Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge from trunk recent micro-optimizations and the fix for the DESC index GROUP BY ORDER BY bug. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | apple-osx |
Files: | files | file ages | folders |
SHA1: |
880df7568add1b5825f713688dcd7a03 |
User & Date: | drh 2014-10-14 14:17:15.647 |
Context
2014-10-17
| ||
12:11 | Merge the 3.8.7 changes into the apple-osx branch. (check-in: aa7bbed10b user: drh tags: apple-osx) | |
2014-10-14
| ||
14:17 | Merge from trunk recent micro-optimizations and the fix for the DESC index GROUP BY ORDER BY bug. (check-in: 880df7568a user: drh tags: apple-osx) | |
2014-10-13
| ||
23:39 | Optimize a database corruption test inside of the OP_Column opcode. (check-in: 005e5b388a user: drh tags: trunk) | |
2014-10-09
| ||
11:40 | Record the errno on fstat() failures. (check-in: 2a6a082001 user: drh tags: apple-osx) | |
Changes
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 | if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++]; if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++]; assert( iIdx==nVal ); /* In case the cursor has been used before, clear it now. */ sqlite3_finalize(pCsr->pStmt); sqlite3_free(pCsr->aDoclist); sqlite3Fts3ExprFree(pCsr->pExpr); memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); /* Set the lower and upper bounds on docids to return */ pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64); pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64); | > | 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 | if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++]; if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++]; assert( iIdx==nVal ); /* In case the cursor has been used before, clear it now. */ sqlite3_finalize(pCsr->pStmt); sqlite3_free(pCsr->aDoclist); sqlite3_free(pCsr->aMatchinfo); sqlite3Fts3ExprFree(pCsr->pExpr); memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); /* Set the lower and upper bounds on docids to return */ pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64); pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64); |
︙ | ︙ |
Changes to ext/fts3/fts3_expr.c.
︙ | ︙ | |||
186 187 188 189 190 191 192 | sqlite3_tokenizer_cursor *pCursor; Fts3Expr *pRet = 0; int i = 0; /* Set variable i to the maximum number of bytes of input to tokenize. */ for(i=0; i<n; i++){ if( sqlite3_fts3_enable_parentheses && (z[i]=='(' || z[i]==')') ) break; | | | 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | sqlite3_tokenizer_cursor *pCursor; Fts3Expr *pRet = 0; int i = 0; /* Set variable i to the maximum number of bytes of input to tokenize. */ for(i=0; i<n; i++){ if( sqlite3_fts3_enable_parentheses && (z[i]=='(' || z[i]==')') ) break; if( z[i]=='"' ) break; } *pnConsumed = i; rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, i, &pCursor); if( rc==SQLITE_OK ){ const char *zToken; int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0; |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
778 779 780 781 782 783 784 | ** ** Calling this routine with a NULL cursor pointer returns false. ** ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor ** back to where it ought to be if this routine returns true. */ int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ | | | 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 | ** ** Calling this routine with a NULL cursor pointer returns false. ** ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor ** back to where it ought to be if this routine returns true. */ int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ return pCur->eState!=CURSOR_VALID; } /* ** This routine restores a cursor back to its original position after it ** has been moved by some outside activity (such as a btree rebalance or ** a row having been deleted out from under the cursor). ** |
︙ | ︙ | |||
5868 5869 5870 5871 5872 5873 5874 | ** If the cell content will fit on the page, then put it there. If it ** will not fit, then make a copy of the cell content into pTemp if ** pTemp is not null. Regardless of pTemp, allocate a new entry ** in pPage->apOvfl[] and make it point to the cell content (either ** in pTemp or the original pCell) and also record its index. ** Allocating a new entry in pPage->aCell[] implies that ** pPage->nOverflow is incremented. | < < < < < < | | 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 | ** If the cell content will fit on the page, then put it there. If it ** will not fit, then make a copy of the cell content into pTemp if ** pTemp is not null. Regardless of pTemp, allocate a new entry ** in pPage->apOvfl[] and make it point to the cell content (either ** in pTemp or the original pCell) and also record its index. ** Allocating a new entry in pPage->aCell[] implies that ** pPage->nOverflow is incremented. */ static void insertCell( MemPage *pPage, /* Page into which we are copying */ int i, /* New cell becomes the i-th cell of the page */ u8 *pCell, /* Content of the new cell */ int sz, /* Bytes of content in pCell */ u8 *pTemp, /* Temp storage space for pCell, if needed */ Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ int *pRC /* Read and write return code from here */ ){ int idx = 0; /* Where to write new cell content in data[] */ int j; /* Loop counter */ int end; /* First byte past the last cell pointer in data[] */ int ins; /* Index in data[] where new cell pointer is inserted */ int cellOffset; /* Address of first cell pointer in data[] */ u8 *data; /* The content of the whole page */ if( *pRC ) return; assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); assert( MX_CELL(pPage->pBt)<=10921 ); assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); /* The cell should normally be sized correctly. However, when moving a ** malformed cell from a leaf page to an interior page, if the cell size ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size ** might be less than 8 (leaf-size + pointer) on the interior node. Hence ** the term after the || in the following assert(). */ assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) ); if( pPage->nOverflow || sz+2>pPage->nFree ){ if( pTemp ){ memcpy(pTemp, pCell, sz); pCell = pTemp; } if( iChild ){ put4byte(pCell, iChild); } j = pPage->nOverflow++; assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) ); |
︙ | ︙ | |||
5936 5937 5938 5939 5940 5941 5942 | if( rc ){ *pRC = rc; return; } /* The allocateSpace() routine guarantees the following two properties ** if it returns success */ assert( idx >= end+2 ); assert( idx+sz <= (int)pPage->pBt->usableSize ); pPage->nCell++; pPage->nFree -= (u16)(2 + sz); | | | 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 | if( rc ){ *pRC = rc; return; } /* The allocateSpace() routine guarantees the following two properties ** if it returns success */ assert( idx >= end+2 ); assert( idx+sz <= (int)pPage->pBt->usableSize ); pPage->nCell++; pPage->nFree -= (u16)(2 + sz); memcpy(&data[idx], pCell, sz); if( iChild ){ put4byte(&data[idx], iChild); } memmove(&data[ins+2], &data[ins], end-ins); put2byte(&data[ins], idx); put2byte(&data[pPage->hdrOffset+3], pPage->nCell); #ifndef SQLITE_OMIT_AUTOVACUUM |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
2743 2744 2745 2746 2747 2748 2749 | addr2 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); }else{ addr2 = sqlite3VdbeCurrentAddr(v); } | | | 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 | addr2 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); }else{ addr2 = sqlite3VdbeCurrentAddr(v); } sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Close, iTab); |
︙ | ︙ |
Changes to src/pcache1.c.
︙ | ︙ | |||
684 685 686 687 688 689 690 | assert( pCache->nPage >= pCache->nRecyclable ); nPinned = pCache->nPage - pCache->nRecyclable; assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); assert( pCache->n90pct == pCache->nMax*9/10 ); if( createFlag==1 && ( nPinned>=pGroup->mxPinned || nPinned>=pCache->n90pct | | | 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 | assert( pCache->nPage >= pCache->nRecyclable ); nPinned = pCache->nPage - pCache->nRecyclable; assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); assert( pCache->n90pct == pCache->nMax*9/10 ); if( createFlag==1 && ( nPinned>=pGroup->mxPinned || nPinned>=pCache->n90pct || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) )){ return 0; } if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); assert( pCache->nHash>0 && pCache->apHash ); |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
1177 1178 1179 1180 1181 1182 1183 | int eDest = pDest->eDest; int iParm = pDest->iSDParm; int regRow; int regRowid; int nKey; int iSortTab; /* Sorter cursor to read from */ int nSortData; /* Trailing values to read from sorter */ | < | 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 | int eDest = pDest->eDest; int iParm = pDest->iSDParm; int regRow; int regRowid; int nKey; int iSortTab; /* Sorter cursor to read from */ int nSortData; /* Trailing values to read from sorter */ int i; int bSeq; /* True if sorter record includes seq. no. */ #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS struct ExprList_item *aOutEx = p->pEList->a; #endif if( pSort->labelBkOut ){ |
︙ | ︙ | |||
1211 1212 1213 1214 1215 1216 1217 | addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); | | < < < | 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 | addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); bSeq = 0; }else{ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); iSortTab = iTab; bSeq = 1; } for(i=0; i<nSortData; i++){ sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); } switch( eDest ){ case SRT_Table: case SRT_EphemTab: { testcase( eDest==SRT_Table ); testcase( eDest==SRT_EphemTab ); |
︙ | ︙ | |||
5152 5153 5154 5155 5156 5157 5158 | ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms ** from the previous row currently stored in a0, a1, a2... */ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); sqlite3ExprCacheClear(pParse); if( groupBySort ){ | | < | 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 | ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms ** from the previous row currently stored in a0, a1, a2... */ addrTopOfLoop = sqlite3VdbeCurrentAddr(v); sqlite3ExprCacheClear(pParse); if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, sortOut,sortPTab); } for(j=0; j<pGroupBy->nExpr; j++){ if( groupBySort ){ sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); }else{ sAggInfo.directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); } } sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 | if( p->echoOn ) printf("%s\n", zSql); nSql = 0; } } if( nSql ){ if( !_all_whitespace(zSql) ){ fprintf(stderr, "Error: incomplete SQL: %s\n", zSql); } free(zSql); } free(zLine); return errCnt>0; } | > | 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 | if( p->echoOn ) printf("%s\n", zSql); nSql = 0; } } if( nSql ){ if( !_all_whitespace(zSql) ){ fprintf(stderr, "Error: incomplete SQL: %s\n", zSql); errCnt++; } free(zSql); } free(zLine); return errCnt>0; } |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
155 156 157 158 159 160 161 | /* ** A macro to hint to the compiler that a function should not be ** inlined. */ #if defined(__GNUC__) # define SQLITE_NOINLINE __attribute__((noinline)) | | | 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | /* ** A macro to hint to the compiler that a function should not be ** inlined. */ #if defined(__GNUC__) # define SQLITE_NOINLINE __attribute__((noinline)) #elif defined(_MSC_VER) && _MSC_VER>=1310 # define SQLITE_NOINLINE __declspec(noinline) #else # define SQLITE_NOINLINE #endif /* ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. |
︙ | ︙ | |||
2672 2673 2674 2675 2676 2677 2678 | */ #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ | < | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 | */ #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ /* |
︙ | ︙ |
Changes to src/threads.c.
︙ | ︙ | |||
101 102 103 104 105 106 107 | #if SQLITE_OS_WIN && !SQLITE_OS_WINRT && SQLITE_THREADSAFE>0 #define SQLITE_THREADS_IMPLEMENTED 1 /* Prevent the single-thread code below */ #include <process.h> /* A running thread */ struct SQLiteThread { | | | 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | #if SQLITE_OS_WIN && !SQLITE_OS_WINRT && SQLITE_THREADSAFE>0 #define SQLITE_THREADS_IMPLEMENTED 1 /* Prevent the single-thread code below */ #include <process.h> /* A running thread */ struct SQLiteThread { void *tid; /* The thread handle */ unsigned id; /* The thread identifier */ void *(*xTask)(void*); /* The routine to run as a thread */ void *pIn; /* Argument to xTask */ void *pResult; /* Result of xTask */ }; /* Thread procedure Win32 compatibility shim */ |
︙ | ︙ | |||
149 150 151 152 153 154 155 | p = sqlite3Malloc(sizeof(*p)); if( p==0 ) return SQLITE_NOMEM; if( sqlite3GlobalConfig.bCoreMutex==0 ){ memset(p, 0, sizeof(*p)); }else{ p->xTask = xTask; p->pIn = pIn; | | | 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | p = sqlite3Malloc(sizeof(*p)); if( p==0 ) return SQLITE_NOMEM; if( sqlite3GlobalConfig.bCoreMutex==0 ){ memset(p, 0, sizeof(*p)); }else{ p->xTask = xTask; p->pIn = pIn; p->tid = (void*)_beginthreadex(0, 0, sqlite3ThreadProc, p, 0, &p->id); if( p->tid==0 ){ memset(p, 0, sizeof(*p)); } } if( p->xTask==0 ){ p->id = GetCurrentThreadId(); p->pResult = xTask(pIn); |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
210 211 212 213 214 215 216 217 218 219 220 221 222 223 | p->apCsr[iCur] = 0; } if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; memset(pCx, 0, sizeof(VdbeCursor)); pCx->iDb = iDb; pCx->nField = nField; if( isBtreeCursor ){ pCx->pCursor = (BtCursor*) &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; sqlite3BtreeCursorZero(pCx->pCursor); } } return pCx; | > | 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | p->apCsr[iCur] = 0; } if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; memset(pCx, 0, sizeof(VdbeCursor)); pCx->iDb = iDb; pCx->nField = nField; pCx->aOffset = &pCx->aType[nField]; if( isBtreeCursor ){ pCx->pCursor = (BtCursor*) &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; sqlite3BtreeCursorZero(pCx->pCursor); } } return pCx; |
︙ | ︙ | |||
2272 2273 2274 2275 2276 2277 2278 | assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( p2<pC->nField ); | | | | 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 | assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( p2<pC->nField ); aOffset = pC->aOffset; #ifndef SQLITE_OMIT_VIRTUALTABLE assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ #endif pCrsr = pC->pCursor; assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */ assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */ /* If the cursor cache is stale, bring it up-to-date */ rc = sqlite3VdbeCursorMoveto(pC); if( rc ) goto abort_due_to_error; if( pC->cacheStatus!=p->cacheCtr ){ if( pC->nullRow ){ if( pCrsr==0 ){ assert( pC->pseudoTableReg>0 ); pReg = &aMem[pC->pseudoTableReg]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); pC->payloadSize = pC->szRow = avail = pReg->n; |
︙ | ︙ | |||
2328 2329 2330 2331 2332 2333 2334 | goto too_big; } } pC->cacheStatus = p->cacheCtr; pC->iHdrOffset = getVarint32(pC->aRow, offset); pC->nHdrParsed = 0; aOffset[0] = offset; | < < < < < < < < > > > > > > > > > > > > > > > > > | 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 | goto too_big; } } pC->cacheStatus = p->cacheCtr; pC->iHdrOffset = getVarint32(pC->aRow, offset); pC->nHdrParsed = 0; aOffset[0] = offset; /* Make sure a corrupt database has not given us an oversize header. ** Do this now to avoid an oversize memory allocation. ** ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte ** types use so much data space that there can only be 4096 and 32 of ** them, respectively. So the maximum header length results from a ** 3-byte type for each of the maximum of 32768 columns plus three ** extra bytes for the header length itself. 32768*3 + 3 = 98307. */ if( offset > 98307 || offset > pC->payloadSize ){ rc = SQLITE_CORRUPT_BKPT; goto op_column_error; } if( avail<offset ){ /* pC->aRow does not have to hold the entire row, but it does at least ** need to cover the header of the record. If pC->aRow does not contain ** the complete header, then set it to zero, forcing the header to be ** dynamically allocated. */ pC->aRow = 0; pC->szRow = 0; } /* The following goto is an optimization. It can be omitted and ** everything will still work. But OP_Column is measurably faster ** by skipping the subsequent conditional, which is always true. */ assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ goto op_column_read_header; } /* Make sure at least the first p2+1 entries of the header have been ** parsed and valid information is in aOffset[] and pC->aType[]. */ if( pC->nHdrParsed<=p2 ){ /* If there is more header available for parsing in the record, try ** to extract additional fields up through the p2+1-th field */ op_column_read_header: if( pC->iHdrOffset<aOffset[0] ){ /* Make sure zData points to enough of the record to cover the header. */ if( pC->aRow==0 ){ memset(&sMem, 0, sizeof(sMem)); rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem); if( rc!=SQLITE_OK ){ |
︙ | ︙ | |||
2403 2404 2405 2406 2407 2408 2409 | pC->nHdrParsed = i; pC->iHdrOffset = (u32)(zHdr - zData); if( pC->aRow==0 ){ sqlite3VdbeMemRelease(&sMem); sMem.flags = MEM_Null; } | | | > > > | < < > | < | 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 | pC->nHdrParsed = i; pC->iHdrOffset = (u32)(zHdr - zData); if( pC->aRow==0 ){ sqlite3VdbeMemRelease(&sMem); sMem.flags = MEM_Null; } /* The record is corrupt if any of the following are true: ** (1) the bytes of the header extend past the declared header size ** (zHdr>zEndHdr) ** (2) the entire header was used but not all data was used ** (zHdr==zEndHdr && offset!=pC->payloadSize) ** (3) the end of the data extends beyond the end of the record. ** (offset > pC->payloadSize) */ if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize)) || (offset > pC->payloadSize) ){ rc = SQLITE_CORRUPT_BKPT; goto op_column_error; } } /* If after trying to extra new entries from the header, nHdrParsed is |
︙ | ︙ | |||
2602 2603 2604 2605 2606 2607 2608 | /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ pRec = pLast; do{ assert( memIsValid(pRec) ); | | | 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 | /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ pRec = pLast; do{ assert( memIsValid(pRec) ); pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format); len = sqlite3VdbeSerialTypeLen(serial_type); if( pRec->flags & MEM_Zero ){ if( nData ){ sqlite3VdbeMemExpandBlob(pRec); }else{ nZero += pRec->u.nZero; len -= pRec->u.nZero; |
︙ | ︙ | |||
2651 2652 2653 2654 2655 2656 2657 | /* Write the record */ i = putVarint32(zNewRecord, nHdr); j = nHdr; assert( pData0<=pLast ); pRec = pData0; do{ | | | 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 | /* Write the record */ i = putVarint32(zNewRecord, nHdr); j = nHdr; assert( pData0<=pLast ); pRec = pData0; do{ serial_type = pRec->uTemp; i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ }while( (++pRec)<=pLast ); assert( i==nHdr ); assert( j==nByte ); assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
︙ | ︙ | |||
3550 3551 3552 3553 3554 3555 3556 | ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so convert it. */ pIn3 = &aMem[pOp->p3]; if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3, 0); } iKey = sqlite3VdbeIntValue(pIn3); | < | 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 | ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so convert it. */ pIn3 = &aMem[pOp->p3]; if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3, 0); } iKey = sqlite3VdbeIntValue(pIn3); /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (pIn3->flags & MEM_Int)==0 ){ if( (pIn3->flags & MEM_Real)==0 ){ /* If the P3 value cannot be converted into any kind of a number, ** then the seek is not possible, so jump to P2 */ |
︙ | ︙ | |||
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 | assert( OP_SeekLE==(OP_SeekLT+1) ); assert( OP_SeekGT==(OP_SeekGE+1) ); assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; } } rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } | > < < < < | 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 | assert( OP_SeekLE==(OP_SeekLT+1) ); assert( OP_SeekGT==(OP_SeekGE+1) ); assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; } } rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); pC->movetoTarget = iKey; /* Used by OP_Delete */ if( rc!=SQLITE_OK ){ goto abort_due_to_error; } }else{ nField = pOp->p4.i; assert( pOp->p4type==P4_INT32 ); assert( nField>0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)nField; |
︙ | ︙ | |||
3622 3623 3624 3625 3626 3627 3628 | { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif ExpandBlob(r.aMem); rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } | < < < | 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 | { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif ExpandBlob(r.aMem); rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; #ifdef SQLITE_TEST sqlite3_search_count++; #endif if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); if( res<0 || (res==0 && oc==OP_SeekGT) ){ res = 0; rc = sqlite3BtreeNext(pC->pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; }else{ res = 0; } }else{ assert( oc==OP_SeekLT || oc==OP_SeekLE ); if( res>0 || (res==0 && oc==OP_SeekLT) ){ res = 0; rc = sqlite3BtreePrevious(pC->pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; }else{ /* res might be negative because the table is empty. Check to ** see if this is the case. */ res = sqlite3BtreeEof(pC->pCursor); } } |
︙ | ︙ | |||
3681 3682 3683 3684 3685 3686 3687 | pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->pCursor!=0 ); assert( pC->isTable ); pC->nullRow = 0; pIn2 = &aMem[pOp->p2]; pC->movetoTarget = sqlite3VdbeIntValue(pIn2); | < | 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 | pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->pCursor!=0 ); assert( pC->isTable ); pC->nullRow = 0; pIn2 = &aMem[pOp->p2]; pC->movetoTarget = sqlite3VdbeIntValue(pIn2); pC->deferredMoveto = 1; break; } /* Opcode: Found P1 P2 P3 P4 * ** Synopsis: key=r[P3@P4] |
︙ | ︙ | |||
3867 3868 3869 3870 3871 3872 3873 | assert( pC->isTable ); assert( pC->pseudoTableReg==0 ); pCrsr = pC->pCursor; assert( pCrsr!=0 ); res = 0; iKey = pIn3->u.i; rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); | | < < | 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 | assert( pC->isTable ); assert( pC->pseudoTableReg==0 ); pCrsr = pC->pCursor; assert( pCrsr!=0 ); res = 0; iKey = pIn3->u.i; rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); pC->movetoTarget = iKey; /* Used by OP_Delete */ pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; pC->deferredMoveto = 0; VdbeBranchTaken(res!=0,2); if( res!=0 ){ pc = pOp->p2 - 1; } pC->seekResult = res; break; } /* Opcode: Sequence P1 P2 * * * ** Synopsis: r[P2]=cursor[P1].ctr++ |
︙ | ︙ | |||
4023 4024 4025 4026 4027 4028 4029 | && (++cnt<100)); if( rc==SQLITE_OK && res==0 ){ rc = SQLITE_FULL; /* IMP: R-38219-53002 */ goto abort_due_to_error; } assert( v>0 ); /* EV: R-40812-03570 */ } | < | 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 | && (++cnt<100)); if( rc==SQLITE_OK && res==0 ){ rc = SQLITE_FULL; /* IMP: R-38219-53002 */ goto abort_due_to_error; } assert( v>0 ); /* EV: R-40812-03570 */ } pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } pOut->u.i = v; break; } |
︙ | ︙ | |||
4128 4129 4130 4131 4132 4133 4134 | }else{ nZero = 0; } rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, pData->z, pData->n, nZero, (pOp->p5 & OPFLAG_APPEND)!=0, seekResult ); | < | 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 | }else{ nZero = 0; } rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, pData->z, pData->n, nZero, (pOp->p5 & OPFLAG_APPEND)!=0, seekResult ); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ zDb = db->aDb[pC->iDb].zName; zTbl = pOp->p4.z; |
︙ | ︙ | |||
4165 4166 4167 4168 4169 4170 4171 | ** ** If P4 is not NULL, then it is the name of the table that P1 is ** pointing to. The update hook will be invoked, if it exists. ** If P4 is not NULL then the P1 cursor must have been positioned ** using OP_NotFound prior to invoking this opcode. */ case OP_Delete: { | < | | | | | | | < > | < > | | | | 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 | ** ** If P4 is not NULL, then it is the name of the table that P1 is ** pointing to. The update hook will be invoked, if it exists. ** If P4 is not NULL then the P1 cursor must have been positioned ** using OP_NotFound prior to invoking this opcode. */ case OP_Delete: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ assert( pC->deferredMoveto==0 ); #ifdef SQLITE_DEBUG /* The seek operation that positioned the cursor prior to OP_Delete will ** have also set the pC->movetoTarget field to the rowid of the row that ** is being deleted */ if( pOp->p4.z && pC->isTable ){ i64 iKey = 0; sqlite3BtreeKeySize(pC->pCursor, &iKey); assert( pC->movetoTarget==iKey ); } #endif rc = sqlite3BtreeDelete(pC->pCursor); pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget); assert( pC->iDb>=0 ); } if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; break; } /* Opcode: ResetCount * * * * * ** |
︙ | ︙ | |||
4244 4245 4246 4247 4248 4249 4250 | VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2-1; } break; }; | | > > > > > > > > > | 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 | VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2-1; } break; }; /* Opcode: SorterData P1 P2 P3 * * ** Synopsis: r[P2]=data ** ** Write into register P2 the current sorter data for sorter cursor P1. ** Then clear the column header cache on cursor P3. ** ** This opcode is normally use to move a record out of the sorter and into ** a register that is the source for a pseudo-table cursor created using ** OpenPseudo. That pseudo-table cursor is the one that is identified by ** parameter P3. Clearing the P3 column cache as part of this opcode saves ** us from having to issue a separate NullRow instruction to clear that cache. */ case OP_SorterData: { VdbeCursor *pC; pOut = &aMem[pOp->p2]; pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); rc = sqlite3VdbeSorterRowkey(pC, pOut); assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; break; } /* Opcode: RowData P1 P2 * * * ** Synopsis: r[P2]=data ** ** Write into register P2 the complete row data for cursor P1. |
︙ | ︙ | |||
4303 4304 4305 4306 4307 4308 4309 | assert( pC->isTable || pOp->opcode!=OP_RowData ); assert( pC->isTable==0 || pOp->opcode==OP_RowData ); assert( pC!=0 ); assert( pC->nullRow==0 ); assert( pC->pseudoTableReg==0 ); assert( pC->pCursor!=0 ); pCrsr = pC->pCursor; | < > > > | < > > | > | 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 | assert( pC->isTable || pOp->opcode!=OP_RowData ); assert( pC->isTable==0 || pOp->opcode==OP_RowData ); assert( pC!=0 ); assert( pC->nullRow==0 ); assert( pC->pseudoTableReg==0 ); assert( pC->pCursor!=0 ); pCrsr = pC->pCursor; /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or ** OP_Rewind/Op_Next with no intervening instructions that might invalidate ** the cursor. If this where not the case, on of the following assert()s ** would fail. Should this ever change (because of changes in the code ** generator) then the fix would be to insert a call to ** sqlite3VdbeCursorMoveto(). */ assert( pC->deferredMoveto==0 ); assert( sqlite3BtreeCursorIsValid(pCrsr) ); #if 0 /* Not required due to the previous to assert() statements */ rc = sqlite3VdbeCursorMoveto(pC); if( rc!=SQLITE_OK ) goto abort_due_to_error; #endif if( pC->isTable==0 ){ assert( !pC->isTable ); VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; |
︙ | ︙ | |||
4381 4382 4383 4384 4385 4386 4387 | pModule = pVtab->pModule; assert( pModule->xRowid ); rc = pModule->xRowid(pC->pVtabCursor, &v); sqlite3VtabImportErrmsg(p, pVtab); #endif /* SQLITE_OMIT_VIRTUALTABLE */ }else{ assert( pC->pCursor!=0 ); | | < < < | | < < | 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 | pModule = pVtab->pModule; assert( pModule->xRowid ); rc = pModule->xRowid(pC->pVtabCursor, &v); sqlite3VtabImportErrmsg(p, pVtab); #endif /* SQLITE_OMIT_VIRTUALTABLE */ }else{ assert( pC->pCursor!=0 ); rc = sqlite3VdbeCursorRestore(pC); if( rc ) goto abort_due_to_error; rc = sqlite3BtreeKeySize(pC->pCursor, &v); assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ } pOut->u.i = v; break; } /* Opcode: NullRow P1 * * * * ** ** Move the cursor P1 to a null row. Any OP_Column operations ** that occur while the cursor is on the null row will always ** write a NULL. */ case OP_NullRow: { VdbeCursor *pC; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pC->nullRow = 1; pC->cacheStatus = CACHE_STALE; if( pC->pCursor ){ sqlite3BtreeClearCursor(pC->pCursor); } break; } |
︙ | ︙ | |||
4441 4442 4443 4444 4445 4446 4447 | assert( pC!=0 ); pCrsr = pC->pCursor; res = 0; assert( pCrsr!=0 ); rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; | < | 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 | assert( pC!=0 ); pCrsr = pC->pCursor; res = 0; assert( pCrsr!=0 ); rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; #ifdef SQLITE_DEBUG pC->seekOp = OP_Last; #endif if( pOp->p2>0 ){ VdbeBranchTaken(res!=0,2); if( res ) pc = pOp->p2 - 1; |
︙ | ︙ | |||
4508 4509 4510 4511 4512 4513 4514 | rc = sqlite3VdbeSorterRewind(pC, &res); }else{ pCrsr = pC->pCursor; assert( pCrsr ); rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; | < | 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 | rc = sqlite3VdbeSorterRewind(pC, &res); }else{ pCrsr = pC->pCursor; assert( pCrsr ); rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } pC->nullRow = (u8)res; assert( pOp->p2>0 && pOp->p2<p->nOp ); VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2 - 1; } |
︙ | ︙ | |||
4634 4635 4636 4637 4638 4639 4640 | p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif }else{ pC->nullRow = 1; } | < | 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 | p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif }else{ pC->nullRow = 1; } goto check_for_interrupt; } /* Opcode: IdxInsert P1 P2 P3 * P5 ** Synopsis: key=r[P2] ** ** Register P2 holds an SQL index key made using the |
︙ | ︙ | |||
4750 4751 4752 4753 4754 4755 4756 | assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pCrsr = pC->pCursor; assert( pCrsr!=0 ); pOut->flags = MEM_Null; | > > > > > > > | | | < | 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 | assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pCrsr = pC->pCursor; assert( pCrsr!=0 ); pOut->flags = MEM_Null; assert( pC->isTable==0 ); assert( pC->deferredMoveto==0 ); /* sqlite3VbeCursorRestore() can only fail if the record has been deleted ** out from under the cursor. That will never happend for an IdxRowid ** opcode, hence the NEVER() arround the check of the return value. */ rc = sqlite3VdbeCursorRestore(pC); if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; if( !pC->nullRow ){ rowid = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pOut->u.i = rowid; |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
69 70 71 72 73 74 75 | i16 nField; /* Number of fields in the header */ u16 nHdrParsed; /* Number of header fields parsed so far */ #ifdef SQLITE_DEBUG u8 seekOp; /* Most recent seek operation on this cursor */ #endif i8 iDb; /* Index of cursor database in db->aDb[] (or -1) */ u8 nullRow; /* True if pointing to a row with no data */ | < < > | 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | i16 nField; /* Number of fields in the header */ u16 nHdrParsed; /* Number of header fields parsed so far */ #ifdef SQLITE_DEBUG u8 seekOp; /* Most recent seek operation on this cursor */ #endif i8 iDb; /* Index of cursor database in db->aDb[] (or -1) */ u8 nullRow; /* True if pointing to a row with no data */ u8 deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */ Bool isEphemeral:1; /* True for an ephemeral table */ Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */ Bool isTable:1; /* True if a table requiring integer keys */ Bool isOrdered:1; /* True if the underlying table is BTREE_UNORDERED */ Pgno pgnoRoot; /* Root page of the open btree cursor */ sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */ i64 seqCount; /* Sequence counter */ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ VdbeSorter *pSorter; /* Sorter object for OP_SorterOpen cursors */ /* Cached information about the header for the data record that the ** cursor is currently pointing to. Only valid if cacheStatus matches ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that ** the cache is out of date. ** ** aRow might point to (ephemeral) data for the current row, or it might ** be NULL. */ u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */ u32 payloadSize; /* Total number of bytes in the record */ u32 szRow; /* Byte available in aRow */ u32 iHdrOffset; /* Offset to next unparsed byte of the header */ const u8 *aRow; /* Data for the current row, if all on one page */ u32 *aOffset; /* Pointer to aType[nField] */ u32 aType[1]; /* Type values for all entries in the record */ /* 2*nField extra array elements allocated for aType[], beyond the one ** static element declared in the structure. nField total array slots for ** aType[] and nField+1 array slots for aOffset[] */ }; typedef struct VdbeCursor VdbeCursor; |
︙ | ︙ | |||
172 173 174 175 176 177 178 | u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ int n; /* Number of characters in string value, excluding '\0' */ char *z; /* String or BLOB value */ /* ShallowCopy only needs to copy the information above */ char *zMalloc; /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */ int szMalloc; /* Size of the zMalloc allocation */ | | | 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ int n; /* Number of characters in string value, excluding '\0' */ char *z; /* String or BLOB value */ /* ShallowCopy only needs to copy the information above */ char *zMalloc; /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */ int szMalloc; /* Size of the zMalloc allocation */ u32 uTemp; /* Transient storage for serial_type in OP_MakeRecord */ sqlite3 *db; /* The associated database connection */ void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */ #ifdef SQLITE_DEBUG Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */ void *pFiller; /* So that sizeof(Mem) is a multiple of 8 */ #endif }; |
︙ | ︙ | |||
380 381 382 383 384 385 386 387 388 389 390 391 392 393 | /* ** Function prototypes */ void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*); void sqliteVdbePopStack(Vdbe*,int); int sqlite3VdbeCursorMoveto(VdbeCursor*); #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) void sqlite3VdbePrintOp(FILE*, int, Op*); #endif u32 sqlite3VdbeSerialTypeLen(u32); u32 sqlite3VdbeSerialType(Mem*, int); u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32); u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); | > | 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 | /* ** Function prototypes */ void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*); void sqliteVdbePopStack(Vdbe*,int); int sqlite3VdbeCursorMoveto(VdbeCursor*); int sqlite3VdbeCursorRestore(VdbeCursor*); #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) void sqlite3VdbePrintOp(FILE*, int, Op*); #endif u32 sqlite3VdbeSerialTypeLen(u32); u32 sqlite3VdbeSerialType(Mem*, int); u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32); u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1743 1744 1745 1746 1747 1748 1749 | sqlite3BtreeClose(pCx->pBt); /* The pCx->pCursor will be close automatically, if it exists, by ** the call above. */ }else if( pCx->pCursor ){ sqlite3BtreeCloseCursor(pCx->pCursor); } #ifndef SQLITE_OMIT_VIRTUALTABLE | | | 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 | sqlite3BtreeClose(pCx->pBt); /* The pCx->pCursor will be close automatically, if it exists, by ** the call above. */ }else if( pCx->pCursor ){ sqlite3BtreeCloseCursor(pCx->pCursor); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( pCx->pVtabCursor ){ sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; const sqlite3_module *pModule = pVtabCursor->pVtab->pModule; p->inVtabMethod = 1; pModule->xClose(pVtabCursor); p->inVtabMethod = 0; } #endif |
︙ | ︙ | |||
1786 1787 1788 1789 1790 1791 1792 | ** open cursors. */ static void closeAllCursors(Vdbe *p){ if( p->pFrame ){ VdbeFrame *pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); sqlite3VdbeFrameRestore(pFrame); | < | | > > | 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 | ** open cursors. */ static void closeAllCursors(Vdbe *p){ if( p->pFrame ){ VdbeFrame *pFrame; for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); sqlite3VdbeFrameRestore(pFrame); p->pFrame = 0; p->nFrame = 0; } assert( p->nFrame==0 ); if( p->apCsr ){ int i; for(i=0; i<p->nCursor; i++){ VdbeCursor *pC = p->apCsr[i]; if( pC ){ sqlite3VdbeFreeCursor(p, pC); |
︙ | ︙ | |||
1810 1811 1812 1813 1814 1815 1816 | while( p->pDelFrame ){ VdbeFrame *pDel = p->pDelFrame; p->pDelFrame = pDel->pParent; sqlite3VdbeFrameDelete(pDel); } /* Delete any auxdata allocations made by the VM */ | | | 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 | while( p->pDelFrame ){ VdbeFrame *pDel = p->pDelFrame; p->pDelFrame = pDel->pParent; sqlite3VdbeFrameDelete(pDel); } /* Delete any auxdata allocations made by the VM */ if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0); assert( p->pAuxData==0 ); } /* ** Clean up the VM after a single run. */ static void Cleanup(Vdbe *p){ |
︙ | ︙ | |||
2716 2717 2718 2719 2720 2721 2722 | #ifdef SQLITE_TEST extern int sqlite3_search_count; #endif assert( p->deferredMoveto ); assert( p->isTable ); rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); if( rc ) return rc; | < < | 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 | #ifdef SQLITE_TEST extern int sqlite3_search_count; #endif assert( p->deferredMoveto ); assert( p->isTable ); rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); if( rc ) return rc; if( res!=0 ) return SQLITE_CORRUPT_BKPT; #ifdef SQLITE_TEST sqlite3_search_count++; #endif p->deferredMoveto = 0; p->cacheStatus = CACHE_STALE; return SQLITE_OK; } |
︙ | ︙ | |||
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 | assert( p->pCursor!=0 ); assert( sqlite3BtreeCursorHasMoved(p->pCursor) ); rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow); p->cacheStatus = CACHE_STALE; if( isDifferentRow ) p->nullRow = 1; return rc; } /* ** Make sure the cursor p is ready to read or write the row to which it ** was last positioned. Return an error code if an OOM fault or I/O error ** prevents us from positioning the cursor to its correct position. ** ** If a MoveTo operation is pending on the given cursor, then do that ** MoveTo now. If no move is pending, check to see if the row has been ** deleted out from under the cursor and if it has, mark the row as ** a NULL row. ** ** If the cursor is already pointing to the correct row and that row has ** not been deleted out from under the cursor, then this routine is a no-op. */ int sqlite3VdbeCursorMoveto(VdbeCursor *p){ if( p->deferredMoveto ){ return handleDeferredMoveto(p); } | > > > > > > > > > > > | | 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 | assert( p->pCursor!=0 ); assert( sqlite3BtreeCursorHasMoved(p->pCursor) ); rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow); p->cacheStatus = CACHE_STALE; if( isDifferentRow ) p->nullRow = 1; return rc; } /* ** Check to ensure that the cursor is valid. Restore the cursor ** if need be. Return any I/O error from the restore operation. */ int sqlite3VdbeCursorRestore(VdbeCursor *p){ if( sqlite3BtreeCursorHasMoved(p->pCursor) ){ return handleMovedCursor(p); } return SQLITE_OK; } /* ** Make sure the cursor p is ready to read or write the row to which it ** was last positioned. Return an error code if an OOM fault or I/O error ** prevents us from positioning the cursor to its correct position. ** ** If a MoveTo operation is pending on the given cursor, then do that ** MoveTo now. If no move is pending, check to see if the row has been ** deleted out from under the cursor and if it has, mark the row as ** a NULL row. ** ** If the cursor is already pointing to the correct row and that row has ** not been deleted out from under the cursor, then this routine is a no-op. */ int sqlite3VdbeCursorMoveto(VdbeCursor *p){ if( p->deferredMoveto ){ return handleDeferredMoveto(p); } if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){ return handleMovedCursor(p); } return SQLITE_OK; } /* ** The following functions: |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
2205 2206 2207 2208 2209 2210 2211 | whereKeyStats(pParse, p, pRec, 0, a); iLower = a[0]; iUpper = a[0] + a[1]; } assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); | | | | 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 | whereKeyStats(pParse, p, pRec, 0, a); iLower = a[0]; iUpper = a[0] + a[1]; } assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); assert( p->aSortOrder!=0 ); if( p->aSortOrder[nEq] ){ /* The roles of pLower and pUpper are swapped for a DESC index */ SWAP(WhereTerm*, pLower, pUpper); } /* If possible, improve on the iLower estimate using ($P:$L). */ if( pLower ){ int bOk; /* True if value is extracted from pExpr */ |
︙ | ︙ | |||
2733 2734 2735 2736 2737 2738 2739 | sqlite3StrAccumAppendAll(pStr, zColumn); sqlite3StrAccumAppend(pStr, zOp, 1); sqlite3StrAccumAppend(pStr, "?", 1); } /* ** Argument pLevel describes a strategy for scanning table pTab. This | | | < < < < < | < | < < < < | | | < | < | | | < | 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 | sqlite3StrAccumAppendAll(pStr, zColumn); sqlite3StrAccumAppend(pStr, zOp, 1); sqlite3StrAccumAppend(pStr, "?", 1); } /* ** Argument pLevel describes a strategy for scanning table pTab. This ** function appends text to pStr that describes the subset of table ** rows scanned by the strategy in the form of an SQL expression. ** ** For example, if the query: ** ** SELECT * FROM t1 WHERE a=1 AND b>2; ** ** is run and there is an index on (a, b), then this function returns a ** string similar to: ** ** "a=? AND b>?" */ static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ Index *pIndex = pLoop->u.btree.pIndex; u16 nEq = pLoop->u.btree.nEq; u16 nSkip = pLoop->u.btree.nSkip; int i, j; Column *aCol = pTab->aCol; i16 *aiColumn = pIndex->aiColumn; if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; sqlite3StrAccumAppend(pStr, " (", 2); for(i=0; i<nEq; i++){ char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; if( i>=nSkip ){ explainAppendTerm(pStr, i, z, "="); }else{ if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); sqlite3XPrintf(pStr, 0, "ANY(%s)", z); } } j = i; if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; explainAppendTerm(pStr, i++, z, ">"); } if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; explainAppendTerm(pStr, i, z, "<"); } sqlite3StrAccumAppend(pStr, ")", 1); } /* ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single ** record is added to the output to describe the table scan strategy in ** pLevel. |
︙ | ︙ | |||
2811 2812 2813 2814 2815 2816 2817 | #ifndef SQLITE_DEBUG if( pParse->explain==2 ) #endif { struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ | < > > > > > | | | | | < < | | | > > > | > | | | | | > > > < | | | | > | | > > | > > > > > > > | | 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 | #ifndef SQLITE_DEBUG if( pParse->explain==2 ) #endif { struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ int iId = pParse->iSelectId; /* Select id (left-most output column) */ int isSearch; /* True for a SEARCH. False for SCAN. */ WhereLoop *pLoop; /* The controlling WhereLoop object */ u32 flags; /* Flags that describe this loop */ char *zMsg; /* Text to add to EQP output */ StrAccum str; /* EQP output string */ char zBuf[100]; /* Initial space for EQP output string */ pLoop = pLevel->pWLoop; flags = pLoop->wsFlags; if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); str.db = db; sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); if( pItem->pSelect ){ sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); }else{ sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); } if( pItem->zAlias ){ sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); } if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ const char *zFmt = 0; Index *pIdx; assert( pLoop->u.btree.pIndex!=0 ); pIdx = pLoop->u.btree.pIndex; assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ if( isSearch ){ zFmt = "PRIMARY KEY"; } }else if( flags & WHERE_AUTO_INDEX ){ zFmt = "AUTOMATIC COVERING INDEX"; }else if( flags & WHERE_IDX_ONLY ){ zFmt = "COVERING INDEX %s"; }else{ zFmt = "INDEX %s"; } if( zFmt ){ sqlite3StrAccumAppend(&str, " USING ", 7); sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); explainIndexRange(&str, pLoop, pItem->pTab); } }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ const char *zRange; if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ zRange = "(rowid=?)"; }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ zRange = "(rowid>? AND rowid<?)"; }else if( flags&WHERE_BTM_LIMIT ){ zRange = "(rowid>?)"; }else{ assert( flags&WHERE_TOP_LIMIT); zRange = "(rowid<?)"; } sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); sqlite3StrAccumAppendAll(&str, zRange); } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); } #endif #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS if( pLoop->nOut>=10 ){ sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); }else{ sqlite3StrAccumAppend(&str, " (~1 row)", 9); } #endif zMsg = sqlite3StrAccumFinish(&str); sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); } } #else # define explainOneScan(u,v,w,x,y,z) #endif /* SQLITE_OMIT_EXPLAIN */ |
︙ | ︙ | |||
5351 5352 5353 5354 5355 5356 5357 | pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); if( !pColl ) pColl = db->pDfltColl; if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; } isMatch = 1; break; } | | | 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 | pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); if( !pColl ) pColl = db->pDfltColl; if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; } isMatch = 1; break; } if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ /* Make sure the sort order is compatible in an ORDER BY clause. ** Sort order is irrelevant for a GROUP BY clause. */ if( revSet ){ if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; }else{ rev = revIdx ^ pOrderBy->a[i].sortOrder; if( rev ) *pRevMask |= MASKBIT(iLoop); |
︙ | ︙ | |||
5816 5817 5818 5819 5820 5821 5822 | pWInfo->nOBSat = pFrom->isOrdered; if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; pWInfo->revMask = pFrom->revLoop; } if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr ){ | | | > | > > | 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 | pWInfo->nOBSat = pFrom->isOrdered; if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; pWInfo->revMask = pFrom->revLoop; } if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr ){ Bitmask revMask = 0; int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask ); assert( pWInfo->sorted==0 ); if( nOrder==pWInfo->pOrderBy->nExpr ){ pWInfo->sorted = 1; pWInfo->revMask = revMask; } } } pWInfo->nRowOut = pFrom->nRow; /* Free temporary memory and return success */ |
︙ | ︙ |
Changes to test/fts3expr4.test.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ifcapable !fts3||!icu { finish_test return } set sqlite_fts3_enable_parentheses 1 | | | | > > > > | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ifcapable !fts3||!icu { finish_test return } set sqlite_fts3_enable_parentheses 1 proc test_fts3expr {tokenizer expr} { db one {SELECT fts3_exprtest($tokenizer, $expr, 'a', 'b', 'c')} } proc do_icu_expr_test {tn expr res} { uplevel [list do_test $tn [list test_fts3expr icu $expr] [list {*}$res]] } proc do_simple_expr_test {tn expr res} { uplevel [list do_test $tn [list test_fts3expr simple $expr] [list {*}$res]] } #------------------------------------------------------------------------- # do_icu_expr_test 1.1 "abcd" {PHRASE 3 0 abcd} do_icu_expr_test 1.2 " tag " {PHRASE 3 0 tag} do_icu_expr_test 1.3 {"x y z"} {PHRASE 3 0 x y z} |
︙ | ︙ | |||
48 49 50 51 52 53 54 55 56 57 | do_icu_expr_test 1.8 {d:word} {PHRASE 3 0 d:word} set sqlite_fts3_enable_parentheses 0 do_icu_expr_test 2.1 { f (e NEAR/2 a) } {AND {AND {AND {PHRASE 3 0 f} {PHRASE 3 0 (}} {NEAR/2 {PHRASE 3 0 e} {PHRASE 3 0 a}}} {PHRASE 3 0 )}} finish_test | > > > > > > > > > > > > > > > > > > > > > | 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | do_icu_expr_test 1.8 {d:word} {PHRASE 3 0 d:word} set sqlite_fts3_enable_parentheses 0 do_icu_expr_test 2.1 { f (e NEAR/2 a) } {AND {AND {AND {PHRASE 3 0 f} {PHRASE 3 0 (}} {NEAR/2 {PHRASE 3 0 e} {PHRASE 3 0 a}}} {PHRASE 3 0 )}} #------------------------------------------------------------------------- # do_simple_expr_test 3.1 {*lOl* *h4h*} { AND {PHRASE 3 0 lol+} {PHRASE 3 0 h4h+} } do_icu_expr_test 3.2 {*lOl* *h4h*} { AND {AND {AND {PHRASE 3 0 *} {PHRASE 3 0 lol+}} {PHRASE 3 0 *}} {PHRASE 3 0 h4h+} } do_simple_expr_test 3.3 { * } { } do_simple_expr_test 3.4 { *a } { PHRASE 3 0 a } do_simple_expr_test 3.5 { a*b } { AND {PHRASE 3 0 a+} {PHRASE 3 0 b} } do_simple_expr_test 3.6 { *a*b } { AND {PHRASE 3 0 a+} {PHRASE 3 0 b} } do_simple_expr_test 3.7 { *"abc" } { PHRASE 3 0 abc } do_simple_expr_test 3.8 { "abc"* } { PHRASE 3 0 abc } do_simple_expr_test 3.8 { "ab*c" } { PHRASE 3 0 ab+ c } do_icu_expr_test 3.9 { "ab*c" } { PHRASE 3 0 ab+ * c } do_icu_expr_test 3.10 { ab*c } { AND {PHRASE 3 0 ab+} {PHRASE 3 0 c}} finish_test |
Changes to test/fts3matchinfo.test.
︙ | ︙ | |||
428 429 430 431 432 433 434 435 436 | do_execsql_test 9.1 { CREATE VIRTUAL TABLE ft2 USING fts4; INSERT INTO ft2 VALUES('a b c d e'); INSERT INTO ft2 VALUES('f a b c d'); SELECT snippet(ft2, '[', ']', '', -1, 1) FROM ft2 WHERE ft2 MATCH 'c'; } {{[c]} {[c]}} finish_test | > > > > > > > > > > > > > > > > > | 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | do_execsql_test 9.1 { CREATE VIRTUAL TABLE ft2 USING fts4; INSERT INTO ft2 VALUES('a b c d e'); INSERT INTO ft2 VALUES('f a b c d'); SELECT snippet(ft2, '[', ']', '', -1, 1) FROM ft2 WHERE ft2 MATCH 'c'; } {{[c]} {[c]}} #--------------------------------------------------------------------------- # Test for a memory leak # do_execsql_test 10.1 { DROP TABLE t10; CREATE VIRTUAL TABLE t10 USING fts4(idx, value); INSERT INTO t10 values (1, 'one'),(2, 'two'),(3, 'three'); SELECT docId, t10.* FROM t10 JOIN (SELECT 1 AS idx UNION SELECT 2 UNION SELECT 3) AS x WHERE t10 MATCH x.idx AND matchinfo(t10) not null GROUP BY docId ORDER BY 1; } {1 1 one 2 2 two 3 3 three} finish_test |
Changes to test/index5.test.
︙ | ︙ | |||
12 13 14 15 16 17 18 19 20 21 22 23 24 25 | set testdir [file dirname $argv0] source $testdir/tester.tcl set ::testprefix index5 do_test 1.1 { execsql { PRAGMA page_size = 1024; CREATE TABLE t1(x); BEGIN; } for {set i 0} {$i < 100000} {incr i} { execsql { INSERT INTO t1 VALUES(randstr(100,100)) } | > > > | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | set testdir [file dirname $argv0] source $testdir/tester.tcl set ::testprefix index5 do_test 1.1 { if {[permutation]=="memsubsys1"} { execsql { PRAGMA auto_vacuum = 0; } } execsql { PRAGMA page_size = 1024; CREATE TABLE t1(x); BEGIN; } for {set i 0} {$i < 100000} {incr i} { execsql { INSERT INTO t1 VALUES(randstr(100,100)) } |
︙ | ︙ | |||
34 35 36 37 38 39 40 | db close testvfs tvfs tvfs filter xWrite tvfs script write_cb proc write_cb {xCall file handle iOfst args} { if {[file tail $file]=="test.db"} { | | | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | db close testvfs tvfs tvfs filter xWrite tvfs script write_cb proc write_cb {xCall file handle iOfst args} { if {[file tail $file]=="test.db"} { lappend ::write_list [expr $iOfst/1024 + 1] } } do_test 1.2 { sqlite3 db test.db -vfs tvfs set ::write_list [list] execsql { CREATE INDEX i1 ON t1(x) } |
︙ | ︙ |
Changes to test/releasetest.tcl.
︙ | ︙ | |||
9 10 11 12 13 14 15 16 17 18 19 20 21 22 | This Tcl script is used to test the various configurations required before releasing a new version. Supported command line options (all optional) are: -makefile PATH-TO-MAKEFILE (default "releasetest.mk") -platform PLATFORM (see below) -quick BOOLEAN (default "0") The default value for -makefile is "./releasetest.mk". The script determines the default value for -platform using the $tcl_platform(os) and $tcl_platform(machine) variables. Supported platforms are "Linux-x86", "Linux-x86_64" and "Darwin-i386". | > | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | This Tcl script is used to test the various configurations required before releasing a new version. Supported command line options (all optional) are: -makefile PATH-TO-MAKEFILE (default "releasetest.mk") -platform PLATFORM (see below) -quick BOOLEAN (default "0") -config CONFIGNAME (Run only CONFIGNAME) The default value for -makefile is "./releasetest.mk". The script determines the default value for -platform using the $tcl_platform(os) and $tcl_platform(machine) variables. Supported platforms are "Linux-x86", "Linux-x86_64" and "Darwin-i386". |
︙ | ︙ | |||
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | # Currently the only option supported is "-makefile", default # "releasetest.mk". Set the ::MAKEFILE variable to the value of this # option. # proc process_options {argv} { set ::MAKEFILE releasetest.mk ;# Default value set ::QUICK 0 ;# Default value set platform $::tcl_platform(os)-$::tcl_platform(machine) for {set i 0} {$i < [llength $argv]} {incr i} { switch -- [lindex $argv $i] { -makefile { incr i set ::MAKEFILE [lindex $argv $i] } -platform { incr i set platform [lindex $argv $i] } -quick { incr i set ::QUICK [lindex $argv $i] } default { puts stderr "" puts stderr [string trim $::USAGE_MESSAGE] exit -1 } } | > > > > > > | 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | # Currently the only option supported is "-makefile", default # "releasetest.mk". Set the ::MAKEFILE variable to the value of this # option. # proc process_options {argv} { set ::MAKEFILE releasetest.mk ;# Default value set ::QUICK 0 ;# Default value set config {} set platform $::tcl_platform(os)-$::tcl_platform(machine) for {set i 0} {$i < [llength $argv]} {incr i} { switch -- [lindex $argv $i] { -makefile { incr i set ::MAKEFILE [lindex $argv $i] } -platform { incr i set platform [lindex $argv $i] } -quick { incr i set ::QUICK [lindex $argv $i] } -config { incr i set config [lindex $argv $i] } default { puts stderr "" puts stderr [string trim $::USAGE_MESSAGE] exit -1 } } |
︙ | ︙ | |||
329 330 331 332 333 334 335 | lappend print "\"$p\"" } lset print end "or [lindex $print end]" puts "[join $print {, }]." exit } | > > > > | > | 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | lappend print "\"$p\"" } lset print end "or [lindex $print end]" puts "[join $print {, }]." exit } if {$config!=""} { if {[llength $config]==1} {lappend config fulltest} set ::CONFIGLIST $config } else { set ::CONFIGLIST $::Platforms($platform) } puts "Running the following configurations for $platform:" puts " [string trim $::CONFIGLIST]" } # Main routine. # proc main {argv} { |
︙ | ︙ |
Changes to test/speedtest1.c.
︙ | ︙ | |||
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 | nElem, nElem ); speedtest1_run(); speedtest1_end_test(); } /* Generate two numbers between 1 and mx. The first number is less than ** the second. Usually the numbers are near each other but can sometimes ** be far apart. */ static void twoCoords( int p1, int p2, /* Parameters adjusting sizes */ unsigned mx, /* Range of 1..mx */ unsigned *pX0, unsigned *pX1 /* OUT: write results here */ ){ unsigned d, x0, x1, span; span = mx/100 + 1; if( speedtest1_random()%3==0 ) span *= p1; if( speedtest1_random()%p2==0 ) span = mx/2; d = speedtest1_random()%span + 1; x0 = speedtest1_random()%(mx-d) + 1; x1 = x0 + d; *pX0 = x0; *pX1 = x1; } /* The following routine is an R-Tree geometry callback. It returns ** true if the object overlaps a slice on the Y coordinate between the ** two values given as arguments. In other words ** ** SELECT count(*) FROM rt1 WHERE id MATCH xslice(10,20); ** ** Is the same as saying: ** ** SELECT count(*) FROM rt1 WHERE y1>=10 AND y0<=20; */ static int xsliceGeometryCallback( sqlite3_rtree_geometry *p, int nCoord, double *aCoord, int *pRes ){ *pRes = aCoord[3]>=p->aParam[0] && aCoord[2]<=p->aParam[1]; return SQLITE_OK; } /* ** A testset for the R-Tree virtual table */ void testset_rtree(int p1, int p2){ unsigned i, n; unsigned mxCoord; unsigned x0, x1, y0, y1, z0, z1; | > > > > > | 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 | nElem, nElem ); speedtest1_run(); speedtest1_end_test(); } #ifdef SQLITE_ENABLE_RTREE /* Generate two numbers between 1 and mx. The first number is less than ** the second. Usually the numbers are near each other but can sometimes ** be far apart. */ static void twoCoords( int p1, int p2, /* Parameters adjusting sizes */ unsigned mx, /* Range of 1..mx */ unsigned *pX0, unsigned *pX1 /* OUT: write results here */ ){ unsigned d, x0, x1, span; span = mx/100 + 1; if( speedtest1_random()%3==0 ) span *= p1; if( speedtest1_random()%p2==0 ) span = mx/2; d = speedtest1_random()%span + 1; x0 = speedtest1_random()%(mx-d) + 1; x1 = x0 + d; *pX0 = x0; *pX1 = x1; } #endif #ifdef SQLITE_ENABLE_RTREE /* The following routine is an R-Tree geometry callback. It returns ** true if the object overlaps a slice on the Y coordinate between the ** two values given as arguments. In other words ** ** SELECT count(*) FROM rt1 WHERE id MATCH xslice(10,20); ** ** Is the same as saying: ** ** SELECT count(*) FROM rt1 WHERE y1>=10 AND y0<=20; */ static int xsliceGeometryCallback( sqlite3_rtree_geometry *p, int nCoord, double *aCoord, int *pRes ){ *pRes = aCoord[3]>=p->aParam[0] && aCoord[2]<=p->aParam[1]; return SQLITE_OK; } #endif /* SQLITE_ENABLE_RTREE */ #ifdef SQLITE_ENABLE_RTREE /* ** A testset for the R-Tree virtual table */ void testset_rtree(int p1, int p2){ unsigned i, n; unsigned mxCoord; unsigned x0, x1, y0, y1, z0, z1; |
︙ | ︙ | |||
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 | speedtest1_prepare("SELECT * FROM rt1 WHERE id=?1"); for(i=1; i<=n; i++){ sqlite3_bind_int(g.pStmt, 1, i); speedtest1_run(); } speedtest1_end_test(); } /* ** A testset used for debugging speedtest1 itself. */ void testset_debug1(void){ unsigned i, n; unsigned x1, x2; | > | 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 | speedtest1_prepare("SELECT * FROM rt1 WHERE id=?1"); for(i=1; i<=n; i++){ sqlite3_bind_int(g.pStmt, 1, i); speedtest1_run(); } speedtest1_end_test(); } #endif /* SQLITE_ENABLE_RTREE */ /* ** A testset used for debugging speedtest1 itself. */ void testset_debug1(void){ unsigned i, n; unsigned x1, x2; |
︙ | ︙ | |||
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 | if( strcmp(zTSet,"main")==0 ){ testset_main(); }else if( strcmp(zTSet,"debug1")==0 ){ testset_debug1(); }else if( strcmp(zTSet,"cte")==0 ){ testset_cte(); }else if( strcmp(zTSet,"rtree")==0 ){ testset_rtree(6, 147); }else{ fatal_error("unknown testset: \"%s\"\nChoices: main debug1 cte rtree\n", zTSet); } speedtest1_final(); /* Database connection statistics printed after both prepared statements | > > > > > | 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 | if( strcmp(zTSet,"main")==0 ){ testset_main(); }else if( strcmp(zTSet,"debug1")==0 ){ testset_debug1(); }else if( strcmp(zTSet,"cte")==0 ){ testset_cte(); }else if( strcmp(zTSet,"rtree")==0 ){ #ifdef SQLITE_ENABLE_RTREE testset_rtree(6, 147); #else fatal_error("compile with -DSQLITE_ENABLE_RTREE to enable " "the R-Tree tests\n"); #endif }else{ fatal_error("unknown testset: \"%s\"\nChoices: main debug1 cte rtree\n", zTSet); } speedtest1_final(); /* Database connection statistics printed after both prepared statements |
︙ | ︙ |
Added test/tkt-ba7cbfaedc.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | # 2014-10-11 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #************************************************************************* # # Test that ticket [ba7cbfaedc] has been fixed. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix tkt-ba7cbfaedc do_execsql_test 1 { CREATE TABLE t1 (x, y); INSERT INTO t1 VALUES (3, 'a'); INSERT INTO t1 VALUES (1, 'a'); INSERT INTO t1 VALUES (2, 'b'); INSERT INTO t1 VALUES (2, 'a'); INSERT INTO t1 VALUES (3, 'b'); INSERT INTO t1 VALUES (1, 'b'); } do_execsql_test 1.1 { CREATE INDEX i1 ON t1(x, y); } foreach {n idx} { 1 { CREATE INDEX i1 ON t1(x, y) } 2 { CREATE INDEX i1 ON t1(x DESC, y) } 3 { CREATE INDEX i1 ON t1(x, y DESC) } 4 { CREATE INDEX i1 ON t1(x DESC, y DESC) } } { catchsql { DROP INDEX i1 } execsql $idx foreach {tn q res} { 1 "GROUP BY x, y ORDER BY x, y" {1 a 1 b 2 a 2 b 3 a 3 b} 2 "GROUP BY x, y ORDER BY x DESC, y" {3 a 3 b 2 a 2 b 1 a 1 b} 3 "GROUP BY x, y ORDER BY x, y DESC" {1 b 1 a 2 b 2 a 3 b 3 a} 4 "GROUP BY x, y ORDER BY x DESC, y DESC" {3 b 3 a 2 b 2 a 1 b 1 a} } { do_execsql_test 1.$n.$tn "SELECT * FROM t1 $q" $res } } do_execsql_test 2.0 { drop table if exists t1; create table t1(id int); insert into t1(id) values(1),(2),(3),(4),(5); create index t1_idx_id on t1(id asc); select * from t1 group by id order by id; select * from t1 group by id order by id asc; select * from t1 group by id order by id desc; } { 1 2 3 4 5 1 2 3 4 5 5 4 3 2 1 } finish_test |