SQLite

Check-in [83d6416a86]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge latest trunk changes into this branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | exp-window-functions
Files: files | file ages | folders
SHA3-256: 83d6416a868fac81a78c9507185a48d00920e4322276245e285946f760915f4a
User & Date: dan 2018-06-04 08:28:18.148
Context
2018-06-04
18:55
Add implementation of window function ntile(). (check-in: 3f093f608c user: dan tags: exp-window-functions)
08:28
Merge latest trunk changes into this branch. (check-in: 83d6416a86 user: dan tags: exp-window-functions)
08:22
Add support for window function cume_dist(). Improve tests for percent_rank(). (check-in: 76543f7dd3 user: dan tags: exp-window-functions)
2018-06-02
19:14
Avoid using a misaligned pointer. (check-in: 1ecb3aa13d user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to autoconf/Makefile.am.
10
11
12
13
14
15
16
17
18
19
20
21
EXTRA_sqlite3_SOURCES = sqlite3.c
sqlite3_LDADD = @EXTRA_SHELL_OBJ@ @READLINE_LIBS@
sqlite3_DEPENDENCIES = @EXTRA_SHELL_OBJ@
sqlite3_CFLAGS = $(AM_CFLAGS) -DSQLITE_ENABLE_EXPLAIN_COMMENTS -DSQLITE_ENABLE_DBPAGE_VTAB -DSQLITE_ENABLE_STMTVTAB -DSQLITE_ENABLE_DBSTAT_VTAB $(SHELL_CFLAGS)

include_HEADERS = sqlite3.h sqlite3ext.h

EXTRA_DIST = sqlite3.1 tea Makefile.msc sqlite3.rc README.txt Replace.cs
pkgconfigdir = ${libdir}/pkgconfig
pkgconfig_DATA = sqlite3.pc

man_MANS = sqlite3.1







|




10
11
12
13
14
15
16
17
18
19
20
21
EXTRA_sqlite3_SOURCES = sqlite3.c
sqlite3_LDADD = @EXTRA_SHELL_OBJ@ @READLINE_LIBS@
sqlite3_DEPENDENCIES = @EXTRA_SHELL_OBJ@
sqlite3_CFLAGS = $(AM_CFLAGS) -DSQLITE_ENABLE_EXPLAIN_COMMENTS -DSQLITE_ENABLE_DBPAGE_VTAB -DSQLITE_ENABLE_STMTVTAB -DSQLITE_ENABLE_DBSTAT_VTAB $(SHELL_CFLAGS)

include_HEADERS = sqlite3.h sqlite3ext.h

EXTRA_DIST = sqlite3.1 tea Makefile.msc sqlite3.rc README.txt Replace.cs Makefile.fallback
pkgconfigdir = ${libdir}/pkgconfig
pkgconfig_DATA = sqlite3.pc

man_MANS = sqlite3.1
Added autoconf/Makefile.fallback.






































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/make
#
# If the configure script does not work, then this Makefile is available
# as a backup.  Manually configure the variables below.
#
# Note:  This makefile works out-of-the-box on MacOS 10.2 (Jaguar)
#
CC = gcc
CFLAGS = -O0 -I.
LIBS = -lz
COPTS += -D_BSD_SOURCE
COPTS += -DSQLITE_ENABLE_LOCKING_STYLE=0
COPTS += -DSQLITE_THREADSAFE=0
COPTS += -DSQLITE_OMIT_LOAD_EXTENSION
COPTS += -DSQLITE_WITHOUT_ZONEMALLOC
COPTS += -DSQLITE_ENABLE_RTREE

sqlite3:	shell.c sqlite3.c
	$(CC) $(CFLAGS) $(COPTS) -o sqlite3 shell.c sqlite3.c $(LIBS)
Changes to ext/expert/expert1.test.
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
  CREATE TRIGGER t9t AFTER INSERT ON t9 BEGIN
    UPDATE t10 SET a=new.a WHERE b = new.b;
  END;
} {
  INSERT INTO t9 VALUES(?, ?, ?);
} {
  CREATE INDEX t10_idx_00000062 ON t10(b); 
  -- TRIGGER t9t
  SEARCH TABLE t10 USING INDEX t10_idx_00000062 (b=?)
}

do_setup_rec_test $tn.15 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(c, d);








<







282
283
284
285
286
287
288

289
290
291
292
293
294
295
  CREATE TRIGGER t9t AFTER INSERT ON t9 BEGIN
    UPDATE t10 SET a=new.a WHERE b = new.b;
  END;
} {
  INSERT INTO t9 VALUES(?, ?, ?);
} {
  CREATE INDEX t10_idx_00000062 ON t10(b); 

  SEARCH TABLE t10 USING INDEX t10_idx_00000062 (b=?)
}

do_setup_rec_test $tn.15 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(c, d);

Changes to ext/expert/sqlite3expert.c.
1148
1149
1150
1151
1152
1153
1154

1155

1156
1157
1158
1159
1160
1161
1162
            idxHashAdd(&rc, &hIdx, zSql, 0);
            if( rc ) goto find_indexes_out;
          }
          break;
        }
      }


      pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%s\n", zDetail);

    }

    for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){
      pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey);
    }

    idxFinalize(&rc, pExplain);







>
|
>







1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
            idxHashAdd(&rc, &hIdx, zSql, 0);
            if( rc ) goto find_indexes_out;
          }
          break;
        }
      }

      if( zDetail[0]!='-' ){
        pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%s\n", zDetail);
      }
    }

    for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){
      pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey);
    }

    idxFinalize(&rc, pExplain);
Changes to ext/misc/csv.c.
201
202
203
204
205
206
207
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
**   +  Input comes from p->in.
**   +  Store results in p->z of length p->n.  Space to hold p->z comes
**      from sqlite3_malloc64().
**   +  Keep track of the line number in p->nLine.
**   +  Store the character that terminates the field in p->cTerm.  Store
**      EOF on end-of-file.
**
** Return "" at EOF.  Return 0 on an OOM error.

*/
static char *csv_read_one_field(CsvReader *p){
  int c;
  p->n = 0;
  c = csv_getc(p);
  if( c==EOF ){
    p->cTerm = EOF;
    return "";
  }
  if( c=='"' ){
    int pc, ppc;
    int startLine = p->nLine;
    pc = ppc = 0;
    while( 1 ){
      c = csv_getc(p);







|
>







|







201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
**   +  Input comes from p->in.
**   +  Store results in p->z of length p->n.  Space to hold p->z comes
**      from sqlite3_malloc64().
**   +  Keep track of the line number in p->nLine.
**   +  Store the character that terminates the field in p->cTerm.  Store
**      EOF on end-of-file.
**
** Return 0 at EOF or on OOM.  On EOF, the p->cTerm character will have
** been set to EOF.
*/
static char *csv_read_one_field(CsvReader *p){
  int c;
  p->n = 0;
  c = csv_getc(p);
  if( c==EOF ){
    p->cTerm = EOF;
    return 0;
  }
  if( c=='"' ){
    int pc, ppc;
    int startLine = p->nLine;
    pc = ppc = 0;
    while( 1 ){
      c = csv_getc(p);
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
  *ppVtab = (sqlite3_vtab*)pNew;
  if( pNew==0 ) goto csvtab_connect_oom;
  memset(pNew, 0, sizeof(*pNew));
  if( nCol>0 ){
    pNew->nCol = nCol;
  }else{
    do{
      const char *z = csv_read_one_field(&sRdr);
      if( z==0 ) goto csvtab_connect_oom;
      pNew->nCol++;
    }while( sRdr.cTerm==',' );
  }
  pNew->zFilename = CSV_FILENAME;  CSV_FILENAME = 0;
  pNew->zData = CSV_DATA;          CSV_DATA = 0;
#ifdef SQLITE_TEST
  pNew->tstFlags = tstFlags;







|
<







541
542
543
544
545
546
547
548

549
550
551
552
553
554
555
  *ppVtab = (sqlite3_vtab*)pNew;
  if( pNew==0 ) goto csvtab_connect_oom;
  memset(pNew, 0, sizeof(*pNew));
  if( nCol>0 ){
    pNew->nCol = nCol;
  }else{
    do{
      csv_read_one_field(&sRdr);

      pNew->nCol++;
    }while( sRdr.cTerm==',' );
  }
  pNew->zFilename = CSV_FILENAME;  CSV_FILENAME = 0;
  pNew->zData = CSV_DATA;          CSV_DATA = 0;
#ifdef SQLITE_TEST
  pNew->tstFlags = tstFlags;
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
  CsvCursor *pCur = (CsvCursor*)cur;
  CsvTable *pTab = (CsvTable*)cur->pVtab;
  int i = 0;
  char *z;
  do{
    z = csv_read_one_field(&pCur->rdr);
    if( z==0 ){
      csv_xfer_error(pTab, &pCur->rdr);
      break;
    }
    if( i<pTab->nCol ){
      if( pCur->aLen[i] < pCur->rdr.n+1 ){
        char *zNew = sqlite3_realloc64(pCur->azVal[i], pCur->rdr.n+1);
        if( zNew==0 ){
          csv_errmsg(&pCur->rdr, "out of memory");







<







659
660
661
662
663
664
665

666
667
668
669
670
671
672
  CsvCursor *pCur = (CsvCursor*)cur;
  CsvTable *pTab = (CsvTable*)cur->pVtab;
  int i = 0;
  char *z;
  do{
    z = csv_read_one_field(&pCur->rdr);
    if( z==0 ){

      break;
    }
    if( i<pTab->nCol ){
      if( pCur->aLen[i] < pCur->rdr.n+1 ){
        char *zNew = sqlite3_realloc64(pCur->azVal[i], pCur->rdr.n+1);
        if( zNew==0 ){
          csv_errmsg(&pCur->rdr, "out of memory");
Changes to src/auth.c.
146
147
148
149
150
151
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  sqlite3 *db = pParse->db;
  Table *pTab = 0;      /* The table being read */
  const char *zCol;     /* Name of the column of the table */
  int iSrc;             /* Index in pTabList->a[] of table being read */
  int iDb;              /* The index of the database the expression refers to */
  int iCol;             /* Index of column in table */


  if( db->xAuth==0 ) return;
  iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
  if( iDb<0 ){
    /* An attempt to read a column out of a subquery or other
    ** temporary table. */
    return;
  }

  assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER );
  if( pExpr->op==TK_TRIGGER ){
    pTab = pParse->pTriggerTab;
  }else{
    assert( pTabList );
    for(iSrc=0; ALWAYS(iSrc<pTabList->nSrc); iSrc++){
      if( pExpr->iTable==pTabList->a[iSrc].iCursor ){
        pTab = pTabList->a[iSrc].pTab;







>








<







146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
  sqlite3 *db = pParse->db;
  Table *pTab = 0;      /* The table being read */
  const char *zCol;     /* Name of the column of the table */
  int iSrc;             /* Index in pTabList->a[] of table being read */
  int iDb;              /* The index of the database the expression refers to */
  int iCol;             /* Index of column in table */

  assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER );
  if( db->xAuth==0 ) return;
  iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
  if( iDb<0 ){
    /* An attempt to read a column out of a subquery or other
    ** temporary table. */
    return;
  }


  if( pExpr->op==TK_TRIGGER ){
    pTab = pParse->pTriggerTab;
  }else{
    assert( pTabList );
    for(iSrc=0; ALWAYS(iSrc<pTabList->nSrc); iSrc++){
      if( pExpr->iTable==pTabList->a[iSrc].iCursor ){
        pTab = pTabList->a[iSrc].pTab;
Changes to src/btree.c.
860
861
862
863
864
865
866



867

868
869
870
871
872
873
874
**
** Calling this routine with a NULL cursor pointer returns false.
**
** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
** back to where it ought to be if this routine returns true.
*/
int sqlite3BtreeCursorHasMoved(BtCursor *pCur){



  return pCur->eState!=CURSOR_VALID;

}

/*
** Return a pointer to a fake BtCursor object that will always answer
** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
** cursor returned must not be used with any other Btree interface.
*/







>
>
>
|
>







860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
**
** Calling this routine with a NULL cursor pointer returns false.
**
** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
** back to where it ought to be if this routine returns true.
*/
int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
  assert( EIGHT_BYTE_ALIGNMENT(pCur)
       || pCur==sqlite3BtreeFakeValidCursor() );
  assert( offsetof(BtCursor, eState)==0 );
  assert( sizeof(pCur->eState)==1 );
  return CURSOR_VALID != *(u8*)pCur;
}

/*
** Return a pointer to a fake BtCursor object that will always answer
** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
** cursor returned must not be used with any other Btree interface.
*/
Changes to src/build.c.
2839
2840
2841
2842
2843
2844
2845

2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

2862
2863
2864

2865
2866
2867
2868
2869
2870
2871
                    sqlite3KeyInfoRef(pKey), P4_KEYINFO);

  /* Open the table. Loop through all rows of the table, inserting index
  ** records into the sorter. */
  sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
  regRecord = sqlite3GetTempReg(pParse);


  sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
  sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
  sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
  sqlite3VdbeJumpHere(v, addr1);
  if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
                    (char *)pKey, P4_KEYINFO);
  sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));

  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
  if( IsUniqueIndex(pIndex) ){
    int j2 = sqlite3VdbeCurrentAddr(v) + 3;
    sqlite3VdbeGoto(v, j2);
    addr2 = sqlite3VdbeCurrentAddr(v);

    sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
                         pIndex->nKeyCol); VdbeCoverage(v);
    sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);

  }else{
    addr2 = sqlite3VdbeCurrentAddr(v);
  }
  sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
  sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);







>













|
<

>



>







2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860

2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
                    sqlite3KeyInfoRef(pKey), P4_KEYINFO);

  /* Open the table. Loop through all rows of the table, inserting index
  ** records into the sorter. */
  sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
  regRecord = sqlite3GetTempReg(pParse);
  sqlite3MultiWrite(pParse);

  sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
  sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
  sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
  sqlite3VdbeJumpHere(v, addr1);
  if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
                    (char *)pKey, P4_KEYINFO);
  sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));

  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
  if( IsUniqueIndex(pIndex) ){
    int j2 = sqlite3VdbeGoto(v, 1);

    addr2 = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeVerifyAbortable(v, OE_Abort);
    sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
                         pIndex->nKeyCol); VdbeCoverage(v);
    sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
    sqlite3VdbeJumpHere(v, j2);
  }else{
    addr2 = sqlite3VdbeCurrentAddr(v);
  }
  sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
  sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
Changes to src/callback.c.
402
403
404
405
406
407
408

409
410
411
412

413
414
415
416
417
418
419
  /* If the createFlag parameter is true and the search did not reveal an
  ** exact match for the name, number of arguments and encoding, then add a
  ** new entry to the hash table and return it.
  */
  if( createFlag && bestScore<FUNC_PERFECT_MATCH && 
      (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
    FuncDef *pOther;

    pBest->zName = (const char*)&pBest[1];
    pBest->nArg = (u16)nArg;
    pBest->funcFlags = enc;
    memcpy((char*)&pBest[1], zName, nName+1);

    pOther = (FuncDef*)sqlite3HashInsert(&db->aFunc, pBest->zName, pBest);
    if( pOther==pBest ){
      sqlite3DbFree(db, pBest);
      sqlite3OomFault(db);
      return 0;
    }else{
      pBest->pNext = pOther;







>




>







402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
  /* If the createFlag parameter is true and the search did not reveal an
  ** exact match for the name, number of arguments and encoding, then add a
  ** new entry to the hash table and return it.
  */
  if( createFlag && bestScore<FUNC_PERFECT_MATCH && 
      (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
    FuncDef *pOther;
    u8 *z;
    pBest->zName = (const char*)&pBest[1];
    pBest->nArg = (u16)nArg;
    pBest->funcFlags = enc;
    memcpy((char*)&pBest[1], zName, nName+1);
    for(z=(u8*)pBest->zName; *z; z++) *z = sqlite3UpperToLower[*z];
    pOther = (FuncDef*)sqlite3HashInsert(&db->aFunc, pBest->zName, pBest);
    if( pOther==pBest ){
      sqlite3DbFree(db, pBest);
      sqlite3OomFault(db);
      return 0;
    }else{
      pBest->pNext = pOther;
Changes to src/expr.c.
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
      exprCodeBetween(pParse, pExpr, target, 0, 0);
      return target;
    }
    case TK_SPAN:
    case TK_COLLATE: 
    case TK_UPLUS: {
      pExpr = pExpr->pLeft;
      goto expr_code_doover;
    }

    case TK_TRIGGER: {
      /* If the opcode is TK_TRIGGER, then the expression is a reference
      ** to a column in the new.* or old.* pseudo-tables available to
      ** trigger programs. In this case Expr.iTable is set to 1 for the
      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn







|







4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
      exprCodeBetween(pParse, pExpr, target, 0, 0);
      return target;
    }
    case TK_SPAN:
    case TK_COLLATE: 
    case TK_UPLUS: {
      pExpr = pExpr->pLeft;
      goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
    }

    case TK_TRIGGER: {
      /* If the opcode is TK_TRIGGER, then the expression is a reference
      ** to a column in the new.* or old.* pseudo-tables available to
      ** trigger programs. In this case Expr.iTable is set to 1 for the
      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
Changes to src/fkey.c.
327
328
329
330
331
332
333






334
335
336
337
338
339
340
  int isIgnore          /* If true, pretend pTab contains all NULL values */
){
  int i;                                    /* Iterator variable */
  Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
  int iCur = pParse->nTab - 1;              /* Cursor number to use */
  int iOk = sqlite3VdbeMakeLabel(v);        /* jump here if parent key found */







  /* If nIncr is less than zero, then check at runtime if there are any
  ** outstanding constraints to resolve. If there are not, there is no need
  ** to check if deleting this row resolves any outstanding violations.
  **
  ** Check if any of the key columns in the child table row are NULL. If 
  ** any are, then the constraint is considered satisfied. No need to 
  ** search for a matching row in the parent table.  */







>
>
>
>
>
>







327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
  int isIgnore          /* If true, pretend pTab contains all NULL values */
){
  int i;                                    /* Iterator variable */
  Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
  int iCur = pParse->nTab - 1;              /* Cursor number to use */
  int iOk = sqlite3VdbeMakeLabel(v);        /* jump here if parent key found */

  sqlite3VdbeVerifyAbortable(v,
    (!pFKey->isDeferred
      && !(pParse->db->flags & SQLITE_DeferFKs)
      && !pParse->pToplevel 
      && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore);

  /* If nIncr is less than zero, then check at runtime if there are any
  ** outstanding constraints to resolve. If there are not, there is no need
  ** to check if deleting this row resolves any outstanding violations.
  **
  ** Check if any of the key columns in the child table row are NULL. If 
  ** any are, then the constraint is considered satisfied. No need to 
  ** search for a matching row in the parent table.  */
734
735
736
737
738
739
740

741
742
743
744
745
746
747
    ** transactions are not able to rollback schema changes.  
    **
    ** If the SQLITE_DeferFKs flag is set, then this is not required, as
    ** the statement transaction will not be rolled back even if FK
    ** constraints are violated.
    */
    if( (db->flags & SQLITE_DeferFKs)==0 ){

      sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
      VdbeCoverage(v);
      sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
          OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
    }

    if( iSkip ){







>







740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    ** transactions are not able to rollback schema changes.  
    **
    ** If the SQLITE_DeferFKs flag is set, then this is not required, as
    ** the statement transaction will not be rolled back even if FK
    ** constraints are violated.
    */
    if( (db->flags & SQLITE_DeferFKs)==0 ){
      sqlite3VdbeVerifyAbortable(v, OE_Abort);
      sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
      VdbeCoverage(v);
      sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
          OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
    }

    if( iSkip ){
Changes to src/insert.c.
1416
1417
1418
1419
1420
1421
1422

1423
1424
1425
1426
1427
1428
1429
    pParse->iSelfTab = -(regNewData+1);
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    for(i=0; i<pCheck->nExpr; i++){
      int allOk;
      Expr *pExpr = pCheck->a[i].pExpr;
      if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue;
      allOk = sqlite3VdbeMakeLabel(v);

      sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
      if( onError==OE_Ignore ){
        sqlite3VdbeGoto(v, ignoreDest);
      }else{
        char *zName = pCheck->a[i].zName;
        if( zName==0 ) zName = pTab->zName;
        if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */







>







1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
    pParse->iSelfTab = -(regNewData+1);
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    for(i=0; i<pCheck->nExpr; i++){
      int allOk;
      Expr *pExpr = pCheck->a[i].pExpr;
      if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue;
      allOk = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeVerifyAbortable(v, onError);
      sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
      if( onError==OE_Ignore ){
        sqlite3VdbeGoto(v, ignoreDest);
      }else{
        char *zName = pCheck->a[i].zName;
        if( zName==0 ) zName = pTab->zName;
        if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1525
1526
1527
1528
1529
1530
1531

1532
1533
1534
1535
1536
1537
1538
      sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
      VdbeCoverage(v);
    }

    /* Check to see if the new rowid already exists in the table.  Skip
    ** the following conflict logic if it does not. */
    VdbeNoopComment((v, "uniqueness check for ROWID"));

    sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
    VdbeCoverage(v);

    switch( onError ){
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */







>







1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
      sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
      VdbeCoverage(v);
    }

    /* Check to see if the new rowid already exists in the table.  Skip
    ** the following conflict logic if it does not. */
    VdbeNoopComment((v, "uniqueness check for ROWID"));
    sqlite3VdbeVerifyAbortable(v, onError);
    sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
    VdbeCoverage(v);

    switch( onError ){
      default: {
        onError = OE_Abort;
        /* Fall thru into the next case */
1737
1738
1739
1740
1741
1742
1743

1744
1745
1746
1747
1748
1749
1750
    ){
      sqlite3VdbeResolveLabel(v, addrUniqueOk);
      continue;
    }

    /* Check to see if the new index entry will be unique */
    sqlite3ExprCachePush(pParse);

    sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
                         regIdx, pIdx->nKeyCol); VdbeCoverage(v);

    /* Generate code to handle collisions */
    regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
    if( isUpdate || onError==OE_Replace ){
      if( HasRowid(pTab) ){







>







1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
    ){
      sqlite3VdbeResolveLabel(v, addrUniqueOk);
      continue;
    }

    /* Check to see if the new index entry will be unique */
    sqlite3ExprCachePush(pParse);
    sqlite3VdbeVerifyAbortable(v, onError);
    sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
                         regIdx, pIdx->nKeyCol); VdbeCoverage(v);

    /* Generate code to handle collisions */
    regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
    if( isUpdate || onError==OE_Replace ){
      if( HasRowid(pTab) ){
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832



1833
1834
1835
1836
1837
1838
1839
        testcase( onError==OE_Ignore );
        sqlite3VdbeGoto(v, ignoreDest);
        break;
      }
      default: {
        Trigger *pTrigger = 0;
        assert( onError==OE_Replace );
        sqlite3MultiWrite(pParse);
        if( db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);



        }
        sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
            regR, nPkField, 0, OE_Replace,
            (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
        seenReplace = 1;
        break;
      }







<


>
>
>







1826
1827
1828
1829
1830
1831
1832

1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
        testcase( onError==OE_Ignore );
        sqlite3VdbeGoto(v, ignoreDest);
        break;
      }
      default: {
        Trigger *pTrigger = 0;
        assert( onError==OE_Replace );

        if( db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
        }
        if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
          sqlite3MultiWrite(pParse);
        }
        sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
            regR, nPkField, 0, OE_Replace,
            (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
        seenReplace = 1;
        break;
      }
2346
2347
2348
2349
2350
2351
2352

2353
2354
2355
2356
2357
2358
2359
  }
  if( HasRowid(pSrc) ){
    u8 insFlags;
    sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
    emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
    if( pDest->iPKey>=0 ){
      addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);

      addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
      VdbeCoverage(v);
      sqlite3RowidConstraint(pParse, onError, pDest);
      sqlite3VdbeJumpHere(v, addr2);
      autoIncStep(pParse, regAutoinc, regRowid);
    }else if( pDest->pIndex==0 ){
      addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);







>







2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
  }
  if( HasRowid(pSrc) ){
    u8 insFlags;
    sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
    emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
    if( pDest->iPKey>=0 ){
      addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
      sqlite3VdbeVerifyAbortable(v, onError);
      addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
      VdbeCoverage(v);
      sqlite3RowidConstraint(pParse, onError, pDest);
      sqlite3VdbeJumpHere(v, addr2);
      autoIncStep(pParse, regAutoinc, regRowid);
    }else if( pDest->pIndex==0 ){
      addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
Changes to src/main.c.
1804
1805
1806
1807
1808
1809
1810
1811
1812

1813
1814
1815

1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  if( xDestroy ){
    pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor));
    if( !pArg ){

      xDestroy(p);
      goto out;
    }

    pArg->xDestroy = xDestroy;
    pArg->pUserData = p;
  }
  rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, pArg);
  if( pArg && pArg->nRef==0 ){
    assert( rc!=SQLITE_OK );
    xDestroy(p);
    sqlite3DbFree(db, pArg);
  }

 out:
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}







|

>



>







|







1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  if( xDestroy ){
    pArg = (FuncDestructor *)sqlite3Malloc(sizeof(FuncDestructor));
    if( !pArg ){
      sqlite3OomFault(db);
      xDestroy(p);
      goto out;
    }
    pArg->nRef = 0;
    pArg->xDestroy = xDestroy;
    pArg->pUserData = p;
  }
  rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xSFunc, xStep, xFinal, pArg);
  if( pArg && pArg->nRef==0 ){
    assert( rc!=SQLITE_OK );
    xDestroy(p);
    sqlite3_free(pArg);
  }

 out:
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}
1853
1854
1855
1856
1857
1858
1859






















1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878

1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892




1893
1894
1895
1896
1897
1898
1899
  sqlite3DbFree(db, zFunc8);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}
#endif
























/*
** Declare that a function has been overloaded by a virtual table.
**
** If the function already exists as a regular global function, then
** this routine is a no-op.  If the function does not exist, then create
** a new one that always throws a run-time error.  
**
** When virtual tables intend to provide an overloaded function, they
** should call this routine to make sure the global function exists.
** A global function must exist in order for name resolution to work
** properly.
*/
int sqlite3_overload_function(
  sqlite3 *db,
  const char *zName,
  int nArg
){
  int rc = SQLITE_OK;


#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  if( sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)==0 ){
    rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
                           0, sqlite3InvalidFunction, 0, 0, 0);
  }
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;




}

#ifndef SQLITE_OMIT_TRACE
/*
** Register a trace function.  The pArg from the previously registered trace
** is returned.  
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


















|
>







|
<
<
<
<

|
>
>
>
>







1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911




1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
  sqlite3DbFree(db, zFunc8);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}
#endif


/*
** The following is the implementation of an SQL function that always
** fails with an error message stating that the function is used in the
** wrong context.  The sqlite3_overload_function() API might construct
** SQL function that use this routine so that the functions will exist
** for name resolution but are actually overloaded by the xFindFunction
** method of virtual tables.
*/
static void sqlite3InvalidFunction(
  sqlite3_context *context,  /* The function calling context */
  int NotUsed,               /* Number of arguments to the function */
  sqlite3_value **NotUsed2   /* Value of each argument */
){
  const char *zName = (const char*)sqlite3_user_data(context);
  char *zErr;
  UNUSED_PARAMETER2(NotUsed, NotUsed2);
  zErr = sqlite3_mprintf(
      "unable to use function %s in the requested context", zName);
  sqlite3_result_error(context, zErr, -1);
  sqlite3_free(zErr);
}

/*
** Declare that a function has been overloaded by a virtual table.
**
** If the function already exists as a regular global function, then
** this routine is a no-op.  If the function does not exist, then create
** a new one that always throws a run-time error.  
**
** When virtual tables intend to provide an overloaded function, they
** should call this routine to make sure the global function exists.
** A global function must exist in order for name resolution to work
** properly.
*/
int sqlite3_overload_function(
  sqlite3 *db,
  const char *zName,
  int nArg
){
  int rc;
  char *zCopy;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  rc = sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)!=0;




  sqlite3_mutex_leave(db->mutex);
  if( rc ) return SQLITE_OK;
  zCopy = sqlite3_mprintf(zName);
  if( zCopy==0 ) return SQLITE_NOMEM;
  return sqlite3_create_function_v2(db, zName, nArg, SQLITE_UTF8,
                           zCopy, sqlite3InvalidFunction, 0, 0, sqlite3_free);
}

#ifndef SQLITE_OMIT_TRACE
/*
** Register a trace function.  The pArg from the previously registered trace
** is returned.  
**
Changes to src/os_unix.c.
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
      /* The code below is handling the return value of osFallocate() 
      ** correctly. posix_fallocate() is defined to "returns zero on success, 
      ** or an error number on  failure". See the manpage for details. */
      int err;
      do{
        err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
      }while( err==EINTR );
      if( err ) return SQLITE_IOERR_WRITE;
#else
      /* If the OS does not have posix_fallocate(), fake it. Write a 
      ** single byte to the last byte in each block that falls entirely
      ** within the extended region. Then, if required, a single byte
      ** at offset (nSize-1), to set the size of the file correctly.
      ** This is a similar technique to that used by glibc on systems
      ** that do not have a real fallocate() call.







|







3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
      /* The code below is handling the return value of osFallocate() 
      ** correctly. posix_fallocate() is defined to "returns zero on success, 
      ** or an error number on  failure". See the manpage for details. */
      int err;
      do{
        err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
      }while( err==EINTR );
      if( err && err!=EINVAL ) return SQLITE_IOERR_WRITE;
#else
      /* If the OS does not have posix_fallocate(), fake it. Write a 
      ** single byte to the last byte in each block that falls entirely
      ** within the extended region. Then, if required, a single byte
      ** at offset (nSize-1), to set the size of the file correctly.
      ** This is a similar technique to that used by glibc on systems
      ** that do not have a real fallocate() call.
Changes to src/parse.y.
465
466
467
468
469
470
471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

492
493
494
495
496
497
498
      ){
        sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
      }
    }
  }
}


select(A) ::= WITH wqlist(W) selectnowith(X). {
  Select *p = X;
  if( p ){
    p->pWith = W;
    parserDoubleLinkSelect(pParse, p);
  }else{
    sqlite3WithDelete(pParse->db, W);
  }
  A = p;
}
select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). {
  Select *p = X;
  if( p ){
    p->pWith = W;
    parserDoubleLinkSelect(pParse, p);
  }else{
    sqlite3WithDelete(pParse->db, W);
  }
  A = p;
}

select(A) ::= selectnowith(X). {
  Select *p = X;
  if( p ){
    parserDoubleLinkSelect(pParse, p);
  }
  A = p; /*A-overwrites-X*/
}







>




















>







465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
      ){
        sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
      }
    }
  }
}

%ifndef SQLITE_OMIT_CTE
select(A) ::= WITH wqlist(W) selectnowith(X). {
  Select *p = X;
  if( p ){
    p->pWith = W;
    parserDoubleLinkSelect(pParse, p);
  }else{
    sqlite3WithDelete(pParse->db, W);
  }
  A = p;
}
select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). {
  Select *p = X;
  if( p ){
    p->pWith = W;
    parserDoubleLinkSelect(pParse, p);
  }else{
    sqlite3WithDelete(pParse->db, W);
  }
  A = p;
}
%endif /* SQLITE_OMIT_CTE */
select(A) ::= selectnowith(X). {
  Select *p = X;
  if( p ){
    parserDoubleLinkSelect(pParse, p);
  }
  A = p; /*A-overwrites-X*/
}
Changes to src/printf.c.
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
/*
** This singleton is an sqlite3_str object that is returned if
** sqlite3_malloc() fails to provide space for a real one.  This
** sqlite3_str object accepts no new text and always returns
** an SQLITE_NOMEM error.
*/
static sqlite3_str sqlite3OomStr = {
   0, 0, 0, 0, 0, SQLITE_NOMEM
};

/* Finalize a string created using sqlite3_str_new().
*/
char *sqlite3_str_finish(sqlite3_str *p){
  char *z;
  if( p!=0 && p!=&sqlite3OomStr ){







|







970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
/*
** This singleton is an sqlite3_str object that is returned if
** sqlite3_malloc() fails to provide space for a real one.  This
** sqlite3_str object accepts no new text and always returns
** an SQLITE_NOMEM error.
*/
static sqlite3_str sqlite3OomStr = {
   0, 0, 0, 0, 0, SQLITE_NOMEM, 0
};

/* Finalize a string created using sqlite3_str_new().
*/
char *sqlite3_str_finish(sqlite3_str *p){
  char *z;
  if( p!=0 && p!=&sqlite3OomStr ){
Changes to src/resolve.c.
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


101
102
103
104
105
106
107
  sqlite3 *db;           /* The database connection */

  assert( iCol>=0 && iCol<pEList->nExpr );
  pOrig = pEList->a[iCol].pExpr;
  assert( pOrig!=0 );
  db = pParse->db;
  pDup = sqlite3ExprDup(db, pOrig, 0);
  if( pDup==0 ) return;
  if( zType[0]!='G' ) incrAggFunctionDepth(pDup, nSubquery);
  if( pExpr->op==TK_COLLATE ){
    pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken);
  }
  ExprSetProperty(pDup, EP_Alias);

  /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This 
  ** prevents ExprDelete() from deleting the Expr structure itself,
  ** allowing it to be repopulated by the memcpy() on the following line.
  ** The pExpr->u.zToken might point into memory that will be freed by the
  ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to
  ** make a copy of the token before doing the sqlite3DbFree().
  */
  ExprSetProperty(pExpr, EP_Static);
  sqlite3ExprDelete(db, pExpr);
  memcpy(pExpr, pDup, sizeof(*pExpr));
  if( !ExprHasProperty(pExpr, EP_IntValue) && pExpr->u.zToken!=0 ){
    assert( (pExpr->flags & (EP_Reduced|EP_TokenOnly))==0 );
    pExpr->u.zToken = sqlite3DbStrDup(db, pExpr->u.zToken);
    pExpr->flags |= EP_MemToken;
  }
  sqlite3DbFree(db, pDup);


}


/*
** Return TRUE if the name zCol occurs anywhere in the USING clause.
**
** Return FALSE if the USING clause is NULL or if it does not contain







|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>







71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
  sqlite3 *db;           /* The database connection */

  assert( iCol>=0 && iCol<pEList->nExpr );
  pOrig = pEList->a[iCol].pExpr;
  assert( pOrig!=0 );
  db = pParse->db;
  pDup = sqlite3ExprDup(db, pOrig, 0);
  if( pDup!=0 ){
    if( zType[0]!='G' ) incrAggFunctionDepth(pDup, nSubquery);
    if( pExpr->op==TK_COLLATE ){
      pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken);
    }
    ExprSetProperty(pDup, EP_Alias);

    /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This 
    ** prevents ExprDelete() from deleting the Expr structure itself,
    ** allowing it to be repopulated by the memcpy() on the following line.
    ** The pExpr->u.zToken might point into memory that will be freed by the
    ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to
    ** make a copy of the token before doing the sqlite3DbFree().
    */
    ExprSetProperty(pExpr, EP_Static);
    sqlite3ExprDelete(db, pExpr);
    memcpy(pExpr, pDup, sizeof(*pExpr));
    if( !ExprHasProperty(pExpr, EP_IntValue) && pExpr->u.zToken!=0 ){
      assert( (pExpr->flags & (EP_Reduced|EP_TokenOnly))==0 );
      pExpr->u.zToken = sqlite3DbStrDup(db, pExpr->u.zToken);
      pExpr->flags |= EP_MemToken;
    }
    sqlite3DbFree(db, pDup);
  }
  ExprSetProperty(pExpr, EP_Alias);
}


/*
** Return TRUE if the name zCol occurs anywhere in the USING clause.
**
** Return FALSE if the USING clause is NULL or if it does not contain
345
346
347
348
349
350
351

352
353
354
355
356
357
358
        if( iCol<pTab->nCol ){
          cnt++;
#ifndef SQLITE_OMIT_UPSERT
          if( pExpr->iTable==2 ){
            testcase( iCol==(-1) );
            pExpr->iTable = pNC->uNC.pUpsert->regData + iCol;
            eNewExprOp = TK_REGISTER;

          }else
#endif /* SQLITE_OMIT_UPSERT */
          {
#ifndef SQLITE_OMIT_TRIGGER
            if( iCol<0 ){
              pExpr->affinity = SQLITE_AFF_INTEGER;
            }else if( pExpr->iTable==0 ){







>







347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        if( iCol<pTab->nCol ){
          cnt++;
#ifndef SQLITE_OMIT_UPSERT
          if( pExpr->iTable==2 ){
            testcase( iCol==(-1) );
            pExpr->iTable = pNC->uNC.pUpsert->regData + iCol;
            eNewExprOp = TK_REGISTER;
            ExprSetProperty(pExpr, EP_Alias);
          }else
#endif /* SQLITE_OMIT_UPSERT */
          {
#ifndef SQLITE_OMIT_TRIGGER
            if( iCol<0 ){
              pExpr->affinity = SQLITE_AFF_INTEGER;
            }else if( pExpr->iTable==0 ){
Changes to src/select.c.
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
  int nDefer = 0;
  ExprList *pExtra = 0;
  for(i=0; i<pEList->nExpr; i++){
    struct ExprList_item *pItem = &pEList->a[i];
    if( pItem->u.x.iOrderByCol==0 ){
      Expr *pExpr = pItem->pExpr;
      Table *pTab = pExpr->pTab;
      if( pExpr->op==TK_COLUMN && pTab && !IsVirtual(pTab)
       && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
      ){
        int j;
        for(j=0; j<nDefer; j++){
          if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
        }
        if( j==nDefer ){







|







806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
  int nDefer = 0;
  ExprList *pExtra = 0;
  for(i=0; i<pEList->nExpr; i++){
    struct ExprList_item *pItem = &pEList->a[i];
    if( pItem->u.x.iOrderByCol==0 ){
      Expr *pExpr = pItem->pExpr;
      Table *pTab = pExpr->pTab;
      if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
       && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
      ){
        int j;
        for(j=0; j<nDefer; j++){
          if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
        }
        if( j==nDefer ){
Changes to src/shell.c.in.
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253

/*
** Internal check:  Verify that the SQLite is uninitialized.  Print a
** error message if it is initialized.
*/
static void verify_uninitialized(void){
  if( sqlite3_config(-1)==SQLITE_MISUSE ){
    utf8_printf(stdout, "WARNING: attempt to configuration SQLite after"
                        " initialization.\n");
  }
}

/*
** Initialize the state information in data
*/







|







8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253

/*
** Internal check:  Verify that the SQLite is uninitialized.  Print a
** error message if it is initialized.
*/
static void verify_uninitialized(void){
  if( sqlite3_config(-1)==SQLITE_MISUSE ){
    utf8_printf(stdout, "WARNING: attempt to configure SQLite after"
                        " initialization.\n");
  }
}

/*
** Initialize the state information in data
*/
Changes to src/sqlite.h.in.
6290
6291
6292
6293
6294
6295
6296




6297
6298
6299
6300
6301
6302
6303
  int idxFlags;              /* Mask of SQLITE_INDEX_SCAN_* flags */
  /* Fields below are only available in SQLite 3.10.0 and later */
  sqlite3_uint64 colUsed;    /* Input: Mask of columns used by statement */
};

/*
** CAPI3REF: Virtual Table Scan Flags




*/
#define SQLITE_INDEX_SCAN_UNIQUE      1     /* Scan visits at most 1 row */

/*
** CAPI3REF: Virtual Table Constraint Operator Codes
**
** These macros defined the allowed values for the







>
>
>
>







6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
  int idxFlags;              /* Mask of SQLITE_INDEX_SCAN_* flags */
  /* Fields below are only available in SQLite 3.10.0 and later */
  sqlite3_uint64 colUsed;    /* Input: Mask of columns used by statement */
};

/*
** CAPI3REF: Virtual Table Scan Flags
**
** Virtual table implementations are allowed to set the 
** [sqlite3_index_info].idxFlags field to some combination of
** these bits.
*/
#define SQLITE_INDEX_SCAN_UNIQUE      1     /* Scan visits at most 1 row */

/*
** CAPI3REF: Virtual Table Constraint Operator Codes
**
** These macros defined the allowed values for the
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
** to the contiguous memory representation of the database that SQLite
** is currently using for that database, or NULL if the no such contiguous
** memory representation of the database exists.  A contiguous memory
** representation of the database will usually only exist if there has
** been a prior call to [sqlite3_deserialize(D,S,...)] with the same
** values of D and S.
** The size of the database is written into *P even if the 
** SQLITE_SERIALIZE_NOCOPY bit is set but no contigious copy
** of the database exists.
**
** A call to sqlite3_serialize(D,S,P,F) might return NULL even if the
** SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory
** allocation error occurs.
**
** This interface is only available if SQLite is compiled with the







|







9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
** to the contiguous memory representation of the database that SQLite
** is currently using for that database, or NULL if the no such contiguous
** memory representation of the database exists.  A contiguous memory
** representation of the database will usually only exist if there has
** been a prior call to [sqlite3_deserialize(D,S,...)] with the same
** values of D and S.
** The size of the database is written into *P even if the 
** SQLITE_SERIALIZE_NOCOPY bit is set but no contiguous copy
** of the database exists.
**
** A call to sqlite3_serialize(D,S,P,F) might return NULL even if the
** SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory
** allocation error occurs.
**
** This interface is only available if SQLite is compiled with the
Changes to src/sqliteInt.h.
4221
4222
4223
4224
4225
4226
4227

4228
4229
4230
4231
4232
4233
4234
int sqlite3KeyInfoIsWriteable(KeyInfo*);
#endif
int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
  void (*)(sqlite3_context*,int,sqlite3_value **),
  void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
  FuncDestructor *pDestructor
);

void sqlite3OomFault(sqlite3*);
void sqlite3OomClear(sqlite3*);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);

void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
char *sqlite3StrAccumFinish(StrAccum*);







>







4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
int sqlite3KeyInfoIsWriteable(KeyInfo*);
#endif
int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
  void (*)(sqlite3_context*,int,sqlite3_value **),
  void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
  FuncDestructor *pDestructor
);
void sqlite3NoopDestructor(void*);
void sqlite3OomFault(sqlite3*);
void sqlite3OomClear(sqlite3*);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);

void sqlite3StrAccumInit(StrAccum*, sqlite3*, char*, int, int);
char *sqlite3StrAccumFinish(StrAccum*);
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
void sqlite3VtabArgInit(Parse*);
void sqlite3VtabArgExtend(Parse*, Token*);
int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
int sqlite3VtabCallConnect(Parse*, Table*);
int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
int sqlite3VtabBegin(sqlite3 *, VTable *);
FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
void sqlite3ParserReset(Parse*);
int sqlite3Reprepare(Vdbe*);
void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);







<







4324
4325
4326
4327
4328
4329
4330

4331
4332
4333
4334
4335
4336
4337
void sqlite3VtabArgInit(Parse*);
void sqlite3VtabArgExtend(Parse*, Token*);
int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
int sqlite3VtabCallConnect(Parse*, Table*);
int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
int sqlite3VtabBegin(sqlite3 *, VTable *);
FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);

sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
void sqlite3ParserReset(Parse*);
int sqlite3Reprepare(Vdbe*);
void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
Changes to src/upsert.c.
225
226
227
228
229
230
231

232
233
234
235
236
237
238
        int k;
        assert( pPk->aiColumn[i]>=0 );
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
        sqlite3VdbeAddOp3(v, OP_Column, iCur, k, iPk+i);
        VdbeComment((v, "%s.%s", pIdx->zName,
                    pTab->aCol[pPk->aiColumn[i]].zName));
      }

      i = sqlite3VdbeAddOp4Int(v, OP_Found, iDataCur, 0, iPk, nPk);
      VdbeCoverage(v);
      sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0, 
            "corrupt database", P4_STATIC);
      sqlite3VdbeJumpHere(v, i);
    }
  }







>







225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        int k;
        assert( pPk->aiColumn[i]>=0 );
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
        sqlite3VdbeAddOp3(v, OP_Column, iCur, k, iPk+i);
        VdbeComment((v, "%s.%s", pIdx->zName,
                    pTab->aCol[pPk->aiColumn[i]].zName));
      }
      sqlite3VdbeVerifyAbortable(v, OE_Abort);
      i = sqlite3VdbeAddOp4Int(v, OP_Found, iDataCur, 0, iPk, nPk);
      VdbeCoverage(v);
      sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0, 
            "corrupt database", P4_STATIC);
      sqlite3VdbeJumpHere(v, i);
    }
  }
Changes to src/vdbe.c.
911
912
913
914
915
916
917



918
919
920
921
922
923
924
** Check the value in register P3.  If it is NULL then Halt using
** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
** value in register P3 is not NULL, then this routine is a no-op.
** The P5 parameter should be 1.
*/
case OP_HaltIfNull: {      /* in3 */
  pIn3 = &aMem[pOp->p3];



  if( (pIn3->flags & MEM_Null)==0 ) break;
  /* Fall through into OP_Halt */
}

/* Opcode:  Halt P1 P2 * P4 P5
**
** Exit immediately.  All open cursors, etc are closed







>
>
>







911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
** Check the value in register P3.  If it is NULL then Halt using
** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
** value in register P3 is not NULL, then this routine is a no-op.
** The P5 parameter should be 1.
*/
case OP_HaltIfNull: {      /* in3 */
  pIn3 = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
  if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
#endif
  if( (pIn3->flags & MEM_Null)==0 ) break;
  /* Fall through into OP_Halt */
}

/* Opcode:  Halt P1 P2 * P4 P5
**
** Exit immediately.  All open cursors, etc are closed
950
951
952
953
954
955
956



957
958
959
960
961
962
963
** is the same as executing Halt.
*/
case OP_Halt: {
  VdbeFrame *pFrame;
  int pcx;

  pcx = (int)(pOp - aOp);



  if( pOp->p1==SQLITE_OK && p->pFrame ){
    /* Halt the sub-program. Return control to the parent frame. */
    pFrame = p->pFrame;
    p->pFrame = pFrame->pParent;
    p->nFrame--;
    sqlite3VdbeSetChanges(db, p->nChange);
    pcx = sqlite3VdbeFrameRestore(pFrame);







>
>
>







953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
** is the same as executing Halt.
*/
case OP_Halt: {
  VdbeFrame *pFrame;
  int pcx;

  pcx = (int)(pOp - aOp);
#ifdef SQLITE_DEBUG
  if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
#endif
  if( pOp->p1==SQLITE_OK && p->pFrame ){
    /* Halt the sub-program. Return control to the parent frame. */
    pFrame = p->pFrame;
    p->pFrame = pFrame->pParent;
    p->nFrame--;
    sqlite3VdbeSetChanges(db, p->nChange);
    pcx = sqlite3VdbeFrameRestore(pFrame);
3320
3321
3322
3323
3324
3325
3326


3327
3328
3329
3330
3331
3332
3333
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {
  Db *pDb;


  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );







>
>







3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {
  Db *pDb;

  sqlite3VdbeIncrWriteCounter(p, 0);
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
4453
4454
4455
4456
4457
4458
4459

4460
4461
4462
4463
4464
4465
4466
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
  assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
  REGISTER_TRACE(pOp->p2, pData);


  if( pOp->opcode==OP_Insert ){
    pKey = &aMem[pOp->p3];
    assert( pKey->flags & MEM_Int );
    assert( memIsValid(pKey) );
    REGISTER_TRACE(pOp->p3, pKey);
    x.nKey = pKey->u.i;







>







4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
  assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
  REGISTER_TRACE(pOp->p2, pData);
  sqlite3VdbeIncrWriteCounter(p, pC);

  if( pOp->opcode==OP_Insert ){
    pKey = &aMem[pOp->p3];
    assert( pKey->flags & MEM_Int );
    assert( memIsValid(pKey) );
    REGISTER_TRACE(pOp->p3, pKey);
    x.nKey = pKey->u.i;
4567
4568
4569
4570
4571
4572
4573

4574
4575
4576
4577
4578
4579
4580
  opflags = pOp->p2;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( pC->deferredMoveto==0 );


#ifdef SQLITE_DEBUG
  if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
    /* If p5 is zero, the seek operation that positioned the cursor prior to
    ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
    ** the row that is being deleted */
    i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);







>







4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
  opflags = pOp->p2;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( pC->deferredMoveto==0 );
  sqlite3VdbeIncrWriteCounter(p, pC);

#ifdef SQLITE_DEBUG
  if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
    /* If p5 is zero, the seek operation that positioned the cursor prior to
    ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
    ** the row that is being deleted */
    i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
**
** If cursor P1 is an index, then the content is the key of the row.
** If cursor P2 is a table, then the content extracted is the data.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
**
** If P3!=0 then this opcode is allowed to make an ephermeral pointer
** into the database page.  That means that the content of the output
** register will be invalidated as soon as the cursor moves - including
** moves caused by other cursors that "save" the the current cursors
** position in order that they can write to the same table.  If P3==0
** then a copy of the data is made into memory.  P3!=0 is faster, but
** P3==0 is safer.
**
** If P3!=0 then the content of the P2 register is unsuitable for use
** in OP_Result and any OP_Result will invalidate the P2 register content.
** The P2 register content is invalidated by opcodes like OP_Function or







|


|







4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
**
** If cursor P1 is an index, then the content is the key of the row.
** If cursor P2 is a table, then the content extracted is the data.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
**
** If P3!=0 then this opcode is allowed to make an ephemeral pointer
** into the database page.  That means that the content of the output
** register will be invalidated as soon as the cursor moves - including
** moves caused by other cursors that "save" the current cursors
** position in order that they can write to the same table.  If P3==0
** then a copy of the data is made into memory.  P3!=0 is faster, but
** P3==0 is safer.
**
** If P3!=0 then the content of the P2 register is unsuitable for use
** in OP_Result and any OP_Result will invalidate the P2 register content.
** The P2 register content is invalidated by opcodes like OP_Function or
5186
5187
5188
5189
5190
5191
5192

5193
5194
5195
5196
5197
5198
5199
case OP_SorterInsert:       /* in2 */
case OP_IdxInsert: {        /* in2 */
  VdbeCursor *pC;
  BtreePayload x;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];

  assert( pC!=0 );
  assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );
  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
  assert( pC->isTable==0 );







>







5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
case OP_SorterInsert:       /* in2 */
case OP_IdxInsert: {        /* in2 */
  VdbeCursor *pC;
  BtreePayload x;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  sqlite3VdbeIncrWriteCounter(p, pC);
  assert( pC!=0 );
  assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );
  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
  assert( pC->isTable==0 );
5232
5233
5234
5235
5236
5237
5238

5239
5240
5241
5242
5243
5244
5245

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );

  pCrsr = pC->uc.pCursor;
  assert( pCrsr!=0 );
  assert( pOp->p5==0 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p3;
  r.default_rc = 0;
  r.aMem = &aMem[pOp->p2];







>







5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  sqlite3VdbeIncrWriteCounter(p, pC);
  pCrsr = pC->uc.pCursor;
  assert( pCrsr!=0 );
  assert( pOp->p5==0 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p3;
  r.default_rc = 0;
  r.aMem = &aMem[pOp->p2];
5454
5455
5456
5457
5458
5459
5460

5461
5462
5463
5464
5465
5466
5467
**
** See also: Clear
*/
case OP_Destroy: {     /* out2 */
  int iMoved;
  int iDb;


  assert( p->readOnly==0 );
  assert( pOp->p1>1 );
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Null;
  if( db->nVdbeRead > db->nVDestroy+1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;







>







5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
**
** See also: Clear
*/
case OP_Destroy: {     /* out2 */
  int iMoved;
  int iDb;

  sqlite3VdbeIncrWriteCounter(p, 0);
  assert( p->readOnly==0 );
  assert( pOp->p1>1 );
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Null;
  if( db->nVdbeRead > db->nVDestroy+1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
5503
5504
5505
5506
5507
5508
5509

5510
5511
5512
5513
5514
5515
5516
** also incremented by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 

  nChange = 0;
  assert( p->readOnly==0 );
  assert( DbMaskTest(p->btreeMask, pOp->p2) );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){







>







5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
** also incremented by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 
  sqlite3VdbeIncrWriteCounter(p, 0);
  nChange = 0;
  assert( p->readOnly==0 );
  assert( DbMaskTest(p->btreeMask, pOp->p2) );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565

5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584

5585
5586
5587
5588
5589
5590
5591

/* Opcode: CreateBtree P1 P2 P3 * *
** Synopsis: r[P2]=root iDb=P1 flags=P3
**
** Allocate a new b-tree in the main database file if P1==0 or in the
** TEMP database file if P1==1 or in an attached database if
** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
** it must be 2 (BTREE_BLOBKEY) for a index or WITHOUT ROWID table.
** The root page number of the new b-tree is stored in register P2.
*/
case OP_CreateBtree: {          /* out2 */
  int pgno;
  Db *pDb;


  pOut = out2Prerelease(p, pOp);
  pgno = 0;
  assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
  if( rc ) goto abort_due_to_error;
  pOut->u.i = pgno;
  break;
}

/* Opcode: SqlExec * * * P4 *
**
** Run the SQL statement or statements specified in the P4 string.
*/
case OP_SqlExec: {

  db->nSqlExec++;
  rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
  db->nSqlExec--;
  if( rc ) goto abort_due_to_error;
  break;
}








|






>



















>







5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607

/* Opcode: CreateBtree P1 P2 P3 * *
** Synopsis: r[P2]=root iDb=P1 flags=P3
**
** Allocate a new b-tree in the main database file if P1==0 or in the
** TEMP database file if P1==1 or in an attached database if
** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
** The root page number of the new b-tree is stored in register P2.
*/
case OP_CreateBtree: {          /* out2 */
  int pgno;
  Db *pDb;

  sqlite3VdbeIncrWriteCounter(p, 0);
  pOut = out2Prerelease(p, pOp);
  pgno = 0;
  assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
  if( rc ) goto abort_due_to_error;
  pOut->u.i = pgno;
  break;
}

/* Opcode: SqlExec * * * P4 *
**
** Run the SQL statement or statements specified in the P4 string.
*/
case OP_SqlExec: {
  sqlite3VdbeIncrWriteCounter(p, 0);
  db->nSqlExec++;
  rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
  db->nSqlExec--;
  if( rc ) goto abort_due_to_error;
  break;
}

5667
5668
5669
5670
5671
5672
5673

5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686

5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699

5700
5701
5702
5703
5704
5705
5706
** Remove the internal (in-memory) data structures that describe
** the table named P4 in database P1.  This is called after a table
** is dropped from disk (using the Destroy opcode) in order to keep 
** the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {

  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
  break;
}

/* Opcode: DropIndex P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the index named P4 in database P1.  This is called after an index
** is dropped from disk (using the Destroy opcode)
** in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {

  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
  break;
}

/* Opcode: DropTrigger P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P4 in database P1.  This is called after a trigger
** is dropped from disk (using the Destroy opcode) in order to keep 
** the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {

  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
  break;
}


#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk P1 P2 P3 P4 P5







>













>













>







5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
** Remove the internal (in-memory) data structures that describe
** the table named P4 in database P1.  This is called after a table
** is dropped from disk (using the Destroy opcode) in order to keep 
** the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {
  sqlite3VdbeIncrWriteCounter(p, 0);
  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
  break;
}

/* Opcode: DropIndex P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the index named P4 in database P1.  This is called after an index
** is dropped from disk (using the Destroy opcode)
** in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {
  sqlite3VdbeIncrWriteCounter(p, 0);
  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
  break;
}

/* Opcode: DropTrigger P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P4 in database P1.  This is called after a trigger
** is dropped from disk (using the Destroy opcode) in order to keep 
** the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {
  sqlite3VdbeIncrWriteCounter(p, 0);
  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
  break;
}


#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk P1 P2 P3 P4 P5
6907
6908
6909
6910
6911
6912
6913

6914
6915
6916
6917
6918
6919
6920
  Mem **apArg;
  Mem *pX;

  assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback 
       || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
  );
  assert( p->readOnly==0 );

  pVtab = pOp->p4.pVtab->pVtab;
  if( pVtab==0 || NEVER(pVtab->pModule==0) ){
    rc = SQLITE_LOCKED;
    goto abort_due_to_error;
  }
  pModule = pVtab->pModule;
  nArg = pOp->p2;







>







6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
  Mem **apArg;
  Mem *pX;

  assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback 
       || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
  );
  assert( p->readOnly==0 );
  sqlite3VdbeIncrWriteCounter(p, 0);
  pVtab = pOp->p4.pVtab->pVtab;
  if( pVtab==0 || NEVER(pVtab->pModule==0) ){
    rc = SQLITE_LOCKED;
    goto abort_due_to_error;
  }
  pModule = pVtab->pModule;
  nArg = pOp->p2;
7223
7224
7225
7226
7227
7228
7229
















7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243

7244
7245
7246
7247
7248
7249
7250
    assert( pC->eCurType==CURTYPE_BTREE );
    sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
                           pOp->p4.pExpr, aMem);
  }
  break;
}
#endif /* SQLITE_ENABLE_CURSOR_HINTS */

















/* Opcode: Noop * * * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
*/
/*
** The magic Explain opcode are only inserted when explain==2 (which
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
** This opcode records information from the optimizer.  It is the
** the same as a no-op.  This opcodesnever appears in a real VM program.
*/
default: {          /* This is really OP_Noop and OP_Explain */
  assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );

  break;
}

/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
** readability.  From this point on down, the normal indentation rules are







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>












|

>







7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
    assert( pC->eCurType==CURTYPE_BTREE );
    sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
                           pOp->p4.pExpr, aMem);
  }
  break;
}
#endif /* SQLITE_ENABLE_CURSOR_HINTS */

#ifdef SQLITE_DEBUG
/* Opcode:  Abortable   * * * * *
**
** Verify that an Abort can happen.  Assert if an Abort at this point
** might cause database corruption.  This opcode only appears in debugging
** builds.
**
** An Abort is safe if either there have been no writes, or if there is
** an active statement journal.
*/
case OP_Abortable: {
  sqlite3VdbeAssertAbortable(p);
  break;
}
#endif

/* Opcode: Noop * * * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
*/
/*
** The magic Explain opcode are only inserted when explain==2 (which
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
** This opcode records information from the optimizer.  It is the
** the same as a no-op.  This opcodesnever appears in a real VM program.
*/
default: {          /* This is really OP_Noop, OP_Explain */
  assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );

  break;
}

/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
** readability.  From this point on down, the normal indentation rules are
Changes to src/vdbe.h.
193
194
195
196
197
198
199





200
201
202
203
204
205
206
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
  void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N);
  void sqlite3VdbeVerifyNoResultRow(Vdbe *p);
#else
# define sqlite3VdbeVerifyNoMallocRequired(A,B)
# define sqlite3VdbeVerifyNoResultRow(A)
#endif





VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno);
#ifndef SQLITE_OMIT_EXPLAIN
  void sqlite3VdbeExplain(Parse*,u8,const char*,...);
  void sqlite3VdbeExplainPop(Parse*);
  int sqlite3VdbeExplainParent(Parse*);
# define ExplainQueryPlan(P)        sqlite3VdbeExplain P
# define ExplainQueryPlanPop(P)     sqlite3VdbeExplainPop(P)







>
>
>
>
>







193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
  void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N);
  void sqlite3VdbeVerifyNoResultRow(Vdbe *p);
#else
# define sqlite3VdbeVerifyNoMallocRequired(A,B)
# define sqlite3VdbeVerifyNoResultRow(A)
#endif
#if defined(SQLITE_DEBUG)
  void sqlite3VdbeVerifyAbortable(Vdbe *p, int);
#else
# define sqlite3VdbeVerifyAbortable(A,B)
#endif
VdbeOp *sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp,int iLineno);
#ifndef SQLITE_OMIT_EXPLAIN
  void sqlite3VdbeExplain(Parse*,u8,const char*,...);
  void sqlite3VdbeExplainPop(Parse*);
  int sqlite3VdbeExplainParent(Parse*);
# define ExplainQueryPlan(P)        sqlite3VdbeExplain P
# define ExplainQueryPlanPop(P)     sqlite3VdbeExplainPop(P)
Changes to src/vdbeInt.h.
375
376
377
378
379
380
381

382
383
384
385
386
387
388
  VList *pVList;          /* Name of variables */
#ifndef SQLITE_OMIT_TRACE
  i64 startTime;          /* Time when query started - used for profiling */
#endif
  int nOp;                /* Number of instructions in the program */
#ifdef SQLITE_DEBUG
  int rcApp;              /* errcode set by sqlite3_result_error_code() */

#endif
  u16 nResColumn;         /* Number of columns in one row of the result set */
  u8 errorAction;         /* Recovery action to do in case of an error */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 prepFlags;           /* SQLITE_PREPARE_* flags */
  bft expired:1;          /* True if the VM needs to be recompiled */
  bft doingRerun:1;       /* True if rerunning after an auto-reprepare */







>







375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
  VList *pVList;          /* Name of variables */
#ifndef SQLITE_OMIT_TRACE
  i64 startTime;          /* Time when query started - used for profiling */
#endif
  int nOp;                /* Number of instructions in the program */
#ifdef SQLITE_DEBUG
  int rcApp;              /* errcode set by sqlite3_result_error_code() */
  u32 nWrite;             /* Number of write operations that have occurred */
#endif
  u16 nResColumn;         /* Number of columns in one row of the result set */
  u8 errorAction;         /* Recovery action to do in case of an error */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 prepFlags;           /* SQLITE_PREPARE_* flags */
  bft expired:1;          /* True if the VM needs to be recompiled */
  bft doingRerun:1;       /* True if rerunning after an auto-reprepare */
510
511
512
513
514
515
516








517
518
519
520
521
522
523
void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);
void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *);
int sqlite3VdbeSorterRewind(const VdbeCursor *, int *);
int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *);
int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);









#if !defined(SQLITE_OMIT_SHARED_CACHE) 
  void sqlite3VdbeEnter(Vdbe*);
#else
# define sqlite3VdbeEnter(X)
#endif








>
>
>
>
>
>
>
>







511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);
void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *);
int sqlite3VdbeSorterRewind(const VdbeCursor *, int *);
int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *);
int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);

#ifdef SQLITE_DEBUG
  void sqlite3VdbeIncrWriteCounter(Vdbe*, VdbeCursor*);
  void sqlite3VdbeAssertAbortable(Vdbe*);
#else
# define sqlite3VdbeIncrWriteCounter(V,C)
# define sqlite3VdbeAssertAbortable(V)
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) 
  void sqlite3VdbeEnter(Vdbe*);
#else
# define sqlite3VdbeEnter(X)
#endif

Changes to src/vdbeapi.c.
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
  if( *piTime==0 ){
    rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
    if( rc ) *piTime = 0;
  }
  return *piTime;
}

/*
** The following is the implementation of an SQL function that always
** fails with an error message stating that the function is used in the
** wrong context.  The sqlite3_overload_function() API might construct
** SQL function that use this routine so that the functions will exist
** for name resolution but are actually overloaded by the xFindFunction
** method of virtual tables.
*/
void sqlite3InvalidFunction(
  sqlite3_context *context,  /* The function calling context */
  int NotUsed,               /* Number of arguments to the function */
  sqlite3_value **NotUsed2   /* Value of each argument */
){
  const char *zName = context->pFunc->zName;
  char *zErr;
  UNUSED_PARAMETER2(NotUsed, NotUsed2);
  zErr = sqlite3_mprintf(
      "unable to use function %s in the requested context", zName);
  sqlite3_result_error(context, zErr, -1);
  sqlite3_free(zErr);
}

/*
** Create a new aggregate context for p and return a pointer to
** its pMem->z element.
*/
static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
  Mem *pMem = p->pMem;
  assert( (pMem->flags & MEM_Agg)==0 );







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







783
784
785
786
787
788
789






















790
791
792
793
794
795
796
  if( *piTime==0 ){
    rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
    if( rc ) *piTime = 0;
  }
  return *piTime;
}























/*
** Create a new aggregate context for p and return a pointer to
** its pMem->z element.
*/
static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
  Mem *pMem = p->pMem;
  assert( (pMem->flags & MEM_Agg)==0 );
Changes to src/vdbeaux.c.
599
600
601
602
603
604
605


























606
607
608
609
610
611
612
  ** true for this case to prevent the assert() in the callers frame
  ** from failing.  */
  return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
              || (hasCreateTable && hasInitCoroutine) );
}
#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */



























/*
** This routine is called after all opcodes have been inserted.  It loops
** through all the opcodes and fixes up some details.
**
** (1) For each jump instruction with a negative P2 value (a label)
**     resolve the P2 value to an actual address.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
  ** true for this case to prevent the assert() in the callers frame
  ** from failing.  */
  return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
              || (hasCreateTable && hasInitCoroutine) );
}
#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */

#ifdef SQLITE_DEBUG
/*
** Increment the nWrite counter in the VDBE if the cursor is not an
** ephemeral cursor, or if the cursor argument is NULL.
*/
void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
  if( pC==0
   || (pC->eCurType!=CURTYPE_SORTER
       && pC->eCurType!=CURTYPE_PSEUDO
       && !pC->isEphemeral)
  ){
    p->nWrite++;
  }
}
#endif

#ifdef SQLITE_DEBUG
/*
** Assert if an Abort at this point in time might result in a corrupt
** database.
*/
void sqlite3VdbeAssertAbortable(Vdbe *p){
  assert( p->nWrite==0 || p->usesStmtJournal );
}
#endif

/*
** This routine is called after all opcodes have been inserted.  It loops
** through all the opcodes and fixes up some details.
**
** (1) For each jump instruction with a negative P2 value (a label)
**     resolve the P2 value to an actual address.
**
758
759
760
761
762
763
764











765
766
767
768
769
770
771
  int i;
  for(i=0; i<p->nOp; i++){
    assert( p->aOp[i].opcode!=OP_ResultRow );
  }
}
#endif












/*
** This function returns a pointer to the array of opcodes associated with
** the Vdbe passed as the first argument. It is the callers responsibility
** to arrange for the returned array to be eventually freed using the 
** vdbeFreeOpArray() function.
**
** Before returning, *pnOp is set to the number of entries in the returned







>
>
>
>
>
>
>
>
>
>
>







784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
  int i;
  for(i=0; i<p->nOp; i++){
    assert( p->aOp[i].opcode!=OP_ResultRow );
  }
}
#endif

/*
** Generate code (a single OP_Abortable opcode) that will
** verify that the VDBE program can safely call Abort in the current
** context.
*/
#if defined(SQLITE_DEBUG)
void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
  if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
}
#endif

/*
** This function returns a pointer to the array of opcodes associated with
** the Vdbe passed as the first argument. It is the callers responsibility
** to arrange for the returned array to be eventually freed using the 
** vdbeFreeOpArray() function.
**
** Before returning, *pnOp is set to the number of entries in the returned
2991
2992
2993
2994
2995
2996
2997



2998
2999
3000
3001
3002
3003
3004
  if( p->aMem ){
    for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
  }
#endif
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = 0;
  p->pResultSet = 0;




  /* Save profiling information from this VDBE run.
  */
#ifdef VDBE_PROFILE
  {
    FILE *out = fopen("vdbe_profile.out", "a");
    if( out ){







>
>
>







3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
  if( p->aMem ){
    for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
  }
#endif
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = 0;
  p->pResultSet = 0;
#ifdef SQLITE_DEBUG
  p->nWrite = 0;
#endif

  /* Save profiling information from this VDBE run.
  */
#ifdef VDBE_PROFILE
  {
    FILE *out = fopen("vdbe_profile.out", "a");
    if( out ){
Changes to src/vdbemem.c.
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
  }else{
    pMem->u.i = val;
    pMem->flags = MEM_Int;
  }
}

/* A no-op destructor */
static void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }

/*
** Set the value stored in *pMem should already be a NULL.
** Also store a pointer to go with it.
*/
void sqlite3VdbeMemSetPointer(
  Mem *pMem,







|







813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
  }else{
    pMem->u.i = val;
    pMem->flags = MEM_Int;
  }
}

/* A no-op destructor */
void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }

/*
** Set the value stored in *pMem should already be a NULL.
** Also store a pointer to go with it.
*/
void sqlite3VdbeMemSetPointer(
  Mem *pMem,
Changes to src/vtab.c.
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069




1070



1071
1072
1073
1074
1075
1076
1077
1078


1079
1080
1081
1082
1083
1084
1085
  Table *pTab;
  sqlite3_vtab *pVtab;
  sqlite3_module *pMod;
  void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
  void *pArg = 0;
  FuncDef *pNew;
  int rc = 0;
  char *zLowerName;
  unsigned char *z;


  /* Check to see the left operand is a column in a virtual table */
  if( NEVER(pExpr==0) ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->pTab;
  if( pTab==0 ) return pDef;
  if( !IsVirtual(pTab) ) return pDef;
  pVtab = sqlite3GetVTable(db, pTab)->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;
 
  /* Call the xFindFunction method on the virtual table implementation
  ** to see if the implementation wants to overload this function 




  */



  zLowerName = sqlite3DbStrDup(db, pDef->zName);
  if( zLowerName ){
    for(z=(unsigned char*)zLowerName; *z; z++){
      *z = sqlite3UpperToLower[*z];
    }
    rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xSFunc, &pArg);
    sqlite3DbFree(db, zLowerName);
  }


  if( rc==0 ){
    return pDef;
  }

  /* Create a new ephemeral function definition for the overloaded
  ** function */
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew)







<
<
<














|
>
>
>
>

>
>
>
|
<
|
|

<
<

>
>







1045
1046
1047
1048
1049
1050
1051



1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

1076
1077
1078


1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
  Table *pTab;
  sqlite3_vtab *pVtab;
  sqlite3_module *pMod;
  void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
  void *pArg = 0;
  FuncDef *pNew;
  int rc = 0;




  /* Check to see the left operand is a column in a virtual table */
  if( NEVER(pExpr==0) ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->pTab;
  if( pTab==0 ) return pDef;
  if( !IsVirtual(pTab) ) return pDef;
  pVtab = sqlite3GetVTable(db, pTab)->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;
 
  /* Call the xFindFunction method on the virtual table implementation
  ** to see if the implementation wants to overload this function.
  **
  ** Though undocumented, we have historically always invoked xFindFunction
  ** with an all lower-case function name.  Continue in this tradition to
  ** avoid any chance of an incompatibility.
  */
#ifdef SQLITE_DEBUG
  {
    int i;
    for(i=0; pDef->zName[i]; i++){

      unsigned char x = (unsigned char)pDef->zName[i];
      assert( x==sqlite3UpperToLower[x] );
    }


  }
#endif
  rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg);
  if( rc==0 ){
    return pDef;
  }

  /* Create a new ephemeral function definition for the overloaded
  ** function */
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
Changes to test/autoinc.test.
20
21
22
23
24
25
26





27
28
29
30
31
32
33
# If the library is not compiled with autoincrement support then
# skip all tests in this file.
#
ifcapable {!autoinc} {
  finish_test
  return
}






sqlite3_db_config_lookaside db 0 0 0

# The database is initially empty.
#
do_test autoinc-1.1 {
  execsql {







>
>
>
>
>







20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# If the library is not compiled with autoincrement support then
# skip all tests in this file.
#
ifcapable {!autoinc} {
  finish_test
  return
}

if {[permutation]=="inmemory_journal"} {
  finish_test
  return
}

sqlite3_db_config_lookaside db 0 0 0

# The database is initially empty.
#
do_test autoinc-1.1 {
  execsql {
726
727
728
729
730
731
732





733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    INSERT INTO t1(b) VALUES('two');
  }} msg]
  lappend res $msg
} {1 {database disk image is malformed}}





do_test autoinc-12.3 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
   CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
   INSERT INTO t1(b) VALUES('one');
   PRAGMA writable_schema=on;
   UPDATE sqlite_master SET
     sql='CREATE VIRTUAL TABLE sqlite_sequence USING sqlite_dbpage'
    WHERE name='sqlite_sequence';
  }
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    INSERT INTO t1(b) VALUES('two');
  }} msg]
  lappend res $msg
} {1 {database disk image is malformed}}
do_test autoinc-12.4 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
    INSERT INTO t1(b) VALUES('one');







>
>
>
>
>


















|







731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    INSERT INTO t1(b) VALUES('two');
  }} msg]
  lappend res $msg
} {1 {database disk image is malformed}}
ifcapable vtab {
  set err "database disk image is malformed"
} else {
  set err {malformed database schema (sqlite_sequence) - near "VIRTUAL": syntax error}
}
do_test autoinc-12.3 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
   CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
   INSERT INTO t1(b) VALUES('one');
   PRAGMA writable_schema=on;
   UPDATE sqlite_master SET
     sql='CREATE VIRTUAL TABLE sqlite_sequence USING sqlite_dbpage'
    WHERE name='sqlite_sequence';
  }
  db close
  sqlite3 db test.db
  set res [catch {db eval {
    INSERT INTO t1(b) VALUES('two');
  }} msg]
  lappend res $msg
} [list 1 $err]
do_test autoinc-12.4 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b TEXT);
    INSERT INTO t1(b) VALUES('one');
Changes to test/csv01.test.
143
144
145
146
147
148
149









150
151
# 2018-04-24
# Memory leak reported on the sqlite-users mailing list by Ralf Junker.
#
do_catchsql_test 4.3 {
  CREATE VIRTUAL TABLE IF NOT EXISTS temp.t1
  USING csv(filename='FileDoesNotExist.csv');
} {1 {cannot open 'FileDoesNotExist.csv' for reading}}










finish_test







>
>
>
>
>
>
>
>
>


143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# 2018-04-24
# Memory leak reported on the sqlite-users mailing list by Ralf Junker.
#
do_catchsql_test 4.3 {
  CREATE VIRTUAL TABLE IF NOT EXISTS temp.t1
  USING csv(filename='FileDoesNotExist.csv');
} {1 {cannot open 'FileDoesNotExist.csv' for reading}}

# 2018-06-02
# Problem with single-column CSV support reported on the mailing list
# by Trent W. Buck.
#
do_execsql_test 4.4 {
  CREATE VIRTUAL TABLE temp.trent USING csv(data='1');
  SELECT * FROM trent;
} {1}

finish_test
Changes to test/e_fkey.test.
20
21
22
23
24
25
26
27

















28
29
30
31
32
33
34
# either SQLITE_OMIT_TRIGGER or SQLITE_OMIT_FOREIGN_KEY was defined
# at build time).
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

proc eqp {sql {db db}} { uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db }


















###########################################################################
### SECTION 2: Enabling Foreign Key Support
###########################################################################

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-33710-56344 In order to use foreign key constraints in







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# either SQLITE_OMIT_TRIGGER or SQLITE_OMIT_FOREIGN_KEY was defined
# at build time).
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

proc eqp {sql {db db}} { 
  uplevel [subst -nocommands {
    set eqpres [list]
    $db eval "$sql" {
      lappend eqpres [set detail]
    }
    set eqpres
  }]
}

proc do_detail_test {tn sql res} {
  set normalres [list {*}$res]
  uplevel [subst -nocommands {
    do_test $tn {
      eqp { $sql }
    } {$normalres}
  }]
}

###########################################################################
### SECTION 2: Enabling Foreign Key Support
###########################################################################

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-33710-56344 In order to use foreign key constraints in
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
      trackid     INTEGER, 
      trackname   TEXT, 
      trackartist INTEGER,
      FOREIGN KEY(trackartist) REFERENCES artist(artistid)
    );
  }
} {}
do_execsql_test e_fkey-25.2 {
  PRAGMA foreign_keys = OFF;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
  EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?;
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SCAN TABLE track}
}
do_execsql_test e_fkey-25.3 {
  PRAGMA foreign_keys = ON;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SCAN TABLE track}
}
do_test e_fkey-25.4 {
  execsql {
    INSERT INTO artist VALUES(5, 'artist 5');
    INSERT INTO artist VALUES(6, 'artist 6');
    INSERT INTO artist VALUES(7, 'artist 7');
    INSERT INTO track VALUES(1, 'track 1', 5);







|




|
|

|



|
|







983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
      trackid     INTEGER, 
      trackname   TEXT, 
      trackartist INTEGER,
      FOREIGN KEY(trackartist) REFERENCES artist(artistid)
    );
  }
} {}
do_detail_test e_fkey-25.2 {
  PRAGMA foreign_keys = OFF;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
  EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?;
} {
  {SCAN TABLE artist} 
  {SCAN TABLE track}
}
do_detail_test e_fkey-25.3 {
  PRAGMA foreign_keys = ON;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
} {
  {SCAN TABLE artist} 
  {SCAN TABLE track}
}
do_test e_fkey-25.4 {
  execsql {
    INSERT INTO artist VALUES(5, 'artist 5');
    INSERT INTO artist VALUES(6, 'artist 6');
    INSERT INTO artist VALUES(7, 'artist 7');
    INSERT INTO track VALUES(1, 'track 1', 5);
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
    );
    CREATE INDEX trackindex ON track(trackartist);
  }
} {}
do_test e_fkey-27.2 {
  eqp { INSERT INTO artist VALUES(?, ?) }
} {}
do_execsql_test e_fkey-27.3 {
  EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ?
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
}
do_execsql_test e_fkey-27.4 {
  EXPLAIN QUERY PLAN DELETE FROM artist
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
}


###########################################################################
### SECTION 4.1: Composite Foreign Key Constraints
###########################################################################

#-------------------------------------------------------------------------
# Check that parent and child keys must have the same number of columns.







|


|
|
|

|


|
|

<







1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

1130
1131
1132
1133
1134
1135
1136
    );
    CREATE INDEX trackindex ON track(trackartist);
  }
} {}
do_test e_fkey-27.2 {
  eqp { INSERT INTO artist VALUES(?, ?) }
} {}
do_detail_test e_fkey-27.3 {
  EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ?
} {
  {SCAN TABLE artist} 
  {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)} 
  {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
}
do_detail_test e_fkey-27.4 {
  EXPLAIN QUERY PLAN DELETE FROM artist
} {
  {SCAN TABLE artist} 
  {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
}


###########################################################################
### SECTION 4.1: Composite Foreign Key Constraints
###########################################################################

#-------------------------------------------------------------------------
# Check that parent and child keys must have the same number of columns.
Changes to test/malloc5.test.
170
171
172
173
174
175
176
177



178
179
180
181
182
183
184
185
  db eval {SELECT * FROM abc} {
    incr nRelease [sqlite3_release_memory]
    lappend data $a $b $c
  }
  execsql {
    COMMIT;
  }
  list $nRelease $data



} [list $pgalloc [list 1 2 3 4 5 6]]

do_test malloc5-3.1 {
  # Simple test to show that if two pagers are opened from within this
  # thread, memory is freed from both when sqlite3_release_memory() is
  # called.
  execsql {
    BEGIN;







|
>
>
>
|







170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
  db eval {SELECT * FROM abc} {
    incr nRelease [sqlite3_release_memory]
    lappend data $a $b $c
  }
  execsql {
    COMMIT;
  }
  value_in_range $::pgalloc $::mrange $nRelease
} [value_in_range $::pgalloc $::mrange]
do_test malloc5-2.2.1 {
  set data
} {1 2 3 4 5 6}

do_test malloc5-3.1 {
  # Simple test to show that if two pagers are opened from within this
  # thread, memory is freed from both when sqlite3_release_memory() is
  # called.
  execsql {
    BEGIN;
Changes to test/misc7.test.
266
267
268
269
270
271
272
273
274


275
276

277
278
279
280
281

282
283
284
285
286

287
288
289
290
291
292
293
294
295

db close
forcedelete test.db
forcedelete test.db-journal
sqlite3 db test.db

ifcapable explain {
  do_execsql_test misc7-14.1 {
    CREATE TABLE abc(a PRIMARY KEY, b, c);


    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 WHERE rowid = 1;
  } {

    0 0 0 {SEARCH TABLE abc AS t2 USING INTEGER PRIMARY KEY (rowid=?)}
  }
  do_execsql_test misc7-14.2 {
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 WHERE a = 1;
  } {0 0 0 

     {SEARCH TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1 (a=?)}
  }
  do_execsql_test misc7-14.3 {
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 ORDER BY a;
  } {0 0 0 

     {SCAN TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1}
  }
}

db close
forcedelete test.db
forcedelete test.db-journal
sqlite3 db test.db








|

>
>
|

>
|
|
|
|
|
>
|
|
|
|
|
>
|
|







266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

db close
forcedelete test.db
forcedelete test.db-journal
sqlite3 db test.db

ifcapable explain {
  do_execsql_test misc7-14.0 {
    CREATE TABLE abc(a PRIMARY KEY, b, c);
  }
  do_eqp_test misc7-14.1 {
    SELECT * FROM abc AS t2 WHERE rowid = 1;
  } {
  QUERY PLAN
  `--SEARCH TABLE abc AS t2 USING INTEGER PRIMARY KEY (rowid=?)
}
  do_eqp_test misc7-14.2 {
    SELECT * FROM abc AS t2 WHERE a = 1;
} {
  QUERY PLAN
  `--SEARCH TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1 (a=?)
}
  do_eqp_test misc7-14.3 {
    SELECT * FROM abc AS t2 ORDER BY a;
  } {
  QUERY PLAN
  `--SCAN TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1
}
}

db close
forcedelete test.db
forcedelete test.db-journal
sqlite3 db test.db

Changes to test/oserror.test.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# a call to getcwd() may fail if there are no free file descriptors. So
# an error may be reported for either open() or getcwd() here.
#
if {![clang_sanitize_address]} {
  do_test 1.1.1 {
    set ::log [list]
    list [catch {
      for {set i 0} {$i < 2000} {incr i} { sqlite3 dbh_$i test.db -readonly 1 }
    } msg] $msg
  } {1 {unable to open database file}}
  do_test 1.1.2 {
    catch { for {set i 0} {$i < 2000} {incr i} { dbh_$i close } }
  } {1}
  do_re_test 1.1.3 { 
    lindex $::log 0 
  } {^os_unix.c:\d+: \(\d+\) (open|getcwd)\(.*test.db\) - }
}









|



|







51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# a call to getcwd() may fail if there are no free file descriptors. So
# an error may be reported for either open() or getcwd() here.
#
if {![clang_sanitize_address]} {
  do_test 1.1.1 {
    set ::log [list]
    list [catch {
      for {set i 0} {$i < 20000} {incr i} { sqlite3 dbh_$i test.db -readonly 1 }
    } msg] $msg
  } {1 {unable to open database file}}
  do_test 1.1.2 {
    catch { for {set i 0} {$i < 20000} {incr i} { dbh_$i close } }
  } {1}
  do_re_test 1.1.3 { 
    lindex $::log 0 
  } {^os_unix.c:\d+: \(\d+\) (open|getcwd)\(.*test.db\) - }
}


Changes to test/resetdb.test.
10
11
12
13
14
15
16
17


18














19
20
21
22
23
24

25
26
27
28
29
30
31
#***********************************************************************
# Test cases for SQLITE_DBCONFIG_RESET_DATABASE
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix resetdb



ifcapable !vtab||!compound {














  finish_test
  return
}

# Create a sample database
do_execsql_test 100 {

  PRAGMA page_size=4096;
  CREATE TABLE t1(a,b);
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20)
    INSERT INTO t1(a,b) SELECT x, randomblob(300) FROM c;
  CREATE INDEX t1a ON t1(a);
  CREATE INDEX t1b ON t1(b);
  SELECT sum(a), sum(length(b)) FROM t1;








>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>






>







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#***********************************************************************
# Test cases for SQLITE_DBCONFIG_RESET_DATABASE
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix resetdb

do_not_use_codec

ifcapable !vtab||!compound {
  finish_test
  return
}

# In the "inmemory_journal" permutation, each new connection executes 
# "PRAGMA journal_mode = memory". This fails with SQLITE_BUSY if attempted
# on a wal mode database with existing connections. For this and a few
# other reasons, this test is not run as part of "inmemory_journal".
#
# Permutation "journaltest" does not support wal mode.
#
if {[permutation]=="inmemory_journal"
 || [permutation]=="journaltest"
} {
  finish_test
  return
}

# Create a sample database
do_execsql_test 100 {
  PRAGMA auto_vacuum = 0;
  PRAGMA page_size=4096;
  CREATE TABLE t1(a,b);
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20)
    INSERT INTO t1(a,b) SELECT x, randomblob(300) FROM c;
  CREATE INDEX t1a ON t1(a);
  CREATE INDEX t1b ON t1(b);
  SELECT sum(a), sum(length(b)) FROM t1;
78
79
80
81
82
83
84

85
86
87
88
89
90
91
# with a different page size and in WAL mode.
#
db close
db2 close
forcedelete test.db
sqlite3 db test.db
do_execsql_test 300 {

  PRAGMA page_size=8192;
  PRAGMA journal_mode=WAL;
  CREATE TABLE t1(a,b);
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20)
    INSERT INTO t1(a,b) SELECT x, randomblob(1300) FROM c;
  CREATE INDEX t1a ON t1(a);
  CREATE INDEX t1b ON t1(b);







>







95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# with a different page size and in WAL mode.
#
db close
db2 close
forcedelete test.db
sqlite3 db test.db
do_execsql_test 300 {
  PRAGMA auto_vacuum = 0;
  PRAGMA page_size=8192;
  PRAGMA journal_mode=WAL;
  CREATE TABLE t1(a,b);
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<20)
    INSERT INTO t1(a,b) SELECT x, randomblob(1300) FROM c;
  CREATE INDEX t1a ON t1(a);
  CREATE INDEX t1b ON t1(b);
113
114
115
116
117
118
119


120
121
122
123
124
125
126
} {1 {file is not a database}}

do_test 330 {
  catchsql {
    PRAGMA quick_check
  } db2
} {1 {file is not a database}}



# Reset the database yet again.  Verify that the page size and
# journal mode are preserved.
#
do_test 400 {
  sqlite3_db_config db RESET_DB 1
  db eval VACUUM







>
>







131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
} {1 {file is not a database}}

do_test 330 {
  catchsql {
    PRAGMA quick_check
  } db2
} {1 {file is not a database}}

db2 cache flush         ;# Required by permutation "prepare".

# Reset the database yet again.  Verify that the page size and
# journal mode are preserved.
#
do_test 400 {
  sqlite3_db_config db RESET_DB 1
  db eval VACUUM
Changes to tool/mkopcodeh.tcl.
71
72
73
74
75
76
77

78
79
80
81
82
83
84
  }

  # Scan for "case OP_aaaa:" lines in the vdbe.c file
  #
  if {[regexp {^case OP_} $line]} {
    set line [split $line]
    set name [string trim [lindex $line 1] :]

    set op($name) -1
    set jump($name) 0
    set in1($name) 0
    set in2($name) 0
    set in3($name) 0
    set out2($name) 0
    set out3($name) 0







>







71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
  }

  # Scan for "case OP_aaaa:" lines in the vdbe.c file
  #
  if {[regexp {^case OP_} $line]} {
    set line [split $line]
    set name [string trim [lindex $line 1] :]
    if {$name=="OP_Abortable"} continue;  # put OP_Abortable last 
    set op($name) -1
    set jump($name) 0
    set in1($name) 0
    set in2($name) 0
    set in3($name) 0
    set out2($name) 0
    set out3($name) 0
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
  }
}

# Assign numbers to all opcodes and output the result.
#
puts "/* Automatically generated.  Do not edit */"
puts "/* See the tool/mkopcodeh.tcl script for details */"
foreach name {OP_Noop OP_Explain} {
  set jump($name) 0
  set in1($name) 0
  set in2($name) 0
  set in3($name) 0
  set out2($name) 0
  set out3($name) 0
  set op($name) -1







|







110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  }
}

# Assign numbers to all opcodes and output the result.
#
puts "/* Automatically generated.  Do not edit */"
puts "/* See the tool/mkopcodeh.tcl script for details */"
foreach name {OP_Noop OP_Explain OP_Abortable} {
  set jump($name) 0
  set in1($name) 0
  set in2($name) 0
  set in3($name) 0
  set out2($name) 0
  set out3($name) 0
  set op($name) -1