Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Add the vdbe-compress.tcl script which automatically refactors the sqlite3VdbeExec() routine to use less stack space. Use this script when constructing the amalgamation. (CVS 6704) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
7f43391831b03e53d967acee6ae02089 |
User & Date: | drh 2009-06-02 15:21:42.000 |
Context
2009-06-02
| ||
15:47 | Add a test case for ticket #3893 and ticket #3894. (CVS 6705) (check-in: 2472f6db95 user: drh tags: trunk) | |
15:21 | Add the vdbe-compress.tcl script which automatically refactors the sqlite3VdbeExec() routine to use less stack space. Use this script when constructing the amalgamation. (CVS 6704) (check-in: 7f43391831 user: drh tags: trunk) | |
2009-06-01
| ||
19:53 | Avoid allocating large objects on the stack in the incremental BLOB I/O interface. (CVS 6703) (check-in: ea7dfde700 user: drh tags: trunk) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
484 485 486 487 488 489 490 491 492 493 494 495 496 497 | # all that automatic generation. # .target_source: $(SRC) rm -rf tsrc mkdir -p tsrc cp $(SRC) tsrc rm tsrc/sqlite.h.in tsrc/parse.y touch .target_source sqlite3.c: .target_source $(TOP)/tool/mksqlite3c.tcl $(TCLSH_CMD) $(TOP)/tool/mksqlite3c.tcl # Rules to build the LEMON compiler generator # | > > | 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | # all that automatic generation. # .target_source: $(SRC) rm -rf tsrc mkdir -p tsrc cp $(SRC) tsrc rm tsrc/sqlite.h.in tsrc/parse.y $(TCLSH_CMD) $(TOP)/tool/vdbe-compress.tcl <tsrc/vdbe.c >vdbe.new mv vdbe.new tsrc/vdbe.c touch .target_source sqlite3.c: .target_source $(TOP)/tool/mksqlite3c.tcl $(TCLSH_CMD) $(TOP)/tool/mksqlite3c.tcl # Rules to build the LEMON compiler generator # |
︙ | ︙ |
Changes to main.mk.
︙ | ︙ | |||
319 320 321 322 323 324 325 | # This target creates a directory named "tsrc" and fills it with # copies of all of the C source code and header files needed to # build on the target system. Some of the C source code and header # files are automatically generated. This target takes care of # all that automatic generation. # | | > > | 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | # This target creates a directory named "tsrc" and fills it with # copies of all of the C source code and header files needed to # build on the target system. Some of the C source code and header # files are automatically generated. This target takes care of # all that automatic generation. # target_source: $(SRC) $(TOP)/tool/vdbe-compress.tcl rm -rf tsrc mkdir tsrc cp -f $(SRC) tsrc rm tsrc/sqlite.h.in tsrc/parse.y tclsh $(TOP)/tool/vdbe-compress.tcl <tsrc/vdbe.c >vdbe.new mv vdbe.new tsrc/vdbe.c touch target_source sqlite3.c: target_source $(TOP)/tool/mksqlite3c.tcl tclsh $(TOP)/tool/mksqlite3c.tcl cp sqlite3.c tclsqlite3.c cat $(TOP)/src/tclsqlite.c >>tclsqlite3.c |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.844 2009/06/02 15:21:42 drh Exp $ */ #include "sqliteInt.h" #include "vdbeInt.h" /* ** The following global variable is incremented every time a cursor ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test |
︙ | ︙ | |||
560 561 562 563 564 565 566 | #ifdef VDBE_PROFILE u64 start; /* CPU clock count at start of opcode */ int origPc; /* Program counter at start of opcode */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int nProgressOps = 0; /* Opcodes executed since progress callback. */ #endif | | < < | 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 | #ifdef VDBE_PROFILE u64 start; /* CPU clock count at start of opcode */ int origPc; /* Program counter at start of opcode */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int nProgressOps = 0; /* Opcodes executed since progress callback. */ #endif /*** INSERT STACK UNION HERE ***/ assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ assert( db->magic==SQLITE_MAGIC_BUSY ); sqlite3VdbeMutexArrayEnter(p); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ |
︙ | ︙ | |||
978 979 980 981 982 983 984 | ** Transfer the values of bound parameters P1..P1+P3-1 into registers ** P2..P2+P3-1. ** ** If the parameter is named, then its name appears in P4 and P3==1. ** The P4 value is used by sqlite3_bind_parameter_name(). */ case OP_Variable: { | > > > > > | | < | | | | | | > > > > | | | | 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 | ** Transfer the values of bound parameters P1..P1+P3-1 into registers ** P2..P2+P3-1. ** ** If the parameter is named, then its name appears in P4 and P3==1. ** The P4 value is used by sqlite3_bind_parameter_name(). */ case OP_Variable: { int p1; /* Variable to copy from */ int p2; /* Register to copy to */ int n; /* Number of values left to copy */ Mem *pVar; /* Value being transferred */ p1 = pOp->p1 - 1; p2 = pOp->p2; n = pOp->p3; assert( p1>=0 && p1+n<=p->nVar ); assert( p2>=1 && p2+n-1<=p->nMem ); assert( pOp->p4.z==0 || pOp->p3==1 ); while( n-- > 0 ){ pVar = &p->aVar[p1++]; if( sqlite3VdbeMemTooBig(pVar) ){ goto too_big; } pOut = &p->aMem[p2++]; sqlite3VdbeMemReleaseExternal(pOut); pOut->flags = MEM_Null; sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); UPDATE_MAX_BLOBSIZE(pOut); } break; } /* Opcode: Move P1 P2 P3 * * ** ** Move the values in register P1..P1+P3-1 over into ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are ** left holding a NULL. It is an error for register ranges ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. */ case OP_Move: { char *zMalloc; /* Holding variable for allocated memory */ int n; /* Number of registers left to copy */ int p1; /* Register to copy from */ int p2; /* Register to copy to */ n = pOp->p3; p1 = pOp->p1; p2 = pOp->p2; assert( n>0 && p1>0 && p2>0 ); assert( p1+n<=p2 || p2+n<=p1 ); pIn1 = &p->aMem[p1]; pOut = &p->aMem[p2]; while( n-- ){ assert( pOut<=&p->aMem[p->nMem] ); |
︙ | ︙ | |||
1209 1210 1211 1212 1213 1214 1215 | ** If either operand is NULL, the result is NULL. */ case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ | | > > > > > < | | | | | | | | | | | | < | | | | | | | | | | | | | | | 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 | ** If either operand is NULL, the result is NULL. */ case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ int flags; /* Combined MEM_* flags from both inputs */ i64 iA; /* Integer value of left operand */ i64 iB; /* Integer value of right operand */ double rA; /* Real value of left operand */ double rB; /* Real value of right operand */ applyNumericAffinity(pIn1); applyNumericAffinity(pIn2); flags = pIn1->flags | pIn2->flags; if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ iA = pIn1->u.i; iB = pIn2->u.i; switch( pOp->opcode ){ case OP_Add: iB += iA; break; case OP_Subtract: iB -= iA; break; case OP_Multiply: iB *= iA; break; case OP_Divide: { if( iA==0 ) goto arithmetic_result_is_null; /* Dividing the largest possible negative 64-bit integer (1<<63) by ** -1 returns an integer too large to store in a 64-bit data-type. On ** some architectures, the value overflows to (1<<63). On others, ** a SIGFPE is issued. The following statement normalizes this ** behavior so that all architectures behave as if integer ** overflow occurred. */ if( iA==-1 && iB==SMALLEST_INT64 ) iA = 1; iB /= iA; break; } default: { if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 ) iA = 1; iB %= iA; break; } } pOut->u.i = iB; MemSetTypeFlag(pOut, MEM_Int); }else{ rA = sqlite3VdbeRealValue(pIn1); rB = sqlite3VdbeRealValue(pIn2); switch( pOp->opcode ){ case OP_Add: rB += rA; break; case OP_Subtract: rB -= rA; break; case OP_Multiply: rB *= rA; break; case OP_Divide: { /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ if( rA==(double)0 ) goto arithmetic_result_is_null; rB /= rA; break; } default: { iA = rA; iB = rB; if( iA==0 ) goto arithmetic_result_is_null; if( iA==-1 ) iA = 1; rB = (double)(iB % iA); break; } } if( sqlite3IsNaN(rB) ){ goto arithmetic_result_is_null; } pOut->r = rB; MemSetTypeFlag(pOut, MEM_Real); if( (flags & MEM_Real)==0 ){ sqlite3VdbeIntegerAffinity(pOut); } } break; |
︙ | ︙ | |||
1320 1321 1322 1323 1324 1325 1326 | ** See also: AggStep and AggFinal */ case OP_Function: { int i; Mem *pArg; sqlite3_context ctx; sqlite3_value **apVal; | | > | 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 | ** See also: AggStep and AggFinal */ case OP_Function: { int i; Mem *pArg; sqlite3_context ctx; sqlite3_value **apVal; int n; n = pOp->p5; apVal = p->apArg; assert( apVal || n==0 ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pArg = &p->aMem[pOp->p2]; for(i=0; i<n; i++, pArg++){ |
︙ | ︙ | |||
1440 1441 1442 1443 1444 1445 1446 | ** Store the result in register P3. ** If either input is NULL, the result is NULL. */ case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ | | > | 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 | ** Store the result in register P3. ** If either input is NULL, the result is NULL. */ case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ i64 a; i64 b; if( (pIn1->flags | pIn2->flags) & MEM_Null ){ sqlite3VdbeMemSetNull(pOut); break; } a = sqlite3VdbeIntValue(pIn2); b = sqlite3VdbeIntValue(pIn1); |
︙ | ︙ | |||
1755 1756 1757 1758 1759 1760 1761 | ** only. The KeyInfo elements are used sequentially. ** ** The comparison is a sort comparison, so NULLs compare equal, ** NULLs are less than numbers, numbers are less than strings, ** and strings are less than blobs. */ case OP_Compare: { | | | > > | > > > > > > | < < | 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 | ** only. The KeyInfo elements are used sequentially. ** ** The comparison is a sort comparison, so NULLs compare equal, ** NULLs are less than numbers, numbers are less than strings, ** and strings are less than blobs. */ case OP_Compare: { int n; int i; int p1; int p2; const KeyInfo *pKeyInfo; int idx; CollSeq *pColl; /* Collating sequence to use on this term */ int bRev; /* True for DESCENDING sort order */ n = pOp->p3; pKeyInfo = pOp->p4.pKeyInfo; assert( n>0 ); assert( pKeyInfo!=0 ); p1 = pOp->p1; assert( p1>0 && p1+n<=p->nMem+1 ); p2 = pOp->p2; assert( p2>0 && p2+n<=p->nMem+1 ); for(i=0; i<n; i++){ idx = aPermute ? aPermute[i] : i; REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]); REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]); assert( i<pKeyInfo->nField ); pColl = pKeyInfo->aColl[i]; bRev = pKeyInfo->aSortOrder[i]; iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl); if( iCompare ){ |
︙ | ︙ | |||
1820 1821 1822 1823 1824 1825 1826 | ** ** If either P1 or P2 is nonzero (true) then the result is 1 (true) ** even if the other input is NULL. A NULL and false or two NULLs ** give a NULL output. */ case OP_And: /* same as TK_AND, in1, in2, out3 */ case OP_Or: { /* same as TK_OR, in1, in2, out3 */ | | > | 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 | ** ** If either P1 or P2 is nonzero (true) then the result is 1 (true) ** even if the other input is NULL. A NULL and false or two NULLs ** give a NULL output. */ case OP_And: /* same as TK_AND, in1, in2, out3 */ case OP_Or: { /* same as TK_OR, in1, in2, out3 */ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ if( pIn1->flags & MEM_Null ){ v1 = 2; }else{ v1 = sqlite3VdbeIntValue(pIn1)!=0; } if( pIn2->flags & MEM_Null ){ |
︙ | ︙ | |||
1979 1980 1981 1982 1983 1984 1985 | ** ** If the column contains fewer than P2 fields, then extract a NULL. Or, ** if the P4 argument is a P4_MEM use the value of the P4 argument as ** the result. */ case OP_Column: { int payloadSize; /* Number of bytes in the record */ | > | | | > > > > > > > > > | 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 | ** ** If the column contains fewer than P2 fields, then extract a NULL. Or, ** if the P4 argument is a P4_MEM use the value of the P4 argument as ** the result. */ case OP_Column: { int payloadSize; /* Number of bytes in the record */ i64 payloadSize64; /* Number of bytes in the record */ int p1; /* P1 value of the opcode */ int p2; /* column number to retrieve */ VdbeCursor *pC; /* The VDBE cursor */ char *zRec; /* Pointer to complete record-data */ BtCursor *pCrsr; /* The BTree cursor */ u32 *aType; /* aType[i] holds the numeric type of the i-th column */ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ int nField; /* number of fields in the record */ int len; /* The length of the serialized data for the column */ int i; /* Loop counter */ char *zData; /* Part of the record being decoded */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ u8 *zIdx; /* Index into header */ u8 *zEndHdr; /* Pointer to first byte after the header */ int offset; /* Offset into the data */ int szHdrSz; /* Size of the header size field at start of record */ int avail; /* Number of bytes of available data */ p1 = pOp->p1; p2 = pOp->p2; pC = 0; memset(&sMem, 0, sizeof(sMem)); assert( p1<p->nCursor ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pDest = &p->aMem[pOp->p3]; MemSetTypeFlag(pDest, MEM_Null); /* This block sets the variable payloadSize to be the total number of |
︙ | ︙ | |||
2028 2029 2030 2031 2032 2033 2034 | pCrsr = pC->pCursor; if( pC->nullRow ){ payloadSize = 0; }else if( pC->cacheStatus==p->cacheCtr ){ payloadSize = pC->payloadSize; zRec = (char*)pC->aRow; }else if( pC->isIndex ){ | < | 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 | pCrsr = pC->pCursor; if( pC->nullRow ){ payloadSize = 0; }else if( pC->cacheStatus==p->cacheCtr ){ payloadSize = pC->payloadSize; zRec = (char*)pC->aRow; }else if( pC->isIndex ){ sqlite3BtreeKeySize(pCrsr, &payloadSize64); payloadSize = (int)payloadSize64; }else{ sqlite3BtreeDataSize(pCrsr, (u32 *)&payloadSize); } nField = pC->nField; }else{ |
︙ | ︙ | |||
2064 2065 2066 2067 2068 2069 2070 | /* Read and parse the table header. Store the results of the parse ** into the record header cache fields of the cursor. */ aType = pC->aType; if( pC->cacheStatus==p->cacheCtr ){ aOffset = pC->aOffset; }else{ | < < < < < < > | 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 | /* Read and parse the table header. Store the results of the parse ** into the record header cache fields of the cursor. */ aType = pC->aType; if( pC->cacheStatus==p->cacheCtr ){ aOffset = pC->aOffset; }else{ assert(aType); avail = 0; pC->aOffset = aOffset = &aType[nField]; pC->payloadSize = payloadSize; pC->cacheStatus = p->cacheCtr; /* Figure out how many bytes are in the header */ if( zRec ){ zData = zRec; |
︙ | ︙ | |||
2148 2149 2150 2151 2152 2153 2154 | /* If we have read more header data than was contained in the header, ** or if the end of the last field appears to be past the end of the ** record, or if the end of the last field appears to be before the end ** of the record (when all fields present), then we must be dealing ** with a corrupt database. */ | | | 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 | /* If we have read more header data than was contained in the header, ** or if the end of the last field appears to be past the end of the ** record, or if the end of the last field appears to be before the end ** of the record (when all fields present), then we must be dealing ** with a corrupt database. */ if( (zIdx > zEndHdr)|| (offset > payloadSize) || (zIdx==zEndHdr && offset!=payloadSize) ){ rc = SQLITE_CORRUPT_BKPT; goto op_column_out; } } /* Get the column information. If aOffset[p2] is non-zero, then |
︙ | ︙ | |||
2217 2218 2219 2220 2221 2222 2223 | ** Apply affinities to a range of P2 registers starting with P1. ** ** P4 is a string that is P2 characters long. The nth character of the ** string indicates the column affinity that should be used for the nth ** memory cell in the range. */ case OP_Affinity: { | > > > > > | | | < < | 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 | ** Apply affinities to a range of P2 registers starting with P1. ** ** P4 is a string that is P2 characters long. The nth character of the ** string indicates the column affinity that should be used for the nth ** memory cell in the range. */ case OP_Affinity: { char *zAffinity; /* The affinity to be applied */ Mem *pData0; /* First register to which to apply affinity */ Mem *pLast; /* Last register to which to apply affinity */ Mem *pRec; /* Current register */ zAffinity = pOp->p4.z; pData0 = &p->aMem[pOp->p1]; pLast = &pData0[pOp->p2-1]; for(pRec=pData0; pRec<=pLast; pRec++){ ExpandBlob(pRec); applyAffinity(pRec, zAffinity[pRec-pData0], encoding); } break; } |
︙ | ︙ | |||
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 | ** ** The mapping from character to affinity is given by the SQLITE_AFF_ ** macros defined in sqliteInt.h. ** ** If P4 is NULL then all index fields have the affinity NONE. */ case OP_MakeRecord: { /* Assuming the record contains N fields, the record format looks ** like this: ** ** ------------------------------------------------------------------------ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | ** ------------------------------------------------------------------------ ** ** Data(0) is taken from register P1. Data(1) comes from register P1+1 ** and so froth. ** ** Each type field is a varint representing the serial type of the ** corresponding data element (see sqlite3VdbeSerialType()). The ** hdr-size field is also a varint which is the offset from the beginning ** of the record to data0. */ | > > > > > > > > > > > > > > > > < < | | | | < < < < < < < < < < | 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 | ** ** The mapping from character to affinity is given by the SQLITE_AFF_ ** macros defined in sqliteInt.h. ** ** If P4 is NULL then all index fields have the affinity NONE. */ case OP_MakeRecord: { u8 *zNewRecord; /* A buffer to hold the data for the new record */ Mem *pRec; /* The new record */ u64 nData; /* Number of bytes of data space */ int nHdr; /* Number of bytes of header space */ i64 nByte; /* Data space required for this record */ int nZero; /* Number of zero bytes at the end of the record */ int nVarint; /* Number of bytes in a varint */ u32 serial_type; /* Type field */ Mem *pData0; /* First field to be combined into the record */ Mem *pLast; /* Last field of the record */ int nField; /* Number of fields in the record */ char *zAffinity; /* The affinity string for the record */ int file_format; /* File format to use for encoding */ int i; /* Space used in zNewRecord[] */ int len; /* Length of a field */ /* Assuming the record contains N fields, the record format looks ** like this: ** ** ------------------------------------------------------------------------ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | ** ------------------------------------------------------------------------ ** ** Data(0) is taken from register P1. Data(1) comes from register P1+1 ** and so froth. ** ** Each type field is a varint representing the serial type of the ** corresponding data element (see sqlite3VdbeSerialType()). The ** hdr-size field is also a varint which is the offset from the beginning ** of the record to data0. */ nData = 0; /* Number of bytes of data space */ nHdr = 0; /* Number of bytes of header space */ nByte = 0; /* Data space required for this record */ nZero = 0; /* Number of zero bytes at the end of the record */ nField = pOp->p1; zAffinity = pOp->p4.z; assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 ); pData0 = &p->aMem[nField]; nField = pOp->p2; pLast = &pData0[nField-1]; file_format = p->minWriteFileFormat; /* Loop through the elements that will make up the record to figure ** out how much space is required for the new record. */ for(pRec=pData0; pRec<=pLast; pRec++){ if( zAffinity ){ applyAffinity(pRec, zAffinity[pRec-pData0], encoding); } if( pRec->flags&MEM_Zero && pRec->n>0 ){ sqlite3VdbeMemExpandBlob(pRec); } serial_type = sqlite3VdbeSerialType(pRec, file_format); |
︙ | ︙ | |||
2400 2401 2402 2403 2404 2405 2406 2407 | ** will be allocated and initialized. ** ** The statement is begun on the database file with index P1. The main ** database file has an index of 0 and the file used for temporary tables ** has an index of 1. */ case OP_Statement: { if( db->autoCommit==0 || db->activeVdbeCnt>1 ){ | > > | < | 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 | ** will be allocated and initialized. ** ** The statement is begun on the database file with index P1. The main ** database file has an index of 0 and the file used for temporary tables ** has an index of 1. */ case OP_Statement: { int i; Btree *pBt; if( db->autoCommit==0 || db->activeVdbeCnt>1 ){ i = pOp->p1; assert( i>=0 && i<db->nDb ); assert( db->aDb[i].pBt!=0 ); pBt = db->aDb[i].pBt; assert( sqlite3BtreeIsInTrans(pBt) ); assert( (p->btreeMask & (1<<i))!=0 ); if( p->iStatement==0 ){ assert( db->nStatement>=0 && db->nSavepoint>=0 ); |
︙ | ︙ | |||
2425 2426 2427 2428 2429 2430 2431 | /* Opcode: Savepoint P1 * * P4 * ** ** Open, release or rollback the savepoint named by parameter P4, depending ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. */ case OP_Savepoint: { | > > > > > > > > > | | | < | 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 | /* Opcode: Savepoint P1 * * P4 * ** ** Open, release or rollback the savepoint named by parameter P4, depending ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. */ case OP_Savepoint: { int p1; /* Value of P1 operand */ char *zName; /* Name of savepoint */ int nName; Savepoint *pNew; Savepoint *pSavepoint; Savepoint *pTmp; int iSavepoint; int ii; p1 = pOp->p1; zName = pOp->p4.z; /* Assert that the p1 parameter is valid. Also that if there is no open ** transaction, then there cannot be any savepoints. */ assert( db->pSavepoint==0 || db->autoCommit==0 ); assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); assert( db->pSavepoint || db->isTransactionSavepoint==0 ); assert( checkSavepointCount(db) ); if( p1==SAVEPOINT_BEGIN ){ if( db->writeVdbeCnt>0 ){ /* A new savepoint cannot be created if there are active write ** statements (i.e. open read/write incremental blob handles). */ sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " "SQL statements in progress"); rc = SQLITE_BUSY; }else{ nName = sqlite3Strlen30(zName); /* Create a new savepoint structure. */ pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); if( pNew ){ pNew->zName = (char *)&pNew[1]; memcpy(pNew->zName, zName, nName+1); |
︙ | ︙ | |||
2469 2470 2471 2472 2473 2474 2475 | /* Link the new savepoint into the database handle's list. */ pNew->pNext = db->pSavepoint; db->pSavepoint = pNew; } } }else{ | < | | | | 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 | /* Link the new savepoint into the database handle's list. */ pNew->pNext = db->pSavepoint; db->pSavepoint = pNew; } } }else{ iSavepoint = 0; /* Find the named savepoint. If there is no such savepoint, then an ** an error is returned to the user. */ for( pSavepoint = db->pSavepoint; pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); pSavepoint = pSavepoint->pNext ){ iSavepoint++; } if( !pSavepoint ){ sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); rc = SQLITE_ERROR; }else if( |
︙ | ︙ | |||
2514 2515 2516 2517 2518 2519 2520 | db->autoCommit = 0; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } db->isTransactionSavepoint = 0; rc = p->rc; }else{ | < | | 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 | db->autoCommit = 0; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } db->isTransactionSavepoint = 0; rc = p->rc; }else{ iSavepoint = db->nSavepoint - iSavepoint - 1; for(ii=0; ii<db->nDb; ii++){ rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ sqlite3ExpirePreparedStatements(db); sqlite3ResetInternalSchema(db, 0); } } /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all ** savepoints nested inside of the savepoint being operated on. */ while( db->pSavepoint!=pSavepoint ){ pTmp = db->pSavepoint; db->pSavepoint = pTmp->pNext; sqlite3DbFree(db, pTmp); db->nSavepoint--; } /* If it is a RELEASE, then destroy the savepoint being operated on too */ if( p1==SAVEPOINT_RELEASE ){ |
︙ | ︙ | |||
2562 2563 2564 2565 2566 2567 2568 | ** back any currently active btree transactions. If there are any active ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if ** there are active writing VMs or active VMs that use shared cache. ** ** This instruction causes the VM to halt. */ case OP_AutoCommit: { | | | | > > > < | 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 | ** back any currently active btree transactions. If there are any active ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if ** there are active writing VMs or active VMs that use shared cache. ** ** This instruction causes the VM to halt. */ case OP_AutoCommit: { int desiredAutoCommit; int rollback; int turnOnAC; desiredAutoCommit = pOp->p1; rollback = pOp->p2; turnOnAC = desiredAutoCommit && !db->autoCommit; assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); assert( desiredAutoCommit==1 || rollback==0 ); assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ if( turnOnAC && rollback && db->activeVdbeCnt>1 ){ /* If this instruction implements a ROLLBACK and other VMs are ** still running, and a transaction is active, return an error indicating ** that the other VMs must complete first. */ |
︙ | ︙ | |||
2641 2642 2643 2644 2645 2646 2647 | ** write transaction must be started before any changes can be made to the ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained ** on the file. ** ** If P2 is zero, then a read-lock is obtained on the database file. */ case OP_Transaction: { | | > | 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 | ** write transaction must be started before any changes can be made to the ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained ** on the file. ** ** If P2 is zero, then a read-lock is obtained on the database file. */ case OP_Transaction: { int i; Btree *pBt; i = pOp->p1; assert( i>=0 && i<db->nDb ); assert( (p->btreeMask & (1<<i))!=0 ); pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); if( rc==SQLITE_BUSY ){ |
︙ | ︙ | |||
2681 2682 2683 2684 2685 2686 2687 | ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { /* out2-prerelease */ int iMeta; | | | > > | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 | ** ** There must be a read-lock on the database (either a transaction ** must be started or there must be an open cursor) before ** executing this instruction. */ case OP_ReadCookie: { /* out2-prerelease */ int iMeta; int iDb; int iCookie; iDb = pOp->p1; iCookie = pOp->p3; assert( pOp->p3<SQLITE_N_BTREE_META ); if( iDb<0 ){ iDb = (-1*(iDb+1)); iCookie *= -1; } assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 ); |
︙ | ︙ | |||
2846 2847 2848 2849 2850 2851 2852 | ** in read/write mode. For a given table, there can be one or more read-only ** cursors or a single read/write cursor but not both. ** ** See also OpenRead. */ case OP_OpenRead: case OP_OpenWrite: { | | | | | | > | > > > > > | 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 | ** in read/write mode. For a given table, there can be one or more read-only ** cursors or a single read/write cursor but not both. ** ** See also OpenRead. */ case OP_OpenRead: case OP_OpenWrite: { int nField; KeyInfo *pKeyInfo; int i; int p2; int iDb; int wrFlag; Btree *pX; VdbeCursor *pCur; Db *pDb; int flags; nField = 0; pKeyInfo = 0; i = pOp->p1; p2 = pOp->p2; iDb = pOp->p3; assert( iDb>=0 && iDb<db->nDb ); assert( (p->btreeMask & (1<<iDb))!=0 ); pDb = &db->aDb[iDb]; pX = pDb->pBt; assert( pX!=0 ); if( pOp->opcode==OP_OpenWrite ){ wrFlag = 1; |
︙ | ︙ | |||
2901 2902 2903 2904 2905 2906 2907 | switch( rc ){ case SQLITE_BUSY: { p->pc = pc; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } case SQLITE_OK: { | | | 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 | switch( rc ){ case SQLITE_BUSY: { p->pc = pc; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } case SQLITE_OK: { flags = sqlite3BtreeFlags(pCur->pCursor); /* Sanity checking. Only the lower four bits of the flags byte should ** be used. Bit 3 (mask 0x08) is unpredictable. The lower 3 bits ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or ** 2 (zerodata for indices). If these conditions are not met it can ** only mean that we are dealing with a corrupt database file */ if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){ |
︙ | ︙ | |||
2958 2959 2960 2961 2962 2963 2964 | ** This opcode was once called OpenTemp. But that created ** confusion because the term "temp table", might refer either ** to a TEMP table at the SQL level, or to a table opened by ** this opcode. Then this opcode was call OpenVirtual. But ** that created confusion with the whole virtual-table idea. */ case OP_OpenEphemeral: { | | > | 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 | ** This opcode was once called OpenTemp. But that created ** confusion because the term "temp table", might refer either ** to a TEMP table at the SQL level, or to a table opened by ** this opcode. Then this opcode was call OpenVirtual. But ** that created confusion with the whole virtual-table idea. */ case OP_OpenEphemeral: { int i; VdbeCursor *pCx; static const int openFlags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TRANSIENT_DB; i = pOp->p1; assert( i>=0 ); pCx = allocateCursor(p, i, pOp->p2, -1, 1); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags, &pCx->pBt); if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
3027 3028 3029 3030 3031 3032 3033 | ** memory cell containing the row data is not overwritten until the ** pseudo table is closed (or a new row is inserted into it). ** ** P3 is the number of fields in the records that will be stored by ** the pseudo-table. */ case OP_OpenPseudo: { | | > > | 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 | ** memory cell containing the row data is not overwritten until the ** pseudo table is closed (or a new row is inserted into it). ** ** P3 is the number of fields in the records that will be stored by ** the pseudo-table. */ case OP_OpenPseudo: { int i; VdbeCursor *pCx; i = pOp->p1; assert( i>=0 ); pCx = allocateCursor(p, i, pOp->p3, -1, 0); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; pCx->pseudoTable = 1; pCx->ephemPseudoTable = (u8)pOp->p2; pCx->isTable = 1; |
︙ | ︙ | |||
3109 3110 3111 3112 3113 3114 3115 | ** ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt */ case OP_SeekLt: /* jump, in3 */ case OP_SeekLe: /* jump, in3 */ case OP_SeekGe: /* jump, in3 */ case OP_SeekGt: { /* jump, in3 */ | | > > > > > > < < < | 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 | ** ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt */ case OP_SeekLt: /* jump, in3 */ case OP_SeekLe: /* jump, in3 */ case OP_SeekGe: /* jump, in3 */ case OP_SeekGt: { /* jump, in3 */ int i; int res; int oc; VdbeCursor *pC; UnpackedRecord r; int nField; i64 iKey; /* The rowid we are to seek to */ i = pOp->p1; assert( i>=0 && i<p->nCursor ); assert( pOp->p2!=0 ); pC = p->apCsr[i]; assert( pC!=0 ); if( pC->pCursor!=0 ){ oc = pOp->opcode; pC->nullRow = 0; if( pC->isTable ){ /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so covert it. */ applyNumericAffinity(pIn3); iKey = sqlite3VdbeIntValue(pIn3); pC->rowidIsValid = 0; |
︙ | ︙ | |||
3180 3181 3182 3183 3184 3185 3186 | goto abort_due_to_error; } if( res==0 ){ pC->rowidIsValid = 1; pC->lastRowid = iKey; } }else{ | < | | 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 | goto abort_due_to_error; } if( res==0 ){ pC->rowidIsValid = 1; pC->lastRowid = iKey; } }else{ nField = pOp->p4.i; assert( pOp->p4type==P4_INT32 ); assert( nField>0 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)nField; if( oc==OP_SeekGt || oc==OP_SeekLe ){ r.flags = UNPACKED_INCRKEY; }else{ |
︙ | ︙ | |||
3248 3249 3250 3251 3252 3253 3254 | ** for P1 to move so that it points to the rowid given by P2. ** ** This is actually a deferred seek. Nothing actually happens until ** the cursor is used to read a record. That way, if no reads ** occur, no unnecessary I/O happens. */ case OP_Seek: { /* in2 */ | | > | 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 | ** for P1 to move so that it points to the rowid given by P2. ** ** This is actually a deferred seek. Nothing actually happens until ** the cursor is used to read a record. That way, if no reads ** occur, no unnecessary I/O happens. */ case OP_Seek: { /* in2 */ int i; VdbeCursor *pC; i = pOp->p1; assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC!=0 ); if( pC->pCursor!=0 ){ assert( pC->isTable ); pC->nullRow = 0; pC->movetoTarget = sqlite3VdbeIntValue(pIn2); |
︙ | ︙ | |||
3297 3298 3299 3300 3301 3302 3303 | ** to P2. If an entry does existing, fall through. The cursor is left ** pointing to the entry that matches. ** ** See also: Found, NotExists, IsUnique */ case OP_NotFound: /* jump, in3 */ case OP_Found: { /* jump, in3 */ | | | > > > > > > < < | 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 | ** to P2. If an entry does existing, fall through. The cursor is left ** pointing to the entry that matches. ** ** See also: Found, NotExists, IsUnique */ case OP_NotFound: /* jump, in3 */ case OP_Found: { /* jump, in3 */ int i; int alreadyExists; VdbeCursor *pC; int res; UnpackedRecord *pIdxKey; char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; i = pOp->p1; alreadyExists = 0; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pC = p->apCsr[i])->pCursor!=0 ){ assert( pC->isTable==0 ); assert( pIn3->flags & MEM_Blob ); pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, aTempRec, sizeof(aTempRec)); if( pIdxKey==0 ){ goto no_mem; |
︙ | ︙ | |||
3363 3364 3365 3366 3367 3368 3369 | ** See also: NotFound, NotExists, Found */ case OP_IsUnique: { /* jump, in3 */ u16 ii; VdbeCursor *pCx; BtCursor *pCrsr; u16 nField; | | > > > | 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 | ** See also: NotFound, NotExists, Found */ case OP_IsUnique: { /* jump, in3 */ u16 ii; VdbeCursor *pCx; BtCursor *pCrsr; u16 nField; Mem *aMem; UnpackedRecord r; /* B-Tree index search key */ i64 R; /* Rowid stored in register P3 */ aMem = &p->aMem[pOp->p4.i]; /* Assert that the values of parameters P1 and P4 are in range. */ assert( pOp->p4type==P4_INT32 ); assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); /* Find the index cursor. */ pCx = p->apCsr[pOp->p1]; |
︙ | ︙ | |||
3389 3390 3391 3392 3393 3394 3395 | pCrsr = 0; break; } } assert( (aMem[nField].flags & MEM_Null)==0 ); if( pCrsr!=0 ){ | < < < | 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 | pCrsr = 0; break; } } assert( (aMem[nField].flags & MEM_Null)==0 ); if( pCrsr!=0 ){ /* Populate the index search key. */ r.pKeyInfo = pCx->pKeyInfo; r.nField = nField + 1; r.flags = UNPACKED_PREFIX_SEARCH; r.aMem = aMem; /* Extract the value of R from register P3. */ |
︙ | ︙ | |||
3430 3431 3432 3433 3434 3435 3436 | ** operation assumes the key is an integer and that P1 is a table whereas ** NotFound assumes key is a blob constructed from MakeRecord and ** P1 is an index. ** ** See also: Found, NotFound, IsUnique */ case OP_NotExists: { /* jump, in3 */ | | > > > > | < | 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 | ** operation assumes the key is an integer and that P1 is a table whereas ** NotFound assumes key is a blob constructed from MakeRecord and ** P1 is an index. ** ** See also: Found, NotFound, IsUnique */ case OP_NotExists: { /* jump, in3 */ int i; VdbeCursor *pC; BtCursor *pCrsr; int res; u64 iKey; i = pOp->p1; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ res = 0; assert( pIn3->flags & MEM_Int ); assert( p->apCsr[i]->isTable ); iKey = intToKey(pIn3->u.i); rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); pC->lastRowid = pIn3->u.i; pC->rowidIsValid = res==0 ?1:0; pC->nullRow = 0; |
︙ | ︙ | |||
3496 3497 3498 3499 3500 3501 3502 | ** generated record number. No new record numbers are allowed to be less ** than this value. When this value reaches its maximum, a SQLITE_FULL ** error is generated. The P3 register is updated with the generated ** record number. This P3 mechanism is used to help implement the ** AUTOINCREMENT feature. */ case OP_NewRowid: { /* out2-prerelease */ | | | > > > > > > > > > > | 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 | ** generated record number. No new record numbers are allowed to be less ** than this value. When this value reaches its maximum, a SQLITE_FULL ** error is generated. The P3 register is updated with the generated ** record number. This P3 mechanism is used to help implement the ** AUTOINCREMENT feature. */ case OP_NewRowid: { /* out2-prerelease */ int i; i64 v; VdbeCursor *pC; int res; int rx; int cnt; i64 x; Mem *pMem; i = pOp->p1; v = 0; res = 0; rx = SQLITE_OK; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pC = p->apCsr[i])->pCursor==0 ){ /* The zero initialization above is all that is needed */ }else{ /* The next rowid or record number (different terms for the same ** thing) is obtained in a two-step algorithm. |
︙ | ︙ | |||
3535 3536 3537 3538 3539 3540 3541 | ** random number generator based on the RC4 algorithm. ** ** To promote locality of reference for repetitive inserts, the ** first few attempts at choosing a random rowid pick values just a little ** larger than the previous rowid. This has been shown experimentally ** to double the speed of the COPY operation. */ | < < | 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 | ** random number generator based on the RC4 algorithm. ** ** To promote locality of reference for repetitive inserts, the ** first few attempts at choosing a random rowid pick values just a little ** larger than the previous rowid. This has been shown experimentally ** to double the speed of the COPY operation. */ cnt = 0; if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) != BTREE_INTKEY ){ rc = SQLITE_CORRUPT_BKPT; goto abort_due_to_error; } assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 ); |
︙ | ︙ | |||
3578 3579 3580 3581 3582 3583 3584 | v++; } } } #ifndef SQLITE_OMIT_AUTOINCREMENT if( pOp->p3 ){ | < | 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 | v++; } } } #ifndef SQLITE_OMIT_AUTOINCREMENT if( pOp->p3 ){ assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */ pMem = &p->aMem[pOp->p3]; REGISTER_TRACE(pOp->p3, pMem); sqlite3VdbeMemIntegerify(pMem); assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ rc = SQLITE_FULL; |
︙ | ︙ | |||
3655 3656 3657 3658 3659 3660 3661 | ** value of register P2 will then change. Make sure this does not ** cause any problems.) ** ** This instruction only works on tables. The equivalent instruction ** for indices is OP_IdxInsert. */ case OP_Insert: { | | | < | > > > > > > > > > | 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 | ** value of register P2 will then change. Make sure this does not ** cause any problems.) ** ** This instruction only works on tables. The equivalent instruction ** for indices is OP_IdxInsert. */ case OP_Insert: { Mem *pData; Mem *pKey; i64 iKey; /* The integer ROWID or key for the record to be inserted */ int i; VdbeCursor *pC; int nZero; int seekResult; const char *zDb; const char *zTbl; int op; pData = &p->aMem[pOp->p2]; pKey = &p->aMem[pOp->p3]; i = pOp->p1; assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC!=0 ); assert( pC->pCursor!=0 || pC->pseudoTable ); assert( pKey->flags & MEM_Int ); assert( pC->isTable ); REGISTER_TRACE(pOp->p2, pData); |
︙ | ︙ | |||
3701 3702 3703 3704 3705 3706 3707 | if( !pC->pData ) goto no_mem; memcpy(pC->pData, pData->z, pC->nData); pC->pData[pC->nData] = 0; pC->pData[pC->nData+1] = 0; } pC->nullRow = 0; }else{ | < | | | | | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 | if( !pC->pData ) goto no_mem; memcpy(pC->pData, pData->z, pC->nData); pC->pData[pC->nData] = 0; pC->pData[pC->nData+1] = 0; } pC->nullRow = 0; }else{ seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); if( pData->flags & MEM_Zero ){ nZero = pData->u.nZero; }else{ nZero = 0; } sqlite3BtreeSetCachedRowid(pC->pCursor, 0); rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, pData->z, pData->n, nZero, pOp->p5 & OPFLAG_APPEND, seekResult ); } pC->rowidIsValid = 0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ zDb = db->aDb[pC->iDb].zName; zTbl = pOp->p4.z; op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); assert( pC->isTable ); db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); assert( pC->iDb>=0 ); } break; } |
︙ | ︙ | |||
3752 3753 3754 3755 3756 3757 3758 | ** ** If P4 is not NULL, then it is the name of the table that P1 is ** pointing to. The update hook will be invoked, if it exists. ** If P4 is not NULL then the P1 cursor must have been positioned ** using OP_NotFound prior to invoking this opcode. */ case OP_Delete: { | | | > > | 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 | ** ** If P4 is not NULL, then it is the name of the table that P1 is ** pointing to. The update hook will be invoked, if it exists. ** If P4 is not NULL then the P1 cursor must have been positioned ** using OP_NotFound prior to invoking this opcode. */ case OP_Delete: { int i; i64 iKey; VdbeCursor *pC; i = pOp->p1; iKey = 0; assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC!=0 ); assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ /* If the update-hook will be invoked, set iKey to the rowid of the ** row being deleted. |
︙ | ︙ | |||
3824 3825 3826 3827 3828 3829 3830 | ** it is found in the database file. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. */ case OP_RowKey: case OP_RowData: { | | > > < | 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 | ** it is found in the database file. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. */ case OP_RowKey: case OP_RowData: { int i; VdbeCursor *pC; BtCursor *pCrsr; u32 n; i64 n64; i = pOp->p1; pOut = &p->aMem[pOp->p2]; /* Note that RowKey and RowData are really exactly the same instruction */ assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC->isTable || pOp->opcode==OP_RowKey ); assert( pC->isIndex || pOp->opcode==OP_RowData ); assert( pC!=0 ); assert( pC->nullRow==0 ); assert( pC->pseudoTable==0 ); assert( pC->pCursor!=0 ); pCrsr = pC->pCursor; rc = sqlite3VdbeCursorMoveto(pC); if( rc ) goto abort_due_to_error; if( pC->isIndex ){ assert( !pC->isTable ); sqlite3BtreeKeySize(pCrsr, &n64); if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } n = (int)n64; }else{ |
︙ | ︙ | |||
3882 3883 3884 3885 3886 3887 3888 | ** P1 is currently point to. ** ** P1 can be either an ordinary table or a virtual table. There used to ** be a separate OP_VRowid opcode for use with virtual tables, but this ** one opcode now works for both table types. */ case OP_Rowid: { /* out2-prerelease */ | | > > > < < | 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 | ** P1 is currently point to. ** ** P1 can be either an ordinary table or a virtual table. There used to ** be a separate OP_VRowid opcode for use with virtual tables, but this ** one opcode now works for both table types. */ case OP_Rowid: { /* out2-prerelease */ int i; VdbeCursor *pC; i64 v; sqlite3_vtab *pVtab; const sqlite3_module *pModule; i = pOp->p1; assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC!=0 ); if( pC->nullRow ){ /* Do nothing so that reg[P2] remains NULL */ break; }else if( pC->deferredMoveto ){ v = pC->movetoTarget; }else if( pC->pseudoTable ){ v = keyToInt(pC->iKey); #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( pC->pVtabCursor ){ pVtab = pC->pVtabCursor->pVtab; pModule = pVtab->pModule; assert( pModule->xRowid ); if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = pModule->xRowid(pC->pVtabCursor, &v); sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = pVtab->zErrMsg; |
︙ | ︙ | |||
3933 3934 3935 3936 3937 3938 3939 | /* Opcode: NullRow P1 * * * * ** ** Move the cursor P1 to a null row. Any OP_Column operations ** that occur while the cursor is on the null row will always ** write a NULL. */ case OP_NullRow: { | | > | > | 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 | /* Opcode: NullRow P1 * * * * ** ** Move the cursor P1 to a null row. Any OP_Column operations ** that occur while the cursor is on the null row will always ** write a NULL. */ case OP_NullRow: { int i; VdbeCursor *pC; i = pOp->p1; assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC!=0 ); pC->nullRow = 1; pC->rowidIsValid = 0; if( pC->pCursor ){ sqlite3BtreeClearCursor(pC->pCursor); } break; } /* Opcode: Last P1 P2 * * * ** ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the last entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Last: { /* jump */ int i; VdbeCursor *pC; BtCursor *pCrsr; int res; i = pOp->p1; assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC!=0 ); pCrsr = pC->pCursor; assert( pCrsr!=0 ); rc = sqlite3BtreeLast(pCrsr, &res); pC->nullRow = (u8)res; |
︙ | ︙ | |||
4007 4008 4009 4010 4011 4012 4013 | ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Rewind: { /* jump */ | | > | 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 | ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. ** If P2 is 0 or if the table or index is not empty, fall through ** to the following instruction. */ case OP_Rewind: { /* jump */ int i; VdbeCursor *pC; BtCursor *pCrsr; int res; i = pOp->p1; assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC!=0 ); if( (pCrsr = pC->pCursor)!=0 ){ rc = sqlite3BtreeFirst(pCrsr, &res); pC->atFirst = res==0 ?1:0; pC->deferredMoveto = 0; |
︙ | ︙ | |||
4096 4097 4098 4099 4100 4101 4102 | ** P3 is a flag that provides a hint to the b-tree layer that this ** insert is likely to be an append. ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_IdxInsert: { /* in2 */ | | > > > > | | | > > | 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 | ** P3 is a flag that provides a hint to the b-tree layer that this ** insert is likely to be an append. ** ** This instruction only works for indices. The equivalent instruction ** for tables is OP_Insert. */ case OP_IdxInsert: { /* in2 */ int i; VdbeCursor *pC; BtCursor *pCrsr; int nKey; const char *zKey; i = pOp->p1; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); assert( pIn2->flags & MEM_Blob ); if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc==SQLITE_OK ){ nKey = pIn2->n; zKey = pIn2->z; rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) ); assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; } } break; } /* Opcode: IdxDelete P1 P2 P3 * * ** ** The content of P3 registers starting at register P2 form ** an unpacked index key. This opcode removes that entry from the ** index opened by cursor P1. */ case OP_IdxDelete: { int i; VdbeCursor *pC; BtCursor *pCrsr; i = pOp->p1; assert( pOp->p3>0 ); assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 ); assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ int res; UnpackedRecord r; |
︙ | ︙ | |||
4158 4159 4160 4161 4162 4163 4164 | ** Write into register P2 an integer which is the last entry in the record at ** the end of the index key pointed to by cursor P1. This integer should be ** the rowid of the table entry to which this index entry points. ** ** See also: Rowid, MakeRecord. */ case OP_IdxRowid: { /* out2-prerelease */ | | | > < | 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 | ** Write into register P2 an integer which is the last entry in the record at ** the end of the index key pointed to by cursor P1. This integer should be ** the rowid of the table entry to which this index entry points. ** ** See also: Rowid, MakeRecord. */ case OP_IdxRowid: { /* out2-prerelease */ int i; BtCursor *pCrsr; VdbeCursor *pC; i64 rowid; i = pOp->p1; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ rc = sqlite3VdbeCursorMoveto(pC); if( rc ) goto abort_due_to_error; assert( pC->deferredMoveto==0 ); assert( pC->isTable==0 ); if( !pC->nullRow ){ rc = sqlite3VdbeIdxRowid(pCrsr, &rowid); if( rc!=SQLITE_OK ){ |
︙ | ︙ | |||
4211 4212 4213 4214 4215 4216 4217 | ** Otherwise fall through to the next instruction. ** ** If P5 is non-zero then the key value is increased by an epsilon prior ** to the comparison. This makes the opcode work like IdxLE. */ case OP_IdxLT: /* jump, in3 */ case OP_IdxGE: { /* jump, in3 */ | | > > > < < | 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 | ** Otherwise fall through to the next instruction. ** ** If P5 is non-zero then the key value is increased by an epsilon prior ** to the comparison. This makes the opcode work like IdxLE. */ case OP_IdxLT: /* jump, in3 */ case OP_IdxGE: { /* jump, in3 */ int i; VdbeCursor *pC; int res; UnpackedRecord r; i = pOp->p1; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); if( (pC = p->apCsr[i])->pCursor!=0 ){ assert( pC->deferredMoveto==0 ); assert( pOp->p5==0 || pOp->p5==1 ); assert( pOp->p4type==P4_INT32 ); r.pKeyInfo = pC->pKeyInfo; r.nField = (u16)pOp->p4.i; if( pOp->p5 ){ r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID; |
︙ | ︙ | |||
4267 4268 4269 4270 4271 4272 4273 | ** If AUTOVACUUM is disabled then a zero is stored in register P2. ** ** See also: Clear */ case OP_Destroy: { /* out2-prerelease */ int iMoved; int iCnt; | < > > | | | 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 | ** If AUTOVACUUM is disabled then a zero is stored in register P2. ** ** See also: Clear */ case OP_Destroy: { /* out2-prerelease */ int iMoved; int iCnt; Vdbe *pVdbe; int iDb; #ifndef SQLITE_OMIT_VIRTUALTABLE iCnt = 0; for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){ iCnt++; } } #else iCnt = db->activeVdbeCnt; #endif if( iCnt>1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; }else{ iDb = pOp->p3; assert( iCnt==1 ); assert( (p->btreeMask & (1<<iDb))!=0 ); rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = iMoved; #ifndef SQLITE_OMIT_AUTOVACUUM if( rc==SQLITE_OK && iMoved!=0 ){ |
︙ | ︙ | |||
4316 4317 4318 4319 4320 4321 4322 | ** count is incremented by the number of rows in the table being cleared. ** If P3 is greater than zero, then the value stored in register P3 is ** also incremented by the number of rows in the table being cleared. ** ** See also: Destroy */ case OP_Clear: { | | > > | 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 | ** count is incremented by the number of rows in the table being cleared. ** If P3 is greater than zero, then the value stored in register P3 is ** also incremented by the number of rows in the table being cleared. ** ** See also: Destroy */ case OP_Clear: { int nChange; nChange = 0; assert( (p->btreeMask & (1<<pOp->p2))!=0 ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) ); if( pOp->p3 ){ p->nChange += nChange; if( pOp->p3>0 ){ |
︙ | ︙ | |||
4354 4355 4356 4357 4358 4359 4360 | ** P1>1. Write the root page number of the new table into ** register P2. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: /* out2-prerelease */ case OP_CreateTable: { /* out2-prerelease */ | | > > | 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 | ** P1>1. Write the root page number of the new table into ** register P2. ** ** See documentation on OP_CreateTable for additional information. */ case OP_CreateIndex: /* out2-prerelease */ case OP_CreateTable: { /* out2-prerelease */ int pgno; int flags; Db *pDb; pgno = 0; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (1<<pOp->p1))!=0 ); pDb = &db->aDb[pOp->p1]; assert( pDb->pBt!=0 ); if( pOp->opcode==OP_CreateTable ){ /* flags = BTREE_INTKEY; */ flags = BTREE_LEAFDATA|BTREE_INTKEY; |
︙ | ︙ | |||
4386 4387 4388 4389 4390 4391 4392 | ** is false, the SQLITE_MASTER table is only parsed if the rest of the ** schema is already loaded into the symbol table. ** ** This opcode invokes the parser to create a new virtual machine, ** then runs the new virtual machine. It is thus a re-entrant opcode. */ case OP_ParseSchema: { | > > > > > | | 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 | ** is false, the SQLITE_MASTER table is only parsed if the rest of the ** schema is already loaded into the symbol table. ** ** This opcode invokes the parser to create a new virtual machine, ** then runs the new virtual machine. It is thus a re-entrant opcode. */ case OP_ParseSchema: { int iDb; const char *zMaster; char *zSql; InitData initData; iDb = pOp->p1; assert( iDb>=0 && iDb<db->nDb ); /* If pOp->p2 is 0, then this opcode is being executed to read a ** single row, for example the row corresponding to a new index ** created by this VDBE, from the sqlite_master table. It only ** does this if the corresponding in-memory schema is currently ** loaded. Otherwise, the new index definition can be loaded along |
︙ | ︙ | |||
4413 4414 4415 4416 4417 4418 4419 | ** will not be reloaded becuase the db->init.busy flag is set. This ** can result in a "no such table: sqlite_master" or "malformed ** database schema" error being returned to the user. */ assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); sqlite3BtreeEnterAll(db); if( pOp->p2 || DbHasProperty(db, iDb, DB_SchemaLoaded) ){ | | < < | 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 | ** will not be reloaded becuase the db->init.busy flag is set. This ** can result in a "no such table: sqlite_master" or "malformed ** database schema" error being returned to the user. */ assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); sqlite3BtreeEnterAll(db); if( pOp->p2 || DbHasProperty(db, iDb, DB_SchemaLoaded) ){ zMaster = SCHEMA_TABLE(iDb); initData.db = db; initData.iDb = pOp->p1; initData.pzErrMsg = &p->zErrMsg; zSql = sqlite3MPrintf(db, "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s", db->aDb[iDb].zName, zMaster, pOp->p4.z); if( zSql==0 ){ |
︙ | ︙ | |||
4452 4453 4454 4455 4456 4457 4458 | /* Opcode: LoadAnalysis P1 * * * * ** ** Read the sqlite_stat1 table for database P1 and load the content ** of that table into the internal index hash table. This will cause ** the analysis to be used when preparing all subsequent queries. */ case OP_LoadAnalysis: { | < | | | 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 | /* Opcode: LoadAnalysis P1 * * * * ** ** Read the sqlite_stat1 table for database P1 and load the content ** of that table into the internal index hash table. This will cause ** the analysis to be used when preparing all subsequent queries. */ case OP_LoadAnalysis: { assert( pOp->p1>=0 && pOp->p1<db->nDb ); rc = sqlite3AnalysisLoad(db, pOp->p1); break; } #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */ /* Opcode: DropTable P1 * * P4 * ** ** Remove the internal (in-memory) data structures that describe |
︙ | ︙ | |||
4632 4633 4634 4635 4636 4637 4638 | ** (b) when P4==-1 there is no need to insert the value, as it will ** never be tested for, and (c) when a value that is part of set X is ** inserted, there is no need to search to see if the same value was ** previously inserted as part of set X (only if it was previously ** inserted as part of some other set). */ case OP_RowSetTest: { /* jump, in1, in3 */ | > > > | < | 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 | ** (b) when P4==-1 there is no need to insert the value, as it will ** never be tested for, and (c) when a value that is part of set X is ** inserted, there is no need to search to see if the same value was ** previously inserted as part of set X (only if it was previously ** inserted as part of some other set). */ case OP_RowSetTest: { /* jump, in1, in3 */ int iSet; int exists; iSet = pOp->p4.i; assert( pIn3->flags&MEM_Int ); /* If there is anything other than a rowset object in memory cell P1, ** delete it now and initialize P1 with an empty rowset */ if( (pIn1->flags & MEM_RowSet)==0 ){ sqlite3VdbeMemSetRowSet(pIn1); if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; } assert( pOp->p4type==P4_INT32 ); assert( iSet==-1 || iSet>=0 ); if( iSet ){ exists = sqlite3RowSetTest(pIn1->u.pRowSet, (u8)(iSet>=0 ? iSet & 0xf : 0xff), pIn3->u.i); if( exists ){ pc = pOp->p2 - 1; break; } |
︙ | ︙ | |||
4670 4671 4672 4673 4674 4675 4676 | /* Opcode: ContextPush * * * ** ** Save the current Vdbe context such that it can be restored by a ContextPop ** opcode. The context stores the last insert row id, the last statement change ** count, and the current statement change count. */ case OP_ContextPush: { | | > | 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 | /* Opcode: ContextPush * * * ** ** Save the current Vdbe context such that it can be restored by a ContextPop ** opcode. The context stores the last insert row id, the last statement change ** count, and the current statement change count. */ case OP_ContextPush: { int i; Context *pContext; i = p->contextStackTop++; assert( i>=0 ); /* FIX ME: This should be allocated as part of the vdbe at compile-time */ if( i>=p->contextStackDepth ){ p->contextStackDepth = i+1; p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack, sizeof(Context)*(i+1)); if( p->contextStack==0 ) goto no_mem; |
︙ | ︙ | |||
4694 4695 4696 4697 4698 4699 4700 | /* Opcode: ContextPop * * * ** ** Restore the Vdbe context to the state it was in when contextPush was last ** executed. The context stores the last insert row id, the last statement ** change count, and the current statement change count. */ case OP_ContextPop: { | > | | 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 | /* Opcode: ContextPop * * * ** ** Restore the Vdbe context to the state it was in when contextPush was last ** executed. The context stores the last insert row id, the last statement ** change count, and the current statement change count. */ case OP_ContextPop: { Context *pContext; pContext = &p->contextStack[--p->contextStackTop]; assert( p->contextStackTop>=0 ); db->lastRowid = pContext->lastRowid; p->nChange = pContext->nChange; break; } #endif /* #ifndef SQLITE_OMIT_TRIGGER */ |
︙ | ︙ | |||
4777 4778 4779 4780 4781 4782 4783 | ** structure that specifies the function. Use register ** P3 as the accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ case OP_AggStep: { | | > | 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 | ** structure that specifies the function. Use register ** P3 as the accumulator. ** ** The P5 arguments are taken from register P2 and its ** successors. */ case OP_AggStep: { int n; int i; Mem *pMem, *pRec; sqlite3_context ctx; sqlite3_value **apVal; n = pOp->p5; assert( n>=0 ); pRec = &p->aMem[pOp->p2]; apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ apVal[i] = pRec; storeTypeInfo(pRec, encoding); |
︙ | ︙ | |||
4918 4919 4920 4921 4922 4923 4924 | ** ** P2 contains the root-page of the table to lock. ** ** P4 contains a pointer to the name of the table being locked. This is only ** used to generate an error message if the lock cannot be obtained. */ case OP_TableLock: { | > > > | | | 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 | ** ** P2 contains the root-page of the table to lock. ** ** P4 contains a pointer to the name of the table being locked. This is only ** used to generate an error message if the lock cannot be obtained. */ case OP_TableLock: { int p1; u8 isWriteLock; p1 = pOp->p1; isWriteLock = (u8)pOp->p3; assert( p1>=0 && p1<db->nDb ); assert( (p->btreeMask & (1<<p1))!=0 ); assert( isWriteLock==0 || isWriteLock==1 ); rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); if( (rc&0xFF)==SQLITE_LOCKED ){ const char *z = pOp->p4.z; sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); |
︙ | ︙ | |||
4943 4944 4945 4946 4947 4948 4949 | ** xBegin method for that table. ** ** Also, whether or not P4 is set, check that this is not being called from ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { | | > | 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 | ** xBegin method for that table. ** ** Also, whether or not P4 is set, check that this is not being called from ** within a callback to a virtual table xSync() method. If it is, the error ** code will be set to SQLITE_LOCKED. */ case OP_VBegin: { sqlite3_vtab *pVtab; pVtab = pOp->p4.pVtab; rc = sqlite3VtabBegin(db, pVtab); if( pVtab ){ sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = pVtab->zErrMsg; pVtab->zErrMsg = 0; } break; |
︙ | ︙ | |||
4988 4989 4990 4991 4992 4993 4994 | /* Opcode: VOpen P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** P1 is a cursor number. This opcode opens a cursor to the virtual ** table and stores that cursor in P1. */ case OP_VOpen: { | | | < | | > > > > | 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 | /* Opcode: VOpen P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** P1 is a cursor number. This opcode opens a cursor to the virtual ** table and stores that cursor in P1. */ case OP_VOpen: { VdbeCursor *pCur; sqlite3_vtab_cursor *pVtabCursor; sqlite3_vtab *pVtab; sqlite3_module *pModule; pCur = 0; pVtabCursor = 0; pVtab = pOp->p4.pVtab; pModule = (sqlite3_module *)pVtab->pModule; assert(pVtab && pModule); if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = pModule->xOpen(pVtab, &pVtabCursor); sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = pVtab->zErrMsg; pVtab->zErrMsg = 0; if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; |
︙ | ︙ | |||
5042 5043 5044 5045 5046 5047 5048 | ** ** A jump is made to P2 if the result set after filtering would be empty. */ case OP_VFilter: { /* jump */ int nArg; int iQuery; const sqlite3_module *pModule; | | | < | > > > > > > | < | | 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 | ** ** A jump is made to P2 if the result set after filtering would be empty. */ case OP_VFilter: { /* jump */ int nArg; int iQuery; const sqlite3_module *pModule; Mem *pQuery; Mem *pArgc; sqlite3_vtab_cursor *pVtabCursor; sqlite3_vtab *pVtab; VdbeCursor *pCur; int res; int i; Mem **apArg; pQuery = &p->aMem[pOp->p3]; pArgc = &pQuery[1]; pCur = p->apCsr[pOp->p1]; REGISTER_TRACE(pOp->p3, pQuery); assert( pCur->pVtabCursor ); pVtabCursor = pCur->pVtabCursor; pVtab = pVtabCursor->pVtab; pModule = pVtab->pModule; /* Grab the index number and argc parameters */ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); nArg = (int)pArgc->u.i; iQuery = (int)pQuery->u.i; /* Invoke the xFilter method */ { res = 0; apArg = p->apArg; for(i = 0; i<nArg; i++){ apArg[i] = &pArgc[i+1]; storeTypeInfo(apArg[i], 0); } if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; sqlite3VtabLock(pVtab); |
︙ | ︙ | |||
5164 5165 5166 5167 5168 5169 5170 5171 | ** jump to instruction P2. Or, if the virtual table has reached ** the end of its result set, then fall through to the next instruction. */ case OP_VNext: { /* jump */ sqlite3_vtab *pVtab; const sqlite3_module *pModule; int res = 0; | > | | 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 | ** jump to instruction P2. Or, if the virtual table has reached ** the end of its result set, then fall through to the next instruction. */ case OP_VNext: { /* jump */ sqlite3_vtab *pVtab; const sqlite3_module *pModule; int res = 0; VdbeCursor *pCur; pCur = p->apCsr[pOp->p1]; assert( pCur->pVtabCursor ); if( pCur->nullRow ){ break; } pVtab = pCur->pVtabCursor->pVtab; pModule = pVtab->pModule; assert( pModule->xNext ); |
︙ | ︙ | |||
5210 5211 5212 5213 5214 5215 5216 | /* Opcode: VRename P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** in register P1 is passed as the zName argument to the xRename method. */ case OP_VRename: { | | > > > | | 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 | /* Opcode: VRename P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** in register P1 is passed as the zName argument to the xRename method. */ case OP_VRename: { sqlite3_vtab *pVtab; Mem *pName; pVtab = pOp->p4.pVtab; pName = &p->aMem[pOp->p1]; assert( pVtab->pModule->xRename ); REGISTER_TRACE(pOp->p1, pName); Stringify(pName, encoding); if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; sqlite3VtabLock(pVtab); |
︙ | ︙ | |||
5255 5256 5257 5258 5259 5260 5261 | ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. */ case OP_VUpdate: { | | > > > > > > > > | | < < | | | 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 | ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. */ case OP_VUpdate: { sqlite3_vtab *pVtab; sqlite3_module *pModule; int nArg; int i; sqlite_int64 rowid; Mem **apArg; Mem *pX; pVtab = pOp->p4.pVtab; pModule = (sqlite3_module *)pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( pModule->xUpdate==0 ){ sqlite3SetString(&p->zErrMsg, db, "read-only table"); rc = SQLITE_ERROR; }else{ apArg = p->apArg; pX = &p->aMem[pOp->p3]; for(i=0; i<nArg; i++){ storeTypeInfo(pX, 0); apArg[i] = pX; pX++; } if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; sqlite3VtabLock(pVtab); |
︙ | ︙ | |||
5296 5297 5298 5299 5300 5301 5302 | #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: Pagecount P1 P2 * * * ** ** Write the current number of pages in database P1 to memory cell P2. */ case OP_Pagecount: { /* out2-prerelease */ | | | > > > > | | 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 | #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* Opcode: Pagecount P1 P2 * * * ** ** Write the current number of pages in database P1 to memory cell P2. */ case OP_Pagecount: { /* out2-prerelease */ int p1; int nPage; Pager *pPager; p1 = pOp->p1; pPager = sqlite3BtreePager(db->aDb[p1].pBt); rc = sqlite3PagerPagecount(pPager, &nPage); if( rc==SQLITE_OK ){ pOut->flags = MEM_Int; pOut->u.i = nPage; } break; } #endif #ifndef SQLITE_OMIT_TRACE /* Opcode: Trace * * * P4 * ** ** If tracing is enabled (by the sqlite3_trace()) interface, then ** the UTF-8 string contained in P4 is emitted on the trace callback. */ case OP_Trace: { char *zTrace; zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); if( zTrace ){ if( db->xTrace ){ db->xTrace(db->pTraceArg, zTrace); } #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); |
︙ | ︙ |
Added tool/vdbe-compress.tcl.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | #!/usr/bin/tcl # # This script makes modifications to the vdbe.c source file which reduce # the amount of stack space required by the sqlite3VdbeExec() routine. # # The modifications performed by this script are optional. The vdbe.c # source file will compile correctly with and without the modifications # performed by this script. And all routines within vdbe.c will compute # the same result. The modifications made by this script merely help # the C compiler to generate code for sqlite3VdbeExec() that uses less # stack space. # # Script usage: # # mv vdbe.c vdbe.c.template # tclsh vdbe-compress.tcl <vdbe.c.template >vdbe.c # # Modifications made: # # All modifications are within the sqlite3VdbeExec() function. The # modifications seek to reduce the amount of stack space allocated by # this routine by moving local variable declarations out of individual # opcode implementations and into a single large union. The union contains # a separate structure for each opcode and that structure contains the # local variables used by that opcode. In this way, the total amount # of stack space required by sqlite3VdbeExec() is reduced from the # sum of all local variables to the maximum of the local variable space # required for any single opcode. # # In order to be recognized by this script, local variables must appear # on the first line after the open curly-brace that begins a new opcode # implementation. Local variables must not have initializers, though they # may be commented. # # The union definition is inserted in place of a special marker comment # in the preamble to the sqlite3VdbeExec() implementation. # ############################################################################# # set beforeUnion {} ;# C code before union set unionDef {} ;# C code of the union set afterUnion {} ;# C code after the union set sCtr 0 ;# Context counter # Read program text up to the spot where the union should be # inserted. # while {![eof stdin]} { set line [gets stdin] if {[regexp {INSERT STACK UNION HERE} $line]} break append beforeUnion $line\n } # Process the remaining text. Build up the union definition as we go. # set vlist {} set seenDecl 0 set namechars {abcdefghijklmnopqrstuvwxyz} set nnc [string length $namechars] while {![eof stdin]} { set line [gets stdin] if {[regexp "^case (OP_\\w+): \173" $line all operator]} { append afterUnion $line\n set vlist {} while {![eof stdin]} { set line [gets stdin] if {[regexp {^ +(const )?\w+ \*?(\w+)(\[.*\])?;} $line \ all constKeyword vname notused1]} { if {!$seenDecl} { set sname {} append sname [string index $namechars [expr {$sCtr/$nnc}]] append sname [string index $namechars [expr {$sCtr%$nnc}]] incr sCtr append unionDef " struct ${operator}_stack_vars \173\n" append afterUnion \ "#if 0 /* local variables moved into u.$sname */\n" set seenDecl 1 } append unionDef " $line\n" append afterUnion $line\n lappend vlist $vname } else { break } } if {$seenDecl} { append unionDef " \175 $sname;\n" append afterUnion "#endif /* local variables moved into u.$sname */\n" } set seenDecl 0 } if {[regexp "^\175" $line]} { append afterUnion $line\n set vlist {} } elseif {[llength $vlist]>0} { append line " " foreach v $vlist { regsub -all "(\[^a-zA-Z0-9>.\])${v}(\\W)" $line "\\1u.$sname.$v\\2" line } append afterUnion [string trimright $line]\n } elseif {$line=="" && [eof stdin]} { # no-op } else { append afterUnion $line\n } } # Output the resulting text. # puts -nonewline $beforeUnion puts " /********************************************************************" puts " ** Automatically generated code" puts " **" puts " ** The following union is automatically generated by the" puts " ** vdbe-compress.tcl script. The purpose of this union is to" puts " ** reduce the amount of stack space required by this function." puts " ** See comments in the vdbe-compress.tcl script for details." puts " */" puts " union vdbeExecUnion \173" puts -nonewline $unionDef puts " \175 u;" puts " /* End automatically generated code" puts " ********************************************************************/" puts -nonewline $afterUnion |