Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Use compiler intrinsic functions (when available) for byteswapping in RTREE. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
82fcd54a5941c20895ffc22d8009c1eb |
User & Date: | drh 2017-02-01 15:24:32.835 |
Context
2017-02-01
| ||
15:49 | Precompute the nDim2 value in the Rtree object and use that to make loops over coordinates faster. (check-in: f1f3c8cc73 user: drh tags: trunk) | |
15:24 | Use compiler intrinsic functions (when available) for byteswapping in RTREE. (check-in: 82fcd54a59 user: drh tags: trunk) | |
15:19 | Fix the build by making the OPFLAG_ISNOOP macro available unconditionally. (check-in: 510933cb24 user: drh tags: trunk) | |
Changes
Changes to ext/rtree/rtree.c.
︙ | ︙ | |||
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 | #ifndef MAX # define MAX(x,y) ((x) < (y) ? (y) : (x)) #endif #ifndef MIN # define MIN(x,y) ((x) > (y) ? (y) : (x)) #endif /* ** Functions to deserialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The deserialized value is returned. */ static int readInt16(u8 *p){ return (p[0]<<8) + p[1]; } static void readCoord(u8 *p, RtreeCoord *pCoord){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | #ifndef MAX # define MAX(x,y) ((x) < (y) ? (y) : (x)) #endif #ifndef MIN # define MIN(x,y) ((x) > (y) ? (y) : (x)) #endif /* What version of GCC is being used. 0 means GCC is not being used */ #ifndef GCC_VERSION #ifdef __GNUC__ # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) #else # define GCC_VERSION 0 #endif #endif /* What version of CLANG is being used. 0 means CLANG is not being used */ #ifndef CLANG_VERSION #if defined(__clang__) && !defined(_WIN32) # define CLANG_VERSION \ (__clang_major__*1000000+__clang_minor__*1000+__clang_patchlevel__) #else # define CLANG_VERSION 0 #endif #endif /* The testcase() macro should already be defined in the amalgamation. If ** it is not, make it a no-op. */ #ifndef SQLITE_AMALGMATION # define testcase(X) #endif /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined ** at run-time. */ #ifndef SQLITE_BYTEORDER #if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER) # define SQLITE_BYTEORDER 1234 #endif #if (defined(sparc) || defined(__ppc__)) \ && !defined(SQLITE_RUNTIME_BYTEORDER) # define SQLITE_BYTEORDER 4321 #endif # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ #endif /* What version of MSVC is being used. 0 means MSVC is not being used */ #ifndef MSVC_VERSION #if defined(_MSC_VER) # define MSVC_VERSION _MSC_VER #else # define MSVC_VERSION 0 #endif #endif /* ** Functions to deserialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The deserialized value is returned. */ static int readInt16(u8 *p){ return (p[0]<<8) + p[1]; } static void readCoord(u8 *p, RtreeCoord *pCoord){ assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */ #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 pCoord->u = _byteswap_ulong(*(u32*)p); #elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) pCoord->u = __builtin_bswap32(*(u32*)p); #elif SQLITE_BYTEORDER==1234 pCoord->u = ((pCoord->u>>24)&0xff)|((pCoord->u>>8)&0xff00)| ((pCoord->u&0xff)<<24)|((pCoord->u&0xff00)<<8); #elif SQLITE_BYTEORDER==4321 pCoord->u = *(u32*)p; #else pCoord->u = ( (((u32)p[0]) << 24) + (((u32)p[1]) << 16) + (((u32)p[2]) << 8) + (((u32)p[3]) << 0) ); #endif } static i64 readInt64(u8 *p){ testcase( ((((char*)p) - (char*)0)&7)!=0 ); /* not always 8-byte aligned */ #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 u64 x; memcpy(&x, p, 8); return (i64)_byteswap_uint64(x); #elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) u64 x; memcpy(&x, p, 8); return (i64)__builtin_bswap64(x); #elif SQLITE_BYTEORDER==4321 i64 x; memcpy(&x, p, 8); return x; #else return ( (((i64)p[0]) << 56) + (((i64)p[1]) << 48) + (((i64)p[2]) << 40) + (((i64)p[3]) << 32) + (((i64)p[4]) << 24) + (((i64)p[5]) << 16) + (((i64)p[6]) << 8) + (((i64)p[7]) << 0) ); #endif } /* ** Functions to serialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The value returned is the number of bytes written ** to the argument buffer (always 2, 4 and 8 respectively). */ static int writeInt16(u8 *p, int i){ p[0] = (i>> 8)&0xFF; p[1] = (i>> 0)&0xFF; return 2; } static int writeCoord(u8 *p, RtreeCoord *pCoord){ u32 i; assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */ assert( sizeof(RtreeCoord)==4 ); assert( sizeof(u32)==4 ); #if SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) i = __builtin_bswap32(pCoord->u); memcpy(p, &i, 4); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 i = _byteswap_ulong(pCoord->u); memcpy(p, &i, 4); #elif SQLITE_BYTEORDER==4321 i = pCoord->u; memcpy(p, &i, 4); #else i = pCoord->u; p[0] = (i>>24)&0xFF; p[1] = (i>>16)&0xFF; p[2] = (i>> 8)&0xFF; p[3] = (i>> 0)&0xFF; #endif return 4; } static int writeInt64(u8 *p, i64 i){ testcase( ((((char*)p) - (char*)0)&7)!=0 ); /* Not always 8-byte aligned */ #if SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) i = (i64)__builtin_bswap64((u64)i); memcpy(p, &i, 8); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 i = (i64)_byteswap_uint64((u64)i); memcpy(p, &i, 8); #elif SQLITE_BYTEORDER==4321 memcpy(p, &i, 8); #else p[0] = (i>>56)&0xFF; p[1] = (i>>48)&0xFF; p[2] = (i>>40)&0xFF; p[3] = (i>>32)&0xFF; p[4] = (i>>24)&0xFF; p[5] = (i>>16)&0xFF; p[6] = (i>> 8)&0xFF; p[7] = (i>> 0)&0xFF; #endif return 8; } /* ** Increment the reference count of node p. */ static void nodeReference(RtreeNode *p){ |
︙ | ︙ | |||
750 751 752 753 754 755 756 | pCoord = pCell->aCoord; do{ readCoord(pData, &pCoord[ii]); readCoord(pData+4, &pCoord[ii+1]); pData += 8; ii += 2; }while( ii<pRtree->nDim*2 ); | < < < < < | 851 852 853 854 855 856 857 858 859 860 861 862 863 864 | pCoord = pCell->aCoord; do{ readCoord(pData, &pCoord[ii]); readCoord(pData+4, &pCoord[ii+1]); pData += 8; ii += 2; }while( ii<pRtree->nDim*2 ); } /* Forward declaration for the function that does the work of ** the virtual table module xCreate() and xConnect() methods. */ static int rtreeInit( |
︙ | ︙ | |||
923 924 925 926 927 928 929 | ** Convert raw bits from the on-disk RTree record into a coordinate value. ** The on-disk format is big-endian and needs to be converted for little- ** endian platforms. The on-disk record stores integer coordinates if ** eInt is true and it stores 32-bit floating point records if eInt is ** false. a[] is the four bytes of the on-disk record to be decoded. ** Store the results in "r". ** | | < < < | < < > > > > > > > > > > > > | | | 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 | ** Convert raw bits from the on-disk RTree record into a coordinate value. ** The on-disk format is big-endian and needs to be converted for little- ** endian platforms. The on-disk record stores integer coordinates if ** eInt is true and it stores 32-bit floating point records if eInt is ** false. a[] is the four bytes of the on-disk record to be decoded. ** Store the results in "r". ** ** There are five versions of this macro. The last one is generic. The ** other four are various architectures-specific optimizations. */ #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = _byteswap_ulong(*(u32*)a); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = __builtin_bswap32(*(u32*)a); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==1234 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ memcpy(&c.u,a,4); \ c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==4321 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ memcpy(&c.u,a,4); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #else #define RTREE_DECODE_COORD(eInt, a, r) { \ |
︙ | ︙ | |||
982 983 984 985 986 987 988 989 990 991 992 993 994 995 | if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ pInfo->iRowid = readInt64(pCellData); } assert( nCoord>=2 && (nCoord&1)==0 ); i = 0; do{ pCellData += 8; RTREE_DECODE_COORD(eInt, pCellData, aCoord[i]); RTREE_DECODE_COORD(eInt, (pCellData+4), aCoord[i+1]); i+= 2; }while( i<nCoord ); if( pConstraint->op==RTREE_MATCH ){ rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, nCoord, aCoord, &i); | > | 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 | if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ pInfo->iRowid = readInt64(pCellData); } assert( nCoord>=2 && (nCoord&1)==0 ); i = 0; do{ pCellData += 8; assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ RTREE_DECODE_COORD(eInt, pCellData, aCoord[i]); RTREE_DECODE_COORD(eInt, (pCellData+4), aCoord[i+1]); i+= 2; }while( i<nCoord ); if( pConstraint->op==RTREE_MATCH ){ rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, nCoord, aCoord, &i); |
︙ | ︙ | |||
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 | /* p->iCoord might point to either a lower or upper bound coordinate ** in a coordinate pair. But make pCellData point to the lower bound. */ pCellData += 8 + 4*(p->iCoord&0xfe); assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ ); switch( p->op ){ case RTREE_LE: case RTREE_LT: case RTREE_EQ: RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the lower bound of the coordinate pair */ if( p->u.rValue>=val ) return; | > | 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 | /* p->iCoord might point to either a lower or upper bound coordinate ** in a coordinate pair. But make pCellData point to the lower bound. */ pCellData += 8 + 4*(p->iCoord&0xfe); assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ ); assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ switch( p->op ){ case RTREE_LE: case RTREE_LT: case RTREE_EQ: RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the lower bound of the coordinate pair */ if( p->u.rValue>=val ) return; |
︙ | ︙ | |||
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 | int *peWithin /* Adjust downward, as appropriate */ ){ RtreeDValue xN; /* Coordinate value converted to a double */ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ ); pCellData += 8 + p->iCoord*4; RTREE_DECODE_COORD(eInt, pCellData, xN); switch( p->op ){ case RTREE_LE: if( xN <= p->u.rValue ) return; break; case RTREE_LT: if( xN < p->u.rValue ) return; break; case RTREE_GE: if( xN >= p->u.rValue ) return; break; case RTREE_GT: if( xN > p->u.rValue ) return; break; default: if( xN == p->u.rValue ) return; break; | > | 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | int *peWithin /* Adjust downward, as appropriate */ ){ RtreeDValue xN; /* Coordinate value converted to a double */ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ ); pCellData += 8 + p->iCoord*4; assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ RTREE_DECODE_COORD(eInt, pCellData, xN); switch( p->op ){ case RTREE_LE: if( xN <= p->u.rValue ) return; break; case RTREE_LT: if( xN < p->u.rValue ) return; break; case RTREE_GE: if( xN >= p->u.rValue ) return; break; case RTREE_GT: if( xN > p->u.rValue ) return; break; default: if( xN == p->u.rValue ) return; break; |
︙ | ︙ |