Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Bring over the recent query planner enhancements from the trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | wal |
Files: | files | file ages | folders |
SHA1: |
82969f27e5ea843cb379666d8a02e4a3 |
User & Date: | drh 2010-04-15 02:37:11.000 |
Context
2010-04-15
| ||
12:36 | Fix a problem in the result set size estimation logic of the query planner - a problem introduced by the two previous changes. (check-in: 33b1f584ef user: drh tags: wal) | |
10:58 | Change the way checksums are calculated. (check-in: 84955c2e9c user: dan tags: wal) | |
02:37 | Bring over the recent query planner enhancements from the trunk. (check-in: 82969f27e5 user: drh tags: wal) | |
01:04 | Further refinements to table order selection on join query planning. (check-in: defaf0d99a user: drh tags: trunk) | |
2010-04-14
| ||
18:50 | Add tests and fix bugs in WAL locking mechanism. (check-in: c18077f246 user: dan tags: wal) | |
Changes
Changes to src/where.c.
︙ | ︙ | |||
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 | WhereCost *pCost /* Lowest cost query plan */ ){ #ifndef SQLITE_OMIT_OR_OPTIMIZATION const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ WhereTerm *pTerm; /* A single term of the WHERE clause */ /* Search the WHERE clause terms for a usable WO_OR term. */ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( pTerm->eOperator==WO_OR && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 ){ | > > > > > | 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 | WhereCost *pCost /* Lowest cost query plan */ ){ #ifndef SQLITE_OMIT_OR_OPTIMIZATION const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ WhereTerm *pTerm; /* A single term of the WHERE clause */ /* No OR-clause optimization allowed if the NOT INDEXED clause is used */ if( pSrc->notIndexed ){ return; } /* Search the WHERE clause terms for a usable WO_OR term. */ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( pTerm->eOperator==WO_OR && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 ){ |
︙ | ︙ | |||
1613 1614 1615 1616 1617 1618 1619 1620 | used |= sTermCost.used; if( rTotal>=pCost->rCost ) break; } /* If there is an ORDER BY clause, increase the scan cost to account ** for the cost of the sort. */ if( pOrderBy!=0 ){ rTotal += nRow*estLog(nRow); | > > < | 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 | used |= sTermCost.used; if( rTotal>=pCost->rCost ) break; } /* If there is an ORDER BY clause, increase the scan cost to account ** for the cost of the sort. */ if( pOrderBy!=0 ){ WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n", rTotal, rTotal+nRow*estLog(nRow))); rTotal += nRow*estLog(nRow); } /* If the cost of scanning using this OR term for optimization is ** less than the current cost stored in pCost, replace the contents ** of pCost. */ WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); if( rTotal<pCost->rCost ){ |
︙ | ︙ | |||
2565 2566 2567 2568 2569 2570 2571 | ** the sub-select is assumed to return 25 rows for the purposes of ** determining nInMul. ** ** bInEst: ** Set to true if there was at least one "x IN (SELECT ...)" term used ** in determining the value of nInMul. ** | | | | 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 | ** the sub-select is assumed to return 25 rows for the purposes of ** determining nInMul. ** ** bInEst: ** Set to true if there was at least one "x IN (SELECT ...)" term used ** in determining the value of nInMul. ** ** estBound: ** An estimate on the amount of the table that must be searched. A ** value of 100 means the entire table is searched. Range constraints ** might reduce this to a value less than 100 to indicate that only ** a fraction of the table needs searching. In the absence of ** sqlite_stat2 ANALYZE data, a single inequality reduces the search ** space to 1/3rd its original size. So an x>? constraint reduces ** estBound to 33. Two constraints (x>? AND x<?) reduce estBound to 11. ** ** bSort: ** Boolean. True if there is an ORDER BY clause that will require an ** external sort (i.e. scanning the index being evaluated will not ** correctly order records). ** ** bLookup: |
︙ | ︙ | |||
2594 2595 2596 2597 2598 2599 2600 | ** ** SELECT a, b FROM tbl WHERE a = 1; ** SELECT a, b, c FROM tbl WHERE a = 1; */ int nEq; int bInEst = 0; int nInMul = 1; | | > > < | | > > | 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 | ** ** SELECT a, b FROM tbl WHERE a = 1; ** SELECT a, b, c FROM tbl WHERE a = 1; */ int nEq; int bInEst = 0; int nInMul = 1; int estBound = 100; int nBound = 0; /* Number of range constraints seen */ int bSort = 0; int bLookup = 0; WhereTerm *pTerm; /* A single term of the WHERE clause */ /* Determine the values of nEq and nInMul */ for(nEq=0; nEq<pProbe->nColumn; nEq++){ int j = pProbe->aiColumn[nEq]; pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx); if( pTerm==0 ) break; wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); if( pTerm->eOperator & WO_IN ){ Expr *pExpr = pTerm->pExpr; wsFlags |= WHERE_COLUMN_IN; if( ExprHasProperty(pExpr, EP_xIsSelect) ){ nInMul *= 25; bInEst = 1; }else if( pExpr->x.pList ){ nInMul *= pExpr->x.pList->nExpr + 1; } }else if( pTerm->eOperator & WO_ISNULL ){ wsFlags |= WHERE_COLUMN_NULL; } used |= pTerm->prereqRight; } /* Determine the value of estBound. */ if( nEq<pProbe->nColumn ){ int j = pProbe->aiColumn[nEq]; if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound); if( pTop ){ nBound = 1; wsFlags |= WHERE_TOP_LIMIT; used |= pTop->prereqRight; } if( pBtm ){ nBound++; wsFlags |= WHERE_BTM_LIMIT; used |= pBtm->prereqRight; } wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); } }else if( pProbe->onError!=OE_None ){ testcase( wsFlags & WHERE_COLUMN_IN ); |
︙ | ︙ | |||
2681 2682 2683 2684 2685 2686 2687 | if( m==0 ){ wsFlags |= WHERE_IDX_ONLY; }else{ bLookup = 1; } } | | < | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | | > > | 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 | if( m==0 ){ wsFlags |= WHERE_IDX_ONLY; }else{ bLookup = 1; } } /* ** Estimate the number of rows of output. For an IN operator, ** do not let the estimate exceed half the rows in the table. */ nRow = (double)(aiRowEst[nEq] * nInMul); if( bInEst && nRow*2>aiRowEst[0] ){ nRow = aiRowEst[0]/2; nInMul = (int)(nRow / aiRowEst[nEq]); } /* Assume constant cost to access a row and logarithmic cost to ** do a binary search. Hence, the initial cost is the number of output ** rows plus log2(table-size) times the number of binary searches. */ cost = nRow + nInMul*estLog(aiRowEst[0]); /* Adjust the number of rows and the cost downward to reflect rows ** that are excluded by range constraints. */ nRow = (nRow * (double)estBound) / (double)100; cost = (cost * (double)estBound) / (double)100; /* Add in the estimated cost of sorting the result */ if( bSort ){ cost += cost*estLog(cost); } /* If all information can be taken directly from the index, we avoid ** doing table lookups. This reduces the cost by half. (Not really - ** this needs to be fixed.) */ if( pIdx && bLookup==0 ){ cost /= (double)2; } /**** Cost of using this index has now been computed ****/ /* If there are additional constraints on this table that cannot ** be used with the current index, but which might lower the number ** of output rows, adjust the nRow value accordingly. This only ** matters if the current index is the least costly, so do not bother ** with this step if we already know this index will not be chosen. ** Also, never reduce the output row count below 2 using this step. */ if( nRow>2 && cost<=pCost->rCost ){ int k; int nSkipEq = nEq; int nSkipRange = nBound; Bitmask thisTab = getMask(pWC->pMaskSet, iCur); for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){ if( pTerm->wtFlags & TERM_VIRTUAL ) continue; if( (pTerm->prereqAll & notReady)!=thisTab ) continue; if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){ if( nSkipEq ){ /* Ignore the first nEq equality matches since the index ** has already accounted for these */ nSkipEq--; }else{ /* Assume each additional equality match reduces the result ** set size by a factor of 10 */ nRow /= 10; } }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ if( nSkipRange ){ /* Ignore the first nBound range constraints since the index ** has already accounted for these */ nSkipRange--; }else{ /* Assume each additional range constraint reduces the result ** set size by a factor of 3 */ nRow /= 3; } }else{ /* Any other expression lowers the output row count by half */ nRow /= 2; } } if( nRow<2 ) nRow = 2; } WHERETRACE(( "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n" " notReady=0x%llx nRow=%.2f cost=%.2f used=0x%llx\n", pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), nEq, nInMul, estBound, bSort, bLookup, wsFlags, notReady, nRow, cost, used )); /* If this index is the best we have seen so far, then record this ** index and its cost in the pCost structure. */ if( (!pIdx || wsFlags) && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->nRow)) ){ pCost->rCost = cost; pCost->nRow = nRow; pCost->used = used; pCost->plan.wsFlags = (wsFlags&wsFlagMask); pCost->plan.nEq = nEq; pCost->plan.u.pIdx = pIdx; } |
︙ | ︙ | |||
2764 2765 2766 2767 2768 2769 2770 | assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 ); assert( pSrc->pIndex==0 || pCost->plan.u.pIdx==0 || pCost->plan.u.pIdx==pSrc->pIndex ); WHERETRACE(("best index is: %s\n", | > | | 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 | assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 ); assert( pSrc->pIndex==0 || pCost->plan.u.pIdx==0 || pCost->plan.u.pIdx==pSrc->pIndex ); WHERETRACE(("best index is: %s\n", ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" : pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk") )); bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost); pCost->plan.wsFlags |= eqTermMask; } |
︙ | ︙ | |||
3977 3978 3979 3980 3981 3982 3983 | Bitmask m; /* Bitmask value for j or bestJ */ int isOptimal; /* Iterator for optimal/non-optimal search */ memset(&bestPlan, 0, sizeof(bestPlan)); bestPlan.rCost = SQLITE_BIG_DBL; /* Loop through the remaining entries in the FROM clause to find the | | | | > | > > > > | | | | | < > | > > > | 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 | Bitmask m; /* Bitmask value for j or bestJ */ int isOptimal; /* Iterator for optimal/non-optimal search */ memset(&bestPlan, 0, sizeof(bestPlan)); bestPlan.rCost = SQLITE_BIG_DBL; /* Loop through the remaining entries in the FROM clause to find the ** next nested loop. The loop tests all FROM clause entries ** either once or twice. ** ** The first test is always performed if there are two or more entries ** remaining and never performed if there is only one FROM clause entry ** to choose from. The first test looks for an "optimal" scan. In ** this context an optimal scan is one that uses the same strategy ** for the given FROM clause entry as would be selected if the entry ** were used as the innermost nested loop. In other words, a table ** is chosen such that the cost of running that table cannot be reduced ** by waiting for other tables to run first. This "optimal" test works ** by first assuming that the FROM clause is on the inner loop and finding ** its query plan, then checking to see if that query plan uses any ** other FROM clause terms that are notReady. If no notReady terms are ** used then the "optimal" query plan works. ** ** The second loop iteration is only performed if no optimal scan ** strategies were found by the first loop. This 2nd iteration is used to ** search for the lowest cost scan overall. ** ** Previous versions of SQLite performed only the second iteration - ** the next outermost loop was always that with the lowest overall ** cost. However, this meant that SQLite could select the wrong plan ** for scripts such as the following: ** ** CREATE TABLE t1(a, b); ** CREATE TABLE t2(c, d); ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; ** ** The best strategy is to iterate through table t1 first. However it ** is not possible to determine this with a simple greedy algorithm. ** However, since the cost of a linear scan through table t2 is the same ** as the cost of a linear scan through table t1, a simple greedy ** algorithm may choose to use t2 for the outer loop, which is a much ** costlier approach. */ for(isOptimal=(iFrom<nTabList-1); isOptimal>=0; isOptimal--){ Bitmask mask; /* Mask of tables not yet ready */ for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){ int doNotReorder; /* True if this table should not be reordered */ WhereCost sCost; /* Cost information from best[Virtual]Index() */ ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; if( j!=iFrom && doNotReorder ) break; m = getMask(pMaskSet, pTabItem->iCursor); if( (m & notReady)==0 ){ if( j==iFrom ) iFrom++; continue; } mask = (isOptimal ? m : notReady); pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); assert( pTabItem->pTab ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTabItem->pTab) ){ sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp); }else #endif { bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost); } assert( isOptimal || (sCost.used¬Ready)==0 ); if( (sCost.used¬Ready)==0 && (bestJ<0 || sCost.rCost<bestPlan.rCost || (sCost.rCost<=bestPlan.rCost && sCost.nRow<bestPlan.nRow)) ){ WHERETRACE(("... best so far with cost=%g and nRow=%g\n", sCost.rCost, sCost.nRow)); bestPlan = sCost; bestJ = j; } if( doNotReorder ) break; } } assert( bestJ>=0 ); |
︙ | ︙ |
Changes to test/select2.test.
︙ | ︙ | |||
149 150 151 152 153 154 155 | INSERT INTO bb VALUES(4); SELECT * FROM aa, bb WHERE max(a,b)>2; } } {1 4 3 2 3 4} do_test select2-4.2 { execsql { INSERT INTO bb VALUES(0); | | | | 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | INSERT INTO bb VALUES(4); SELECT * FROM aa, bb WHERE max(a,b)>2; } } {1 4 3 2 3 4} do_test select2-4.2 { execsql { INSERT INTO bb VALUES(0); SELECT * FROM aa CROSS JOIN bb WHERE b; } } {1 2 1 4 3 2 3 4} do_test select2-4.3 { execsql { SELECT * FROM aa CROSS JOIN bb WHERE NOT b; } } {1 0 3 0} do_test select2-4.4 { execsql { SELECT * FROM aa, bb WHERE min(a,b); } } {1 2 1 4 3 2 3 4} |
︙ | ︙ |
Changes to test/triggerA.test.
︙ | ︙ | |||
73 74 75 76 77 78 79 | UNION SELECT y FROM t1 WHERE x BETWEEN 3 and 5; SELECT * FROM v4 ORDER BY 1; } } {1 10 2 3 4 5 6 7 8 9 five four three} do_test triggerA-1.6 { db eval { CREATE VIEW v5 AS SELECT x, b FROM t1, t2 WHERE y=c; | | | 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | UNION SELECT y FROM t1 WHERE x BETWEEN 3 and 5; SELECT * FROM v4 ORDER BY 1; } } {1 10 2 3 4 5 6 7 8 9 five four three} do_test triggerA-1.6 { db eval { CREATE VIEW v5 AS SELECT x, b FROM t1, t2 WHERE y=c; SELECT * FROM v5 ORDER BY x DESC; } } {10 1003 9 904 8 805 7 705 6 603 5 504 4 404 3 305 2 203 1 103} # Create INSTEAD OF triggers on the views. Run UPDATE and DELETE statements # using those triggers. Verify correct operation. # do_test triggerA-2.1 { |
︙ | ︙ |
Changes to test/where3.test.
︙ | ︙ | |||
195 196 197 198 199 200 201 | } {tC {} tA * tB * tD *} do_test where3-2.5 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=ax AND bpk=cx } } {tA {} tC * tB * tD *} | | | | 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | } {tC {} tA * tB * tD *} do_test where3-2.5 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=ax AND bpk=cx } } {tA {} tC * tB * tD *} do_test where3-2.6 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE bpk=cx AND apk=bx } } {tC {} tB * tA * tD *} do_test where3-2.7 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=bx AND apk=cx } } {tB {} tC * tA * tD *} |
︙ | ︙ |
Changes to test/where7.test.
︙ | ︙ | |||
86 87 88 89 90 91 92 | } {2 4 5 scan 0 sort 0} do_test where7-1.9 { count_steps { SELECT a FROM t1 WHERE (b=3 OR c>=10 OR c=4) } } {2 4 5 scan 0 sort 0} do_test where7-1.10 { | < < | < < < < < < | 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | } {2 4 5 scan 0 sort 0} do_test where7-1.9 { count_steps { SELECT a FROM t1 WHERE (b=3 OR c>=10 OR c=4) } } {2 4 5 scan 0 sort 0} do_test where7-1.10 { count_steps { SELECT a FROM t1 WHERE (b=3 OR c>=10 OR c=4 OR b>10) } } {2 4 5 scan 0 sort 0} do_test where7-1.11 { count_steps { SELECT a FROM t1 WHERE (d=5 AND b=3) OR c==100 ORDER BY a; } } {2 5 scan 0 sort 1} do_test where7-1.12 { count_steps { SELECT a FROM t1 WHERE (b BETWEEN 2 AND 4) OR c=100 ORDER BY a } } {1 2 3 5 scan 0 sort 1} do_test where7-1.13 { count_steps { SELECT a FROM t1 WHERE (b BETWEEN 0 AND 2) OR (c BETWEEN 9 AND 999) ORDER BY +a DESC } } {5 4 1 scan 0 sort 1} do_test where7-1.14 { |
︙ | ︙ |
Changes to test/where8.test.
︙ | ︙ | |||
282 283 284 285 286 287 288 289 | } {IV V 9 0} do_test where8-3.15 { execsql_status { SELECT c FROM t1, t2 WHERE a BETWEEN 1 AND 2 OR a = ( SELECT sum(e IS NULL) FROM t2 AS inner WHERE t2.d>inner.d ) } | > < > | 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | } {IV V 9 0} do_test where8-3.15 { execsql_status { SELECT c FROM t1, t2 WHERE a BETWEEN 1 AND 2 OR a = ( SELECT sum(e IS NULL) FROM t2 AS inner WHERE t2.d>inner.d ) ORDER BY c } } {I I I I I I I I I I II II II II II II II II II II III III III III III 9 1} #----------------------------------------------------------------------- # The following tests - where8-4.* - verify that adding or removing # indexes does not change the results returned by various queries. # do_test where8-4.1 { execsql { |
︙ | ︙ |