /* Use F_GETLK to determine the locks other processes are holding ** on the DMS byte. If it indicates that another process is holding ** a SHARED lock, then this process may also take a SHARED lock ** and proceed with opening the *-shm file. ** ** Or, if no other process is holding any lock, then this process ** is the first to open it. In this case take an EXCLUSIVE lock on the ** DMS byte and truncate the *-shm file to zero bytes in size. Then ** downgrade to a SHARED lock on the DMS byte. ** ** If another process is holding an EXCLUSIVE lock on the DMS byte, ** return SQLITE_BUSY to the caller (it will try again). An earlier ** version of this code attempted the SHARED lock at this point. But ** this introduced a subtle race condition: if the process holding ** EXCLUSIVE failed just before truncating the *-shm file, then this ** process might open and use the *-shm file without truncating it. ** And if the *-shm file has been corrupted by a power failure or ** system crash, the database itself may also become corrupt. */ lock.l_whence = SEEK_SET; lock.l_start = UNIX_SHM_DMS; lock.l_len = 1; lock.l_type = F_WRLCK; if( osFcntl(pShmNode->h, F_GETLK, &lock)!=0 ) { rc = SQLITE_IOERR_LOCK; }else if( lock.l_type==F_UNLCK ){ if( pShmNode->isReadonly ){ pShmNode->isUnlocked = 1; rc = SQLITE_READONLY_CANTINIT; }else{ rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1); if( rc==SQLITE_OK && robust_ftruncate(pShmNode->h, 0) ){ rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename); } } }else if( lock.l_type==F_WRLCK ){ rc = SQLITE_BUSY; } if( rc==SQLITE_OK ){ assert( lock.l_type==F_UNLCK || lock.l_type==F_RDLCK ); rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1); } return rc; } #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE static const char *proxySharedMemoryBasePath(unixFile *); #endif /* ** Open a shared-memory area associated with open database file pDbFd. |
︙ | ︙ | |||
5039 5040 5041 5042 5043 5044 5045 | ** that no other processes are able to read or write the database. In ** that case, we do not really need shared memory. No shared memory ** file is created. The shared memory will be simulated with heap memory. */ static int unixOpenSharedMemory(unixFile *pDbFd){ struct unixShm *p = 0; /* The connection to be opened */ struct unixShmNode *pShmNode; /* The underlying mmapped file */ | | | | 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 | ** that no other processes are able to read or write the database. In ** that case, we do not really need shared memory. No shared memory ** file is created. The shared memory will be simulated with heap memory. */ static int unixOpenSharedMemory(unixFile *pDbFd){ struct unixShm *p = 0; /* The connection to be opened */ struct unixShmNode *pShmNode; /* The underlying mmapped file */ int rc = SQLITE_OK; /* Result code */ unixInodeInfo *pInode; /* The inode of fd */ char *zShm; /* Name of the file used for SHM */ int nShmFilename; /* Size of the SHM filename in bytes */ /* Allocate space for the new unixShm object. */ p = sqlite3_malloc64( sizeof(*p) ); if( p==0 ) return SQLITE_NOMEM_BKPT; memset(p, 0, sizeof(*p)); assert( pDbFd->pShm==0 ); |
︙ | ︙ | |||
5097 5098 5099 5100 5101 5102 5103 | #endif pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename ); if( pShmNode==0 ){ rc = SQLITE_NOMEM_BKPT; goto shm_open_err; } memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename); | | | | | < < < | | | < > > < < > | < | < < < < < < < < < < < | | < < < | | | | > | < < < < < < | < < < < < < < < < < < < < < | | 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 | #endif pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename ); if( pShmNode==0 ){ rc = SQLITE_NOMEM_BKPT; goto shm_open_err; } memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename); zShm = pShmNode->zFilename = (char*)&pShmNode[1]; #ifdef SQLITE_SHM_DIRECTORY sqlite3_snprintf(nShmFilename, zShm, SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", (u32)sStat.st_ino, (u32)sStat.st_dev); #else sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath); sqlite3FileSuffix3(pDbFd->zPath, zShm); #endif pShmNode->h = -1; pDbFd->pInode->pShmNode = pShmNode; pShmNode->pInode = pDbFd->pInode; if( sqlite3GlobalConfig.bCoreMutex ){ pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_NOMEM_BKPT; goto shm_open_err; } } if( pInode->bProcessLock==0 ){ #ifdef __APPLE__ /* On MacOS and iOS, avoid even trying to open a read-only SHM file ** for writing, because doing so generates scary log messages */ if( osAccess(zShmFilename, R_OK|W_OK)!=0 && (errno==EPERM || errno==EACCES) ){ pShmNode->h = -1; }else #endif if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ pShmNode->h = robust_open(zShm, O_RDWR|O_CREAT, (sStat.st_mode&0777)); } if( pShmNode->h<0 ){ pShmNode->h = robust_open(zShm, O_RDONLY, (sStat.st_mode&0777)); if( pShmNode->h<0 ){ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm); goto shm_open_err; } pShmNode->isReadonly = 1; } /* If this process is running as root, make sure that the SHM file ** is owned by the same user that owns the original database. Otherwise, ** the original owner will not be able to connect. */ robustFchown(pShmNode->h, sStat.st_uid, sStat.st_gid); rc = unixLockSharedMemory(pDbFd, pShmNode); if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err; } } /* Make the new connection a child of the unixShmNode */ p->pShmNode = pShmNode; #ifdef SQLITE_DEBUG p->id = pShmNode->nextShmId++; |
︙ | ︙ | |||
5205 5206 5207 5208 5209 5210 5211 | ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex ** mutex. */ sqlite3_mutex_enter(pShmNode->mutex); p->pNext = pShmNode->pFirst; pShmNode->pFirst = p; sqlite3_mutex_leave(pShmNode->mutex); | | | 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 | ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex ** mutex. */ sqlite3_mutex_enter(pShmNode->mutex); p->pNext = pShmNode->pFirst; pShmNode->pFirst = p; sqlite3_mutex_leave(pShmNode->mutex); return rc; /* Jump here on any error */ shm_open_err: unixShmPurge(pDbFd); /* This call frees pShmNode if required */ sqlite3_free(p); unixLeaveMutex(); return rc; |
︙ | ︙ | |||
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 | rc = unixOpenSharedMemory(pDbFd); if( rc!=SQLITE_OK ) return rc; } p = pDbFd->pShm; pShmNode = p->pShmNode; sqlite3_mutex_enter(pShmNode->mutex); assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); assert( pShmNode->pInode==pDbFd->pInode ); assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); /* Minimum number of regions required to be mapped. */ nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap; | > > > > > | 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 | rc = unixOpenSharedMemory(pDbFd); if( rc!=SQLITE_OK ) return rc; } p = pDbFd->pShm; pShmNode = p->pShmNode; sqlite3_mutex_enter(pShmNode->mutex); if( pShmNode->isUnlocked ){ rc = unixLockSharedMemory(pDbFd, pShmNode); if( rc!=SQLITE_OK ) goto shmpage_out; pShmNode->isUnlocked = 0; } assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); assert( pShmNode->pInode==pDbFd->pInode ); assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); /* Minimum number of regions required to be mapped. */ nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap; |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 | struct winShmNode { sqlite3_mutex *mutex; /* Mutex to access this object */ char *zFilename; /* Name of the file */ winFile hFile; /* File handle from winOpen */ int szRegion; /* Size of shared-memory regions */ int nRegion; /* Size of array apRegion */ struct ShmRegion { HANDLE hMap; /* File handle from CreateFileMapping */ void *pMap; } *aRegion; DWORD lastErrno; /* The Windows errno from the last I/O error */ int nRef; /* Number of winShm objects pointing to this */ | > > > | 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 | struct winShmNode { sqlite3_mutex *mutex; /* Mutex to access this object */ char *zFilename; /* Name of the file */ winFile hFile; /* File handle from winOpen */ int szRegion; /* Size of shared-memory regions */ int nRegion; /* Size of array apRegion */ u8 isReadonly; /* True if read-only */ u8 isUnlocked; /* True if no DMS lock held */ struct ShmRegion { HANDLE hMap; /* File handle from CreateFileMapping */ void *pMap; } *aRegion; DWORD lastErrno; /* The Windows errno from the last I/O error */ int nRef; /* Number of winShm objects pointing to this */ |
︙ | ︙ | |||
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 | sqlite3_free(p->aRegion); sqlite3_free(p); }else{ pp = &p->pNext; } } } /* ** Open the shared-memory area associated with database file pDbFd. ** ** When opening a new shared-memory file, if no other instances of that ** file are currently open, in this process or in other processes, then ** the file must be truncated to zero length or have its header cleared. */ static int winOpenSharedMemory(winFile *pDbFd){ struct winShm *p; /* The connection to be opened */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > | | 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 | sqlite3_free(p->aRegion); sqlite3_free(p); }else{ pp = &p->pNext; } } } /* ** The DMS lock has not yet been taken on shm file pShmNode. Attempt to ** take it now. Return SQLITE_OK if successful, or an SQLite error ** code otherwise. ** ** If the DMS cannot be locked because this is a readonly_shm=1 ** connection and no other process already holds a lock, return ** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1. */ static int winLockSharedMemory(winShmNode *pShmNode){ int rc = winShmSystemLock(pShmNode, WINSHM_WRLCK, WIN_SHM_DMS, 1); if( rc==SQLITE_OK ){ if( pShmNode->isReadonly ){ pShmNode->isUnlocked = 1; winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); return SQLITE_READONLY_CANTINIT; }else if( winTruncate((sqlite3_file*)&pShmNode->hFile, 0) ){ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); return winLogError(SQLITE_IOERR_SHMOPEN, osGetLastError(), "winLockSharedMemory", pShmNode->zFilename); } } if( rc==SQLITE_OK ){ winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); } return winShmSystemLock(pShmNode, WINSHM_RDLCK, WIN_SHM_DMS, 1); } /* ** Open the shared-memory area associated with database file pDbFd. ** ** When opening a new shared-memory file, if no other instances of that ** file are currently open, in this process or in other processes, then ** the file must be truncated to zero length or have its header cleared. */ static int winOpenSharedMemory(winFile *pDbFd){ struct winShm *p; /* The connection to be opened */ winShmNode *pShmNode = 0; /* The underlying mmapped file */ int rc = SQLITE_OK; /* Result code */ int rc2 = SQLITE_ERROR; /* winOpen result code */ winShmNode *pNew; /* Newly allocated winShmNode */ int nName; /* Size of zName in bytes */ assert( pDbFd->pShm==0 ); /* Not previously opened */ /* Allocate space for the new sqlite3_shm object. Also speculatively ** allocate space for a new winShmNode and filename. */ |
︙ | ︙ | |||
3883 3884 3885 3886 3887 3888 3889 | pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_IOERR_NOMEM_BKPT; goto shm_open_err; } } | > | | | | | < < | < < < > | | > > | | > | > < < < | > | | 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 | pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_IOERR_NOMEM_BKPT; goto shm_open_err; } } if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ rc2 = winOpen(pDbFd->pVfs, pShmNode->zFilename, (sqlite3_file*)&pShmNode->hFile, SQLITE_OPEN_WAL|SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, 0); } if( rc2!=SQLITE_OK ){ rc2 = winOpen(pDbFd->pVfs, pShmNode->zFilename, (sqlite3_file*)&pShmNode->hFile, SQLITE_OPEN_WAL|SQLITE_OPEN_READONLY, 0); if( rc2!=SQLITE_OK ){ rc = winLogError(rc2, osGetLastError(), "winOpenShm", pShmNode->zFilename); goto shm_open_err; } pShmNode->isReadonly = 1; } rc = winLockSharedMemory(pShmNode); if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err; } /* Make the new connection a child of the winShmNode */ p->pShmNode = pShmNode; #if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE) p->id = pShmNode->nextShmId++; #endif |
︙ | ︙ | |||
3929 3930 3931 3932 3933 3934 3935 | ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex ** mutex. */ sqlite3_mutex_enter(pShmNode->mutex); p->pNext = pShmNode->pFirst; pShmNode->pFirst = p; sqlite3_mutex_leave(pShmNode->mutex); | | | 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 | ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex ** mutex. */ sqlite3_mutex_enter(pShmNode->mutex); p->pNext = pShmNode->pFirst; pShmNode->pFirst = p; sqlite3_mutex_leave(pShmNode->mutex); return rc; /* Jump here on any error */ shm_open_err: winShmSystemLock(pShmNode, WINSHM_UNLCK, WIN_SHM_DMS, 1); winShmPurge(pDbFd->pVfs, 0); /* This call frees pShmNode if required */ sqlite3_free(p); sqlite3_free(pNew); |
︙ | ︙ | |||
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 | int szRegion, /* Size of regions */ int isWrite, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ winFile *pDbFd = (winFile*)fd; winShm *pShm = pDbFd->pShm; winShmNode *pShmNode; int rc = SQLITE_OK; if( !pShm ){ rc = winOpenSharedMemory(pDbFd); if( rc!=SQLITE_OK ) return rc; pShm = pDbFd->pShm; } pShmNode = pShm->pShmNode; sqlite3_mutex_enter(pShmNode->mutex); assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); if( pShmNode->nRegion<=iRegion ){ struct ShmRegion *apNew; /* New aRegion[] array */ int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ sqlite3_int64 sz; /* Current size of wal-index file */ | > > > > > > > | 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 | int szRegion, /* Size of regions */ int isWrite, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ winFile *pDbFd = (winFile*)fd; winShm *pShm = pDbFd->pShm; winShmNode *pShmNode; DWORD protect = PAGE_READWRITE; DWORD flags = FILE_MAP_WRITE | FILE_MAP_READ; int rc = SQLITE_OK; if( !pShm ){ rc = winOpenSharedMemory(pDbFd); if( rc!=SQLITE_OK ) return rc; pShm = pDbFd->pShm; } pShmNode = pShm->pShmNode; sqlite3_mutex_enter(pShmNode->mutex); if( pShmNode->isUnlocked ){ rc = winLockSharedMemory(pShmNode); if( rc!=SQLITE_OK ) goto shmpage_out; pShmNode->isUnlocked = 0; } assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); if( pShmNode->nRegion<=iRegion ){ struct ShmRegion *apNew; /* New aRegion[] array */ int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ sqlite3_int64 sz; /* Current size of wal-index file */ |
︙ | ︙ | |||
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 | pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0]) ); if( !apNew ){ rc = SQLITE_IOERR_NOMEM_BKPT; goto shmpage_out; } pShmNode->aRegion = apNew; while( pShmNode->nRegion<=iRegion ){ HANDLE hMap = NULL; /* file-mapping handle */ void *pMap = 0; /* Mapped memory region */ #if SQLITE_OS_WINRT hMap = osCreateFileMappingFromApp(pShmNode->hFile.h, | > > > > > | | | | | | 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 | pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0]) ); if( !apNew ){ rc = SQLITE_IOERR_NOMEM_BKPT; goto shmpage_out; } pShmNode->aRegion = apNew; if( pShmNode->isReadonly ){ protect = PAGE_READONLY; flags = FILE_MAP_READ; } while( pShmNode->nRegion<=iRegion ){ HANDLE hMap = NULL; /* file-mapping handle */ void *pMap = 0; /* Mapped memory region */ #if SQLITE_OS_WINRT hMap = osCreateFileMappingFromApp(pShmNode->hFile.h, NULL, protect, nByte, NULL ); #elif defined(SQLITE_WIN32_HAS_WIDE) hMap = osCreateFileMappingW(pShmNode->hFile.h, NULL, protect, 0, nByte, NULL ); #elif defined(SQLITE_WIN32_HAS_ANSI) && SQLITE_WIN32_CREATEFILEMAPPINGA hMap = osCreateFileMappingA(pShmNode->hFile.h, NULL, protect, 0, nByte, NULL ); #endif OSTRACE(("SHM-MAP-CREATE pid=%lu, region=%d, size=%d, rc=%s\n", osGetCurrentProcessId(), pShmNode->nRegion, nByte, hMap ? "ok" : "failed")); if( hMap ){ int iOffset = pShmNode->nRegion*szRegion; int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; #if SQLITE_OS_WINRT pMap = osMapViewOfFileFromApp(hMap, flags, iOffset - iOffsetShift, szRegion + iOffsetShift ); #else pMap = osMapViewOfFile(hMap, flags, 0, iOffset - iOffsetShift, szRegion + iOffsetShift ); #endif OSTRACE(("SHM-MAP-MAP pid=%lu, region=%d, offset=%d, size=%d, rc=%s\n", osGetCurrentProcessId(), pShmNode->nRegion, iOffset, szRegion, pMap ? "ok" : "failed")); } |
︙ | ︙ | |||
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 | int iOffset = iRegion*szRegion; int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; char *p = (char *)pShmNode->aRegion[iRegion].pMap; *pp = (void *)&p[iOffsetShift]; }else{ *pp = 0; } sqlite3_mutex_leave(pShmNode->mutex); return rc; } #else # define winShmMap 0 # define winShmLock 0 | > | 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 | int iOffset = iRegion*szRegion; int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity; char *p = (char *)pShmNode->aRegion[iRegion].pMap; *pp = (void *)&p[iOffsetShift]; }else{ *pp = 0; } if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; sqlite3_mutex_leave(pShmNode->mutex); return rc; } #else # define winShmMap 0 # define winShmLock 0 |
︙ | ︙ |
Changes to src/printf.c.
︙ | ︙ | |||
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 | StrAccum acc; char zBuf[500]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); va_start(ap,zFormat); sqlite3VXPrintf(&acc, zFormat, ap); va_end(ap); sqlite3StrAccumFinish(&acc); fprintf(stdout,"%s", zBuf); fflush(stdout); } #endif /* ** variable-argument wrapper around sqlite3VXPrintf(). The bFlags argument ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. | > > > > > > > | 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 | StrAccum acc; char zBuf[500]; sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); va_start(ap,zFormat); sqlite3VXPrintf(&acc, zFormat, ap); va_end(ap); sqlite3StrAccumFinish(&acc); #ifdef SQLITE_OS_TRACE_PROC { extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf); SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf)); } #else fprintf(stdout,"%s", zBuf); fflush(stdout); #endif } #endif /* ** variable-argument wrapper around sqlite3VXPrintf(). The bFlags argument ** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats. |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) #define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) #define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8)) #define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) #define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) #define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) #define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) #define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8)) #define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) #define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8)) #define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8)) #define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8)) #define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8)) #define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8)) #define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8)) | > > | 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 | #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) #define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) #define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8)) #define SQLITE_CANTOPEN_DIRTYWAL (SQLITE_CANTOPEN | (5<<8)) #define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) #define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) #define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) #define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) #define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8)) #define SQLITE_READONLY_CANTINIT (SQLITE_READONLY | (5<<8)) #define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) #define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8)) #define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8)) #define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8)) #define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8)) #define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8)) #define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8)) |
︙ | ︙ |
Changes to src/wal.c.
︙ | ︙ | |||
451 452 453 454 455 456 457 458 459 460 461 462 463 464 | u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ u8 writeLock; /* True if in a write transaction */ u8 ckptLock; /* True if holding a checkpoint lock */ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ u8 truncateOnCommit; /* True to truncate WAL file on commit */ u8 syncHeader; /* Fsync the WAL header if true */ u8 padToSectorBoundary; /* Pad transactions out to the next sector */ WalIndexHdr hdr; /* Wal-index header for current transaction */ u32 minFrame; /* Ignore wal frames before this one */ u32 iReCksum; /* On commit, recalculate checksums from here */ const char *zWalName; /* Name of WAL file */ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ #ifdef SQLITE_DEBUG u8 lockError; /* True if a locking error has occurred */ | > | 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ u8 writeLock; /* True if in a write transaction */ u8 ckptLock; /* True if holding a checkpoint lock */ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ u8 truncateOnCommit; /* True to truncate WAL file on commit */ u8 syncHeader; /* Fsync the WAL header if true */ u8 padToSectorBoundary; /* Pad transactions out to the next sector */ u8 bShmUnreliable; /* SHM content is read-only and unreliable */ WalIndexHdr hdr; /* Wal-index header for current transaction */ u32 minFrame; /* Ignore wal frames before this one */ u32 iReCksum; /* On commit, recalculate checksums from here */ const char *zWalName; /* Name of WAL file */ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ #ifdef SQLITE_DEBUG u8 lockError; /* True if a locking error has occurred */ |
︙ | ︙ | |||
539 540 541 542 543 544 545 546 547 548 549 550 551 552 | sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ ) /* ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are ** numbered from zero. ** ** If this call is successful, *ppPage is set to point to the wal-index ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, ** then an SQLite error code is returned and *ppPage is set to 0. */ static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ int rc = SQLITE_OK; | > > > > > | 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ ) /* ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are ** numbered from zero. ** ** If the wal-index is currently smaller the iPage pages then the size ** of the wal-index might be increased, but only if it is safe to do ** so. It is safe to enlarge the wal-index if pWal->writeLock is true ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. ** ** If this call is successful, *ppPage is set to point to the wal-index ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, ** then an SQLite error code is returned and *ppPage is set to 0. */ static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ int rc = SQLITE_OK; |
︙ | ︙ | |||
571 572 573 574 575 576 577 | if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; }else{ rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] ); | > > | > | > | 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; }else{ rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] ); assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 ); testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); if( (rc&0xff)==SQLITE_READONLY ){ pWal->readOnly |= WAL_SHM_RDONLY; if( rc==SQLITE_READONLY ){ rc = SQLITE_OK; } } } } *ppPage = pWal->apWiData[iPage]; assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); return rc; |
︙ | ︙ | |||
1095 1096 1097 1098 1099 1100 1101 | ** the necessary locks, this routine returns SQLITE_BUSY. */ static int walIndexRecover(Wal *pWal){ int rc; /* Return Code */ i64 nSize; /* Size of log file */ u32 aFrameCksum[2] = {0, 0}; int iLock; /* Lock offset to lock for checkpoint */ | < > | | > > > > > | 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 | ** the necessary locks, this routine returns SQLITE_BUSY. */ static int walIndexRecover(Wal *pWal){ int rc; /* Return Code */ i64 nSize; /* Size of log file */ u32 aFrameCksum[2] = {0, 0}; int iLock; /* Lock offset to lock for checkpoint */ /* Obtain an exclusive lock on all byte in the locking range not already ** locked by the caller. The caller is guaranteed to have locked the ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. ** If successful, the same bytes that are locked here are unlocked before ** this function returns. */ assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); assert( pWal->writeLock ); iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); if( rc==SQLITE_OK ){ rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc!=SQLITE_OK ){ walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); } } if( rc ){ return rc; } WALTRACE(("WAL%p: recovery begin...\n", pWal)); memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); if( rc!=SQLITE_OK ){ goto recovery_error; |
︙ | ︙ | |||
1250 1251 1252 1253 1254 1255 1256 | pWal->hdr.mxFrame, pWal->zWalName ); } } recovery_error: WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); | | > | < > > | 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 | pWal->hdr.mxFrame, pWal->zWalName ); } } recovery_error: WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); return rc; } /* ** Close an open wal-index. */ static void walIndexClose(Wal *pWal, int isDelete){ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ int i; for(i=0; i<pWal->nWiData; i++){ sqlite3_free((void *)pWal->apWiData[i]); pWal->apWiData[i] = 0; } } if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ sqlite3OsShmUnmap(pWal->pDbFd, isDelete); } } /* ** Open a connection to the WAL file zWalName. The database file must ** already be opened on connection pDbFd. The buffer that zWalName points |
︙ | ︙ | |||
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 | testcase( pWal->szPage>=65536 ); } /* The header was successfully read. Return zero. */ return 0; } /* ** Read the wal-index header from the wal-index and into pWal->hdr. ** If the wal-header appears to be corrupt, try to reconstruct the ** wal-index from the WAL before returning. ** ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is ** changed by this operation. If pWal->hdr is unchanged, set *pChanged | > > > > > > | 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 | testcase( pWal->szPage>=65536 ); } /* The header was successfully read. Return zero. */ return 0; } /* ** This is the value that walTryBeginRead returns when it needs to ** be retried. */ #define WAL_RETRY (-1) /* ** Read the wal-index header from the wal-index and into pWal->hdr. ** If the wal-header appears to be corrupt, try to reconstruct the ** wal-index from the WAL before returning. ** ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is ** changed by this operation. If pWal->hdr is unchanged, set *pChanged |
︙ | ︙ | |||
2088 2089 2090 2091 2092 2093 2094 | /* Ensure that page 0 of the wal-index (the page that contains the ** wal-index header) is mapped. Return early if an error occurs here. */ assert( pChanged ); rc = walIndexPage(pWal, 0, &page0); if( rc!=SQLITE_OK ){ | > > > > > > > > > > > > > > > | > | > > > > | | | 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 | /* Ensure that page 0 of the wal-index (the page that contains the ** wal-index header) is mapped. Return early if an error occurs here. */ assert( pChanged ); rc = walIndexPage(pWal, 0, &page0); if( rc!=SQLITE_OK ){ assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ if( rc==SQLITE_READONLY_CANTINIT ){ /* The SQLITE_READONLY_CANTINIT return means that the shared-memory ** was openable but is not writable, and this thread is unable to ** confirm that another write-capable connection has the shared-memory ** open, and hence the content of the shared-memory is unreliable, ** since the shared-memory might be inconsistent with the WAL file ** and there is no writer on hand to fix it. */ assert( page0==0 ); assert( pWal->writeLock==0 ); assert( pWal->readOnly & WAL_SHM_RDONLY ); pWal->bShmUnreliable = 1; pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; *pChanged = 1; }else{ return rc; /* Any other non-OK return is just an error */ } }else{ /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock ** is zero, which prevents the SHM from growing */ testcase( page0!=0 ); } assert( page0!=0 || pWal->writeLock==0 ); /* If the first page of the wal-index has been mapped, try to read the ** wal-index header immediately, without holding any lock. This usually ** works, but may fail if the wal-index header is corrupt or currently ** being modified by another thread or process. */ badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); /* If the first attempt failed, it might have been due to a race ** with a writer. So get a WRITE lock and try again. */ assert( badHdr==0 || pWal->writeLock==0 ); if( badHdr ){ if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ walUnlockShared(pWal, WAL_WRITE_LOCK); rc = SQLITE_READONLY_RECOVERY; } }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ pWal->writeLock = 1; if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ |
︙ | ︙ | |||
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 | /* If the header is read successfully, check the version number to make ** sure the wal-index was not constructed with some future format that ** this version of SQLite cannot understand. */ if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ rc = SQLITE_CANTOPEN_BKPT; } return rc; } /* | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 | /* If the header is read successfully, check the version number to make ** sure the wal-index was not constructed with some future format that ** this version of SQLite cannot understand. */ if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ rc = SQLITE_CANTOPEN_BKPT; } if( pWal->bShmUnreliable ){ if( rc!=SQLITE_OK ){ walIndexClose(pWal, 0); pWal->bShmUnreliable = 0; assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); /* walIndexRecover() might have returned SHORT_READ if a concurrent ** writer truncated the WAL out from under it. If that happens, it ** indicates that a writer has fixed the SHM file for us, so retry */ if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; } pWal->exclusiveMode = WAL_NORMAL_MODE; } return rc; } /* ** Open a transaction in a connection where the shared-memory is read-only ** and where we cannot verify that there is a separate write-capable connection ** on hand to keep the shared-memory up-to-date with the WAL file. ** ** This can happen, for example, when the shared-memory is implemented by ** memory-mapping a *-shm file, where a prior writer has shut down and ** left the *-shm file on disk, and now the present connection is trying ** to use that database but lacks write permission on the *-shm file. ** Other scenarios are also possible, depending on the VFS implementation. ** ** Precondition: ** ** The *-wal file has been read and an appropriate wal-index has been ** constructed in pWal->apWiData[] using heap memory instead of shared ** memory. ** ** If this function returns SQLITE_OK, then the read transaction has ** been successfully opened. In this case output variable (*pChanged) ** is set to true before returning if the caller should discard the ** contents of the page cache before proceeding. Or, if it returns ** WAL_RETRY, then the heap memory wal-index has been discarded and ** the caller should retry opening the read transaction from the ** beginning (including attempting to map the *-shm file). ** ** If an error occurs, an SQLite error code is returned. */ static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ i64 szWal; /* Size of wal file on disk in bytes */ i64 iOffset; /* Current offset when reading wal file */ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ int szFrame; /* Number of bytes in buffer aFrame[] */ u8 *aData; /* Pointer to data part of aFrame buffer */ volatile void *pDummy; /* Dummy argument for xShmMap */ int rc; /* Return code */ u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ assert( pWal->bShmUnreliable ); assert( pWal->readOnly & WAL_SHM_RDONLY ); assert( pWal->nWiData>0 && pWal->apWiData[0] ); /* Take WAL_READ_LOCK(0). This has the effect of preventing any ** writers from running a checkpoint, but does not stop them ** from running recovery. */ rc = walLockShared(pWal, WAL_READ_LOCK(0)); if( rc!=SQLITE_OK ){ if( rc==SQLITE_BUSY ) rc = WAL_RETRY; goto begin_unreliable_shm_out; } pWal->readLock = 0; /* Check to see if a separate writer has attached to the shared-memory area, ** thus making the shared-memory "reliable" again. Do this by invoking ** the xShmMap() routine of the VFS and looking to see if the return ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. ** ** If the shared-memory is now "reliable" return WAL_RETRY, which will ** cause the heap-memory WAL-index to be discarded and the actual ** shared memory to be used in its place. ** ** This step is important because, even though this connection is holding ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might ** have already checkpointed the WAL file and, while the current ** is active, wrap the WAL and start overwriting frames that this ** process wants to use. ** ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, ** even if some external agent does a "chmod" to make the shared-memory ** writable by us, until sqlite3OsShmUnmap() has been called. ** This is a requirement on the VFS implementation. */ rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ if( rc!=SQLITE_READONLY_CANTINIT ){ rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); goto begin_unreliable_shm_out; } /* We reach this point only if the real shared-memory is still unreliable. ** Assume the in-memory WAL-index substitute is correct and load it ** into pWal->hdr. */ memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); /* Make sure some writer hasn't come in and changed the WAL file out ** from under us, then disconnected, while we were not looking. */ rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); if( rc!=SQLITE_OK ){ goto begin_unreliable_shm_out; } if( szWal<WAL_HDRSIZE ){ /* If the wal file is too small to contain a wal-header and the ** wal-index header has mxFrame==0, then it must be safe to proceed ** reading the database file only. However, the page cache cannot ** be trusted, as a read/write connection may have connected, written ** the db, run a checkpoint, truncated the wal file and disconnected ** since this client's last read transaction. */ *pChanged = 1; rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); goto begin_unreliable_shm_out; } /* Check the salt keys at the start of the wal file still match. */ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ goto begin_unreliable_shm_out; } if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ /* Some writer has wrapped the WAL file while we were not looking. ** Return WAL_RETRY which will cause the in-memory WAL-index to be ** rebuilt. */ rc = WAL_RETRY; goto begin_unreliable_shm_out; } /* Allocate a buffer to read frames into */ szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE; aFrame = (u8 *)sqlite3_malloc64(szFrame); if( aFrame==0 ){ rc = SQLITE_NOMEM_BKPT; goto begin_unreliable_shm_out; } aData = &aFrame[WAL_FRAME_HDRSIZE]; /* Check to see if a complete transaction has been appended to the ** wal file since the heap-memory wal-index was created. If so, the ** heap-memory wal-index is discarded and WAL_RETRY returned to ** the caller. */ aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); iOffset+szFrame<=szWal; iOffset+=szFrame ){ u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ /* Read and decode the next log frame. */ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); if( rc!=SQLITE_OK ) break; if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; /* If nTruncate is non-zero, then a complete transaction has been ** appended to this wal file. Set rc to WAL_RETRY and break out of ** the loop. */ if( nTruncate ){ rc = WAL_RETRY; break; } } pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; begin_unreliable_shm_out: sqlite3_free(aFrame); if( rc!=SQLITE_OK ){ int i; for(i=0; i<pWal->nWiData; i++){ sqlite3_free((void*)pWal->apWiData[i]); pWal->apWiData[i] = 0; } pWal->bShmUnreliable = 0; sqlite3WalEndReadTransaction(pWal); *pChanged = 1; } return rc; } /* ** Attempt to start a read transaction. This might fail due to a race or ** other transient condition. When that happens, it returns WAL_RETRY to ** indicate to the caller that it is safe to retry immediately. ** ** On success return SQLITE_OK. On a permanent failure (such an |
︙ | ︙ | |||
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 | int mxI; /* Index of largest aReadMark[] value */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ u32 mxFrame; /* Wal frame to lock to */ assert( pWal->readLock<0 ); /* Not currently locked */ /* Take steps to avoid spinning forever if there is a protocol error. ** ** Circumstances that cause a RETRY should only last for the briefest ** instances of time. No I/O or other system calls are done while the ** locks are held, so the locks should not be held for very long. But ** if we are unlucky, another process that is holding a lock might get ** paged out or take a page-fault that is time-consuming to resolve, | > > > | 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 | int mxI; /* Index of largest aReadMark[] value */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ u32 mxFrame; /* Wal frame to lock to */ assert( pWal->readLock<0 ); /* Not currently locked */ /* useWal may only be set for read/write connections */ assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); /* Take steps to avoid spinning forever if there is a protocol error. ** ** Circumstances that cause a RETRY should only last for the briefest ** instances of time. No I/O or other system calls are done while the ** locks are held, so the locks should not be held for very long. But ** if we are unlucky, another process that is holding a lock might get ** paged out or take a page-fault that is time-consuming to resolve, |
︙ | ︙ | |||
2232 2233 2234 2235 2236 2237 2238 | return SQLITE_PROTOCOL; } if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; sqlite3OsSleep(pWal->pVfs, nDelay); } if( !useWal ){ | > > | > | 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 | return SQLITE_PROTOCOL; } if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; sqlite3OsSleep(pWal->pVfs, nDelay); } if( !useWal ){ assert( rc==SQLITE_OK ); if( pWal->bShmUnreliable==0 ){ rc = walIndexReadHdr(pWal, pChanged); } if( rc==SQLITE_BUSY ){ /* If there is not a recovery running in another thread or process ** then convert BUSY errors to WAL_RETRY. If recovery is known to ** be running, convert BUSY to BUSY_RECOVERY. There is a race here ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY ** would be technically correct. But the race is benign since with ** WAL_RETRY this routine will be called again and will probably be |
︙ | ︙ | |||
2261 2262 2263 2264 2265 2266 2267 | }else if( rc==SQLITE_BUSY ){ rc = SQLITE_BUSY_RECOVERY; } } if( rc!=SQLITE_OK ){ return rc; } | > > | | > > > | | 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 | }else if( rc==SQLITE_BUSY ){ rc = SQLITE_BUSY_RECOVERY; } } if( rc!=SQLITE_OK ){ return rc; } else if( pWal->bShmUnreliable ){ return walBeginShmUnreliable(pWal, pChanged); } } assert( pWal->nWiData>0 ); assert( pWal->apWiData[0]!=0 ); pInfo = walCkptInfo(pWal); if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame #ifdef SQLITE_ENABLE_SNAPSHOT && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr))) #endif ){ /* The WAL has been completely backfilled (or it is empty). ** and can be safely ignored. |
︙ | ︙ | |||
2338 2339 2340 2341 2342 2343 2344 | }else if( rc!=SQLITE_BUSY ){ return rc; } } } if( mxI==0 ){ assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); | | | 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 | }else if( rc!=SQLITE_BUSY ){ return rc; } } } if( mxI==0 ){ assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; } rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); if( rc ){ return rc==SQLITE_BUSY ? WAL_RETRY : rc; } /* Now that the read-lock has been obtained, check that neither the |
︙ | ︙ | |||
2610 2611 2612 2613 2614 2615 2616 | /* If the "last page" field of the wal-index header snapshot is 0, then ** no data will be read from the wal under any circumstances. Return early ** in this case as an optimization. Likewise, if pWal->readLock==0, ** then the WAL is ignored by the reader so return early, as if the ** WAL were empty. */ | | | 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 | /* If the "last page" field of the wal-index header snapshot is 0, then ** no data will be read from the wal under any circumstances. Return early ** in this case as an optimization. Likewise, if pWal->readLock==0, ** then the WAL is ignored by the reader so return early, as if the ** WAL were empty. */ if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ *piRead = 0; return SQLITE_OK; } /* Search the hash table or tables for an entry matching page number ** pgno. Each iteration of the following for() loop searches one ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). |
︙ | ︙ | |||
2673 2674 2675 2676 2677 2678 2679 | #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* If expensive assert() statements are available, do a linear search ** of the wal-index file content. Make sure the results agree with the ** result obtained using the hash indexes above. */ { u32 iRead2 = 0; u32 iTest; | | | | 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 | #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* If expensive assert() statements are available, do a linear search ** of the wal-index file content. Make sure the results agree with the ** result obtained using the hash indexes above. */ { u32 iRead2 = 0; u32 iTest; assert( pWal->bShmUnreliable || pWal->minFrame>0 ); for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ if( walFramePgno(pWal, iTest)==pgno ){ iRead2 = iTest; break; } } assert( iRead==iRead2 ); } |
︙ | ︙ | |||
3485 3486 3487 3488 3489 3490 3491 | ** locks are taken in this case). Nor should the pager attempt to ** upgrade to exclusive-mode following such an error. */ assert( pWal->readLock>=0 || pWal->lockError ); assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); if( op==0 ){ | | | | | | | | | 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 | ** locks are taken in this case). Nor should the pager attempt to ** upgrade to exclusive-mode following such an error. */ assert( pWal->readLock>=0 || pWal->lockError ); assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); if( op==0 ){ if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_NORMAL_MODE; if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } rc = pWal->exclusiveMode==WAL_NORMAL_MODE; }else{ /* Already in locking_mode=NORMAL */ rc = 0; } }else if( op>0 ){ assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); assert( pWal->readLock>=0 ); walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; rc = 1; }else{ rc = pWal->exclusiveMode==WAL_NORMAL_MODE; } return rc; } /* ** Return true if the argument is non-NULL and the WAL module is using ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the |
︙ | ︙ |
Changes to test/wal2.test.
︙ | ︙ | |||
126 127 128 129 130 131 132 | } } {4 10} do_test wal2-1.1 { execsql { SELECT count(a), sum(a) FROM t1 } db2 } {4 10} set RECOVER [list \ | | | | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | } } {4 10} do_test wal2-1.1 { execsql { SELECT count(a), sum(a) FROM t1 } db2 } {4 10} set RECOVER [list \ {0 1 lock exclusive} {1 2 lock exclusive} {4 4 lock exclusive} \ {1 2 unlock exclusive} {4 4 unlock exclusive} {0 1 unlock exclusive} \ ] set READ [list \ {4 1 lock shared} {4 1 unlock shared} \ ] set INITSLOT [list \ {4 1 lock exclusive} {4 1 unlock exclusive} \ ] |
︙ | ︙ | |||
397 398 399 400 401 402 403 | # UPDATE: This has now changed. When running a checkpoint, if recovery is # required the client grabs all exclusive locks (just as it would for a # recovery performed as a pre-cursor to a normal database transaction). # set expected_locks [list] lappend expected_locks {1 1 lock exclusive} ;# Lock checkpoint lappend expected_locks {0 1 lock exclusive} ;# Lock writer | | > | > | 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 | # UPDATE: This has now changed. When running a checkpoint, if recovery is # required the client grabs all exclusive locks (just as it would for a # recovery performed as a pre-cursor to a normal database transaction). # set expected_locks [list] lappend expected_locks {1 1 lock exclusive} ;# Lock checkpoint lappend expected_locks {0 1 lock exclusive} ;# Lock writer lappend expected_locks {2 1 lock exclusive} ;# Lock recovery lappend expected_locks {4 4 lock exclusive} ;# Lock all aReadMark[] lappend expected_locks {2 1 unlock exclusive} ;# Unlock recovery lappend expected_locks {4 4 unlock exclusive} ;# Unlock all aReadMark[] lappend expected_locks {0 1 unlock exclusive} ;# Unlock writer lappend expected_locks {3 1 lock exclusive} ;# Lock aReadMark[0] lappend expected_locks {3 1 unlock exclusive} ;# Unlock aReadMark[0] lappend expected_locks {1 1 unlock exclusive} ;# Unlock checkpoint do_test wal2-5.1 { proc tvfs_cb {method args} { set ::shm_file [lindex $args 0] |
︙ | ︙ | |||
625 626 627 628 629 630 631 | testvfs tvfs tvfs script tvfs_cb sqlite3 db test.db -vfs tvfs set {} {} } {} set RECOVERY { | | | | 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 | testvfs tvfs tvfs script tvfs_cb sqlite3 db test.db -vfs tvfs set {} {} } {} set RECOVERY { {0 1 lock exclusive} {1 2 lock exclusive} {4 4 lock exclusive} {1 2 unlock exclusive} {4 4 unlock exclusive} {0 1 unlock exclusive} } set READMARK0_READ { {3 1 lock shared} {3 1 unlock shared} } set READMARK0_WRITE { {3 1 lock shared} {0 1 lock exclusive} {3 1 unlock shared} |
︙ | ︙ | |||
1158 1159 1160 1161 1162 1163 1164 | forcecopy $shmpath proxysv_test.db-shm } faultsim_save_and_close foreach {tn db_perm wal_perm shm_perm can_open can_read can_write} { 2 00644 00644 00644 1 1 1 3 00644 00400 00644 1 1 0 | | | 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 | forcecopy $shmpath proxysv_test.db-shm } faultsim_save_and_close foreach {tn db_perm wal_perm shm_perm can_open can_read can_write} { 2 00644 00644 00644 1 1 1 3 00644 00400 00644 1 1 0 4 00644 00644 00400 1 1 0 5 00400 00644 00644 1 1 0 7 00644 00000 00644 1 0 0 8 00644 00644 00000 1 0 0 9 00000 00644 00644 0 0 0 } { faultsim_restore |
︙ | ︙ |
Changes to test/walro.test.
︙ | ︙ | |||
105 106 107 108 109 110 111 112 113 | do_test 1.1.13 { sql2 "INSERT INTO t1 VALUES('i', 'j')" } {} do_test 1.2.1 { code2 { db2 close } code1 { db close } list [file exists test.db-wal] [file exists $shmpath] } {1 1} do_test 1.2.2 { code1 { sqlite3 db file:test.db?readonly_shm=1 } | > | | | | | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | do_test 1.1.13 { sql2 "INSERT INTO t1 VALUES('i', 'j')" } {} do_test 1.2.1 { code2 { db2 close } code1 { db close } list [file exists test.db-wal] [file exists $shmpath] } {1 1} do_test 1.2.2 { code1 { sqlite3 db file:test.db?readonly_shm=1 } list [catch { sql1 { SELECT * FROM t1 } } msg] $msg } {0 {a b c d e f g h i j}} do_test 1.2.3 { code1 { db close } file attributes $shmpath -permissions rw-r--r-- hexio_write $shmpath 0 01020304 file attributes $shmpath -permissions r--r--r-- code1 { sqlite3 db file:test.db?readonly_shm=1 } csql1 { SELECT * FROM t1 } } {0 {a b c d e f g h i j}} do_test 1.2.4 { code1 { sqlite3_extended_errcode db } } {SQLITE_OK} do_test 1.2.5 { file attributes $shmpath -permissions rw-r--r-- code2 { sqlite3 db2 test.db } sql2 "SELECT * FROM t1" } {a b c d e f g h i j} file attributes $shmpath -permissions r--r--r-- |
︙ | ︙ | |||
142 143 144 145 146 147 148 149 150 151 152 | set {} {} } {} do_test 1.2.8 { sql1 "SELECT * FROM t1" } {a b c d e f g h i j k l} # Now check that if the readonly_shm option is not supplied, or if it # is set to zero, it is not possible to connect to the database without # read-write access to the shm. do_test 1.3.1 { code1 { db close } code1 { sqlite3 db test.db } csql1 { SELECT * FROM t1 } | > > > > | | 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | set {} {} } {} do_test 1.2.8 { sql1 "SELECT * FROM t1" } {a b c d e f g h i j k l} # Now check that if the readonly_shm option is not supplied, or if it # is set to zero, it is not possible to connect to the database without # read-write access to the shm. # # UPDATE: os_unix.c now opens the *-shm file in readonly mode # automatically. # do_test 1.3.1 { code1 { db close } code1 { sqlite3 db test.db } csql1 { SELECT * FROM t1 } } {0 {a b c d e f g h i j k l}} # Also test that if the -shm file can be opened for read/write access, # it is not if readonly_shm=1 is present in the URI. do_test 1.3.2.1 { ifcapable enable_persist_wal { code1 { file_control_persist_wal db 0 } code2 { file_control_persist_wal db2 0 } |
︙ | ︙ | |||
169 170 171 172 173 174 175 | } {1 {unable to open database file}} do_test 1.3.2.3 { code1 { db close } close [open $shmpath w] file attributes $shmpath -permissions r--r--r-- code1 { sqlite3 db file:test.db?readonly_shm=1 } csql1 { SELECT * FROM t1 } | | | | 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | } {1 {unable to open database file}} do_test 1.3.2.3 { code1 { db close } close [open $shmpath w] file attributes $shmpath -permissions r--r--r-- code1 { sqlite3 db file:test.db?readonly_shm=1 } csql1 { SELECT * FROM t1 } } {0 {a b c d e f g h i j k l}} do_test 1.3.2.4 { code1 { sqlite3_extended_errcode db } } {SQLITE_OK} #----------------------------------------------------------------------- # Test cases 1.4.* check that checkpoints and log wraps don't prevent # read-only connections from reading the database. do_test 1.4.1 { code1 { db close } forcedelete test.db-shm |
︙ | ︙ |
Added test/walro2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 | # 2011 May 09 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file contains tests for using WAL databases in read-only mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/wal_common.tcl set ::testprefix walro2 # And only if the build is WAL-capable. # ifcapable !wal { finish_test return } proc copy_to_test2 {bZeroShm} { forcecopy test.db test.db2 forcecopy test.db-wal test.db2-wal if {$bZeroShm} { forcedelete test.db2-shm set fd [open test.db2-shm w] seek $fd [expr [file size test.db-shm]-1] puts -nonewline $fd "\0" close $fd } else { forcecopy test.db-shm test.db2-shm } } foreach bZeroShm {0 1} { set TN [expr $bZeroShm+1] do_multiclient_test tn { # Close all connections and delete the database. # code1 { db close } code2 { db2 close } code3 { db3 close } forcedelete test.db # Do not run tests with the connections in the same process. # if {$tn==2} continue foreach c {code1 code2 code3} { $c { sqlite3_shutdown sqlite3_config_uri 1 } } do_test $TN.1.1 { code2 { sqlite3 db2 test.db } sql2 { CREATE TABLE t1(x, y); PRAGMA journal_mode = WAL; INSERT INTO t1 VALUES('a', 'b'); INSERT INTO t1 VALUES('c', 'd'); } file exists test.db-shm } {1} do_test $TN.1.2.1 { copy_to_test2 $bZeroShm code1 { sqlite3 db file:test.db2?readonly_shm=1 } sql1 { SELECT * FROM t1 } } {a b c d} do_test $TN.1.2.2 { sql1 { SELECT * FROM t1 } } {a b c d} do_test $TN.1.3.1 { code3 { sqlite3 db3 test.db2 } sql3 { SELECT * FROM t1 } } {a b c d} do_test $TN.1.3.2 { sql1 { SELECT * FROM t1 } } {a b c d} code1 { db close } code2 { db2 close } code3 { db3 close } do_test $TN.2.1 { code2 { sqlite3 db2 test.db } sql2 { INSERT INTO t1 VALUES('e', 'f'); INSERT INTO t1 VALUES('g', 'h'); } file exists test.db-shm } {1} do_test $TN.2.2 { copy_to_test2 $bZeroShm code1 { sqlite3 db file:test.db2?readonly_shm=1 } sql1 { BEGIN; SELECT * FROM t1; } } {a b c d e f g h} do_test $TN.2.3.1 { code3 { sqlite3 db3 test.db2 } sql3 { SELECT * FROM t1 } } {a b c d e f g h} do_test $TN.2.3.2 { sql3 { INSERT INTO t1 VALUES('i', 'j') } code3 { db3 close } sql1 { COMMIT } } {} do_test $TN.2.3.3 { sql1 { SELECT * FROM t1 } } {a b c d e f g h i j} #----------------------------------------------------------------------- # 3.1.*: That a readonly_shm connection can read a database file if both # the *-wal and *-shm files are zero bytes in size. # # 3.2.*: That it flushes the cache if, between transactions on a db with a # zero byte *-wal file, some other connection modifies the db, then # does "PRAGMA wal_checkpoint=truncate" to truncate the wal file # back to zero bytes in size. # # 3.3.*: That, if between transactions some other process wraps the wal # file, the readonly_shm client reruns recovery. # catch { code1 { db close } } catch { code2 { db2 close } } catch { code3 { db3 close } } do_test $TN.3.1.0 { list [file exists test.db-wal] [file exists test.db-shm] } {0 0} do_test $TN.3.1.1 { close [open test.db-wal w] close [open test.db-shm w] code1 { sqlite3 db file:test.db?readonly_shm=1 } sql1 { SELECT * FROM t1 } } {a b c d e f g h} do_test $TN.3.2.0 { list [file size test.db-wal] [file size test.db-shm] } {0 0} do_test $TN.3.2.1 { code2 { sqlite3 db2 test.db } sql2 { INSERT INTO t1 VALUES(1, 2) ; PRAGMA wal_checkpoint=truncate } code2 { db2 close } sql1 { SELECT * FROM t1 } } {a b c d e f g h 1 2} do_test $TN.3.2.2 { list [file size test.db-wal] [file size test.db-shm] } {0 32768} do_test $TN.3.3.0 { code2 { sqlite3 db2 test.db } sql2 { INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); INSERT INTO t1 VALUES(7, 8); INSERT INTO t1 VALUES(9, 10); } code2 { db2 close } code1 { db close } list [file size test.db-wal] [file size test.db-shm] } [list [wal_file_size 4 1024] 32768] do_test $TN.3.3.1 { code1 { sqlite3 db file:test.db?readonly_shm=1 } sql1 { SELECT * FROM t1 } } {a b c d e f g h 1 2 3 4 5 6 7 8 9 10} do_test $TN.3.3.2 { code2 { sqlite3 db2 test.db } sql2 { PRAGMA wal_checkpoint; DELETE FROM t1; INSERT INTO t1 VALUES('i', 'ii'); } code2 { db2 close } list [file size test.db-wal] [file size test.db-shm] } [list [wal_file_size 4 1024] 32768] do_test $TN.3.3.3 { sql1 { SELECT * FROM t1 } } {i ii} #----------------------------------------------------------------------- # # catch { code1 { db close } } catch { code2 { db2 close } } catch { code3 { db3 close } } do_test $TN.4.0 { code1 { forcedelete test.db } code1 { sqlite3 db test.db } sql1 { PRAGMA journal_mode = wal; CREATE TABLE t1(x); INSERT INTO t1 VALUES('hello'); INSERT INTO t1 VALUES('world'); } copy_to_test2 $bZeroShm code1 { db close } } {} do_test $TN.4.1.1 { code2 { sqlite3 db2 file:test.db2?readonly_shm=1 } sql2 { SELECT * FROM t1 } } {hello world} do_test $TN.4.1.2 { code3 { sqlite3 db3 test.db2 } sql3 { INSERT INTO t1 VALUES('!'); PRAGMA wal_checkpoint = truncate; } code3 { db3 close } } {} do_test $TN.4.1.3 { sql2 { SELECT * FROM t1 } } {hello world !} catch { code1 { db close } } catch { code2 { db2 close } } catch { code3 { db3 close } } do_test $TN.4.2.1 { code1 { sqlite3 db test.db } sql1 { INSERT INTO t1 VALUES('!'); INSERT INTO t1 VALUES('!'); PRAGMA cache_size = 10; CREATE TABLE t2(x); BEGIN; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<500 ) INSERT INTO t2 SELECT randomblob(500) FROM s; SELECT count(*) FROM t2; } } {500} do_test $TN.4.2.2 { file size test.db-wal } {461152} do_test $TN.4.2.4 { file_control_persist_wal db 1; db close copy_to_test2 $bZeroShm code2 { sqlite3 db2 file:test.db2?readonly_shm=1 } sql2 { SELECT * FROM t1; SELECT count(*) FROM t2; } } {hello world ! ! 0} #----------------------------------------------------------------------- # # catch { code1 { db close } } catch { code2 { db2 close } } catch { code3 { db3 close } } do_test $TN.5.0 { code1 { forcedelete test.db } code1 { sqlite3 db test.db } sql1 { PRAGMA journal_mode = wal; CREATE TABLE t1(x); INSERT INTO t1 VALUES('hello'); INSERT INTO t1 VALUES('world'); INSERT INTO t1 VALUES('!'); INSERT INTO t1 VALUES('world'); INSERT INTO t1 VALUES('hello'); } copy_to_test2 $bZeroShm code1 { db close } } {} do_test $TN.5.1 { code2 { sqlite3 db2 file:test.db2?readonly_shm=1 } sql2 { SELECT * FROM t1; } } {hello world ! world hello} do_test $TN.5.2 { code1 { proc handle_read {op args} { if {$op=="xRead" && [file tail [lindex $args 0]]=="test.db2-wal"} { set ::res2 [sql2 { SELECT * FROM t1 }] } puts "$msg xRead $args" return "SQLITE_OK" } testvfs tvfs -fullshm 1 sqlite3 db file:test.db2?vfs=tvfs db eval { SELECT * FROM sqlite_master } tvfs filter xRead tvfs script handle_read } sql1 { PRAGMA wal_checkpoint = truncate; } code1 { set ::res2 } } {hello world ! world hello} do_test $TN.5.3 { code1 { db close } code1 { tvfs delete } } {} #----------------------------------------------------------------------- # # catch { code1 { db close } } catch { code2 { db2 close } } catch { code3 { db3 close } } do_test $TN.6.1 { code1 { forcedelete test.db } code1 { sqlite3 db test.db } sql1 { PRAGMA journal_mode = wal; CREATE TABLE t1(x); INSERT INTO t1 VALUES('hello'); INSERT INTO t1 VALUES('world'); INSERT INTO t1 VALUES('!'); INSERT INTO t1 VALUES('world'); INSERT INTO t1 VALUES('hello'); } copy_to_test2 $bZeroShm code1 { db close } } {} do_test $TN.6.2 { code1 { set ::nRem 5 proc handle_read {op args} { if {$op=="xRead" && [file tail [lindex $args 0]]=="test.db2-wal"} { incr ::nRem -1 if {$::nRem==0} { code2 { sqlite3 db2 test.db2 } sql2 { PRAGMA wal_checkpoint = truncate } } } return "SQLITE_OK" } testvfs tvfs -fullshm 1 tvfs filter xRead tvfs script handle_read sqlite3 db file:test.db2?readonly_shm=1&vfs=tvfs db eval { SELECT * FROM t1 } } } {hello world ! world hello} do_test $TN.6.3 { code1 { db close } code1 { tvfs delete } } {} } } ;# foreach bZeroShm finish_test |
Added test/walrofault.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | # 2011 May 09 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file contains tests for using WAL databases in read-only mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/malloc_common.tcl set ::testprefix walro2 # And only if the build is WAL-capable. # ifcapable !wal { finish_test return } db close sqlite3_shutdown sqlite3_config_uri 1 sqlite3 db test.db do_execsql_test 1.0 { CREATE TABLE t1(b); PRAGMA journal_mode = wal; INSERT INTO t1 VALUES('hello'); INSERT INTO t1 VALUES('world'); INSERT INTO t1 VALUES('!'); INSERT INTO t1 VALUES('world'); INSERT INTO t1 VALUES('hello'); PRAGMA cache_size = 10; BEGIN; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<30 ) INSERT INTO t1(b) SELECT randomblob(800) FROM s; } {wal} file_control_persist_wal db 1; db close faultsim_save_and_close do_faultsim_test 1 -faults oom* -prep { catch { db close } faultsim_restore sqlite3 db file:test.db?readonly_shm=1 } -body { execsql { SELECT * FROM t1 } } -test { faultsim_test_result {0 {hello world ! world hello}} } finish_test |