/ Check-in [831492dc]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge in minor bug fixes and performance tweaks from trunk leading up to the version 3.8.0 release.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | sessions
Files: files | file ages | folders
SHA1:831492dca8bcfb1a1f83a8bb15de9cc94f29f07e
User & Date: drh 2013-08-22 15:07:08
Context
2013-08-23
17:43
Add the sqlite3session_table_filter API to the sessions extension. check-in: b7e4dd88 user: dan tags: sessions
2013-08-22
15:07
Merge in minor bug fixes and performance tweaks from trunk leading up to the version 3.8.0 release. check-in: 831492dc user: drh tags: sessions
02:56
Defer the creation of automatic indices until the index is actually used. check-in: 0775501a user: drh tags: trunk
2013-08-20
13:02
Merge performance enhancements and compiler warning fixes from trunk. check-in: 3e403328 user: drh tags: sessions
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ext/fts3/fts3_write.c.

5131
5132
5133
5134
5135
5136
5137
5138

5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
              fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
            }
          }
        }
        if( pTC ) pModule->xClose(pTC);
        if( rc==SQLITE_DONE ) rc = SQLITE_OK;
      }


      for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
        if( pDef->pList ){
          rc = fts3PendingListAppendVarint(&pDef->pList, 0);
        }
      }
    }
  }

  return rc;
}








|
>
|
|
|
<







5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142

5143
5144
5145
5146
5147
5148
5149
              fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
            }
          }
        }
        if( pTC ) pModule->xClose(pTC);
        if( rc==SQLITE_DONE ) rc = SQLITE_OK;
      }
    }

    for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
      if( pDef->pList ){
        rc = fts3PendingListAppendVarint(&pDef->pList, 0);

      }
    }
  }

  return rc;
}

Changes to src/backup.c.

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc);
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite3PagerAcquire(pSrcPager, iSrcPg, &pSrcPg,
                                 PAGER_ACQUIRE_READONLY);
        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
          sqlite3PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }







|







388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc);
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite3PagerAcquire(pSrcPager, iSrcPg, &pSrcPg,
                                 PAGER_GET_READONLY);
        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
          sqlite3PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }

Changes to src/btree.c.

936
937
938
939
940
941
942

943
944
945
946
947
948
949
950
....
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595

1596
1597
1598
1599
1600
1601
1602
....
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646

1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
....
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
....
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
....
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
....
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
....
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
....
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
....
4283
4284
4285
4286
4287
4288
4289
4290

4291
4292
4293
4294
4295
4296
4297
....
4400
4401
4402
4403
4404
4405
4406
4407

4408
4409
4410
4411
4412
4413
4414
....
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
....
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
....
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
....
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
....
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
....
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
....
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
....
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
....
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
....
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
....
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
....
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
....
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
....
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953

  pInfo->pCell = pCell;
  assert( pPage->leaf==0 || pPage->leaf==1 );
  n = pPage->childPtrSize;
  assert( n==4-4*pPage->leaf );
  if( pPage->intKey ){
    if( pPage->hasData ){

      n += getVarint32(&pCell[n], nPayload);
    }else{
      nPayload = 0;
    }
    n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
    pInfo->nData = nPayload;
  }else{
    pInfo->nData = 0;
................................................................................
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
static int btreeGetPage(
  BtShared *pBt,       /* The btree */
  Pgno pgno,           /* Number of the page to fetch */
  MemPage **ppPage,    /* Return the page in this parameter */
  int noContent,       /* Do not load page content if true */
  int bReadonly        /* True if a read-only (mmap) page is ok */
){
  int rc;
  DbPage *pDbPage;
  int flags = (noContent ? PAGER_ACQUIRE_NOCONTENT : 0) 
            | (bReadonly ? PAGER_ACQUIRE_READONLY : 0);

  assert( noContent==0 || bReadonly==0 );

  assert( sqlite3_mutex_held(pBt->mutex) );
  rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
  if( rc ) return rc;
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  return SQLITE_OK;
}

................................................................................
** If an error occurs, then the value *ppPage is set to is undefined. It
** may remain unchanged, or it may be set to an invalid value.
*/
static int getAndInitPage(
  BtShared *pBt,                  /* The database file */
  Pgno pgno,                      /* Number of the page to get */
  MemPage **ppPage,               /* Write the page pointer here */
  int bReadonly                   /* True if a read-only (mmap) page is ok */
){
  int rc;
  assert( sqlite3_mutex_held(pBt->mutex) );


  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
  }else{
    rc = btreeGetPage(pBt, pgno, ppPage, 0, bReadonly);
    if( rc==SQLITE_OK ){
      rc = btreeInitPage(*ppPage);
      if( rc!=SQLITE_OK ){
        releasePage(*ppPage);
      }
    }
  }
................................................................................
  int nPageFile = 0;   /* Number of pages in the database file */
  int nPageHeader;     /* Number of pages in the database according to hdr */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pBt->pPage1==0 );
  rc = sqlite3PagerSharedLock(pBt->pPager);
  if( rc!=SQLITE_OK ) return rc;
  rc = btreeGetPage(pBt, 1, &pPage1, 0, 0);
  if( rc!=SQLITE_OK ) return rc;

  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite3PagerPagecount(pBt->pPager, &nPageFile);
................................................................................
  }

  /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  ** that it points at iFreePage. Also fix the pointer map entry for
  ** iPtrPage.
  */
  if( eType!=PTRMAP_ROOTPAGE ){
    rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    rc = sqlite3PagerWrite(pPtrPage->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(pPtrPage);
      return rc;
................................................................................
      }
    } else {
      Pgno iFreePg;             /* Index of free page to move pLastPg to */
      MemPage *pLastPg;
      u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
      Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */

      rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* If bCommit is zero, this loop runs exactly once and page pLastPg
      ** is swapped with the first free page pulled off the free list.
      **
................................................................................
    if( rc2!=SQLITE_OK ){
      rc = rc2;
    }

    /* The rollback may have destroyed the pPage1->aData value.  So
    ** call btreeGetPage() on page 1 again to make
    ** sure pPage1->aData is set correctly. */
    if( btreeGetPage(pBt, 1, &pPage1, 0, 0)==SQLITE_OK ){
      int nPage = get4byte(28+(u8*)pPage1->aData);
      testcase( nPage==0 );
      if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
      testcase( pBt->nPage!=nPage );
      pBt->nPage = nPage;
      releasePage(pPage1);
    }
................................................................................
      }
    }
  }
#endif

  assert( next==0 || rc==SQLITE_DONE );
  if( rc==SQLITE_OK ){
    rc = btreeGetPage(pBt, ovfl, &pPage, 0, (ppPage==0));
    assert( rc==SQLITE_OK || pPage==0 );
    if( rc==SQLITE_OK ){
      next = get4byte(pPage->aData);
    }
  }

  *pPgnoNext = next;
................................................................................
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
              (eOp==0 ? PAGER_ACQUIRE_READONLY : 0)
          );
          if( rc==SQLITE_OK ){
            aPayload = sqlite3PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
            sqlite3PagerUnref(pDbPage);
            offset = 0;
................................................................................
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, newPgno, &pNewPage, (pCur->wrFlag==0));

  if( rc ) return rc;
  pCur->apPage[i+1] = pNewPage;
  pCur->aiIdx[i+1] = 0;
  pCur->iPage++;

  pCur->info.nSize = 0;
  pCur->validNKey = 0;
................................................................................
      releasePage(pCur->apPage[i]);
    }
    pCur->iPage = 0;
  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_OK;
  }else{
    rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0], pCur->wrFlag==0);

    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;

    /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
................................................................................
      }else{
        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0, 0);
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );
................................................................................
          MemPage *pNewTrunk;
          Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
          if( iNewTrunk>mxPage ){ 
            rc = SQLITE_CORRUPT_BKPT;
            goto end_allocate_page;
          }
          testcase( iNewTrunk==mxPage );
          rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0, 0);
          if( rc!=SQLITE_OK ){
            goto end_allocate_page;
          }
          rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
          if( rc!=SQLITE_OK ){
            releasePage(pNewTrunk);
            goto end_allocate_page;
................................................................................
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite3PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;
          if( closest<k-1 ){
            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
          }
          put4byte(&aData[4], k-1);
          noContent = !btreeGetHasContent(pBt, *pPgno);
          rc = btreeGetPage(pBt, *pPgno, ppPage, noContent, 0);
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
            if( rc!=SQLITE_OK ){
              releasePage(*ppPage);
            }
          }
          searchList = 0;
................................................................................
    **
    ** Note that the pager will not actually attempt to load or journal 
    ** content for any page that really does lie past the end of the database
    ** file on disk. So the effects of disabling the no-content optimization
    ** here are confined to those pages that lie between the end of the
    ** database image and the end of the database file.
    */
    int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate));

    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
................................................................................
      /* If *pPgno refers to a pointer-map page, allocate two new pages
      ** at the end of the file instead of one. The first allocated page
      ** becomes a new pointer-map page, the second is used by the caller.
      */
      MemPage *pPg = 0;
      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
      assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
      rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent, 0);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pPg->pDbPage);
        releasePage(pPg);
      }
      if( rc ) return rc;
      pBt->nPage++;
      if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
    }
#endif
    put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
    *pPgno = pBt->nPage;

    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
    rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent, 0);
    if( rc ) return rc;
    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
    }
    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  }
................................................................................
  nFree = get4byte(&pPage1->aData[36]);
  put4byte(&pPage1->aData[36], nFree+1);

  if( pBt->btsFlags & BTS_SECURE_DELETE ){
    /* If the secure_delete option is enabled, then
    ** always fully overwrite deleted information with zeros.
    */
    if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0, 0))!=0) )
     ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
    ){
      goto freepage_out;
    }
    memset(pPage->aData, 0, pPage->pBt->pageSize);
  }

................................................................................
  ** first trunk page in the current free-list. This block tests if it
  ** is possible to add the page as a new free-list leaf.
  */
  if( nFree!=0 ){
    u32 nLeaf;                /* Initial number of leaf cells on trunk page */

    iTrunk = get4byte(&pPage1->aData[32]);
    rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0, 0);
    if( rc!=SQLITE_OK ){
      goto freepage_out;
    }

    nLeaf = get4byte(&pTrunk->aData[4]);
    assert( pBt->usableSize>32 );
    if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
................................................................................

  /* If control flows to this point, then it was not possible to add the
  ** the page being freed as a leaf page of the first trunk in the free-list.
  ** Possibly because the free-list is empty, or possibly because the 
  ** first trunk in the free-list is full. Either way, the page being freed
  ** will become the new first trunk page in the free-list.
  */
  if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0, 0)) ){
    goto freepage_out;
  }
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc!=SQLITE_OK ){
    goto freepage_out;
  }
  put4byte(pPage->aData, iTrunk);
................................................................................
      rc = saveAllCursors(pBt, 0, 0);
      releasePage(pPageMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* Move the page currently at pgnoRoot to pgnoMove. */
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
      if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
        rc = SQLITE_CORRUPT_BKPT;
      }
................................................................................
      rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
      releasePage(pRoot);

      /* Obtain the page at pgnoRoot */
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = sqlite3PagerWrite(pRoot->pDbPage);
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
................................................................................
  ** This error is caught long before control reaches this point.
  */
  if( NEVER(pBt->pCursor) ){
    sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }

  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0, 0);
  if( rc ) return rc;
  rc = sqlite3BtreeClearTable(p, iTable, 0);
  if( rc ){
    releasePage(pPage);
    return rc;
  }

................................................................................
      }else{
        /* The table being dropped does not have the largest root-page
        ** number in the database. So move the page that does into the 
        ** gap left by the deleted root-page.
        */
        MemPage *pMove;
        releasePage(pPage);
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0, 0);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        pMove = 0;
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0, 0);
        freePage(pMove, &rc);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        *piMoved = maxRootPgno;
      }
................................................................................
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( zMsg1 ){
    sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
  }
  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.mallocFailed ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK

................................................................................

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage, zParentContext) ) return 0;
  if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0, 0))!=0 ){
    checkAppendMsg(pCheck, zContext,
       "unable to get the page. error code=%d", rc);
    return 0;
  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */







>
|







 







|
<



<
<

<
>







 







|



>




|







 







|







 







|







 







|







 







|







 







|







 







|







 







|
>







 







|
>







 







|







 







|







 







|
|







 







|







 







|













|







 







|







 







|







 







|







 







|







 







|







 







|







 







|









|







 







|







 







|







936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
....
1581
1582
1583
1584
1585
1586
1587
1588

1589
1590
1591


1592

1593
1594
1595
1596
1597
1598
1599
1600
....
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
....
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
....
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
....
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
....
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
....
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
....
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
....
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
....
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
....
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
....
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
....
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
....
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
....
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
....
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
....
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
....
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
....
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
....
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
....
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
....
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
....
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
....
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954

  pInfo->pCell = pCell;
  assert( pPage->leaf==0 || pPage->leaf==1 );
  n = pPage->childPtrSize;
  assert( n==4-4*pPage->leaf );
  if( pPage->intKey ){
    if( pPage->hasData ){
      assert( n==0 );
      n = getVarint32(pCell, nPayload);
    }else{
      nPayload = 0;
    }
    n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
    pInfo->nData = nPayload;
  }else{
    pInfo->nData = 0;
................................................................................
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
static int btreeGetPage(
  BtShared *pBt,       /* The btree */
  Pgno pgno,           /* Number of the page to fetch */
  MemPage **ppPage,    /* Return the page in this parameter */
  int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */

){
  int rc;
  DbPage *pDbPage;




  assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
  assert( sqlite3_mutex_held(pBt->mutex) );
  rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
  if( rc ) return rc;
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  return SQLITE_OK;
}

................................................................................
** If an error occurs, then the value *ppPage is set to is undefined. It
** may remain unchanged, or it may be set to an invalid value.
*/
static int getAndInitPage(
  BtShared *pBt,                  /* The database file */
  Pgno pgno,                      /* Number of the page to get */
  MemPage **ppPage,               /* Write the page pointer here */
  int bReadonly                   /* PAGER_GET_READONLY or 0 */
){
  int rc;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );

  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
  }else{
    rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
    if( rc==SQLITE_OK ){
      rc = btreeInitPage(*ppPage);
      if( rc!=SQLITE_OK ){
        releasePage(*ppPage);
      }
    }
  }
................................................................................
  int nPageFile = 0;   /* Number of pages in the database file */
  int nPageHeader;     /* Number of pages in the database according to hdr */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pBt->pPage1==0 );
  rc = sqlite3PagerSharedLock(pBt->pPager);
  if( rc!=SQLITE_OK ) return rc;
  rc = btreeGetPage(pBt, 1, &pPage1, 0);
  if( rc!=SQLITE_OK ) return rc;

  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite3PagerPagecount(pBt->pPager, &nPageFile);
................................................................................
  }

  /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  ** that it points at iFreePage. Also fix the pointer map entry for
  ** iPtrPage.
  */
  if( eType!=PTRMAP_ROOTPAGE ){
    rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    rc = sqlite3PagerWrite(pPtrPage->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(pPtrPage);
      return rc;
................................................................................
      }
    } else {
      Pgno iFreePg;             /* Index of free page to move pLastPg to */
      MemPage *pLastPg;
      u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
      Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */

      rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* If bCommit is zero, this loop runs exactly once and page pLastPg
      ** is swapped with the first free page pulled off the free list.
      **
................................................................................
    if( rc2!=SQLITE_OK ){
      rc = rc2;
    }

    /* The rollback may have destroyed the pPage1->aData value.  So
    ** call btreeGetPage() on page 1 again to make
    ** sure pPage1->aData is set correctly. */
    if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
      int nPage = get4byte(28+(u8*)pPage1->aData);
      testcase( nPage==0 );
      if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
      testcase( pBt->nPage!=nPage );
      pBt->nPage = nPage;
      releasePage(pPage1);
    }
................................................................................
      }
    }
  }
#endif

  assert( next==0 || rc==SQLITE_DONE );
  if( rc==SQLITE_OK ){
    rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
    assert( rc==SQLITE_OK || pPage==0 );
    if( rc==SQLITE_OK ){
      next = get4byte(pPage->aData);
    }
  }

  *pPgnoNext = next;
................................................................................
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
              (eOp==0 ? PAGER_GET_READONLY : 0)
          );
          if( rc==SQLITE_OK ){
            aPayload = sqlite3PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
            sqlite3PagerUnref(pDbPage);
            offset = 0;
................................................................................
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, newPgno, &pNewPage,
               pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
  if( rc ) return rc;
  pCur->apPage[i+1] = pNewPage;
  pCur->aiIdx[i+1] = 0;
  pCur->iPage++;

  pCur->info.nSize = 0;
  pCur->validNKey = 0;
................................................................................
      releasePage(pCur->apPage[i]);
    }
    pCur->iPage = 0;
  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_OK;
  }else{
    rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0],
                        pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;

    /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
................................................................................
      }else{
        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );
................................................................................
          MemPage *pNewTrunk;
          Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
          if( iNewTrunk>mxPage ){ 
            rc = SQLITE_CORRUPT_BKPT;
            goto end_allocate_page;
          }
          testcase( iNewTrunk==mxPage );
          rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
          if( rc!=SQLITE_OK ){
            goto end_allocate_page;
          }
          rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
          if( rc!=SQLITE_OK ){
            releasePage(pNewTrunk);
            goto end_allocate_page;
................................................................................
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite3PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;
          if( closest<k-1 ){
            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
          }
          put4byte(&aData[4], k-1);
          noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
          rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
            if( rc!=SQLITE_OK ){
              releasePage(*ppPage);
            }
          }
          searchList = 0;
................................................................................
    **
    ** Note that the pager will not actually attempt to load or journal 
    ** content for any page that really does lie past the end of the database
    ** file on disk. So the effects of disabling the no-content optimization
    ** here are confined to those pages that lie between the end of the
    ** database image and the end of the database file.
    */
    int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;

    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
................................................................................
      /* If *pPgno refers to a pointer-map page, allocate two new pages
      ** at the end of the file instead of one. The first allocated page
      ** becomes a new pointer-map page, the second is used by the caller.
      */
      MemPage *pPg = 0;
      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
      assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
      rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pPg->pDbPage);
        releasePage(pPg);
      }
      if( rc ) return rc;
      pBt->nPage++;
      if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
    }
#endif
    put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
    *pPgno = pBt->nPage;

    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
    rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
    if( rc ) return rc;
    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
    }
    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  }
................................................................................
  nFree = get4byte(&pPage1->aData[36]);
  put4byte(&pPage1->aData[36], nFree+1);

  if( pBt->btsFlags & BTS_SECURE_DELETE ){
    /* If the secure_delete option is enabled, then
    ** always fully overwrite deleted information with zeros.
    */
    if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
     ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
    ){
      goto freepage_out;
    }
    memset(pPage->aData, 0, pPage->pBt->pageSize);
  }

................................................................................
  ** first trunk page in the current free-list. This block tests if it
  ** is possible to add the page as a new free-list leaf.
  */
  if( nFree!=0 ){
    u32 nLeaf;                /* Initial number of leaf cells on trunk page */

    iTrunk = get4byte(&pPage1->aData[32]);
    rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
    if( rc!=SQLITE_OK ){
      goto freepage_out;
    }

    nLeaf = get4byte(&pTrunk->aData[4]);
    assert( pBt->usableSize>32 );
    if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
................................................................................

  /* If control flows to this point, then it was not possible to add the
  ** the page being freed as a leaf page of the first trunk in the free-list.
  ** Possibly because the free-list is empty, or possibly because the 
  ** first trunk in the free-list is full. Either way, the page being freed
  ** will become the new first trunk page in the free-list.
  */
  if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
    goto freepage_out;
  }
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc!=SQLITE_OK ){
    goto freepage_out;
  }
  put4byte(pPage->aData, iTrunk);
................................................................................
      rc = saveAllCursors(pBt, 0, 0);
      releasePage(pPageMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* Move the page currently at pgnoRoot to pgnoMove. */
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
      if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
        rc = SQLITE_CORRUPT_BKPT;
      }
................................................................................
      rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
      releasePage(pRoot);

      /* Obtain the page at pgnoRoot */
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = sqlite3PagerWrite(pRoot->pDbPage);
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
................................................................................
  ** This error is caught long before control reaches this point.
  */
  if( NEVER(pBt->pCursor) ){
    sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }

  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  if( rc ) return rc;
  rc = sqlite3BtreeClearTable(p, iTable, 0);
  if( rc ){
    releasePage(pPage);
    return rc;
  }

................................................................................
      }else{
        /* The table being dropped does not have the largest root-page
        ** number in the database. So move the page that does into the 
        ** gap left by the deleted root-page.
        */
        MemPage *pMove;
        releasePage(pPage);
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        pMove = 0;
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
        freePage(pMove, &rc);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        *piMoved = maxRootPgno;
      }
................................................................................
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( zMsg1 ){
    sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
  }
  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK

................................................................................

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage, zParentContext) ) return 0;
  if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
    checkAppendMsg(pCheck, zContext,
       "unable to get the page. error code=%d", rc);
    return 0;
  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */

Changes to src/expr.c.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
....
3501
3502
3503
3504
3505
3506
3507

3508
3509
3510
3511
3512
3513
3514
  Expr *p = pExpr;
  while( p ){
    int op = p->op;
    if( op==TK_CAST || op==TK_UPLUS ){
      p = p->pLeft;
      continue;
    }
    assert( op!=TK_REGISTER || p->op2!=TK_COLLATE );
    if( op==TK_COLLATE ){
      pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
      break;
    }
    if( p->pTab!=0
     && (op==TK_AGG_COLUMN || op==TK_COLUMN
          || op==TK_REGISTER || op==TK_TRIGGER)
    ){
................................................................................
  compLeft.op = TK_GE;
  compLeft.pLeft = &exprX;
  compLeft.pRight = pExpr->x.pList->a[0].pExpr;
  compRight.op = TK_LE;
  compRight.pLeft = &exprX;
  compRight.pRight = pExpr->x.pList->a[1].pExpr;
  exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);

  exprX.op = TK_REGISTER;
  if( jumpIfTrue ){
    sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
  }else{
    sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
  }
  sqlite3ReleaseTempReg(pParse, regFree1);







<
|







 







>







110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
....
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
  Expr *p = pExpr;
  while( p ){
    int op = p->op;
    if( op==TK_CAST || op==TK_UPLUS ){
      p = p->pLeft;
      continue;
    }

    if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
      pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
      break;
    }
    if( p->pTab!=0
     && (op==TK_AGG_COLUMN || op==TK_COLUMN
          || op==TK_REGISTER || op==TK_TRIGGER)
    ){
................................................................................
  compLeft.op = TK_GE;
  compLeft.pLeft = &exprX;
  compLeft.pRight = pExpr->x.pList->a[0].pExpr;
  compRight.op = TK_LE;
  compRight.pLeft = &exprX;
  compRight.pRight = pExpr->x.pList->a[1].pExpr;
  exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
  exprX.op2 = exprX.op;
  exprX.op = TK_REGISTER;
  if( jumpIfTrue ){
    sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
  }else{
    sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
  }
  sqlite3ReleaseTempReg(pParse, regFree1);

Changes to src/func.c.

1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
    sqlite3StrAccumAppend(pAccum, zVal, nVal);
  }
}
static void groupConcatFinalize(sqlite3_context *context){
  StrAccum *pAccum;
  pAccum = sqlite3_aggregate_context(context, 0);
  if( pAccum ){
    if( pAccum->tooBig ){
      sqlite3_result_error_toobig(context);
    }else if( pAccum->mallocFailed ){
      sqlite3_result_error_nomem(context);
    }else{    
      sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, 
                          sqlite3_free);
    }
  }
}







|

|







1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
    sqlite3StrAccumAppend(pAccum, zVal, nVal);
  }
}
static void groupConcatFinalize(sqlite3_context *context){
  StrAccum *pAccum;
  pAccum = sqlite3_aggregate_context(context, 0);
  if( pAccum ){
    if( pAccum->accError==STRACCUM_TOOBIG ){
      sqlite3_result_error_toobig(context);
    }else if( pAccum->accError==STRACCUM_NOMEM ){
      sqlite3_result_error_nomem(context);
    }else{    
      sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, 
                          sqlite3_free);
    }
  }
}

Changes to src/pager.c.

1018
1019
1020
1021
1022
1023
1024
1025
1026


1027


1028
1029
1030
1031

1032
1033
1034
1035
1036
1037
1038
....
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
....
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
** or more open savepoints for which:
**
**   * The page-number is less than or equal to PagerSavepoint.nOrig, and
**   * The bit corresponding to the page-number is not set in
**     PagerSavepoint.pInSavepoint.
*/
static int subjRequiresPage(PgHdr *pPg){
  Pgno pgno = pPg->pgno;
  Pager *pPager = pPg->pPager;


  int i;


  for(i=0; i<pPager->nSavepoint; i++){
    PagerSavepoint *p = &pPager->aSavepoint[i];
    if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){
      return 1;

    }
  }
  return 0;
}

/*
** Return true if the page is already in the journal file.
................................................................................
  Pgno pgno = pPg->pgno;       /* Page number to read */
  int rc = SQLITE_OK;          /* Return code */
  int pgsz = pPager->pageSize; /* Number of bytes to read */

  assert( pPager->eState>=PAGER_READER && !MEMDB );
  assert( isOpen(pPager->fd) );

  if( NEVER(!isOpen(pPager->fd)) ){
    assert( pPager->tempFile );
    memset(pPg->pData, 0, pPager->pageSize);
    return SQLITE_OK;
  }

#ifndef SQLITE_OMIT_WAL
  if( iFrame ){
    /* Try to pull the page from the write-ahead log. */
    rc = sqlite3WalReadFrame(pPager->pWal, iFrame, pgsz, pPg->pData);
  }else
#endif
  {
................................................................................
** Since Lookup() never goes to disk, it never has to deal with locks
** or journal files.
*/
int sqlite3PagerAcquire(
  Pager *pPager,      /* The pager open on the database file */
  Pgno pgno,          /* Page number to fetch */
  DbPage **ppPage,    /* Write a pointer to the page here */
  int flags           /* PAGER_ACQUIRE_XXX flags */
){
  int rc = SQLITE_OK;
  PgHdr *pPg = 0;
  u32 iFrame = 0;                 /* Frame to read from WAL file */
  const int noContent = (flags & PAGER_ACQUIRE_NOCONTENT);

  /* It is acceptable to use a read-only (mmap) page for any page except
  ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY
  ** flag was specified by the caller. And so long as the db is not a 
  ** temporary or in-memory database.  */
  const int bMmapOk = (pgno!=1 && USEFETCH(pPager)
   && (pPager->eState==PAGER_READER || (flags & PAGER_ACQUIRE_READONLY))
#ifdef SQLITE_HAS_CODEC
   && pPager->xCodec==0
#endif
  );

  assert( pPager->eState>=PAGER_READER );
  assert( assert_pager_state(pPager) );







<

>
>

>
>
|
|
|
|
>







 







<
<
<
<
<
<







 







|




|






|







1018
1019
1020
1021
1022
1023
1024

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
....
2874
2875
2876
2877
2878
2879
2880






2881
2882
2883
2884
2885
2886
2887
....
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
** or more open savepoints for which:
**
**   * The page-number is less than or equal to PagerSavepoint.nOrig, and
**   * The bit corresponding to the page-number is not set in
**     PagerSavepoint.pInSavepoint.
*/
static int subjRequiresPage(PgHdr *pPg){

  Pager *pPager = pPg->pPager;
  PagerSavepoint *p;
  Pgno pgno;
  int i;
  if( pPager->nSavepoint ){
    pgno = pPg->pgno;
    for(i=0; i<pPager->nSavepoint; i++){
      p = &pPager->aSavepoint[i];
      if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){
        return 1;
      }
    }
  }
  return 0;
}

/*
** Return true if the page is already in the journal file.
................................................................................
  Pgno pgno = pPg->pgno;       /* Page number to read */
  int rc = SQLITE_OK;          /* Return code */
  int pgsz = pPager->pageSize; /* Number of bytes to read */

  assert( pPager->eState>=PAGER_READER && !MEMDB );
  assert( isOpen(pPager->fd) );







#ifndef SQLITE_OMIT_WAL
  if( iFrame ){
    /* Try to pull the page from the write-ahead log. */
    rc = sqlite3WalReadFrame(pPager->pWal, iFrame, pgsz, pPg->pData);
  }else
#endif
  {
................................................................................
** Since Lookup() never goes to disk, it never has to deal with locks
** or journal files.
*/
int sqlite3PagerAcquire(
  Pager *pPager,      /* The pager open on the database file */
  Pgno pgno,          /* Page number to fetch */
  DbPage **ppPage,    /* Write a pointer to the page here */
  int flags           /* PAGER_GET_XXX flags */
){
  int rc = SQLITE_OK;
  PgHdr *pPg = 0;
  u32 iFrame = 0;                 /* Frame to read from WAL file */
  const int noContent = (flags & PAGER_GET_NOCONTENT);

  /* It is acceptable to use a read-only (mmap) page for any page except
  ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY
  ** flag was specified by the caller. And so long as the db is not a 
  ** temporary or in-memory database.  */
  const int bMmapOk = (pgno!=1 && USEFETCH(pPager)
   && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY))
#ifdef SQLITE_HAS_CODEC
   && pPager->xCodec==0
#endif
  );

  assert( pPager->eState>=PAGER_READER );
  assert( assert_pager_state(pPager) );

Changes to src/pager.h.

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#define PAGER_JOURNALMODE_TRUNCATE    3   /* Commit by truncating journal */
#define PAGER_JOURNALMODE_MEMORY      4   /* In-memory journal file */
#define PAGER_JOURNALMODE_WAL         5   /* Use write-ahead logging */

/*
** Flags that make up the mask passed to sqlite3PagerAcquire().
*/
#define PAGER_ACQUIRE_NOCONTENT     0x01  /* Do not load data from disk */
#define PAGER_ACQUIRE_READONLY      0x02  /* Read-only page is acceptable */

/*
** Flags for sqlite3PagerSetFlags()
*/
#define PAGER_SYNCHRONOUS_OFF       0x01  /* PRAGMA synchronous=OFF */
#define PAGER_SYNCHRONOUS_NORMAL    0x02  /* PRAGMA synchronous=NORMAL */
#define PAGER_SYNCHRONOUS_FULL      0x03  /* PRAGMA synchronous=FULL */







|
|







77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#define PAGER_JOURNALMODE_TRUNCATE    3   /* Commit by truncating journal */
#define PAGER_JOURNALMODE_MEMORY      4   /* In-memory journal file */
#define PAGER_JOURNALMODE_WAL         5   /* Use write-ahead logging */

/*
** Flags that make up the mask passed to sqlite3PagerAcquire().
*/
#define PAGER_GET_NOCONTENT     0x01  /* Do not load data from disk */
#define PAGER_GET_READONLY      0x02  /* Read-only page is acceptable */

/*
** Flags for sqlite3PagerSetFlags()
*/
#define PAGER_SYNCHRONOUS_OFF       0x01  /* PRAGMA synchronous=OFF */
#define PAGER_SYNCHRONOUS_NORMAL    0x02  /* PRAGMA synchronous=NORMAL */
#define PAGER_SYNCHRONOUS_FULL      0x03  /* PRAGMA synchronous=FULL */

Changes to src/printf.c.

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
...
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
...
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
...
680
681
682
683
684
685
686
687
688
689
690
691
692
693

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
...
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
...
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
...
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
        if( precision<etBUFSIZE-10 ){
          nOut = etBUFSIZE;
          zOut = buf;
        }else{
          nOut = precision + 10;
          zOut = zExtra = sqlite3Malloc( nOut );
          if( zOut==0 ){
            pAccum->mallocFailed = 1;
            return;
          }
        }
        bufpt = &zOut[nOut-1];
        if( xtype==etORDINAL ){
          static const char zOrd[] = "thstndrd";
          int x = (int)(longvalue % 10);
................................................................................
          e2 = 0;
        }else{
          e2 = exp;
        }
        if( MAX(e2,0)+precision+width > etBUFSIZE - 15 ){
          bufpt = zExtra = sqlite3Malloc( MAX(e2,0)+precision+width+15 );
          if( bufpt==0 ){
            pAccum->mallocFailed = 1;
            return;
          }
        }
        zOut = bufpt;
        nsd = 16 + flag_altform2*10;
        flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
        /* The sign in front of the number */
................................................................................
          if( ch==q )  n++;
        }
        needQuote = !isnull && xtype==etSQLESCAPE2;
        n += i + 1 + needQuote*2;
        if( n>etBUFSIZE ){
          bufpt = zExtra = sqlite3Malloc( n );
          if( bufpt==0 ){
            pAccum->mallocFailed = 1;
            return;
          }
        }else{
          bufpt = buf;
        }
        j = 0;
        if( needQuote ) bufpt[j++] = q;
................................................................................
} /* End of function */

/*
** Append N bytes of text from z to the StrAccum object.
*/
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
  assert( z!=0 || N==0 );
  if( p->tooBig | p->mallocFailed ){
    testcase(p->tooBig);
    testcase(p->mallocFailed);
    return;
  }
  assert( p->zText!=0 || p->nChar==0 );
  if( N<0 ){

    N = sqlite3Strlen30(z);
  }
  if( N==0 || NEVER(z==0) ){
    return;
  }
  if( p->nChar+N >= p->nAlloc ){
    char *zNew;
    if( !p->useMalloc ){
      p->tooBig = 1;
      N = p->nAlloc - p->nChar - 1;
      if( N<=0 ){
        return;
      }
    }else{
      char *zOld = (p->zText==p->zBase ? 0 : p->zText);
      i64 szNew = p->nChar;
      szNew += N + 1;
      if( szNew > p->mxAlloc ){
        sqlite3StrAccumReset(p);
        p->tooBig = 1;
        return;
      }else{
        p->nAlloc = (int)szNew;
      }
      if( p->useMalloc==1 ){
        zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
      }else{
        zNew = sqlite3_realloc(zOld, p->nAlloc);
      }
      if( zNew ){
        if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
        p->zText = zNew;
      }else{
        p->mallocFailed = 1;
        sqlite3StrAccumReset(p);
        return;
      }
    }
  }
  assert( p->zText );
  memcpy(&p->zText[p->nChar], z, N);
................................................................................
        p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
      }else{
        p->zText = sqlite3_malloc(p->nChar+1);
      }
      if( p->zText ){
        memcpy(p->zText, p->zBase, p->nChar+1);
      }else{
        p->mallocFailed = 1;
      }
    }
  }
  return p->zText;
}

/*
................................................................................
void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
  p->zText = p->zBase = zBase;
  p->db = 0;
  p->nChar = 0;
  p->nAlloc = n;
  p->mxAlloc = mx;
  p->useMalloc = 1;
  p->tooBig = 0;
  p->mallocFailed = 0;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
*/
char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
................................................................................
  StrAccum acc;
  assert( db!=0 );
  sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  acc.db = db;
  sqlite3VXPrintf(&acc, 1, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  if( acc.mallocFailed ){
    db->mallocFailed = 1;
  }
  return z;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal







|







 







|







 







|







 







|
|
|



|
>


<
<
<



|










|













|







 







|







 







|
<







 







|







355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
...
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
...
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
...
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
...
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
...
777
778
779
780
781
782
783
784

785
786
787
788
789
790
791
...
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
        if( precision<etBUFSIZE-10 ){
          nOut = etBUFSIZE;
          zOut = buf;
        }else{
          nOut = precision + 10;
          zOut = zExtra = sqlite3Malloc( nOut );
          if( zOut==0 ){
            pAccum->accError = STRACCUM_NOMEM;
            return;
          }
        }
        bufpt = &zOut[nOut-1];
        if( xtype==etORDINAL ){
          static const char zOrd[] = "thstndrd";
          int x = (int)(longvalue % 10);
................................................................................
          e2 = 0;
        }else{
          e2 = exp;
        }
        if( MAX(e2,0)+precision+width > etBUFSIZE - 15 ){
          bufpt = zExtra = sqlite3Malloc( MAX(e2,0)+precision+width+15 );
          if( bufpt==0 ){
            pAccum->accError = STRACCUM_NOMEM;
            return;
          }
        }
        zOut = bufpt;
        nsd = 16 + flag_altform2*10;
        flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
        /* The sign in front of the number */
................................................................................
          if( ch==q )  n++;
        }
        needQuote = !isnull && xtype==etSQLESCAPE2;
        n += i + 1 + needQuote*2;
        if( n>etBUFSIZE ){
          bufpt = zExtra = sqlite3Malloc( n );
          if( bufpt==0 ){
            pAccum->accError = STRACCUM_NOMEM;
            return;
          }
        }else{
          bufpt = buf;
        }
        j = 0;
        if( needQuote ) bufpt[j++] = q;
................................................................................
} /* End of function */

/*
** Append N bytes of text from z to the StrAccum object.
*/
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
  assert( z!=0 || N==0 );
  if( p->accError ){
    testcase(p->accError==STRACCUM_TOOBIG);
    testcase(p->accError==STRACCUM_NOMEM);
    return;
  }
  assert( p->zText!=0 || p->nChar==0 );
  if( N<=0 ){
    if( N==0 || z[0]==0 ) return;
    N = sqlite3Strlen30(z);
  }



  if( p->nChar+N >= p->nAlloc ){
    char *zNew;
    if( !p->useMalloc ){
      p->accError = STRACCUM_TOOBIG;
      N = p->nAlloc - p->nChar - 1;
      if( N<=0 ){
        return;
      }
    }else{
      char *zOld = (p->zText==p->zBase ? 0 : p->zText);
      i64 szNew = p->nChar;
      szNew += N + 1;
      if( szNew > p->mxAlloc ){
        sqlite3StrAccumReset(p);
        p->accError = STRACCUM_TOOBIG;
        return;
      }else{
        p->nAlloc = (int)szNew;
      }
      if( p->useMalloc==1 ){
        zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
      }else{
        zNew = sqlite3_realloc(zOld, p->nAlloc);
      }
      if( zNew ){
        if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
        p->zText = zNew;
      }else{
        p->accError = STRACCUM_NOMEM;
        sqlite3StrAccumReset(p);
        return;
      }
    }
  }
  assert( p->zText );
  memcpy(&p->zText[p->nChar], z, N);
................................................................................
        p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
      }else{
        p->zText = sqlite3_malloc(p->nChar+1);
      }
      if( p->zText ){
        memcpy(p->zText, p->zBase, p->nChar+1);
      }else{
        p->accError = STRACCUM_NOMEM;
      }
    }
  }
  return p->zText;
}

/*
................................................................................
void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
  p->zText = p->zBase = zBase;
  p->db = 0;
  p->nChar = 0;
  p->nAlloc = n;
  p->mxAlloc = mx;
  p->useMalloc = 1;
  p->accError = 0;

}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
*/
char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
................................................................................
  StrAccum acc;
  assert( db!=0 );
  sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
                      db->aLimit[SQLITE_LIMIT_LENGTH]);
  acc.db = db;
  sqlite3VXPrintf(&acc, 1, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
  if( acc.accError==STRACCUM_NOMEM ){
    db->mallocFailed = 1;
  }
  return z;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal

Changes to src/random.c.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48

49
50
51
52
53
54
55
..
56
57
58
59
60
61
62




63
64
65
66
67
68
69
..
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
static SQLITE_WSD struct sqlite3PrngType {
  unsigned char isInit;          /* True if initialized */
  unsigned char i, j;            /* State variables */
  unsigned char s[256];          /* State variables */
} sqlite3Prng;

/*
** Get a single 8-bit random value from the RC4 PRNG.  The Mutex
** must be held while executing this routine.
**
** Why not just use a library random generator like lrand48() for this?
** Because the OP_NewRowid opcode in the VDBE depends on having a very
** good source of random numbers.  The lrand48() library function may
** well be good enough.  But maybe not.  Or maybe lrand48() has some
** subtle problems on some systems that could cause problems.  It is hard
** to know.  To minimize the risk of problems due to bad lrand48()
** implementations, SQLite uses this random number generator based
** on RC4, which we know works very well.
**
** (Later):  Actually, OP_NewRowid does not depend on a good source of
** randomness any more.  But we will leave this code in all the same.
*/
static u8 randomByte(void){

  unsigned char t;



  /* The "wsdPrng" macro will resolve to the pseudo-random number generator
  ** state vector.  If writable static data is unsupported on the target,
  ** we have to locate the state vector at run-time.  In the more common
  ** case where writable static data is supported, wsdPrng can refer directly
  ** to the "sqlite3Prng" state vector declared above.
  */
................................................................................
#ifdef SQLITE_OMIT_WSD
  struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
# define wsdPrng p[0]
#else
# define wsdPrng sqlite3Prng
#endif






  /* Initialize the state of the random number generator once,
  ** the first time this routine is called.  The seed value does
  ** not need to contain a lot of randomness since we are not
  ** trying to do secure encryption or anything like that...
  **
  ** Nothing in this file or anywhere else in SQLite does any kind of
................................................................................
      t = wsdPrng.s[wsdPrng.j];
      wsdPrng.s[wsdPrng.j] = wsdPrng.s[i];
      wsdPrng.s[i] = t;
    }
    wsdPrng.isInit = 1;
  }

  /* Generate and return single random byte
  */
  wsdPrng.i++;
  t = wsdPrng.s[wsdPrng.i];
  wsdPrng.j += t;
  wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j];
  wsdPrng.s[wsdPrng.j] = t;
  t += wsdPrng.s[wsdPrng.i];
  return wsdPrng.s[t];
}

/*
** Return N random bytes.
*/
void sqlite3_randomness(int N, void *pBuf){
  unsigned char *zBuf = pBuf;
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
#endif
  sqlite3_mutex_enter(mutex);
  while( N-- ){
    *(zBuf++) = randomByte();
  }
  sqlite3_mutex_leave(mutex);
}

#ifndef SQLITE_OMIT_BUILTIN_TEST
/*
** For testing purposes, we sometimes want to preserve the state of







|
<
<
<
<
<
<
<
<
<
<
<
<
<

<
>

<
>







 







>
>
>
>







 







|
<
|
|
|
|
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<







24
25
26
27
28
29
30
31













32

33
34

35
36
37
38
39
40
41
42
..
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
..
75
76
77
78
79
80
81
82

83
84
85
86
87
88
89













90
91
92
93
94
95
96
static SQLITE_WSD struct sqlite3PrngType {
  unsigned char isInit;          /* True if initialized */
  unsigned char i, j;            /* State variables */
  unsigned char s[256];          /* State variables */
} sqlite3Prng;

/*
** Return N random bytes.













*/

void sqlite3_randomness(int N, void *pBuf){
  unsigned char t;

  unsigned char *zBuf = pBuf;

  /* The "wsdPrng" macro will resolve to the pseudo-random number generator
  ** state vector.  If writable static data is unsupported on the target,
  ** we have to locate the state vector at run-time.  In the more common
  ** case where writable static data is supported, wsdPrng can refer directly
  ** to the "sqlite3Prng" state vector declared above.
  */
................................................................................
#ifdef SQLITE_OMIT_WSD
  struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
# define wsdPrng p[0]
#else
# define wsdPrng sqlite3Prng
#endif

#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
  sqlite3_mutex_enter(mutex);
#endif

  /* Initialize the state of the random number generator once,
  ** the first time this routine is called.  The seed value does
  ** not need to contain a lot of randomness since we are not
  ** trying to do secure encryption or anything like that...
  **
  ** Nothing in this file or anywhere else in SQLite does any kind of
................................................................................
      t = wsdPrng.s[wsdPrng.j];
      wsdPrng.s[wsdPrng.j] = wsdPrng.s[i];
      wsdPrng.s[i] = t;
    }
    wsdPrng.isInit = 1;
  }

  while( N-- ){

    wsdPrng.i++;
    t = wsdPrng.s[wsdPrng.i];
    wsdPrng.j += t;
    wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j];
    wsdPrng.s[wsdPrng.j] = t;
    t += wsdPrng.s[wsdPrng.i];
    *(zBuf++) = wsdPrng.s[t];













  }
  sqlite3_mutex_leave(mutex);
}

#ifndef SQLITE_OMIT_BUILTIN_TEST
/*
** For testing purposes, we sometimes want to preserve the state of

Changes to src/sqliteInt.h.

2433
2434
2435
2436
2437
2438
2439
2440
2441
2442

2443


2444
2445
2446
2447
2448
2449
2450
....
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174

3175
3176
3177
3178
3179
3180
3181
struct StrAccum {
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  char *zBase;         /* A base allocation.  Not from malloc. */
  char *zText;         /* The string collected so far */
  int  nChar;          /* Length of the string so far */
  int  nAlloc;         /* Amount of space allocated in zText */
  int  mxAlloc;        /* Maximum allowed string length */
  u8   mallocFailed;   /* Becomes true if any memory allocation fails */
  u8   useMalloc;      /* 0: none,  1: sqlite3DbMalloc,  2: sqlite3_malloc */
  u8   tooBig;         /* Becomes true if string size exceeds limits */

};



/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
typedef struct {
  sqlite3 *db;        /* The database being initialized */
................................................................................
#  define sqlite3VtabUnlock(X)
#  define sqlite3VtabUnlockList(X)
#  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
#  define sqlite3GetVTable(X,Y)  ((VTable*)0)
#else
   void sqlite3VtabClear(sqlite3 *db, Table*);
   void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
   int sqlite3VtabSync(sqlite3 *db, char **);
   int sqlite3VtabRollback(sqlite3 *db);
   int sqlite3VtabCommit(sqlite3 *db);
   void sqlite3VtabLock(VTable *);
   void sqlite3VtabUnlock(VTable *);
   void sqlite3VtabUnlockList(sqlite3*);
   int sqlite3VtabSavepoint(sqlite3 *, int, int);

   VTable *sqlite3GetVTable(sqlite3*, Table*);
#  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
#endif
void sqlite3VtabMakeWritable(Parse*,Table*);
void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
void sqlite3VtabFinishParse(Parse*, Token*);
void sqlite3VtabArgInit(Parse*);







<

<
>

>
>







 







|






>







2433
2434
2435
2436
2437
2438
2439

2440

2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
....
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
struct StrAccum {
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  char *zBase;         /* A base allocation.  Not from malloc. */
  char *zText;         /* The string collected so far */
  int  nChar;          /* Length of the string so far */
  int  nAlloc;         /* Amount of space allocated in zText */
  int  mxAlloc;        /* Maximum allowed string length */

  u8   useMalloc;      /* 0: none,  1: sqlite3DbMalloc,  2: sqlite3_malloc */

  u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
};
#define STRACCUM_NOMEM   1
#define STRACCUM_TOOBIG  2

/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
typedef struct {
  sqlite3 *db;        /* The database being initialized */
................................................................................
#  define sqlite3VtabUnlock(X)
#  define sqlite3VtabUnlockList(X)
#  define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
#  define sqlite3GetVTable(X,Y)  ((VTable*)0)
#else
   void sqlite3VtabClear(sqlite3 *db, Table*);
   void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
   int sqlite3VtabSync(sqlite3 *db, Vdbe*);
   int sqlite3VtabRollback(sqlite3 *db);
   int sqlite3VtabCommit(sqlite3 *db);
   void sqlite3VtabLock(VTable *);
   void sqlite3VtabUnlock(VTable *);
   void sqlite3VtabUnlockList(sqlite3*);
   int sqlite3VtabSavepoint(sqlite3 *, int, int);
   void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
   VTable *sqlite3GetVTable(sqlite3*, Table*);
#  define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
#endif
void sqlite3VtabMakeWritable(Parse*,Table*);
void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
void sqlite3VtabFinishParse(Parse*, Token*);
void sqlite3VtabArgInit(Parse*);

Changes to src/vdbe.c.

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
....
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
....
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
....
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
....
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
....
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
....
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
....
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
....
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
  Savepoint *p;
  for(p=db->pSavepoint; p; p=p->pNext) n++;
  assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
  return 1;
}
#endif

/*
** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite3DbMalloc).
*/
static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
  sqlite3 *db = p->db;
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
  sqlite3_free(pVtab->zErrMsg);
  pVtab->zErrMsg = 0;
}


/*
** Execute as much of a VDBE program as we can then return.
**
** sqlite3VdbeMakeReady() must be called before this routine in order to
** close the program with a final OP_Halt and to set up the callbacks
** and the error message pointer.
................................................................................
    v = pC->movetoTarget;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->pVtabCursor ){
    pVtab = pC->pVtabCursor->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    importVtabErrMsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->pCursor!=0 );
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->rowidIsValid ){
      v = pC->lastRowid;
................................................................................
** within a callback to a virtual table xSync() method. If it is, the error
** code will be set to SQLITE_LOCKED.
*/
case OP_VBegin: {
  VTable *pVTab;
  pVTab = pOp->p4.pVtab;
  rc = sqlite3VtabBegin(db, pVTab);
  if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 * * P4 *
**
................................................................................
  assert( p->bIsReader );
  pCur = 0;
  pVtabCursor = 0;
  pVtab = pOp->p4.pVtab->pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;
  assert(pVtab && pModule);
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  importVtabErrMsg(p, pVtab);
  if( SQLITE_OK==rc ){
    /* Initialize sqlite3_vtab_cursor base class */
    pVtabCursor->pVtab = pVtab;

    /* Initialize vdbe cursor object */
    pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
    if( pCur ){
................................................................................
      apArg[i] = &pArgc[i+1];
      sqlite3VdbeMemStoreType(apArg[i]);
    }

    p->inVtabMethod = 1;
    rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
    p->inVtabMethod = 0;
    importVtabErrMsg(p, pVtab);
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pVtabCursor);
    }

    if( res ){
      pc = pOp->p2 - 1;
    }
................................................................................
  ** can use the already allocated buffer instead of allocating a 
  ** new one.
  */
  sqlite3VdbeMemMove(&sContext.s, pDest);
  MemSetTypeFlag(&sContext.s, MEM_Null);

  rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
  importVtabErrMsg(p, pVtab);
  if( sContext.isError ){
    rc = sContext.isError;
  }

  /* Copy the result of the function to the P3 register. We
  ** do this regardless of whether or not an error occurred to ensure any
  ** dynamic allocation in sContext.s (a Mem struct) is  released.
................................................................................
  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
  ** data is available) and the error code returned when xColumn or
  ** some other method is next invoked on the save virtual table cursor.
  */
  p->inVtabMethod = 1;
  rc = pModule->xNext(pCur->pVtabCursor);
  p->inVtabMethod = 0;
  importVtabErrMsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pCur->pVtabCursor);
  }

  if( !res ){
    /* If there is data, jump to P2 */
    pc = pOp->p2 - 1;
................................................................................
  assert( pName->flags & MEM_Str );
  testcase( pName->enc==SQLITE_UTF8 );
  testcase( pName->enc==SQLITE_UTF16BE );
  testcase( pName->enc==SQLITE_UTF16LE );
  rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
  if( rc==SQLITE_OK ){
    rc = pVtab->pModule->xRename(pVtab, pName->z);
    importVtabErrMsg(p, pVtab);
    p->expired = 0;
  }
  break;
}
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE
................................................................................
      sqlite3VdbeMemStoreType(pX);
      apArg[i] = pX;
      pX++;
    }
    db->vtabOnConflict = pOp->p5;
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
    db->vtabOnConflict = vtabOnConflict;
    importVtabErrMsg(p, pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
      db->lastRowid = lastRowid = rowid;
    }
    if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
      if( pOp->p5==OE_Ignore ){
        rc = SQLITE_OK;







<
<
<
<
<
<
<
<
<
<
<
<
<







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







503
504
505
506
507
508
509













510
511
512
513
514
515
516
....
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
....
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
....
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
....
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
....
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
....
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
....
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
....
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
  Savepoint *p;
  for(p=db->pSavepoint; p; p=p->pNext) n++;
  assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
  return 1;
}
#endif















/*
** Execute as much of a VDBE program as we can then return.
**
** sqlite3VdbeMakeReady() must be called before this routine in order to
** close the program with a final OP_Halt and to set up the callbacks
** and the error message pointer.
................................................................................
    v = pC->movetoTarget;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->pVtabCursor ){
    pVtab = pC->pVtabCursor->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    sqlite3VtabImportErrmsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->pCursor!=0 );
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->rowidIsValid ){
      v = pC->lastRowid;
................................................................................
** within a callback to a virtual table xSync() method. If it is, the error
** code will be set to SQLITE_LOCKED.
*/
case OP_VBegin: {
  VTable *pVTab;
  pVTab = pOp->p4.pVtab;
  rc = sqlite3VtabBegin(db, pVTab);
  if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 * * P4 *
**
................................................................................
  assert( p->bIsReader );
  pCur = 0;
  pVtabCursor = 0;
  pVtab = pOp->p4.pVtab->pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;
  assert(pVtab && pModule);
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( SQLITE_OK==rc ){
    /* Initialize sqlite3_vtab_cursor base class */
    pVtabCursor->pVtab = pVtab;

    /* Initialize vdbe cursor object */
    pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
    if( pCur ){
................................................................................
      apArg[i] = &pArgc[i+1];
      sqlite3VdbeMemStoreType(apArg[i]);
    }

    p->inVtabMethod = 1;
    rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
    p->inVtabMethod = 0;
    sqlite3VtabImportErrmsg(p, pVtab);
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pVtabCursor);
    }

    if( res ){
      pc = pOp->p2 - 1;
    }
................................................................................
  ** can use the already allocated buffer instead of allocating a 
  ** new one.
  */
  sqlite3VdbeMemMove(&sContext.s, pDest);
  MemSetTypeFlag(&sContext.s, MEM_Null);

  rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( sContext.isError ){
    rc = sContext.isError;
  }

  /* Copy the result of the function to the P3 register. We
  ** do this regardless of whether or not an error occurred to ensure any
  ** dynamic allocation in sContext.s (a Mem struct) is  released.
................................................................................
  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
  ** data is available) and the error code returned when xColumn or
  ** some other method is next invoked on the save virtual table cursor.
  */
  p->inVtabMethod = 1;
  rc = pModule->xNext(pCur->pVtabCursor);
  p->inVtabMethod = 0;
  sqlite3VtabImportErrmsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pCur->pVtabCursor);
  }

  if( !res ){
    /* If there is data, jump to P2 */
    pc = pOp->p2 - 1;
................................................................................
  assert( pName->flags & MEM_Str );
  testcase( pName->enc==SQLITE_UTF8 );
  testcase( pName->enc==SQLITE_UTF16BE );
  testcase( pName->enc==SQLITE_UTF16LE );
  rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
  if( rc==SQLITE_OK ){
    rc = pVtab->pModule->xRename(pVtab, pName->z);
    sqlite3VtabImportErrmsg(p, pVtab);
    p->expired = 0;
  }
  break;
}
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE
................................................................................
      sqlite3VdbeMemStoreType(pX);
      apArg[i] = pX;
      pX++;
    }
    db->vtabOnConflict = pOp->p5;
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
    db->vtabOnConflict = vtabOnConflict;
    sqlite3VtabImportErrmsg(p, pVtab);
    if( rc==SQLITE_OK && pOp->p1 ){
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
      db->lastRowid = lastRowid = rowid;
    }
    if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
      if( pOp->p5==OE_Ignore ){
        rc = SQLITE_OK;

Changes to src/vdbeaux.c.

1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
....
3303
3304
3305
3306
3307
3308
3309















3310
3311
3312
3313
3314
3315
3316

  /* Before doing anything else, call the xSync() callback for any
  ** virtual module tables written in this transaction. This has to
  ** be done before determining whether a master journal file is 
  ** required, as an xSync() callback may add an attached database
  ** to the transaction.
  */
  rc = sqlite3VtabSync(db, &p->zErrMsg);

  /* This loop determines (a) if the commit hook should be invoked and
  ** (b) how many database files have open write transactions, not 
  ** including the temp database. (b) is important because if more than 
  ** one database file has an open write transaction, a master journal
  ** file is required for an atomic commit.
  */ 
................................................................................
  if( iVar>32 ){
    v->expmask = 0xffffffff;
  }else{
    v->expmask |= ((u32)1 << (iVar-1));
  }
}
















#ifdef SQLITE_ENABLE_PREUPDATE_HOOK

/*
** If the second argument is not NULL, release any allocations associated 
** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
** structure itself, using sqlite3DbFree().
**







|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
....
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331

  /* Before doing anything else, call the xSync() callback for any
  ** virtual module tables written in this transaction. This has to
  ** be done before determining whether a master journal file is 
  ** required, as an xSync() callback may add an attached database
  ** to the transaction.
  */
  rc = sqlite3VtabSync(db, p);

  /* This loop determines (a) if the commit hook should be invoked and
  ** (b) how many database files have open write transactions, not 
  ** including the temp database. (b) is important because if more than 
  ** one database file has an open write transaction, a master journal
  ** file is required for an atomic commit.
  */ 
................................................................................
  if( iVar>32 ){
    v->expmask = 0xffffffff;
  }else{
    v->expmask |= ((u32)1 << (iVar-1));
  }
}

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite3DbMalloc).
*/
void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
  sqlite3 *db = p->db;
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
  sqlite3_free(pVtab->zErrMsg);
  pVtab->zErrMsg = 0;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_PREUPDATE_HOOK

/*
** If the second argument is not NULL, release any allocations associated 
** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
** structure itself, using sqlite3DbFree().
**

Changes to src/vdbemem.c.

795
796
797
798
799
800
801
802


803
804
805
806
807
808
809
810
811
812
813
814
815


816
817
818

819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
  }

  /* If one value is a number and the other is not, the number is less.
  ** If both are numbers, compare as reals if one is a real, or as integers
  ** if both values are integers.
  */
  if( combined_flags&(MEM_Int|MEM_Real) ){
    if( !(f1&(MEM_Int|MEM_Real)) ){


      return 1;
    }
    if( !(f2&(MEM_Int|MEM_Real)) ){
      return -1;
    }
    if( (f1 & f2 & MEM_Int)==0 ){
      double r1, r2;
      if( (f1&MEM_Real)==0 ){
        r1 = (double)pMem1->u.i;
      }else{
        r1 = pMem1->r;
      }
      if( (f2&MEM_Real)==0 ){


        r2 = (double)pMem2->u.i;
      }else{
        r2 = pMem2->r;

      }
      if( r1<r2 ) return -1;
      if( r1>r2 ) return 1;
      return 0;
    }else{
      assert( f1&MEM_Int );
      assert( f2&MEM_Int );
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return 1;
      return 0;
    }
  }

  /* If one value is a string and the other is a blob, the string is less.
  ** If both are strings, compare using the collating functions.
  */
  if( combined_flags&MEM_Str ){
    if( (f1 & MEM_Str)==0 ){







|
>
>
|
<
<
|

|
|
|
|
|
|
|
|
>
>
|
|
<
>
|
|
|
|
<
<
<
<
<
<
<







795
796
797
798
799
800
801
802
803
804
805


806
807
808
809
810
811
812
813
814
815
816
817
818
819

820
821
822
823
824







825
826
827
828
829
830
831
  }

  /* If one value is a number and the other is not, the number is less.
  ** If both are numbers, compare as reals if one is a real, or as integers
  ** if both values are integers.
  */
  if( combined_flags&(MEM_Int|MEM_Real) ){
    double r1, r2;
    if( (f1 & f2 & MEM_Int)!=0 ){
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return 1;


      return 0;
    }
    if( (f1&MEM_Real)!=0 ){
      r1 = pMem1->r;
    }else if( (f1&MEM_Int)!=0 ){
      r1 = (double)pMem1->u.i;
    }else{
      return 1;
    }
    if( (f2&MEM_Real)!=0 ){
      r2 = pMem2->r;
    }else if( (f2&MEM_Int)!=0 ){
      r2 = (double)pMem2->u.i;
    }else{

      return -1;
    }
    if( r1<r2 ) return -1;
    if( r1>r2 ) return 1;
    return 0;







  }

  /* If one value is a string and the other is a blob, the string is less.
  ** If both are strings, compare using the collating functions.
  */
  if( combined_flags&MEM_Str ){
    if( (f1 & MEM_Str)==0 ){

Changes to src/vtab.c.

806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
}

/*
** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
** array. Return the error code for the first error that occurs, or
** SQLITE_OK if all xSync operations are successful.
**
** Set *pzErrmsg to point to a buffer that should be released using 
** sqlite3DbFree() containing an error message, if one is available.
*/
int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
  int i;
  int rc = SQLITE_OK;
  VTable **aVTrans = db->aVTrans;

  db->aVTrans = 0;
  for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
    int (*x)(sqlite3_vtab *);
    sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
    if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
      rc = x(pVtab);
      sqlite3DbFree(db, *pzErrmsg);
      *pzErrmsg = pVtab->zErrMsg;
      pVtab->zErrMsg = 0;
    }
  }
  db->aVTrans = aVTrans;
  return rc;
}

/*







|
<

|










|
<
<







806
807
808
809
810
811
812
813

814
815
816
817
818
819
820
821
822
823
824
825
826


827
828
829
830
831
832
833
}

/*
** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
** array. Return the error code for the first error that occurs, or
** SQLITE_OK if all xSync operations are successful.
**
** If an error message is available, leave it in p->zErrMsg.

*/
int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
  int i;
  int rc = SQLITE_OK;
  VTable **aVTrans = db->aVTrans;

  db->aVTrans = 0;
  for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
    int (*x)(sqlite3_vtab *);
    sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
    if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
      rc = x(pVtab);
      sqlite3VtabImportErrmsg(p, pVtab);


    }
  }
  db->aVTrans = aVTrans;
  return rc;
}

/*

Changes to src/where.c.

86
87
88
89
90
91
92

93
94
95
96
97
98
99
....
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
....
3117
3118
3119
3120
3121
3122
3123

3124
3125
3126
3127
3128
3129
3130
3131
....
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343

4344
4345
4346
4347
4348
4349
4350
4351
4352
....
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
....
6010
6011
6012
6013
6014
6015
6016







6017

6018
6019
6020
6021
6022
6023
6024
....
6130
6131
6132
6133
6134
6135
6136
6137
6138


6139
6140
6141
6142
6143
6144
6145
6146
  int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
  int iTabCur;          /* The VDBE cursor used to access the table */
  int iIdxCur;          /* The VDBE cursor used to access pIdx */
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */

  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on pWLoop->wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
................................................................................
  zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
  if( !zAff ){
    pParse->db->mallocFailed = 1;
  }

  /* Evaluate the equality constraints
  */
  assert( pIdx->nColumn>=nEq );
  for(j=0; j<nEq; j++){
    int r1;
    pTerm = pLoop->aLTerm[j];
    assert( pTerm!=0 );
    /* The following true for indices with redundant columns. 
    ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
    testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
................................................................................
  if( nEq==0 && (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
    return 0;
  }
  sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
  txt.db = db;
  sqlite3StrAccumAppend(&txt, " (", 2);
  for(i=0; i<nEq; i++){

    explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i++, z, ">");
  }
................................................................................
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pNew->rSetup = 0;
  rLogSize = estLog(whereCost(pProbe->aiRowEst[0]));
  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
    int nIn = 0;
    if( pTerm->prereqRight & pNew->maskSelf ) continue;
#ifdef SQLITE_ENABLE_STAT3
    if( (pTerm->wtFlags & TERM_VNULL)!=0
     && (iCol<0 || pSrc->pTab->aCol[iCol].notNull)
    ){
      continue; /* skip IS NOT NULL constraints on a NOT NULL column */

    }
#endif
    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;
    pNew->nLTerm = saved_nLTerm;
    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
    pNew->aLTerm[pNew->nLTerm++] = pTerm;
    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
    pNew->rRun = rLogSize; /* Baseline cost is log2(N).  Adjustments below */
................................................................................
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }
    }else{
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
    }
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
      constructAutomaticIndex(pParse, &pWInfo->sWC, pTabItem, notReady, pLevel);
    }else
#endif
    if( pLoop->wsFlags & WHERE_INDEXED ){
      Index *pIx = pLoop->u.btree.pIndex;
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
      /* FIXME:  As an optimization use pTabItem->iCursor if WHERE_IDX_ONLY */
      int iIndexCur = pLevel->iIdxCur = iIdxCur ? iIdxCur : pParse->nTab++;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
................................................................................
  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){
    pLevel = &pWInfo->a[ii];







    explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);

    notReady = codeOneLoopStart(pWInfo, ii, notReady);
    pWInfo->iContinue = pLevel->addrCont;
  }

  /* Done. */
  return pWInfo;

................................................................................
    }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
      pIdx = pLevel->u.pCovidx;
    }
    if( pIdx && !db->mallocFailed ){
      int k, j, last;
      VdbeOp *pOp;

      pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
      last = sqlite3VdbeCurrentAddr(v);


      for(k=pWInfo->iTop; k<last; k++, pOp++){
        if( pOp->p1!=pLevel->iTabCur ) continue;
        if( pOp->opcode==OP_Column ){
          for(j=0; j<pIdx->nColumn; j++){
            if( pOp->p2==pIdx->aiColumn[j] ){
              pOp->p2 = j;
              pOp->p1 = pLevel->iIdxCur;
              break;







>







 







|







 







>
|







 







|
<


<
>

<







 







<
<
<
<
<







 







>
>
>
>
>
>
>

>







 







<

>
>
|







86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
....
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
....
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
....
4334
4335
4336
4337
4338
4339
4340
4341

4342
4343

4344
4345

4346
4347
4348
4349
4350
4351
4352
....
5981
5982
5983
5984
5985
5986
5987





5988
5989
5990
5991
5992
5993
5994
....
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
....
6133
6134
6135
6136
6137
6138
6139

6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
  int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
  int iTabCur;          /* The VDBE cursor used to access the table */
  int iIdxCur;          /* The VDBE cursor used to access pIdx */
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  int addrBody;         /* Beginning of the body of this loop */
  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on pWLoop->wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
................................................................................
  zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
  if( !zAff ){
    pParse->db->mallocFailed = 1;
  }

  /* Evaluate the equality constraints
  */
  assert( zAff==0 || strlen(zAff)>=nEq );
  for(j=0; j<nEq; j++){
    int r1;
    pTerm = pLoop->aLTerm[j];
    assert( pTerm!=0 );
    /* The following true for indices with redundant columns. 
    ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
    testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
................................................................................
  if( nEq==0 && (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
    return 0;
  }
  sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
  txt.db = db;
  sqlite3StrAccumAppend(&txt, " (", 2);
  for(i=0; i<nEq; i++){
    char *z = (i==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[i]].zName;
    explainAppendTerm(&txt, i, z, "=");
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i++, z, ">");
  }
................................................................................
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pNew->rSetup = 0;
  rLogSize = estLog(whereCost(pProbe->aiRowEst[0]));
  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
    int nIn = 0;
    if( pTerm->prereqRight & pNew->maskSelf ) continue;
    if( (pTerm->eOperator==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)

     && (iCol<0 || pSrc->pTab->aCol[iCol].notNull)
    ){

      continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
    }

    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;
    pNew->nLTerm = saved_nLTerm;
    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
    pNew->aLTerm[pNew->nLTerm++] = pTerm;
    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
    pNew->rRun = rLogSize; /* Baseline cost is log2(N).  Adjustments below */
................................................................................
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }
    }else{
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
    }





    if( pLoop->wsFlags & WHERE_INDEXED ){
      Index *pIx = pLoop->u.btree.pIndex;
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
      /* FIXME:  As an optimization use pTabItem->iCursor if WHERE_IDX_ONLY */
      int iIndexCur = pLevel->iIdxCur = iIdxCur ? iIdxCur : pParse->nTab++;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
................................................................................
  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){
    pLevel = &pWInfo->a[ii];
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
      constructAutomaticIndex(pParse, &pWInfo->sWC,
                &pTabList->a[pLevel->iFrom], notReady, pLevel);
      if( db->mallocFailed ) goto whereBeginError;
    }
#endif
    explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);
    pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
    notReady = codeOneLoopStart(pWInfo, ii, notReady);
    pWInfo->iContinue = pLevel->addrCont;
  }

  /* Done. */
  return pWInfo;

................................................................................
    }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
      pIdx = pLevel->u.pCovidx;
    }
    if( pIdx && !db->mallocFailed ){
      int k, j, last;
      VdbeOp *pOp;


      last = sqlite3VdbeCurrentAddr(v);
      k = pLevel->addrBody;
      pOp = sqlite3VdbeGetOp(v, k);
      for(; k<last; k++, pOp++){
        if( pOp->p1!=pLevel->iTabCur ) continue;
        if( pOp->opcode==OP_Column ){
          for(j=0; j<pIdx->nColumn; j++){
            if( pOp->p2==pIdx->aiColumn[j] ){
              pOp->p2 = j;
              pOp->p1 = pLevel->iIdxCur;
              break;

Changes to test/collate2.test.

13
14
15
16
17
18
19


20
21
22
23
24
25
26
...
688
689
690
691
692
693
694
695


























696
# focus of this script is page cache subsystem.
#
# $Id: collate2.test,v 1.6 2008/08/20 16:35:10 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl



#
# Tests are organised as follows:
#
# collate2-1.* WHERE <expr> expressions (sqliteExprIfTrue).
# collate2-2.* WHERE NOT <expr> expressions (sqliteExprIfFalse).
# collate2-3.* SELECT <expr> expressions (sqliteExprCode).
# collate2-4.* Precedence of collation/data types in binary comparisons
................................................................................
  }
} {{} aa {} {} {} aa {} {} {} aa {} {} {} aa {} {} {}}
do_test collate2-5.5 {
  execsql {
    SELECT collate2t1.b, collate2t2.b FROM collate2t2 LEFT OUTER JOIN collate2t1 USING (b);
  }
} {aa aa}



























finish_test







>
>







 








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
...
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# focus of this script is page cache subsystem.
#
# $Id: collate2.test,v 1.6 2008/08/20 16:35:10 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

set ::testprefix collate2

#
# Tests are organised as follows:
#
# collate2-1.* WHERE <expr> expressions (sqliteExprIfTrue).
# collate2-2.* WHERE NOT <expr> expressions (sqliteExprIfFalse).
# collate2-3.* SELECT <expr> expressions (sqliteExprCode).
# collate2-4.* Precedence of collation/data types in binary comparisons
................................................................................
  }
} {{} aa {} {} {} aa {} {} {} aa {} {} {} aa {} {} {}}
do_test collate2-5.5 {
  execsql {
    SELECT collate2t1.b, collate2t2.b FROM collate2t2 LEFT OUTER JOIN collate2t1 USING (b);
  }
} {aa aa}

do_execsql_test 6.1 {
  CREATE TABLE t1(x);
  INSERT INTO t1 VALUES('b');
  INSERT INTO t1 VALUES('B');
}
do_execsql_test 6.2 {
  SELECT * FROM t1 WHERE x COLLATE nocase BETWEEN 'a' AND 'c';
} {b B}
do_execsql_test 6.3 {
  SELECT * FROM t1 WHERE x BETWEEN 'a' COLLATE nocase AND 'c' COLLATE nocase;
} {b B}
do_execsql_test 6.4 {
  SELECT * FROM t1 
  WHERE x COLLATE nocase BETWEEN 'a' COLLATE nocase AND 'c' COLLATE nocase;
} {b B}
do_execsql_test 6.5 {
  SELECT * FROM t1 WHERE +x COLLATE nocase BETWEEN 'a' AND 'c';
} {b B}
do_execsql_test 6.6 {
  SELECT * FROM t1 WHERE +x BETWEEN 'a' COLLATE nocase AND 'c' COLLATE nocase;
} {b B}
do_execsql_test 6.7 {
  SELECT * FROM t1 
  WHERE +x COLLATE nocase BETWEEN 'a' COLLATE nocase AND 'c' COLLATE nocase;
} {b B}

finish_test

Changes to test/corruptG.test.

27
28
29
30
31
32
33


34
35
36
37
38
39
40
41
42
43
..
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
do_execsql_test 1.1 {
  PRAGMA page_size=512;
  CREATE TABLE t1(a,b,c);
  INSERT INTO t1(rowid,a,b,c) VALUES(52,'abc','xyz','123');
  CREATE INDEX t1abc ON t1(a,b,c);
}



# Corrupt the file
db close
hexio_write test.db [expr {3*512 - 15}] 888080807f
sqlite3 db test.db

# Try to use the file.
do_test 1.2 {
  catchsql {
    SELECT c FROM t1 WHERE a>'abc';
  }
................................................................................
} {1 {database disk image is malformed}}

# Corrupt the same file in a slightly different way.  Make the record header
# sane, but corrupt one of the serial_type value to indicate a huge payload
# such that the payload begins in allocated space but overflows the buffer.
#
db close
hexio_write test.db [expr {3*512-15}] 0513ff7f01
sqlite3 db test.db

do_test 2.1 {
  catchsql {
    SELECT rowid FROM t1 WHERE a='abc' and b='xyz123456789XYZ';
  }
  # The following test result is brittle.  The point above is to try to







>
>


|







 







|







27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
..
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
do_execsql_test 1.1 {
  PRAGMA page_size=512;
  CREATE TABLE t1(a,b,c);
  INSERT INTO t1(rowid,a,b,c) VALUES(52,'abc','xyz','123');
  CREATE INDEX t1abc ON t1(a,b,c);
}

set idxroot [db one {SELECT rootpage FROM sqlite_master WHERE name = 't1abc'}]

# Corrupt the file
db close
hexio_write test.db [expr {$idxroot*512 - 15}] 888080807f
sqlite3 db test.db

# Try to use the file.
do_test 1.2 {
  catchsql {
    SELECT c FROM t1 WHERE a>'abc';
  }
................................................................................
} {1 {database disk image is malformed}}

# Corrupt the same file in a slightly different way.  Make the record header
# sane, but corrupt one of the serial_type value to indicate a huge payload
# such that the payload begins in allocated space but overflows the buffer.
#
db close
hexio_write test.db [expr {$idxroot*512-15}] 0513ff7f01
sqlite3 db test.db

do_test 2.1 {
  catchsql {
    SELECT rowid FROM t1 WHERE a='abc' and b='xyz123456789XYZ';
  }
  # The following test result is brittle.  The point above is to try to

Changes to test/index6.test.

11
12
13
14
15
16
17





18
19
20
21
22
23
24
#
# Test cases for partial indices
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl






load_static_extension db wholenumber;
do_test index6-1.1 {
  # Able to parse and manage partial indices
  execsql {
    CREATE TABLE t1(a,b,c);
    CREATE INDEX t1a ON t1(a) WHERE a IS NOT NULL;







>
>
>
>
>







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#
# Test cases for partial indices
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !vtab {
  finish_test
  return
}

load_static_extension db wholenumber;
do_test index6-1.1 {
  # Able to parse and manage partial indices
  execsql {
    CREATE TABLE t1(a,b,c);
    CREATE INDEX t1a ON t1(a) WHERE a IS NOT NULL;

Changes to test/indexedby.test.

9
10
11
12
13
14
15

16
17
18
19
20
21
22
...
270
271
272
273
274
275
276














































277
#
#***********************************************************************
#
# $Id: indexedby.test,v 1.5 2009/03/22 20:36:19 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl


# Create a schema with some indexes.
#
do_test indexedby-1.1 {
  execsql {
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(a);
................................................................................
    CREATE TABLE t10(indexed INTEGER);
    INSERT INTO t10 VALUES(1);
    CREATE INDEX indexed ON t10(indexed);
    SELECT * FROM t10 indexed by indexed WHERE indexed>0
  }
} {1}















































finish_test







>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
...
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#
#***********************************************************************
#
# $Id: indexedby.test,v 1.5 2009/03/22 20:36:19 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix indexedby

# Create a schema with some indexes.
#
do_test indexedby-1.1 {
  execsql {
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(a);
................................................................................
    CREATE TABLE t10(indexed INTEGER);
    INSERT INTO t10 VALUES(1);
    CREATE INDEX indexed ON t10(indexed);
    SELECT * FROM t10 indexed by indexed WHERE indexed>0
  }
} {1}

#-------------------------------------------------------------------------
# Ensure that the rowid at the end of each index entry may be used
# for equality constraints in the same way as other indexed fields.
#
do_execsql_test 11.1 {
  CREATE TABLE x1(a, b TEXT);
  CREATE INDEX x1i ON x1(a, b);
  INSERT INTO x1 VALUES(1, 1);
  INSERT INTO x1 VALUES(1, 1);
  INSERT INTO x1 VALUES(1, 1);
  INSERT INTO x1 VALUES(1, 1);
}
do_execsql_test 11.2 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid=3;
} {1 1 3}
do_execsql_test 11.3 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3';
} {1 1 3}
do_execsql_test 11.4 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {1 1 3}
do_eqp_test 11.5 {
  SELECT a,b,rowid FROM x1 INDEXED BY x1i WHERE a=1 AND b=1 AND rowid='3.0';
} {0 0 0 {SEARCH TABLE x1 USING COVERING INDEX x1i (a=? AND b=? AND rowid=?)}}

do_execsql_test 11.6 {
  CREATE TABLE x2(c INTEGER PRIMARY KEY, a, b TEXT);
  CREATE INDEX x2i ON x2(a, b);
  INSERT INTO x2 VALUES(1, 1, 1);
  INSERT INTO x2 VALUES(2, 1, 1);
  INSERT INTO x2 VALUES(3, 1, 1);
  INSERT INTO x2 VALUES(4, 1, 1);
}
do_execsql_test 11.7 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c=3;
} {1 1 3}
do_execsql_test 11.8 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3';
} {1 1 3}
do_execsql_test 11.9 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {1 1 3}
do_eqp_test 11.10 {
  SELECT a,b,c FROM x2 INDEXED BY x2i WHERE a=1 AND b=1 AND c='3.0';
} {0 0 0 {SEARCH TABLE x2 USING COVERING INDEX x2i (a=? AND b=? AND rowid=?)}}

finish_test

Changes to test/malloc5.test.

201
202
203
204
205
206
207

208
209
210
211
212
213
214
215

216
217
218
219
220
221
222
do_test malloc5-4.1 {
  execsql {BEGIN;}
  execsql {DELETE FROM abc;}
  for {set i 0} {$i < 10000} {incr i} {
    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
  }
  execsql {COMMIT;}

  sqlite3_release_memory
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
  expr $nMaxBytes > 1000000
} {1}
do_test malloc5-4.2 {

  sqlite3_release_memory
  sqlite3_soft_heap_limit 100000
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
  expr $nMaxBytes <= 110000







>








>







201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
do_test malloc5-4.1 {
  execsql {BEGIN;}
  execsql {DELETE FROM abc;}
  for {set i 0} {$i < 10000} {incr i} {
    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
  }
  execsql {COMMIT;}
  db cache flush
  sqlite3_release_memory
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
  expr $nMaxBytes > 1000000
} {1}
do_test malloc5-4.2 {
  db cache flush
  sqlite3_release_memory
  sqlite3_soft_heap_limit 100000
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
  expr $nMaxBytes <= 110000

Changes to test/malloc_common.tcl.

89
90
91
92
93
94
95








96
97
98
99
100
101
102
...
109
110
111
112
113
114
115
116


117
118
119
120
121
122
123
...
250
251
252
253
254
255
256
















257
258
259
260
261
262
263
  -injectinstall   cantopen_injectinstall    \
  -injectstart     {cantopen_injectstart 1}  \
  -injectstop      cantopen_injectstop       \
  -injecterrlist   {{1 {unable to open database file}}}  \
  -injectuninstall cantopen_injectuninstall  \
]











#--------------------------------------------------------------------------
# Usage do_faultsim_test NAME ?OPTIONS...? 
#
#     -faults           List of fault types to simulate.
#
................................................................................
#     -install          Script to execute after faultsim -injectinstall
#
#     -uninstall        Script to execute after faultsim -uninjectinstall
#
proc do_faultsim_test {name args} {
  global FAULTSIM
  
  set DEFAULT(-faults)        [array names FAULTSIM]


  set DEFAULT(-prep)          ""
  set DEFAULT(-body)          ""
  set DEFAULT(-test)          ""
  set DEFAULT(-install)       ""
  set DEFAULT(-uninstall)     ""

  fix_testname name
................................................................................
}
proc cantopen_injectstart {persist iFail} {
  shmfault cantopen $iFail $persist
}
proc cantopen_injectstop {} {
  shmfault cantopen
}

















# This command is not called directly. It is used by the 
# [faultsim_test_result] command created by [do_faultsim_test] and used
# by -test scripts.
#
proc faultsim_test_result_int {args} {
  upvar testrc testrc testresult testresult testnfail testnfail







>
>
>
>
>
>
>
>







 







|
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
...
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
...
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
  -injectinstall   cantopen_injectinstall    \
  -injectstart     {cantopen_injectstart 1}  \
  -injectstop      cantopen_injectstop       \
  -injecterrlist   {{1 {unable to open database file}}}  \
  -injectuninstall cantopen_injectuninstall  \
]

set FAULTSIM(interrupt) [list                 \
  -injectinstall   interrupt_injectinstall    \
  -injectstart     interrupt_injectstart      \
  -injectstop      interrupt_injectstop       \
  -injecterrlist   {{1 interrupted} {1 interrupt}}        \
  -injectuninstall interrupt_injectuninstall  \
]



#--------------------------------------------------------------------------
# Usage do_faultsim_test NAME ?OPTIONS...? 
#
#     -faults           List of fault types to simulate.
#
................................................................................
#     -install          Script to execute after faultsim -injectinstall
#
#     -uninstall        Script to execute after faultsim -uninjectinstall
#
proc do_faultsim_test {name args} {
  global FAULTSIM
  
  foreach n [array names FAULTSIM] {
    if {$n != "interrupt"} {lappend DEFAULT(-faults) $n}
  }
  set DEFAULT(-prep)          ""
  set DEFAULT(-body)          ""
  set DEFAULT(-test)          ""
  set DEFAULT(-install)       ""
  set DEFAULT(-uninstall)     ""

  fix_testname name
................................................................................
}
proc cantopen_injectstart {persist iFail} {
  shmfault cantopen $iFail $persist
}
proc cantopen_injectstop {} {
  shmfault cantopen
}

# The following procs are used as [do_one_faultsim_test] callbacks 
# when injecting SQLITE_INTERRUPT error faults into test cases.
#
proc interrupt_injectinstall {} {
}
proc interrupt_injectuninstall {} {
}
proc interrupt_injectstart {iFail} {
  set ::sqlite_interrupt_count $iFail
}
proc interrupt_injectstop {} {
  set res [expr $::sqlite_interrupt_count<=0]
  set ::sqlite_interrupt_count 0
  set res
}

# This command is not called directly. It is used by the 
# [faultsim_test_result] command created by [do_faultsim_test] and used
# by -test scripts.
#
proc faultsim_test_result_int {args} {
  upvar testrc testrc testresult testresult testnfail testnfail

Changes to test/progress.test.

160
161
162
163
164
165
166

167
168
169
170

171
172
173
174
175
176
177
    CREATE TABLE abc(a, b, c);
    INSERT INTO abc VALUES(1, 2, 3);
    INSERT INTO abc VALUES(4, 5, 6);
    INSERT INTO abc VALUES(7, 8, 9);
  }

  set ::res [list]

  db eval {SELECT a, b, c FROM abc} {
    lappend ::res $a $b $c
    db progress 5 "expr 1"
    catch {db eval {SELECT a, b, c FROM abc} { }} msg

    lappend ::res $msg
  }

  set ::res
} {1 2 3 interrupted 4 5 6 interrupted 7 8 9 interrupted}

finish_test







>




>







160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    CREATE TABLE abc(a, b, c);
    INSERT INTO abc VALUES(1, 2, 3);
    INSERT INTO abc VALUES(4, 5, 6);
    INSERT INTO abc VALUES(7, 8, 9);
  }

  set ::res [list]
  explain {SELECT a, b, c FROM abc} 
  db eval {SELECT a, b, c FROM abc} {
    lappend ::res $a $b $c
    db progress 5 "expr 1"
    catch {db eval {SELECT a, b, c FROM abc} { }} msg
    db progress 5 "expr 0"
    lappend ::res $msg
  }

  set ::res
} {1 2 3 interrupted 4 5 6 interrupted 7 8 9 interrupted}

finish_test

Changes to test/where2.test.

697
698
699
700
701
702
703

704
705
706
707
708
709
710
711

712
713
714
  execsql {
    SELECT d FROM t11 WHERE c=7 OR (a=1 AND b=2) ORDER BY d;
  }
} {4 8 10}

# Verify that the OR clause is used in an outer loop even when
# the OR clause scores slightly better on an inner loop.

do_execsql_test where2-12.1 {
  CREATE TABLE t12(x INTEGER PRIMARY KEY, y);
  CREATE INDEX t12y ON t12(y);
  EXPLAIN QUERY PLAN
    SELECT a.x, b.x
      FROM t12 AS a JOIN t12 AS b ON a.y=b.x
     WHERE (b.x=$abc OR b.y=$abc);
} {/.*SEARCH TABLE t12 AS b .*SEARCH TABLE t12 AS b .*/}



finish_test







>








>



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
  execsql {
    SELECT d FROM t11 WHERE c=7 OR (a=1 AND b=2) ORDER BY d;
  }
} {4 8 10}

# Verify that the OR clause is used in an outer loop even when
# the OR clause scores slightly better on an inner loop.
if {[permutation] != "no_optimization"} {
do_execsql_test where2-12.1 {
  CREATE TABLE t12(x INTEGER PRIMARY KEY, y);
  CREATE INDEX t12y ON t12(y);
  EXPLAIN QUERY PLAN
    SELECT a.x, b.x
      FROM t12 AS a JOIN t12 AS b ON a.y=b.x
     WHERE (b.x=$abc OR b.y=$abc);
} {/.*SEARCH TABLE t12 AS b .*SEARCH TABLE t12 AS b .*/}
}


finish_test

Changes to test/where3.test.

242
243
244
245
246
247
248






249
250
251
252
253
254
255
do_execsql_test where3-3.1 {
  explain query plan
  SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 1 {SCAN TABLE t302} 
  0 1 0 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)}
}







if 0 {  # Query planner no longer does this
# Verify that when there are multiple tables in a join which must be
# full table scans that the query planner attempts put the table with
# the fewest number of output rows as the outer loop.
#
do_execsql_test where3-4.0 {







>
>
>
>
>
>







242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
do_execsql_test where3-3.1 {
  explain query plan
  SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 1 {SCAN TABLE t302} 
  0 1 0 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_execsql_test where3-3.2 {
  SELECT * FROM t301 WHERE c=3 AND a IS NULL;
} {}
do_execsql_test where3-3.3 {
  SELECT * FROM t301 WHERE c=3 AND a IS NOT NULL;
} {1 2 3}

if 0 {  # Query planner no longer does this
# Verify that when there are multiple tables in a join which must be
# full table scans that the query planner attempts put the table with
# the fewest number of output rows as the outer loop.
#
do_execsql_test where3-4.0 {

Changes to test/whereA.test.

64
65
66
67
68
69
70






71
72
73
74
75
76
77
  sqlite3 db test.db
  db eval {
    PRAGMA reverse_unordered_selects=1;
    VACUUM;
    SELECT * FROM t1;
  }
} {3 4.53 {} 2 hello world 1 2 3}







do_test whereA-2.1 {
  db eval {
    PRAGMA reverse_unordered_selects=0;
    SELECT * FROM t1 WHERE a>0;
  }
} {1 2 3 2 hello world 3 4.53 {}}







>
>
>
>
>
>







64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  sqlite3 db test.db
  db eval {
    PRAGMA reverse_unordered_selects=1;
    VACUUM;
    SELECT * FROM t1;
  }
} {3 4.53 {} 2 hello world 1 2 3}
do_execsql_test whereA-1.8 {
  SELECT * FROM t1 WHERE b=2 AND a IS NULL;
} {}
do_execsql_test whereA-1.9 {
  SELECT * FROM t1 WHERE b=2 AND a IS NOT NULL;
} {1 2 3}

do_test whereA-2.1 {
  db eval {
    PRAGMA reverse_unordered_selects=0;
    SELECT * FROM t1 WHERE a>0;
  }
} {1 2 3 2 hello world 3 4.53 {}}