Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge the performance enhancements of trunk (and some obscure bug fixes) into the sessions branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | sessions |
Files: | files | file ages | folders |
SHA1: |
7f51ad97f0b24c57453d58faf25eee68 |
User & Date: | drh 2014-03-04 14:34:14.215 |
Context
2014-03-05
| ||
14:49 | Merge in various obscure bug fixes and the removal of Mem.memType from trunk. (check-in: 0828975d58 user: drh tags: sessions) | |
2014-03-04
| ||
14:34 | Merge the performance enhancements of trunk (and some obscure bug fixes) into the sessions branch. (check-in: 7f51ad97f0 user: drh tags: sessions) | |
13:18 | Improve clarity of presentation in the sqlite3VdbeMemFromBtree() routine. (check-in: 9830c343bc user: drh tags: trunk) | |
2014-02-11
| ||
16:31 | Sync with trunk. Bring in the command-line shell updates and the new 3.8.4 version number. (check-in: 2cd35ff651 user: drh tags: sessions) | |
Changes
Changes to Makefile.msc.
︙ | ︙ | |||
210 211 212 213 214 215 216 | NLTLIBPATHS = "/LIBPATH:$(NCRTLIBPATH)" "/LIBPATH:$(NSDKLIBPATH)" !ENDIF # C compiler and options for use in building executables that # will run on the target platform. (BCC and TCC are usually the # same unless your are cross-compiling.) # | | | 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | NLTLIBPATHS = "/LIBPATH:$(NCRTLIBPATH)" "/LIBPATH:$(NSDKLIBPATH)" !ENDIF # C compiler and options for use in building executables that # will run on the target platform. (BCC and TCC are usually the # same unless your are cross-compiling.) # TCC = $(CC) -W3 -DSQLITE_OS_WIN=1 -I. -I$(TOP) -I$(TOP)\src -fp:precise RCC = $(RC) -DSQLITE_OS_WIN=1 -I$(TOP) -I$(TOP)\src # Check if assembly code listings should be generated for the source # code files to be compiled. # !IF $(USE_LISTINGS)!=0 TCC = $(TCC) -FAcs |
︙ | ︙ | |||
1235 1236 1237 1238 1239 1240 1241 | del /Q parse.y parse.h parse.h.temp copy $(TOP)\src\parse.y . .\lemon.exe $(OPT_FEATURE_FLAGS) $(OPTS) parse.y move parse.h parse.h.temp $(NAWK) -f $(TOP)\addopcodes.awk parse.h.temp > parse.h sqlite3.h: $(TOP)\src\sqlite.h.in $(TOP)\manifest.uuid $(TOP)\VERSION | | | 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 | del /Q parse.y parse.h parse.h.temp copy $(TOP)\src\parse.y . .\lemon.exe $(OPT_FEATURE_FLAGS) $(OPTS) parse.y move parse.h parse.h.temp $(NAWK) -f $(TOP)\addopcodes.awk parse.h.temp > parse.h sqlite3.h: $(TOP)\src\sqlite.h.in $(TOP)\manifest.uuid $(TOP)\VERSION $(TCLSH_CMD) $(TOP)\tool\mksqlite3h.tcl $(TOP:\=/) > sqlite3.h mkkeywordhash.exe: $(TOP)\tool\mkkeywordhash.c $(BCC) -Fe$@ $(OPT_FEATURE_FLAGS) $(OPTS) $(TOP)\tool\mkkeywordhash.c /link $(NLTLIBPATHS) keywordhash.h: $(TOP)\tool\mkkeywordhash.c mkkeywordhash.exe .\mkkeywordhash.exe > keywordhash.h |
︙ | ︙ | |||
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 | testfixture.exe: $(TESTFIXTURE_SRC) $(LIBRESOBJS) $(HDR) $(LTLINK) -DSQLITE_NO_SYNC=1 $(TESTFIXTURE_FLAGS) \ -DBUILD_sqlite -I$(TCLINCDIR) \ $(TESTFIXTURE_SRC) \ /link $(LTLINKOPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LTLIBS) $(TLIBS) fulltest: testfixture.exe sqlite3.exe .\testfixture.exe $(TOP)\test\all.test soaktest: testfixture.exe sqlite3.exe .\testfixture.exe $(TOP)\test\all.test -soak=1 fulltestonly: testfixture.exe sqlite3.exe | > > > | 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 | testfixture.exe: $(TESTFIXTURE_SRC) $(LIBRESOBJS) $(HDR) $(LTLINK) -DSQLITE_NO_SYNC=1 $(TESTFIXTURE_FLAGS) \ -DBUILD_sqlite -I$(TCLINCDIR) \ $(TESTFIXTURE_SRC) \ /link $(LTLINKOPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LTLIBS) $(TLIBS) extensiontest: testfixture.exe testloadext.dll .\testfixture.exe $(TOP)\test\loadext.test fulltest: testfixture.exe sqlite3.exe .\testfixture.exe $(TOP)\test\all.test soaktest: testfixture.exe sqlite3.exe .\testfixture.exe $(TOP)\test\all.test -soak=1 fulltestonly: testfixture.exe sqlite3.exe |
︙ | ︙ | |||
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 | $(NAWK) -f $(TOP)\tool\tostr.awk $(TOP)\tool\spaceanal.tcl >> $@ echo ; return zMainloop; } >> $@ sqlite3_analyzer.exe: sqlite3_analyzer.c $(LIBRESOBJS) $(LTLINK) -DBUILD_sqlite -DTCLSH=2 -I$(TCLINCDIR) sqlite3_analyzer.c \ /link $(LTLINKOPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LTLIBS) $(TLIBS) showdb.exe: $(TOP)\tool\showdb.c $(SQLITE3C) $(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \ $(TOP)\tool\showdb.c $(SQLITE3C) wordcount.exe: $(TOP)\test\wordcount.c $(SQLITE3C) $(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \ $(TOP)\test\wordcount.c $(SQLITE3C) speedtest1.exe: $(TOP)\test\speedtest1.c $(SQLITE3C) $(LTLINK) -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \ $(TOP)\test\speedtest1.c $(SQLITE3C) clean: del /Q *.lo *.ilk *.lib *.obj *.pdb sqlite3.exe libsqlite3.lib del /Q *.cod *.da *.bb *.bbg gmon.out del /Q sqlite3.h opcodes.c opcodes.h del /Q lemon.exe lempar.c parse.* del /Q mkkeywordhash.exe keywordhash.h -rmdir /Q/S .deps -rmdir /Q/S .libs -rmdir /Q/S quota2a -rmdir /Q/S quota2b -rmdir /Q/S quota2c -rmdir /Q/S tsrc del /Q .target_source del /Q tclsqlite3.exe tclsqlite3.exp del /Q testfixture.exe testfixture.exp test.db del /Q sqlite3.dll sqlite3.lib sqlite3.exp sqlite3.def del /Q sqlite3.c sqlite3-*.c del /Q sqlite3rc.h del /Q shell.c sqlite3ext.h del /Q sqlite3_analyzer.exe sqlite3_analyzer.exp sqlite3_analyzer.c del /Q sqlite-*-output.vsix | > > > > > > > > | 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 | $(NAWK) -f $(TOP)\tool\tostr.awk $(TOP)\tool\spaceanal.tcl >> $@ echo ; return zMainloop; } >> $@ sqlite3_analyzer.exe: sqlite3_analyzer.c $(LIBRESOBJS) $(LTLINK) -DBUILD_sqlite -DTCLSH=2 -I$(TCLINCDIR) sqlite3_analyzer.c \ /link $(LTLINKOPTS) $(LTLIBPATHS) $(LIBRESOBJS) $(LTLIBS) $(TLIBS) testloadext.lo: $(TOP)\src\test_loadext.c $(LTCOMPILE) -c $(TOP)\src\test_loadext.c testloadext.dll: testloadext.lo $(LD) $(LDFLAGS) $(LTLINKOPTS) $(LTLIBPATHS) /DLL /OUT:$@ testloadext.lo showdb.exe: $(TOP)\tool\showdb.c $(SQLITE3C) $(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \ $(TOP)\tool\showdb.c $(SQLITE3C) wordcount.exe: $(TOP)\test\wordcount.c $(SQLITE3C) $(LTLINK) -DSQLITE_THREADSAFE=0 -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \ $(TOP)\test\wordcount.c $(SQLITE3C) speedtest1.exe: $(TOP)\test\speedtest1.c $(SQLITE3C) $(LTLINK) -DSQLITE_OMIT_LOAD_EXTENSION -Fe$@ \ $(TOP)\test\speedtest1.c $(SQLITE3C) clean: del /Q *.lo *.ilk *.lib *.obj *.pdb sqlite3.exe libsqlite3.lib del /Q *.cod *.da *.bb *.bbg gmon.out del /Q sqlite3.h opcodes.c opcodes.h del /Q lemon.exe lempar.c parse.* del /Q mkkeywordhash.exe keywordhash.h del /Q notasharedlib.* -rmdir /Q/S .deps -rmdir /Q/S .libs -rmdir /Q/S quota2a -rmdir /Q/S quota2b -rmdir /Q/S quota2c -rmdir /Q/S tsrc del /Q .target_source del /Q tclsqlite3.exe tclsqlite3.exp del /Q testloadext.dll testloadext.exp del /Q testfixture.exe testfixture.exp test.db del /Q sqlite3.dll sqlite3.lib sqlite3.exp sqlite3.def del /Q sqlite3.c sqlite3-*.c del /Q sqlite3rc.h del /Q shell.c sqlite3ext.h del /Q sqlite3_analyzer.exe sqlite3_analyzer.exp sqlite3_analyzer.c del /Q sqlite-*-output.vsix |
︙ | ︙ |
Name change from README to README.md.
|
| | > > > | > | > > | > > | > > > > | > | > > > > > > > | > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | > > > > > > > > | > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | <h1 align="center">SQLite Source Repository</h1> This repository contains the complete source code for the SQLite database engine. Some test scripts are also include. However, many other test scripts and most of the documentation are managed separately. ## Compiling First create a directory in which to place the build products. It is recommended, but not required, that the build directory be separate from the source directory. Cd into the build directory and then from the build directory run the configure script found at the root of the source tree. Then run "make". For example: tar xzf sqlite.tar.gz ;# Unpack the source tree into "sqlite" mkdir bld ;# Build will occur in a sibling directory cd bld ;# Change to the build directory ../sqlite/configure ;# Run the configure script make ;# Run the makefile. make sqlite3.c ;# Build the "amalgamation" source file make test ;# Run some tests (requires Tcl) See the makefile for additional targets. The configure script uses autoconf 2.61 and libtool. If the configure script does not work out for you, there is a generic makefile named "Makefile.linux-gcc" in the top directory of the source tree that you can copy and edit to suit your needs. Comments on the generic makefile show what changes are needed. ## Using MSVC On Windows, all applicable build products can be compiled with MSVC. First open the command prompt window associated with the desired compiler version (e.g. "Developer Command Prompt for VS2013"). Next, use NMAKE with the provided "Makefile.msc" to build one of the supported targets. For example: mkdir bld cd bld nmake /f Makefile.msc TOP=..\sqlite nmake /f Makefile.msc sqlite3.c TOP=..\sqlite nmake /f Makefile.msc sqlite3.dll TOP=..\sqlite nmake /f Makefile.msc sqlite3.exe TOP=..\sqlite nmake /f Makefile.msc test TOP=..\sqlite There are several build options that can be set via the NMAKE command line. For example, to build for WinRT, simply add "FOR_WINRT=1" argument to the "sqlite3.dll" command line above. When debugging into the SQLite code, adding the "DEBUG=1" argument to one of the above command lines is recommended. SQLite does not require Tcl to run, but a Tcl installation is required by the makefiles (including those for MSVC). SQLite contains a lot of generated code and Tcl is used to do much of that code generation. The makefiles also require AWK. ## Source Code Tour Most of the core source files are in the **src/** subdirectory. But src/ also contains files used to build the "testfixture" test harness; those file all begin with "test". And src/ contains the "shell.c" file which is the main program for the "sqlite3.exe" command-line shell and the "tclsqlite.c" file which implements the bindings to SQLite from the Tcl programming language. (Historical note: SQLite began as a Tcl extension and only later escaped to the wild as an independent library.) Test scripts and programs are found in the **test/** subdirectory. There are other test suites for SQLite (see [How SQLite Is Tested](http://www.sqlite.org/testing.html)) but those other test suites are in separate source repositories. The **ext/** subdirectory contains code for extensions. The Full-text search engine is in **ext/fts3**. The R-Tree engine is in **ext/rtree**. The **ext/misc** subdirectory contains a number of smaller, single-file extensions, such as a REGEXP operator. The **tool/** subdirectory contains various scripts and programs used for building generated source code files or for testing or for generating accessory programs such as "sqlite3_analyzer(.exe)". ### Generated Source Code Files Several of the C-language source files used by SQLite are generated from other sources rather than being typed in manually by a programmer. This section will summarize those automatically-generated files. To create all of the automatically-generated files, simply run "make target_source". The "target_source" make target will create a subdirectory "tsrc/" and fill it with all the source files needed to build SQLite, both manually-edited files and automatically-generated files. The SQLite interface is defined by the **sqlite3.h** header file, which is generated from src/sqlite.h.in, ./manifest.uuid, and ./VERSION. The Tcl script at tool/mksqlite3h.tcl does the conversion. The manifest.uuid file contains the SHA1 hash of the particular check-in and is used to generate the SQLITE_SOURCE_ID macro. The VERSION file contains the current SQLite version number. The sqlite3.h header is really just a copy of src/sqlite.h.in with the source-id and version number inserted at just the right spots. Note that comment text in the sqlite3.h file is used to generate much of the SQLite API documentation. The Tcl scripts used to generate that documentation are in a separate source repository. The SQL language parser is **parse.c** which is generate from a grammar in the src/parse.y file. The conversion of "parse.y" into "parse.c" is done by the [lemon](./doc/lemon.html) LALR(1) parser generator. The source code for lemon is at tool/lemon.c. Lemon uses a template for generating its parser. A generic template is in tool/lempar.c, but SQLite uses a slightly modified template found in src/lempar.c. Lemon also generates the **parse.h** header file, at the same time it generates parse.c. But the parse.h header file is modified further (to add additional symbols) using the ./addopcodes.awk AWK script. The **opcodes.h** header file contains macros that define the numbers corresponding to opcodes in the "VDBE" virtual machine. The opcodes.h file is generated by the scanning the src/vdbe.c source file. The AWK script at ./mkopcodeh.awk does this scan and generates opcodes.h. A second AWK script, ./mkopcodec.awk, then scans opcodes.h to generate the **opcodes.c** source file, which contains a reverse mapping from opcode-number to opcode-name that is used for EXPLAIN output. The **keywordhash.h** header file contains the definition of a hash table that maps SQL language keywords (ex: "CREATE", "SELECT", "INDEX", etc.) into the numeric codes used by the parse.c parser. The keywordhash.h file is generated by a C-language program at tool mkkeywordhash.c. ### The Amalgamation All of the individual C source code and header files (both manually-edited and automatically-generated) can be combined into a single big source file **sqlite3.c** called "the amalgamation". The amalgamation is the recommended way of using SQLite in a larger application. Combining all individual source code files into a single big source code file allows the C compiler to perform more cross-procedure analysis and generate better code. SQLite runs about 5% faster when compiled from the amalgamation versus when compiled from individual source files. The amalgamation is generated from the tool/mksqlite3c.tcl Tcl script. First, all of the individual source files must be gathered into the tsrc/ subdirectory (using the equivalent of "make target_source") then the tool/mksqlite3c.tcl script is run to copy them all together in just the right order while resolving internal "#include" references. The amalgamation source file is more than 100K lines long. Some symbolic debuggers (most notably MSVC) are unable to deal with files longer than 64K lines. To work around this, a separate Tcl script, tool/split-sqlite3c.tcl, can be run on the amalgamation to break it up into a single small C file called **sqlite3-all.c** that does #include on about five other files named **sqlite3-1.c**, **sqlite3-2.c**, ..., **sqlite3-5.c**. In this way, all of the source code is contained within a single translation unit so that the compiler can do extra cross-procedure optimization, but no individual source file exceeds 32K lines in length. ## How It All Fits Together SQLite is modular in design. See the [architectural description](http://www.sqlite.org/arch.html) for details. Other documents that are useful in (helping to understand how SQLite works include the [file format](http://www.sqlite.org/fileformat2.html) description, the [virtual machine](http://www.sqlite.org/vdbe.html) that runs prepared statements, the description of [how transactions work](http://www.sqlite.org/atomiccommit.html), and the [overview of the query planner](http://www.sqlite.org/optoverview.html). Unfortunately, years of effort have gone into optimizating SQLite, both for small size and high performance. And optimizations tend to result in complex code. So there is a lot of complexity in the SQLite implementation. Key files: * **sqlite3.h** - This file defines the public interface to the SQLite library. Readers will need to be familiar with this interface before trying to understand how the library works internally. * **sqliteInt.h** - this header file defines many of the data objects used internally by SQLite. * **parse.y** - This file describes the LALR(1) grammer that SQLite uses to parse SQL statements, and the actions that are taken at each stop in the parsing process. * **vdbe.c** - This file implements the virtual machine that runs prepared statements. There are various helper files whose names begin with "vdbe". The VDBE has access to the vdbeInt.h header file which defines internal data objects. The rest of SQLite interacts with the VDBE through an interface defined by vdbe.h. * **where.c** - This file analyzes the WHERE clause and generates virtual machine code to run queries efficiently. This file is sometimes called the "query optimizer". It has its own private header file, whereInt.h, that defines data objects used internally. * **btree.c** - This file contains the implementation of the B-Tree storage engine used by SQLite. * **pager.c** - This file contains the "pager" implementation, the module that implements transactions. * **os_unix.c** and **os_win.c** - These two files implement the interface between SQLite and the underlying operating system using the run-time pluggable VFS interface. ## Contacts The main SQLite webpage is [http://www.sqlite.org/](http://www.sqlite.org/) with geographically distributed backup servers at [http://www2.sqlite.org/](http://www2.sqlite.org) and [http://www3.sqlite.org/](http://www3.sqlite.org). |
Changes to autoconf/tea/tclconfig/install-sh.
1 2 | #!/bin/sh | > > | < | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | > | > > > > > > > > > > > > > > > > | > > > > > > > > | > | > | > > | > > > > > > | > > > > | > > | > > > > > | > > > > > > | > > > > > > > > > > | > > > > | > > > > > > > > | > > > > > > > > > > > > > > > > > > | > | > > | > | > | > > | > | | > | | < > > > > > > > > > | > | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | | > > > > > | | > > > > | | | > > > > > > > > > | > > > > > > | > > > | > > > > > > > > > > | > > > > > > > > > > > > > > > | > > > > | > | > > > > > > > > > > > > > > > > > > > > > > > | | | | > > > > > | < < > > > | > | > > > > > > | > > > > > > > > > > > > | > > | > > > | > > > > | > | > > > | > > > | > > < < > > > > > > > > | > > > | > > > > > > > > > > | > > > > | > > > > > > > > > > > > | > > > > > > | | > > > > | > > > > > | > > > > > > > > > | > > > > > > > | | > > | | > > > | | > > > > | > | > > > > > > > > > | | > > > > | > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | #!/bin/sh # install - install a program, script, or datafile scriptversion=2011-04-20.01; # UTC # This originates from X11R5 (mit/util/scripts/install.sh), which was # later released in X11R6 (xc/config/util/install.sh) with the # following copyright and license. # # Copyright (C) 1994 X Consortium # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN # AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC- # TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # Except as contained in this notice, the name of the X Consortium shall not # be used in advertising or otherwise to promote the sale, use or other deal- # ings in this Software without prior written authorization from the X Consor- # tium. # # # FSF changes to this file are in the public domain. # # Calling this script install-sh is preferred over install.sh, to prevent # `make' implicit rules from creating a file called install from it # when there is no Makefile. # # This script is compatible with the BSD install script, but was written # from scratch. nl=' ' IFS=" "" $nl" # set DOITPROG to echo to test this script # Don't use :- since 4.3BSD and earlier shells don't like it. doit=${DOITPROG-} if test -z "$doit"; then doit_exec=exec else doit_exec=$doit fi # Put in absolute file names if you don't have them in your path; # or use environment vars. chgrpprog=${CHGRPPROG-chgrp} chmodprog=${CHMODPROG-chmod} chownprog=${CHOWNPROG-chown} cmpprog=${CMPPROG-cmp} cpprog=${CPPROG-cp} mkdirprog=${MKDIRPROG-mkdir} mvprog=${MVPROG-mv} rmprog=${RMPROG-rm} stripprog=${STRIPPROG-strip} posix_glob='?' initialize_posix_glob=' test "$posix_glob" != "?" || { if (set -f) 2>/dev/null; then posix_glob= else posix_glob=: fi } ' posix_mkdir= # Desired mode of installed file. mode=0755 chgrpcmd= chmodcmd=$chmodprog chowncmd= mvcmd=$mvprog rmcmd="$rmprog -f" stripcmd= src= dst= dir_arg= dst_arg= copy_on_change=false no_target_directory= usage="\ Usage: $0 [OPTION]... [-T] SRCFILE DSTFILE or: $0 [OPTION]... SRCFILES... DIRECTORY or: $0 [OPTION]... -t DIRECTORY SRCFILES... or: $0 [OPTION]... -d DIRECTORIES... In the 1st form, copy SRCFILE to DSTFILE. In the 2nd and 3rd, copy all SRCFILES to DIRECTORY. In the 4th, create DIRECTORIES. Options: --help display this help and exit. --version display version info and exit. -c (ignored) -C install only if different (preserve the last data modification time) -d create directories instead of installing files. -g GROUP $chgrpprog installed files to GROUP. -m MODE $chmodprog installed files to MODE. -o USER $chownprog installed files to USER. -s $stripprog installed files. -S $stripprog installed files. -t DIRECTORY install into DIRECTORY. -T report an error if DSTFILE is a directory. Environment variables override the default commands: CHGRPPROG CHMODPROG CHOWNPROG CMPPROG CPPROG MKDIRPROG MVPROG RMPROG STRIPPROG " while test $# -ne 0; do case $1 in -c) ;; -C) copy_on_change=true;; -d) dir_arg=true;; -g) chgrpcmd="$chgrpprog $2" shift;; --help) echo "$usage"; exit $?;; -m) mode=$2 case $mode in *' '* | *' '* | *' '* | *'*'* | *'?'* | *'['*) echo "$0: invalid mode: $mode" >&2 exit 1;; esac shift;; -o) chowncmd="$chownprog $2" shift;; -s) stripcmd=$stripprog;; -S) stripcmd="$stripprog $2" shift;; -t) dst_arg=$2 shift;; -T) no_target_directory=true;; --version) echo "$0 $scriptversion"; exit $?;; --) shift break;; -*) echo "$0: invalid option: $1" >&2 exit 1;; *) break;; esac shift done if test $# -ne 0 && test -z "$dir_arg$dst_arg"; then # When -d is used, all remaining arguments are directories to create. # When -t is used, the destination is already specified. # Otherwise, the last argument is the destination. Remove it from $@. for arg do if test -n "$dst_arg"; then # $@ is not empty: it contains at least $arg. set fnord "$@" "$dst_arg" shift # fnord fi shift # arg dst_arg=$arg done fi if test $# -eq 0; then if test -z "$dir_arg"; then echo "$0: no input file specified." >&2 exit 1 fi # It's OK to call `install-sh -d' without argument. # This can happen when creating conditional directories. exit 0 fi if test -z "$dir_arg"; then do_exit='(exit $ret); exit $ret' trap "ret=129; $do_exit" 1 trap "ret=130; $do_exit" 2 trap "ret=141; $do_exit" 13 trap "ret=143; $do_exit" 15 # Set umask so as not to create temps with too-generous modes. # However, 'strip' requires both read and write access to temps. case $mode in # Optimize common cases. *644) cp_umask=133;; *755) cp_umask=22;; *[0-7]) if test -z "$stripcmd"; then u_plus_rw= else u_plus_rw='% 200' fi cp_umask=`expr '(' 777 - $mode % 1000 ')' $u_plus_rw`;; *) if test -z "$stripcmd"; then u_plus_rw= else u_plus_rw=,u+rw fi cp_umask=$mode$u_plus_rw;; esac fi for src do # Protect names starting with `-'. case $src in -*) src=./$src;; esac if test -n "$dir_arg"; then dst=$src dstdir=$dst test -d "$dstdir" dstdir_status=$? else # Waiting for this to be detected by the "$cpprog $src $dsttmp" command # might cause directories to be created, which would be especially bad # if $src (and thus $dsttmp) contains '*'. if test ! -f "$src" && test ! -d "$src"; then echo "$0: $src does not exist." >&2 exit 1 fi if test -z "$dst_arg"; then echo "$0: no destination specified." >&2 exit 1 fi dst=$dst_arg # Protect names starting with `-'. case $dst in -*) dst=./$dst;; esac # If destination is a directory, append the input filename; won't work # if double slashes aren't ignored. if test -d "$dst"; then if test -n "$no_target_directory"; then echo "$0: $dst_arg: Is a directory" >&2 exit 1 fi dstdir=$dst dst=$dstdir/`basename "$src"` dstdir_status=0 else # Prefer dirname, but fall back on a substitute if dirname fails. dstdir=` (dirname "$dst") 2>/dev/null || expr X"$dst" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$dst" : 'X\(//\)[^/]' \| \ X"$dst" : 'X\(//\)$' \| \ X"$dst" : 'X\(/\)' \| . 2>/dev/null || echo X"$dst" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q' ` test -d "$dstdir" dstdir_status=$? fi fi obsolete_mkdir_used=false if test $dstdir_status != 0; then case $posix_mkdir in '') # Create intermediate dirs using mode 755 as modified by the umask. # This is like FreeBSD 'install' as of 1997-10-28. umask=`umask` case $stripcmd.$umask in # Optimize common cases. *[2367][2367]) mkdir_umask=$umask;; .*0[02][02] | .[02][02] | .[02]) mkdir_umask=22;; *[0-7]) mkdir_umask=`expr $umask + 22 \ - $umask % 100 % 40 + $umask % 20 \ - $umask % 10 % 4 + $umask % 2 `;; *) mkdir_umask=$umask,go-w;; esac # With -d, create the new directory with the user-specified mode. # Otherwise, rely on $mkdir_umask. if test -n "$dir_arg"; then mkdir_mode=-m$mode else mkdir_mode= fi posix_mkdir=false case $umask in *[123567][0-7][0-7]) # POSIX mkdir -p sets u+wx bits regardless of umask, which # is incompatible with FreeBSD 'install' when (umask & 300) != 0. ;; *) tmpdir=${TMPDIR-/tmp}/ins$RANDOM-$$ trap 'ret=$?; rmdir "$tmpdir/d" "$tmpdir" 2>/dev/null; exit $ret' 0 if (umask $mkdir_umask && exec $mkdirprog $mkdir_mode -p -- "$tmpdir/d") >/dev/null 2>&1 then if test -z "$dir_arg" || { # Check for POSIX incompatibilities with -m. # HP-UX 11.23 and IRIX 6.5 mkdir -m -p sets group- or # other-writeable bit of parent directory when it shouldn't. # FreeBSD 6.1 mkdir -m -p sets mode of existing directory. ls_ld_tmpdir=`ls -ld "$tmpdir"` case $ls_ld_tmpdir in d????-?r-*) different_mode=700;; d????-?--*) different_mode=755;; *) false;; esac && $mkdirprog -m$different_mode -p -- "$tmpdir" && { ls_ld_tmpdir_1=`ls -ld "$tmpdir"` test "$ls_ld_tmpdir" = "$ls_ld_tmpdir_1" } } then posix_mkdir=: fi rmdir "$tmpdir/d" "$tmpdir" else # Remove any dirs left behind by ancient mkdir implementations. rmdir ./$mkdir_mode ./-p ./-- 2>/dev/null fi trap '' 0;; esac;; esac if $posix_mkdir && ( umask $mkdir_umask && $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir" ) then : else # The umask is ridiculous, or mkdir does not conform to POSIX, # or it failed possibly due to a race condition. Create the # directory the slow way, step by step, checking for races as we go. case $dstdir in /*) prefix='/';; -*) prefix='./';; *) prefix='';; esac eval "$initialize_posix_glob" oIFS=$IFS IFS=/ $posix_glob set -f set fnord $dstdir shift $posix_glob set +f IFS=$oIFS prefixes= for d do test -z "$d" && continue prefix=$prefix$d if test -d "$prefix"; then prefixes= else if $posix_mkdir; then (umask=$mkdir_umask && $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir") && break # Don't fail if two instances are running concurrently. test -d "$prefix" || exit 1 else case $prefix in *\'*) qprefix=`echo "$prefix" | sed "s/'/'\\\\\\\\''/g"`;; *) qprefix=$prefix;; esac prefixes="$prefixes '$qprefix'" fi fi prefix=$prefix/ done if test -n "$prefixes"; then # Don't fail if two instances are running concurrently. (umask $mkdir_umask && eval "\$doit_exec \$mkdirprog $prefixes") || test -d "$dstdir" || exit 1 obsolete_mkdir_used=true fi fi fi if test -n "$dir_arg"; then { test -z "$chowncmd" || $doit $chowncmd "$dst"; } && { test -z "$chgrpcmd" || $doit $chgrpcmd "$dst"; } && { test "$obsolete_mkdir_used$chowncmd$chgrpcmd" = false || test -z "$chmodcmd" || $doit $chmodcmd $mode "$dst"; } || exit 1 else # Make a couple of temp file names in the proper directory. dsttmp=$dstdir/_inst.$$_ rmtmp=$dstdir/_rm.$$_ # Trap to clean up those temp files at exit. trap 'ret=$?; rm -f "$dsttmp" "$rmtmp" && exit $ret' 0 # Copy the file name to the temp name. (umask $cp_umask && $doit_exec $cpprog "$src" "$dsttmp") && # and set any options; do chmod last to preserve setuid bits. # # If any of these fail, we abort the whole thing. If we want to # ignore errors from any of these, just make sure not to ignore # errors from the above "$doit $cpprog $src $dsttmp" command. # { test -z "$chowncmd" || $doit $chowncmd "$dsttmp"; } && { test -z "$chgrpcmd" || $doit $chgrpcmd "$dsttmp"; } && { test -z "$stripcmd" || $doit $stripcmd "$dsttmp"; } && { test -z "$chmodcmd" || $doit $chmodcmd $mode "$dsttmp"; } && # If -C, don't bother to copy if it wouldn't change the file. if $copy_on_change && old=`LC_ALL=C ls -dlL "$dst" 2>/dev/null` && new=`LC_ALL=C ls -dlL "$dsttmp" 2>/dev/null` && eval "$initialize_posix_glob" && $posix_glob set -f && set X $old && old=:$2:$4:$5:$6 && set X $new && new=:$2:$4:$5:$6 && $posix_glob set +f && test "$old" = "$new" && $cmpprog "$dst" "$dsttmp" >/dev/null 2>&1 then rm -f "$dsttmp" else # Rename the file to the real destination. $doit $mvcmd -f "$dsttmp" "$dst" 2>/dev/null || # The rename failed, perhaps because mv can't rename something else # to itself, or perhaps because mv is so ancient that it does not # support -f. { # Now remove or move aside any old file at destination location. # We try this two ways since rm can't unlink itself on some # systems and the destination file might be busy for other # reasons. In this case, the final cleanup might fail but the new # file should still install successfully. { test ! -f "$dst" || $doit $rmcmd -f "$dst" 2>/dev/null || { $doit $mvcmd -f "$dst" "$rmtmp" 2>/dev/null && { $doit $rmcmd -f "$rmtmp" 2>/dev/null; :; } } || { echo "$0: cannot unlink or rename $dst" >&2 (exit 1); exit 1 } } && # Now rename the file to the real destination. $doit $mvcmd "$dsttmp" "$dst" } fi || exit 1 trap '' 0 fi done # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: |
Changes to autoconf/tea/tclconfig/tcl.m4.
1 2 3 4 5 6 7 8 9 10 | # tcl.m4 -- # # This file provides a set of autoconf macros to help TEA-enable # a Tcl extension. # # Copyright (c) 1999-2000 Ajuba Solutions. # Copyright (c) 2002-2005 ActiveState Corporation. # # See the file "license.terms" for information on usage and redistribution # of this file, and for a DISCLAIMER OF ALL WARRANTIES. | < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # tcl.m4 -- # # This file provides a set of autoconf macros to help TEA-enable # a Tcl extension. # # Copyright (c) 1999-2000 Ajuba Solutions. # Copyright (c) 2002-2005 ActiveState Corporation. # # See the file "license.terms" for information on usage and redistribution # of this file, and for a DISCLAIMER OF ALL WARRANTIES. AC_PREREQ(2.57) dnl TEA extensions pass us the version of TEA they think they dnl are compatible with (must be set in TEA_INIT below) dnl TEA_VERSION="3.9" |
︙ | ︙ | |||
136 137 138 139 140 141 142 143 144 145 146 147 148 149 | for i in `ls -d ${libdir} 2>/dev/null` \ `ls -d ${exec_prefix}/lib 2>/dev/null` \ `ls -d ${prefix}/lib 2>/dev/null` \ `ls -d /usr/local/lib 2>/dev/null` \ `ls -d /usr/contrib/lib 2>/dev/null` \ `ls -d /usr/lib 2>/dev/null` \ `ls -d /usr/lib64 2>/dev/null` \ ; do if test -f "$i/tclConfig.sh" ; then ac_cv_c_tclconfig="`(cd $i; pwd)`" break fi done fi | > > | 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | for i in `ls -d ${libdir} 2>/dev/null` \ `ls -d ${exec_prefix}/lib 2>/dev/null` \ `ls -d ${prefix}/lib 2>/dev/null` \ `ls -d /usr/local/lib 2>/dev/null` \ `ls -d /usr/contrib/lib 2>/dev/null` \ `ls -d /usr/lib 2>/dev/null` \ `ls -d /usr/lib64 2>/dev/null` \ `ls -d /usr/lib/tcl8.6 2>/dev/null` \ `ls -d /usr/lib/tcl8.5 2>/dev/null` \ ; do if test -f "$i/tclConfig.sh" ; then ac_cv_c_tclconfig="`(cd $i; pwd)`" break fi done fi |
︙ | ︙ | |||
166 167 168 169 170 171 172 | fi done fi ]) if test x"${ac_cv_c_tclconfig}" = x ; then TCL_BIN_DIR="# no Tcl configs found" | | | 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | fi done fi ]) if test x"${ac_cv_c_tclconfig}" = x ; then TCL_BIN_DIR="# no Tcl configs found" AC_MSG_ERROR([Can't find Tcl configuration definitions. Use --with-tcl to specify a directory containing tclConfig.sh]) else no_tcl= TCL_BIN_DIR="${ac_cv_c_tclconfig}" AC_MSG_RESULT([found ${TCL_BIN_DIR}/tclConfig.sh]) fi fi ]) |
︙ | ︙ | |||
319 320 321 322 323 324 325 | fi done fi ]) if test x"${ac_cv_c_tkconfig}" = x ; then TK_BIN_DIR="# no Tk configs found" | | | < | 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | fi done fi ]) if test x"${ac_cv_c_tkconfig}" = x ; then TK_BIN_DIR="# no Tk configs found" AC_MSG_ERROR([Can't find Tk configuration definitions. Use --with-tk to specify a directory containing tkConfig.sh]) else no_tk= TK_BIN_DIR="${ac_cv_c_tkconfig}" AC_MSG_RESULT([found ${TK_BIN_DIR}/tkConfig.sh]) fi fi ]) #------------------------------------------------------------------------ # TEA_LOAD_TCLCONFIG -- # # Load the tclConfig.sh file # # Arguments: # # Requires the following vars to be set: # TCL_BIN_DIR # # Results: # # Substitutes the following vars: # TCL_BIN_DIR # TCL_SRC_DIR # TCL_LIB_FILE #------------------------------------------------------------------------ AC_DEFUN([TEA_LOAD_TCLCONFIG], [ AC_MSG_CHECKING([for existence of ${TCL_BIN_DIR}/tclConfig.sh]) if test -f "${TCL_BIN_DIR}/tclConfig.sh" ; then AC_MSG_RESULT([loading]) |
︙ | ︙ | |||
413 414 415 416 417 418 419 | AC_SUBST(TCL_LIB_FLAG) AC_SUBST(TCL_LIB_SPEC) AC_SUBST(TCL_STUB_LIB_FILE) AC_SUBST(TCL_STUB_LIB_FLAG) AC_SUBST(TCL_STUB_LIB_SPEC) | < < | | > > | > | < < < < | > > | < < < < < < < < < | | | > > > > | | 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | AC_SUBST(TCL_LIB_FLAG) AC_SUBST(TCL_LIB_SPEC) AC_SUBST(TCL_STUB_LIB_FILE) AC_SUBST(TCL_STUB_LIB_FLAG) AC_SUBST(TCL_STUB_LIB_SPEC) AC_MSG_CHECKING([platform]) hold_cc=$CC; CC="$TCL_CC" AC_TRY_COMPILE(,[ #ifdef _WIN32 #error win32 #endif ], TEA_PLATFORM="unix", TEA_PLATFORM="windows" ) CC=$hold_cc AC_MSG_RESULT($TEA_PLATFORM) # The BUILD_$pkg is to define the correct extern storage class # handling when making this package AC_DEFINE_UNQUOTED(BUILD_${PACKAGE_NAME}, [], [Building extension source?]) # Do this here as we have fully defined TEA_PLATFORM now if test "${TEA_PLATFORM}" = "windows" ; then EXEEXT=".exe" CLEANFILES="$CLEANFILES *.lib *.dll *.pdb *.exp" fi # TEA specific: AC_SUBST(CLEANFILES) AC_SUBST(TCL_LIBS) AC_SUBST(TCL_DEFS) AC_SUBST(TCL_EXTRA_CFLAGS) |
︙ | ︙ | |||
562 563 564 565 566 567 568 | # directory. This macro will correctly determine the name # of the tclsh executable even if tclsh has not yet been # built in the build directory. The tclsh found is always # associated with a tclConfig.sh file. This tclsh should be used # only for running extension test cases. It should never be # or generation of files (like pkgIndex.tcl) at build time. # | | | | | 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 | # directory. This macro will correctly determine the name # of the tclsh executable even if tclsh has not yet been # built in the build directory. The tclsh found is always # associated with a tclConfig.sh file. This tclsh should be used # only for running extension test cases. It should never be # or generation of files (like pkgIndex.tcl) at build time. # # Arguments: # none # # Results: # Substitutes the following vars: # TCLSH_PROG #------------------------------------------------------------------------ AC_DEFUN([TEA_PROG_TCLSH], [ AC_MSG_CHECKING([for tclsh]) if test -f "${TCL_BIN_DIR}/Makefile" ; then # tclConfig.sh is in Tcl build directory |
︙ | ︙ | |||
612 613 614 615 616 617 618 | # directory. This macro will correctly determine the name # of the wish executable even if wish has not yet been # built in the build directory. The wish found is always # associated with a tkConfig.sh file. This wish should be used # only for running extension test cases. It should never be # or generation of files (like pkgIndex.tcl) at build time. # | | | | | 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 | # directory. This macro will correctly determine the name # of the wish executable even if wish has not yet been # built in the build directory. The wish found is always # associated with a tkConfig.sh file. This wish should be used # only for running extension test cases. It should never be # or generation of files (like pkgIndex.tcl) at build time. # # Arguments: # none # # Results: # Substitutes the following vars: # WISH_PROG #------------------------------------------------------------------------ AC_DEFUN([TEA_PROG_WISH], [ AC_MSG_CHECKING([for wish]) if test -f "${TK_BIN_DIR}/Makefile" ; then # tkConfig.sh is in Tk build directory |
︙ | ︙ | |||
727 728 729 730 731 732 733 | # Sets the following vars: # THREADS_LIBS Thread library(s) # # Defines the following vars: # TCL_THREADS # _REENTRANT # _THREAD_SAFE | < | 720 721 722 723 724 725 726 727 728 729 730 731 732 733 | # Sets the following vars: # THREADS_LIBS Thread library(s) # # Defines the following vars: # TCL_THREADS # _REENTRANT # _THREAD_SAFE #------------------------------------------------------------------------ AC_DEFUN([TEA_ENABLE_THREADS], [ AC_ARG_ENABLE(threads, AC_HELP_STRING([--enable-threads], [build with threads]), [tcl_ok=$enableval], [tcl_ok=yes]) |
︙ | ︙ | |||
851 852 853 854 855 856 857 | # Results: # # Adds the following arguments to configure: # --enable-symbols # # Defines the following vars: # CFLAGS_DEFAULT Sets to $(CFLAGS_DEBUG) if true | | < | | 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 | # Results: # # Adds the following arguments to configure: # --enable-symbols # # Defines the following vars: # CFLAGS_DEFAULT Sets to $(CFLAGS_DEBUG) if true # Sets to "$(CFLAGS_OPTIMIZE) -DNDEBUG" if false # LDFLAGS_DEFAULT Sets to $(LDFLAGS_DEBUG) if true # Sets to $(LDFLAGS_OPTIMIZE) if false # DBGX Formerly used as debug library extension; # always blank now. #------------------------------------------------------------------------ AC_DEFUN([TEA_ENABLE_SYMBOLS], [ dnl TEA specific: Make sure we are initialized AC_REQUIRE([TEA_CONFIG_CFLAGS]) AC_MSG_CHECKING([for build with symbols]) AC_ARG_ENABLE(symbols, AC_HELP_STRING([--enable-symbols], [build with debugging symbols (default: off)]), [tcl_ok=$enableval], [tcl_ok=no]) DBGX="" if test "$tcl_ok" = "no"; then CFLAGS_DEFAULT="${CFLAGS_OPTIMIZE} -DNDEBUG" LDFLAGS_DEFAULT="${LDFLAGS_OPTIMIZE}" AC_MSG_RESULT([no]) else CFLAGS_DEFAULT="${CFLAGS_DEBUG}" LDFLAGS_DEFAULT="${LDFLAGS_DEBUG}" if test "$tcl_ok" = "yes"; then AC_MSG_RESULT([yes (standard debugging)]) |
︙ | ︙ | |||
916 917 918 919 920 921 922 | # Results: # # Adds the following arguments to configure: # --enable-langinfo=yes|no (default is yes) # # Defines the following vars: # HAVE_LANGINFO Triggers use of nl_langinfo if defined. | < | 907 908 909 910 911 912 913 914 915 916 917 918 919 920 | # Results: # # Adds the following arguments to configure: # --enable-langinfo=yes|no (default is yes) # # Defines the following vars: # HAVE_LANGINFO Triggers use of nl_langinfo if defined. #------------------------------------------------------------------------ AC_DEFUN([TEA_ENABLE_LANGINFO], [ AC_ARG_ENABLE(langinfo, AC_HELP_STRING([--enable-langinfo], [use nl_langinfo if possible to determine encoding at startup, otherwise use old heuristic (default: on)]), [langinfo_ok=$enableval], [langinfo_ok=yes]) |
︙ | ︙ | |||
957 958 959 960 961 962 963 | # Arguments: # none # # Results: # Defines the following var: # # system - System/platform/version identification code. | < | 947 948 949 950 951 952 953 954 955 956 957 958 959 960 | # Arguments: # none # # Results: # Defines the following var: # # system - System/platform/version identification code. #-------------------------------------------------------------------- AC_DEFUN([TEA_CONFIG_SYSTEM], [ AC_CACHE_CHECK([system version], tcl_cv_sys_version, [ # TEA specific: if test "${TEA_PLATFORM}" = "windows" ; then tcl_cv_sys_version=windows |
︙ | ︙ | |||
1026 1027 1028 1029 1030 1031 1032 | # general if Tcl and Tk aren't themselves shared # libraries), then this symbol has an empty string # as its value. # SHLIB_SUFFIX - Suffix to use for the names of dynamically loadable # extensions. An empty string means we don't know how # to use shared libraries on this platform. # LIB_SUFFIX - Specifies everything that comes after the "libfoo" | | | | | < | 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 | # general if Tcl and Tk aren't themselves shared # libraries), then this symbol has an empty string # as its value. # SHLIB_SUFFIX - Suffix to use for the names of dynamically loadable # extensions. An empty string means we don't know how # to use shared libraries on this platform. # LIB_SUFFIX - Specifies everything that comes after the "libfoo" # in a static or shared library name, using the $PACKAGE_VERSION variable # to put the version in the right place. This is used # by platforms that need non-standard library names. # Examples: ${PACKAGE_VERSION}.so.1.1 on NetBSD, since it needs # to have a version after the .so, and ${PACKAGE_VERSION}.a # on AIX, since a shared library needs to have # a .a extension whereas shared objects for loadable # extensions have a .so extension. Defaults to # ${PACKAGE_VERSION}${SHLIB_SUFFIX}. # CFLAGS_DEBUG - # Flags used when running the compiler in debug mode # CFLAGS_OPTIMIZE - # Flags used when running the compiler in optimize mode # CFLAGS - Additional CFLAGS added as necessary (usually 64-bit) #-------------------------------------------------------------------- AC_DEFUN([TEA_CONFIG_CFLAGS], [ dnl TEA specific: Make sure we are initialized AC_REQUIRE([TEA_INIT]) # Step 0.a: Enable 64 bit support? |
︙ | ︙ | |||
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 | void f(void) {}], [f();], tcl_cv_cc_visibility_hidden=yes, tcl_cv_cc_visibility_hidden=no) CFLAGS=$hold_cflags]) AS_IF([test $tcl_cv_cc_visibility_hidden = yes], [ AC_DEFINE(MODULE_SCOPE, [extern __attribute__((__visibility__("hidden")))], [Compiler support for module scope symbols]) ]) # Step 0.d: Disable -rpath support? AC_MSG_CHECKING([if rpath support is requested]) AC_ARG_ENABLE(rpath, AC_HELP_STRING([--disable-rpath], | > | 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 | void f(void) {}], [f();], tcl_cv_cc_visibility_hidden=yes, tcl_cv_cc_visibility_hidden=no) CFLAGS=$hold_cflags]) AS_IF([test $tcl_cv_cc_visibility_hidden = yes], [ AC_DEFINE(MODULE_SCOPE, [extern __attribute__((__visibility__("hidden")))], [Compiler support for module scope symbols]) AC_DEFINE(HAVE_HIDDEN, [1], [Compiler support for module scope symbols]) ]) # Step 0.d: Disable -rpath support? AC_MSG_CHECKING([if rpath support is requested]) AC_ARG_ENABLE(rpath, AC_HELP_STRING([--disable-rpath], |
︙ | ︙ | |||
1130 1131 1132 1133 1134 1135 1136 | LDFLAGS_ARCH="" UNSHARED_LIB_SUFFIX="" # TEA specific: use PACKAGE_VERSION instead of VERSION TCL_TRIM_DOTS='`echo ${PACKAGE_VERSION} | tr -d .`' ECHO_VERSION='`echo ${PACKAGE_VERSION}`' TCL_LIB_VERSIONS_OK=ok CFLAGS_DEBUG=-g | < < > > | < > | < | 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 | LDFLAGS_ARCH="" UNSHARED_LIB_SUFFIX="" # TEA specific: use PACKAGE_VERSION instead of VERSION TCL_TRIM_DOTS='`echo ${PACKAGE_VERSION} | tr -d .`' ECHO_VERSION='`echo ${PACKAGE_VERSION}`' TCL_LIB_VERSIONS_OK=ok CFLAGS_DEBUG=-g AS_IF([test "$GCC" = yes], [ CFLAGS_OPTIMIZE=-O2 CFLAGS_WARNING="-Wall" ], [ CFLAGS_OPTIMIZE=-O CFLAGS_WARNING="" ]) AC_CHECK_TOOL(AR, ar) STLIB_LD='${AR} cr' LD_LIBRARY_PATH_VAR="LD_LIBRARY_PATH" AS_IF([test "x$SHLIB_VERSION" = x],[SHLIB_VERSION="1.0"]) case $system in # TEA specific: windows) # This is a 2-stage check to make sure we have the 64-bit SDK |
︙ | ︙ | |||
1167 1168 1169 1170 1171 1172 1173 | PATH64="${MSSDK}/Bin/Win64/x86/AMD64" ;; ia64) MACHINE="IA64" PATH64="${MSSDK}/Bin/Win64" ;; esac | | | 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 | PATH64="${MSSDK}/Bin/Win64/x86/AMD64" ;; ia64) MACHINE="IA64" PATH64="${MSSDK}/Bin/Win64" ;; esac if test "$GCC" != "yes" -a ! -d "${PATH64}" ; then AC_MSG_WARN([Could not find 64-bit $MACHINE SDK to enable 64bit mode]) AC_MSG_WARN([Ensure latest Platform SDK is installed]) do64bit="no" else AC_MSG_RESULT([ Using 64-bit $MACHINE mode]) do64bit_ok="yes" fi |
︙ | ︙ | |||
1284 1285 1286 1287 1288 1289 1290 | lversion=`echo ${CEVERSION} | sed -e 's/\(.\)\(..\)/\1\.\2/'` lflags="-MACHINE:${ARCH} -LIBPATH:\"${CELIBPATH}\" -subsystem:windowsce,${lversion} -nologo" LINKBIN="\"${CEBINROOT}/link.exe\"" AC_SUBST(CELIB_DIR) else RC="rc" lflags="-nologo" | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 | lversion=`echo ${CEVERSION} | sed -e 's/\(.\)\(..\)/\1\.\2/'` lflags="-MACHINE:${ARCH} -LIBPATH:\"${CELIBPATH}\" -subsystem:windowsce,${lversion} -nologo" LINKBIN="\"${CEBINROOT}/link.exe\"" AC_SUBST(CELIB_DIR) else RC="rc" lflags="-nologo" LINKBIN="link" CFLAGS_DEBUG="-nologo -Z7 -Od -W3 -WX ${runtime}d" CFLAGS_OPTIMIZE="-nologo -O2 -W2 ${runtime}" fi fi if test "$GCC" = "yes"; then # mingw gcc mode AC_CHECK_TOOL(RC, windres) CFLAGS_DEBUG="-g" CFLAGS_OPTIMIZE="-O2 -fomit-frame-pointer" SHLIB_LD='${CC} -shared' UNSHARED_LIB_SUFFIX='${TCL_TRIM_DOTS}.a' LDFLAGS_CONSOLE="-wl,--subsystem,console ${lflags}" LDFLAGS_WINDOW="-wl,--subsystem,windows ${lflags}" AC_CACHE_CHECK(for cross-compile version of gcc, ac_cv_cross, AC_TRY_COMPILE([ #ifdef _WIN32 #error cross-compiler #endif ], [], ac_cv_cross=yes, ac_cv_cross=no) ) if test "$ac_cv_cross" = "yes"; then case "$do64bit" in amd64|x64|yes) CC="x86_64-w64-mingw32-gcc" LD="x86_64-w64-mingw32-ld" AR="x86_64-w64-mingw32-ar" RANLIB="x86_64-w64-mingw32-ranlib" RC="x86_64-w64-mingw32-windres" ;; *) CC="i686-w64-mingw32-gcc" LD="i686-w64-mingw32-ld" AR="i686-w64-mingw32-ar" RANLIB="i686-w64-mingw32-ranlib" RC="i686-w64-mingw32-windres" ;; esac fi else SHLIB_LD="${LINKBIN} -dll ${lflags}" # link -lib only works when -lib is the first arg STLIB_LD="${LINKBIN} -lib ${lflags}" UNSHARED_LIB_SUFFIX='${TCL_TRIM_DOTS}.lib' PATHTYPE=-w # For information on what debugtype is most useful, see: |
︙ | ︙ | |||
1405 1406 1407 1408 1409 1410 1411 | CC_SEARCH_FLAGS="" LD_SEARCH_FLAGS="" ;; CYGWIN_*) SHLIB_CFLAGS="" SHLIB_LD='${CC} -shared' SHLIB_SUFFIX=".dll" | | > | 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 | CC_SEARCH_FLAGS="" LD_SEARCH_FLAGS="" ;; CYGWIN_*) SHLIB_CFLAGS="" SHLIB_LD='${CC} -shared' SHLIB_SUFFIX=".dll" EXEEXT=".exe" do64bit_ok=yes CC_SEARCH_FLAGS="" LD_SEARCH_FLAGS="" ;; Haiku*) LDFLAGS="$LDFLAGS -Wl,--export-dynamic" SHLIB_CFLAGS="-fPIC" SHLIB_SUFFIX=".so" |
︙ | ︙ | |||
1434 1435 1436 1437 1438 1439 1440 | # CPPFLAGS="-AA" #fi ], [ SHLIB_SUFFIX=".sl" ]) AC_CHECK_LIB(dld, shl_load, tcl_ok=yes, tcl_ok=no) AS_IF([test "$tcl_ok" = yes], [ | | | 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 | # CPPFLAGS="-AA" #fi ], [ SHLIB_SUFFIX=".sl" ]) AC_CHECK_LIB(dld, shl_load, tcl_ok=yes, tcl_ok=no) AS_IF([test "$tcl_ok" = yes], [ LDFLAGS="$LDFLAGS -Wl,-E" CC_SEARCH_FLAGS='-Wl,+s,+b,${LIB_RUNTIME_DIR}:.' LD_SEARCH_FLAGS='+s +b ${LIB_RUNTIME_DIR}:.' LD_LIBRARY_PATH_VAR="SHLIB_PATH" ]) AS_IF([test "$GCC" = yes], [ SHLIB_LD='${CC} -shared' LD_SEARCH_FLAGS=${CC_SEARCH_FLAGS} |
︙ | ︙ | |||
1516 1517 1518 1519 1520 1521 1522 | do64bit_ok=yes SHLIB_LD="ld -64 -shared -rdata_shared" CFLAGS="$CFLAGS -64" LDFLAGS_ARCH="-64" ]) ]) ;; | | | 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 | do64bit_ok=yes SHLIB_LD="ld -64 -shared -rdata_shared" CFLAGS="$CFLAGS -64" LDFLAGS_ARCH="-64" ]) ]) ;; Linux*|GNU*|NetBSD-Debian) SHLIB_CFLAGS="-fPIC" SHLIB_SUFFIX=".so" # TEA specific: CFLAGS_OPTIMIZE="-O2 -fomit-frame-pointer" # TEA specific: use LDFLAGS_DEFAULT instead of LDFLAGS |
︙ | ︙ | |||
1549 1550 1551 1552 1553 1554 1555 | # The combo of gcc + glibc has a bug related to inlining of # functions like strtod(). The -fno-builtin flag should address # this problem but it does not work. The -fno-inline flag is kind # of overkill but it works. Disable inlining only when one of the # files in compat/*.c is being linked in. AS_IF([test x"${USE_COMPAT}" != x],[CFLAGS="$CFLAGS -fno-inline"]) | < < < < < < < < < < < > > > > > > > > | | | | | | | < < < > > | | < < > | > > | > > | > < | < | < < < < < < < < | | | | 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 | # The combo of gcc + glibc has a bug related to inlining of # functions like strtod(). The -fno-builtin flag should address # this problem but it does not work. The -fno-inline flag is kind # of overkill but it works. Disable inlining only when one of the # files in compat/*.c is being linked in. AS_IF([test x"${USE_COMPAT}" != x],[CFLAGS="$CFLAGS -fno-inline"]) ;; Lynx*) SHLIB_CFLAGS="-fPIC" SHLIB_SUFFIX=".so" CFLAGS_OPTIMIZE=-02 SHLIB_LD='${CC} -shared' LD_FLAGS="-Wl,--export-dynamic" AS_IF([test $doRpath = yes], [ CC_SEARCH_FLAGS='-Wl,-rpath,${LIB_RUNTIME_DIR}' LD_SEARCH_FLAGS='-Wl,-rpath,${LIB_RUNTIME_DIR}']) ;; OpenBSD-*) arch=`arch -s` case "$arch" in vax) SHLIB_SUFFIX="" SHARED_LIB_SUFFIX="" LDFLAGS="" ;; *) SHLIB_CFLAGS="-fPIC" SHLIB_LD='${CC} -shared ${SHLIB_CFLAGS}' SHLIB_SUFFIX=".so" AS_IF([test $doRpath = yes], [ CC_SEARCH_FLAGS='-Wl,-rpath,${LIB_RUNTIME_DIR}']) LD_SEARCH_FLAGS=${CC_SEARCH_FLAGS} SHARED_LIB_SUFFIX='${TCL_TRIM_DOTS}.so.${SHLIB_VERSION}' LDFLAGS="-Wl,-export-dynamic" ;; esac case "$arch" in vax) CFLAGS_OPTIMIZE="-O1" ;; *) CFLAGS_OPTIMIZE="-O2" ;; esac AS_IF([test "${TCL_THREADS}" = "1"], [ # On OpenBSD: Compile with -pthread # Don't link with -lpthread LIBS=`echo $LIBS | sed s/-lpthread//` CFLAGS="$CFLAGS -pthread" ]) # OpenBSD doesn't do version numbers with dots. UNSHARED_LIB_SUFFIX='${TCL_TRIM_DOTS}.a' TCL_LIB_VERSIONS_OK=nodots ;; NetBSD-*) # NetBSD has ELF and can use 'cc -shared' to build shared libs SHLIB_CFLAGS="-fPIC" SHLIB_LD='${CC} -shared ${SHLIB_CFLAGS}' SHLIB_SUFFIX=".so" LDFLAGS="$LDFLAGS -export-dynamic" AS_IF([test $doRpath = yes], [ CC_SEARCH_FLAGS='-Wl,-rpath,${LIB_RUNTIME_DIR}']) LD_SEARCH_FLAGS=${CC_SEARCH_FLAGS} AS_IF([test "${TCL_THREADS}" = "1"], [ # The -pthread needs to go in the CFLAGS, not LIBS LIBS=`echo $LIBS | sed s/-pthread//` CFLAGS="$CFLAGS -pthread" LDFLAGS="$LDFLAGS -pthread" ]) ;; FreeBSD-*) # This configuration from FreeBSD Ports. SHLIB_CFLAGS="-fPIC" SHLIB_LD="${CC} -shared" TCL_SHLIB_LD_EXTRAS="-Wl,-soname=\$[@]" SHLIB_SUFFIX=".so" LDFLAGS="" AS_IF([test $doRpath = yes], [ CC_SEARCH_FLAGS='-Wl,-rpath,${LIB_RUNTIME_DIR}' LD_SEARCH_FLAGS='-Wl,-rpath,${LIB_RUNTIME_DIR}']) AS_IF([test "${TCL_THREADS}" = "1"], [ # The -pthread needs to go in the LDFLAGS, not LIBS LIBS=`echo $LIBS | sed s/-pthread//` CFLAGS="$CFLAGS $PTHREAD_CFLAGS" LDFLAGS="$LDFLAGS $PTHREAD_LIBS"]) # Version numbers are dot-stripped by system policy. TCL_TRIM_DOTS=`echo ${PACKAGE_VERSION} | tr -d .` UNSHARED_LIB_SUFFIX='${TCL_TRIM_DOTS}.a' SHARED_LIB_SUFFIX='${TCL_TRIM_DOTS}\$\{DBGX\}.so.1' TCL_LIB_VERSIONS_OK=nodots ;; Darwin-*) CFLAGS_OPTIMIZE="-Os" SHLIB_CFLAGS="-fno-common" |
︙ | ︙ | |||
1701 1702 1703 1704 1705 1706 1707 | hold_ldflags=$LDFLAGS LDFLAGS="$LDFLAGS -dynamiclib -Wl,-single_module" AC_TRY_LINK(, [int i;], tcl_cv_ld_single_module=yes, tcl_cv_ld_single_module=no) LDFLAGS=$hold_ldflags]) AS_IF([test $tcl_cv_ld_single_module = yes], [ SHLIB_LD="${SHLIB_LD} -Wl,-single_module" ]) | | | 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 | hold_ldflags=$LDFLAGS LDFLAGS="$LDFLAGS -dynamiclib -Wl,-single_module" AC_TRY_LINK(, [int i;], tcl_cv_ld_single_module=yes, tcl_cv_ld_single_module=no) LDFLAGS=$hold_ldflags]) AS_IF([test $tcl_cv_ld_single_module = yes], [ SHLIB_LD="${SHLIB_LD} -Wl,-single_module" ]) # TEA specific: link shlib with current and compatibility version flags vers=`echo ${PACKAGE_VERSION} | sed -e 's/^\([[0-9]]\{1,5\}\)\(\(\.[[0-9]]\{1,3\}\)\{0,2\}\).*$/\1\2/p' -e d` SHLIB_LD="${SHLIB_LD} -current_version ${vers:-0} -compatibility_version ${vers:-0}" SHLIB_SUFFIX=".dylib" # Don't use -prebind when building for Mac OS X 10.4 or later only: AS_IF([test "`echo "${MACOSX_DEPLOYMENT_TARGET}" | awk -F '10\\.' '{print int([$]2)}'`" -lt 4 -a \ "`echo "${CPPFLAGS}" | awk -F '-mmacosx-version-min=10\\.' '{print int([$]2)}'`" -lt 4], [ LDFLAGS="$LDFLAGS -prebind"]) |
︙ | ︙ | |||
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 | *) SHLIB_LD='/usr/ccs/bin/ld -G -z text';; esac CC_SEARCH_FLAGS='-Wl,-R,${LIB_RUNTIME_DIR}' LD_SEARCH_FLAGS='-R ${LIB_RUNTIME_DIR}' ]) ;; esac AS_IF([test "$do64bit" = yes -a "$do64bit_ok" = no], [ AC_MSG_WARN([64bit support being disabled -- don't know magic for this platform]) ]) dnl # Add any CPPFLAGS set in the environment to our CFLAGS, but delay doing so | > > > > > > > > > > > > > > > > > > | 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 | *) SHLIB_LD='/usr/ccs/bin/ld -G -z text';; esac CC_SEARCH_FLAGS='-Wl,-R,${LIB_RUNTIME_DIR}' LD_SEARCH_FLAGS='-R ${LIB_RUNTIME_DIR}' ]) ;; UNIX_SV* | UnixWare-5*) SHLIB_CFLAGS="-KPIC" SHLIB_LD='${CC} -G' SHLIB_LD_LIBS="" SHLIB_SUFFIX=".so" # Some UNIX_SV* systems (unixware 1.1.2 for example) have linkers # that don't grok the -Bexport option. Test that it does. AC_CACHE_CHECK([for ld accepts -Bexport flag], tcl_cv_ld_Bexport, [ hold_ldflags=$LDFLAGS LDFLAGS="$LDFLAGS -Wl,-Bexport" AC_TRY_LINK(, [int i;], tcl_cv_ld_Bexport=yes, tcl_cv_ld_Bexport=no) LDFLAGS=$hold_ldflags]) AS_IF([test $tcl_cv_ld_Bexport = yes], [ LDFLAGS="$LDFLAGS -Wl,-Bexport" ]) CC_SEARCH_FLAGS="" LD_SEARCH_FLAGS="" ;; esac AS_IF([test "$do64bit" = yes -a "$do64bit_ok" = no], [ AC_MSG_WARN([64bit support being disabled -- don't know magic for this platform]) ]) dnl # Add any CPPFLAGS set in the environment to our CFLAGS, but delay doing so |
︙ | ︙ | |||
1961 1962 1963 1964 1965 1966 1967 | # libraries to the right flags for gcc, instead of those for the # standard manufacturer compiler. AS_IF([test "$GCC" = yes], [ case $system in AIX-*) ;; BSD/OS*) ;; | | < | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 | # libraries to the right flags for gcc, instead of those for the # standard manufacturer compiler. AS_IF([test "$GCC" = yes], [ case $system in AIX-*) ;; BSD/OS*) ;; CYGWIN_*|MINGW32_*) ;; IRIX*) ;; NetBSD-*|FreeBSD-*|OpenBSD-*) ;; Darwin-*) ;; SCO_SV-3.2*) ;; windows) ;; *) SHLIB_CFLAGS="-fPIC" ;; esac]) AS_IF([test "$tcl_cv_cc_visibility_hidden" != yes], [ AC_DEFINE(MODULE_SCOPE, [extern], [No Compiler support for module scope symbols]) ]) AS_IF([test "$SHARED_LIB_SUFFIX" = ""], [ # TEA specific: use PACKAGE_VERSION instead of VERSION SHARED_LIB_SUFFIX='${PACKAGE_VERSION}${SHLIB_SUFFIX}']) AS_IF([test "$UNSHARED_LIB_SUFFIX" = ""], [ # TEA specific: use PACKAGE_VERSION instead of VERSION UNSHARED_LIB_SUFFIX='${PACKAGE_VERSION}.a']) if test "${GCC}" = "yes" -a ${SHLIB_SUFFIX} = ".dll"; then AC_CACHE_CHECK(for SEH support in compiler, tcl_cv_seh, AC_TRY_RUN([ #define WIN32_LEAN_AND_MEAN #include <windows.h> #undef WIN32_LEAN_AND_MEAN int main(int argc, char** argv) { int a, b = 0; __try { a = 666 / b; } __except (EXCEPTION_EXECUTE_HANDLER) { return 0; } return 1; } ], tcl_cv_seh=yes, tcl_cv_seh=no, tcl_cv_seh=no) ) if test "$tcl_cv_seh" = "no" ; then AC_DEFINE(HAVE_NO_SEH, 1, [Defined when mingw does not support SEH]) fi # # Check to see if the excpt.h include file provided contains the # definition for EXCEPTION_DISPOSITION; if not, which is the case # with Cygwin's version as of 2002-04-10, define it to be int, # sufficient for getting the current code to work. # AC_CACHE_CHECK(for EXCEPTION_DISPOSITION support in include files, tcl_cv_eh_disposition, AC_TRY_COMPILE([ # define WIN32_LEAN_AND_MEAN # include <windows.h> # undef WIN32_LEAN_AND_MEAN ],[ EXCEPTION_DISPOSITION x; ], tcl_cv_eh_disposition=yes, tcl_cv_eh_disposition=no) ) if test "$tcl_cv_eh_disposition" = "no" ; then AC_DEFINE(EXCEPTION_DISPOSITION, int, [Defined when cygwin/mingw does not support EXCEPTION DISPOSITION]) fi # Check to see if winnt.h defines CHAR, SHORT, and LONG # even if VOID has already been #defined. The win32api # used by mingw and cygwin is known to do this. AC_CACHE_CHECK(for winnt.h that ignores VOID define, tcl_cv_winnt_ignore_void, AC_TRY_COMPILE([ #define VOID void #define WIN32_LEAN_AND_MEAN #include <windows.h> #undef WIN32_LEAN_AND_MEAN ], [ CHAR c; SHORT s; LONG l; ], tcl_cv_winnt_ignore_void=yes, tcl_cv_winnt_ignore_void=no) ) if test "$tcl_cv_winnt_ignore_void" = "yes" ; then AC_DEFINE(HAVE_WINNT_IGNORE_VOID, 1, [Defined when cygwin/mingw ignores VOID define in winnt.h]) fi fi # See if the compiler supports casting to a union type. # This is used to stop gcc from printing a compiler # warning when initializing a union member. AC_CACHE_CHECK(for cast to union support, tcl_cv_cast_to_union, AC_TRY_COMPILE([], [ union foo { int i; double d; }; union foo f = (union foo) (int) 0; ], tcl_cv_cast_to_union=yes, tcl_cv_cast_to_union=no) ) if test "$tcl_cv_cast_to_union" = "yes"; then AC_DEFINE(HAVE_CAST_TO_UNION, 1, [Defined when compiler supports casting to union type.]) fi AC_SUBST(CFLAGS_DEBUG) AC_SUBST(CFLAGS_OPTIMIZE) AC_SUBST(CFLAGS_WARNING) AC_SUBST(STLIB_LD) AC_SUBST(SHLIB_LD) |
︙ | ︙ | |||
2020 2021 2022 2023 2024 2025 2026 | # Results: # # Defines only one of the following vars: # HAVE_SYS_MODEM_H # USE_TERMIOS # USE_TERMIO # USE_SGTTY | < | 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 | # Results: # # Defines only one of the following vars: # HAVE_SYS_MODEM_H # USE_TERMIOS # USE_TERMIO # USE_SGTTY #-------------------------------------------------------------------- AC_DEFUN([TEA_SERIAL_PORT], [ AC_CHECK_HEADERS(sys/modem.h) AC_CACHE_CHECK([termios vs. termio vs. sgtty], tcl_cv_api_serial, [ AC_TRY_RUN([ #include <termios.h> |
︙ | ︙ | |||
2232 2233 2234 2235 2236 2237 2238 | # # Results: # # Sets the following vars: # XINCLUDES # XLIBSW # PKG_LIBS (appends to) | < | | | | | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 | # # Results: # # Sets the following vars: # XINCLUDES # XLIBSW # PKG_LIBS (appends to) #-------------------------------------------------------------------- AC_DEFUN([TEA_PATH_X], [ if test "${TEA_WINDOWINGSYSTEM}" = "x11" ; then TEA_PATH_UNIX_X fi ]) AC_DEFUN([TEA_PATH_UNIX_X], [ AC_PATH_X not_really_there="" if test "$no_x" = ""; then if test "$x_includes" = ""; then AC_TRY_CPP([#include <X11/Xlib.h>], , not_really_there="yes") else if test ! -r $x_includes/X11/Xlib.h; then not_really_there="yes" fi fi fi if test "$no_x" = "yes" -o "$not_really_there" = "yes"; then AC_MSG_CHECKING([for X11 header files]) found_xincludes="no" AC_TRY_CPP([#include <X11/Xlib.h>], found_xincludes="yes", found_xincludes="no") if test "$found_xincludes" = "no"; then dirs="/usr/unsupported/include /usr/local/include /usr/X386/include /usr/X11R6/include /usr/X11R5/include /usr/include/X11R5 /usr/include/X11R4 /usr/openwin/include /usr/X11/include /usr/sww/include" for i in $dirs ; do if test -r $i/X11/Xlib.h; then AC_MSG_RESULT([$i]) XINCLUDES=" -I$i" found_xincludes="yes" break fi done fi |
︙ | ︙ | |||
2328 2329 2330 2331 2332 2333 2334 | # Results: # # Defines some of the following vars: # HAVE_SYS_IOCTL_H # HAVE_SYS_FILIO_H # USE_FIONBIO # O_NONBLOCK | < | 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 | # Results: # # Defines some of the following vars: # HAVE_SYS_IOCTL_H # HAVE_SYS_FILIO_H # USE_FIONBIO # O_NONBLOCK #-------------------------------------------------------------------- AC_DEFUN([TEA_BLOCKING_STYLE], [ AC_CHECK_HEADERS(sys/ioctl.h) AC_CHECK_HEADERS(sys/filio.h) TEA_CONFIG_SYSTEM AC_MSG_CHECKING([FIONBIO vs. O_NONBLOCK for nonblocking I/O]) |
︙ | ︙ | |||
2363 2364 2365 2366 2367 2368 2369 | # Results: # # Defines some of the following vars: # USE_DELTA_FOR_TZ # HAVE_TM_GMTOFF # HAVE_TM_TZADJ # HAVE_TIMEZONE_VAR | < | 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 | # Results: # # Defines some of the following vars: # USE_DELTA_FOR_TZ # HAVE_TM_GMTOFF # HAVE_TM_TZADJ # HAVE_TIMEZONE_VAR #-------------------------------------------------------------------- AC_DEFUN([TEA_TIME_HANDLER], [ AC_CHECK_HEADERS(sys/time.h) AC_HEADER_TIME AC_STRUCT_TIMEZONE |
︙ | ︙ | |||
2432 2433 2434 2435 2436 2437 2438 | # Arguments: # none # # Results: # # Might defines some of the following vars: # strtod (=fixstrtod) | < | 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 | # Arguments: # none # # Results: # # Might defines some of the following vars: # strtod (=fixstrtod) #-------------------------------------------------------------------- AC_DEFUN([TEA_BUGGY_STRTOD], [ AC_CHECK_FUNC(strtod, tcl_strtod=1, tcl_strtod=0) if test "$tcl_strtod" = 1; then AC_CACHE_CHECK([for Solaris2.4/Tru64 strtod bugs], tcl_cv_strtod_buggy,[ AC_TRY_RUN([ |
︙ | ︙ | |||
2483 2484 2485 2486 2487 2488 2489 | # Requires the following vars to be set in the Makefile: # DL_LIBS (not in TEA, only needed in core) # LIBS # MATH_LIBS # # Results: # | | < | 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 | # Requires the following vars to be set in the Makefile: # DL_LIBS (not in TEA, only needed in core) # LIBS # MATH_LIBS # # Results: # # Substitutes the following vars: # TCL_LIBS # MATH_LIBS # # Might append to the following vars: # LIBS # # Might define the following vars: # HAVE_NET_ERRNO_H #-------------------------------------------------------------------- AC_DEFUN([TEA_TCL_LINK_LIBS], [ #-------------------------------------------------------------------- # On a few very rare systems, all of the libm.a stuff is # already in libc.a. Set compiler flags accordingly. # Also, Linux requires the "ieee" library for math to work |
︙ | ︙ | |||
2570 2571 2572 2573 2574 2575 2576 | # # Results: # # Might define the following vars: # _ISOC99_SOURCE # _LARGEFILE64_SOURCE # _LARGEFILE_SOURCE64 | < | 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 | # # Results: # # Might define the following vars: # _ISOC99_SOURCE # _LARGEFILE64_SOURCE # _LARGEFILE_SOURCE64 #-------------------------------------------------------------------- AC_DEFUN([TEA_TCL_EARLY_FLAG],[ AC_CACHE_VAL([tcl_cv_flag_]translit($1,[A-Z],[a-z]), AC_TRY_COMPILE([$2], $3, [tcl_cv_flag_]translit($1,[A-Z],[a-z])=no, AC_TRY_COMPILE([[#define ]$1[ 1 ]$2], $3, |
︙ | ︙ | |||
2618 2619 2620 2621 2622 2623 2624 | # # Might define the following vars: # TCL_WIDE_INT_IS_LONG # TCL_WIDE_INT_TYPE # HAVE_STRUCT_DIRENT64 # HAVE_STRUCT_STAT64 # HAVE_TYPE_OFF64_T | < | 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 | # # Might define the following vars: # TCL_WIDE_INT_IS_LONG # TCL_WIDE_INT_TYPE # HAVE_STRUCT_DIRENT64 # HAVE_STRUCT_STAT64 # HAVE_TYPE_OFF64_T #-------------------------------------------------------------------- AC_DEFUN([TEA_TCL_64BIT_FLAGS], [ AC_MSG_CHECKING([for 64-bit integer type]) AC_CACHE_VAL(tcl_cv_type_64bit,[ tcl_cv_type_64bit=none # See if the compiler knows natively about __int64 |
︙ | ︙ | |||
2650 2651 2652 2653 2654 2655 2656 | AC_DEFINE_UNQUOTED(TCL_WIDE_INT_TYPE,${tcl_cv_type_64bit}, [What type should be used to define wide integers?]) AC_MSG_RESULT([${tcl_cv_type_64bit}]) # Now check for auxiliary declarations AC_CACHE_CHECK([for struct dirent64], tcl_cv_struct_dirent64,[ AC_TRY_COMPILE([#include <sys/types.h> | | | 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 | AC_DEFINE_UNQUOTED(TCL_WIDE_INT_TYPE,${tcl_cv_type_64bit}, [What type should be used to define wide integers?]) AC_MSG_RESULT([${tcl_cv_type_64bit}]) # Now check for auxiliary declarations AC_CACHE_CHECK([for struct dirent64], tcl_cv_struct_dirent64,[ AC_TRY_COMPILE([#include <sys/types.h> #include <dirent.h>],[struct dirent64 p;], tcl_cv_struct_dirent64=yes,tcl_cv_struct_dirent64=no)]) if test "x${tcl_cv_struct_dirent64}" = "xyes" ; then AC_DEFINE(HAVE_STRUCT_DIRENT64, 1, [Is 'struct dirent64' in <sys/types.h>?]) fi AC_CACHE_CHECK([for struct stat64], tcl_cv_struct_stat64,[ AC_TRY_COMPILE([#include <sys/stat.h>],[struct stat64 p; |
︙ | ︙ | |||
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 | AC_MSG_ERROR([ TEA version not specified.]) elif test "$1" != "${TEA_VERSION}" ; then AC_MSG_RESULT([warning: requested TEA version "$1", have "${TEA_VERSION}"]) else AC_MSG_RESULT([ok (TEA ${TEA_VERSION})]) fi case "`uname -s`" in *win32*|*WIN32*|*MINGW32_*) AC_CHECK_PROG(CYGPATH, cygpath, cygpath -w, echo) EXEEXT=".exe" TEA_PLATFORM="windows" ;; *CYGWIN_*) CYGPATH=echo EXEEXT=".exe" # TEA_PLATFORM is determined later in LOAD_TCLCONFIG ;; *) CYGPATH=echo | > > > > > > > > > > > > > > | | > > > > | 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 | AC_MSG_ERROR([ TEA version not specified.]) elif test "$1" != "${TEA_VERSION}" ; then AC_MSG_RESULT([warning: requested TEA version "$1", have "${TEA_VERSION}"]) else AC_MSG_RESULT([ok (TEA ${TEA_VERSION})]) fi # If the user did not set CFLAGS, set it now to keep macros # like AC_PROG_CC and AC_TRY_COMPILE from adding "-g -O2". if test "${CFLAGS+set}" != "set" ; then CFLAGS="" fi case "`uname -s`" in *win32*|*WIN32*|*MINGW32_*) AC_CHECK_PROG(CYGPATH, cygpath, cygpath -w, echo) EXEEXT=".exe" TEA_PLATFORM="windows" ;; *CYGWIN_*) CYGPATH=echo EXEEXT=".exe" # TEA_PLATFORM is determined later in LOAD_TCLCONFIG ;; *) CYGPATH=echo # Maybe we are cross-compiling.... case ${host_alias} in *mingw32*) EXEEXT=".exe" TEA_PLATFORM="windows" ;; *) EXEEXT="" TEA_PLATFORM="unix" ;; esac ;; esac # Check if exec_prefix is set. If not use fall back to prefix. # Note when adjusted, so that TEA_PREFIX can correct for this. # This is needed for recursive configures, since autoconf propagates # $prefix, but not $exec_prefix (doh!). if test x$exec_prefix = xNONE ; then exec_prefix_default=yes exec_prefix=$prefix fi AC_MSG_NOTICE([configuring ${PACKAGE_NAME} ${PACKAGE_VERSION}]) AC_SUBST(EXEEXT) AC_SUBST(CYGPATH) # This package name must be replaced statically for AC_SUBST to work AC_SUBST(PKG_LIB_FILE) # Substitute STUB_LIB_FILE in case package creates a stub library too. |
︙ | ︙ | |||
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 | # Defines and substs the following vars: # PKG_CFLAGS #------------------------------------------------------------------------ AC_DEFUN([TEA_ADD_CFLAGS], [ PKG_CFLAGS="$PKG_CFLAGS $@" AC_SUBST(PKG_CFLAGS) ]) #------------------------------------------------------------------------ # TEA_PREFIX -- # # Handle the --prefix=... option by defaulting to what Tcl gave # # Arguments: | > > > > > > > > > > > > > > > > | 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 | # Defines and substs the following vars: # PKG_CFLAGS #------------------------------------------------------------------------ AC_DEFUN([TEA_ADD_CFLAGS], [ PKG_CFLAGS="$PKG_CFLAGS $@" AC_SUBST(PKG_CFLAGS) ]) #------------------------------------------------------------------------ # TEA_ADD_CLEANFILES -- # # Specify one or more CLEANFILES. # # Arguments: # one or more file names to clean target # # Results: # # Appends to CLEANFILES, already defined for subst in LOAD_TCLCONFIG #------------------------------------------------------------------------ AC_DEFUN([TEA_ADD_CLEANFILES], [ CLEANFILES="$CLEANFILES $@" ]) #------------------------------------------------------------------------ # TEA_PREFIX -- # # Handle the --prefix=... option by defaulting to what Tcl gave # # Arguments: |
︙ | ︙ | |||
3051 3052 3053 3054 3055 3056 3057 | # # Sets up CC var and other standard bits we need to make executables. #------------------------------------------------------------------------ AC_DEFUN([TEA_SETUP_COMPILER_CC], [ # Don't put any macros that use the compiler (e.g. AC_TRY_COMPILE) # in this macro, they need to go into TEA_SETUP_COMPILER instead. | < < < < < < > | > > > > > > | | 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 | # # Sets up CC var and other standard bits we need to make executables. #------------------------------------------------------------------------ AC_DEFUN([TEA_SETUP_COMPILER_CC], [ # Don't put any macros that use the compiler (e.g. AC_TRY_COMPILE) # in this macro, they need to go into TEA_SETUP_COMPILER instead. AC_PROG_CC AC_PROG_CPP INSTALL="\$(SHELL) \$(srcdir)/tclconfig/install-sh -c" AC_SUBST(INSTALL) INSTALL_DATA="\${INSTALL} -m 644" AC_SUBST(INSTALL_DATA) INSTALL_PROGRAM="\${INSTALL}" AC_SUBST(INSTALL_PROGRAM) INSTALL_SCRIPT="\${INSTALL}" AC_SUBST(INSTALL_SCRIPT) #-------------------------------------------------------------------- # Checks to see if the make program sets the $MAKE variable. #-------------------------------------------------------------------- AC_PROG_MAKE_SET #-------------------------------------------------------------------- # Find ranlib #-------------------------------------------------------------------- AC_CHECK_TOOL(RANLIB, ranlib) #-------------------------------------------------------------------- # Determines the correct binary file extension (.o, .obj, .exe etc.) #-------------------------------------------------------------------- AC_OBJEXT AC_EXEEXT |
︙ | ︙ | |||
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 | # CFLAGS - Done late here to note disturb other AC macros # MAKE_LIB - Command to execute to build the Tcl library; # differs depending on whether or not Tcl is being # compiled as a shared library. # MAKE_SHARED_LIB Makefile rule for building a shared library # MAKE_STATIC_LIB Makefile rule for building a static library # MAKE_STUB_LIB Makefile rule for building a stub library #------------------------------------------------------------------------ AC_DEFUN([TEA_MAKE_LIB], [ if test "${TEA_PLATFORM}" = "windows" -a "$GCC" != "yes"; then MAKE_STATIC_LIB="\${STLIB_LD} -out:\[$]@ \$(PKG_OBJECTS)" MAKE_SHARED_LIB="\${SHLIB_LD} \${SHLIB_LD_LIBS} \${LDFLAGS_DEFAULT} -out:\[$]@ \$(PKG_OBJECTS)" | > > > > > > > > > > > > > | | 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 | # CFLAGS - Done late here to note disturb other AC macros # MAKE_LIB - Command to execute to build the Tcl library; # differs depending on whether or not Tcl is being # compiled as a shared library. # MAKE_SHARED_LIB Makefile rule for building a shared library # MAKE_STATIC_LIB Makefile rule for building a static library # MAKE_STUB_LIB Makefile rule for building a stub library # VC_MANIFEST_EMBED_DLL Makefile rule for embedded VC manifest in DLL # VC_MANIFEST_EMBED_EXE Makefile rule for embedded VC manifest in EXE #------------------------------------------------------------------------ AC_DEFUN([TEA_MAKE_LIB], [ if test "${TEA_PLATFORM}" = "windows" -a "$GCC" != "yes"; then MAKE_STATIC_LIB="\${STLIB_LD} -out:\[$]@ \$(PKG_OBJECTS)" MAKE_SHARED_LIB="\${SHLIB_LD} \${SHLIB_LD_LIBS} \${LDFLAGS_DEFAULT} -out:\[$]@ \$(PKG_OBJECTS)" AC_EGREP_CPP([manifest needed], [ #if defined(_MSC_VER) && _MSC_VER >= 1400 print("manifest needed") #endif ], [ # Could do a CHECK_PROG for mt, but should always be with MSVC8+ VC_MANIFEST_EMBED_DLL="if test -f \[$]@.manifest ; then mt.exe -nologo -manifest \[$]@.manifest -outputresource:\[$]@\;2 ; fi" VC_MANIFEST_EMBED_EXE="if test -f \[$]@.manifest ; then mt.exe -nologo -manifest \[$]@.manifest -outputresource:\[$]@\;1 ; fi" MAKE_SHARED_LIB="${MAKE_SHARED_LIB} ; ${VC_MANIFEST_EMBED_DLL}" TEA_ADD_CLEANFILES([*.manifest]) ]) MAKE_STUB_LIB="\${STLIB_LD} -nodefaultlib -out:\[$]@ \$(PKG_STUB_OBJECTS)" else MAKE_STATIC_LIB="\${STLIB_LD} \[$]@ \$(PKG_OBJECTS)" MAKE_SHARED_LIB="\${SHLIB_LD} -o \[$]@ \$(PKG_OBJECTS) \${SHLIB_LD_LIBS}" MAKE_STUB_LIB="\${STLIB_LD} \[$]@ \$(PKG_STUB_OBJECTS)" fi if test "${SHARED_BUILD}" = "1" ; then |
︙ | ︙ | |||
3180 3181 3182 3183 3184 3185 3186 | # substituted. (@@@ Might not be necessary anymore) #-------------------------------------------------------------------- if test "${TEA_PLATFORM}" = "windows" ; then if test "${SHARED_BUILD}" = "1" ; then # We force the unresolved linking of symbols that are really in # the private libraries of Tcl and Tk. | < > > > > > > > | 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 | # substituted. (@@@ Might not be necessary anymore) #-------------------------------------------------------------------- if test "${TEA_PLATFORM}" = "windows" ; then if test "${SHARED_BUILD}" = "1" ; then # We force the unresolved linking of symbols that are really in # the private libraries of Tcl and Tk. if test x"${TK_BIN_DIR}" != x ; then SHLIB_LD_LIBS="${SHLIB_LD_LIBS} \"`${CYGPATH} ${TK_BIN_DIR}/${TK_STUB_LIB_FILE}`\"" fi SHLIB_LD_LIBS="${SHLIB_LD_LIBS} \"`${CYGPATH} ${TCL_BIN_DIR}/${TCL_STUB_LIB_FILE}`\"" if test "$GCC" = "yes"; then SHLIB_LD_LIBS="${SHLIB_LD_LIBS} -static-libgcc" fi eval eval "PKG_LIB_FILE=${PACKAGE_NAME}${SHARED_LIB_SUFFIX}" else eval eval "PKG_LIB_FILE=${PACKAGE_NAME}${UNSHARED_LIB_SUFFIX}" if test "$GCC" = "yes"; then PKG_LIB_FILE=lib${PKG_LIB_FILE} fi fi # Some packages build their own stubs libraries eval eval "PKG_STUB_LIB_FILE=${PACKAGE_NAME}stub${UNSHARED_LIB_SUFFIX}" if test "$GCC" = "yes"; then PKG_STUB_LIB_FILE=lib${PKG_STUB_LIB_FILE} fi # These aren't needed on Windows (either MSVC or gcc) |
︙ | ︙ | |||
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 | fi AC_SUBST(MAKE_LIB) AC_SUBST(MAKE_SHARED_LIB) AC_SUBST(MAKE_STATIC_LIB) AC_SUBST(MAKE_STUB_LIB) AC_SUBST(RANLIB_STUB) ]) #------------------------------------------------------------------------ # TEA_LIB_SPEC -- # # Compute the name of an existing object library located in libdir # from the given base name and produce the appropriate linker flags. | > > | 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 | fi AC_SUBST(MAKE_LIB) AC_SUBST(MAKE_SHARED_LIB) AC_SUBST(MAKE_STATIC_LIB) AC_SUBST(MAKE_STUB_LIB) AC_SUBST(RANLIB_STUB) AC_SUBST(VC_MANIFEST_EMBED_DLL) AC_SUBST(VC_MANIFEST_EMBED_EXE) ]) #------------------------------------------------------------------------ # TEA_LIB_SPEC -- # # Compute the name of an existing object library located in libdir # from the given base name and produce the appropriate linker flags. |
︙ | ︙ | |||
3312 3313 3314 3315 3316 3317 3318 | # # Requires: # TCL_SRC_DIR Assumes that TEA_LOAD_TCLCONFIG has # already been called. # # Results: # | | | 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 | # # Requires: # TCL_SRC_DIR Assumes that TEA_LOAD_TCLCONFIG has # already been called. # # Results: # # Substitutes the following vars: # TCL_TOP_DIR_NATIVE # TCL_INCLUDES #------------------------------------------------------------------------ AC_DEFUN([TEA_PRIVATE_TCL_HEADERS], [ # Allow for --with-tclinclude to take effect and define ${ac_cv_c_tclh} AC_REQUIRE([TEA_PUBLIC_TCL_HEADERS]) |
︙ | ︙ | |||
3390 3391 3392 3393 3394 3395 3396 | # CYGPATH must be set # # Results: # # Adds a --with-tclinclude switch to configure. # Result is cached. # | | | 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 | # CYGPATH must be set # # Results: # # Adds a --with-tclinclude switch to configure. # Result is cached. # # Substitutes the following vars: # TCL_INCLUDES #------------------------------------------------------------------------ AC_DEFUN([TEA_PUBLIC_TCL_HEADERS], [ AC_MSG_CHECKING([for Tcl public headers]) AC_ARG_WITH(tclinclude, [ --with-tclinclude directory containing the public Tcl header files], with_tclinclude=${withval}) |
︙ | ︙ | |||
3480 3481 3482 3483 3484 3485 3486 | # # Requires: # TK_SRC_DIR Assumes that TEA_LOAD_TKCONFIG has # already been called. # # Results: # | | | 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 | # # Requires: # TK_SRC_DIR Assumes that TEA_LOAD_TKCONFIG has # already been called. # # Results: # # Substitutes the following vars: # TK_INCLUDES #------------------------------------------------------------------------ AC_DEFUN([TEA_PRIVATE_TK_HEADERS], [ # Allow for --with-tkinclude to take effect and define ${ac_cv_c_tkh} AC_REQUIRE([TEA_PUBLIC_TK_HEADERS]) AC_MSG_CHECKING([for Tk private include files]) |
︙ | ︙ | |||
3569 3570 3571 3572 3573 3574 3575 | # CYGPATH must be set # # Results: # # Adds a --with-tkinclude switch to configure. # Result is cached. # | | | 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 | # CYGPATH must be set # # Results: # # Adds a --with-tkinclude switch to configure. # Result is cached. # # Substitutes the following vars: # TK_INCLUDES #------------------------------------------------------------------------ AC_DEFUN([TEA_PUBLIC_TK_HEADERS], [ AC_MSG_CHECKING([for Tk public headers]) AC_ARG_WITH(tkinclude, [ --with-tkinclude directory containing the public Tk header files], with_tkinclude=${withval}) |
︙ | ︙ | |||
3787 3788 3789 3790 3791 3792 3793 | # Arguments: # # Requires the following vars to be set: # $1_BIN_DIR # # Results: # | | < | 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 | # Arguments: # # Requires the following vars to be set: # $1_BIN_DIR # # Results: # # Substitutes the following vars: # $1_SRC_DIR # $1_LIB_FILE # $1_LIB_SPEC #------------------------------------------------------------------------ AC_DEFUN([TEA_LOAD_CONFIG], [ AC_MSG_CHECKING([for existence of ${$1_BIN_DIR}/$1Config.sh]) if test -f "${$1_BIN_DIR}/$1Config.sh" ; then AC_MSG_RESULT([loading]) |
︙ | ︙ | |||
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 | # if test -f "${$1_BIN_DIR}/Makefile" ; then AC_MSG_WARN([Found Makefile - using build library specs for $1]) $1_LIB_SPEC=${$1_BUILD_LIB_SPEC} $1_STUB_LIB_SPEC=${$1_BUILD_STUB_LIB_SPEC} $1_STUB_LIB_PATH=${$1_BUILD_STUB_LIB_PATH} fi AC_SUBST($1_VERSION) AC_SUBST($1_BIN_DIR) AC_SUBST($1_SRC_DIR) AC_SUBST($1_LIB_FILE) | > > | 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 | # if test -f "${$1_BIN_DIR}/Makefile" ; then AC_MSG_WARN([Found Makefile - using build library specs for $1]) $1_LIB_SPEC=${$1_BUILD_LIB_SPEC} $1_STUB_LIB_SPEC=${$1_BUILD_STUB_LIB_SPEC} $1_STUB_LIB_PATH=${$1_BUILD_STUB_LIB_PATH} $1_INCLUDE_SPEC=${$1_BUILD_INCLUDE_SPEC} $1_LIBRARY_PATH=${$1_LIBRARY_PATH} fi AC_SUBST($1_VERSION) AC_SUBST($1_BIN_DIR) AC_SUBST($1_SRC_DIR) AC_SUBST($1_LIB_FILE) |
︙ | ︙ | |||
3850 3851 3852 3853 3854 3855 3856 | # TEA_LOAD_CONFIG_LIB -- # # Helper function to load correct library from another extension's # ${PACKAGE}Config.sh. # # Results: # Adds to LIBS the appropriate extension library | < | 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 | # TEA_LOAD_CONFIG_LIB -- # # Helper function to load correct library from another extension's # ${PACKAGE}Config.sh. # # Results: # Adds to LIBS the appropriate extension library #------------------------------------------------------------------------ AC_DEFUN([TEA_LOAD_CONFIG_LIB], [ AC_MSG_CHECKING([For $1 library for LIBS]) # This simplifies the use of stub libraries by automatically adding # the stub lib to your path. Normally this would add to SHLIB_LD_LIBS, # but this is called before CONFIG_CFLAGS. More importantly, this adds # to PKG_LIBS, which becomes LIBS, and that is only used by SHLIB_LD. |
︙ | ︙ | |||
3882 3883 3884 3885 3886 3887 3888 | # # Arguments: # # Requires the following vars to be set: # $1 # # Results: | | < | | 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 | # # Arguments: # # Requires the following vars to be set: # $1 # # Results: # Substitutes the following vars: #------------------------------------------------------------------------ AC_DEFUN([TEA_EXPORT_CONFIG], [ #-------------------------------------------------------------------- # These are for $1Config.sh #-------------------------------------------------------------------- # pkglibdir must be a fully qualified path and (not ${exec_prefix}/lib) eval pkglibdir="[$]{libdir}/$1${PACKAGE_VERSION}" if test "${TCL_LIB_VERSIONS_OK}" = "ok"; then |
︙ | ︙ |
Deleted mkdll.sh.
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted mkextu.sh.
|
| < < < < < < < < < < < < < |
Deleted mkextw.sh.
|
| < < < < < < < < < < < < < < < < < < < < < < |
Changes to src/alter.c.
︙ | ︙ | |||
73 74 75 76 77 78 79 | do { zCsr += len; len = sqlite3GetToken(zCsr, &token); } while( token==TK_SPACE ); assert( len>0 ); } while( token!=TK_LP && token!=TK_USING ); | | | | 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | do { zCsr += len; len = sqlite3GetToken(zCsr, &token); } while( token==TK_SPACE ); assert( len>0 ); } while( token!=TK_LP && token!=TK_USING ); zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", (int)(((u8*)tname.z) - zSql), zSql, zTableName, tname.z+tname.n); sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC); } } /* ** This C function implements an SQL user function that is used by SQL code ** generated by the ALTER TABLE ... RENAME command to modify the definition |
︙ | ︙ | |||
126 127 128 129 130 131 132 | }while( token==TK_SPACE ); zParent = sqlite3DbStrNDup(db, (const char *)z, n); if( zParent==0 ) break; sqlite3Dequote(zParent); if( 0==sqlite3StrICmp((const char *)zOld, zParent) ){ char *zOut = sqlite3MPrintf(db, "%s%.*s\"%w\"", | | | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | }while( token==TK_SPACE ); zParent = sqlite3DbStrNDup(db, (const char *)z, n); if( zParent==0 ) break; sqlite3Dequote(zParent); if( 0==sqlite3StrICmp((const char *)zOld, zParent) ){ char *zOut = sqlite3MPrintf(db, "%s%.*s\"%w\"", (zOutput?zOutput:""), (int)(z-zInput), zInput, (const char *)zNew ); sqlite3DbFree(db, zOutput); zOutput = zOut; zInput = &z[n]; } sqlite3DbFree(db, zParent); } |
︙ | ︙ | |||
212 213 214 215 216 217 218 | dist = 0; } } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) ); /* Variable tname now contains the token that is the old table-name ** in the CREATE TRIGGER statement. */ | | | | 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | dist = 0; } } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) ); /* Variable tname now contains the token that is the old table-name ** in the CREATE TRIGGER statement. */ zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", (int)(((u8*)tname.z) - zSql), zSql, zTableName, tname.z+tname.n); sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC); } } #endif /* !SQLITE_OMIT_TRIGGER */ /* ** Register built-in functions used to help implement ALTER TABLE |
︙ | ︙ | |||
601 602 603 604 605 606 607 608 609 610 611 612 613 614 | int r1 = sqlite3GetTempReg(pParse); int r2 = sqlite3GetTempReg(pParse); int j1; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2); sqlite3VdbeJumpHere(v, j1); sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempReg(pParse, r2); } } | > | 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 | int r1 = sqlite3GetTempReg(pParse); int r2 = sqlite3GetTempReg(pParse); int j1; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2); sqlite3VdbeJumpHere(v, j1); sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempReg(pParse, r2); } } |
︙ | ︙ |
Changes to src/analyze.c.
︙ | ︙ | |||
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 | ** Rewind csr ** if eof(csr) goto end_of_scan; ** regChng = 0 ** goto next_push_0; ** */ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto); /* ** next_row: ** regChng = 0 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 | > | 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 | ** Rewind csr ** if eof(csr) goto end_of_scan; ** regChng = 0 ** goto next_push_0; ** */ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto); /* ** next_row: ** regChng = 0 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 |
︙ | ︙ | |||
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 | for(i=0; i<nCol; i++){ char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); aGotoChng[i] = sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); } sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng); aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto); /* ** chng_addr_0: ** regPrev(0) = idx(0) | > | 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 | for(i=0; i<nCol; i++){ char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); aGotoChng[i] = sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng); aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto); /* ** chng_addr_0: ** regPrev(0) = idx(0) |
︙ | ︙ | |||
1140 1141 1142 1143 1144 1145 1146 | sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } #endif assert( regChng==(regStat4+1) ); sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2+IsStat34); | | | 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 | sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); } #endif assert( regChng==(regStat4+1) ); sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, 2+IsStat34); sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); /* Add the entry to the stat1 table. */ callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
︙ | ︙ | |||
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 | u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; pParse->nMem = MAX(pParse->nMem, regCol+nCol+1); addrNext = sqlite3VdbeCurrentAddr(v); callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); callStatGet(v, regStat4, STAT_GET_NEQ, regEq); callStatGet(v, regStat4, STAT_GET_NLT, regLt); callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); #ifdef SQLITE_ENABLE_STAT3 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, pIdx->aiColumn[0], regSample); #else for(i=0; i<nCol; i++){ i16 iCol = pIdx->aiColumn[i]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample); #endif | > > | | | 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 | u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; pParse->nMem = MAX(pParse->nMem, regCol+nCol+1); addrNext = sqlite3VdbeCurrentAddr(v); callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); VdbeCoverage(v); callStatGet(v, regStat4, STAT_GET_NEQ, regEq); callStatGet(v, regStat4, STAT_GET_NLT, regLt); callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); VdbeCoverage(v); #ifdef SQLITE_ENABLE_STAT3 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, pIdx->aiColumn[0], regSample); #else for(i=0; i<nCol; i++){ i16 iCol = pIdx->aiColumn[i]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample); #endif sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); sqlite3VdbeJumpHere(v, addrIsNull); } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* End of analysis */ sqlite3VdbeJumpHere(v, addrRewind); sqlite3DbFree(db, aGotoChng); } /* Create a single sqlite_stat1 entry containing NULL as the index ** name and the row count as the content. */ if( pOnlyIdx==0 && needTableCnt ){ VdbeComment((v, "%s", pTab->zName)); sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeJumpHere(v, jZeroRows); } |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
1538 1539 1540 1541 1542 1543 1544 | assert( sqlite3PagerGetData(pPage->pDbPage) == data ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pBt->mutex) ); if( pBt->btsFlags & BTS_SECURE_DELETE ){ memset(&data[hdr], 0, pBt->usableSize - hdr); } data[hdr] = (char)flags; | | < | 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 | assert( sqlite3PagerGetData(pPage->pDbPage) == data ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( sqlite3_mutex_held(pBt->mutex) ); if( pBt->btsFlags & BTS_SECURE_DELETE ){ memset(&data[hdr], 0, pBt->usableSize - hdr); } data[hdr] = (char)flags; first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); memset(&data[hdr+1], 0, 4); data[hdr+7] = 0; put2byte(&data[hdr+5], pBt->usableSize); pPage->nFree = (u16)(pBt->usableSize - first); decodeFlags(pPage, flags); pPage->cellOffset = first; pPage->aDataEnd = &data[pBt->usableSize]; pPage->aCellIdx = &data[first]; pPage->nOverflow = 0; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nCell = 0; |
︙ | ︙ | |||
3628 3629 3630 3631 3632 3633 3634 | pCur->wrFlag = (u8)wrFlag; pCur->pNext = pBt->pCursor; if( pCur->pNext ){ pCur->pNext->pPrev = pCur; } pBt->pCursor = pCur; pCur->eState = CURSOR_INVALID; | < | 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 | pCur->wrFlag = (u8)wrFlag; pCur->pNext = pBt->pCursor; if( pCur->pNext ){ pCur->pNext->pPrev = pCur; } pBt->pCursor = pCur; pCur->eState = CURSOR_INVALID; return SQLITE_OK; } int sqlite3BtreeCursor( Btree *p, /* The btree */ int iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ |
︙ | ︙ | |||
3669 3670 3671 3672 3673 3674 3675 | ** do not need to be zeroed and they are large, so we can save a lot ** of run-time by skipping the initialization of those elements. */ void sqlite3BtreeCursorZero(BtCursor *p){ memset(p, 0, offsetof(BtCursor, iPage)); } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 | ** do not need to be zeroed and they are large, so we can save a lot ** of run-time by skipping the initialization of those elements. */ void sqlite3BtreeCursorZero(BtCursor *p){ memset(p, 0, offsetof(BtCursor, iPage)); } /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ int sqlite3BtreeCloseCursor(BtCursor *pCur){ Btree *pBtree = pCur->pBtree; if( pBtree ){ |
︙ | ︙ | |||
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 | BtCursor *pCur, /* The cursor to be moved */ UnpackedRecord *pIdxKey, /* Unpacked index key */ i64 intKey, /* The table key */ int biasRight, /* If true, bias the search to the high end */ int *pRes /* Write search results here */ ){ int rc; assert( cursorHoldsMutex(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && pCur->validNKey && pCur->apPage[0]->intKey ){ if( pCur->info.nKey==intKey ){ *pRes = 0; return SQLITE_OK; } if( pCur->atLast && pCur->info.nKey<intKey ){ *pRes = -1; return SQLITE_OK; } } rc = moveToRoot(pCur); if( rc ){ return rc; } assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); | > > > > > > > > > > > | 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 | BtCursor *pCur, /* The cursor to be moved */ UnpackedRecord *pIdxKey, /* Unpacked index key */ i64 intKey, /* The table key */ int biasRight, /* If true, bias the search to the high end */ int *pRes /* Write search results here */ ){ int rc; RecordCompare xRecordCompare; assert( cursorHoldsMutex(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( pRes ); assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); /* If the cursor is already positioned at the point we are trying ** to move to, then just return without doing any work */ if( pCur->eState==CURSOR_VALID && pCur->validNKey && pCur->apPage[0]->intKey ){ if( pCur->info.nKey==intKey ){ *pRes = 0; return SQLITE_OK; } if( pCur->atLast && pCur->info.nKey<intKey ){ *pRes = -1; return SQLITE_OK; } } if( pIdxKey ){ xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); assert( pIdxKey->default_rc==1 || pIdxKey->default_rc==0 || pIdxKey->default_rc==-1 ); }else{ xRecordCompare = 0; /* Not actually used. Avoids a compiler warning. */ } rc = moveToRoot(pCur); if( rc ){ return rc; } assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); |
︙ | ︙ | |||
4680 4681 4682 4683 4684 4685 4686 | */ nCell = pCell[0]; if( nCell<=pPage->max1bytePayload ){ /* This branch runs if the record-size field of the cell is a ** single byte varint and the record fits entirely on the main ** b-tree page. */ testcase( pCell+nCell+1==pPage->aDataEnd ); | | | | | 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 | */ nCell = pCell[0]; if( nCell<=pPage->max1bytePayload ){ /* This branch runs if the record-size field of the cell is a ** single byte varint and the record fits entirely on the main ** b-tree page. */ testcase( pCell+nCell+1==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey, 0); }else if( !(pCell[1] & 0x80) && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal ){ /* The record-size field is a 2 byte varint and the record ** fits entirely on the main b-tree page. */ testcase( pCell+nCell+2==pPage->aDataEnd ); c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey, 0); }else{ /* The record flows over onto one or more overflow pages. In ** this case the whole cell needs to be parsed, a buffer allocated ** and accessPayload() used to retrieve the record into the ** buffer before VdbeRecordCompare() can be called. */ void *pCellKey; u8 * const pCellBody = pCell - pPage->childPtrSize; btreeParseCellPtr(pPage, pCellBody, &pCur->info); nCell = (int)pCur->info.nKey; pCellKey = sqlite3Malloc( nCell ); if( pCellKey==0 ){ rc = SQLITE_NOMEM; goto moveto_finish; } pCur->aiIdx[pCur->iPage] = (u16)idx; rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); if( rc ){ sqlite3_free(pCellKey); goto moveto_finish; } c = xRecordCompare(nCell, pCellKey, pIdxKey, 0); sqlite3_free(pCellKey); } if( c<0 ){ lwr = idx+1; }else if( c>0 ){ upr = idx-1; }else{ |
︙ | ︙ | |||
6982 6983 6984 6985 6986 6987 6988 | ** that the cursor is already where it needs to be and returns without ** doing any work. To avoid thwarting these optimizations, it is important ** not to clear the cursor here. */ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; | > | | < < > > > > > > > | 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 | ** that the cursor is already where it needs to be and returns without ** doing any work. To avoid thwarting these optimizations, it is important ** not to clear the cursor here. */ rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ) return rc; if( pCur->pKeyInfo==0 ){ /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ invalidateIncrblobCursors(p, nKey, 0); /* If the cursor is currently on the last row and we are appending a ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto() ** call */ if( pCur->validNKey && nKey>0 && pCur->info.nKey==nKey-1 ){ loc = -1; } } if( !loc ){ rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); if( rc ) return rc; } assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); |
︙ | ︙ | |||
7056 7057 7058 7059 7060 7061 7062 | ** is advantageous to leave the cursor pointing to the last entry in ** the b-tree if possible. If the cursor is left pointing to the last ** entry in the table, and the next row inserted has an integer key ** larger than the largest existing key, it is possible to insert the ** row without seeking the cursor. This can be a big performance boost. */ pCur->info.nSize = 0; | < > | 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 | ** is advantageous to leave the cursor pointing to the last entry in ** the b-tree if possible. If the cursor is left pointing to the last ** entry in the table, and the next row inserted has an integer key ** larger than the largest existing key, it is possible to insert the ** row without seeking the cursor. This can be a big performance boost. */ pCur->info.nSize = 0; if( rc==SQLITE_OK && pPage->nOverflow ){ pCur->validNKey = 0; rc = balance(pCur); /* Must make sure nOverflow is reset to zero even if the balance() ** fails. Internal data structure corruption will result otherwise. ** Also, set the cursor state to invalid. This stops saveCursorPosition() ** from trying to save the current position of the cursor. */ pCur->apPage[pCur->iPage]->nOverflow = 0; |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
178 179 180 181 182 183 184 | int sqlite3BtreePrevious(BtCursor*, int *pRes); int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); const void *sqlite3BtreeKeyFetch(BtCursor*, u32 *pAmt); const void *sqlite3BtreeDataFetch(BtCursor*, u32 *pAmt); int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); | < < | 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | int sqlite3BtreePrevious(BtCursor*, int *pRes); int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); const void *sqlite3BtreeKeyFetch(BtCursor*, u32 *pAmt); const void *sqlite3BtreeDataFetch(BtCursor*, u32 *pAmt); int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); struct Pager *sqlite3BtreePager(Btree*); int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); void sqlite3BtreeCacheOverflow(BtCursor *); void sqlite3BtreeClearCursor(BtCursor *); |
︙ | ︙ |
Changes to src/btreeInt.h.
︙ | ︙ | |||
496 497 498 499 500 501 502 | BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ #ifndef SQLITE_OMIT_INCRBLOB Pgno *aOverflow; /* Cache of overflow page locations */ #endif Pgno pgnoRoot; /* The root page of this tree */ | < | 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ #ifndef SQLITE_OMIT_INCRBLOB Pgno *aOverflow; /* Cache of overflow page locations */ #endif Pgno pgnoRoot; /* The root page of this tree */ CellInfo info; /* A parse of the cell we are pointing at */ i64 nKey; /* Size of pKey, or last integer key */ void *pKey; /* Saved key that was cursor's last known position */ int skipNext; /* Prev() is noop if negative. Next() is noop if positive */ u8 wrFlag; /* True if writable */ u8 atLast; /* Cursor pointing to the last entry */ u8 validNKey; /* True if info.nKey is valid */ |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
944 945 946 947 948 949 950 | ** set them now. */ reg1 = pParse->regRowid = ++pParse->nMem; reg2 = pParse->regRoot = ++pParse->nMem; reg3 = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); | | | 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 | ** set them now. */ reg1 = pParse->regRowid = ++pParse->nMem; reg2 = pParse->regRoot = ++pParse->nMem; reg3 = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); sqlite3VdbeUsesBtree(v, iDb); j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1 : SQLITE_MAX_FILE_FORMAT; sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); sqlite3VdbeJumpHere(v, j1); |
︙ | ︙ | |||
2671 2672 2673 2674 2675 2676 2677 | iSorter = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*) sqlite3KeyInfoRef(pKey), P4_KEYINFO); /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); | | | | | | | 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 | iSorter = pParse->nTab++; sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*) sqlite3KeyInfoRef(pKey), P4_KEYINFO); /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); sqlite3VdbeResolveLabel(v, iPartIdxLabel); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); assert( pKey!=0 || db->mallocFailed || pParse->nErr ); if( pIndex->onError!=OE_None && pKey!=0 ){ int j2 = sqlite3VdbeCurrentAddr(v) + 3; sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); addr2 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, pKey->nField - pIndex->nKeyCol); VdbeCoverage(v); sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); }else{ addr2 = sqlite3VdbeCurrentAddr(v); } sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord); sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Close, iTab); sqlite3VdbeAddOp1(v, OP_Close, iIdx); sqlite3VdbeAddOp1(v, OP_Close, iSorter); } |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
446 447 448 449 450 451 452 | if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen); addrDelete = sqlite3VdbeAddOp0(v, OP_Goto); /* Jump to DELETE logic */ }else if( pPk ){ /* Construct a composite key for the row to be deleted and remember it */ iKey = ++pParse->nMem; nKey = 0; /* Zero tells OP_Found to use a composite key */ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey, | | | 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 | if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen); addrDelete = sqlite3VdbeAddOp0(v, OP_Goto); /* Jump to DELETE logic */ }else if( pPk ){ /* Construct a composite key for the row to be deleted and remember it */ iKey = ++pParse->nMem; nKey = 0; /* Zero tells OP_Found to use a composite key */ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey, sqlite3IndexAffinityStr(v, pPk), nPk); sqlite3VdbeAddOp2(v, OP_IdxInsert, iEphCur, iKey); }else{ /* Get the rowid of the row to be deleted and remember it in the RowSet */ nKey = 1; /* OP_Seek always uses a single rowid */ sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey); } |
︙ | ︙ | |||
484 485 486 487 488 489 490 491 492 | */ if( okOnePass ){ /* Just one row. Hence the top-of-loop is a no-op */ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ if( aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); } }else if( pPk ){ | > | > | 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 | */ if( okOnePass ){ /* Just one row. Hence the top-of-loop is a no-op */ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ if( aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); VdbeCoverage(v); } }else if( pPk ){ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_RowKey, iEphCur, iKey); assert( nKey==0 ); /* OP_Found will use a composite key */ }else{ addrLoop = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, 0, iKey); VdbeCoverage(v); assert( nKey==1 ); } /* Delete the row */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
︙ | ︙ | |||
514 515 516 517 518 519 520 | iKey, nKey, count, OE_Default, okOnePass); } /* End of the loop over all rowids/primary-keys. */ if( okOnePass ){ sqlite3VdbeResolveLabel(v, addrBypass); }else if( pPk ){ | | | 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 | iKey, nKey, count, OE_Default, okOnePass); } /* End of the loop over all rowids/primary-keys. */ if( okOnePass ){ sqlite3VdbeResolveLabel(v, addrBypass); }else if( pPk ){ sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrLoop); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrLoop); sqlite3VdbeJumpHere(v, addrLoop); } /* Close the cursors open on the table and its indexes. */ |
︙ | ︙ | |||
612 613 614 615 616 617 618 | iDataCur, iIdxCur, iPk, (int)nPk)); /* Seek cursor iCur to the row to delete. If this row no longer exists ** (this can happen if a trigger program has already deleted it), do ** not attempt to delete it or fire any DELETE triggers. */ iLabel = sqlite3VdbeMakeLabel(v); opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound; | > | > > > | 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 | iDataCur, iIdxCur, iPk, (int)nPk)); /* Seek cursor iCur to the row to delete. If this row no longer exists ** (this can happen if a trigger program has already deleted it), do ** not attempt to delete it or fire any DELETE triggers. */ iLabel = sqlite3VdbeMakeLabel(v); opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound; if( !bNoSeek ){ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); VdbeCoverageIf(v, opSeek==OP_NotExists); VdbeCoverageIf(v, opSeek==OP_NotFound); } /* If there are any triggers to fire, allocate a range of registers to ** use for the old.* references in the triggers. */ if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){ u32 mask; /* Mask of OLD.* columns in use */ int iCol; /* Iterator used while populating OLD.* */ int addrStart; /* Start of BEFORE trigger programs */ |
︙ | ︙ | |||
654 655 656 657 658 659 660 661 662 663 664 665 666 667 | /* If any BEFORE triggers were coded, then seek the cursor to the ** row to be deleted again. It may be that the BEFORE triggers moved ** the cursor or of already deleted the row that the cursor was ** pointing to. */ if( addrStart<sqlite3VdbeCurrentAddr(v) ){ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); } /* Do FK processing. This call checks that any FK constraints that ** refer to this table (i.e. constraints attached to other tables) ** are not violated by deleting this row. */ sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0); } | > > | 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 | /* If any BEFORE triggers were coded, then seek the cursor to the ** row to be deleted again. It may be that the BEFORE triggers moved ** the cursor or of already deleted the row that the cursor was ** pointing to. */ if( addrStart<sqlite3VdbeCurrentAddr(v) ){ sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk); VdbeCoverageIf(v, opSeek==OP_NotExists); VdbeCoverageIf(v, opSeek==OP_NotFound); } /* Do FK processing. This call checks that any FK constraints that ** refer to this table (i.e. constraints attached to other tables) ** are not violated by deleting this row. */ sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0); } |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
1365 1366 1367 1368 1369 1370 1371 | case TK_BLOB: return 0; default: return 1; } } | < < < < < < < < < < < < < < < < < < | 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 | case TK_BLOB: return 0; default: return 1; } } /* ** Return TRUE if the given expression is a constant which would be ** unchanged by OP_Affinity with the affinity given in the second ** argument. ** ** This routine is used to determine if the OP_Affinity operation ** can be omitted. When in doubt return FALSE. A false negative |
︙ | ︙ | |||
1590 1591 1592 1593 1594 1595 1596 | /* This function is only called from two places. In both cases the vdbe ** has already been allocated. So assume sqlite3GetVdbe() is always ** successful here. */ assert(v); if( iCol<0 ){ | < < | > | 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 | /* This function is only called from two places. In both cases the vdbe ** has already been allocated. So assume sqlite3GetVdbe() is always ** successful here. */ assert(v); if( iCol<0 ){ int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); eType = IN_INDEX_ROWID; sqlite3VdbeJumpHere(v, iAddr); }else{ Index *pIdx; /* Iterator variable */ |
︙ | ︙ | |||
1617 1618 1619 1620 1621 1622 1623 | int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ if( (pIdx->aiColumn[0]==iCol) && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None)) ){ | | < > | 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 | int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ if( (pIdx->aiColumn[0]==iCol) && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None)) ){ int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "%s", pIdx->zName)); assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; if( prNotFound && !pTab->aCol[iCol].notNull ){ *prNotFound = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); } sqlite3VdbeJumpHere(v, iAddr); } } } } if( eType==0 ){ /* Could not found an existing table or index to use as the RHS b-tree. |
︙ | ︙ | |||
1717 1718 1719 1720 1721 1722 1723 | ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ | | | 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 | ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasProperty(pExpr, EP_VarSelect) ){ testAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); } #ifndef SQLITE_OMIT_EXPLAIN if( pParse->explain==2 ){ char *zMsg = sqlite3MPrintf( pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId |
︙ | ︙ | |||
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 | if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); }else{ r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); if( isRowid ){ sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); sqlite3ExprCacheAffinityChange(pParse, r3, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); } } | > | 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 | if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); }else{ r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); if( isRowid ){ sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); sqlite3ExprCacheAffinityChange(pParse, r3, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); } } |
︙ | ︙ | |||
1956 1957 1958 1959 1960 1961 1962 | /* If the LHS is NULL, then the result is either false or NULL depending ** on whether the RHS is empty or not, respectively. */ if( destIfNull==destIfFalse ){ /* Shortcut for the common case where the false and NULL outcomes are ** the same. */ | | | > | > | | > | > | > | < | < < < < | | | 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 | /* If the LHS is NULL, then the result is either false or NULL depending ** on whether the RHS is empty or not, respectively. */ if( destIfNull==destIfFalse ){ /* Shortcut for the common case where the false and NULL outcomes are ** the same. */ sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); }else{ int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); sqlite3VdbeJumpHere(v, addr1); } if( eType==IN_INDEX_ROWID ){ /* In this case, the RHS is the ROWID of table b-tree */ sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); VdbeCoverage(v); }else{ /* In this case, the RHS is an index b-tree. */ sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); /* If the set membership test fails, then the result of the ** "x IN (...)" expression must be either 0 or NULL. If the set ** contains no NULL values, then the result is 0. If the set ** contains one or more NULL values, then the result of the ** expression is also NULL. */ if( rRhsHasNull==0 || destIfFalse==destIfNull ){ /* This branch runs if it is known at compile time that the RHS ** cannot contain NULL values. This happens as the result ** of a "NOT NULL" constraint in the database schema. ** ** Also run this branch if NULL is equivalent to FALSE ** for this particular IN operator. */ sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); VdbeCoverage(v); }else{ /* In this branch, the RHS of the IN might contain a NULL and ** the presence of a NULL on the RHS makes a difference in the ** outcome. */ int j1, j2; /* First check to see if the LHS is contained in the RHS. If so, ** then the presence of NULLs in the RHS does not matter, so jump ** over all of the code that follows. */ j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); VdbeCoverage(v); /* Here we begin generating code that runs if the LHS is not ** contained within the RHS. Generate additional code that ** tests the RHS for NULLs. If the RHS contains a NULL then ** jump to destIfNull. If there are no NULLs in the RHS then ** jump to destIfFalse. */ sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_IfNot, rRhsHasNull, destIfFalse); VdbeCoverage(v); j2 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, 0, rRhsHasNull); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); sqlite3VdbeJumpHere(v, j2); sqlite3VdbeAddOp2(v, OP_Integer, 1, rRhsHasNull); sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); /* The OP_Found at the top of this branch jumps here when true, ** causing the overall IN expression evaluation to fall through. */ sqlite3VdbeJumpHere(v, j1); } } |
︙ | ︙ | |||
2541 2542 2543 2544 2545 2546 2547 | #endif /* SQLITE_OMIT_CAST */ case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { | < < < < < < < < < < < < > > > > > > > > | | | | | | | | | | | < < < < < < < < < < < | 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 | #endif /* SQLITE_OMIT_CAST */ case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, inReg, SQLITE_STOREP2); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( op==TK_IS ); testcase( op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (op==TK_IS) ? TK_EQ : TK_NE; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); VdbeCoverageIf(v, op==TK_EQ); VdbeCoverageIf(v, op==TK_NE); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: case TK_REM: case TK_BITAND: case TK_BITOR: case TK_SLASH: case TK_LSHIFT: case TK_RSHIFT: case TK_CONCAT: { assert( TK_AND==OP_And ); testcase( op==TK_AND ); assert( TK_OR==OP_Or ); testcase( op==TK_OR ); assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); sqlite3VdbeAddOp3(v, op, r2, r1, target); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } |
︙ | ︙ | |||
2639 2640 2641 2642 2643 2644 2645 | testcase( regFree2==0 ); } inReg = target; break; } case TK_BITNOT: case TK_NOT: { | | | < < | | < < > > | 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 | testcase( regFree2==0 ); } inReg = target; break; } case TK_BITNOT: case TK_NOT: { assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); inReg = target; sqlite3VdbeAddOp2(v, op, r1, inReg); break; } case TK_ISNULL: case TK_NOTNULL: { int addr; assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); sqlite3VdbeAddOp2(v, OP_Integer, 1, target); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); testcase( regFree1==0 ); addr = sqlite3VdbeAddOp1(v, op, r1); VdbeCoverageIf(v, op==TK_ISNULL); VdbeCoverageIf(v, op==TK_NOTNULL); sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); sqlite3VdbeJumpHere(v, addr); break; } case TK_AGG_FUNCTION: { AggInfo *pInfo = pExpr->pAggInfo; if( pInfo==0 ){ |
︙ | ︙ | |||
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 | */ if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ int endCoalesce = sqlite3VdbeMakeLabel(v); assert( nFarg>=2 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; i<nFarg; i++){ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); sqlite3ExprCacheRemove(pParse, target, 1); sqlite3ExprCachePush(pParse); sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); sqlite3ExprCachePop(pParse, 1); } sqlite3VdbeResolveLabel(v, endCoalesce); break; | > | 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 | */ if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ int endCoalesce = sqlite3VdbeMakeLabel(v); assert( nFarg>=2 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; i<nFarg; i++){ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); VdbeCoverage(v); sqlite3ExprCacheRemove(pParse, target, 1); sqlite3ExprCachePush(pParse); sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); sqlite3ExprCachePop(pParse, 1); } sqlite3VdbeResolveLabel(v, endCoalesce); break; |
︙ | ︙ | |||
2848 2849 2850 2851 2852 2853 2854 | r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); testcase( regFree1==0 ); testcase( regFree2==0 ); r3 = sqlite3GetTempReg(pParse); r4 = sqlite3GetTempReg(pParse); codeCompare(pParse, pLeft, pRight, OP_Ge, | | > | 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 | r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); testcase( regFree1==0 ); testcase( regFree2==0 ); r3 = sqlite3GetTempReg(pParse); r4 = sqlite3GetTempReg(pParse); codeCompare(pParse, pLeft, pRight, OP_Ge, r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); pLItem++; pRight = pLItem->pExpr; sqlite3ReleaseTempReg(pParse, regFree2); r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); testcase( regFree2==0 ); codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); sqlite3ReleaseTempReg(pParse, r3); sqlite3ReleaseTempReg(pParse, r4); break; } case TK_COLLATE: case TK_UPLUS: { |
︙ | ︙ | |||
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 | if( pExpr->affinity==OE_Abort ){ sqlite3MayAbort(pParse); } assert( !ExprHasProperty(pExpr, EP_IntValue) ); if( pExpr->affinity==OE_Ignore ){ sqlite3VdbeAddOp4( v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); }else{ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, pExpr->affinity, pExpr->u.zToken, 0, 0); } break; } | > | 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 | if( pExpr->affinity==OE_Abort ){ sqlite3MayAbort(pParse); } assert( !ExprHasProperty(pExpr, EP_IntValue) ); if( pExpr->affinity==OE_Ignore ){ sqlite3VdbeAddOp4( v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); VdbeCoverage(v); }else{ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, pExpr->affinity, pExpr->u.zToken, 0, 0); } break; } |
︙ | ︙ | |||
3108 3109 3110 3111 3112 3113 3114 | } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. */ | | > | > > > > > > > > > > > > | | | < < < < < < < | < > | | | < < | 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 | } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. */ void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ int inReg; assert( target>0 && target<=pParse->nMem ); if( pExpr && pExpr->op==TK_REGISTER ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); }else{ inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); assert( pParse->pVdbe || pParse->db->mallocFailed ); if( inReg!=target && pParse->pVdbe ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); } } } /* ** Generate code that will evaluate expression pExpr and store the ** results in register target. The results are guaranteed to appear ** in register target. If the expression is constant, then this routine ** might choose to code the expression at initialization time. */ void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); }else{ sqlite3ExprCode(pParse, pExpr, target); } } /* ** Generate code that evalutes the given expression and puts the result ** in register target. ** ** Also make a copy of the expression results into another "cache" register ** and modify the expression so that the next time it is evaluated, ** the result is a copy of the cache register. ** ** This routine is used for expressions that are used multiple ** times. They are evaluated once and the results of the expression ** are reused. */ void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ Vdbe *v = pParse->pVdbe; int iMem; assert( target>0 ); assert( pExpr->op!=TK_REGISTER ); sqlite3ExprCode(pParse, pExpr, target); iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); exprToRegister(pExpr, iMem); } #if defined(SQLITE_ENABLE_TREE_EXPLAIN) /* ** Generate a human-readable explanation of an expression tree. */ void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ |
︙ | ︙ | |||
3589 3590 3591 3592 3593 3594 3595 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { | < < < < < < < < < < < < > > > > > > > > | | < < > > | 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( op==TK_IS ); testcase( op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (op==TK_IS) ? TK_EQ : TK_NE; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, SQLITE_NULLEQ); VdbeCoverageIf(v, op==TK_EQ); VdbeCoverageIf(v, op==TK_NE); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeAddOp2(v, op, r1, dest); VdbeCoverageIf(v, op==TK_ISNULL); VdbeCoverageIf(v, op==TK_NOTNULL); testcase( regFree1==0 ); break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); break; |
︙ | ︙ | |||
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 | if( exprAlwaysTrue(pExpr) ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); }else if( exprAlwaysFalse(pExpr) ){ /* No-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); | > | 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 | if( exprAlwaysTrue(pExpr) ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); }else if( exprAlwaysFalse(pExpr) ){ /* No-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); VdbeCoverage(v); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); |
︙ | ︙ | |||
3748 3749 3750 3751 3752 3753 3754 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { | < < < < < < > > > > > > > > < < > > | 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 | } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull); assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, SQLITE_NULLEQ); VdbeCoverageIf(v, op==TK_EQ); VdbeCoverageIf(v, op==TK_NE); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_ISNULL: case TK_NOTNULL: { r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); sqlite3VdbeAddOp2(v, op, r1, dest); testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); testcase( regFree1==0 ); break; } case TK_BETWEEN: { testcase( jumpIfNull==0 ); exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); break; |
︙ | ︙ | |||
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 | if( exprAlwaysFalse(pExpr) ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); }else if( exprAlwaysTrue(pExpr) ){ /* no-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); | > | 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 | if( exprAlwaysFalse(pExpr) ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); }else if( exprAlwaysTrue(pExpr) ){ /* no-op */ }else{ r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); VdbeCoverage(v); testcase( regFree1==0 ); testcase( jumpIfNull==0 ); } break; } } sqlite3ReleaseTempReg(pParse, regFree1); |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
336 337 338 339 340 341 342 343 344 345 | ** to check if deleting this row resolves any outstanding violations. ** ** Check if any of the key columns in the child table row are NULL. If ** any are, then the constraint is considered satisfied. No need to ** search for a matching row in the parent table. */ if( nIncr<0 ){ sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); } for(i=0; i<pFKey->nCol; i++){ int iReg = aiCol[i] + regData + 1; | > | > | > | | 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | ** to check if deleting this row resolves any outstanding violations. ** ** Check if any of the key columns in the child table row are NULL. If ** any are, then the constraint is considered satisfied. No need to ** search for a matching row in the parent table. */ if( nIncr<0 ){ sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); VdbeCoverage(v); } for(i=0; i<pFKey->nCol; i++){ int iReg = aiCol[i] + regData + 1; sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); } if( isIgnore==0 ){ if( pIdx==0 ){ /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY ** column of the parent table (table pTab). */ int iMustBeInt; /* Address of MustBeInt instruction */ int regTemp = sqlite3GetTempReg(pParse); /* Invoke MustBeInt to coerce the child key value to an integer (i.e. ** apply the affinity of the parent key). If this fails, then there ** is no matching parent key. Before using MustBeInt, make a copy of ** the value. Otherwise, the value inserted into the child key column ** will have INTEGER affinity applied to it, which may not be correct. */ sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); VdbeCoverage(v); /* If the parent table is the same as the child table, and we are about ** to increment the constraint-counter (i.e. this is an INSERT operation), ** then check if the row being inserted matches itself. If so, do not ** increment the constraint-counter. */ if( pTab==pFKey->pFrom && nIncr==1 ){ sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); } sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); sqlite3VdbeJumpHere(v, iMustBeInt); sqlite3ReleaseTempReg(pParse, regTemp); }else{ int nCol = pFKey->nCol; int regTemp = sqlite3GetTempRange(pParse, nCol); |
︙ | ︙ | |||
402 403 404 405 406 407 408 | int iChild = aiCol[i]+1+regData; int iParent = pIdx->aiColumn[i]+1+regData; assert( aiCol[i]!=pTab->iPKey ); if( pIdx->aiColumn[i]==pTab->iPKey ){ /* The parent key is a composite key that includes the IPK column */ iParent = regData; } | | | | | | 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | int iChild = aiCol[i]+1+regData; int iParent = pIdx->aiColumn[i]+1+regData; assert( aiCol[i]!=pTab->iPKey ); if( pIdx->aiColumn[i]==pTab->iPKey ){ /* The parent key is a composite key that includes the IPK column */ iParent = regData; } sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); } sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); } sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, sqlite3IndexAffinityStr(v,pIdx), nCol); sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempRange(pParse, regTemp, nCol); } } if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) |
︙ | ︙ | |||
548 549 550 551 552 553 554 555 556 557 558 559 560 561 | assert( pIdx==0 || pIdx->pTable==pTab ); assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); assert( pIdx!=0 || pFKey->nCol==1 ); assert( pIdx!=0 || HasRowid(pTab) ); if( nIncr<0 ){ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); } /* Create an Expr object representing an SQL expression like: ** ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... ** ** The collation sequence used for the comparison should be that of | > | 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 | assert( pIdx==0 || pIdx->pTable==pTab ); assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); assert( pIdx!=0 || pFKey->nCol==1 ); assert( pIdx!=0 || HasRowid(pTab) ); if( nIncr<0 ){ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); VdbeCoverage(v); } /* Create an Expr object representing an SQL expression like: ** ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... ** ** The collation sequence used for the comparison should be that of |
︙ | ︙ | |||
710 711 712 713 714 715 716 | ** when this statement is run. */ FKey *p; for(p=pTab->pFKey; p; p=p->pNextFrom){ if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; } if( !p ) return; iSkip = sqlite3VdbeMakeLabel(v); | | > | 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 | ** when this statement is run. */ FKey *p; for(p=pTab->pFKey; p; p=p->pNextFrom){ if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; } if( !p ) return; iSkip = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); } pParse->disableTriggers = 1; sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); pParse->disableTriggers = 0; /* If the DELETE has generated immediate foreign key constraint ** violations, halt the VDBE and return an error at this point, before ** any modifications to the schema are made. This is because statement ** transactions are not able to rollback schema changes. ** ** If the SQLITE_DeferFKs flag is set, then this is not required, as ** the statement transaction will not be rolled back even if FK ** constraints are violated. */ if( (db->flags & SQLITE_DeferFKs)==0 ){ sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, OE_Abort, 0, P4_STATIC, P5_ConstraintFK); } if( iSkip ){ sqlite3VdbeResolveLabel(v, iSkip); } |
︙ | ︙ | |||
887 888 889 890 891 892 893 | ** missing, behave as if it is empty. i.e. decrement the relevant ** FK counter for each row of the current table with non-NULL keys. */ Vdbe *v = sqlite3GetVdbe(pParse); int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; for(i=0; i<pFKey->nCol; i++){ int iReg = pFKey->aCol[i].iFrom + regOld + 1; | | | 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 | ** missing, behave as if it is empty. i.e. decrement the relevant ** FK counter for each row of the current table with non-NULL keys. */ Vdbe *v = sqlite3GetVdbe(pParse); int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; for(i=0; i<pFKey->nCol; i++){ int iReg = pFKey->aCol[i].iFrom + regOld + 1; sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); } continue; } assert( pFKey->nCol==1 || (aiFree && pIdx) ); |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
94 95 96 97 98 99 100 | pIdx->zColAff[n] = 0; } return pIdx->zColAff; } /* | < | > > > > > > | | > | | < < < < < < | | < < > | | | > > > > | > > | | | 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | pIdx->zColAff[n] = 0; } return pIdx->zColAff; } /* ** Compute the affinity string for table pTab, if it has not already been ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities. ** ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values and ** if iReg>0 then code an OP_Affinity opcode that will set the affinities ** for register iReg and following. Or if affinities exists and iReg==0, ** then just set the P4 operand of the previous opcode (which should be ** an OP_MakeRecord) to the affinity string. ** ** A column affinity string has one character column: ** ** Character Column affinity ** ------------------------------ ** 'a' TEXT ** 'b' NONE ** 'c' NUMERIC ** 'd' INTEGER ** 'e' REAL */ void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ int i; char *zColAff = pTab->zColAff; if( zColAff==0 ){ sqlite3 *db = sqlite3VdbeDb(v); zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); if( !zColAff ){ db->mallocFailed = 1; return; } for(i=0; i<pTab->nCol; i++){ zColAff[i] = pTab->aCol[i].affinity; } do{ zColAff[i--] = 0; }while( i>=0 && zColAff[i]==SQLITE_AFF_NONE ); pTab->zColAff = zColAff; } i = sqlite3Strlen30(zColAff); if( i ){ if( iReg ){ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); }else{ sqlite3VdbeChangeP4(v, -1, zColAff, i); } } } /* ** Return non-zero if the table pTab in database iDb or any of its indices ** have been opened at any point in the VDBE program beginning at location ** iStartAddr throught the end of the program. This is used to see if ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can ** run without using temporary table for the results of the SELECT. */ static int readsTable(Parse *p, int iDb, Table *pTab){ Vdbe *v = sqlite3GetVdbe(p); int i; int iEnd = sqlite3VdbeCurrentAddr(v); #ifndef SQLITE_OMIT_VIRTUALTABLE VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; #endif for(i=1; i<iEnd; i++){ VdbeOp *pOp = sqlite3VdbeGetOp(v, i); assert( pOp!=0 ); if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ Index *pIndex; int tnum = pOp->p2; if( tnum==pTab->tnum ){ return 1; |
︙ | ︙ | |||
253 254 255 256 257 258 259 | pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); | | | | | 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); sqlite3VdbeAddOp0(v, OP_Close); } } /* ** Update the maximum rowid for an autoincrement calculation. |
︙ | ︙ | |||
295 296 297 298 299 300 301 | AutoincInfo *p; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( v ); for(p = pParse->pAinc; p; p = p->pNext){ Db *pDb = &db->aDb[p->iDb]; | | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | AutoincInfo *p; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( v ); for(p = pParse->pAinc; p; p = p->pNext){ Db *pDb = &db->aDb[p->iDb]; int j1; int iRec; int memId = p->regCtr; iRec = sqlite3GetTempReg(pParse); assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeAddOp0(v, OP_Close); sqlite3ReleaseTempReg(pParse, iRec); } } #else /* ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines ** above are all no-ops */ # define autoIncBegin(A,B,C) (0) # define autoIncStep(A,B,C) #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Forward declaration */ static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ |
︙ | ︙ | |||
527 528 529 530 531 532 533 | Index *pIdx; /* For looping over indices of the table */ int nColumn; /* Number of columns in the data */ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ int iDataCur = 0; /* VDBE cursor that is the main data repository */ int iIdxCur = 0; /* First index cursor */ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ int endOfLoop; /* Label for the end of the insertion loop */ | < < > | | > | 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 | Index *pIdx; /* For looping over indices of the table */ int nColumn; /* Number of columns in the data */ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ int iDataCur = 0; /* VDBE cursor that is the main data repository */ int iIdxCur = 0; /* First index cursor */ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ int endOfLoop; /* Label for the end of the insertion loop */ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ int addrInsTop = 0; /* Jump to label "D" */ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ int iDb; /* Index of database holding TABLE */ Db *pDb; /* The database containing table being inserted into */ u8 useTempTable = 0; /* Store SELECT results in intermediate table */ u8 appendFlag = 0; /* True if the insert is likely to be an append */ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ u8 bIdListInOrder = 1; /* True if IDLIST is in table order */ ExprList *pList = 0; /* List of VALUES() to be inserted */ /* Register allocations */ int regFromSelect = 0;/* Base register for data coming from SELECT */ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ int regRowCount = 0; /* Memory cell used for the row counter */ int regIns; /* Block of regs holding rowid+data being inserted */ |
︙ | ︙ | |||
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 | } #endif /* SQLITE_OMIT_XFER_OPT */ /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell regAutoinc. */ regAutoinc = autoIncBegin(pParse, iDb, pTab); /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then generate a co-routine that ** produces a single row of the SELECT on each invocation. The ** co-routine is the common header to the 3rd and 4th templates. */ if( pSelect ){ /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > > > > > > > > > < | | | | | > > > > > > > > < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 | } #endif /* SQLITE_OMIT_XFER_OPT */ /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell regAutoinc. */ regAutoinc = autoIncBegin(pParse, iDb, pTab); /* Allocate registers for holding the rowid of the new row, ** the content of the new row, and the assemblied row record. */ regRowid = regIns = pParse->nMem+1; pParse->nMem += pTab->nCol + 1; if( IsVirtual(pTab) ){ regRowid++; pParse->nMem++; } regData = regRowid+1; /* If the INSERT statement included an IDLIST term, then make sure ** all elements of the IDLIST really are columns of the table and ** remember the column indices. ** ** If the table has an INTEGER PRIMARY KEY column and that column ** is named in the IDLIST, then record in the ipkColumn variable ** the index into IDLIST of the primary key column. ipkColumn is ** the index of the primary key as it appears in IDLIST, not as ** is appears in the original table. (The index of the INTEGER ** PRIMARY KEY in the original table is pTab->iPKey.) */ if( pColumn ){ for(i=0; i<pColumn->nId; i++){ pColumn->a[i].idx = -1; } for(i=0; i<pColumn->nId; i++){ for(j=0; j<pTab->nCol; j++){ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ pColumn->a[i].idx = j; if( i!=j ) bIdListInOrder = 0; if( j==pTab->iPKey ){ ipkColumn = i; assert( !withoutRowid ); } break; } } if( j>=pTab->nCol ){ if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ ipkColumn = i; }else{ sqlite3ErrorMsg(pParse, "table %S has no column named %s", pTabList, 0, pColumn->a[i].zName); pParse->checkSchema = 1; goto insert_cleanup; } } } } /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then generate a co-routine that ** produces a single row of the SELECT on each invocation. The ** co-routine is the common header to the 3rd and 4th templates. */ if( pSelect ){ /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */ int regYield; /* Register holding co-routine entry-point */ int addrTop; /* Top of the co-routine */ int rc; /* Result code */ regYield = ++pParse->nMem; addrTop = sqlite3VdbeCurrentAddr(v) + 1; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); dest.iSdst = bIdListInOrder ? regData : 0; dest.nSdst = pTab->nCol; rc = sqlite3Select(pParse, pSelect, &dest); regFromSelect = dest.iSdst; assert( pParse->nErr==0 || rc ); if( rc || db->mallocFailed ) goto insert_cleanup; sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ assert( pSelect->pEList ); nColumn = pSelect->pEList->nExpr; /* Set useTempTable to TRUE if the result of the SELECT statement ** should be written into a temporary table (template 4). Set to ** FALSE if each output row of the SELECT can be written directly into ** the destination table (template 3). ** ** A temp table must be used if the table being updated is also one ** of the tables being read by the SELECT statement. Also use a ** temp table in the case of row triggers. */ if( pTrigger || readsTable(pParse, iDb, pTab) ){ useTempTable = 1; } if( useTempTable ){ /* Invoke the coroutine to extract information from the SELECT ** and add it to a transient table srcTab. The code generated ** here is from the 4th template: ** ** B: open temp table ** L: yield X, goto M at EOF ** insert row from R..R+n into temp table ** goto L ** M: ... */ int regRec; /* Register to hold packed record */ int regTempRowid; /* Register to hold temp table ROWID */ int addrL; /* Label "L" */ srcTab = pParse->nTab++; regRec = sqlite3GetTempReg(pParse); regTempRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL); sqlite3VdbeJumpHere(v, addrL); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempReg(pParse, regTempRowid); } }else{ /* This is the case if the data for the INSERT is coming from a VALUES ** clause */ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; srcTab = -1; assert( useTempTable==0 ); nColumn = pList ? pList->nExpr : 0; for(i=0; i<nColumn; i++){ if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ goto insert_cleanup; } } } /* If there is no IDLIST term but the table has an integer primary ** key, the set the ipkColumn variable to the integer primary key ** column index in the original table definition. */ if( pColumn==0 && nColumn>0 ){ ipkColumn = pTab->iPKey; } /* Make sure the number of columns in the source data matches the number ** of columns to be inserted into the table. */ if( IsVirtual(pTab) ){ for(i=0; i<pTab->nCol; i++){ nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); } } if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ sqlite3ErrorMsg(pParse, "table %S has %d columns but %d values were supplied", pTabList, 0, pTab->nCol-nHidden, nColumn); goto insert_cleanup; } if( pColumn!=0 && nColumn!=pColumn->nId ){ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); goto insert_cleanup; } /* Initialize the count of rows to be inserted */ if( db->flags & SQLITE_CountRows ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } |
︙ | ︙ | |||
818 819 820 821 822 823 824 | ** ** rewind temp table, if empty goto D ** C: loop over rows of intermediate table ** transfer values form intermediate table into <table> ** end loop ** D: ... */ | | < | < < < < < < < < < | 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 | ** ** rewind temp table, if empty goto D ** C: loop over rows of intermediate table ** transfer values form intermediate table into <table> ** end loop ** D: ... */ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); addrCont = sqlite3VdbeCurrentAddr(v); }else if( pSelect ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 3): ** ** C: yield X, at EOF goto D ** insert the select result into <table> from R..R+n ** goto C ** D: ... */ addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); } /* Run the BEFORE and INSTEAD OF triggers, if there are any */ endOfLoop = sqlite3VdbeMakeLabel(v); if( tmask & TRIGGER_BEFORE ){ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); |
︙ | ︙ | |||
866 867 868 869 870 871 872 | assert( !withoutRowid ); if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); } | | | | 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 | assert( !withoutRowid ); if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); } j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); } /* Cannot have triggers on a virtual table. If it were possible, ** this block would have to account for hidden column. */ assert( !IsVirtual(pTab) ); |
︙ | ︙ | |||
903 904 905 906 907 908 909 | /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, ** do not attempt any conversions before assembling the record. ** If this is a real table, attempt conversions as required by the ** table column affinities. */ if( !isView ){ | < | | 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 | /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, ** do not attempt any conversions before assembling the record. ** If this is a real table, attempt conversions as required by the ** table column affinities. */ if( !isView ){ sqlite3TableAffinity(v, pTab, regCols+1); } /* Fire BEFORE or INSTEAD OF triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, pTab, regCols-pTab->nCol-1, onError, endOfLoop); sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); |
︙ | ︙ | |||
926 927 928 929 930 931 932 | /* The row that the VUpdate opcode will delete: none */ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); } if( ipkColumn>=0 ){ if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); }else if( pSelect ){ | | | | | | > | | > | > | 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 | /* The row that the VUpdate opcode will delete: none */ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); } if( ipkColumn>=0 ){ if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); }else if( pSelect ){ sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); }else{ VdbeOp *pOp; sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); pOp = sqlite3VdbeGetOp(v, -1); if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ appendFlag = 1; pOp->opcode = OP_NewRowid; pOp->p1 = iDataCur; pOp->p2 = regRowid; pOp->p3 = regAutoinc; } } /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid ** to generate a unique primary key value. */ if( !appendFlag ){ int j1; if( !IsVirtual(pTab) ){ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); sqlite3VdbeJumpHere(v, j1); }else{ j1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v); } sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); } }else if( IsVirtual(pTab) || withoutRowid ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); }else{ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); appendFlag = 1; } autoIncStep(pParse, regAutoinc, regRowid); /* Compute data for all columns of the new entry, beginning ** with the first column. */ nHidden = 0; for(i=0; i<pTab->nCol; i++){ int iRegStore = regRowid+1+i; if( i==pTab->iPKey ){ /* The value of the INTEGER PRIMARY KEY column is always a NULL. ** Whenever this column is read, the rowid will be substituted ** in its place. Hence, fill this column with a NULL to avoid ** taking up data space with information that will never be used. ** As there may be shallow copies of this value, make it a soft-NULL */ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); continue; } if( pColumn==0 ){ if( IsHiddenColumn(&pTab->aCol[i]) ){ assert( IsVirtual(pTab) ); j = -1; nHidden++; }else{ j = i - nHidden; } }else{ for(j=0; j<pColumn->nId; j++){ if( pColumn->a[j].idx==i ) break; } } if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); }else if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); }else if( pSelect ){ if( regFromSelect!=regData ){ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); } }else{ sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); } } /* Generate code to check constraints and generate index keys and ** do the insertion. |
︙ | ︙ | |||
1040 1041 1042 1043 1044 1045 1046 | } /* The bottom of the main insertion loop, if the data source ** is a SELECT statement. */ sqlite3VdbeResolveLabel(v, endOfLoop); if( useTempTable ){ | | | 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 | } /* The bottom of the main insertion loop, if the data source ** is a SELECT statement. */ sqlite3VdbeResolveLabel(v, endOfLoop); if( useTempTable ){ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrInsTop); sqlite3VdbeAddOp1(v, OP_Close, srcTab); }else if( pSelect ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); sqlite3VdbeJumpHere(v, addrInsTop); } |
︙ | ︙ | |||
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 | int onError; /* Conflict resolution strategy */ int j1; /* Addresss of jump instruction */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ int ipkTop = 0; /* Top of the rowid change constraint check */ int ipkBottom = 0; /* Bottom of the rowid change constraint check */ u8 isUpdate; /* True if this is an UPDATE operation */ int regRowid = -1; /* Register holding ROWID value */ isUpdate = regOldData!=0; db = pParse->db; v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ | > | 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 | int onError; /* Conflict resolution strategy */ int j1; /* Addresss of jump instruction */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ int ipkTop = 0; /* Top of the rowid change constraint check */ int ipkBottom = 0; /* Bottom of the rowid change constraint check */ u8 isUpdate; /* True if this is an UPDATE operation */ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ int regRowid = -1; /* Register holding ROWID value */ isUpdate = regOldData!=0; db = pParse->db; v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
︙ | ︙ | |||
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 | case OE_Rollback: case OE_Fail: { char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, pTab->aCol[i].zName); sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, regNewData+1+i, zMsg, P4_DYNAMIC); sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); break; } case OE_Ignore: { sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); break; } default: { assert( onError==OE_Replace ); | > > | | 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 | case OE_Rollback: case OE_Fail: { char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, pTab->aCol[i].zName); sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, regNewData+1+i, zMsg, P4_DYNAMIC); sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); VdbeCoverage(v); break; } case OE_Ignore: { sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); VdbeCoverage(v); break; } default: { assert( onError==OE_Replace ); j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v); sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); sqlite3VdbeJumpHere(v, j1); break; } } } |
︙ | ︙ | |||
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 | } if( isUpdate ){ /* pkChng!=0 does not mean that the rowid has change, only that ** it might have changed. Skip the conflict logic below if the rowid ** is unchanged. */ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); } /* If the response to a rowid conflict is REPLACE but the response ** to some other UNIQUE constraint is FAIL or IGNORE, then we need ** to defer the running of the rowid conflict checking until after ** the UNIQUE constraints have run. */ if( onError==OE_Replace && overrideError!=OE_Replace ){ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); break; } } } /* Check to see if the new rowid already exists in the table. Skip ** the following conflict logic if it does not. */ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); /* Generate code that deals with a rowid collision */ switch( onError ){ default: { onError = OE_Abort; /* Fall thru into the next case */ } | > > > | 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 | } if( isUpdate ){ /* pkChng!=0 does not mean that the rowid has change, only that ** it might have changed. Skip the conflict logic below if the rowid ** is unchanged. */ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } /* If the response to a rowid conflict is REPLACE but the response ** to some other UNIQUE constraint is FAIL or IGNORE, then we need ** to defer the running of the rowid conflict checking until after ** the UNIQUE constraints have run. */ if( onError==OE_Replace && overrideError!=OE_Replace ){ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); break; } } } /* Check to see if the new rowid already exists in the table. Skip ** the following conflict logic if it does not. */ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); VdbeCoverage(v); /* Generate code that deals with a rowid collision */ switch( onError ){ default: { onError = OE_Abort; /* Fall thru into the next case */ } |
︙ | ︙ | |||
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 | for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ int regIdx; /* Range of registers hold conent for pIdx */ int regR; /* Range of registers holding conflicting PK */ int iThisCur; /* Cursor for this UNIQUE index */ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ iThisCur = iIdxCur+ix; addrUniqueOk = sqlite3VdbeMakeLabel(v); /* Skip partial indices for which the WHERE clause is not true */ if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); pParse->ckBase = regNewData+1; | > > > > | 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 | for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ int regIdx; /* Range of registers hold conent for pIdx */ int regR; /* Range of registers holding conflicting PK */ int iThisCur; /* Cursor for this UNIQUE index */ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ if( bAffinityDone==0 ){ sqlite3TableAffinity(v, pTab, regNewData+1); bAffinityDone = 1; } iThisCur = iIdxCur+ix; addrUniqueOk = sqlite3VdbeMakeLabel(v); /* Skip partial indices for which the WHERE clause is not true */ if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); pParse->ckBase = regNewData+1; |
︙ | ︙ | |||
1460 1461 1462 1463 1464 1465 1466 | }else{ x = iField + regNewData + 1; } sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); | < | 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 | }else{ x = iField + regNewData + 1; } sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); VdbeComment((v, "for %s", pIdx->zName)); sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn); /* In an UPDATE operation, if this index is the PRIMARY KEY index ** of a WITHOUT ROWID table and there has been no change the ** primary key, then no collision is possible. The collision detection ** logic below can all be skipped. */ |
︙ | ︙ | |||
1488 1489 1490 1491 1492 1493 1494 | onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* Check to see if the new index entry will be unique */ sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, | | > > | 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 | onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } /* Check to see if the new index entry will be unique */ sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, regIdx, pIdx->nKeyCol); VdbeCoverage(v); /* Generate code to handle collisions */ regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); if( isUpdate || onError==OE_Replace ){ if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); /* Conflict only if the rowid of the existing index entry ** is different from old-rowid */ if( isUpdate ){ sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverage(v); } }else{ int x; /* Extract the PRIMARY KEY from the end of the index entry and ** store it in registers regR..regR+nPk-1 */ if( pIdx!=pPk ){ for(i=0; i<pPk->nKeyCol; i++){ |
︙ | ︙ | |||
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 | if( i==(pPk->nKeyCol-1) ){ addrJump = addrUniqueOk; op = OP_Eq; } sqlite3VdbeAddOp4(v, op, regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ ); } } } } /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail | > > > | 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 | if( i==(pPk->nKeyCol-1) ){ addrJump = addrUniqueOk; op = OP_Eq; } sqlite3VdbeAddOp4(v, op, regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ ); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); VdbeCoverageIf(v, op==OP_Eq); VdbeCoverageIf(v, op==OP_Ne); } } } } /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
︙ | ︙ | |||
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 | ){ Vdbe *v; /* Prepared statements under construction */ Index *pIdx; /* An index being inserted or updated */ u8 pik_flags; /* flag values passed to the btree insert */ int regData; /* Content registers (after the rowid) */ int regRec; /* Register holding assemblied record for the table */ int i; /* Loop counter */ v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( aRegIdx[i]==0 ) continue; if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); } sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]); pik_flags = 0; if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; if( pIdx->autoIndex==2 && !HasRowid(pTab) ){ assert( pParse->nested==0 ); pik_flags |= OPFLAG_NCHANGE; } if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags); } if( !HasRowid(pTab) ) return; regData = regNewData + 1; regRec = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); | > > > | | 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 | ){ Vdbe *v; /* Prepared statements under construction */ Index *pIdx; /* An index being inserted or updated */ u8 pik_flags; /* flag values passed to the btree insert */ int regData; /* Content registers (after the rowid) */ int regRec; /* Register holding assemblied record for the table */ int i; /* Loop counter */ u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( aRegIdx[i]==0 ) continue; bAffinityDone = 1; if( pIdx->pPartIdxWhere ){ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]); pik_flags = 0; if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; if( pIdx->autoIndex==2 && !HasRowid(pTab) ){ assert( pParse->nested==0 ); pik_flags |= OPFLAG_NCHANGE; } if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags); } if( !HasRowid(pTab) ) return; regData = regNewData + 1; regRec = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0); sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); if( pParse->nested ){ pik_flags = 0; }else{ pik_flags = OPFLAG_NCHANGE; pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); } |
︙ | ︙ | |||
1996 1997 1998 1999 2000 2001 2002 | ** of index entries might need to change.) ** ** (2) The destination has a unique index. (The xfer optimization ** is unable to test uniqueness.) ** ** (3) onError is something other than OE_Abort and OE_Rollback. */ | | | > | | | | 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 | ** of index entries might need to change.) ** ** (2) The destination has a unique index. (The xfer optimization ** is unable to test uniqueness.) ** ** (3) onError is something other than OE_Abort and OE_Rollback. */ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); sqlite3VdbeJumpHere(v, addr1); } if( HasRowid(pSrc) ){ sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); if( pDest->iPKey>=0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); VdbeCoverage(v); sqlite3RowidConstraint(pParse, onError, pDest); sqlite3VdbeJumpHere(v, addr2); autoIncStep(pParse, regAutoinc, regRowid); }else if( pDest->pIndex==0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); }else{ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); assert( (pDest->tabFlags & TF_Autoincrement)==0 ); } sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); }else{ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } assert( pSrcIdx ); sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); VdbeComment((v, "%s", pSrcIdx->zName)); sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); } if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); sqlite3ReleaseTempReg(pParse, regRowid); sqlite3ReleaseTempReg(pParse, regData); |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 | ** that demonstrat invariants on well-formed database files. */ case SQLITE_TESTCTRL_NEVER_CORRUPT: { sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); break; } } va_end(ap); #endif /* SQLITE_OMIT_BUILTIN_TEST */ return rc; } /* | > > > > > > > > > > > > > > > | 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 | ** that demonstrat invariants on well-formed database files. */ case SQLITE_TESTCTRL_NEVER_CORRUPT: { sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); ** ** Set the VDBE coverage callback function to xCallback with context ** pointer ptr. */ case SQLITE_TESTCTRL_VDBE_COVERAGE: { #ifdef SQLITE_VDBE_COVERAGE typedef void (*branch_callback)(void*,int,u8,u8); sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); #endif break; } } va_end(ap); #endif /* SQLITE_OMIT_BUILTIN_TEST */ return rc; } /* |
︙ | ︙ |
Changes to src/mem5.c.
︙ | ︙ | |||
270 271 272 273 274 275 276 277 278 279 280 281 282 283 | mem5.nAlloc++; mem5.totalAlloc += iFullSz; mem5.totalExcess += iFullSz - nByte; mem5.currentCount++; mem5.currentOut += iFullSz; if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; /* Return a pointer to the allocated memory. */ return (void*)&mem5.zPool[i*mem5.szAtom]; } /* ** Free an outstanding memory allocation. | > > > > > > | 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | mem5.nAlloc++; mem5.totalAlloc += iFullSz; mem5.totalExcess += iFullSz - nByte; mem5.currentCount++; mem5.currentOut += iFullSz; if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; #ifdef SQLITE_DEBUG /* Make sure the allocated memory does not assume that it is set to zero ** or retains a value from a previous allocation */ memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz); #endif /* Return a pointer to the allocated memory. */ return (void*)&mem5.zPool[i*mem5.szAtom]; } /* ** Free an outstanding memory allocation. |
︙ | ︙ | |||
328 329 330 331 332 333 334 335 336 337 338 339 340 341 | iBlock = iBuddy; }else{ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; mem5.aCtrl[iBuddy] = 0; } size *= 2; } memsys5Link(iBlock, iLogsize); } /* ** Allocate nBytes of memory. */ static void *memsys5Malloc(int nBytes){ | > > > > > > > | 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | iBlock = iBuddy; }else{ mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; mem5.aCtrl[iBuddy] = 0; } size *= 2; } #ifdef SQLITE_DEBUG /* Overwrite freed memory with the 0x55 bit pattern to verify that it is ** not used after being freed */ memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size); #endif memsys5Link(iBlock, iLogsize); } /* ** Allocate nBytes of memory. */ static void *memsys5Malloc(int nBytes){ |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
5131 5132 5133 5134 5135 5136 5137 | } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ | < < < < > > > > > > | > | 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 | } #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ HANDLE h; void *zConverted = winConvertFromUtf8Filename(zFilename); UNUSED_PARAMETER(pVfs); if( zConverted==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( osIsNT() ){ #if SQLITE_OS_WINRT h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0); #else h = osLoadLibraryW((LPCWSTR)zConverted); #endif } #ifdef SQLITE_WIN32_HAS_ANSI else{ h = osLoadLibraryA((char*)zConverted); } #endif OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)h)); sqlite3_free(zConverted); return (void*)h; } static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ UNUSED_PARAMETER(pVfs); winGetLastErrorMsg(osGetLastError(), nBuf, zBufOut); } static void (*winDlSym(sqlite3_vfs *pVfs,void *pH,const char *zSym))(void){ FARPROC proc; UNUSED_PARAMETER(pVfs); proc = osGetProcAddressA((HANDLE)pH, zSym); OSTRACE(("DLSYM handle=%p, symbol=%s, address=%p\n", (void*)pH, zSym, (void*)proc)); return (void(*)(void))proc; } static void winDlClose(sqlite3_vfs *pVfs, void *pHandle){ UNUSED_PARAMETER(pVfs); osFreeLibrary((HANDLE)pHandle); OSTRACE(("DLCLOSE handle=%p\n", (void*)pHandle)); } #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ #define winDlOpen 0 #define winDlError 0 #define winDlSym 0 #define winDlClose 0 #endif |
︙ | ︙ |
Changes to src/parse.y.
︙ | ︙ | |||
433 434 435 436 437 438 439 | } A = p; } selectnowith(A) ::= oneselect(X). {A = X;} %ifndef SQLITE_OMIT_COMPOUND_SELECT selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z). { | > > > > > > > > | | | | | 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 | } A = p; } selectnowith(A) ::= oneselect(X). {A = X;} %ifndef SQLITE_OMIT_COMPOUND_SELECT selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z). { Select *pRhs = Z; if( pRhs && pRhs->pPrior ){ SrcList *pFrom; Token x; x.n = 0; pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); } if( pRhs ){ pRhs->op = (u8)Y; pRhs->pPrior = X; if( Y!=TK_ALL ) pParse->hasCompound = 1; }else{ sqlite3SelectDelete(pParse->db, X); } A = pRhs; } %type multiselect_op {int} multiselect_op(A) ::= UNION(OP). {A = @OP;} multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} %endif SQLITE_OMIT_COMPOUND_SELECT oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 | ** Older versions of SQLite would set the default cache size to a ** negative number to indicate synchronous=OFF. These days, synchronous ** is always on by default regardless of the sign of the default cache ** size. But continue to take the absolute value of the default cache ** size of historical compatibility. */ case PragTyp_DEFAULT_CACHE_SIZE: { static const VdbeOpList getCacheSize[] = { { OP_Transaction, 0, 0, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 2, 0}, { OP_Subtract, 1, 2, 1}, { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 1, 0}, /* 6 */ { OP_Noop, 0, 0, 0}, { OP_ResultRow, 1, 1, 0}, }; int addr; sqlite3VdbeUsesBtree(v, iDb); if( !zRight ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC); pParse->nMem += 2; | > | | 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 | ** Older versions of SQLite would set the default cache size to a ** negative number to indicate synchronous=OFF. These days, synchronous ** is always on by default regardless of the sign of the default cache ** size. But continue to take the absolute value of the default cache ** size of historical compatibility. */ case PragTyp_DEFAULT_CACHE_SIZE: { static const int iLn = __LINE__+2; static const VdbeOpList getCacheSize[] = { { OP_Transaction, 0, 0, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 2, 0}, { OP_Subtract, 1, 2, 1}, { OP_IfPos, 1, 8, 0}, { OP_Integer, 0, 1, 0}, /* 6 */ { OP_Noop, 0, 0, 0}, { OP_ResultRow, 1, 1, 0}, }; int addr; sqlite3VdbeUsesBtree(v, iDb); if( !zRight ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC); pParse->nMem += 2; addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize,iLn); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+1, iDb); sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE); }else{ int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, size, 1); |
︙ | ︙ | |||
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 | rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ /* When setting the auto_vacuum mode to either "full" or ** "incremental", write the value of meta[6] in the database ** file. Before writing to meta[6], check that meta[3] indicates ** that this really is an auto-vacuum capable database. */ static const VdbeOpList setMeta6[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, { OP_If, 1, 0, 0}, /* 2 */ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ { OP_Integer, 0, 1, 0}, /* 4 */ { OP_SetCookie, 0, BTREE_INCR_VACUUM, 1}, /* 5 */ }; int iAddr; | > | | 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 | rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ /* When setting the auto_vacuum mode to either "full" or ** "incremental", write the value of meta[6] in the database ** file. Before writing to meta[6], check that meta[3] indicates ** that this really is an auto-vacuum capable database. */ static const int iLn = __LINE__+2; static const VdbeOpList setMeta6[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, { OP_If, 1, 0, 0}, /* 2 */ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ { OP_Integer, 0, 1, 0}, /* 4 */ { OP_SetCookie, 0, BTREE_INCR_VACUUM, 1}, /* 5 */ }; int iAddr; iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); sqlite3VdbeChangeP1(v, iAddr, iDb); sqlite3VdbeChangeP1(v, iAddr+1, iDb); sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4); sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1); sqlite3VdbeChangeP1(v, iAddr+5, iDb); sqlite3VdbeUsesBtree(v, iDb); } |
︙ | ︙ | |||
1117 1118 1119 1120 1121 1122 1123 | case PragTyp_INCREMENTAL_VACUUM: { int iLimit, addr; if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ iLimit = 0x7fffffff; } sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); | | | | 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 | case PragTyp_INCREMENTAL_VACUUM: { int iLimit, addr; if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ iLimit = 0x7fffffff; } sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_ResultRow, 1); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr); break; } #endif #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* |
︙ | ︙ | |||
1691 1692 1693 1694 1695 1696 1697 | k = 0; break; } } assert( pParse->nErr>0 || pFK==0 ); if( pFK ) break; if( pParse->nTab<i ) pParse->nTab = i; | | | | | | | | < | > | | 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 | k = 0; break; } } assert( pParse->nErr>0 || pFK==0 ); if( pFK ) break; if( pParse->nTab<i ) pParse->nTab = i; addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ pParent = sqlite3FindTable(db, pFK->zTo, zDb); pIdx = 0; aiCols = 0; if( pParent ){ x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); assert( x==0 ); } addrOk = sqlite3VdbeMakeLabel(v); if( pParent && pIdx==0 ){ int iKey = pFK->aCol[0].iFrom; assert( iKey>=0 && iKey<pTab->nCol ); if( iKey!=pTab->iPKey ){ sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow); sqlite3ColumnDefault(v, pTab, iKey, regRow); sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_MustBeInt, regRow, sqlite3VdbeCurrentAddr(v)+3); VdbeCoverage(v); }else{ sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow); } sqlite3VdbeAddOp3(v, OP_NotExists, i, 0, regRow); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrOk); sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); }else{ for(j=0; j<pFK->nCol; j++){ sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, aiCols ? aiCols[j] : pFK->aCol[j].iFrom, regRow+j); sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); } if( pParent ){ sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey, sqlite3IndexAffinityStr(v,pIdx), pFK->nCol); sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0); VdbeCoverage(v); } } sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); sqlite3VdbeAddOp4(v, OP_String8, 0, regResult+2, 0, pFK->zTo, P4_TRANSIENT); sqlite3VdbeAddOp2(v, OP_Integer, i-1, regResult+3); sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); sqlite3VdbeResolveLabel(v, addrOk); sqlite3DbFree(db, aiCols); } sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addrTop); } } break; #endif /* !defined(SQLITE_OMIT_TRIGGER) */ #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ |
︙ | ︙ | |||
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 | case PragTyp_INTEGRITY_CHECK: { int i, j, addr, mxErr; /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const VdbeOpList endCode[] = { { OP_AddImm, 1, 0, 0}, /* 0 */ { OP_IfNeg, 1, 0, 0}, /* 1 */ { OP_String8, 0, 3, 0}, /* 2 */ { OP_ResultRow, 3, 1, 0}, }; | > | 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 | case PragTyp_INTEGRITY_CHECK: { int i, j, addr, mxErr; /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const int iLn = __LINE__+2; static const VdbeOpList endCode[] = { { OP_AddImm, 1, 0, 0}, /* 0 */ { OP_IfNeg, 1, 0, 0}, /* 1 */ { OP_String8, 0, 3, 0}, /* 2 */ { OP_ResultRow, 3, 1, 0}, }; |
︙ | ︙ | |||
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 | int cnt = 0; if( OMIT_TEMPDB && i==1 ) continue; if( iDb>=0 && i!=iDb ) continue; sqlite3CodeVerifySchema(pParse, i); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); /* Do an integrity check of the B-Tree ** ** Begin by filling registers 2, 3, ... with the root pages numbers ** for all tables and indices in the database. | > | 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 | int cnt = 0; if( OMIT_TEMPDB && i==1 ) continue; if( iDb>=0 && i!=iDb ) continue; sqlite3CodeVerifySchema(pParse, i); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */ VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); /* Do an integrity check of the B-Tree ** ** Begin by filling registers 2, 3, ... with the root pages numbers ** for all tables and indices in the database. |
︙ | ︙ | |||
1863 1864 1865 1866 1867 1868 1869 | /* Make sure sufficient number of registers have been allocated */ pParse->nMem = MAX( pParse->nMem, cnt+8 ); /* Do the b-tree integrity checks */ sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); sqlite3VdbeChangeP5(v, (u8)i); | | | 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 | /* Make sure sufficient number of registers have been allocated */ pParse->nMem = MAX( pParse->nMem, cnt+8 ); /* Do the b-tree integrity checks */ sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); sqlite3VdbeChangeP5(v, (u8)i); addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName), P4_DYNAMIC); sqlite3VdbeAddOp2(v, OP_Move, 2, 4); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2); sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1); sqlite3VdbeJumpHere(v, addr); |
︙ | ︙ | |||
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 | int loopTop; int iDataCur, iIdxCur; int r1 = -1; if( pTab->pIndex==0 ) continue; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); sqlite3ExprCacheClear(pParse); sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 1, 0, &iDataCur, &iIdxCur); sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ } pParse->nMem = MAX(pParse->nMem, 8+j); | > | | | | | | > | | 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 | int loopTop; int iDataCur, iIdxCur; int r1 = -1; if( pTab->pIndex==0 ) continue; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); sqlite3ExprCacheClear(pParse); sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 1, 0, &iDataCur, &iIdxCur); sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ } pParse->nMem = MAX(pParse->nMem, 8+j); sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int jmp2, jmp3, jmp4; if( pPk==pIdx ) continue; r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, pPrior, r1); pPrior = pIdx; sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1); /* increment entry count */ jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, 0, r1, pIdx->nColumn); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, "row ", P4_STATIC); sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, " missing from index ", P4_STATIC); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, pIdx->zName, P4_TRANSIENT); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v); sqlite3VdbeAddOp0(v, OP_Halt); sqlite3VdbeJumpHere(v, jmp4); sqlite3VdbeJumpHere(v, jmp2); sqlite3VdbeResolveLabel(v, jmp3); } sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); sqlite3VdbeJumpHere(v, loopTop-1); #ifndef SQLITE_OMIT_BTREECOUNT sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, "wrong # of entries in index ", P4_STATIC); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ if( pPk==pIdx ) continue; addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr+2); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); sqlite3VdbeAddOp3(v, OP_Eq, 8+j, addr+8, 3); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pIdx->zName, P4_TRANSIENT); sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7); sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1); } #endif /* SQLITE_OMIT_BTREECOUNT */ } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); sqlite3VdbeChangeP2(v, addr, -mxErr); sqlite3VdbeJumpHere(v, addr+1); sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC); } break; #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
︙ | ︙ | |||
2079 2080 2081 2082 2083 2084 2085 | if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){ /* Write the specified cookie value */ static const VdbeOpList setCookie[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_Integer, 0, 1, 0}, /* 1 */ { OP_SetCookie, 0, 0, 1}, /* 2 */ }; | | | | 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 | if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){ /* Write the specified cookie value */ static const VdbeOpList setCookie[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_Integer, 0, 1, 0}, /* 1 */ { OP_SetCookie, 0, 0, 1}, /* 2 */ }; int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+1, sqlite3Atoi(zRight)); sqlite3VdbeChangeP1(v, addr+2, iDb); sqlite3VdbeChangeP2(v, addr+2, iCookie); }else{ /* Read the specified cookie value */ static const VdbeOpList readCookie[] = { { OP_Transaction, 0, 0, 0}, /* 0 */ { OP_ReadCookie, 0, 1, 0}, /* 1 */ { OP_ResultRow, 1, 1, 0} }; int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie, 0); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+1, iDb); sqlite3VdbeChangeP3(v, addr+1, iCookie); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT); } } |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
333 334 335 336 337 338 339 340 341 342 343 344 345 346 | assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){ pExpr->iTable = 1; pTab = pParse->pTriggerTab; }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){ pExpr->iTable = 0; pTab = pParse->pTriggerTab; } if( pTab ){ int iCol; pSchema = pTab->pSchema; cntTab++; for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){ | > > | 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 | assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){ pExpr->iTable = 1; pTab = pParse->pTriggerTab; }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){ pExpr->iTable = 0; pTab = pParse->pTriggerTab; }else{ pTab = 0; } if( pTab ){ int iCol; pSchema = pTab->pSchema; cntTab++; for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){ |
︙ | ︙ | |||
376 377 378 379 380 381 382 | } } #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /* ** Perhaps the name is a reference to the ROWID */ | < | > | 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 | } } #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /* ** Perhaps the name is a reference to the ROWID */ if( cnt==0 && cntTab==1 && pMatch && sqlite3IsRowid(zCol) && HasRowid(pMatch->pTab) ){ cnt = 1; pExpr->iColumn = -1; /* IMP: R-44911-55124 */ pExpr->affinity = SQLITE_AFF_INTEGER; } /* ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
451 452 453 454 455 456 457 | int addr1, addr2; int iLimit; if( pSelect->iOffset ){ iLimit = pSelect->iOffset+1; }else{ iLimit = pSelect->iLimit; } | | | | 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 | int addr1, addr2; int iLimit; if( pSelect->iOffset ){ iLimit = pSelect->iOffset+1; }else{ iLimit = pSelect->iLimit; } addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); addr2 = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); sqlite3VdbeJumpHere(v, addr2); } } /* ** Add code to implement the OFFSET */ static void codeOffset( Vdbe *v, /* Generate code into this VM */ int iOffset, /* Register holding the offset counter */ int iContinue /* Jump here to skip the current record */ ){ if( iOffset>0 && iContinue!=0 ){ int addr; sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1); addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); VdbeComment((v, "skip OFFSET records")); sqlite3VdbeJumpHere(v, addr); } } /* |
︙ | ︙ | |||
500 501 502 503 504 505 506 | int iMem /* First element */ ){ Vdbe *v; int r1; v = pParse->pVdbe; r1 = sqlite3GetTempReg(pParse); | | | 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 | int iMem /* First element */ ){ Vdbe *v; int r1; v = pParse->pVdbe; r1 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); sqlite3ReleaseTempReg(pParse, r1); } #ifndef SQLITE_OMIT_SUBQUERY /* |
︙ | ︙ | |||
581 582 583 584 585 586 587 588 589 | if( pOrderBy==0 && !hasDistinct ){ codeOffset(v, p->iOffset, iContinue); } /* Pull the requested columns. */ nResultCol = pEList->nExpr; if( pDest->iSdst==0 ){ pDest->iSdst = pParse->nMem+1; | > | > > > > > > < < > | | 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 | if( pOrderBy==0 && !hasDistinct ){ codeOffset(v, p->iOffset, iContinue); } /* Pull the requested columns. */ nResultCol = pEList->nExpr; if( pDest->iSdst==0 ){ pDest->iSdst = pParse->nMem+1; pParse->nMem += nResultCol; }else if( pDest->iSdst+nResultCol > pParse->nMem ){ /* This is an error condition that can result, for example, when a SELECT ** on the right-hand side of an INSERT contains more result columns than ** there are columns in the table on the left. The error will be caught ** and reported later. But we need to make sure enough memory is allocated ** to avoid other spurious errors in the meantime. */ pParse->nMem += nResultCol; } pDest->nSdst = nResultCol; regResult = pDest->iSdst; if( srcTab>=0 ){ for(i=0; i<nResultCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); VdbeComment((v, "%s", pEList->a[i].zName)); } }else if( eDest!=SRT_Exists ){ /* If the destination is an EXISTS(...) expression, the actual ** values returned by the SELECT are not required. */ sqlite3ExprCodeExprList(pParse, pEList, regResult, (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); } /* If the DISTINCT keyword was present on the SELECT statement ** and this row has been seen before, then do not make this row ** part of the result. */ if( hasDistinct ){ |
︙ | ︙ | |||
634 635 636 637 638 639 640 641 642 | pOp->p2 = regPrev; iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; for(i=0; i<nResultCol; i++){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); if( i<nResultCol-1 ){ sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); }else{ sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); | > > | | 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 | pOp->p2 = regPrev; iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; for(i=0; i<nResultCol; i++){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); if( i<nResultCol-1 ){ sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); VdbeCoverage(v); }else{ sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); VdbeCoverage(v); } sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); } assert( sqlite3VdbeCurrentAddr(v)==iJump ); sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); break; } |
︙ | ︙ | |||
702 703 704 705 706 707 708 | if( eDest==SRT_DistTable ){ /* If the destination is DistTable, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; | | | 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 | if( eDest==SRT_DistTable ){ /* If the destination is DistTable, then cursor (iParm+1) is open ** on an ephemeral index. If the current row is already present ** in the index, do not write it to the output. If not, add the ** current row to the index and proceed with writing it to the ** output table as well. */ int addr = sqlite3VdbeCurrentAddr(v) + 4; sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); assert( pOrderBy==0 ); } #endif if( pOrderBy ){ pushOntoSorter(pParse, pOrderBy, p, r1); }else{ |
︙ | ︙ | |||
806 807 808 809 810 811 812 | ExprList *pSO; pSO = pDest->pOrderBy; assert( pSO ); nKey = pSO->nExpr; r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempRange(pParse, nKey+2); r3 = r2+nKey+1; | < | < | > > > > > | 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 | ExprList *pSO; pSO = pDest->pOrderBy; assert( pSO ); nKey = pSO->nExpr; r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempRange(pParse, nKey+2); r3 = r2+nKey+1; if( eDest==SRT_DistQueue ){ /* If the destination is DistQueue, then cursor (iParm+1) is open ** on a second ephemeral index that holds all values every previously ** added to the queue. */ addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, regResult, nResultCol); VdbeCoverage(v); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); if( eDest==SRT_DistQueue ){ sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } for(i=0; i<nKey; i++){ sqlite3VdbeAddOp2(v, OP_SCopy, regResult + pSO->a[i].u.x.iOrderByCol - 1, r2+i); |
︙ | ︙ | |||
851 852 853 854 855 856 857 | } /* Jump to the end of the loop if the LIMIT is reached. Except, if ** there is a sorter, in which case the sorter has already limited ** the output for us. */ if( pOrderBy==0 && p->iLimit ){ | | | 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 | } /* Jump to the end of the loop if the LIMIT is reached. Except, if ** there is a sorter, in which case the sorter has already limited ** the output for us. */ if( pOrderBy==0 && p->iLimit ){ sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); } } /* ** Allocate a KeyInfo object sufficient for an index of N key columns and ** X extra columns. */ |
︙ | ︙ | |||
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 | regRowid = sqlite3GetTempReg(pParse); } if( p->selFlags & SF_UseSorter ){ int regSortOut = ++pParse->nMem; int ptab2 = pParse->nTab++; sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); codeOffset(v, p->iOffset, addrContinue); sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); }else{ | > | | 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 | regRowid = sqlite3GetTempReg(pParse); } if( p->selFlags & SF_UseSorter ){ int regSortOut = ++pParse->nMem; int ptab2 = pParse->nTab++; sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); }else{ addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); codeOffset(v, p->iOffset, addrContinue); sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow); } switch( eDest ){ case SRT_Table: case SRT_EphemTab: { testcase( eDest==SRT_Table ); |
︙ | ︙ | |||
1133 1134 1135 1136 1137 1138 1139 | sqlite3ReleaseTempReg(pParse, regRow); sqlite3ReleaseTempReg(pParse, regRowid); /* The bottom of the loop */ sqlite3VdbeResolveLabel(v, addrContinue); if( p->selFlags & SF_UseSorter ){ | | | | 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 | sqlite3ReleaseTempReg(pParse, regRow); sqlite3ReleaseTempReg(pParse, regRowid); /* The bottom of the loop */ sqlite3VdbeResolveLabel(v, addrContinue); if( p->selFlags & SF_UseSorter ){ sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); }else{ sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); } sqlite3VdbeResolveLabel(v, addrBreak); if( eDest==SRT_Output || eDest==SRT_Coroutine ){ sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); } } |
︙ | ︙ | |||
1683 1684 1685 1686 1687 1688 1689 | if( n==0 ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); }else if( n>=0 && p->nSelectRow>(u64)n ){ p->nSelectRow = n; } }else{ sqlite3ExprCode(pParse, p->pLimit, iLimit); | | | | | | | 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 | if( n==0 ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); }else if( n>=0 && p->nSelectRow>(u64)n ){ p->nSelectRow = n; } }else{ sqlite3ExprCode(pParse, p->pLimit, iLimit); sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); VdbeComment((v, "LIMIT counter")); sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); } if( p->pOffset ){ p->iOffset = iOffset = ++pParse->nMem; pParse->nMem++; /* Allocate an extra register for limit+offset */ sqlite3ExprCode(pParse, p->pOffset, iOffset); sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); VdbeComment((v, "OFFSET counter")); addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); VdbeComment((v, "LIMIT+OFFSET")); addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); sqlite3VdbeJumpHere(v, addr1); } } } #ifndef SQLITE_OMIT_COMPOUND_SELECT |
︙ | ︙ | |||
1887 1888 1889 1890 1891 1892 1893 | /* Store the results of the setup-query in Queue. */ pSetup->pNext = 0; rc = sqlite3Select(pParse, pSetup, &destQueue); pSetup->pNext = p; if( rc ) goto end_of_recursive_query; /* Find the next row in the Queue and output that row */ | | > | > > | 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 | /* Store the results of the setup-query in Queue. */ pSetup->pNext = 0; rc = sqlite3Select(pParse, pSetup, &destQueue); pSetup->pNext = p; if( rc ) goto end_of_recursive_query; /* Find the next row in the Queue and output that row */ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); /* Transfer the next row in Queue over to Current */ sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ if( pOrderBy ){ sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); }else{ sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); } sqlite3VdbeAddOp1(v, OP_Delete, iQueue); /* Output the single row in Current */ addrCont = sqlite3VdbeMakeLabel(v); codeOffset(v, regOffset, addrCont); selectInnerLoop(pParse, p, p->pEList, iCurrent, 0, 0, pDest, addrCont, addrBreak); if( regLimit ){ sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); VdbeCoverage(v); } sqlite3VdbeResolveLabel(v, addrCont); /* Execute the recursive SELECT taking the single row in Current as ** the value for the recursive-table. Store the results in the Queue. */ p->pPrior = 0; sqlite3Select(pParse, p, &destQueue); |
︙ | ︙ | |||
2063 2064 2065 2066 2067 2068 2069 | if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ | | | 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 | if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); VdbeComment((v, "Jump ahead if LIMIT reached")); } explainSetInteger(iSub2, pParse->iNextSelectId); rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; |
︙ | ︙ | |||
2170 2171 2172 2173 2174 2175 2176 | Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); | | | | 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 | Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); iStart = sqlite3VdbeCurrentAddr(v); selectInnerLoop(pParse, p, p->pEList, unionTab, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); } break; } default: assert( p->op==TK_INTERSECT ); { int tab1, tab2; |
︙ | ︙ | |||
2245 2246 2247 2248 2249 2250 2251 | Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); | | | | | 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 | Select *pFirst = p; while( pFirst->pPrior ) pFirst = pFirst->pPrior; generateColumnNames(pParse, 0, pFirst->pEList); } iBreak = sqlite3VdbeMakeLabel(v); iCont = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, iBreak); sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); r1 = sqlite3GetTempReg(pParse); iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); sqlite3ReleaseTempReg(pParse, r1); selectInnerLoop(pParse, p, p->pEList, tab1, 0, 0, &dest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); sqlite3VdbeResolveLabel(v, iBreak); sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); break; } } |
︙ | ︙ | |||
2360 2361 2362 2363 2364 2365 2366 | addr = sqlite3VdbeCurrentAddr(v); iContinue = sqlite3VdbeMakeLabel(v); /* Suppress duplicates for UNION, EXCEPT, and INTERSECT */ if( regPrev ){ int j1, j2; | | | | 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 | addr = sqlite3VdbeCurrentAddr(v); iContinue = sqlite3VdbeMakeLabel(v); /* Suppress duplicates for UNION, EXCEPT, and INTERSECT */ if( regPrev ){ int j1, j2; j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); } if( pParse->db->mallocFailed ) return 0; /* Suppress the first OFFSET entries if there is an OFFSET clause |
︙ | ︙ | |||
2464 2465 2466 2467 2468 2469 2470 | break; } } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit ){ | | | 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 | break; } } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit ){ sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); } /* Generate the subroutine return */ sqlite3VdbeResolveLabel(v, iContinue); sqlite3VdbeAddOp1(v, OP_Return, regReturn); |
︙ | ︙ | |||
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 | */ if( op==TK_EXCEPT || op==TK_INTERSECT ){ addrEofA_noB = addrEofA = labelEnd; }else{ VdbeNoopComment((v, "eof-A subroutine")); addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); p->nSelectRow += pPrior->nSelectRow; } /* Generate a subroutine to run when the results from select B ** are exhausted and only data in select A remains. */ if( op==TK_INTERSECT ){ addrEofB = addrEofA; if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; }else{ VdbeNoopComment((v, "eof-B subroutine")); addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); | > | | | | | | | | 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 | */ if( op==TK_EXCEPT || op==TK_INTERSECT ){ addrEofA_noB = addrEofA = labelEnd; }else{ VdbeNoopComment((v, "eof-A subroutine")); addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); p->nSelectRow += pPrior->nSelectRow; } /* Generate a subroutine to run when the results from select B ** are exhausted and only data in select A remains. */ if( op==TK_INTERSECT ){ addrEofB = addrEofA; if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; }else{ VdbeNoopComment((v, "eof-B subroutine")); addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); } /* Generate code to handle the case of A<B */ VdbeNoopComment((v, "A-lt-B subroutine")); addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); /* Generate code to handle the case of A==B */ if( op==TK_ALL ){ addrAeqB = addrAltB; }else if( op==TK_INTERSECT ){ addrAeqB = addrAltB; addrAltB++; }else{ VdbeNoopComment((v, "A-eq-B subroutine")); addrAeqB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); } /* Generate code to handle the case of A>B */ VdbeNoopComment((v, "A-gt-B subroutine")); addrAgtB = sqlite3VdbeCurrentAddr(v); if( op==TK_ALL || op==TK_UNION ){ sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); } sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); /* This code runs once to initialize everything. */ sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); /* Implement the main merge loop */ sqlite3VdbeResolveLabel(v, labelCmpr); sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, (char*)pKeyMerge, P4_KEYINFO); sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); /* Jump to the this point in order to terminate the query. */ sqlite3VdbeResolveLabel(v, labelEnd); /* Set the number of output columns */ |
︙ | ︙ | |||
4381 4382 4383 4384 4385 4386 4387 | ** may have been used, invalidating the underlying buffer holding the ** text or blob value. See ticket [883034dcb5]. ** ** Another solution would be to change the OP_SCopy used to copy cached ** values to an OP_Copy. */ if( regHit ){ | | | 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 | ** may have been used, invalidating the underlying buffer holding the ** text or blob value. See ticket [883034dcb5]. ** ** Another solution would be to change the OP_SCopy used to copy cached ** values to an OP_Copy. */ if( regHit ){ addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); } sqlite3ExprCacheClear(pParse); for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); } pAggInfo->directMode = 0; sqlite3ExprCacheClear(pParse); |
︙ | ︙ | |||
4577 4578 4579 4580 4581 4582 4583 | pItem->regReturn = ++pParse->nMem; topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); pItem->addrFillSub = topAddr+1; if( pItem->isCorrelated==0 ){ /* If the subquery is not correlated and if we are not inside of ** a trigger, then we only need to compute the value of the subquery ** once. */ | | | 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 | pItem->regReturn = ++pParse->nMem; topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); pItem->addrFillSub = topAddr+1; if( pItem->isCorrelated==0 ){ /* If the subquery is not correlated and if we are not inside of ** a trigger, then we only need to compute the value of the subquery ** once. */ onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); }else{ VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); } sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); sqlite3Select(pParse, pSub, &dest); |
︙ | ︙ | |||
4915 4916 4917 4918 4919 4920 4921 | sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nCol); sqlite3WhereEnd(pWInfo); sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; sortOut = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); | | | 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 | sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ReleaseTempRange(pParse, regBase, nCol); sqlite3WhereEnd(pWInfo); sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; sortOut = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); sAggInfo.useSortingIdx = 1; sqlite3ExprCacheClear(pParse); } /* Evaluate the current GROUP BY terms and store in b0, b1, b2... ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) ** Then compare the current GROUP BY terms against the GROUP BY terms |
︙ | ︙ | |||
4942 4943 4944 4945 4946 4947 4948 | sAggInfo.directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); } } sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); j1 = sqlite3VdbeCurrentAddr(v); | | | > | 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 | sAggInfo.directMode = 1; sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); } } sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); j1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); /* Generate code that runs whenever the GROUP BY changes. ** Changes in the GROUP BY are detected by the previous code ** block. If there were no changes, this block is skipped. ** ** This code copies current group by terms in b0,b1,b2,... ** over to a0,a1,a2. It then calls the output subroutine ** and resets the aggregate accumulator registers in preparation ** for the next GROUP BY batch. */ sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); VdbeComment((v, "output one row")); sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); VdbeComment((v, "check abort flag")); sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); VdbeComment((v, "reset accumulator")); /* Update the aggregate accumulators based on the content of ** the current row */ sqlite3VdbeJumpHere(v, j1); updateAccumulator(pParse, &sAggInfo); sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); VdbeComment((v, "indicate data in accumulator")); /* End of the loop */ if( groupBySort ){ sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); VdbeCoverage(v); }else{ sqlite3WhereEnd(pWInfo); sqlite3VdbeChangeToNoop(v, addrSortingIdx); } /* Output the final row of result */ |
︙ | ︙ | |||
5000 5001 5002 5003 5004 5005 5006 | */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); | | | 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 | */ addrSetAbort = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); VdbeComment((v, "set abort flag")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sqlite3VdbeResolveLabel(v, addrOutputRow); addrOutputRow = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); VdbeComment((v, "Groupby result generator entry point")); sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); finalizeAggFunctions(pParse, &sAggInfo); sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); selectInnerLoop(pParse, p, p->pEList, -1, pOrderBy, &sDistinct, pDest, addrOutputRow+1, addrSetAbort); |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
61 62 63 64 65 66 67 | # define write_history(X) # define stifle_history(X) #endif #if defined(_WIN32) || defined(WIN32) # include <io.h> #define isatty(h) _isatty(h) | > | > | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | # define write_history(X) # define stifle_history(X) #endif #if defined(_WIN32) || defined(WIN32) # include <io.h> #define isatty(h) _isatty(h) #ifndef access # define access(f,m) _access((f),(m)) #endif #undef popen #define popen _popen #undef pclose #define pclose _pclose #else /* Make sure isatty() has a prototype. */ |
︙ | ︙ | |||
440 441 442 443 444 445 446 447 448 449 450 451 452 453 | ** An pointer to an instance of this structure is passed from ** the main program to the callback. This is used to communicate ** state and mode information. */ struct callback_data { sqlite3 *db; /* The database */ int echoOn; /* True to echo input commands */ int statsOn; /* True to display memory stats before each finalize */ int cnt; /* Number of records displayed so far */ FILE *out; /* Write results here */ FILE *traceOut; /* Output for sqlite3_trace() */ int nErr; /* Number of errors seen */ int mode; /* An output mode setting */ int writableSchema; /* True if PRAGMA writable_schema=ON */ | > | 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | ** An pointer to an instance of this structure is passed from ** the main program to the callback. This is used to communicate ** state and mode information. */ struct callback_data { sqlite3 *db; /* The database */ int echoOn; /* True to echo input commands */ int autoEQP; /* Run EXPLAIN QUERY PLAN prior to seach SQL statement */ int statsOn; /* True to display memory stats before each finalize */ int cnt; /* Number of records displayed so far */ FILE *out; /* Write results here */ FILE *traceOut; /* Output for sqlite3_trace() */ int nErr; /* Number of errors seen */ int mode; /* An output mode setting */ int writableSchema; /* True if PRAGMA writable_schema=ON */ |
︙ | ︙ | |||
1004 1005 1006 1007 1008 1009 1010 | const char *zFirstRow /* Print before first row, if not NULL */ ){ sqlite3_stmt *pSelect; int rc; int nResult; int i; const char *z; | | | 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 | const char *zFirstRow /* Print before first row, if not NULL */ ){ sqlite3_stmt *pSelect; int rc; int nResult; int i; const char *z; rc = sqlite3_prepare_v2(p->db, zSelect, -1, &pSelect, 0); if( rc!=SQLITE_OK || !pSelect ){ fprintf(p->out, "/**** ERROR: (%d) %s *****/\n", rc, sqlite3_errmsg(p->db)); if( (rc&0xff)!=SQLITE_CORRUPT ) p->nErr++; return rc; } rc = sqlite3_step(pSelect); nResult = sqlite3_column_count(pSelect); |
︙ | ︙ | |||
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 | } /* echo the sql statement if echo on */ if( pArg && pArg->echoOn ){ const char *zStmtSql = sqlite3_sql(pStmt); fprintf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql); } /* Output TESTCTRL_EXPLAIN text of requested */ if( pArg && pArg->mode==MODE_Explain ){ const char *zExplain = 0; sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT, pStmt, &zExplain); if( zExplain && zExplain[0] ){ fprintf(pArg->out, "%s", zExplain); | > > > > > > > > > > > > > > > > > | 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 | } /* echo the sql statement if echo on */ if( pArg && pArg->echoOn ){ const char *zStmtSql = sqlite3_sql(pStmt); fprintf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql); } /* Show the EXPLAIN QUERY PLAN if .eqp is on */ if( pArg && pArg->autoEQP ){ sqlite3_stmt *pExplain; char *zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", sqlite3_sql(pStmt)); rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0); if( rc==SQLITE_OK ){ while( sqlite3_step(pExplain)==SQLITE_ROW ){ fprintf(pArg->out,"--EQP-- %d,", sqlite3_column_int(pExplain, 0)); fprintf(pArg->out,"%d,", sqlite3_column_int(pExplain, 1)); fprintf(pArg->out,"%d,", sqlite3_column_int(pExplain, 2)); fprintf(pArg->out,"%s\n", sqlite3_column_text(pExplain, 3)); } } sqlite3_finalize(pExplain); sqlite3_free(zEQP); } /* Output TESTCTRL_EXPLAIN text of requested */ if( pArg && pArg->mode==MODE_Explain ){ const char *zExplain = 0; sqlite3_test_control(SQLITE_TESTCTRL_EXPLAIN_STMT, pStmt, &zExplain); if( zExplain && zExplain[0] ){ fprintf(pArg->out, "%s", zExplain); |
︙ | ︙ | |||
1452 1453 1454 1455 1456 1457 1458 | char *zTmp = 0; int nRow = 0; zTableInfo = appendText(zTableInfo, "PRAGMA table_info(", 0); zTableInfo = appendText(zTableInfo, zTable, '"'); zTableInfo = appendText(zTableInfo, ");", 0); | | | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 | char *zTmp = 0; int nRow = 0; zTableInfo = appendText(zTableInfo, "PRAGMA table_info(", 0); zTableInfo = appendText(zTableInfo, zTable, '"'); zTableInfo = appendText(zTableInfo, ");", 0); rc = sqlite3_prepare_v2(p->db, zTableInfo, -1, &pTableInfo, 0); free(zTableInfo); if( rc!=SQLITE_OK || !pTableInfo ){ return 1; } zSelect = appendText(zSelect, "SELECT 'INSERT INTO ' || ", 0); /* Always quote the table name, even if it appears to be pure ascii, |
︙ | ︙ | |||
1889 1890 1891 1892 1893 1894 1895 | }else{ while( c!=EOF && c!=cSep && c!='\n' ){ csv_append_char(p, c); c = fgetc(p->in); } if( c=='\n' ){ p->nLine++; | | | 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 | }else{ while( c!=EOF && c!=cSep && c!='\n' ){ csv_append_char(p, c); c = fgetc(p->in); } if( c=='\n' ){ p->nLine++; if( p->n>0 && p->z[p->n-1]=='\r' ) p->n--; } p->cTerm = c; } if( p->z ) p->z[p->n] = 0; return p->z; } |
︙ | ︙ | |||
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 | sqlite3_exec(p->db, "RELEASE dump;", 0, 0, 0); fprintf(p->out, p->nErr ? "ROLLBACK; -- due to errors\n" : "COMMIT;\n"); }else if( c=='e' && strncmp(azArg[0], "echo", n)==0 && nArg>1 && nArg<3 ){ p->echoOn = booleanValue(azArg[1]); }else if( c=='e' && strncmp(azArg[0], "exit", n)==0 ){ if( nArg>1 && (rc = (int)integerValue(azArg[1]))!=0 ) exit(rc); rc = 2; }else if( c=='e' && strncmp(azArg[0], "explain", n)==0 && nArg<3 ){ | > > > > | 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 | sqlite3_exec(p->db, "RELEASE dump;", 0, 0, 0); fprintf(p->out, p->nErr ? "ROLLBACK; -- due to errors\n" : "COMMIT;\n"); }else if( c=='e' && strncmp(azArg[0], "echo", n)==0 && nArg>1 && nArg<3 ){ p->echoOn = booleanValue(azArg[1]); }else if( c=='e' && strncmp(azArg[0], "eqp", n)==0 && nArg>1 && nArg<3 ){ p->autoEQP = booleanValue(azArg[1]); }else if( c=='e' && strncmp(azArg[0], "exit", n)==0 ){ if( nArg>1 && (rc = (int)integerValue(azArg[1]))!=0 ) exit(rc); rc = 2; }else if( c=='e' && strncmp(azArg[0], "explain", n)==0 && nArg<3 ){ |
︙ | ︙ | |||
2395 2396 2397 2398 2399 2400 2401 | zSql = sqlite3_mprintf("SELECT * FROM %s", zTable); if( zSql==0 ){ fprintf(stderr, "Error: out of memory\n"); xCloser(sCsv.in); return 1; } nByte = strlen30(zSql); | | | 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 | zSql = sqlite3_mprintf("SELECT * FROM %s", zTable); if( zSql==0 ){ fprintf(stderr, "Error: out of memory\n"); xCloser(sCsv.in); return 1; } nByte = strlen30(zSql); rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); if( rc && sqlite3_strglob("no such table: *", sqlite3_errmsg(db))==0 ){ char *zCreate = sqlite3_mprintf("CREATE TABLE %s", zTable); char cSep = '('; while( csv_read_one_field(&sCsv) ){ zCreate = sqlite3_mprintf("%z%c\n \"%s\" TEXT", zCreate, cSep, sCsv.z); cSep = ','; if( sCsv.cTerm!=sCsv.cSeparator ) break; |
︙ | ︙ | |||
2421 2422 2423 2424 2425 2426 2427 | if( rc ){ fprintf(stderr, "CREATE TABLE %s(...) failed: %s\n", zTable, sqlite3_errmsg(db)); sqlite3_free(sCsv.z); xCloser(sCsv.in); return 1; } | | | 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 | if( rc ){ fprintf(stderr, "CREATE TABLE %s(...) failed: %s\n", zTable, sqlite3_errmsg(db)); sqlite3_free(sCsv.z); xCloser(sCsv.in); return 1; } rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); } sqlite3_free(zSql); if( rc ){ if (pStmt) sqlite3_finalize(pStmt); fprintf(stderr,"Error: %s\n", sqlite3_errmsg(db)); xCloser(sCsv.in); return 1; |
︙ | ︙ | |||
2448 2449 2450 2451 2452 2453 2454 | j = strlen30(zSql); for(i=1; i<nCol; i++){ zSql[j++] = ','; zSql[j++] = '?'; } zSql[j++] = ')'; zSql[j] = 0; | | | 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 | j = strlen30(zSql); for(i=1; i<nCol; i++){ zSql[j++] = ','; zSql[j++] = '?'; } zSql[j++] = ')'; zSql[j] = 0; rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); if( rc ){ fprintf(stderr, "Error: %s\n", sqlite3_errmsg(db)); if (pStmt) sqlite3_finalize(pStmt); xCloser(sCsv.in); return 1; } |
︙ | ︙ | |||
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 | sqlite3_snprintf(sizeof(p->separator), p->separator, "%.*s", (int)sizeof(p->separator)-1, azArg[1]); }else if( c=='s' && strncmp(azArg[0], "show", n)==0 && nArg==1 ){ int i; fprintf(p->out,"%9.9s: %s\n","echo", p->echoOn ? "on" : "off"); fprintf(p->out,"%9.9s: %s\n","explain", p->explainPrev.valid ? "on" :"off"); fprintf(p->out,"%9.9s: %s\n","headers", p->showHeader ? "on" : "off"); fprintf(p->out,"%9.9s: %s\n","mode", modeDescr[p->mode]); fprintf(p->out,"%9.9s: ", "nullvalue"); output_c_string(p->out, p->nullvalue); fprintf(p->out, "\n"); fprintf(p->out,"%9.9s: %s\n","output", | > | 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 | sqlite3_snprintf(sizeof(p->separator), p->separator, "%.*s", (int)sizeof(p->separator)-1, azArg[1]); }else if( c=='s' && strncmp(azArg[0], "show", n)==0 && nArg==1 ){ int i; fprintf(p->out,"%9.9s: %s\n","echo", p->echoOn ? "on" : "off"); fprintf(p->out,"%9.9s: %s\n","eqp", p->autoEQP ? "on" : "off"); fprintf(p->out,"%9.9s: %s\n","explain", p->explainPrev.valid ? "on" :"off"); fprintf(p->out,"%9.9s: %s\n","headers", p->showHeader ? "on" : "off"); fprintf(p->out,"%9.9s: %s\n","mode", modeDescr[p->mode]); fprintf(p->out,"%9.9s: ", "nullvalue"); output_c_string(p->out, p->nullvalue); fprintf(p->out, "\n"); fprintf(p->out,"%9.9s: %s\n","output", |
︙ | ︙ | |||
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 | struct callback_data data; const char *zInitFile = 0; char *zFirstCmd = 0; int i; int rc = 0; int warnInmemoryDb = 0; if( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)!=0 ){ fprintf(stderr, "SQLite header and source version mismatch\n%s\n%s\n", sqlite3_sourceid(), SQLITE_SOURCE_ID); exit(1); } Argv0 = argv[0]; main_init(&data); stdin_is_interactive = isatty(0); /* Make sure we have a valid signal handler early, before anything ** else is done. */ | > > | 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 | struct callback_data data; const char *zInitFile = 0; char *zFirstCmd = 0; int i; int rc = 0; int warnInmemoryDb = 0; #if USE_SYSTEM_SQLITE+0!=1 if( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)!=0 ){ fprintf(stderr, "SQLite header and source version mismatch\n%s\n%s\n", sqlite3_sourceid(), SQLITE_SOURCE_ID); exit(1); } #endif Argv0 = argv[0]; main_init(&data); stdin_is_interactive = isatty(0); /* Make sure we have a valid signal handler early, before anything ** else is done. */ |
︙ | ︙ | |||
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 | #ifndef SQLITE_OMIT_MEMORYDB data.zDbFilename = ":memory:"; warnInmemoryDb = argc==1; #else fprintf(stderr,"%s: Error: no database filename specified\n", Argv0); return 1; #endif } data.out = stdout; /* Go ahead and open the database file if it already exists. If the ** file does not exist, delay opening it. This prevents empty database ** files from being created if a user mistypes the database name argument ** to the sqlite command-line tool. | > > > > > | 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 | #ifndef SQLITE_OMIT_MEMORYDB data.zDbFilename = ":memory:"; warnInmemoryDb = argc==1; #else fprintf(stderr,"%s: Error: no database filename specified\n", Argv0); return 1; #endif #ifdef SQLITE_SHELL_DBNAME_PROC { extern void SQLITE_SHELL_DBNAME_PROC(const char**); SQLITE_SHELL_DBNAME_PROC(&data.zDbFilename); warnInmemoryDb = 0; } #endif } data.out = stdout; /* Go ahead and open the database file if it already exists. If the ** file does not exist, delay opening it. This prevents empty database ** files from being created if a user mistypes the database name argument ** to the sqlite command-line tool. |
︙ | ︙ | |||
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 | "%s",cmdline_option_value(argc,argv,++i)); }else if( strcmp(z,"-header")==0 ){ data.showHeader = 1; }else if( strcmp(z,"-noheader")==0 ){ data.showHeader = 0; }else if( strcmp(z,"-echo")==0 ){ data.echoOn = 1; }else if( strcmp(z,"-stats")==0 ){ data.statsOn = 1; }else if( strcmp(z,"-bail")==0 ){ bail_on_error = 1; }else if( strcmp(z,"-version")==0 ){ printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid()); return 0; | > > | 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 | "%s",cmdline_option_value(argc,argv,++i)); }else if( strcmp(z,"-header")==0 ){ data.showHeader = 1; }else if( strcmp(z,"-noheader")==0 ){ data.showHeader = 0; }else if( strcmp(z,"-echo")==0 ){ data.echoOn = 1; }else if( strcmp(z,"-eqp")==0 ){ data.autoEQP = 1; }else if( strcmp(z,"-stats")==0 ){ data.statsOn = 1; }else if( strcmp(z,"-bail")==0 ){ bail_on_error = 1; }else if( strcmp(z,"-version")==0 ){ printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid()); return 0; |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
6113 6114 6115 6116 6117 6118 6119 | #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 | > | | 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 | #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_LAST 21 /* ** CAPI3REF: SQLite Runtime Status ** ** ^This interface is used to retrieve runtime status information ** about the performance of SQLite, and optionally to reset various ** highwater marks. ^The first argument is an integer code for |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** */ | < | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ /* ** These #defines should enable >2GB file support on POSIX if the ** underlying operating system supports it. If the OS lacks ** large file support, or if the OS is windows, these should be no-ops. |
︙ | ︙ | |||
43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* ** Include the configuration header output by 'configure' if we're using the ** autoconf-based build */ #ifdef _HAVE_SQLITE_CONFIG_H #include "config.h" | > > > > > | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear ** first in QNX. */ #include "sqlite3.h" /* ** Include the configuration header output by 'configure' if we're using the ** autoconf-based build */ #ifdef _HAVE_SQLITE_CONFIG_H #include "config.h" |
︙ | ︙ | |||
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 | ** affinity value. */ #define SQLITE_AFF_MASK 0x67 /* ** Additional bit values that can be ORed with an affinity without ** changing the affinity. */ #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ /* ** An object of this type is created for each virtual table present in ** the database schema. ** ** If the database schema is shared, then there is one instance of this ** structure for each database connection (sqlite3*) that uses the shared | > > > > > > | 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 | ** affinity value. */ #define SQLITE_AFF_MASK 0x67 /* ** Additional bit values that can be ORed with an affinity without ** changing the affinity. ** ** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL. ** It causes an assert() to fire if either operand to a comparison ** operator is NULL. It is added to certain comparison operators to ** prove that the operands are always NOT NULL. */ #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ #define SQLITE_NOTNULL 0x88 /* Assert that operands are never NULL */ /* ** An object of this type is created for each virtual table present in ** the database schema. ** ** If the database schema is shared, then there is one instance of this ** structure for each database connection (sqlite3*) that uses the shared |
︙ | ︙ | |||
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 | ** Records are used to store the content of a table row and to store ** the key of an index. A blob encoding of a record is created by ** the OP_MakeRecord opcode of the VDBE and is disassembled by the ** OP_Column opcode. ** ** This structure holds a record that has already been disassembled ** into its constituent fields. */ struct UnpackedRecord { KeyInfo *pKeyInfo; /* Collation and sort-order information */ u16 nField; /* Number of entries in apMem[] */ | > > > | > > < < < < < | 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 | ** Records are used to store the content of a table row and to store ** the key of an index. A blob encoding of a record is created by ** the OP_MakeRecord opcode of the VDBE and is disassembled by the ** OP_Column opcode. ** ** This structure holds a record that has already been disassembled ** into its constituent fields. ** ** The r1 and r2 member variables are only used by the optimized comparison ** functions vdbeRecordCompareInt() and vdbeRecordCompareString(). */ struct UnpackedRecord { KeyInfo *pKeyInfo; /* Collation and sort-order information */ u16 nField; /* Number of entries in apMem[] */ i8 default_rc; /* Comparison result if keys are equal */ Mem *aMem; /* Values */ int r1; /* Value to return if (lhs > rhs) */ int r2; /* Value to return if (rhs < lhs) */ }; /* ** Each SQL index is represented in memory by an ** instance of the following structure. ** ** The columns of the table that are to be indexed are described ** by the aiColumn[] field of this structure. For example, suppose |
︙ | ︙ | |||
2352 2353 2354 2355 2356 2357 2358 | char *zErrMsg; /* An error message */ Vdbe *pVdbe; /* An engine for executing database bytecode */ int rc; /* Return code from execution */ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ u8 checkSchema; /* Causes schema cookie check after an error */ u8 nested; /* Number of nested calls to the parser/code generator */ u8 nTempReg; /* Number of temporary registers in aTempReg[] */ | < | 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 | char *zErrMsg; /* An error message */ Vdbe *pVdbe; /* An engine for executing database bytecode */ int rc; /* Return code from execution */ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ u8 checkSchema; /* Causes schema cookie check after an error */ u8 nested; /* Number of nested calls to the parser/code generator */ u8 nTempReg; /* Number of temporary registers in aTempReg[] */ u8 nColCache; /* Number of entries in aColCache[] */ u8 iColCache; /* Next entry in aColCache[] to replace */ u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ u8 mayAbort; /* True if statement may throw an ABORT exception */ u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */ u8 okConstFactor; /* OK to factor out constants */ int aTempReg[8]; /* Holding area for temporary registers */ |
︙ | ︙ | |||
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 | void (*xLog)(void*,int,const char*); /* Function for logging */ void *pLogArg; /* First argument to xLog() */ int bLocaltimeFault; /* True to fail localtime() calls */ #ifdef SQLITE_ENABLE_SQLLOG void(*xSqllog)(void*,sqlite3*,const char*, int); void *pSqllogArg; #endif }; /* ** This macro is used inside of assert() statements to indicate that ** the assert is only valid on a well-formed database. Instead of: ** ** assert( X ); | > > > > > > > | 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 | void (*xLog)(void*,int,const char*); /* Function for logging */ void *pLogArg; /* First argument to xLog() */ int bLocaltimeFault; /* True to fail localtime() calls */ #ifdef SQLITE_ENABLE_SQLLOG void(*xSqllog)(void*,sqlite3*,const char*, int); void *pSqllogArg; #endif #ifdef SQLITE_VDBE_COVERAGE /* The following callback (if not NULL) is invoked on every VDBE branch ** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE. */ void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */ void *pVdbeBranchArg; /* 1st argument */ #endif }; /* ** This macro is used inside of assert() statements to indicate that ** the assert is only valid on a well-formed database. Instead of: ** ** assert( X ); |
︙ | ︙ | |||
2998 2999 3000 3001 3002 3003 3004 | #ifndef SQLITE_OMIT_AUTOINCREMENT void sqlite3AutoincrementBegin(Parse *pParse); void sqlite3AutoincrementEnd(Parse *pParse); #else # define sqlite3AutoincrementBegin(X) # define sqlite3AutoincrementEnd(X) #endif | < | 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 | #ifndef SQLITE_OMIT_AUTOINCREMENT void sqlite3AutoincrementBegin(Parse *pParse); void sqlite3AutoincrementEnd(Parse *pParse); #else # define sqlite3AutoincrementBegin(X) # define sqlite3AutoincrementEnd(X) #endif void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int); void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*); IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); int sqlite3IdListIndex(IdList*,const char*); SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, |
︙ | ︙ | |||
3046 3047 3048 3049 3050 3051 3052 | void sqlite3ExprCodeMove(Parse*, int, int, int); void sqlite3ExprCacheStore(Parse*, int, int, int); void sqlite3ExprCachePush(Parse*); void sqlite3ExprCachePop(Parse*, int); void sqlite3ExprCacheRemove(Parse*, int, int); void sqlite3ExprCacheClear(Parse*); void sqlite3ExprCacheAffinityChange(Parse*, int, int); | | > | | 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 | void sqlite3ExprCodeMove(Parse*, int, int, int); void sqlite3ExprCacheStore(Parse*, int, int, int); void sqlite3ExprCachePush(Parse*); void sqlite3ExprCachePop(Parse*, int); void sqlite3ExprCacheRemove(Parse*, int, int); void sqlite3ExprCacheClear(Parse*); void sqlite3ExprCacheAffinityChange(Parse*, int, int); void sqlite3ExprCode(Parse*, Expr*, int); void sqlite3ExprCodeFactorable(Parse*, Expr*, int); void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8); int sqlite3ExprCodeTemp(Parse*, Expr*, int*); int sqlite3ExprCodeTarget(Parse*, Expr*, int); void sqlite3ExprCodeAndCache(Parse*, Expr*, int); int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8); #define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */ #define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */ void sqlite3ExprIfTrue(Parse*, Expr*, int, int); void sqlite3ExprIfFalse(Parse*, Expr*, int, int); Table *sqlite3FindTable(sqlite3*,const char*, const char*); Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); |
︙ | ︙ | |||
3088 3089 3090 3091 3092 3093 3094 | void sqlite3CloseSavepoints(sqlite3 *); void sqlite3LeaveMutexAndCloseZombie(sqlite3*); int sqlite3ExprIsConstant(Expr*); int sqlite3ExprIsConstantNotJoin(Expr*); int sqlite3ExprIsConstantOrFunction(Expr*); int sqlite3ExprIsInteger(Expr*, int*); int sqlite3ExprCanBeNull(const Expr*); | < | 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 | void sqlite3CloseSavepoints(sqlite3 *); void sqlite3LeaveMutexAndCloseZombie(sqlite3*); int sqlite3ExprIsConstant(Expr*); int sqlite3ExprIsConstantNotJoin(Expr*); int sqlite3ExprIsConstantOrFunction(Expr*); int sqlite3ExprIsInteger(Expr*, int*); int sqlite3ExprCanBeNull(const Expr*); int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); int sqlite3IsRowid(const char*); void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*); |
︙ | ︙ | |||
3232 3233 3234 3235 3236 3237 3238 | (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ sqlite3PutVarint32((A),(B))) #define getVarint sqlite3GetVarint #define putVarint sqlite3PutVarint const char *sqlite3IndexAffinityStr(Vdbe *, Index *); | | | 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 | (u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\ sqlite3PutVarint32((A),(B))) #define getVarint sqlite3GetVarint #define putVarint sqlite3PutVarint const char *sqlite3IndexAffinityStr(Vdbe *, Index *); void sqlite3TableAffinity(Vdbe*, Table*, int); char sqlite3CompareAffinity(Expr *pExpr, char aff2); int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); char sqlite3ExprAffinity(Expr *pExpr); int sqlite3Atoi64(const char*, i64*, int, u8); void sqlite3Error(sqlite3*, int, const char*,...); void *sqlite3HexToBlob(sqlite3*, const char *z, int n); u8 sqlite3HexToInt(int h); |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 | /* Call sqlite3_shutdown() once before doing anything else. This is to ** test that sqlite3_shutdown() can be safely called by a process before ** sqlite3_initialize() is. */ sqlite3_shutdown(); Tcl_FindExecutable(argv[0]); interp = Tcl_CreateInterp(); #if TCLSH==2 sqlite3_config(SQLITE_CONFIG_SINGLETHREAD); #endif init_all(interp); | > | 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 | /* Call sqlite3_shutdown() once before doing anything else. This is to ** test that sqlite3_shutdown() can be safely called by a process before ** sqlite3_initialize() is. */ sqlite3_shutdown(); Tcl_FindExecutable(argv[0]); Tcl_SetSystemEncoding(NULL, "utf-8"); interp = Tcl_CreateInterp(); #if TCLSH==2 sqlite3_config(SQLITE_CONFIG_SINGLETHREAD); #endif init_all(interp); |
︙ | ︙ |
Changes to src/test_loadext.c.
︙ | ︙ | |||
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | sqlite3_result_int(context, cur); } } /* ** Extension load function. */ int testloadext_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int nErr = 0; SQLITE_EXTENSION_INIT2(pApi); nErr |= sqlite3_create_function(db, "half", 1, SQLITE_ANY, 0, halfFunc, 0, 0); nErr |= sqlite3_create_function(db, "sqlite3_status", 1, SQLITE_ANY, 0, statusFunc, 0, 0); nErr |= sqlite3_create_function(db, "sqlite3_status", 2, SQLITE_ANY, 0, statusFunc, 0, 0); return nErr ? SQLITE_ERROR : SQLITE_OK; } /* ** Another extension entry point. This one always fails. */ int testbrokenext_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ char *zErr; SQLITE_EXTENSION_INIT2(pApi); zErr = sqlite3_mprintf("broken!"); *pzErrMsg = zErr; return 1; } | > > > > > > | 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | sqlite3_result_int(context, cur); } } /* ** Extension load function. */ #ifdef _WIN32 __declspec(dllexport) #endif int testloadext_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int nErr = 0; SQLITE_EXTENSION_INIT2(pApi); nErr |= sqlite3_create_function(db, "half", 1, SQLITE_ANY, 0, halfFunc, 0, 0); nErr |= sqlite3_create_function(db, "sqlite3_status", 1, SQLITE_ANY, 0, statusFunc, 0, 0); nErr |= sqlite3_create_function(db, "sqlite3_status", 2, SQLITE_ANY, 0, statusFunc, 0, 0); return nErr ? SQLITE_ERROR : SQLITE_OK; } /* ** Another extension entry point. This one always fails. */ #ifdef _WIN32 __declspec(dllexport) #endif int testbrokenext_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ char *zErr; SQLITE_EXTENSION_INIT2(pApi); zErr = sqlite3_mprintf("broken!"); *pzErrMsg = zErr; return 1; } |
Changes to src/trigger.c.
︙ | ︙ | |||
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 | #endif /* Generate code to destroy the database record of the trigger. */ assert( pTable!=0 ); if( (v = sqlite3GetVdbe(pParse))!=0 ){ int base; static const VdbeOpList dropTrigger[] = { { OP_Rewind, 0, ADDR(9), 0}, { OP_String8, 0, 1, 0}, /* 1 */ { OP_Column, 0, 1, 2}, { OP_Ne, 2, ADDR(8), 1}, { OP_String8, 0, 1, 0}, /* 4: "trigger" */ { OP_Column, 0, 0, 2}, { OP_Ne, 2, ADDR(8), 1}, { OP_Delete, 0, 0, 0}, { OP_Next, 0, ADDR(1), 0}, /* 8 */ }; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3OpenMasterTable(pParse, iDb); | > | | 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | #endif /* Generate code to destroy the database record of the trigger. */ assert( pTable!=0 ); if( (v = sqlite3GetVdbe(pParse))!=0 ){ int base; static const int iLn = __LINE__+2; static const VdbeOpList dropTrigger[] = { { OP_Rewind, 0, ADDR(9), 0}, { OP_String8, 0, 1, 0}, /* 1 */ { OP_Column, 0, 1, 2}, { OP_Ne, 2, ADDR(8), 1}, { OP_String8, 0, 1, 0}, /* 4: "trigger" */ { OP_Column, 0, 0, 2}, { OP_Ne, 2, ADDR(8), 1}, { OP_Delete, 0, 0, 0}, { OP_Next, 0, ADDR(1), 0}, /* 8 */ }; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3OpenMasterTable(pParse, iDb); base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger, iLn); sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, P4_TRANSIENT); sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC); sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddOp2(v, OP_Close, 0, 0); sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0); if( pParse->nMem<3 ){ pParse->nMem = 3; |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
386 387 388 389 390 391 392 | } if( okOnePass ){ sqlite3VdbeChangeToNoop(v, addrOpen); nKey = nPk; regKey = iPk; }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey, | | | 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 | } if( okOnePass ){ sqlite3VdbeChangeToNoop(v, addrOpen); nKey = nPk; regKey = iPk; }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey, sqlite3IndexAffinityStr(v, pPk), nPk); sqlite3VdbeAddOp2(v, OP_IdxInsert, iEph, regKey); } sqlite3WhereEnd(pWInfo); } /* Initialize the count of updated rows */ |
︙ | ︙ | |||
430 431 432 433 434 435 436 437 438 439 440 441 | } /* Top of the update loop */ if( okOnePass ){ if( aToOpen[iDataCur-iBaseCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey); } labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); }else if( pPk ){ labelContinue = sqlite3VdbeMakeLabel(v); | > > | > > > | | 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | } /* Top of the update loop */ if( okOnePass ){ if( aToOpen[iDataCur-iBaseCur] ){ assert( pPk!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey); VdbeCoverageNeverTaken(v); } labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); VdbeCoverage(v); }else if( pPk ){ labelContinue = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v); addrTop = sqlite3VdbeAddOp2(v, OP_RowKey, iEph, regKey); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0); VdbeCoverage(v); }else{ labelContinue = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, labelBreak, regOldRowid); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid); VdbeCoverage(v); } /* If the record number will change, set register regNewRowid to ** contain the new value. If the record number is not being modified, ** then regNewRowid is the same register as regOldRowid, which is ** already populated. */ assert( chngKey || pTrigger || hasFK || regOldRowid==regNewRowid ); if( chngRowid ){ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid); sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v); } /* Compute the old pre-UPDATE content of the row being changed, if that ** information is needed */ if( chngPk || hasFK || pTrigger ){ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0); oldmask |= sqlite3TriggerColmask(pParse, |
︙ | ︙ | |||
520 521 522 523 524 525 526 | } } /* Fire any BEFORE UPDATE triggers. This happens before constraints are ** verified. One could argue that this is wrong. */ if( tmask&TRIGGER_BEFORE ){ | < | > > | 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 | } } /* Fire any BEFORE UPDATE triggers. This happens before constraints are ** verified. One could argue that this is wrong. */ if( tmask&TRIGGER_BEFORE ){ sqlite3TableAffinity(v, pTab, regNew); sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab, regOldRowid, onError, labelContinue); /* The row-trigger may have deleted the row being updated. In this ** case, jump to the next row. No updates or AFTER triggers are ** required. This behavior - what happens when the row being updated ** is deleted or renamed by a BEFORE trigger - is left undefined in the ** documentation. */ if( pPk ){ sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue,regKey,nKey); VdbeCoverage(v); }else{ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid); VdbeCoverage(v); } /* If it did not delete it, the row-trigger may still have modified ** some of the columns of the row being updated. Load the values for ** all columns not modified by the update statement into their ** registers in case this has happened. */ |
︙ | ︙ | |||
570 571 572 573 574 575 576 577 578 579 580 581 582 583 | /* Delete the index entries associated with the current record. */ if( bReplace || chngKey ){ if( pPk ){ j1 = sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, 0, regKey, nKey); }else{ j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, 0, regOldRowid); } } sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx); /* If changing the rowid value, or if there are foreign key constraints ** to process, delete the old record. Otherwise, add a noop OP_Delete ** to invoke the pre-update hook. ** | > | 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 | /* Delete the index entries associated with the current record. */ if( bReplace || chngKey ){ if( pPk ){ j1 = sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, 0, regKey, nKey); }else{ j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, 0, regOldRowid); } VdbeCoverageNeverTaken(v); } sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx); /* If changing the rowid value, or if there are foreign key constraints ** to process, delete the old record. Otherwise, add a noop OP_Delete ** to invoke the pre-update hook. ** |
︙ | ︙ | |||
626 627 628 629 630 631 632 | /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ if( okOnePass ){ /* Nothing to do at end-of-loop for a single-pass */ }else if( pPk ){ sqlite3VdbeResolveLabel(v, labelContinue); | | | 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 | /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ if( okOnePass ){ /* Nothing to do at end-of-loop for a single-pass */ }else if( pPk ){ sqlite3VdbeResolveLabel(v, labelContinue); sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, labelContinue); } sqlite3VdbeResolveLabel(v, labelBreak); /* Close all tables */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
︙ | ︙ | |||
755 756 757 758 759 760 761 | */ sqlite3SelectDestInit(&dest, SRT_Table, ephemTab); sqlite3Select(pParse, pSelect, &dest); /* Generate code to scan the ephemeral table and call VUpdate. */ iReg = ++pParse->nMem; pParse->nMem += pTab->nCol+1; | | | | 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 | */ sqlite3SelectDestInit(&dest, SRT_Table, ephemTab); sqlite3Select(pParse, pSelect, &dest); /* Generate code to scan the ephemeral table and call VUpdate. */ iReg = ++pParse->nMem; pParse->nMem += pTab->nCol+1; addr = sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg); sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1); for(i=0; i<pTab->nCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i); } sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite3MayAbort(pParse); sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0); /* Cleanup */ sqlite3SelectDelete(db, pSelect); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
Changes to src/utf.c.
︙ | ︙ | |||
313 314 315 316 317 318 319 | } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); pMem->enc = desiredEnc; | | | 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); pMem->enc = desiredEnc; pMem->flags |= (MEM_Term); pMem->z = (char*)zOut; pMem->zMalloc = pMem->z; translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; |
︙ | ︙ | |||
441 442 443 444 445 446 447 | sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); if( db->mallocFailed ){ sqlite3VdbeMemRelease(&m); m.z = 0; } assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); | < | 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); if( db->mallocFailed ){ sqlite3VdbeMemRelease(&m); m.z = 0; } assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); assert( m.z || db->mallocFailed ); return m.z; } /* ** zIn is a UTF-16 encoded unicode string at least nChar characters long. ** Return the number of bytes in the first nChar unicode characters |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | */ #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) #else # define UPDATE_MAX_BLOBSIZE(P) #endif /* ** Convert the given register into a string if it isn't one ** already. Return non-zero if a malloc() fails. */ #define Stringify(P, enc) \ if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ { goto no_mem; } /* ** An ephemeral string value (signified by the MEM_Ephem flag) contains ** a pointer to a dynamically allocated string where some other entity ** is responsible for deallocating that string. Because the register ** does not control the string, it might be deleted without the register ** knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the register itself controls. In other words, it | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | */ #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) #else # define UPDATE_MAX_BLOBSIZE(P) #endif /* ** Invoke the VDBE coverage callback, if that callback is defined. This ** feature is used for test suite validation only and does not appear an ** production builds. ** ** M is an integer, 2 or 3, that indices how many different ways the ** branch can go. It is usually 2. "I" is the direction the branch ** goes. 0 means falls through. 1 means branch is taken. 2 means the ** second alternative branch is taken. */ #if !defined(SQLITE_VDBE_COVERAGE) # define VdbeBranchTaken(I,M) #else # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ M = iSrcLine; /* Assert the truth of VdbeCoverageAlwaysTaken() and ** VdbeCoverageNeverTaken() */ assert( (M & I)==I ); }else{ if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, iSrcLine,I,M); } } #endif /* ** Convert the given register into a string if it isn't one ** already. Return non-zero if a malloc() fails. */ #define Stringify(P, enc) \ if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ { goto no_mem; } /* ** An ephemeral string value (signified by the MEM_Ephem flag) contains ** a pointer to a dynamically allocated string where some other entity ** is responsible for deallocating that string. Because the register ** does not control the string, it might be deleted without the register ** knowing it. ** ** This routine converts an ephemeral string into a dynamically allocated ** string that the register itself controls. In other words, it ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. */ #define Deephemeralize(P) \ if( ((P)->flags&MEM_Ephem)!=0 \ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ #define isSorter(x) ((x)->pSorter!=0) |
︙ | ︙ | |||
470 471 472 473 474 475 476 | Mem *pIn2 = 0; /* 2nd input operand */ Mem *pIn3 = 0; /* 3rd input operand */ Mem *pOut = 0; /* Output operand */ int *aPermute = 0; /* Permutation of columns for OP_Compare */ i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ #ifdef VDBE_PROFILE u64 start; /* CPU clock count at start of opcode */ | < | 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | Mem *pIn2 = 0; /* 2nd input operand */ Mem *pIn3 = 0; /* 3rd input operand */ Mem *pOut = 0; /* Output operand */ int *aPermute = 0; /* Permutation of columns for OP_Compare */ i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ #ifdef VDBE_PROFILE u64 start; /* CPU clock count at start of opcode */ #endif /*** INSERT STACK UNION HERE ***/ assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ sqlite3VdbeEnter(p); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or |
︙ | ︙ | |||
532 533 534 535 536 537 538 | } sqlite3EndBenignMalloc(); #endif for(pc=p->pc; rc==SQLITE_OK; pc++){ assert( pc>=0 && pc<p->nOp ); if( db->mallocFailed ) goto no_mem; #ifdef VDBE_PROFILE | < | 559 560 561 562 563 564 565 566 567 568 569 570 571 572 | } sqlite3EndBenignMalloc(); #endif for(pc=p->pc; rc==SQLITE_OK; pc++){ assert( pc>=0 && pc<p->nOp ); if( db->mallocFailed ) goto no_mem; #ifdef VDBE_PROFILE start = sqlite3Hwtime(); #endif nVmStep++; pOp = &aOp[pc]; /* Only allow tracing if SQLITE_DEBUG is defined. */ |
︙ | ︙ | |||
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 | /* Sanity checking on other operands */ #ifdef SQLITE_DEBUG if( (pOp->opflags & OPFLG_IN1)!=0 ){ assert( pOp->p1>0 ); assert( pOp->p1<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p1]) ); REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); } if( (pOp->opflags & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p2]) ); REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); } if( (pOp->opflags & OPFLG_IN3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p3]) ); REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); } if( (pOp->opflags & OPFLG_OUT2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem-p->nCursor) ); memAboutToChange(p, &aMem[pOp->p2]); } | > > > | 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 | /* Sanity checking on other operands */ #ifdef SQLITE_DEBUG if( (pOp->opflags & OPFLG_IN1)!=0 ){ assert( pOp->p1>0 ); assert( pOp->p1<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p1]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); } if( (pOp->opflags & OPFLG_IN2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p2]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); } if( (pOp->opflags & OPFLG_IN3)!=0 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem-p->nCursor) ); assert( memIsValid(&aMem[pOp->p3]) ); assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); } if( (pOp->opflags & OPFLG_OUT2)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=(p->nMem-p->nCursor) ); memAboutToChange(p, &aMem[pOp->p2]); } |
︙ | ︙ | |||
693 694 695 696 697 698 699 | ** ** Write the current address onto register P1 ** and then jump to address P2. */ case OP_Gosub: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); pIn1 = &aMem[pOp->p1]; | | | 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 | ** ** Write the current address onto register P1 ** and then jump to address P2. */ case OP_Gosub: { /* jump */ assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); memAboutToChange(p, pIn1); pIn1->flags = MEM_Int; pIn1->u.i = pc; REGISTER_TRACE(pOp->p1, pIn1); pc = pOp->p2 - 1; break; } |
︙ | ︙ | |||
766 767 768 769 770 771 772 | ** If the co-routine ends with OP_Yield or OP_Return then continue ** to the next instruction. But if the co-routine ends with ** OP_EndCoroutine, jump immediately to P2. */ case OP_Yield: { /* in1, jump */ int pcDest; pIn1 = &aMem[pOp->p1]; | | | 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 | ** If the co-routine ends with OP_Yield or OP_Return then continue ** to the next instruction. But if the co-routine ends with ** OP_EndCoroutine, jump immediately to P2. */ case OP_Yield: { /* in1, jump */ int pcDest; pIn1 = &aMem[pOp->p1]; assert( VdbeMemDynamic(pIn1)==0 ); pIn1->flags = MEM_Int; pcDest = (int)pIn1->u.i; pIn1->u.i = pc; REGISTER_TRACE(pOp->p1, pIn1); pc = pcDest; break; } |
︙ | ︙ | |||
939 940 941 942 943 944 945 | #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); if( rc==SQLITE_TOOBIG ) goto too_big; if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; assert( pOut->zMalloc==pOut->z ); | | < | 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 | #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); if( rc==SQLITE_TOOBIG ) goto too_big; if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; assert( pOut->zMalloc==pOut->z ); assert( VdbeMemDynamic(pOut)==0 ); pOut->zMalloc = 0; pOut->flags |= MEM_Static; if( pOp->p4type==P4_DYNAMIC ){ sqlite3DbFree(db, pOp->p4.z); } pOp->p4type = P4_DYNAMIC; pOp->p4.z = pOut->z; pOp->p1 = pOut->n; } |
︙ | ︙ | |||
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 | VdbeMemRelease(pOut); pOut->flags = nullFlag; cnt--; } break; } /* Opcode: Blob P1 P2 * P4 * ** Synopsis: r[P2]=P4 (len=P1) ** ** P4 points to a blob of data P1 bytes long. Store this ** blob in register P2. */ | > > > > > > > > > > > > > > | 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 | VdbeMemRelease(pOut); pOut->flags = nullFlag; cnt--; } break; } /* Opcode: SoftNull P1 * * * * ** Synopsis: r[P1]=NULL ** ** Set register P1 to have the value NULL as seen by the OP_MakeRecord ** instruction, but do not free any string or blob memory associated with ** the register, so that if the value was a string or blob that was ** previously copied using OP_SCopy, the copies will continue to be valid. */ case OP_SoftNull: { assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); pOut = &aMem[pOp->p1]; pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; break; } /* Opcode: Blob P1 P2 * P4 * ** Synopsis: r[P2]=P4 (len=P1) ** ** P4 points to a blob of data P1 bytes long. Store this ** blob in register P2. */ |
︙ | ︙ | |||
1064 1065 1066 1067 1068 1069 1070 1071 | pIn1 = &aMem[p1]; pOut = &aMem[p2]; do{ assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); assert( memIsValid(pIn1) ); memAboutToChange(p, pOut); zMalloc = pOut->zMalloc; | > < | > > | 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 | pIn1 = &aMem[p1]; pOut = &aMem[p2]; do{ assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); assert( memIsValid(pIn1) ); memAboutToChange(p, pOut); VdbeMemRelease(pOut); zMalloc = pOut->zMalloc; memcpy(pOut, pIn1, sizeof(Mem)); #ifdef SQLITE_DEBUG if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ pOut->pScopyFrom += p1 - pOp->p2; } #endif pIn1->flags = MEM_Undefined; pIn1->xDel = 0; pIn1->zMalloc = zMalloc; REGISTER_TRACE(p2++, pOut); pIn1++; pOut++; }while( n-- ); break; } |
︙ | ︙ | |||
1139 1140 1141 1142 1143 1144 1145 | /* Opcode: ResultRow P1 P2 * * * ** Synopsis: output=r[P1@P2] ** ** The registers P1 through P1+P2-1 contain a single row of ** results. This opcode causes the sqlite3_step() call to terminate ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt | | | 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 | /* Opcode: ResultRow P1 P2 * * * ** Synopsis: output=r[P1@P2] ** ** The registers P1 through P1+P2-1 contain a single row of ** results. This opcode causes the sqlite3_step() call to terminate ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt ** structure to provide access to the r(P1)..r(P1+P2-1) values as ** the result row. */ case OP_ResultRow: { Mem *pMem; int i; assert( p->nResColumn==pOp->p2 ); assert( pOp->p1>0 ); |
︙ | ︙ | |||
1248 1249 1250 1251 1252 1253 1254 | if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; Stringify(pIn1, encoding); Stringify(pIn2, encoding); nByte = pIn1->n + pIn2->n; if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } | < > | 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 | if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; Stringify(pIn1, encoding); Stringify(pIn2, encoding); nByte = pIn1->n + pIn2->n; if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ goto no_mem; } MemSetTypeFlag(pOut, MEM_Str); if( pOut!=pIn2 ){ memcpy(pOut->z, pIn2->z, pIn2->n); } memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); pOut->z[nByte]=0; pOut->z[nByte+1] = 0; pOut->flags |= MEM_Term; |
︙ | ︙ | |||
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 | ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Int)==0 ){ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ pc = pOp->p2 - 1; break; | > | 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 | ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Int)==0 ){ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ pc = pOp->p2 - 1; break; |
︙ | ︙ | |||
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 | if( pOp->p5 & SQLITE_NULLEQ ){ /* If SQLITE_NULLEQ is set (which will only happen if the operator is ** OP_Eq or OP_Ne) then take the jump or not depending on whether ** or not both operands are null. */ assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); assert( (flags1 & MEM_Cleared)==0 ); if( (flags1&MEM_Null)!=0 && (flags3&MEM_Null)!=0 && (flags3&MEM_Cleared)==0 ){ res = 0; /* Results are equal */ }else{ res = 1; /* Results are not equal */ } }else{ /* SQLITE_NULLEQ is clear and at least one operand is NULL, ** then the result is always NULL. ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. */ | > | < < > > > > > | 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 | if( pOp->p5 & SQLITE_NULLEQ ){ /* If SQLITE_NULLEQ is set (which will only happen if the operator is ** OP_Eq or OP_Ne) then take the jump or not depending on whether ** or not both operands are null. */ assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); assert( (flags1 & MEM_Cleared)==0 ); assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); if( (flags1&MEM_Null)!=0 && (flags3&MEM_Null)!=0 && (flags3&MEM_Cleared)==0 ){ res = 0; /* Results are equal */ }else{ res = 1; /* Results are not equal */ } }else{ /* SQLITE_NULLEQ is clear and at least one operand is NULL, ** then the result is always NULL. ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. */ if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; MemSetTypeFlag(pOut, MEM_Null); REGISTER_TRACE(pOp->p2, pOut); }else{ VdbeBranchTaken(2,3); if( pOp->p5 & SQLITE_JUMPIFNULL ){ pc = pOp->p2-1; } } break; } }else{ /* Neither operand is NULL. Do a comparison. */ affinity = pOp->p5 & SQLITE_AFF_MASK; if( affinity ){ |
︙ | ︙ | |||
1921 1922 1923 1924 1925 1926 1927 | if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = res; REGISTER_TRACE(pOp->p2, pOut); | > > | | | | | 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 | if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; memAboutToChange(p, pOut); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = res; REGISTER_TRACE(pOp->p2, pOut); }else{ VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); if( res ){ pc = pOp->p2-1; } } /* Undo any changes made by applyAffinity() to the input registers. */ pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask); pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask); break; } /* Opcode: Permutation * * * P4 * |
︙ | ︙ | |||
2021 2022 2023 2024 2025 2026 2027 | ** ** Jump to the instruction at address P1, P2, or P3 depending on whether ** in the most recent OP_Compare instruction the P1 vector was less than ** equal to, or greater than the P2 vector, respectively. */ case OP_Jump: { /* jump */ if( iCompare<0 ){ | | | | | 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 | ** ** Jump to the instruction at address P1, P2, or P3 depending on whether ** in the most recent OP_Compare instruction the P1 vector was less than ** equal to, or greater than the P2 vector, respectively. */ case OP_Jump: { /* jump */ if( iCompare<0 ){ pc = pOp->p1 - 1; VdbeBranchTaken(0,3); }else if( iCompare==0 ){ pc = pOp->p2 - 1; VdbeBranchTaken(1,3); }else{ pc = pOp->p3 - 1; VdbeBranchTaken(2,3); } break; } /* Opcode: And P1 P2 P3 * * ** Synopsis: r[P3]=(r[P1] && r[P2]) ** |
︙ | ︙ | |||
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 | ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, ** set the flag and fall through to the next instruction. In other words, ** this opcode causes all following up codes up through P2 (but not including ** P2) to run just once and skipped on subsequent times through the loop. */ case OP_Once: { /* jump */ assert( pOp->p1<p->nOnceFlag ); if( p->aOnceFlag[pOp->p1] ){ pc = pOp->p2-1; }else{ p->aOnceFlag[pOp->p1] = 1; } break; } | > | 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 | ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, ** set the flag and fall through to the next instruction. In other words, ** this opcode causes all following up codes up through P2 (but not including ** P2) to run just once and skipped on subsequent times through the loop. */ case OP_Once: { /* jump */ assert( pOp->p1<p->nOnceFlag ); VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); if( p->aOnceFlag[pOp->p1] ){ pc = pOp->p2-1; }else{ p->aOnceFlag[pOp->p1] = 1; } break; } |
︙ | ︙ | |||
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 | #ifdef SQLITE_OMIT_FLOATING_POINT c = sqlite3VdbeIntValue(pIn1)!=0; #else c = sqlite3VdbeRealValue(pIn1)!=0.0; #endif if( pOp->opcode==OP_IfNot ) c = !c; } if( c ){ pc = pOp->p2-1; } break; } /* Opcode: IsNull P1 P2 * * * ** Synopsis: if r[P1]==NULL goto P2 ** ** Jump to P2 if the value in register P1 is NULL. */ case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Null)!=0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: NotNull P1 P2 * * * ** Synopsis: if r[P1]!=NULL goto P2 ** ** Jump to P2 if the value in register P1 is not NULL. */ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_Null)==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: Column P1 P2 P3 P4 P5 | > > > | 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 | #ifdef SQLITE_OMIT_FLOATING_POINT c = sqlite3VdbeIntValue(pIn1)!=0; #else c = sqlite3VdbeRealValue(pIn1)!=0.0; #endif if( pOp->opcode==OP_IfNot ) c = !c; } VdbeBranchTaken(c!=0, 2); if( c ){ pc = pOp->p2-1; } break; } /* Opcode: IsNull P1 P2 * * * ** Synopsis: if r[P1]==NULL goto P2 ** ** Jump to P2 if the value in register P1 is NULL. */ case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); if( (pIn1->flags & MEM_Null)!=0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: NotNull P1 P2 * * * ** Synopsis: if r[P1]!=NULL goto P2 ** ** Jump to P2 if the value in register P1 is not NULL. */ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ pIn1 = &aMem[pOp->p1]; VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); if( (pIn1->flags & MEM_Null)==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: Column P1 P2 P3 P4 P5 |
︙ | ︙ | |||
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 | /* Extract the content for the p2+1-th column. Control can only ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are ** all valid. */ assert( p2<pC->nHdrParsed ); assert( rc==SQLITE_OK ); if( pC->szRow>=aOffset[p2+1] ){ /* This is the common case where the desired content fits on the original ** page - where the content is not on an overflow page */ VdbeMemRelease(pDest); sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest); }else{ /* This branch happens only when content is on overflow pages */ | > | 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 | /* Extract the content for the p2+1-th column. Control can only ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are ** all valid. */ assert( p2<pC->nHdrParsed ); assert( rc==SQLITE_OK ); assert( sqlite3VdbeCheckMemInvariants(pDest) ); if( pC->szRow>=aOffset[p2+1] ){ /* This is the common case where the desired content fits on the original ** page - where the content is not on an overflow page */ VdbeMemRelease(pDest); sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest); }else{ /* This branch happens only when content is on overflow pages */ |
︙ | ︙ | |||
2452 2453 2454 2455 2456 2457 2458 | sqlite3VdbeSerialGet(zData, t, pDest); /* If we dynamically allocated space to hold the data (in the ** sqlite3VdbeMemFromBtree() call above) then transfer control of that ** dynamically allocated space over to the pDest structure. ** This prevents a memory copy. */ if( sMem.zMalloc ){ assert( sMem.z==sMem.zMalloc ); | | | | 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 | sqlite3VdbeSerialGet(zData, t, pDest); /* If we dynamically allocated space to hold the data (in the ** sqlite3VdbeMemFromBtree() call above) then transfer control of that ** dynamically allocated space over to the pDest structure. ** This prevents a memory copy. */ if( sMem.zMalloc ){ assert( sMem.z==sMem.zMalloc ); assert( VdbeMemDynamic(pDest)==0 ); assert( (pDest->flags & (MEM_Blob|MEM_Str))==0 || pDest->z==sMem.z ); pDest->flags &= ~(MEM_Ephem|MEM_Static); pDest->flags |= MEM_Term; pDest->z = sMem.z; pDest->zMalloc = sMem.zMalloc; } } pDest->enc = encoding; |
︙ | ︙ | |||
2490 2491 2492 2493 2494 2495 2496 | zAffinity = pOp->p4.z; assert( zAffinity!=0 ); assert( zAffinity[pOp->p2]==0 ); pIn1 = &aMem[pOp->p1]; while( (cAff = *(zAffinity++))!=0 ){ assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); assert( memIsValid(pIn1) ); | < | 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 | zAffinity = pOp->p4.z; assert( zAffinity!=0 ); assert( zAffinity[pOp->p2]==0 ); pIn1 = &aMem[pOp->p1]; while( (cAff = *(zAffinity++))!=0 ){ assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); assert( memIsValid(pIn1) ); applyAffinity(pIn1, cAff, encoding); pIn1++; } break; } /* Opcode: MakeRecord P1 P2 P3 P4 * |
︙ | ︙ | |||
2568 2569 2570 2571 2572 2573 2574 | /* Apply the requested affinity to all inputs */ assert( pData0<=pLast ); if( zAffinity ){ pRec = pData0; do{ | | > | | 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 | /* Apply the requested affinity to all inputs */ assert( pData0<=pLast ); if( zAffinity ){ pRec = pData0; do{ applyAffinity(pRec++, *(zAffinity++), encoding); assert( zAffinity[0]==0 || pRec<=pLast ); }while( zAffinity[0] ); } /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ pRec = pLast; do{ |
︙ | ︙ | |||
2636 2637 2638 2639 2640 2641 2642 | j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ }while( (++pRec)<=pLast ); assert( i==nHdr ); assert( j==nByte ); assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); pOut->n = (int)nByte; | | | 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 | j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ }while( (++pRec)<=pLast ); assert( i==nHdr ); assert( j==nByte ); assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); pOut->n = (int)nByte; pOut->flags = MEM_Blob; pOut->xDel = 0; if( nZero ){ pOut->u.nZero = nZero; pOut->flags |= MEM_Zero; } pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ REGISTER_TRACE(pOp->p3, pOut); |
︙ | ︙ | |||
2915 2916 2917 2918 2919 2920 2921 | rc = SQLITE_ERROR; } break; } /* Opcode: Transaction P1 P2 P3 P4 P5 ** | | | > | > < < < < < < < < < < | > > > > > | 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 | rc = SQLITE_ERROR; } break; } /* Opcode: Transaction P1 P2 P3 P4 P5 ** ** Begin a transaction on database P1 if a transaction is not already ** active. ** If P2 is non-zero, then a write-transaction is started, or if a ** read-transaction is already active, it is upgraded to a write-transaction. ** If P2 is zero, then a read-transaction is started. ** ** P1 is the index of the database file on which the transaction is ** started. Index 0 is the main database file and index 1 is the ** file used for temporary tables. Indices of 2 or more are used for ** attached databases. ** ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is ** true (this flag is set if the Vdbe may modify more than one row and may ** throw an ABORT exception), a statement transaction may also be opened. ** More specifically, a statement transaction is opened iff the database ** connection is currently not in autocommit mode, or if there are other ** active statements. A statement transaction allows the changes made by this ** VDBE to be rolled back after an error without having to roll back the ** entire transaction. If no error is encountered, the statement transaction ** will automatically commit when the VDBE halts. ** ** If P5!=0 then this opcode also checks the schema cookie against P3 ** and the schema generation counter against P4. ** The cookie changes its value whenever the database schema changes. ** This operation is used to detect when that the cookie has changed ** and that the current process needs to reread the schema. If the schema ** cookie in P3 differs from the schema cookie in the database header or ** if the schema generation counter in P4 differs from the current ** generation counter, then an SQLITE_SCHEMA error is raised and execution ** halts. The sqlite3_step() wrapper function might then reprepare the ** statement and rerun it from the beginning. */ case OP_Transaction: { Btree *pBt; int iMeta; int iGen; assert( p->bIsReader ); |
︙ | ︙ | |||
3431 3432 3433 3434 3435 3436 3437 | ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than or equal to the key value. If there are no records ** less than or equal to the key and P2 is not zero, then jump to P2. ** ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt */ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 | ** ** Reposition cursor P1 so that it points to the largest entry that ** is less than or equal to the key value. If there are no records ** less than or equal to the key and P2 is not zero, then jump to P2. ** ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt */ case OP_SeekLT: /* jump, in3 */ case OP_SeekLE: /* jump, in3 */ case OP_SeekGE: /* jump, in3 */ case OP_SeekGT: { /* jump, in3 */ int res; int oc; VdbeCursor *pC; UnpackedRecord r; int nField; i64 iKey; /* The rowid we are to seek to */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p2!=0 ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->pseudoTableReg==0 ); assert( OP_SeekLE == OP_SeekLT+1 ); assert( OP_SeekGE == OP_SeekLT+2 ); assert( OP_SeekGT == OP_SeekLT+3 ); assert( pC->isOrdered ); assert( pC->pCursor!=0 ); oc = pOp->opcode; pC->nullRow = 0; if( pC->isTable ){ /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so covert it. */ pIn3 = &aMem[pOp->p3]; applyNumericAffinity(pIn3); iKey = sqlite3VdbeIntValue(pIn3); pC->rowidIsValid = 0; /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (pIn3->flags & MEM_Int)==0 ){ if( (pIn3->flags & MEM_Real)==0 ){ /* If the P3 value cannot be converted into any kind of a number, ** then the seek is not possible, so jump to P2 */ pc = pOp->p2 - 1; VdbeBranchTaken(1,2); break; } /* If the approximation iKey is larger than the actual real search ** term, substitute >= for > and < for <=. e.g. if the search term ** is 4.9 and the integer approximation 5: ** ** (x > 4.9) -> (x >= 5) ** (x <= 4.9) -> (x < 5) */ if( pIn3->r<(double)iKey ){ assert( OP_SeekGE==(OP_SeekGT-1) ); assert( OP_SeekLT==(OP_SeekLE-1) ); assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; } /* If the approximation iKey is smaller than the actual real search ** term, substitute <= for < and > for >=. */ else if( pIn3->r>(double)iKey ){ assert( OP_SeekLE==(OP_SeekLT+1) ); assert( OP_SeekGT==(OP_SeekGE+1) ); assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; } } rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( res==0 ){ pC->rowidIsValid = 1; pC->lastRowid = iKey; } }else{ nField = pOp->p4.i; assert( pOp->p4type==P4_INT32 ); assert( nField>0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)nField; /* The next line of code computes as follows, only faster: ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ ** r.default_rc = -1; ** }else{ ** r.default_rc = +1; ** } */ r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); assert( oc!=OP_SeekGT || r.default_rc==-1 ); assert( oc!=OP_SeekLE || r.default_rc==-1 ); assert( oc!=OP_SeekGE || r.default_rc==+1 ); assert( oc!=OP_SeekLT || r.default_rc==+1 ); r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif ExpandBlob(r.aMem); rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } pC->rowidIsValid = 0; } pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; #ifdef SQLITE_TEST sqlite3_search_count++; #endif if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); if( res<0 || (res==0 && oc==OP_SeekGT) ){ res = 0; rc = sqlite3BtreeNext(pC->pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; pC->rowidIsValid = 0; }else{ res = 0; } }else{ assert( oc==OP_SeekLT || oc==OP_SeekLE ); if( res>0 || (res==0 && oc==OP_SeekLT) ){ res = 0; rc = sqlite3BtreePrevious(pC->pCursor, &res); if( rc!=SQLITE_OK ) goto abort_due_to_error; pC->rowidIsValid = 0; }else{ /* res might be negative because the table is empty. Check to ** see if this is the case. */ res = sqlite3BtreeEof(pC->pCursor); } } assert( pOp->p2>0 ); VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2 - 1; } break; } /* Opcode: Seek P1 P2 * * * |
︙ | ︙ | |||
3679 3680 3681 3682 3683 3684 3685 | for(ii=0; ii<r.nField; ii++){ assert( memIsValid(&r.aMem[ii]) ); ExpandBlob(&r.aMem[ii]); #ifdef SQLITE_DEBUG if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); #endif } | < < > | > > | 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 | for(ii=0; ii<r.nField; ii++){ assert( memIsValid(&r.aMem[ii]) ); ExpandBlob(&r.aMem[ii]); #ifdef SQLITE_DEBUG if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); #endif } pIdxKey = &r; }else{ pIdxKey = sqlite3VdbeAllocUnpackedRecord( pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree ); if( pIdxKey==0 ) goto no_mem; assert( pIn3->flags & MEM_Blob ); assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); } pIdxKey->default_rc = 0; if( pOp->opcode==OP_NoConflict ){ /* For the OP_NoConflict opcode, take the jump if any of the ** input fields are NULL, since any key with a NULL will not ** conflict */ for(ii=0; ii<r.nField; ii++){ if( r.aMem[ii].flags & MEM_Null ){ pc = pOp->p2 - 1; VdbeBranchTaken(1,2); break; } } } rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); if( pOp->p4.i==0 ){ sqlite3DbFree(db, pFree); } if( rc!=SQLITE_OK ){ break; } pC->seekResult = res; alreadyExists = (res==0); pC->nullRow = 1-alreadyExists; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; if( pOp->opcode==OP_Found ){ VdbeBranchTaken(alreadyExists!=0,2); if( alreadyExists ) pc = pOp->p2 - 1; }else{ VdbeBranchTaken(alreadyExists==0,2); if( !alreadyExists ) pc = pOp->p2 - 1; } break; } /* Opcode: NotExists P1 P2 P3 * * ** Synopsis: intkey=r[P3] |
︙ | ︙ | |||
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 | iKey = pIn3->u.i; rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); pC->lastRowid = pIn3->u.i; pC->rowidIsValid = res==0 ?1:0; pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; pC->deferredMoveto = 0; if( res!=0 ){ pc = pOp->p2 - 1; assert( pC->rowidIsValid==0 ); } pC->seekResult = res; break; } | > | 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 | iKey = pIn3->u.i; rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); pC->lastRowid = pIn3->u.i; pC->rowidIsValid = res==0 ?1:0; pC->nullRow = 0; pC->cacheStatus = CACHE_STALE; pC->deferredMoveto = 0; VdbeBranchTaken(res!=0,2); if( res!=0 ){ pc = pOp->p2 - 1; assert( pC->rowidIsValid==0 ); } pC->seekResult = res; break; } |
︙ | ︙ | |||
3840 3841 3842 3843 3844 3845 3846 | ** Others complain about 0x7ffffffffffffffffLL. The following macro seems ** to provide the constant while making all compilers happy. */ # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) #endif if( !pC->useRandomRowid ){ | < < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < | 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 | ** Others complain about 0x7ffffffffffffffffLL. The following macro seems ** to provide the constant while making all compilers happy. */ # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) #endif if( !pC->useRandomRowid ){ rc = sqlite3BtreeLast(pC->pCursor, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( res ){ v = 1; /* IMP: R-61914-48074 */ }else{ assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); rc = sqlite3BtreeKeySize(pC->pCursor, &v); assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ if( v>=MAX_ROWID ){ pC->useRandomRowid = 1; }else{ v++; /* IMP: R-29538-34987 */ } } } #ifndef SQLITE_OMIT_AUTOINCREMENT if( pOp->p3 ){ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3>0 ); if( p->pFrame ){ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=pFrame->nMem ); pMem = &pFrame->aMem[pOp->p3]; }else{ /* Assert that P3 is a valid memory cell. */ assert( pOp->p3<=(p->nMem-p->nCursor) ); pMem = &aMem[pOp->p3]; memAboutToChange(p, pMem); } assert( memIsValid(pMem) ); REGISTER_TRACE(pOp->p3, pMem); sqlite3VdbeMemIntegerify(pMem); assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ rc = SQLITE_FULL; /* IMP: R-12275-61338 */ goto abort_due_to_error; } if( v<pMem->u.i+1 ){ v = pMem->u.i + 1; } pMem->u.i = v; } #endif if( pC->useRandomRowid ){ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the ** largest possible integer (9223372036854775807) then the database ** engine starts picking positive candidate ROWIDs at random until ** it finds one that is not previously used. */ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is ** an AUTOINCREMENT table. */ |
︙ | ︙ | |||
4046 4047 4048 4049 4050 4051 4052 | } seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); if( pData->flags & MEM_Zero ){ nZero = pData->u.nZero; }else{ nZero = 0; } | < | 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 | } seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); if( pData->flags & MEM_Zero ){ nZero = pData->u.nZero; }else{ nZero = 0; } rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, pData->z, pData->n, nZero, (pOp->p5 & OPFLAG_APPEND)!=0, seekResult ); pC->rowidIsValid = 0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; |
︙ | ︙ | |||
4138 4139 4140 4141 4142 4143 4144 | pOp->p3 ); } #endif if( opflags & OPFLAG_ISNOOP ) break; | < | 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 | pOp->p3 ); } #endif if( opflags & OPFLAG_ISNOOP ) break; rc = sqlite3BtreeDelete(pC->pCursor); pC->cacheStatus = CACHE_STALE; /* Update the change-counter and invoke the update-hook if required. */ if( opflags & OPFLAG_NCHANGE ){ p->nChange++; assert( pOp->p4.z ); |
︙ | ︙ | |||
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 | pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); assert( pOp->p4type==P4_INT32 ); pIn3 = &aMem[pOp->p3]; nIgnore = pOp->p4.i; rc = sqlite3VdbeSorterCompare(pC, pIn3, nIgnore, &res); if( res ){ pc = pOp->p2-1; } break; }; /* Opcode: SorterData P1 P2 * * * | > | 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 | pC = p->apCsr[pOp->p1]; assert( isSorter(pC) ); assert( pOp->p4type==P4_INT32 ); pIn3 = &aMem[pOp->p3]; nIgnore = pOp->p4.i; rc = sqlite3VdbeSorterCompare(pC, pIn3, nIgnore, &res); VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2-1; } break; }; /* Opcode: SorterData P1 P2 * * * |
︙ | ︙ | |||
4390 4391 4392 4393 4394 4395 4396 | res = 0; assert( pCrsr!=0 ); rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; pC->rowidIsValid = 0; pC->cacheStatus = CACHE_STALE; | | > | | 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 | res = 0; assert( pCrsr!=0 ); rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; pC->deferredMoveto = 0; pC->rowidIsValid = 0; pC->cacheStatus = CACHE_STALE; if( pOp->p2>0 ){ VdbeBranchTaken(res!=0,2); if( res ) pc = pOp->p2 - 1; } break; } /* Opcode: Sort P1 P2 * * * ** |
︙ | ︙ | |||
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 | rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; pC->rowidIsValid = 0; } pC->nullRow = (u8)res; assert( pOp->p2>0 && pOp->p2<p->nOp ); if( res ){ pc = pOp->p2 - 1; } break; } /* Opcode: Next P1 P2 P3 P4 P5 | > | 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 | rc = sqlite3BtreeFirst(pCrsr, &res); pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; pC->rowidIsValid = 0; } pC->nullRow = (u8)res; assert( pOp->p2>0 && pOp->p2<p->nOp ); VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2 - 1; } break; } /* Opcode: Next P1 P2 P3 P4 P5 |
︙ | ︙ | |||
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 | assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); rc = pOp->p4.xAdvance(pC->pCursor, &res); next_tail: pC->cacheStatus = CACHE_STALE; if( res==0 ){ pC->nullRow = 0; pc = pOp->p2 - 1; p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif | > | 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 | assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); rc = pOp->p4.xAdvance(pC->pCursor, &res); next_tail: pC->cacheStatus = CACHE_STALE; VdbeBranchTaken(res==0,2); if( res==0 ){ pC->nullRow = 0; pc = pOp->p2 - 1; p->aCounter[pOp->p5]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif |
︙ | ︙ | |||
4630 4631 4632 4633 4634 4635 4636 | pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pCrsr = pC->pCursor; assert( pCrsr!=0 ); assert( pOp->p5==0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; | | | 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 | pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pCrsr = pC->pCursor; assert( pCrsr!=0 ); assert( pOp->p5==0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p3; r.default_rc = 0; r.aMem = &aMem[pOp->p2]; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); if( rc==SQLITE_OK && res==0 ){ rc = sqlite3BtreeDelete(pCrsr); |
︙ | ︙ | |||
4684 4685 4686 4687 4688 4689 4690 | break; } /* Opcode: IdxGE P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index | | | > > > > > > > > > | < < | | | > > > > > > > > > | | > > | | | > > | > > | | > | 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 | break; } /* Opcode: IdxGE P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY. Compare this key value against the index ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID ** fields at the end. ** ** If the P1 index entry is greater than or equal to the key value ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxGT P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY. Compare this key value against the index ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID ** fields at the end. ** ** If the P1 index entry is greater than the key value ** then jump to P2. Otherwise fall through to the next instruction. */ /* Opcode: IdxLT P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY or ROWID. Compare this key value against ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or ** ROWID on the P1 index. ** ** If the P1 index entry is less than the key value then jump to P2. ** Otherwise fall through to the next instruction. */ /* Opcode: IdxLE P1 P2 P3 P4 P5 ** Synopsis: key=r[P3@P4] ** ** The P4 register values beginning with P3 form an unpacked index ** key that omits the PRIMARY KEY or ROWID. Compare this key value against ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or ** ROWID on the P1 index. ** ** If the P1 index entry is less than or equal to the key value then jump ** to P2. Otherwise fall through to the next instruction. */ case OP_IdxLE: /* jump */ case OP_IdxGT: /* jump */ case OP_IdxLT: /* jump */ case OP_IdxGE: { /* jump */ VdbeCursor *pC; int res; UnpackedRecord r; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->isOrdered ); assert( pC->pCursor!=0); assert( pC->deferredMoveto==0 ); assert( pOp->p5==0 || pOp->p5==1 ); assert( pOp->p4type==P4_INT32 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; if( pOp->opcode<OP_IdxLT ){ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); r.default_rc = -1; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); r.default_rc = 0; } r.aMem = &aMem[pOp->p3]; #ifdef SQLITE_DEBUG { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } #endif res = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); if( (pOp->opcode&1)==(OP_IdxLT&1) ){ assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); res = -res; }else{ assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); res++; } VdbeBranchTaken(res>0,2); if( res>0 ){ pc = pOp->p2 - 1 ; } break; } /* Opcode: Destroy P1 P2 P3 * * |
︙ | ︙ | |||
4833 4834 4835 4836 4837 4838 4839 | ** See also: Destroy */ case OP_Clear: { int nChange; nChange = 0; assert( p->readOnly==0 ); | < | 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 | ** See also: Destroy */ case OP_Clear: { int nChange; nChange = 0; assert( p->readOnly==0 ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) ); if( pOp->p3 ){ p->nChange += nChange; if( pOp->p3>0 ){ |
︙ | ︙ | |||
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 | pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_RowSet)==0 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(pIn1); pc = pOp->p2 - 1; }else{ /* A value was pulled from the index */ sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); } goto check_for_interrupt; } /* Opcode: RowSetTest P1 P2 P3 P4 ** Synopsis: if r[P3] in rowset(P1) goto P2 ** | > > | 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 | pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_RowSet)==0 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(pIn1); pc = pOp->p2 - 1; VdbeBranchTaken(1,2); }else{ /* A value was pulled from the index */ sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); VdbeBranchTaken(0,2); } goto check_for_interrupt; } /* Opcode: RowSetTest P1 P2 P3 P4 ** Synopsis: if r[P3] in rowset(P1) goto P2 ** |
︙ | ︙ | |||
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 | assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest(pIn1->u.pRowSet, (u8)(iSet>=0 ? iSet & 0xf : 0xff), pIn3->u.i); if( exists ){ pc = pOp->p2 - 1; break; } } if( iSet>=0 ){ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); | > | 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 | assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest(pIn1->u.pRowSet, (u8)(iSet>=0 ? iSet & 0xf : 0xff), pIn3->u.i); VdbeBranchTaken(exists!=0,2); if( exists ){ pc = pOp->p2 - 1; break; } } if( iSet>=0 ){ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); |
︙ | ︙ | |||
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 | ** If P1 is non-zero, then the jump is taken if the database constraint-counter ** is zero (the one that counts deferred constraint violations). If P1 is ** zero, the jump is taken if the statement constraint-counter is zero ** (immediate foreign key constraint violations). */ case OP_FkIfZero: { /* jump */ if( pOp->p1 ){ if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; }else{ if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; } break; } #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ #ifndef SQLITE_OMIT_AUTOINCREMENT | > > | 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 | ** If P1 is non-zero, then the jump is taken if the database constraint-counter ** is zero (the one that counts deferred constraint violations). If P1 is ** zero, the jump is taken if the statement constraint-counter is zero ** (immediate foreign key constraint violations). */ case OP_FkIfZero: { /* jump */ if( pOp->p1 ){ VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; }else{ VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; } break; } #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ #ifndef SQLITE_OMIT_AUTOINCREMENT |
︙ | ︙ | |||
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 | ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); if( pIn1->u.i>0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfNeg P1 P2 * * * ** Synopsis: if r[P1]<0 goto P2 ** ** If the value of register P1 is less than zero, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfNeg: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); if( pIn1->u.i<0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfZero P1 P2 P3 * * ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 ** ** The register P1 must contain an integer. Add literal P3 to the ** value in register P1. If the result is exactly 0, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); pIn1->u.i += pOp->p3; if( pIn1->u.i==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggStep * P2 P3 P4 P5 | > > > | 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 | ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken( pIn1->u.i>0, 2); if( pIn1->u.i>0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfNeg P1 P2 * * * ** Synopsis: if r[P1]<0 goto P2 ** ** If the value of register P1 is less than zero, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfNeg: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i<0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfZero P1 P2 P3 * * ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 ** ** The register P1 must contain an integer. Add literal P3 to the ** value in register P1. If the result is exactly 0, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); pIn1->u.i += pOp->p3; VdbeBranchTaken(pIn1->u.i==0, 2); if( pIn1->u.i==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggStep * P2 P3 P4 P5 |
︙ | ︙ | |||
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 | Btree *pBt; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(pBt); if( rc==SQLITE_DONE ){ pc = pOp->p2 - 1; rc = SQLITE_OK; } break; } #endif | > | 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 | Btree *pBt; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(pBt); VdbeBranchTaken(rc==SQLITE_DONE,2); if( rc==SQLITE_DONE ){ pc = pOp->p2 - 1; rc = SQLITE_OK; } break; } #endif |
︙ | ︙ | |||
5911 5912 5913 5914 5915 5916 5917 | p->inVtabMethod = 1; rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); p->inVtabMethod = 0; sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pVtabCursor); } | | | 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 | p->inVtabMethod = 1; rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); p->inVtabMethod = 0; sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pVtabCursor); } VdbeBranchTaken(res!=0,2); if( res ){ pc = pOp->p2 - 1; } } pCur->nullRow = 0; break; |
︙ | ︙ | |||
6016 6017 6018 6019 6020 6021 6022 | p->inVtabMethod = 1; rc = pModule->xNext(pCur->pVtabCursor); p->inVtabMethod = 0; sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pCur->pVtabCursor); } | | | 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 | p->inVtabMethod = 1; rc = pModule->xNext(pCur->pVtabCursor); p->inVtabMethod = 0; sqlite3VtabImportErrmsg(p, pVtab); if( rc==SQLITE_OK ){ res = pModule->xEof(pCur->pVtabCursor); } VdbeBranchTaken(!res,2); if( !res ){ /* If there is data, jump to P2 */ pc = pOp->p2 - 1; } goto check_for_interrupt; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
︙ | ︙ | |||
6250 6251 6252 6253 6254 6255 6256 | } #ifdef VDBE_PROFILE { u64 elapsed = sqlite3Hwtime() - start; pOp->cycles += elapsed; pOp->cnt++; | < < < < | 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 | } #ifdef VDBE_PROFILE { u64 elapsed = sqlite3Hwtime() - start; pOp->cycles += elapsed; pOp->cnt++; } #endif /* The following code adds nothing to the actual functionality ** of the program. It is only here for testing and debugging. ** On the other hand, it does burn CPU cycles every time through ** the evaluator loop. So we can leave it out when NDEBUG is defined. |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
62 63 64 65 66 67 68 | Table *pTab; /* Used when p4type is P4_TABLE */ int (*xAdvance)(BtCursor *, int *); } p4; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS char *zComment; /* Comment to improve readability */ #endif #ifdef VDBE_PROFILE | | > > > | 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | Table *pTab; /* Used when p4type is P4_TABLE */ int (*xAdvance)(BtCursor *, int *); } p4; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS char *zComment; /* Comment to improve readability */ #endif #ifdef VDBE_PROFILE u32 cnt; /* Number of times this instruction was executed */ u64 cycles; /* Total time spent executing this instruction */ #endif #ifdef SQLITE_VDBE_COVERAGE int iSrcLine; /* Source-code line that generated this opcode */ #endif }; typedef struct VdbeOp VdbeOp; /* ** A sub-routine used to implement a trigger program. */ |
︙ | ︙ | |||
165 166 167 168 169 170 171 | Vdbe *sqlite3VdbeCreate(Parse*); int sqlite3VdbeAddOp0(Vdbe*,int); int sqlite3VdbeAddOp1(Vdbe*,int,int); int sqlite3VdbeAddOp2(Vdbe*,int,int,int); int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int); | | | 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | Vdbe *sqlite3VdbeCreate(Parse*); int sqlite3VdbeAddOp0(Vdbe*,int); int sqlite3VdbeAddOp1(Vdbe*,int,int); int sqlite3VdbeAddOp2(Vdbe*,int,int,int); int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int); int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp, int iLineno); void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*); void sqlite3VdbeChangeP1(Vdbe*, u32 addr, int P1); void sqlite3VdbeChangeP2(Vdbe*, u32 addr, int P2); void sqlite3VdbeChangeP3(Vdbe*, u32 addr, int P3); void sqlite3VdbeChangeP5(Vdbe*, u8 P5); void sqlite3VdbeJumpHere(Vdbe*, int addr); void sqlite3VdbeChangeToNoop(Vdbe*, int addr); |
︙ | ︙ | |||
206 207 208 209 210 211 212 | sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8); void sqlite3VdbeSetVarmask(Vdbe*, int); #ifndef SQLITE_OMIT_TRACE char *sqlite3VdbeExpandSql(Vdbe*, const char*); #endif void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); | | > > > | 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8); void sqlite3VdbeSetVarmask(Vdbe*, int); #ifndef SQLITE_OMIT_TRACE char *sqlite3VdbeExpandSql(Vdbe*, const char*); #endif void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); int sqlite3VdbeRecordCompare(int,const void*,const UnpackedRecord*,int); UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **); typedef int (*RecordCompare)(int,const void*,const UnpackedRecord*,int); RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*); #ifndef SQLITE_OMIT_TRIGGER void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *); #endif /* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on ** each VDBE opcode. |
︙ | ︙ | |||
236 237 238 239 240 241 242 243 | # endif #else # define VdbeComment(X) # define VdbeNoopComment(X) # define VdbeModuleComment(X) #endif #endif | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | # endif #else # define VdbeComment(X) # define VdbeNoopComment(X) # define VdbeModuleComment(X) #endif /* ** The VdbeCoverage macros are used to set a coverage testing point ** for VDBE branch instructions. The coverage testing points are line ** numbers in the sqlite3.c source file. VDBE branch coverage testing ** only works with an amalagmation build. That's ok since a VDBE branch ** coverage build designed for testing the test suite only. No application ** should ever ship with VDBE branch coverage measuring turned on. ** ** VdbeCoverage(v) // Mark the previously coded instruction ** // as a branch ** ** VdbeCoverageIf(v, conditional) // Mark previous if conditional true ** ** VdbeCoverageAlwaysTaken(v) // Previous branch is always taken ** ** VdbeCoverageNeverTaken(v) // Previous branch is never taken ** ** Every VDBE branch operation must be tagged with one of the macros above. ** If not, then when "make test" is run with -DSQLITE_VDBE_COVERAGE and ** -DSQLITE_DEBUG then an ALWAYS() will fail in the vdbeTakeBranch() ** routine in vdbe.c, alerting the developer to the missed tag. */ #ifdef SQLITE_VDBE_COVERAGE void sqlite3VdbeSetLineNumber(Vdbe*,int); # define VdbeCoverage(v) sqlite3VdbeSetLineNumber(v,__LINE__) # define VdbeCoverageIf(v,x) if(x)sqlite3VdbeSetLineNumber(v,__LINE__) # define VdbeCoverageAlwaysTaken(v) sqlite3VdbeSetLineNumber(v,2); # define VdbeCoverageNeverTaken(v) sqlite3VdbeSetLineNumber(v,1); #else # define VdbeCoverage(v) # define VdbeCoverageIf(v,x) # define VdbeCoverageAlwaysTaken(v) # define VdbeCoverageNeverTaken(v) #endif #endif |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
204 205 206 207 208 209 210 | /* Whenever Mem contains a valid string or blob representation, one of ** the following flags must be set to determine the memory management ** policy for Mem.z. The MEM_Term flag tells us whether or not the ** string is \000 or \u0000 terminated */ #define MEM_Term 0x0200 /* String rep is nul terminated */ | | | 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | /* Whenever Mem contains a valid string or blob representation, one of ** the following flags must be set to determine the memory management ** policy for Mem.z. The MEM_Term flag tells us whether or not the ** string is \000 or \u0000 terminated */ #define MEM_Term 0x0200 /* String rep is nul terminated */ #define MEM_Dyn 0x0400 /* Need to call Mem.xDel() on Mem.z */ #define MEM_Static 0x0800 /* Mem.z points to a static string */ #define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */ #define MEM_Agg 0x2000 /* Mem.z points to an agg function context */ #define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */ #ifdef SQLITE_OMIT_INCRBLOB #undef MEM_Zero #define MEM_Zero 0x0000 |
︙ | ︙ | |||
406 407 408 409 410 411 412 | u32 sqlite3VdbeSerialTypeLen(u32); u32 sqlite3VdbeSerialType(Mem*, int); u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32); u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); void sqlite3VdbeDeleteAuxData(Vdbe*, int, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); | | | 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | u32 sqlite3VdbeSerialTypeLen(u32); u32 sqlite3VdbeSerialType(Mem*, int); u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32); u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); void sqlite3VdbeDeleteAuxData(Vdbe*, int, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); int sqlite3VdbeIdxKeyCompare(VdbeCursor*,const UnpackedRecord*,int*); int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *); int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); int sqlite3VdbeExec(Vdbe*); int sqlite3VdbeList(Vdbe*); int sqlite3VdbeHalt(Vdbe*); int sqlite3VdbeChangeEncoding(Mem *, int); int sqlite3VdbeMemTooBig(Mem*); |
︙ | ︙ | |||
473 474 475 476 477 478 479 480 481 482 483 484 485 486 | #else # define sqlite3VdbeEnter(X) # define sqlite3VdbeLeave(X) #endif #ifdef SQLITE_DEBUG void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*); #endif #ifndef SQLITE_OMIT_FOREIGN_KEY int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif | > | 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 | #else # define sqlite3VdbeEnter(X) # define sqlite3VdbeLeave(X) #endif #ifdef SQLITE_DEBUG void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*); int sqlite3VdbeCheckMemInvariants(Mem*); #endif #ifndef SQLITE_OMIT_FOREIGN_KEY int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
171 172 173 174 175 176 177 178 179 180 181 182 183 184 | test_addop_breakpoint(); } #endif #ifdef VDBE_PROFILE pOp->cycles = 0; pOp->cnt = 0; #endif return i; } int sqlite3VdbeAddOp0(Vdbe *p, int op){ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); } int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ return sqlite3VdbeAddOp3(p, op, p1, 0, 0); | > > > | 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | test_addop_breakpoint(); } #endif #ifdef VDBE_PROFILE pOp->cycles = 0; pOp->cnt = 0; #endif #ifdef SQLITE_VDBE_COVERAGE pOp->iSrcLine = 0; #endif return i; } int sqlite3VdbeAddOp0(Vdbe *p, int op){ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); } int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ return sqlite3VdbeAddOp3(p, op, p1, 0, 0); |
︙ | ︙ | |||
532 533 534 535 536 537 538 | return aOp; } /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ | | | 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 | return aOp; } /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){ int addr; assert( p->magic==VDBE_MAGIC_INIT ); if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p) ){ return 0; } addr = p->nOp; if( ALWAYS(nOp>0) ){ |
︙ | ︙ | |||
559 560 561 562 563 564 565 566 567 568 569 570 571 572 | } pOut->p3 = pIn->p3; pOut->p4type = P4_NOTUSED; pOut->p4.p = 0; pOut->p5 = 0; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOut->zComment = 0; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); } #endif } | > > > > > | 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | } pOut->p3 = pIn->p3; pOut->p4type = P4_NOTUSED; pOut->p4.p = 0; pOut->p5 = 0; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS pOut->zComment = 0; #endif #ifdef SQLITE_VDBE_COVERAGE pOut->iSrcLine = iLineno+i; #else (void)iLineno; #endif #ifdef SQLITE_DEBUG if( p->db->flags & SQLITE_VdbeAddopTrace ){ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); } #endif } |
︙ | ︙ | |||
848 849 850 851 852 853 854 855 856 857 858 859 860 861 | va_start(ap, zFormat); vdbeVComment(p, zFormat, ap); va_end(ap); } } #endif /* NDEBUG */ /* ** Return the opcode for a given address. If the address is -1, then ** return the most recently inserted opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. | > > > > > > > > > | 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 | va_start(ap, zFormat); vdbeVComment(p, zFormat, ap); va_end(ap); } } #endif /* NDEBUG */ #ifdef SQLITE_VDBE_COVERAGE /* ** Set the value if the iSrcLine field for the previously coded instruction. */ void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; } #endif /* SQLITE_VDBE_COVERAGE */ /* ** Return the opcode for a given address. If the address is -1, then ** return the most recently inserted opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. |
︙ | ︙ | |||
1171 1172 1173 1174 1175 1176 1177 | char zCom[100]; static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; if( pOut==0 ) pOut = stdout; zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS displayComment(pOp, zP4, zCom, sizeof(zCom)); #else | | | 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 | char zCom[100]; static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; if( pOut==0 ) pOut = stdout; zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS displayComment(pOp, zP4, zCom, sizeof(zCom)); #else zCom[0] = 0; #endif /* NB: The sqlite3OpcodeName() function is implemented by code created ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the ** information from the vdbe.c source text */ fprintf(pOut, zFormat1, pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, zCom |
︙ | ︙ | |||
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 | for(pEnd=&p[N]; p<pEnd; p++){ sqlite3DbFree(db, p->zMalloc); } return; } for(pEnd=&p[N]; p<pEnd; p++){ assert( (&p[1])==pEnd || p[0].db==p[1].db ); /* This block is really an inlined version of sqlite3VdbeMemRelease() ** that takes advantage of the fact that the memory cell value is ** being set to NULL after releasing any dynamic resources. ** ** The justification for duplicating code is that according to ** callgrind, this causes a certain test case to hit the CPU 4.7 | > | 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 | for(pEnd=&p[N]; p<pEnd; p++){ sqlite3DbFree(db, p->zMalloc); } return; } for(pEnd=&p[N]; p<pEnd; p++){ assert( (&p[1])==pEnd || p[0].db==p[1].db ); assert( sqlite3VdbeCheckMemInvariants(p) ); /* This block is really an inlined version of sqlite3VdbeMemRelease() ** that takes advantage of the fact that the memory cell value is ** being set to NULL after releasing any dynamic resources. ** ** The justification for duplicating code is that according to ** callgrind, this causes a certain test case to hit the CPU 4.7 |
︙ | ︙ | |||
1393 1394 1395 1396 1397 1398 1399 | pMem->memType = MEM_Int; pMem++; if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ assert( p->db->mallocFailed ); return SQLITE_ERROR; } | | | | | 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 | pMem->memType = MEM_Int; pMem++; if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ assert( p->db->mallocFailed ); return SQLITE_ERROR; } pMem->flags = MEM_Str|MEM_Term; zP4 = displayP4(pOp, pMem->z, 32); if( zP4!=pMem->z ){ sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); }else{ assert( pMem->z!=0 ); pMem->n = sqlite3Strlen30(pMem->z); pMem->enc = SQLITE_UTF8; } pMem->memType = MEM_Str; pMem++; if( p->explain==1 ){ if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ assert( p->db->mallocFailed ); return SQLITE_ERROR; } pMem->flags = MEM_Str|MEM_Term; pMem->n = 2; sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ pMem->memType = MEM_Str; pMem->enc = SQLITE_UTF8; pMem++; #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS if( sqlite3VdbeMemGrow(pMem, 500, 0) ){ assert( p->db->mallocFailed ); return SQLITE_ERROR; } pMem->flags = MEM_Str|MEM_Term; pMem->n = displayComment(pOp, zP4, pMem->z, 500); pMem->memType = MEM_Str; pMem->enc = SQLITE_UTF8; #else pMem->flags = MEM_Null; /* Comment */ pMem->memType = MEM_Null; #endif |
︙ | ︙ | |||
2549 2550 2551 2552 2553 2554 2555 2556 | if( out ){ int i; fprintf(out, "---- "); for(i=0; i<p->nOp; i++){ fprintf(out, "%02x", p->aOp[i].opcode); } fprintf(out, "\n"); for(i=0; i<p->nOp; i++){ | > > > > > > > > > > > | > | 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 | if( out ){ int i; fprintf(out, "---- "); for(i=0; i<p->nOp; i++){ fprintf(out, "%02x", p->aOp[i].opcode); } fprintf(out, "\n"); if( p->zSql ){ char c, pc = 0; fprintf(out, "-- "); for(i=0; (c = p->zSql[i])!=0; i++){ if( pc=='\n' ) fprintf(out, "-- "); putc(c, out); pc = c; } if( pc!='\n' ) fprintf(out, "\n"); } for(i=0; i<p->nOp; i++){ char zHdr[100]; sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", p->aOp[i].cnt, p->aOp[i].cycles, p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 ); fprintf(out, "%s", zHdr); sqlite3VdbePrintOp(out, i, &p->aOp[i]); } fclose(out); } } #endif p->iCurrentTime = 0; |
︙ | ︙ | |||
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 | return len; } /* NULL or constants 0 or 1 */ return 0; } /* ** Deserialize the data blob pointed to by buf as serial type serial_type ** and store the result in pMem. Return the number of bytes read. */ u32 sqlite3VdbeSerialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ u64 x; u32 y; | > > > > > > > > < | < | < | | < < < | | | | 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 | return len; } /* NULL or constants 0 or 1 */ return 0; } /* Input "x" is a sequence of unsigned characters that represent a ** big-endian integer. Return the equivalent native integer */ #define ONE_BYTE_INT(x) ((i8)(x)[0]) #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) /* ** Deserialize the data blob pointed to by buf as serial type serial_type ** and store the result in pMem. Return the number of bytes read. */ u32 sqlite3VdbeSerialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ u64 x; u32 y; switch( serial_type ){ case 10: /* Reserved for future use */ case 11: /* Reserved for future use */ case 0: { /* NULL */ pMem->flags = MEM_Null; break; } case 1: { /* 1-byte signed integer */ pMem->u.i = ONE_BYTE_INT(buf); pMem->flags = MEM_Int; return 1; } case 2: { /* 2-byte signed integer */ pMem->u.i = TWO_BYTE_INT(buf); pMem->flags = MEM_Int; return 2; } case 3: { /* 3-byte signed integer */ pMem->u.i = THREE_BYTE_INT(buf); pMem->flags = MEM_Int; return 3; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(buf); pMem->u.i = (i64)*(int*)&y; pMem->flags = MEM_Int; return 4; } case 5: { /* 6-byte signed integer */ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); pMem->flags = MEM_Int; return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ static const u64 t1 = ((u64)0x3ff00000)<<32; static const double r1 = 1.0; u64 t2 = t1; swapMixedEndianFloat(t2); assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); #endif x = FOUR_BYTE_UINT(buf); y = FOUR_BYTE_UINT(buf+4); x = (x<<32) | y; if( serial_type==6 ){ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; }else{ assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); swapMixedEndianFloat(x); |
︙ | ︙ | |||
3070 3071 3072 3073 3074 3075 3076 | const unsigned char *aKey = (const unsigned char *)pKey; int d; u32 idx; /* Offset in aKey[] to read from */ u16 u; /* Unsigned loop counter */ u32 szHdr; Mem *pMem = p->aMem; | | | 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 | const unsigned char *aKey = (const unsigned char *)pKey; int d; u32 idx; /* Offset in aKey[] to read from */ u16 u; /* Unsigned loop counter */ u32 szHdr; Mem *pMem = p->aMem; p->default_rc = 0; assert( EIGHT_BYTE_ALIGNMENT(pMem) ); idx = getVarint32(aKey, szHdr); d = szHdr; u = 0; while( idx<szHdr && u<p->nField && d<=nKey ){ u32 serial_type; |
︙ | ︙ | |||
3092 3093 3094 3095 3096 3097 3098 3099 | pMem++; u++; } assert( u<=pKeyInfo->nField + 1 ); p->nField = u; } /* | > | < | | | | | < < < < < < < < | | | 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 | pMem++; u++; } assert( u<=pKeyInfo->nField + 1 ); p->nField = u; } #if SQLITE_DEBUG /* ** This function compares two index or table record keys in the same way ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), ** this function deserializes and compares values using the ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used ** in assert() statements to ensure that the optimized code in ** sqlite3VdbeRecordCompare() returns results with these two primitives. */ static int vdbeRecordCompareDebug( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2 /* Right key */ ){ u32 d1; /* Offset into aKey[] of next data element */ u32 idx1; /* Offset into aKey[] of next header element */ u32 szHdr1; /* Number of bytes in header */ int i = 0; int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; |
︙ | ︙ | |||
3185 3186 3187 3188 3189 3190 3191 | /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one of the keys ran out of fields and | | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > | > > > > | > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > | | > | > > > | > > > > > | > > > > > > | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 | /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one of the keys ran out of fields and ** all the fields up to that point were equal. Return the the default_rc ** value. */ return pPKey2->default_rc; } #endif /* ** Both *pMem1 and *pMem2 contain string values. Compare the two values ** using the collation sequence pColl. As usual, return a negative , zero ** or positive value if *pMem1 is less than, equal to or greater than ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". */ static int vdbeCompareMemString( const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl ){ if( pMem1->enc==pColl->enc ){ /* The strings are already in the correct encoding. Call the ** comparison function directly */ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); }else{ int rc; const void *v1, *v2; int n1, n2; Mem c1; Mem c2; memset(&c1, 0, sizeof(c1)); memset(&c2, 0, sizeof(c2)); sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); n1 = v1==0 ? 0 : c1.n; v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); n2 = v2==0 ? 0 : c2.n; rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); sqlite3VdbeMemRelease(&c1); sqlite3VdbeMemRelease(&c2); return rc; } } /* ** Compare the values contained by the two memory cells, returning ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers ** and reals) sorted numerically, followed by text ordered by the collating ** sequence pColl and finally blob's ordered by memcmp(). ** ** Two NULL values are considered equal by this function. */ int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ int rc; int f1, f2; int combined_flags; f1 = pMem1->flags; f2 = pMem2->flags; combined_flags = f1|f2; assert( (combined_flags & MEM_RowSet)==0 ); /* If one value is NULL, it is less than the other. If both values ** are NULL, return 0. */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* If one value is a number and the other is not, the number is less. ** If both are numbers, compare as reals if one is a real, or as integers ** if both values are integers. */ if( combined_flags&(MEM_Int|MEM_Real) ){ double r1, r2; if( (f1 & f2 & MEM_Int)!=0 ){ if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return 1; return 0; } if( (f1&MEM_Real)!=0 ){ r1 = pMem1->r; }else if( (f1&MEM_Int)!=0 ){ r1 = (double)pMem1->u.i; }else{ return 1; } if( (f2&MEM_Real)!=0 ){ r2 = pMem2->r; }else if( (f2&MEM_Int)!=0 ){ r2 = (double)pMem2->u.i; }else{ return -1; } if( r1<r2 ) return -1; if( r1>r2 ) return 1; return 0; } /* If one value is a string and the other is a blob, the string is less. ** If both are strings, compare using the collating functions. */ if( combined_flags&MEM_Str ){ if( (f1 & MEM_Str)==0 ){ return 1; } if( (f2 & MEM_Str)==0 ){ return -1; } assert( pMem1->enc==pMem2->enc ); assert( pMem1->enc==SQLITE_UTF8 || pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); /* The collation sequence must be defined at this point, even if ** the user deletes the collation sequence after the vdbe program is ** compiled (this was not always the case). */ assert( !pColl || pColl->xCmp ); if( pColl ){ return vdbeCompareMemString(pMem1, pMem2, pColl); } /* If a NULL pointer was passed as the collate function, fall through ** to the blob case and use memcmp(). */ } /* Both values must be blobs. Compare using memcmp(). */ rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); if( rc==0 ){ rc = pMem1->n - pMem2->n; } return rc; } /* ** The first argument passed to this function is a serial-type that ** corresponds to an integer - all values between 1 and 9 inclusive ** except 7. The second points to a buffer containing an integer value ** serialized according to serial_type. This function deserializes ** and returns the value. */ static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ u32 y; assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); switch( serial_type ){ case 0: case 1: return ONE_BYTE_INT(aKey); case 2: return TWO_BYTE_INT(aKey); case 3: return THREE_BYTE_INT(aKey); case 4: { y = FOUR_BYTE_UINT(aKey); return (i64)*(int*)&y; } case 5: { return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); } case 6: { u64 x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); return (i64)*(i64*)&x; } } return (serial_type - 8); } /* ** This function compares the two table rows or index records ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero ** or positive integer if key1 is less than, equal to or ** greater than key2. The {nKey1, pKey1} key must be a blob ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 ** key must be a parsed key such as obtained from ** sqlite3VdbeParseRecord. ** ** If argument bSkip is non-zero, it is assumed that the caller has already ** determined that the first fields of the keys are equal. ** ** Key1 and Key2 do not have to contain the same number of fields. If all ** fields that appear in both keys are equal, then pPKey2->default_rc is ** returned. */ int sqlite3VdbeRecordCompare( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2, /* Right key */ int bSkip /* If true, skip the first field */ ){ u32 d1; /* Offset into aKey[] of next data element */ int i; /* Index of next field to compare */ u32 szHdr1; /* Size of record header in bytes */ u32 idx1; /* Offset of first type in header */ int rc = 0; /* Return value */ Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ KeyInfo *pKeyInfo = pPKey2->pKeyInfo; const unsigned char *aKey1 = (const unsigned char *)pKey1; Mem mem1; /* If bSkip is true, then the caller has already determined that the first ** two elements in the keys are equal. Fix the various stack variables so ** that this routine begins comparing at the second field. */ if( bSkip ){ u32 s1; idx1 = 1 + getVarint32(&aKey1[1], s1); szHdr1 = aKey1[0]; d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); i = 1; pRhs++; }else{ idx1 = getVarint32(aKey1, szHdr1); d1 = szHdr1; i = 0; } VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); assert( pPKey2->pKeyInfo->aSortOrder!=0 ); assert( pPKey2->pKeyInfo->nField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & MEM_Int ){ serial_type = aKey1[idx1]; if( serial_type>=12 ){ rc = +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ double rhs = (double)pRhs->u.i; sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); if( mem1.r<rhs ){ rc = -1; }else if( mem1.r>rhs ){ rc = +1; } }else{ i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); i64 rhs = pRhs->u.i; if( lhs<rhs ){ rc = -1; }else if( lhs>rhs ){ rc = +1; } } } /* RHS is real */ else if( pRhs->flags & MEM_Real ){ serial_type = aKey1[idx1]; if( serial_type>=12 ){ rc = +1; }else if( serial_type==0 ){ rc = -1; }else{ double rhs = pRhs->r; double lhs; sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); if( serial_type==7 ){ lhs = mem1.r; }else{ lhs = (double)mem1.u.i; } if( lhs<rhs ){ rc = -1; }else if( lhs>rhs ){ rc = +1; } } } /* RHS is a string */ else if( pRhs->flags & MEM_Str ){ getVarint32(&aKey1[idx1], serial_type); if( serial_type<12 ){ rc = -1; }else if( !(serial_type & 0x01) ){ rc = +1; }else{ mem1.n = (serial_type - 12) / 2; if( (d1+mem1.n) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else if( pKeyInfo->aColl[i] ){ mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = MEM_Str; mem1.z = (char*)&aKey1[d1]; rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]); }else{ int nCmp = MIN(mem1.n, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = mem1.n - pRhs->n; } } } /* RHS is a blob */ else if( pRhs->flags & MEM_Blob ){ getVarint32(&aKey1[idx1], serial_type); if( serial_type<12 || (serial_type & 0x01) ){ rc = -1; }else{ int nStr = (serial_type - 12) / 2; if( (d1+nStr) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else{ int nCmp = MIN(nStr, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = nStr - pRhs->n; } } } /* RHS is null */ else{ serial_type = aKey1[idx1]; rc = (serial_type!=0); } if( rc!=0 ){ if( pKeyInfo->aSortOrder[i] ){ rc = -rc; } assert( CORRUPT_DB || (rc<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0) || (rc>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0) ); assert( mem1.zMalloc==0 ); /* See comment below */ return rc; } i++; pRhs++; d1 += sqlite3VdbeSerialTypeLen(serial_type); idx1 += sqlite3VarintLen(serial_type); }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one or both of the keys ran out of fields and ** all the fields up to that point were equal. Return the the default_rc ** value. */ assert( CORRUPT_DB || pPKey2->default_rc==vdbeRecordCompareDebug(nKey1, pKey1, pPKey2) ); return pPKey2->default_rc; } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is an integer, and (b) the ** size-of-header varint at the start of (pKey1/nKey1) fits in a single ** byte (i.e. is less than 128). */ static int vdbeRecordCompareInt( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2, /* Right key */ int bSkip /* Ignored */ ){ const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; int serial_type = ((const u8*)pKey1)[1]; int res; u32 y; u64 x; i64 v = pPKey2->aMem[0].u.i; i64 lhs; UNUSED_PARAMETER(bSkip); assert( bSkip==0 ); switch( serial_type ){ case 1: { /* 1-byte signed integer */ lhs = ONE_BYTE_INT(aKey); break; } case 2: { /* 2-byte signed integer */ lhs = TWO_BYTE_INT(aKey); break; } case 3: { /* 3-byte signed integer */ lhs = THREE_BYTE_INT(aKey); break; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(aKey); lhs = (i64)*(int*)&y; break; } case 5: { /* 6-byte signed integer */ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); break; } case 6: { /* 8-byte signed integer */ x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); lhs = *(i64*)&x; break; } case 8: lhs = 0; break; case 9: lhs = 1; break; /* This case could be removed without changing the results of running ** this code. Including it causes gcc to generate a faster switch ** statement (since the range of switch targets now starts at zero and ** is contiguous) but does not cause any duplicate code to be generated ** (as gcc is clever enough to combine the two like cases). Other ** compilers might be similar. */ case 0: case 7: return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0); default: return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0); } if( v>lhs ){ res = pPKey2->r1; }else if( v<lhs ){ res = pPKey2->r2; }else if( pPKey2->nField>1 ){ /* The first fields of the two keys are equal. Compare the trailing ** fields. */ res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1); }else{ /* The first fields of the two keys are equal and there are no trailing ** fields. Return pPKey2->default_rc in this case. */ res = pPKey2->default_rc; } assert( (res==0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)==0) || (res<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0) || (res>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0) || CORRUPT_DB ); return res; } /* ** This function is an optimized version of sqlite3VdbeRecordCompare() ** that (a) the first field of pPKey2 is a string, that (b) the first field ** uses the collation sequence BINARY and (c) that the size-of-header varint ** at the start of (pKey1/nKey1) fits in a single byte. */ static int vdbeRecordCompareString( int nKey1, const void *pKey1, /* Left key */ const UnpackedRecord *pPKey2, /* Right key */ int bSkip ){ const u8 *aKey1 = (const u8*)pKey1; int serial_type; int res; UNUSED_PARAMETER(bSkip); assert( bSkip==0 ); getVarint32(&aKey1[1], serial_type); if( serial_type<12 ){ res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ }else if( !(serial_type & 0x01) ){ res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ }else{ int nCmp; int nStr; int szHdr = aKey1[0]; nStr = (serial_type-12) / 2; if( (szHdr + nStr) > nKey1 ) return 0; /* Corruption */ nCmp = MIN( pPKey2->aMem[0].n, nStr ); res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); if( res==0 ){ res = nStr - pPKey2->aMem[0].n; if( res==0 ){ if( pPKey2->nField>1 ){ res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1); }else{ res = pPKey2->default_rc; } }else if( res>0 ){ res = pPKey2->r2; }else{ res = pPKey2->r1; } }else if( res>0 ){ res = pPKey2->r2; }else{ res = pPKey2->r1; } } assert( (res==0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)==0) || (res<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0) || (res>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0) || CORRUPT_DB ); return res; } /* ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function ** suitable for comparing serialized records to the unpacked record passed ** as the only argument. */ RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ /* varintRecordCompareInt() and varintRecordCompareString() both assume ** that the size-of-header varint that occurs at the start of each record ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() ** also assumes that it is safe to overread a buffer by at least the ** maximum possible legal header size plus 8 bytes. Because there is ** guaranteed to be at least 74 (but not 136) bytes of padding following each ** buffer passed to varintRecordCompareInt() this makes it convenient to ** limit the size of the header to 64 bytes in cases where the first field ** is an integer. ** ** The easiest way to enforce this limit is to consider only records with ** 13 fields or less. If the first field is an integer, the maximum legal ** header size is (12*5 + 1 + 1) bytes. */ if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ int flags = p->aMem[0].flags; if( p->pKeyInfo->aSortOrder[0] ){ p->r1 = 1; p->r2 = -1; }else{ p->r1 = -1; p->r2 = 1; } if( (flags & MEM_Int) ){ return vdbeRecordCompareInt; } if( (flags & (MEM_Int|MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ return vdbeRecordCompareString; } } return sqlite3VdbeRecordCompare; } /* ** pCur points at an index entry created using the OP_MakeRecord opcode. ** Read the rowid (the last field in the record) and store it in *rowid. ** Return SQLITE_OK if everything works, or an error code otherwise. ** ** pCur might be pointing to text obtained from a corrupt database file. |
︙ | ︙ | |||
3293 3294 3295 3296 3297 3298 3299 | ** ** pUnpacked is either created without a rowid or is truncated so that it ** omits the rowid at the end. The rowid at the end of the index entry ** is ignored as well. Hence, this routine only compares the prefixes ** of the keys prior to the final rowid, not the entire key. */ int sqlite3VdbeIdxKeyCompare( | | | | | < | | 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 | ** ** pUnpacked is either created without a rowid or is truncated so that it ** omits the rowid at the end. The rowid at the end of the index entry ** is ignored as well. Hence, this routine only compares the prefixes ** of the keys prior to the final rowid, not the entire key. */ int sqlite3VdbeIdxKeyCompare( VdbeCursor *pC, /* The cursor to compare against */ const UnpackedRecord *pUnpacked, /* Unpacked version of key */ int *res /* Write the comparison result here */ ){ i64 nCellKey = 0; int rc; BtCursor *pCur = pC->pCursor; Mem m; assert( sqlite3BtreeCursorIsValid(pCur) ); VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ /* nCellKey will always be between 0 and 0xffffffff because of the way ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if( nCellKey<=0 || nCellKey>0x7fffffff ){ *res = 0; return SQLITE_CORRUPT_BKPT; } memset(&m, 0, sizeof(m)); rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m); if( rc ){ return rc; } *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked, 0); sqlite3VdbeMemRelease(&m); return SQLITE_OK; } /* ** This routine sets the value to be returned by subsequent calls to ** sqlite3_changes() on the database handle 'db'. |
︙ | ︙ |
Changes to src/vdbeblob.c.
︙ | ︙ | |||
131 132 133 134 135 136 137 138 139 140 | ** uses it to implement the blob_read(), blob_write() and ** blob_bytes() functions. ** ** The sqlite3_blob_close() function finalizes the vdbe program, ** which closes the b-tree cursor and (possibly) commits the ** transaction. */ static const VdbeOpList openBlob[] = { /* {OP_Transaction, 0, 0, 0}, // 0: Inserted separately */ {OP_TableLock, 0, 0, 0}, /* 1: Acquire a read or write lock */ | > < < | 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | ** uses it to implement the blob_read(), blob_write() and ** blob_bytes() functions. ** ** The sqlite3_blob_close() function finalizes the vdbe program, ** which closes the b-tree cursor and (possibly) commits the ** transaction. */ static const int iLn = __LINE__+4; static const VdbeOpList openBlob[] = { /* {OP_Transaction, 0, 0, 0}, // 0: Inserted separately */ {OP_TableLock, 0, 0, 0}, /* 1: Acquire a read or write lock */ /* One of the following two instructions is replaced by an OP_Noop. */ {OP_OpenRead, 0, 0, 0}, /* 2: Open cursor 0 for reading */ {OP_OpenWrite, 0, 0, 0}, /* 3: Open cursor 0 for read/write */ {OP_Variable, 1, 1, 1}, /* 4: Push the rowid to the stack */ {OP_NotExists, 0, 10, 1}, /* 5: Seek the cursor */ {OP_Column, 0, 0, 1}, /* 6 */ {OP_ResultRow, 1, 0, 0}, /* 7 */ {OP_Goto, 0, 4, 0}, /* 8 */ {OP_Close, 0, 0, 0}, /* 9 */ {OP_Halt, 0, 0, 0}, /* 10 */ |
︙ | ︙ | |||
265 266 267 268 269 270 271 | int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, flags, pTab->pSchema->schema_cookie, pTab->pSchema->iGeneration); sqlite3VdbeChangeP5(v, 1); | | | 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3VdbeAddOp4Int(v, OP_Transaction, iDb, flags, pTab->pSchema->schema_cookie, pTab->pSchema->iGeneration); sqlite3VdbeChangeP5(v, 1); sqlite3VdbeAddOpList(v, ArraySize(openBlob), openBlob, iLn); /* Make sure a mutex is held on the table to be accessed */ sqlite3VdbeUsesBtree(v, iDb); /* Configure the OP_TableLock instruction */ #ifdef SQLITE_OMIT_SHARED_CACHE sqlite3VdbeChangeToNoop(v, 1); |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** This file contains code use to manipulate "Mem" structure. A "Mem" ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ #include "sqliteInt.h" #include "vdbeInt.h" /* ** If pMem is an object with a valid string representation, this routine ** ensures the internal encoding for the string representation is ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. ** ** If pMem is not a string object, or the encoding of the string | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | ** This file contains code use to manipulate "Mem" structure. A "Mem" ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ #include "sqliteInt.h" #include "vdbeInt.h" #ifdef SQLITE_DEBUG /* ** Check invariants on a Mem object. ** ** This routine is intended for use inside of assert() statements, like ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); */ int sqlite3VdbeCheckMemInvariants(Mem *p){ /* The MEM_Dyn bit is set if and only if Mem.xDel is a non-NULL destructor ** function for Mem.z */ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); assert( (p->flags & MEM_Dyn)!=0 || p->xDel==0 ); /* If p holds a string or blob, the Mem.z must point to exactly ** one of the following: ** ** (1) Memory in Mem.zMalloc and managed by the Mem object ** (2) Memory to be freed using Mem.xDel ** (3) An ephermal string or blob ** (4) A static string or blob */ if( (p->flags & (MEM_Str|MEM_Blob)) && p->z!=0 ){ assert( ((p->z==p->zMalloc)? 1 : 0) + ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 ); } return 1; } #endif /* ** If pMem is an object with a valid string representation, this routine ** ensures the internal encoding for the string representation is ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. ** ** If pMem is not a string object, or the encoding of the string |
︙ | ︙ | |||
63 64 65 66 67 68 69 | ** ** If the bPreserve argument is true, then copy of the content of ** pMem->z into the new allocation. pMem must be either a string or ** blob if bPreserve is true. If bPreserve is false, any prior content ** in pMem->z is discarded. */ int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ | | < < < < < | | | | | 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | ** ** If the bPreserve argument is true, then copy of the content of ** pMem->z into the new allocation. pMem must be either a string or ** blob if bPreserve is true. If bPreserve is false, any prior content ** in pMem->z is discarded. */ int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ assert( sqlite3VdbeCheckMemInvariants(pMem) ); assert( (pMem->flags&MEM_RowSet)==0 ); /* If the bPreserve flag is set to true, then the memory cell must already ** contain a valid string or blob value. */ assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); testcase( bPreserve && pMem->z==0 ); if( pMem->zMalloc==0 || sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){ if( n<32 ) n = 32; if( bPreserve && pMem->z==pMem->zMalloc ){ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); bPreserve = 0; }else{ sqlite3DbFree(pMem->db, pMem->zMalloc); pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); } if( pMem->zMalloc==0 ){ VdbeMemRelease(pMem); pMem->flags = MEM_Null; return SQLITE_NOMEM; } } if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){ memcpy(pMem->zMalloc, pMem->z, pMem->n); } if( (pMem->flags&MEM_Dyn)!=0 ){ assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); pMem->xDel((void *)(pMem->z)); } pMem->z = pMem->zMalloc; pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); pMem->xDel = 0; return SQLITE_OK; } /* ** Make the given Mem object MEM_Dyn. In other words, make it so ** that any TEXT or BLOB content is stored in memory obtained from |
︙ | ︙ | |||
270 271 272 273 274 275 276 | */ void sqlite3VdbeMemReleaseExternal(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); if( p->flags&MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); sqlite3VdbeMemRelease(p); | | | > | 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | */ void sqlite3VdbeMemReleaseExternal(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); if( p->flags&MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); sqlite3VdbeMemRelease(p); }else if( p->flags&MEM_Dyn ){ assert( (p->flags&MEM_RowSet)==0 ); assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); p->xDel((void *)p->z); p->xDel = 0; }else if( p->flags&MEM_RowSet ){ sqlite3RowSetClear(p->u.pRowSet); }else if( p->flags&MEM_Frame ){ sqlite3VdbeMemSetNull(p); } } /* ** Release any memory held by the Mem. This may leave the Mem in an ** inconsistent state, for example with (Mem.z==0) and ** (Mem.memType==MEM_Str). */ void sqlite3VdbeMemRelease(Mem *p){ assert( sqlite3VdbeCheckMemInvariants(p) ); VdbeMemRelease(p); if( p->zMalloc ){ sqlite3DbFree(p->db, p->zMalloc); p->zMalloc = 0; } p->z = 0; assert( p->xDel==0 ); /* Zeroed by VdbeMemRelease() above */ |
︙ | ︙ | |||
625 626 627 628 629 630 631 632 633 634 635 636 637 638 | int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; assert( (pFrom->flags & MEM_RowSet)==0 ); VdbeMemRelease(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->flags &= ~MEM_Dyn; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( 0==(pFrom->flags&MEM_Static) ){ pTo->flags |= MEM_Ephem; rc = sqlite3VdbeMemMakeWriteable(pTo); } } | > | 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 | int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; assert( (pFrom->flags & MEM_RowSet)==0 ); VdbeMemRelease(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->flags &= ~MEM_Dyn; pTo->xDel = 0; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( 0==(pFrom->flags&MEM_Static) ){ pTo->flags |= MEM_Ephem; rc = sqlite3VdbeMemMakeWriteable(pTo); } } |
︙ | ︙ | |||
750 751 752 753 754 755 756 | if( nByte>iLimit ){ return SQLITE_TOOBIG; } return SQLITE_OK; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 783 784 785 786 787 788 789 790 791 792 793 794 795 796 | if( nByte>iLimit ){ return SQLITE_TOOBIG; } return SQLITE_OK; } /* ** Move data out of a btree key or data field and into a Mem structure. ** The data or key is taken from the entry that pCur is currently pointing ** to. offset and amt determine what portion of the data or key to retrieve. ** key is true to get the key or false to get data. The result is written ** into the pMem element. ** |
︙ | ︙ | |||
903 904 905 906 907 908 909 910 | } assert( zData!=0 ); if( offset+amt<=available ){ sqlite3VdbeMemRelease(pMem); pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ | > < < < > | | < > > > > < | 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 | } assert( zData!=0 ); if( offset+amt<=available ){ sqlite3VdbeMemRelease(pMem); pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; pMem->n = (int)amt; }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ if( key ){ rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); }else{ rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); } if( rc==SQLITE_OK ){ pMem->z[amt] = 0; pMem->z[amt+1] = 0; pMem->flags = MEM_Blob|MEM_Term; pMem->memType = MEM_Blob; pMem->n = (int)amt; }else{ sqlite3VdbeMemRelease(pMem); } } return rc; } /* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second |
︙ | ︙ | |||
1022 1023 1024 1025 1026 1027 1028 | nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); if( pRec ){ pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); if( pRec->pKeyInfo ){ assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); assert( pRec->pKeyInfo->enc==ENC(db) ); | < | 943 944 945 946 947 948 949 950 951 952 953 954 955 956 | nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); if( pRec ){ pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); if( pRec->pKeyInfo ){ assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); assert( pRec->pKeyInfo->enc==ENC(db) ); pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); for(i=0; i<nCol; i++){ pRec->aMem[i].flags = MEM_Null; pRec->aMem[i].memType = MEM_Null; pRec->aMem[i].db = db; } }else{ |
︙ | ︙ |
Changes to src/vdbesort.c.
︙ | ︙ | |||
405 406 407 408 409 410 411 | assert( r2->nField>0 ); for(i=0; i<r2->nField; i++){ if( r2->aMem[i].flags & MEM_Null ){ *pRes = -1; return; } } | | | | 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | assert( r2->nField>0 ); for(i=0; i<r2->nField; i++){ if( r2->aMem[i].flags & MEM_Null ){ *pRes = -1; return; } } assert( r2->default_rc==0 ); } *pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2, 0); } /* ** This function is called to compare two iterator keys when merging ** multiple b-tree segments. Parameter iOut is the index of the aTree[] ** value to recalculate. */ |
︙ | ︙ |
Changes to src/wal.c.
︙ | ︙ | |||
1302 1303 1304 1305 1306 1307 1308 | } if( rc!=SQLITE_OK ){ walIndexClose(pRet, 0); sqlite3OsClose(pRet->pWalFd); sqlite3_free(pRet); }else{ | | | 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 | } if( rc!=SQLITE_OK ){ walIndexClose(pRet, 0); sqlite3OsClose(pRet->pWalFd); sqlite3_free(pRet); }else{ int iDC = sqlite3OsDeviceCharacteristics(pDbFd); if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ pRet->padToSectorBoundary = 0; } *ppWal = pRet; WALTRACE(("WAL%d: opened\n", pRet)); } |
︙ | ︙ | |||
2673 2674 2675 2676 2677 2678 2679 | int iFirstAmt = (int)(p->iSyncPoint - iOffset); rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); if( rc ) return rc; iOffset += iFirstAmt; iAmt -= iFirstAmt; pContent = (void*)(iFirstAmt + (char*)pContent); assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); | | | 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 | int iFirstAmt = (int)(p->iSyncPoint - iOffset); rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); if( rc ) return rc; iOffset += iFirstAmt; iAmt -= iFirstAmt; pContent = (void*)(iFirstAmt + (char*)pContent); assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); if( iAmt==0 || rc ) return rc; } rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); return rc; } /* |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
1597 1598 1599 1600 1601 1602 1603 | Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warnning has been issued */ /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); | | | 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 | Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warnning has been issued */ /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); /* Count the number of columns that will be added to the index ** and used to match WHERE clause constraints */ nKeyCol = 0; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; pLoop = pLevel->pWLoop; |
︙ | ︙ | |||
1704 1705 1706 1707 1708 1709 1710 | assert( pLevel->iIdxCur>=0 ); pLevel->iIdxCur = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "for %s", pTable->zName)); /* Fill the automatic index with content */ | | | | 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 | assert( pLevel->iIdxCur>=0 ); pLevel->iIdxCur = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "for %s", pTable->zName)); /* Fill the automatic index with content */ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); sqlite3VdbeJumpHere(v, addrTop); sqlite3ReleaseTempReg(pParse, regRecord); /* Jump here when skipping the initialization */ sqlite3VdbeJumpHere(v, addrInit); } |
︙ | ︙ | |||
1909 1910 1911 1912 1913 1914 1915 | #endif assert( pRec!=0 ); iCol = pRec->nField - 1; assert( pIdx->nSample>0 ); assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); do{ iTest = (iMin+i)/2; | | | | | | 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 | #endif assert( pRec!=0 ); iCol = pRec->nField - 1; assert( pIdx->nSample>0 ); assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); do{ iTest = (iMin+i)/2; res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec, 0); if( res<0 ){ iMin = iTest+1; }else{ i = iTest; } }while( res && iMin<i ); #ifdef SQLITE_DEBUG /* The following assert statements check that the binary search code ** above found the right answer. This block serves no purpose other ** than to invoke the asserts. */ if( res==0 ){ /* If (res==0) is true, then sample $i must be equal to pRec */ assert( i<pIdx->nSample ); assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0) || pParse->db->mallocFailed ); }else{ /* Otherwise, pRec must be smaller than sample $i and larger than ** sample ($i-1). */ assert( i==pIdx->nSample || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)>0 || pParse->db->mallocFailed ); assert( i==0 || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec, 0)<0 || pParse->db->mallocFailed ); } #endif /* ifdef SQLITE_DEBUG */ /* At this point, aSample[i] is the first sample that is greater than ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less ** than pVal. If aSample[i]==pVal, then res==0. |
︙ | ︙ | |||
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 | eType = sqlite3FindInIndex(pParse, pX, 0); if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } iTab = pX->iTable; sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); pLoop->wsFlags |= WHERE_IN_ABLE; if( pLevel->u.in.nIn==0 ){ pLevel->addrNxt = sqlite3VdbeMakeLabel(v); } pLevel->u.in.nIn++; pLevel->u.in.aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); pIn = pLevel->u.in.aInLoop; if( pIn ){ pIn += pLevel->u.in.nIn - 1; pIn->iCur = iTab; if( eType==IN_INDEX_ROWID ){ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); }else{ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); } pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; | > > | | 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 | eType = sqlite3FindInIndex(pParse, pX, 0); if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } iTab = pX->iTable; sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); VdbeCoverageIf(v, bRev); VdbeCoverageIf(v, !bRev); assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); pLoop->wsFlags |= WHERE_IN_ABLE; if( pLevel->u.in.nIn==0 ){ pLevel->addrNxt = sqlite3VdbeMakeLabel(v); } pLevel->u.in.nIn++; pLevel->u.in.aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); pIn = pLevel->u.in.aInLoop; if( pIn ){ pIn += pLevel->u.in.nIn - 1; pIn->iCur = iTab; if( eType==IN_INDEX_ROWID ){ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); }else{ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); } pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); }else{ pLevel->u.in.nIn = 0; } #endif } disableTerm(pLevel, pTerm); return iReg; |
︙ | ︙ | |||
2499 2500 2501 2502 2503 2504 2505 2506 2507 | if( !zAff ){ pParse->db->mallocFailed = 1; } if( nSkip ){ int iIdxCur = pLevel->iIdxCur; sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); j = sqlite3VdbeAddOp0(v, OP_Goto); | > > | > > | 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 | if( !zAff ){ pParse->db->mallocFailed = 1; } if( nSkip ){ int iIdxCur = pLevel->iIdxCur; sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); j = sqlite3VdbeAddOp0(v, OP_Goto); pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), iIdxCur, 0, regBase, nSkip); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); sqlite3VdbeJumpHere(v, j); for(j=0; j<nSkip; j++){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); assert( pIdx->aiColumn[j]>=0 ); VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); } } |
︙ | ︙ | |||
2535 2536 2537 2538 2539 2540 2541 | sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } } testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IN ); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ Expr *pRight = pTerm->pExpr->pRight; | > | > > | 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 | sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } } testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IN ); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ Expr *pRight = pTerm->pExpr->pRight; if( sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); VdbeCoverage(v); } if( zAff ){ if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ zAff[j] = SQLITE_AFF_NONE; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ zAff[j] = SQLITE_AFF_NONE; } |
︙ | ︙ | |||
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 | } /* Special case of a FROM clause subquery implemented as a co-routine */ if( pTabItem->viaCoroutine ){ int regYield = pTabItem->regReturn; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); pLevel->op = OP_Goto; }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ /* Case 1: The table is a virtual-table. Use the VFilter and VNext | > | 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 | } /* Special case of a FROM clause subquery implemented as a co-routine */ if( pTabItem->viaCoroutine ){ int regYield = pTabItem->regReturn; sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); VdbeCoverage(v); VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); pLevel->op = OP_Goto; }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ /* Case 1: The table is a virtual-table. Use the VFilter and VNext |
︙ | ︙ | |||
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 | } } sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pLoop->u.vtab.idxStr, pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); pLoop->u.vtab.needFree = 0; for(j=0; j<nConstraint && j<16; j++){ if( (pLoop->u.vtab.omitMask>>j)&1 ){ disableTerm(pLevel, pLoop->aLTerm[j]); } } pLevel->op = OP_VNext; | > | 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 | } } sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pLoop->u.vtab.idxStr, pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); VdbeCoverage(v); pLoop->u.vtab.needFree = 0; for(j=0; j<nConstraint && j<16; j++){ if( (pLoop->u.vtab.omitMask>>j)&1 ){ disableTerm(pLevel, pLoop->aLTerm[j]); } } pLevel->op = OP_VNext; |
︙ | ︙ | |||
2838 2839 2840 2841 2842 2843 2844 | ){ /* Case 2: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ assert( pLoop->u.btree.nEq==1 ); | < > > | > | 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 | ){ /* Case 2: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ assert( pLoop->u.btree.nEq==1 ); pTerm = pLoop->aLTerm[0]; assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); assert( omitTable==0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); iReleaseReg = ++pParse->nMem; iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); addrNxt = pLevel->addrNxt; sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); VdbeCoverage(v); sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); VdbeComment((v, "pk")); pLevel->op = OP_Noop; }else if( (pLoop->wsFlags & WHERE_IPK)!=0 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 ){ |
︙ | ︙ | |||
2881 2882 2883 2884 2885 2886 2887 | Expr *pX; /* The expression that defines the start bound */ int r1, rTemp; /* Registers for holding the start boundary */ /* The following constant maps TK_xx codes into corresponding ** seek opcodes. It depends on a particular ordering of TK_xx */ const u8 aMoveOp[] = { | | | | | > > > > > > | 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 | Expr *pX; /* The expression that defines the start bound */ int r1, rTemp; /* Registers for holding the start boundary */ /* The following constant maps TK_xx codes into corresponding ** seek opcodes. It depends on a particular ordering of TK_xx */ const u8 aMoveOp[] = { /* TK_GT */ OP_SeekGT, /* TK_LE */ OP_SeekLE, /* TK_LT */ OP_SeekLT, /* TK_GE */ OP_SeekGE }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ assert( (pStart->wtFlags & TERM_VNULL)==0 ); testcase( pStart->wtFlags & TERM_VIRTUAL ); pX = pStart->pExpr; assert( pX!=0 ); testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); VdbeComment((v, "pk")); VdbeCoverageIf(v, pX->op==TK_GT); VdbeCoverageIf(v, pX->op==TK_LE); VdbeCoverageIf(v, pX->op==TK_LT); VdbeCoverageIf(v, pX->op==TK_GE); sqlite3ExprCacheAffinityChange(pParse, r1, 1); sqlite3ReleaseTempReg(pParse, rTemp); disableTerm(pLevel, pStart); }else{ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); } if( pEnd ){ Expr *pX; pX = pEnd->pExpr; assert( pX!=0 ); assert( (pEnd->wtFlags & TERM_VNULL)==0 ); testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ |
︙ | ︙ | |||
2926 2927 2928 2929 2930 2931 2932 | } start = sqlite3VdbeCurrentAddr(v); pLevel->op = bRev ? OP_Prev : OP_Next; pLevel->p1 = iCur; pLevel->p2 = start; assert( pLevel->p5==0 ); if( testOp!=OP_Noop ){ | | > > > > | 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 | } start = sqlite3VdbeCurrentAddr(v); pLevel->op = bRev ? OP_Prev : OP_Next; pLevel->p1 = iCur; pLevel->p2 = start; assert( pLevel->p5==0 ); if( testOp!=OP_Noop ){ iRowidReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); VdbeCoverageIf(v, testOp==OP_Le); VdbeCoverageIf(v, testOp==OP_Lt); VdbeCoverageIf(v, testOp==OP_Ge); VdbeCoverageIf(v, testOp==OP_Gt); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); } }else if( pLoop->wsFlags & WHERE_INDEXED ){ /* Case 4: A scan using an index. ** ** The WHERE clause may contain zero or more equality ** terms ("==" or "IN" operators) that refer to the N |
︙ | ︙ | |||
2969 2970 2971 2972 2973 2974 2975 | ** to force the output order to conform to an ORDER BY. */ static const u8 aStartOp[] = { 0, 0, OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ | | | | | | | | > < < > > | > > > > > > > > | > > | > | | > > | | | | | | < | > > | > > > > > > | > | | | < < < < | < < < < < < < < < < < < < < < < | | | 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 | ** to force the output order to conform to an ORDER BY. */ static const u8 aStartOp[] = { 0, 0, OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ }; u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ int regBase; /* Base register holding constraint values */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zStartAff; /* Affinity for start of range constraint */ char cEndAff = 0; /* Affinity for end of range constraint */ u8 bSeekPastNull = 0; /* True to seek past initial nulls */ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; assert( nEq>=pLoop->u.btree.nSkip ); /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." ** query, then the caller will only allow the loop to run for ** a single iteration. This means that the first row returned ** should not have a NULL value stored in 'x'. If column 'x' is ** the first one after the nEq equality constraints in the index, ** this requires some special handling. */ if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 && (pWInfo->bOBSat!=0) && (pIdx->nKeyCol>nEq) ){ assert( pLoop->u.btree.nSkip==0 ); bSeekPastNull = 1; nExtraReg = 1; } /* Find any inequality constraint terms for the start and end ** of the range. */ j = nEq; if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ pRangeStart = pLoop->aLTerm[j++]; nExtraReg = 1; } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = 1; if( pRangeStart==0 && (pRangeEnd->wtFlags & TERM_VNULL)==0 && (j = pIdx->aiColumn[nEq])>=0 && pIdx->pTable->aCol[j].notNull==0 ){ bSeekPastNull = 1; } } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); if( zStartAff ) cEndAff = zStartAff[nEq]; addrNxt = pLevel->addrNxt; /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) || (bRev && pIdx->nKeyCol==nEq) ){ SWAP(WhereTerm *, pRangeEnd, pRangeStart); SWAP(u8, bSeekPastNull, bStopAtNull); } testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; sqlite3ExprCode(pParse, pRight, regBase+nEq); if( (pRangeStart->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( zStartAff ){ if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ /* Since the comparison is to be performed with no conversions ** applied to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ zStartAff[nEq] = SQLITE_AFF_NONE; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ zStartAff[nEq] = SQLITE_AFF_NONE; } } nConstraint++; testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); }else if( bSeekPastNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); nConstraint++; startEq = 0; start_constraints = 1; } codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; assert( op!=0 ); sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); VdbeCoverage(v); VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) ){ codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); } nConstraint++; testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); }else if( bStopAtNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); endEq = 0; nConstraint++; } sqlite3DbFree(db, zStartAff); /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ if( nConstraint ){ op = aEndOp[bRev*2 + endEq]; sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); } /* Seek the table cursor, if required */ disableTerm(pLevel, pRangeStart); disableTerm(pLevel, pRangeEnd); if( omitTable ){ /* pIdx is a covering index. No need to access the main table. */ }else if( HasRowid(pIdx->pTable) ){ iRowidReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ }else{ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); for(j=0; j<pPk->nKeyCol; j++){ k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); } sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, iRowidReg, pPk->nKeyCol); VdbeCoverage(v); } /* Record the instruction used to terminate the loop. Disable ** WHERE clause terms made redundant by the index range scan. */ if( pLoop->wsFlags & WHERE_ONEROW ){ pLevel->op = OP_Noop; |
︙ | ︙ | |||
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 | if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); int r; r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, regRowid, 0); sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, sqlite3VdbeCurrentAddr(v)+2, r, iSet); } sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); /* The pSubWInfo->untestedTerms flag means that this OR term ** contained one or more AND term from a notReady table. The ** terms from the notReady table could not be tested and will ** need to be tested later. | > | 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 | if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); int r; r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, regRowid, 0); sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, sqlite3VdbeCurrentAddr(v)+2, r, iSet); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); /* The pSubWInfo->untestedTerms flag means that this OR term ** contained one or more AND term from a notReady table. The ** terms from the notReady table could not be tested and will ** need to be tested later. |
︙ | ︙ | |||
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 | /* Tables marked isRecursive have only a single row that is stored in ** a pseudo-cursor. No need to Rewind or Next such cursors. */ pLevel->op = OP_Noop; }else{ pLevel->op = aStep[bRev]; pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } } /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ | > > | 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 | /* Tables marked isRecursive have only a single row that is stored in ** a pseudo-cursor. No need to Rewind or Next such cursors. */ pLevel->op = OP_Noop; }else{ pLevel->op = aStep[bRev]; pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } } /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ |
︙ | ︙ | |||
3498 3499 3500 3501 3502 3503 3504 | continue; } assert( pTerm->pExpr ); sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } } | < | 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 | continue; } assert( pTerm->pExpr ); sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } } return pLevel->notReady; } #if defined(WHERETRACE_ENABLED) && defined(SQLITE_ENABLE_TREE_EXPLAIN) /* ** Generate "Explanation" text for a WhereTerm. |
︙ | ︙ | |||
4870 4871 4872 4873 4874 4875 4876 4877 4878 | } /* end-if not one-row */ /* Mark off any other ORDER BY terms that reference pLoop */ if( isOrderDistinct ){ orderDistinctMask |= pLoop->maskSelf; for(i=0; i<nOrderBy; i++){ Expr *p; if( MASKBIT(i) & obSat ) continue; p = pOrderBy->a[i].pExpr; | > | > > | 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 | } /* end-if not one-row */ /* Mark off any other ORDER BY terms that reference pLoop */ if( isOrderDistinct ){ orderDistinctMask |= pLoop->maskSelf; for(i=0; i<nOrderBy; i++){ Expr *p; Bitmask mTerm; if( MASKBIT(i) & obSat ) continue; p = pOrderBy->a[i].pExpr; mTerm = exprTableUsage(&pWInfo->sMaskSet,p); if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; if( (mTerm&~orderDistinctMask)==0 ){ obSat |= MASKBIT(i); } } } } /* End the loop over all WhereLoops from outer-most down to inner-most */ if( obSat==obDone ) return 1; if( !isOrderDistinct ) return 0; |
︙ | ︙ | |||
5495 5496 5497 5498 5499 5500 5501 | ** and work forward so that the added virtual terms are never processed. */ exprAnalyzeAll(pTabList, &pWInfo->sWC); if( db->mallocFailed ){ goto whereBeginError; } | < < < < < < < < < < < < < < < < | 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 | ** and work forward so that the added virtual terms are never processed. */ exprAnalyzeAll(pTabList, &pWInfo->sWC); if( db->mallocFailed ){ goto whereBeginError; } if( wctrlFlags & WHERE_WANT_DISTINCT ){ if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ /* The DISTINCT marking is pointless. Ignore it. */ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; }else if( pOrderBy==0 ){ /* Try to ORDER BY the result set to make distinct processing easier */ pWInfo->wctrlFlags |= WHERE_DISTINCTBY; |
︙ | ︙ | |||
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 | int addr; pLevel = &pWInfo->a[i]; pLoop = pLevel->pWLoop; sqlite3VdbeResolveLabel(v, pLevel->addrCont); if( pLevel->op!=OP_Noop ){ sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); sqlite3VdbeChangeP5(v, pLevel->p5); } if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ struct InLoop *pIn; int j; sqlite3VdbeResolveLabel(v, pLevel->addrNxt); for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ sqlite3VdbeJumpHere(v, pIn->addrInTop+1); sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); sqlite3VdbeJumpHere(v, pIn->addrInTop-1); } sqlite3DbFree(db, pLevel->u.in.aInLoop); } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); if( pLevel->addrSkip ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); sqlite3VdbeJumpHere(v, pLevel->addrSkip); sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); } if( pLevel->iLeftJoin ){ | > > > > > > > | | 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 | int addr; pLevel = &pWInfo->a[i]; pLoop = pLevel->pWLoop; sqlite3VdbeResolveLabel(v, pLevel->addrCont); if( pLevel->op!=OP_Noop ){ sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); sqlite3VdbeChangeP5(v, pLevel->p5); VdbeCoverage(v); VdbeCoverageIf(v, pLevel->op==OP_Next); VdbeCoverageIf(v, pLevel->op==OP_Prev); VdbeCoverageIf(v, pLevel->op==OP_VNext); } if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ struct InLoop *pIn; int j; sqlite3VdbeResolveLabel(v, pLevel->addrNxt); for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ sqlite3VdbeJumpHere(v, pIn->addrInTop+1); sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); VdbeCoverage(v); VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); sqlite3VdbeJumpHere(v, pIn->addrInTop-1); } sqlite3DbFree(db, pLevel->u.in.aInLoop); } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); if( pLevel->addrSkip ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); sqlite3VdbeJumpHere(v, pLevel->addrSkip); sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); } if( pLevel->iLeftJoin ){ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); } if( pLoop->wsFlags & WHERE_INDEXED ){ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); |
︙ | ︙ | |||
5845 5846 5847 5848 5849 5850 5851 | assert( pTab!=0 ); pLoop = pLevel->pWLoop; /* For a co-routine, change all OP_Column references to the table of ** the co-routine into OP_SCopy of result contained in a register. ** OP_Rowid becomes OP_Null. */ | | | 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 | assert( pTab!=0 ); pLoop = pLevel->pWLoop; /* For a co-routine, change all OP_Column references to the table of ** the co-routine into OP_SCopy of result contained in a register. ** OP_Rowid becomes OP_Null. */ if( pTabItem->viaCoroutine && !db->mallocFailed ){ last = sqlite3VdbeCurrentAddr(v); k = pLevel->addrBody; pOp = sqlite3VdbeGetOp(v, k); for(; k<last; k++, pOp++){ if( pOp->p1!=pLevel->iTabCur ) continue; if( pOp->opcode==OP_Column ){ pOp->opcode = OP_SCopy; |
︙ | ︙ |
Changes to test/analyze9.test.
︙ | ︙ | |||
322 323 324 325 326 327 328 329 330 331 332 333 334 335 | #------------------------------------------------------------------------- # The following tests experiment with adding corrupted records to the # 'sample' column of the sqlite_stat4 table. # reset_db sqlite3_db_config_lookaside db 0 0 0 do_execsql_test 7.1 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a, b); INSERT INTO t1 VALUES(1, 1); INSERT INTO t1 VALUES(2, 2); INSERT INTO t1 VALUES(3, 3); INSERT INTO t1 VALUES(4, 4); | > | 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | #------------------------------------------------------------------------- # The following tests experiment with adding corrupted records to the # 'sample' column of the sqlite_stat4 table. # reset_db sqlite3_db_config_lookaside db 0 0 0 database_may_be_corrupt do_execsql_test 7.1 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a, b); INSERT INTO t1 VALUES(1, 1); INSERT INTO t1 VALUES(2, 2); INSERT INTO t1 VALUES(3, 3); INSERT INTO t1 VALUES(4, 4); |
︙ | ︙ | |||
361 362 363 364 365 366 367 368 369 370 371 372 373 374 | do_execsql_test 7.5 { ANALYZE; UPDATE sqlite_stat4 SET nlt = '0 0 0'; ANALYZE sqlite_master; SELECT * FROM t1 WHERE a = 5; } {5 5} #------------------------------------------------------------------------- # reset_db do_execsql_test 8.1 { CREATE TABLE t1(x TEXT); CREATE INDEX i1 ON t1(x); | > > | 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 | do_execsql_test 7.5 { ANALYZE; UPDATE sqlite_stat4 SET nlt = '0 0 0'; ANALYZE sqlite_master; SELECT * FROM t1 WHERE a = 5; } {5 5} database_never_corrupt #------------------------------------------------------------------------- # reset_db do_execsql_test 8.1 { CREATE TABLE t1(x TEXT); CREATE INDEX i1 ON t1(x); |
︙ | ︙ |
Changes to test/capi3e.test.
︙ | ︙ | |||
16 17 18 19 20 21 22 | set testdir [file dirname $argv0] source $testdir/tester.tcl # Make sure the system encoding is utf-8. Otherwise, if the system encoding # is other than utf-8, [file isfile $x] may not refer to the same file # as [sqlite3 db $x]. | > > > > | | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | set testdir [file dirname $argv0] source $testdir/tester.tcl # Make sure the system encoding is utf-8. Otherwise, if the system encoding # is other than utf-8, [file isfile $x] may not refer to the same file # as [sqlite3 db $x]. # # This is no longer needed here because it should be done within the test # fixture executable itself, via Tcl_SetSystemEncoding. # # encoding system utf-8 # Do not use a codec for tests in this file, as the database file is # manipulated directly using tcl scripts (using the [hexio_write] command). # do_not_use_codec # Return the UTF-16 representation of the supplied UTF-8 string $str. |
︙ | ︙ |
Changes to test/corruptG.test.
︙ | ︙ | |||
72 73 74 75 76 77 78 | SELECT rowid FROM t1 WHERE a='abc' and b='xyz123456789XYZ'; } # The following test result is brittle. The point above is to try to # force a buffer overread by a corrupt database file. If we get an # incorrect answer from a corrupt database file, that is OK. If the # result below changes, that just means that "undefined behavior" has # changed. | | | 72 73 74 75 76 77 78 79 80 81 | SELECT rowid FROM t1 WHERE a='abc' and b='xyz123456789XYZ'; } # The following test result is brittle. The point above is to try to # force a buffer overread by a corrupt database file. If we get an # incorrect answer from a corrupt database file, that is OK. If the # result below changes, that just means that "undefined behavior" has # changed. } {/0 .*/} finish_test |
Added test/corruptI.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | # 2014-01-20 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix corruptI # Do not use a codec for tests in this file, as the database file is # manipulated directly using tcl scripts (using the [hexio_write] command). # do_not_use_codec database_may_be_corrupt # Initialize the database. # do_execsql_test 1.1 { PRAGMA page_size=1024; PRAGMA auto_vacuum=0; CREATE TABLE t1(a); CREATE INDEX i1 ON t1(a); INSERT INTO t1 VALUES('a'); } {} db close do_test 1.2 { set offset [hexio_get_int [hexio_read test.db [expr 2*1024 + 8] 2]] set off [expr 2*1024 + $offset + 1] hexio_write test.db $off FF06 breakpoint sqlite3 db test.db catchsql { SELECT * FROM t1 WHERE a = 10 } } {1 {database disk image is malformed}} finish_test |
Changes to test/insert.test.
︙ | ︙ | |||
394 395 396 397 398 399 400 | CREATE TABLE t10(a,b,c); INSERT INTO t10 VALUES(1,2,3), (4,5,6), (7,8,9); SELECT * FROM t10; } } {1 2 3 4 5 6 7 8 9} do_test insert-10.2 { catchsql { | | > > > > > > > > > > | 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | CREATE TABLE t10(a,b,c); INSERT INTO t10 VALUES(1,2,3), (4,5,6), (7,8,9); SELECT * FROM t10; } } {1 2 3 4 5 6 7 8 9} do_test insert-10.2 { catchsql { INSERT INTO t10 VALUES(11,12,13), (14,15), (16,17,28); } } {1 {all VALUES must have the same number of terms}} } # Need for the OP_SoftNull opcode # do_execsql_test insert-11.1 { CREATE TABLE t11a AS SELECT '123456789' AS x; CREATE TABLE t11b (a INTEGER PRIMARY KEY, b, c); INSERT INTO t11b SELECT x, x, x FROM t11a; SELECT quote(a), quote(b), quote(c) FROM t11b; } {123456789 '123456789' '123456789'} integrity_check insert-99.0 finish_test |
Changes to test/insert4.test.
︙ | ︙ | |||
249 250 251 252 253 254 255 | } {} } # Check some error conditions: # do_test insert4-5.1 { # Table does not exist. | | | 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | } {} } # Check some error conditions: # do_test insert4-5.1 { # Table does not exist. catchsql { INSERT INTO t2 SELECT a, b FROM nosuchtable } } {1 {no such table: nosuchtable}} do_test insert4-5.2 { # Number of columns does not match. catchsql { CREATE TABLE t5(a, b, c); INSERT INTO t4 SELECT * FROM t5; } |
︙ | ︙ |
Changes to test/loadext.test.
︙ | ︙ | |||
61 62 63 64 65 66 67 68 69 70 71 72 73 74 | set dlerror_nosymbol {%s: undefined symbol: %s} if {$::tcl_platform(os) eq "Darwin"} { set dlerror_nosuchfile {dlopen(%s, 10): image not found} set dlerror_notadll {dlopen(%1$s, 10): no suitable image found.*} set dlerror_nosymbol {dlsym(XXX, %2$s): symbol not found} } # Make sure the test extension actually exists. If it does not # exist, try to create it. If unable to create it, then skip this # test file. # if {![file exists $testextension]} { set srcdir [file dir $testdir]/src | > > > > > > | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | set dlerror_nosymbol {%s: undefined symbol: %s} if {$::tcl_platform(os) eq "Darwin"} { set dlerror_nosuchfile {dlopen(%s, 10): image not found} set dlerror_notadll {dlopen(%1$s, 10): no suitable image found.*} set dlerror_nosymbol {dlsym(XXX, %2$s): symbol not found} } if {$::tcl_platform(platform) eq "windows"} { set dlerror_nosuchfile {The specified module could not be found.*} set dlerror_notadll {%%1 is not a valid Win32 application.*} set dlerror_nosymbol {The specified procedure could not be found.*} } # Make sure the test extension actually exists. If it does not # exist, try to create it. If unable to create it, then skip this # test file. # if {![file exists $testextension]} { set srcdir [file dir $testdir]/src |
︙ | ︙ | |||
163 164 165 166 167 168 169 | set rc [catch { sqlite3_load_extension db $testextension icecream } msg] if {$::tcl_platform(os) eq "Darwin"} { regsub {0x[1234567890abcdefABCDEF]*} $msg XXX msg } list $rc $msg | | | 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | set rc [catch { sqlite3_load_extension db $testextension icecream } msg] if {$::tcl_platform(os) eq "Darwin"} { regsub {0x[1234567890abcdefABCDEF]*} $msg XXX msg } list $rc $msg } /[list 1 [format $dlerror_nosymbol $testextension icecream]]/ # Try to load an extension for which the entry point fails (returns non-zero) # do_test loadext-2.4 { set rc [catch { sqlite3_load_extension db $testextension testbrokenext_init } msg] |
︙ | ︙ | |||
263 264 265 266 267 268 269 | # Malloc failure in sqlite3_auto_extension and sqlite3_load_extension # do_malloc_test loadext-5 -tclprep { sqlite3_reset_auto_extension } -tclbody { if {[autoinstall_test_functions]==7} {error "out of memory"} } | > > > > > | | | | > > | 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | # Malloc failure in sqlite3_auto_extension and sqlite3_load_extension # do_malloc_test loadext-5 -tclprep { sqlite3_reset_auto_extension } -tclbody { if {[autoinstall_test_functions]==7} {error "out of memory"} } # On Windows, this malloc test must be skipped because the winDlOpen # function itself can fail due to "out of memory" conditions. # if {$::tcl_platform(platform) ne "windows"} { do_malloc_test loadext-6 -tclbody { db enable_load_extension 1 sqlite3_load_extension db $::testextension testloadext_init } } autoinstall_test_functions finish_test |
Changes to test/pragma.test.
︙ | ︙ | |||
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 | do_test pragma-20.8 { catchsql {PRAGMA data_store_directory} } {0 {}} forcedelete data_dir } ;# endif windows do_test 21.1 { # Create a corrupt database in testerr.db. And a non-corrupt at test.db. # db close forcedelete test.db sqlite3 db test.db execsql { | > > | 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 | do_test pragma-20.8 { catchsql {PRAGMA data_store_directory} } {0 {}} forcedelete data_dir } ;# endif windows database_may_be_corrupt do_test 21.1 { # Create a corrupt database in testerr.db. And a non-corrupt at test.db. # db close forcedelete test.db sqlite3 db test.db execsql { |
︙ | ︙ | |||
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 | } {100} set mainerr {*** in database main *** Multiple uses for byte 672 of page 15} set auxerr {*** in database aux *** Multiple uses for byte 672 of page 15} do_test 22.2 { catch { db close } sqlite3 db testerr.db execsql { PRAGMA integrity_check } | > > > > > | | | | | | 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 | } {100} set mainerr {*** in database main *** Multiple uses for byte 672 of page 15} set auxerr {*** in database aux *** Multiple uses for byte 672 of page 15} set mainerr {/{\*\*\* in database main \*\*\* Multiple uses for byte 672 of page 15}.*/} set auxerr {/{\*\*\* in database aux \*\*\* Multiple uses for byte 672 of page 15}.*/} do_test 22.2 { catch { db close } sqlite3 db testerr.db execsql { PRAGMA integrity_check } } $mainerr do_test 22.3.1 { catch { db close } sqlite3 db test.db execsql { ATTACH 'testerr.db' AS 'aux'; PRAGMA integrity_check; } } $auxerr do_test 22.3.2 { execsql { PRAGMA main.integrity_check; } } {ok} do_test 22.3.3 { execsql { PRAGMA aux.integrity_check; } } $auxerr do_test 22.4.1 { catch { db close } sqlite3 db testerr.db execsql { ATTACH 'test.db' AS 'aux'; PRAGMA integrity_check; } } $mainerr do_test 22.4.2 { execsql { PRAGMA main.integrity_check; } } $mainerr do_test 22.4.3 { execsql { PRAGMA aux.integrity_check; } } {ok} db close forcedelete test.db test.db-wal test.db-journal sqlite3 db test.db |
︙ | ︙ | |||
1676 1677 1678 1679 1680 1681 1682 1683 | CREATE TABLE t2(x, y INTEGER REFERENCES t1); } db2 eval { PRAGMA foreign_key_list(t2); } } {0 0 t1 y {} {NO ACTION} {NO ACTION} NONE} finish_test | > | 1683 1684 1685 1686 1687 1688 1689 1690 1691 | CREATE TABLE t2(x, y INTEGER REFERENCES t1); } db2 eval { PRAGMA foreign_key_list(t2); } } {0 0 t1 y {} {NO ACTION} {NO ACTION} NONE} database_never_corrupt finish_test |
Changes to test/select4.test.
︙ | ︙ | |||
819 820 821 822 823 824 825 826 827 | INSERT INTO t13 VALUES(2,2); INSERT INTO t13 VALUES(3,2); INSERT INTO t13 VALUES(4,2); CREATE INDEX t13ab ON t13(a,b); SELECT DISTINCT b from t13 WHERE a IN (1,2,3); } } {1 2} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 | INSERT INTO t13 VALUES(2,2); INSERT INTO t13 VALUES(3,2); INSERT INTO t13 VALUES(4,2); CREATE INDEX t13ab ON t13(a,b); SELECT DISTINCT b from t13 WHERE a IN (1,2,3); } } {1 2} # 2014-02-18: Make sure compound SELECTs work with VALUES clauses # do_execsql_test select4-14.1 { CREATE TABLE t14(a,b,c); INSERT INTO t14 VALUES(1,2,3),(4,5,6); SELECT * FROM t14 INTERSECT VALUES(3,2,1),(2,3,1),(1,2,3),(2,1,3); } {1 2 3} do_execsql_test select4-14.2 { SELECT * FROM t14 INTERSECT VALUES(1,2,3); } {1 2 3} do_execsql_test select4-14.3 { SELECT * FROM t14 UNION VALUES(3,2,1),(2,3,1),(1,2,3),(7,8,9),(4,5,6) UNION SELECT * FROM t14 ORDER BY 1, 2, 3 } {1 2 3 2 3 1 3 2 1 4 5 6 7 8 9} do_execsql_test select4-14.4 { SELECT * FROM t14 UNION VALUES(3,2,1) UNION SELECT * FROM t14 ORDER BY 1, 2, 3 } {1 2 3 3 2 1 4 5 6} do_execsql_test select4-14.5 { SELECT * FROM t14 EXCEPT VALUES(3,2,1),(2,3,1),(1,2,3),(2,1,3); } {4 5 6} do_execsql_test select4-14.6 { SELECT * FROM t14 EXCEPT VALUES(1,2,3) } {4 5 6} do_execsql_test select4-14.7 { SELECT * FROM t14 EXCEPT VALUES(1,2,3) EXCEPT VALUES(4,5,6) } {} do_execsql_test select4-14.8 { SELECT * FROM t14 EXCEPT VALUES('a','b','c') EXCEPT VALUES(4,5,6) } {1 2 3} do_execsql_test select4-14.9 { SELECT * FROM t14 UNION ALL VALUES(3,2,1),(2,3,1),(1,2,3),(2,1,3); } {1 2 3 4 5 6 3 2 1 2 3 1 1 2 3 2 1 3} finish_test |
Added test/selectF.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | # 2014-03-03 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file verifies that an OP_Copy operation is used instead of OP_SCopy # in a compound select in a case where the source register might be changed # before the copy is used. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix selectF do_execsql_test 1 { BEGIN TRANSACTION; CREATE TABLE t1(a, b, c); INSERT INTO "t1" VALUES(1,'one','I'); CREATE TABLE t2(d, e, f); INSERT INTO "t2" VALUES(5,'ten','XX'); INSERT INTO "t2" VALUES(6,NULL,NULL); CREATE INDEX i1 ON t1(b, a); COMMIT; } #explain_i { # SELECT * FROM t2 # UNION ALL # SELECT * FROM t1 WHERE a<5 # ORDER BY 2, 1 #} do_execsql_test 2 { SELECT * FROM t2 UNION ALL SELECT * FROM t1 WHERE a<5 ORDER BY 2, 1 } {6 {} {} 1 one I 5 ten XX} finish_test |
Changes to test/shell5.test.
︙ | ︙ | |||
280 281 282 283 284 285 286 287 288 289 290 | catchcmd test.db {.mode csv CREATE TABLE t1(a,b,c,d); .import shell5.csv t1 } sqlite3 db test.db db eval {SELECT hex(c) FROM t1 ORDER BY rowid} } {636F6C756D6E33 783320220D0A64617461222033 783320220A64617461222033} db close finish_test | > > > > > > > > > > > > > > > > > > > | 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | catchcmd test.db {.mode csv CREATE TABLE t1(a,b,c,d); .import shell5.csv t1 } sqlite3 db test.db db eval {SELECT hex(c) FROM t1 ORDER BY rowid} } {636F6C756D6E33 783320220D0A64617461222033 783320220A64617461222033} # Blank last column with \r\n line endings. do_test shell5-1.11 { set out [open shell5.csv w] fconfigure $out -translation binary puts $out "column1,column2,column3\r" puts $out "a,b, \r" puts $out "x,y,\r" puts $out "p,q,r\r" close $out catch {db close} forcedelete test.db catchcmd test.db {.mode csv .import shell5.csv t1 } sqlite3 db test.db db eval {SELECT *, '|' FROM t1} } {a b { } | x y {} | p q r |} db close finish_test |
Changes to test/tester.tcl.
︙ | ︙ | |||
1064 1065 1066 1067 1068 1069 1070 | # Set up colors for the different opcodes. Scheme is as follows: # # Red: Opcodes that write to a b-tree. # Blue: Opcodes that reposition or seek a cursor. # Green: The ResultRow opcode. # | > | | | | > > > > > > | 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 | # Set up colors for the different opcodes. Scheme is as follows: # # Red: Opcodes that write to a b-tree. # Blue: Opcodes that reposition or seek a cursor. # Green: The ResultRow opcode. # if { [catch {fconfigure stdout -mode}]==0 } { set R "\033\[31;1m" ;# Red fg set G "\033\[32;1m" ;# Green fg set B "\033\[34;1m" ;# Red fg set D "\033\[39;0m" ;# Default fg } else { set R "" set G "" set B "" set D "" } foreach opcode { Seek SeekGe SeekGt SeekLe SeekLt NotFound Last Rewind NoConflict Next Prev VNext VPrev VFilter } { set color($opcode) $B } foreach opcode {ResultRow} { |
︙ | ︙ |
Added test/tkt-4ef7e3cfca.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | # 2014-03-04 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file implements tests to verify that ticket [4ef7e3cfca] has been # fixed. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix tkt-4ef7e3cfca do_catchsql_test 1.1 { CREATE TABLE x(a); CREATE TRIGGER t AFTER INSERT ON x BEGIN SELECT * FROM x WHERE abc.a = 1; END; INSERT INTO x VALUES('assert'); } {1 {no such column: abc.a}} reset_db do_execsql_test 2.1 { CREATE TABLE w(a); CREATE TABLE x(a); CREATE TABLE y(a); CREATE TABLE z(a); INSERT INTO x(a) VALUES(5); INSERT INTO y(a) VALUES(10); CREATE TRIGGER t AFTER INSERT ON w BEGIN INSERT INTO z SELECT (SELECT x.a + y.a FROM y) FROM x; END; INSERT INTO w VALUES('incorrect'); } do_execsql_test 2.2 { SELECT * FROM z; } {15} reset_db do_execsql_test 3.1 { CREATE TABLE w(a); CREATE TABLE x(b); CREATE TABLE y(a); CREATE TABLE z(a); INSERT INTO x(b) VALUES(5); INSERT INTO y(a) VALUES(10); CREATE TRIGGER t AFTER INSERT ON w BEGIN INSERT INTO z SELECT (SELECT x.b + y.a FROM y) FROM x; END; INSERT INTO w VALUES('assert'); } do_execsql_test 3.2 { SELECT * FROM z; } {15} finish_test |
Added test/tkt-8c63ff0ec.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | # 2014-02-25 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Test cases to show that ticket [8c63ff0eca81a9132d8d67b31cd6ae9712a2cc6f] # "Incorrect query result on a UNION ALL" which was caused by using the same # temporary register in concurrent co-routines, as been fixed. # set testdir [file dirname $argv0] source $testdir/tester.tcl set ::testprefix tkt-8c63ff0ec do_execsql_test 1.1 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c, d, e); INSERT INTO t1 VALUES(1,20,30,40,50),(3,60,70,80,90); CREATE TABLE t2(x INTEGER PRIMARY KEY); INSERT INTO t2 VALUES(2); CREATE TABLE t3(z); INSERT INTO t3 VALUES(2),(2),(2),(2); SELECT a, b+c FROM t1 UNION ALL SELECT x, 5 FROM t2 JOIN t3 ON z=x WHERE x=2 ORDER BY a; } {1 50 2 5 2 5 2 5 2 5 3 130} do_execsql_test 1.2 { SELECT a, b+c+d FROM t1 UNION ALL SELECT x, 5 FROM t2 JOIN t3 ON z=x WHERE x=2 ORDER BY a; } {1 90 2 5 2 5 2 5 2 5 3 210} do_execsql_test 1.3 { SELECT a, b+c+d+e FROM t1 UNION ALL SELECT x, 5 FROM t2 JOIN t3 ON z=x WHERE x=2 ORDER BY a; } {1 140 2 5 2 5 2 5 2 5 3 300} finish_test |
Changes to test/unixexcl.test.
︙ | ︙ | |||
105 106 107 108 109 110 111 | sql2 { BEGIN; SELECT * FROM t1; } } {1 2} do_test unixexcl-3.$tn.3 { sql1 { PRAGMA wal_checkpoint; INSERT INTO t1 VALUES(3, 4); } | | | | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | sql2 { BEGIN; SELECT * FROM t1; } } {1 2} do_test unixexcl-3.$tn.3 { sql1 { PRAGMA wal_checkpoint; INSERT INTO t1 VALUES(3, 4); } } {0 5 5} do_test unixexcl-3.$tn.4 { sql2 { SELECT * FROM t1; } } {1 2} do_test unixexcl-3.$tn.5 { sql1 { SELECT * FROM t1; } } {1 2 3 4} do_test unixexcl-3.$tn.6 { sql2 { COMMIT; SELECT * FROM t1; } } {1 2 3 4} do_test unixexcl-3.$tn.7 { sql1 { PRAGMA wal_checkpoint; } } {0 7 7} } } finish_test |
Changes to test/walro.test.
︙ | ︙ | |||
28 29 30 31 32 33 34 | # ifcapable !wal { finish_test return } do_multiclient_test tn { | < < < > > > > | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | # ifcapable !wal { finish_test return } do_multiclient_test tn { # Close all connections and delete the database. # code1 { db close } code2 { db2 close } code3 { db3 close } forcedelete test.db forcedelete walro # Do not run tests with the connections in the same process. # if {$tn==2} continue foreach c {code1 code2 code3} { $c { sqlite3_shutdown sqlite3_config_uri 1 } } |
︙ | ︙ | |||
228 229 230 231 232 233 234 | forcedelete test.db #----------------------------------------------------------------------- # Test cases 2.* check that a read-only connection may read the # database file while a checkpoint operation is ongoing. # do_multiclient_test tn { | < < < > > > > | 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | forcedelete test.db #----------------------------------------------------------------------- # Test cases 2.* check that a read-only connection may read the # database file while a checkpoint operation is ongoing. # do_multiclient_test tn { # Close all connections and delete the database. # code1 { db close } code2 { db2 close } code3 { db3 close } forcedelete test.db forcedelete walro # Do not run tests with the connections in the same process. # if {$tn==2} continue foreach c {code1 code2 code3} { $c { sqlite3_shutdown sqlite3_config_uri 1 } } |
︙ | ︙ |
Changes to test/where.test.
︙ | ︙ | |||
233 234 235 236 237 238 239 | count {SELECT w FROM t1 WHERE w==97 AND w==97} } {97 2} do_test where-1.34 { count {SELECT w FROM t1 WHERE w+1==98} } {97 99} do_test where-1.35 { count {SELECT w FROM t1 WHERE w<3} | | | | 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | count {SELECT w FROM t1 WHERE w==97 AND w==97} } {97 2} do_test where-1.34 { count {SELECT w FROM t1 WHERE w+1==98} } {97 99} do_test where-1.35 { count {SELECT w FROM t1 WHERE w<3} } {1 2 3} do_test where-1.36 { count {SELECT w FROM t1 WHERE w<=3} } {1 2 3 4} do_test where-1.37 { count {SELECT w FROM t1 WHERE w+1<=4 ORDER BY w} } {1 2 3 99} do_test where-1.38 { count {SELECT (w) FROM t1 WHERE (w)>(97)} } {98 99 100 3} |
︙ | ︙ |
Changes to test/where2.test.
︙ | ︙ | |||
116 117 118 119 120 121 122 123 124 125 126 127 128 129 | } } {85 6 7396 7402 sort t1 i1xy} do_test where2-2.3 { queryplan { SELECT * FROM t1 WHERE rowid=85 AND x=6 AND y=7396 ORDER BY random(); } } {85 6 7396 7402 nosort t1 *} # Efficient handling of forward and reverse table scans. # do_test where2-3.1 { queryplan { SELECT * FROM t1 ORDER BY rowid LIMIT 2 | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | } } {85 6 7396 7402 sort t1 i1xy} do_test where2-2.3 { queryplan { SELECT * FROM t1 WHERE rowid=85 AND x=6 AND y=7396 ORDER BY random(); } } {85 6 7396 7402 nosort t1 *} # Ticket [65bdeb9739605cc22966f49208452996ff29a640] 2014-02-26 # Make sure "ORDER BY random" does not gets optimized out. # do_test where2-2.4 { db eval { CREATE TABLE x1(a INTEGER PRIMARY KEY, b DEFAULT 1); WITH RECURSIVE cnt(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM cnt WHERE x<50) INSERT INTO x1 SELECT x, 1 FROM cnt; CREATE TABLE x2(x INTEGER PRIMARY KEY); INSERT INTO x2 VALUES(1); } set sql {SELECT * FROM x1, x2 WHERE x=1 ORDER BY random()} set out1 [db eval $sql] set out2 [db eval $sql] set out3 [db eval $sql] expr {$out1!=$out2 && $out2!=$out3} } {1} do_execsql_test where2-2.5 { -- random() is not optimized out EXPLAIN SELECT * FROM x1, x2 WHERE x=1 ORDER BY random(); } {/ random/} do_execsql_test where2-2.5b { -- random() is not optimized out EXPLAIN SELECT * FROM x1, x2 WHERE x=1 ORDER BY random(); } {/ SorterOpen /} do_execsql_test where2-2.6 { -- other constant functions are optimized out EXPLAIN SELECT * FROM x1, x2 WHERE x=1 ORDER BY abs(5); } {~/ abs/} do_execsql_test where2-2.6b { -- other constant functions are optimized out EXPLAIN SELECT * FROM x1, x2 WHERE x=1 ORDER BY abs(5); } {~/ SorterOpen /} # Efficient handling of forward and reverse table scans. # do_test where2-3.1 { queryplan { SELECT * FROM t1 ORDER BY rowid LIMIT 2 |
︙ | ︙ |
Changes to test/where4.test.
︙ | ︙ | |||
67 68 69 70 71 72 73 | count {SELECT rowid FROM t1 WHERE w=1 AND +x IS NULL} } {2 3} do_test where4-1.5 { count {SELECT rowid FROM t1 WHERE w=1 AND x>0} } {1 2} do_test where4-1.6 { count {SELECT rowid FROM t1 WHERE w=1 AND x<9} | | | 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | count {SELECT rowid FROM t1 WHERE w=1 AND +x IS NULL} } {2 3} do_test where4-1.5 { count {SELECT rowid FROM t1 WHERE w=1 AND x>0} } {1 2} do_test where4-1.6 { count {SELECT rowid FROM t1 WHERE w=1 AND x<9} } {1 2} do_test where4-1.7 { count {SELECT rowid FROM t1 WHERE w=1 AND x IS NULL AND y=3} } {2 2} do_test where4-1.8 { count {SELECT rowid FROM t1 WHERE w=1 AND x IS NULL AND y>2} } {2 2} do_test where4-1.9 { |
︙ | ︙ | |||
94 95 96 97 98 99 100 | count {SELECT rowid FROM t1 WHERE w IS NULL AND x IS NULL} } {7 2} do_test where4-1.14 { count {SELECT rowid FROM t1 WHERE w IS NULL AND x IS NULL AND y IS NULL} } {7 2} do_test where4-1.15 { count {SELECT rowid FROM t1 WHERE w IS NULL AND x IS NULL AND y<0} | | | 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | count {SELECT rowid FROM t1 WHERE w IS NULL AND x IS NULL} } {7 2} do_test where4-1.14 { count {SELECT rowid FROM t1 WHERE w IS NULL AND x IS NULL AND y IS NULL} } {7 2} do_test where4-1.15 { count {SELECT rowid FROM t1 WHERE w IS NULL AND x IS NULL AND y<0} } {1} do_test where4-1.16 { count {SELECT rowid FROM t1 WHERE w IS NULL AND x IS NULL AND y>=0} } {1} do_test where4-2.1 { execsql {SELECT rowid FROM t1 ORDER BY w, x, y} } {7 2 1 4 3 6 5} |
︙ | ︙ |
Changes to test/where8.test.
︙ | ︙ | |||
83 84 85 86 87 88 89 | do_test where8-1.8 { # 18 searches. 9 on the index cursor and 9 on the table cursor. execsql_status2 { SELECT c FROM t1 WHERE a > 1 AND c LIKE 'I%' } } {II III IV IX 0 0 18} do_test where8-1.9 { execsql_status2 { SELECT c FROM t1 WHERE a >= 9 OR b <= 'eight' } | | | | 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | do_test where8-1.8 { # 18 searches. 9 on the index cursor and 9 on the table cursor. execsql_status2 { SELECT c FROM t1 WHERE a > 1 AND c LIKE 'I%' } } {II III IV IX 0 0 18} do_test where8-1.9 { execsql_status2 { SELECT c FROM t1 WHERE a >= 9 OR b <= 'eight' } } {IX X VIII 0 0 7} do_test where8-1.10 { execsql_status2 { SELECT c FROM t1 WHERE (a >= 9 AND c != 'X') OR b <= 'eight' } } {IX VIII 0 0 7} do_test where8-1.11 { execsql_status2 { SELECT c FROM t1 WHERE (a >= 4 AND a <= 6) OR b = 'nine' } } {IV V VI IX 0 0 10} |
︙ | ︙ |
Changes to test/without_rowid1.test.
︙ | ︙ | |||
194 195 196 197 198 199 200 | INSERT INTO t4 VALUES('i'); INSERT INTO t4 VALUES('ii'); INSERT INTO t4 VALUES('iii'); INSERT INTO t3 SELECT * FROM t4; SELECT * FROM t3; } {i ii iii} | | > > > > | > > > > > > > > > | > | 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | INSERT INTO t4 VALUES('i'); INSERT INTO t4 VALUES('ii'); INSERT INTO t4 VALUES('iii'); INSERT INTO t3 SELECT * FROM t4; SELECT * FROM t3; } {i ii iii} ############################################################################ # Ticket [c34d0557f740c450709d6e33df72d4f3f651a3cc] # Name resolution issue with WITHOUT ROWID # do_execsql_test 4.1 { CREATE TABLE t41(a PRIMARY KEY) WITHOUT ROWID; INSERT INTO t41 VALUES('abc'); CREATE TABLE t42(x); INSERT INTO t42 VALUES('xyz'); SELECT t42.rowid FROM t41, t42; } {1} do_execsql_test 4.2 { SELECT t42.rowid FROM t42, t41; } {1} finish_test |
Changes to test/zerodamage.test.
︙ | ︙ | |||
111 112 113 114 115 116 117 | do_test zerodamage-3.1 { db close sqlite3 db file:test.db?psow=FALSE -uri 1 db eval { UPDATE t1 SET y=randomblob(50) WHERE x=124; } file size test.db-wal | | | 111 112 113 114 115 116 117 118 119 120 121 | do_test zerodamage-3.1 { db close sqlite3 db file:test.db?psow=FALSE -uri 1 db eval { UPDATE t1 SET y=randomblob(50) WHERE x=124; } file size test.db-wal } {16800} } finish_test |
Changes to tool/mksqlite3c.tcl.
︙ | ︙ | |||
119 120 121 122 123 124 125 | wal.h whereInt.h } { set available_hdr($hdr) 1 } set available_hdr(sqliteInt.h) 0 set available_hdr(sqlite3session.h) 0 | < | 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | wal.h whereInt.h } { set available_hdr($hdr) 1 } set available_hdr(sqliteInt.h) 0 set available_hdr(sqlite3session.h) 0 # 78 stars used for comment formatting. set s78 \ {*****************************************************************************} # Insert a comment into the code # |
︙ | ︙ | |||
227 228 229 230 231 232 233 | # Process the source files. Process files containing commonly # used subroutines first in order to help the compiler find # inlining opportunities. # foreach file { | < | 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | # Process the source files. Process files containing commonly # used subroutines first in order to help the compiler find # inlining opportunities. # foreach file { sqliteInt.h global.c ctime.c status.c date.c os.c |
︙ | ︙ |
Added tool/vdbe_profile.tcl.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | #!/bin/tclsh # # Run this script in the same directory as the "vdbe_profile.out" file. # This script summarizes the results contained in that file. # if {![file readable vdbe_profile.out]} { error "run this script in the same directory as the vdbe_profile.out file" } set in [open vdbe_profile.out r] set stmt {} set allstmt {} while {![eof $in]} { set line [gets $in] if {$line==""} continue if {[regexp {^---- } $line]} { set stmt [lindex $line 1] if {[info exists cnt($stmt)]} { incr cnt($stmt) set firsttime 0 } else { set cnt($stmt) 1 set sql($stmt) {} set firsttime 1 lappend allstmt $stmt } continue; } if {[regexp {^-- } $line]} { if {$firsttime} { append sql($stmt) [string range $line 3 end]\n } continue } if {![regexp {^ *\d+ *\d+ *\d+ *\d+ ([A-Z].*)} $line all detail]} continue set c [lindex $line 0] set t [lindex $line 1] set addr [lindex $line 3] set op [lindex $line 4] if {[info exists opcnt($op)]} { incr opcnt($op) $c incr opcycle($op) $t } else { set opcnt($op) $c set opcycle($op) $t } if {[info exists stat($stmt,$addr)]} { foreach {cx tx detail} $stat($stmt,$addr) break incr cx $c incr tx $t set stat($stmt,$addr) [list $cx $tx $detail] } else { set stat($stmt,$addr) [list $c $t $detail] } } close $in foreach stmt $allstmt { puts "********************************************************************" puts [string trim $sql($stmt)] puts "Execution count: $cnt($stmt)" for {set i 0} {[info exists stat($stmt,$i)]} {incr i} { foreach {cx tx detail} $stat($stmt,$i) break if {$cx==0} { set ax 0 } else { set ax [expr {$tx/$cx}] } puts [format {%8d %12d %12d %4d %s} $cx $tx $ax $i $detail] } } puts "********************************************************************" puts "OPCODES:" foreach op [lsort [array names opcnt]] { set cx $opcnt($op) set tx $opcycle($op) if {$cx==0} { set ax 0 } else { set ax [expr {$tx/$cx}] } puts [format {%8d %12d %12d %s} $cx $tx $ax $op] } |