SQLite

Check-in [7f43391831]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Add the vdbe-compress.tcl script which automatically refactors the sqlite3VdbeExec() routine to use less stack space. Use this script when constructing the amalgamation. (CVS 6704)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 7f43391831b03e53d967acee6ae02089740aaedb
User & Date: drh 2009-06-02 15:21:42.000
Context
2009-06-02
15:47
Add a test case for ticket #3893 and ticket #3894. (CVS 6705) (check-in: 2472f6db95 user: drh tags: trunk)
15:21
Add the vdbe-compress.tcl script which automatically refactors the sqlite3VdbeExec() routine to use less stack space. Use this script when constructing the amalgamation. (CVS 6704) (check-in: 7f43391831 user: drh tags: trunk)
2009-06-01
19:53
Avoid allocating large objects on the stack in the incremental BLOB I/O interface. (CVS 6703) (check-in: ea7dfde700 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.in.
484
485
486
487
488
489
490


491
492
493
494
495
496
497
# all that automatic generation.
#
.target_source:	$(SRC)
	rm -rf tsrc
	mkdir -p tsrc
	cp $(SRC) tsrc
	rm tsrc/sqlite.h.in tsrc/parse.y


	touch .target_source

sqlite3.c:	.target_source $(TOP)/tool/mksqlite3c.tcl
	$(TCLSH_CMD) $(TOP)/tool/mksqlite3c.tcl

# Rules to build the LEMON compiler generator
#







>
>







484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
# all that automatic generation.
#
.target_source:	$(SRC)
	rm -rf tsrc
	mkdir -p tsrc
	cp $(SRC) tsrc
	rm tsrc/sqlite.h.in tsrc/parse.y
	$(TCLSH_CMD) $(TOP)/tool/vdbe-compress.tcl <tsrc/vdbe.c >vdbe.new
	mv vdbe.new tsrc/vdbe.c
	touch .target_source

sqlite3.c:	.target_source $(TOP)/tool/mksqlite3c.tcl
	$(TCLSH_CMD) $(TOP)/tool/mksqlite3c.tcl

# Rules to build the LEMON compiler generator
#
Changes to main.mk.
319
320
321
322
323
324
325
326
327
328
329
330


331
332
333
334
335
336
337

# This target creates a directory named "tsrc" and fills it with
# copies of all of the C source code and header files needed to
# build on the target system.  Some of the C source code and header
# files are automatically generated.  This target takes care of
# all that automatic generation.
#
target_source:	$(SRC)
	rm -rf tsrc
	mkdir tsrc
	cp -f $(SRC) tsrc
	rm tsrc/sqlite.h.in tsrc/parse.y


	touch target_source

sqlite3.c:	target_source $(TOP)/tool/mksqlite3c.tcl
	tclsh $(TOP)/tool/mksqlite3c.tcl
	cp sqlite3.c tclsqlite3.c
	cat $(TOP)/src/tclsqlite.c >>tclsqlite3.c








|




>
>







319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

# This target creates a directory named "tsrc" and fills it with
# copies of all of the C source code and header files needed to
# build on the target system.  Some of the C source code and header
# files are automatically generated.  This target takes care of
# all that automatic generation.
#
target_source:	$(SRC) $(TOP)/tool/vdbe-compress.tcl
	rm -rf tsrc
	mkdir tsrc
	cp -f $(SRC) tsrc
	rm tsrc/sqlite.h.in tsrc/parse.y
	tclsh $(TOP)/tool/vdbe-compress.tcl <tsrc/vdbe.c >vdbe.new
	mv vdbe.new tsrc/vdbe.c
	touch target_source

sqlite3.c:	target_source $(TOP)/tool/mksqlite3c.tcl
	tclsh $(TOP)/tool/mksqlite3c.tcl
	cp sqlite3.c tclsqlite3.c
	cat $(TOP)/src/tclsqlite.c >>tclsqlite3.c

Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.843 2009/05/07 12:17:34 drh Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.844 2009/06/02 15:21:42 drh Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
#ifdef VDBE_PROFILE
  u64 start;                 /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif

  /* Temporary space into which to unpack a record. */
  char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];

  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
  assert( db->magic==SQLITE_MAGIC_BUSY );
  sqlite3VdbeMutexArrayEnter(p);
  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */







|
<
<







560
561
562
563
564
565
566
567


568
569
570
571
572
573
574
#ifdef VDBE_PROFILE
  u64 start;                 /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif
  /*** INSERT STACK UNION HERE ***/



  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
  assert( db->magic==SQLITE_MAGIC_BUSY );
  sqlite3VdbeMutexArrayEnter(p);
  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
    ** sqlite3_column_text16() failed.  */
978
979
980
981
982
983
984





985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015




1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
** Transfer the values of bound parameters P1..P1+P3-1 into registers
** P2..P2+P3-1.
**
** If the parameter is named, then its name appears in P4 and P3==1.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: {





  int j = pOp->p1 - 1;
  int k = pOp->p2;
  Mem *pVar;
  int n = pOp->p3;
  assert( j>=0 && j+n<=p->nVar );
  assert( k>=1 && k+n-1<=p->nMem );
  assert( pOp->p4.z==0 || pOp->p3==1 );

  while( n-- > 0 ){
    pVar = &p->aVar[j++];
    if( sqlite3VdbeMemTooBig(pVar) ){
      goto too_big;
    }
    pOut = &p->aMem[k++];
    sqlite3VdbeMemReleaseExternal(pOut);
    pOut->flags = MEM_Null;
    sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
    UPDATE_MAX_BLOBSIZE(pOut);
  }
  break;
}

/* Opcode: Move P1 P2 P3 * *
**
** Move the values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P1-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
*/
case OP_Move: {
  char *zMalloc;




  int n = pOp->p3;
  int p1 = pOp->p1;
  int p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &p->aMem[p1];
  pOut = &p->aMem[p2];
  while( n-- ){
    assert( pOut<=&p->aMem[p->nMem] );







>
>
>
>
>
|
|
<
|
|
|



|



|
















|
>
>
>
>
|
|
|







976
977
978
979
980
981
982
983
984
985
986
987
988
989

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
** Transfer the values of bound parameters P1..P1+P3-1 into registers
** P2..P2+P3-1.
**
** If the parameter is named, then its name appears in P4 and P3==1.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: {
  int p1;          /* Variable to copy from */
  int p2;          /* Register to copy to */
  int n;           /* Number of values left to copy */
  Mem *pVar;       /* Value being transferred */

  p1 = pOp->p1 - 1;
  p2 = pOp->p2;

  n = pOp->p3;
  assert( p1>=0 && p1+n<=p->nVar );
  assert( p2>=1 && p2+n-1<=p->nMem );
  assert( pOp->p4.z==0 || pOp->p3==1 );

  while( n-- > 0 ){
    pVar = &p->aVar[p1++];
    if( sqlite3VdbeMemTooBig(pVar) ){
      goto too_big;
    }
    pOut = &p->aMem[p2++];
    sqlite3VdbeMemReleaseExternal(pOut);
    pOut->flags = MEM_Null;
    sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
    UPDATE_MAX_BLOBSIZE(pOut);
  }
  break;
}

/* Opcode: Move P1 P2 P3 * *
**
** Move the values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P1-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
*/
case OP_Move: {
  char *zMalloc;   /* Holding variable for allocated memory */
  int n;           /* Number of registers left to copy */
  int p1;          /* Register to copy from */
  int p2;          /* Register to copy to */

  n = pOp->p3;
  p1 = pOp->p1;
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &p->aMem[p1];
  pOut = &p->aMem[p2];
  while( n-- ){
    assert( pOut<=&p->aMem[p->nMem] );
1209
1210
1211
1212
1213
1214
1215
1216





1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
** If either operand is NULL, the result is NULL.
*/
case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
  int flags;





  applyNumericAffinity(pIn1);
  applyNumericAffinity(pIn2);
  flags = pIn1->flags | pIn2->flags;
  if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
  if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
    i64 a, b;
    a = pIn1->u.i;
    b = pIn2->u.i;
    switch( pOp->opcode ){
      case OP_Add:         b += a;       break;
      case OP_Subtract:    b -= a;       break;
      case OP_Multiply:    b *= a;       break;
      case OP_Divide: {
        if( a==0 ) goto arithmetic_result_is_null;
        /* Dividing the largest possible negative 64-bit integer (1<<63) by 
        ** -1 returns an integer too large to store in a 64-bit data-type. On
        ** some architectures, the value overflows to (1<<63). On others,
        ** a SIGFPE is issued. The following statement normalizes this
        ** behavior so that all architectures behave as if integer 
        ** overflow occurred.
        */
        if( a==-1 && b==SMALLEST_INT64 ) a = 1;
        b /= a;
        break;
      }
      default: {
        if( a==0 ) goto arithmetic_result_is_null;
        if( a==-1 ) a = 1;
        b %= a;
        break;
      }
    }
    pOut->u.i = b;
    MemSetTypeFlag(pOut, MEM_Int);
  }else{
    double a, b;
    a = sqlite3VdbeRealValue(pIn1);
    b = sqlite3VdbeRealValue(pIn2);
    switch( pOp->opcode ){
      case OP_Add:         b += a;       break;
      case OP_Subtract:    b -= a;       break;
      case OP_Multiply:    b *= a;       break;
      case OP_Divide: {
        /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
        if( a==(double)0 ) goto arithmetic_result_is_null;
        b /= a;
        break;
      }
      default: {
        i64 ia = (i64)a;
        i64 ib = (i64)b;
        if( ia==0 ) goto arithmetic_result_is_null;
        if( ia==-1 ) ia = 1;
        b = (double)(ib % ia);
        break;
      }
    }
    if( sqlite3IsNaN(b) ){
      goto arithmetic_result_is_null;
    }
    pOut->r = b;
    MemSetTypeFlag(pOut, MEM_Real);
    if( (flags & MEM_Real)==0 ){
      sqlite3VdbeIntegerAffinity(pOut);
    }
  }
  break;








|
>
>
>
>
>





<
|
|

|
|
|

|







|
|



|
|
|



|


<
|
|

|
|
|


|
|



|
|
|
|
|



|


|







1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
** If either operand is NULL, the result is NULL.
*/
case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
  int flags;      /* Combined MEM_* flags from both inputs */
  i64 iA;         /* Integer value of left operand */
  i64 iB;         /* Integer value of right operand */
  double rA;      /* Real value of left operand */
  double rB;      /* Real value of right operand */

  applyNumericAffinity(pIn1);
  applyNumericAffinity(pIn2);
  flags = pIn1->flags | pIn2->flags;
  if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
  if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){

    iA = pIn1->u.i;
    iB = pIn2->u.i;
    switch( pOp->opcode ){
      case OP_Add:         iB += iA;       break;
      case OP_Subtract:    iB -= iA;       break;
      case OP_Multiply:    iB *= iA;       break;
      case OP_Divide: {
        if( iA==0 ) goto arithmetic_result_is_null;
        /* Dividing the largest possible negative 64-bit integer (1<<63) by 
        ** -1 returns an integer too large to store in a 64-bit data-type. On
        ** some architectures, the value overflows to (1<<63). On others,
        ** a SIGFPE is issued. The following statement normalizes this
        ** behavior so that all architectures behave as if integer 
        ** overflow occurred.
        */
        if( iA==-1 && iB==SMALLEST_INT64 ) iA = 1;
        iB /= iA;
        break;
      }
      default: {
        if( iA==0 ) goto arithmetic_result_is_null;
        if( iA==-1 ) iA = 1;
        iB %= iA;
        break;
      }
    }
    pOut->u.i = iB;
    MemSetTypeFlag(pOut, MEM_Int);
  }else{

    rA = sqlite3VdbeRealValue(pIn1);
    rB = sqlite3VdbeRealValue(pIn2);
    switch( pOp->opcode ){
      case OP_Add:         rB += rA;       break;
      case OP_Subtract:    rB -= rA;       break;
      case OP_Multiply:    rB *= rA;       break;
      case OP_Divide: {
        /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
        if( rA==(double)0 ) goto arithmetic_result_is_null;
        rB /= rA;
        break;
      }
      default: {
        iA = rA;
        iB = rB;
        if( iA==0 ) goto arithmetic_result_is_null;
        if( iA==-1 ) iA = 1;
        rB = (double)(iB % iA);
        break;
      }
    }
    if( sqlite3IsNaN(rB) ){
      goto arithmetic_result_is_null;
    }
    pOut->r = rB;
    MemSetTypeFlag(pOut, MEM_Real);
    if( (flags & MEM_Real)==0 ){
      sqlite3VdbeIntegerAffinity(pOut);
    }
  }
  break;

1320
1321
1322
1323
1324
1325
1326
1327
1328

1329
1330
1331
1332
1333
1334
1335
** See also: AggStep and AggFinal
*/
case OP_Function: {
  int i;
  Mem *pArg;
  sqlite3_context ctx;
  sqlite3_value **apVal;
  int n = pOp->p5;


  apVal = p->apArg;
  assert( apVal || n==0 );

  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pArg = &p->aMem[pOp->p2];
  for(i=0; i<n; i++, pArg++){







|

>







1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
** See also: AggStep and AggFinal
*/
case OP_Function: {
  int i;
  Mem *pArg;
  sqlite3_context ctx;
  sqlite3_value **apVal;
  int n;

  n = pOp->p5;
  apVal = p->apArg;
  assert( apVal || n==0 );

  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  pArg = &p->aMem[pOp->p2];
  for(i=0; i<n; i++, pArg++){
1440
1441
1442
1443
1444
1445
1446
1447

1448
1449
1450
1451
1452
1453
1454
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
  i64 a, b;


  if( (pIn1->flags | pIn2->flags) & MEM_Null ){
    sqlite3VdbeMemSetNull(pOut);
    break;
  }
  a = sqlite3VdbeIntValue(pIn2);
  b = sqlite3VdbeIntValue(pIn1);







|
>







1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
  i64 a;
  i64 b;

  if( (pIn1->flags | pIn2->flags) & MEM_Null ){
    sqlite3VdbeMemSetNull(pOut);
    break;
  }
  a = sqlite3VdbeIntValue(pIn2);
  b = sqlite3VdbeIntValue(pIn1);
1755
1756
1757
1758
1759
1760
1761
1762
1763


1764






1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
** only.  The KeyInfo elements are used sequentially.
**
** The comparison is a sort comparison, so NULLs compare equal,
** NULLs are less than numbers, numbers are less than strings,
** and strings are less than blobs.
*/
case OP_Compare: {
  int n = pOp->p3;
  int i, p1, p2;


  const KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;






  assert( n>0 );
  assert( pKeyInfo!=0 );
  p1 = pOp->p1;
  assert( p1>0 && p1+n<=p->nMem+1 );
  p2 = pOp->p2;
  assert( p2>0 && p2+n<=p->nMem+1 );
  for(i=0; i<n; i++){
    int idx = aPermute ? aPermute[i] : i;
    CollSeq *pColl;    /* Collating sequence to use on this term */
    int bRev;          /* True for DESCENDING sort order */
    REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]);
    REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]);
    assert( i<pKeyInfo->nField );
    pColl = pKeyInfo->aColl[i];
    bRev = pKeyInfo->aSortOrder[i];
    iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl);
    if( iCompare ){







|
|
>
>
|
>
>
>
>
>
>







|
<
<







1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791


1792
1793
1794
1795
1796
1797
1798
** only.  The KeyInfo elements are used sequentially.
**
** The comparison is a sort comparison, so NULLs compare equal,
** NULLs are less than numbers, numbers are less than strings,
** and strings are less than blobs.
*/
case OP_Compare: {
  int n;
  int i;
  int p1;
  int p2;
  const KeyInfo *pKeyInfo;
  int idx;
  CollSeq *pColl;    /* Collating sequence to use on this term */
  int bRev;          /* True for DESCENDING sort order */

  n = pOp->p3;
  pKeyInfo = pOp->p4.pKeyInfo;
  assert( n>0 );
  assert( pKeyInfo!=0 );
  p1 = pOp->p1;
  assert( p1>0 && p1+n<=p->nMem+1 );
  p2 = pOp->p2;
  assert( p2>0 && p2+n<=p->nMem+1 );
  for(i=0; i<n; i++){
    idx = aPermute ? aPermute[i] : i;


    REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]);
    REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]);
    assert( i<pKeyInfo->nField );
    pColl = pKeyInfo->aColl[i];
    bRev = pKeyInfo->aSortOrder[i];
    iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl);
    if( iCompare ){
1820
1821
1822
1823
1824
1825
1826
1827

1828
1829
1830
1831
1832
1833
1834
**
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
** even if the other input is NULL.  A NULL and false or two NULLs
** give a NULL output.
*/
case OP_And:              /* same as TK_AND, in1, in2, out3 */
case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
  int v1, v2;    /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */


  if( pIn1->flags & MEM_Null ){
    v1 = 2;
  }else{
    v1 = sqlite3VdbeIntValue(pIn1)!=0;
  }
  if( pIn2->flags & MEM_Null ){







|
>







1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
**
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
** even if the other input is NULL.  A NULL and false or two NULLs
** give a NULL output.
*/
case OP_And:              /* same as TK_AND, in1, in2, out3 */
case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
  int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
  int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */

  if( pIn1->flags & MEM_Null ){
    v1 = 2;
  }else{
    v1 = sqlite3VdbeIntValue(pIn1)!=0;
  }
  if( pIn2->flags & MEM_Null ){
1979
1980
1981
1982
1983
1984
1985

1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998





1999




2000
2001
2002
2003
2004
2005
2006
**
** If the column contains fewer than P2 fields, then extract a NULL.  Or,
** if the P4 argument is a P4_MEM use the value of the P4 argument as
** the result.
*/
case OP_Column: {
  int payloadSize;   /* Number of bytes in the record */

  int p1 = pOp->p1;  /* P1 value of the opcode */
  int p2 = pOp->p2;  /* column number to retrieve */
  VdbeCursor *pC = 0;/* The VDBE cursor */
  char *zRec;        /* Pointer to complete record-data */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  int nField;        /* number of fields in the record */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  char *zData;       /* Part of the record being decoded */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */










  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &p->aMem[pOp->p3];
  MemSetTypeFlag(pDest, MEM_Null);

  /* This block sets the variable payloadSize to be the total number of







>
|
|
|










>
>
>
>
>

>
>
>
>







1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
**
** If the column contains fewer than P2 fields, then extract a NULL.  Or,
** if the P4 argument is a P4_MEM use the value of the P4 argument as
** the result.
*/
case OP_Column: {
  int payloadSize;   /* Number of bytes in the record */
  i64 payloadSize64; /* Number of bytes in the record */
  int p1;            /* P1 value of the opcode */
  int p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */
  char *zRec;        /* Pointer to complete record-data */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  int nField;        /* number of fields in the record */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  char *zData;       /* Part of the record being decoded */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  u8 *zIdx;         /* Index into header */
  u8 *zEndHdr;      /* Pointer to first byte after the header */
  int offset;       /* Offset into the data */
  int szHdrSz;      /* Size of the header size field at start of record */
  int avail;        /* Number of bytes of available data */


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &p->aMem[pOp->p3];
  MemSetTypeFlag(pDest, MEM_Null);

  /* This block sets the variable payloadSize to be the total number of
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
    pCrsr = pC->pCursor;
    if( pC->nullRow ){
      payloadSize = 0;
    }else if( pC->cacheStatus==p->cacheCtr ){
      payloadSize = pC->payloadSize;
      zRec = (char*)pC->aRow;
    }else if( pC->isIndex ){
      i64 payloadSize64;
      sqlite3BtreeKeySize(pCrsr, &payloadSize64);
      payloadSize = (int)payloadSize64;
    }else{
      sqlite3BtreeDataSize(pCrsr, (u32 *)&payloadSize);
    }
    nField = pC->nField;
  }else{







<







2056
2057
2058
2059
2060
2061
2062

2063
2064
2065
2066
2067
2068
2069
    pCrsr = pC->pCursor;
    if( pC->nullRow ){
      payloadSize = 0;
    }else if( pC->cacheStatus==p->cacheCtr ){
      payloadSize = pC->payloadSize;
      zRec = (char*)pC->aRow;
    }else if( pC->isIndex ){

      sqlite3BtreeKeySize(pCrsr, &payloadSize64);
      payloadSize = (int)payloadSize64;
    }else{
      sqlite3BtreeDataSize(pCrsr, (u32 *)&payloadSize);
    }
    nField = pC->nField;
  }else{
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077

2078
2079
2080
2081
2082
2083
2084
  /* Read and parse the table header.  Store the results of the parse
  ** into the record header cache fields of the cursor.
  */
  aType = pC->aType;
  if( pC->cacheStatus==p->cacheCtr ){
    aOffset = pC->aOffset;
  }else{
    u8 *zIdx;        /* Index into header */
    u8 *zEndHdr;     /* Pointer to first byte after the header */
    int offset;      /* Offset into the data */
    int szHdrSz;     /* Size of the header size field at start of record */
    int avail = 0;   /* Number of bytes of available data */

    assert(aType);

    pC->aOffset = aOffset = &aType[nField];
    pC->payloadSize = payloadSize;
    pC->cacheStatus = p->cacheCtr;

    /* Figure out how many bytes are in the header */
    if( zRec ){
      zData = zRec;







<
<
<
<
<
<

>







2091
2092
2093
2094
2095
2096
2097






2098
2099
2100
2101
2102
2103
2104
2105
2106
  /* Read and parse the table header.  Store the results of the parse
  ** into the record header cache fields of the cursor.
  */
  aType = pC->aType;
  if( pC->cacheStatus==p->cacheCtr ){
    aOffset = pC->aOffset;
  }else{






    assert(aType);
    avail = 0;
    pC->aOffset = aOffset = &aType[nField];
    pC->payloadSize = payloadSize;
    pC->cacheStatus = p->cacheCtr;

    /* Figure out how many bytes are in the header */
    if( zRec ){
      zData = zRec;
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162

    /* If we have read more header data than was contained in the header,
    ** or if the end of the last field appears to be past the end of the
    ** record, or if the end of the last field appears to be before the end
    ** of the record (when all fields present), then we must be dealing 
    ** with a corrupt database.
    */
    if( zIdx>zEndHdr || offset>payloadSize 
     || (zIdx==zEndHdr && offset!=payloadSize) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_out;
    }
  }

  /* Get the column information. If aOffset[p2] is non-zero, then 







|







2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184

    /* If we have read more header data than was contained in the header,
    ** or if the end of the last field appears to be past the end of the
    ** record, or if the end of the last field appears to be before the end
    ** of the record (when all fields present), then we must be dealing 
    ** with a corrupt database.
    */
    if( (zIdx > zEndHdr)|| (offset > payloadSize)
     || (zIdx==zEndHdr && offset!=payloadSize) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_out;
    }
  }

  /* Get the column information. If aOffset[p2] is non-zero, then 
2217
2218
2219
2220
2221
2222
2223





2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
** Apply affinities to a range of P2 registers starting with P1.
**
** P4 is a string that is P2 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
** memory cell in the range.
*/
case OP_Affinity: {





  char *zAffinity = pOp->p4.z;
  Mem *pData0 = &p->aMem[pOp->p1];
  Mem *pLast = &pData0[pOp->p2-1];
  Mem *pRec;

  for(pRec=pData0; pRec<=pLast; pRec++){
    ExpandBlob(pRec);
    applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
  }
  break;
}








>
>
>
>
>
|
|
|
<
<







2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253


2254
2255
2256
2257
2258
2259
2260
** Apply affinities to a range of P2 registers starting with P1.
**
** P4 is a string that is P2 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
** memory cell in the range.
*/
case OP_Affinity: {
  char *zAffinity;   /* The affinity to be applied */
  Mem *pData0;       /* First register to which to apply affinity */
  Mem *pLast;        /* Last register to which to apply affinity */
  Mem *pRec;         /* Current register */

  zAffinity = pOp->p4.z;
  pData0 = &p->aMem[pOp->p1];
  pLast = &pData0[pOp->p2-1];


  for(pRec=pData0; pRec<=pLast; pRec++){
    ExpandBlob(pRec);
    applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
  }
  break;
}

2248
2249
2250
2251
2252
2253
2254
















2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity NONE.
*/
case OP_MakeRecord: {
















  /* Assuming the record contains N fields, the record format looks
  ** like this:
  **
  ** ------------------------------------------------------------------------
  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  ** ------------------------------------------------------------------------
  **
  ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
  ** and so froth.
  **
  ** Each type field is a varint representing the serial type of the 
  ** corresponding data element (see sqlite3VdbeSerialType()). The
  ** hdr-size field is also a varint which is the offset from the beginning
  ** of the record to data0.
  */
  u8 *zNewRecord;        /* A buffer to hold the data for the new record */
  Mem *pRec;             /* The new record */
  u64 nData = 0;         /* Number of bytes of data space */
  int nHdr = 0;          /* Number of bytes of header space */
  i64 nByte = 0;         /* Data space required for this record */
  int nZero = 0;         /* Number of zero bytes at the end of the record */
  int nVarint;           /* Number of bytes in a varint */
  u32 serial_type;       /* Type field */
  Mem *pData0;           /* First field to be combined into the record */
  Mem *pLast;            /* Last field of the record */
  int nField;            /* Number of fields in the record */
  char *zAffinity;       /* The affinity string for the record */
  int file_format;       /* File format to use for encoding */
  int i;                 /* Space used in zNewRecord[] */

  nField = pOp->p1;
  zAffinity = pOp->p4.z;
  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
  pData0 = &p->aMem[nField];
  nField = pOp->p2;
  pLast = &pData0[nField-1];
  file_format = p->minWriteFileFormat;

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  for(pRec=pData0; pRec<=pLast; pRec++){
    int len;
    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
    }
    if( pRec->flags&MEM_Zero && pRec->n>0 ){
      sqlite3VdbeMemExpandBlob(pRec);
    }
    serial_type = sqlite3VdbeSerialType(pRec, file_format);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>















<
<
|
|
|
|
<
<
<
<
<
<
<
<
<












<







2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310


2311
2312
2313
2314









2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326

2327
2328
2329
2330
2331
2332
2333
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity NONE.
*/
case OP_MakeRecord: {
  u8 *zNewRecord;        /* A buffer to hold the data for the new record */
  Mem *pRec;             /* The new record */
  u64 nData;             /* Number of bytes of data space */
  int nHdr;              /* Number of bytes of header space */
  i64 nByte;             /* Data space required for this record */
  int nZero;             /* Number of zero bytes at the end of the record */
  int nVarint;           /* Number of bytes in a varint */
  u32 serial_type;       /* Type field */
  Mem *pData0;           /* First field to be combined into the record */
  Mem *pLast;            /* Last field of the record */
  int nField;            /* Number of fields in the record */
  char *zAffinity;       /* The affinity string for the record */
  int file_format;       /* File format to use for encoding */
  int i;                 /* Space used in zNewRecord[] */
  int len;               /* Length of a field */

  /* Assuming the record contains N fields, the record format looks
  ** like this:
  **
  ** ------------------------------------------------------------------------
  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  ** ------------------------------------------------------------------------
  **
  ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
  ** and so froth.
  **
  ** Each type field is a varint representing the serial type of the 
  ** corresponding data element (see sqlite3VdbeSerialType()). The
  ** hdr-size field is also a varint which is the offset from the beginning
  ** of the record to data0.
  */


  nData = 0;         /* Number of bytes of data space */
  nHdr = 0;          /* Number of bytes of header space */
  nByte = 0;         /* Data space required for this record */
  nZero = 0;         /* Number of zero bytes at the end of the record */









  nField = pOp->p1;
  zAffinity = pOp->p4.z;
  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
  pData0 = &p->aMem[nField];
  nField = pOp->p2;
  pLast = &pData0[nField-1];
  file_format = p->minWriteFileFormat;

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  for(pRec=pData0; pRec<=pLast; pRec++){

    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
    }
    if( pRec->flags&MEM_Zero && pRec->n>0 ){
      sqlite3VdbeMemExpandBlob(pRec);
    }
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
2400
2401
2402
2403
2404
2405
2406


2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
** will be allocated and initialized.
**
** The statement is begun on the database file with index P1.  The main
** database file has an index of 0 and the file used for temporary tables
** has an index of 1.
*/
case OP_Statement: {


  if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
    int i = pOp->p1;
    Btree *pBt;
    assert( i>=0 && i<db->nDb );
    assert( db->aDb[i].pBt!=0 );
    pBt = db->aDb[i].pBt;
    assert( sqlite3BtreeIsInTrans(pBt) );
    assert( (p->btreeMask & (1<<i))!=0 );
    if( p->iStatement==0 ){
      assert( db->nStatement>=0 && db->nSavepoint>=0 );







>
>

|
<







2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439

2440
2441
2442
2443
2444
2445
2446
** will be allocated and initialized.
**
** The statement is begun on the database file with index P1.  The main
** database file has an index of 0 and the file used for temporary tables
** has an index of 1.
*/
case OP_Statement: {
  int i;
  Btree *pBt;
  if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
    i = pOp->p1;

    assert( i>=0 && i<db->nDb );
    assert( db->aDb[i].pBt!=0 );
    pBt = db->aDb[i].pBt;
    assert( sqlite3BtreeIsInTrans(pBt) );
    assert( (p->btreeMask & (1<<i))!=0 );
    if( p->iStatement==0 ){
      assert( db->nStatement>=0 && db->nSavepoint>=0 );
2425
2426
2427
2428
2429
2430
2431









2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
/* Opcode: Savepoint P1 * * P4 *
**
** Open, release or rollback the savepoint named by parameter P4, depending
** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
*/
case OP_Savepoint: {









  int p1 = pOp->p1;
  char *zName = pOp->p4.z;         /* Name of savepoint */

  /* Assert that the p1 parameter is valid. Also that if there is no open
  ** transaction, then there cannot be any savepoints. 
  */
  assert( db->pSavepoint==0 || db->autoCommit==0 );
  assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
  assert( db->pSavepoint || db->isTransactionSavepoint==0 );
  assert( checkSavepointCount(db) );

  if( p1==SAVEPOINT_BEGIN ){
    if( db->writeVdbeCnt>0 ){
      /* A new savepoint cannot be created if there are active write 
      ** statements (i.e. open read/write incremental blob handles).
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
      int nName = sqlite3Strlen30(zName);
      Savepoint *pNew;

      /* Create a new savepoint structure. */
      pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
      if( pNew ){
        pNew->zName = (char *)&pNew[1];
        memcpy(pNew->zName, zName, nName+1);
    







>
>
>
>
>
>
>
>
>
|
|


















|
<







2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491

2492
2493
2494
2495
2496
2497
2498
/* Opcode: Savepoint P1 * * P4 *
**
** Open, release or rollback the savepoint named by parameter P4, depending
** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
*/
case OP_Savepoint: {
  int p1;                         /* Value of P1 operand */
  char *zName;                    /* Name of savepoint */
  int nName;
  Savepoint *pNew;
  Savepoint *pSavepoint;
  Savepoint *pTmp;
  int iSavepoint;
  int ii;

  p1 = pOp->p1;
  zName = pOp->p4.z;

  /* Assert that the p1 parameter is valid. Also that if there is no open
  ** transaction, then there cannot be any savepoints. 
  */
  assert( db->pSavepoint==0 || db->autoCommit==0 );
  assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
  assert( db->pSavepoint || db->isTransactionSavepoint==0 );
  assert( checkSavepointCount(db) );

  if( p1==SAVEPOINT_BEGIN ){
    if( db->writeVdbeCnt>0 ){
      /* A new savepoint cannot be created if there are active write 
      ** statements (i.e. open read/write incremental blob handles).
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
      nName = sqlite3Strlen30(zName);


      /* Create a new savepoint structure. */
      pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
      if( pNew ){
        pNew->zName = (char *)&pNew[1];
        memcpy(pNew->zName, zName, nName+1);
    
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
    
        /* Link the new savepoint into the database handle's list. */
        pNew->pNext = db->pSavepoint;
        db->pSavepoint = pNew;
      }
    }
  }else{
    Savepoint *pSavepoint;
    int iSavepoint = 0;

    /* Find the named savepoint. If there is no such savepoint, then an
    ** an error is returned to the user.  */
    for(
      pSavepoint=db->pSavepoint; 
      pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
      pSavepoint=pSavepoint->pNext
    ){
      iSavepoint++;
    }
    if( !pSavepoint ){
      sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
      rc = SQLITE_ERROR;
    }else if( 







<
|




|

|







2507
2508
2509
2510
2511
2512
2513

2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
    
        /* Link the new savepoint into the database handle's list. */
        pNew->pNext = db->pSavepoint;
        db->pSavepoint = pNew;
      }
    }
  }else{

    iSavepoint = 0;

    /* Find the named savepoint. If there is no such savepoint, then an
    ** an error is returned to the user.  */
    for(
      pSavepoint = db->pSavepoint; 
      pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
      pSavepoint = pSavepoint->pNext
    ){
      iSavepoint++;
    }
    if( !pSavepoint ){
      sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
      rc = SQLITE_ERROR;
    }else if( 
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
          db->autoCommit = 0;
          p->rc = rc = SQLITE_BUSY;
          goto vdbe_return;
        }
        db->isTransactionSavepoint = 0;
        rc = p->rc;
      }else{
        int ii;
        iSavepoint = db->nSavepoint - iSavepoint - 1;
        for(ii=0; ii<db->nDb; ii++){
          rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
          if( rc!=SQLITE_OK ){
            goto abort_due_to_error;
          }
        }
        if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
          sqlite3ExpirePreparedStatements(db);
          sqlite3ResetInternalSchema(db, 0);
        }
      }
  
      /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 
      ** savepoints nested inside of the savepoint being operated on. */
      while( db->pSavepoint!=pSavepoint ){
        Savepoint *pTmp = db->pSavepoint;
        db->pSavepoint = pTmp->pNext;
        sqlite3DbFree(db, pTmp);
        db->nSavepoint--;
      }

      /* If it is a RELEASE, then destroy the savepoint being operated on too */
      if( p1==SAVEPOINT_RELEASE ){







<
















|







2551
2552
2553
2554
2555
2556
2557

2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
          db->autoCommit = 0;
          p->rc = rc = SQLITE_BUSY;
          goto vdbe_return;
        }
        db->isTransactionSavepoint = 0;
        rc = p->rc;
      }else{

        iSavepoint = db->nSavepoint - iSavepoint - 1;
        for(ii=0; ii<db->nDb; ii++){
          rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
          if( rc!=SQLITE_OK ){
            goto abort_due_to_error;
          }
        }
        if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
          sqlite3ExpirePreparedStatements(db);
          sqlite3ResetInternalSchema(db, 0);
        }
      }
  
      /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 
      ** savepoints nested inside of the savepoint being operated on. */
      while( db->pSavepoint!=pSavepoint ){
        pTmp = db->pSavepoint;
        db->pSavepoint = pTmp->pNext;
        sqlite3DbFree(db, pTmp);
        db->nSavepoint--;
      }

      /* If it is a RELEASE, then destroy the savepoint being operated on too */
      if( p1==SAVEPOINT_RELEASE ){
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572



2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
  int desiredAutoCommit = pOp->p1;
  int rollback = pOp->p2;
  int turnOnAC = desiredAutoCommit && !db->autoCommit;




  assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
  assert( desiredAutoCommit==1 || rollback==0 );

  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */

  if( turnOnAC && rollback && db->activeVdbeCnt>1 ){
    /* If this instruction implements a ROLLBACK and other VMs are
    ** still running, and a transaction is active, return an error indicating
    ** that the other VMs must complete first. 
    */







|
|
|

>
>
>


<







2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613

2614
2615
2616
2617
2618
2619
2620
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
  int desiredAutoCommit;
  int rollback;
  int turnOnAC;

  desiredAutoCommit = pOp->p1;
  rollback = pOp->p2;
  turnOnAC = desiredAutoCommit && !db->autoCommit;
  assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
  assert( desiredAutoCommit==1 || rollback==0 );

  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */

  if( turnOnAC && rollback && db->activeVdbeCnt>1 ){
    /* If this instruction implements a ROLLBACK and other VMs are
    ** still running, and a transaction is active, return an error indicating
    ** that the other VMs must complete first. 
    */
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650

2651
2652
2653
2654
2655
2656
2657
** write transaction must be started before any changes can be made to the
** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {
  int i = pOp->p1;
  Btree *pBt;


  assert( i>=0 && i<db->nDb );
  assert( (p->btreeMask & (1<<i))!=0 );
  pBt = db->aDb[i].pBt;

  if( pBt ){
    rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
    if( rc==SQLITE_BUSY ){







|


>







2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
** write transaction must be started before any changes can be made to the
** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {
  int i;
  Btree *pBt;

  i = pOp->p1;
  assert( i>=0 && i<db->nDb );
  assert( (p->btreeMask & (1<<i))!=0 );
  pBt = db->aDb[i].pBt;

  if( pBt ){
    rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
    if( rc==SQLITE_BUSY ){
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690


2691
2692
2693
2694
2695
2696
2697
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {               /* out2-prerelease */
  int iMeta;
  int iDb = pOp->p1;
  int iCookie = pOp->p3;



  assert( pOp->p3<SQLITE_N_BTREE_META );
  if( iDb<0 ){
    iDb = (-1*(iDb+1));
    iCookie *= -1;
  }
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );







|
|

>
>







2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {               /* out2-prerelease */
  int iMeta;
  int iDb;
  int iCookie;

  iDb = pOp->p1;
  iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  if( iDb<0 ){
    iDb = (-1*(iDb+1));
    iCookie *= -1;
  }
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

2862





2863
2864
2865
2866
2867
2868
2869
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
  int nField = 0;
  KeyInfo *pKeyInfo = 0;
  int i = pOp->p1;
  int p2 = pOp->p2;
  int iDb = pOp->p3;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;

  





  assert( iDb>=0 && iDb<db->nDb );
  assert( (p->btreeMask & (1<<iDb))!=0 );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    wrFlag = 1;







|
|
|
|
|




>
|
>
>
>
>
>







2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
  int nField;
  KeyInfo *pKeyInfo;
  int i;
  int p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;
  int flags;

  nField = 0;
  pKeyInfo = 0;
  i = pOp->p1;
  p2 = pOp->p2;
  iDb = pOp->p3;
  assert( iDb>=0 && iDb<db->nDb );
  assert( (p->btreeMask & (1<<iDb))!=0 );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    wrFlag = 1;
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
  switch( rc ){
    case SQLITE_BUSY: {
      p->pc = pc;
      p->rc = rc = SQLITE_BUSY;
      goto vdbe_return;
    }
    case SQLITE_OK: {
      int flags = sqlite3BtreeFlags(pCur->pCursor);
      /* Sanity checking.  Only the lower four bits of the flags byte should
      ** be used.  Bit 3 (mask 0x08) is unpredictable.  The lower 3 bits
      ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
      ** 2 (zerodata for indices).  If these conditions are not met it can
      ** only mean that we are dealing with a corrupt database file
      */
      if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){







|







2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
  switch( rc ){
    case SQLITE_BUSY: {
      p->pc = pc;
      p->rc = rc = SQLITE_BUSY;
      goto vdbe_return;
    }
    case SQLITE_OK: {
      flags = sqlite3BtreeFlags(pCur->pCursor);
      /* Sanity checking.  Only the lower four bits of the flags byte should
      ** be used.  Bit 3 (mask 0x08) is unpredictable.  The lower 3 bits
      ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
      ** 2 (zerodata for indices).  If these conditions are not met it can
      ** only mean that we are dealing with a corrupt database file
      */
      if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973

2974
2975
2976
2977
2978
2979
2980
** This opcode was once called OpenTemp.  But that created
** confusion because the term "temp table", might refer either
** to a TEMP table at the SQL level, or to a table opened by
** this opcode.  Then this opcode was call OpenVirtual.  But
** that created confusion with the whole virtual-table idea.
*/
case OP_OpenEphemeral: {
  int i = pOp->p1;
  VdbeCursor *pCx;
  static const int openFlags = 
      SQLITE_OPEN_READWRITE |
      SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE |
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;


  assert( i>=0 );
  pCx = allocateCursor(p, i, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
                           &pCx->pBt);
  if( rc==SQLITE_OK ){







|








>







3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
** This opcode was once called OpenTemp.  But that created
** confusion because the term "temp table", might refer either
** to a TEMP table at the SQL level, or to a table opened by
** this opcode.  Then this opcode was call OpenVirtual.  But
** that created confusion with the whole virtual-table idea.
*/
case OP_OpenEphemeral: {
  int i;
  VdbeCursor *pCx;
  static const int openFlags = 
      SQLITE_OPEN_READWRITE |
      SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE |
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;

  i = pOp->p1;
  assert( i>=0 );
  pCx = allocateCursor(p, i, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
                           &pCx->pBt);
  if( rc==SQLITE_OK ){
3027
3028
3029
3030
3031
3032
3033
3034
3035


3036
3037
3038
3039
3040
3041
3042
** memory cell containing the row data is not overwritten until the
** pseudo table is closed (or a new row is inserted into it).
**
** P3 is the number of fields in the records that will be stored by
** the pseudo-table.
*/
case OP_OpenPseudo: {
  int i = pOp->p1;
  VdbeCursor *pCx;


  assert( i>=0 );
  pCx = allocateCursor(p, i, pOp->p3, -1, 0);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->pseudoTable = 1;
  pCx->ephemPseudoTable = (u8)pOp->p2;
  pCx->isTable = 1;







|

>
>







3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
** memory cell containing the row data is not overwritten until the
** pseudo table is closed (or a new row is inserted into it).
**
** P3 is the number of fields in the records that will be stored by
** the pseudo-table.
*/
case OP_OpenPseudo: {
  int i;
  VdbeCursor *pCx;

  i = pOp->p1;
  assert( i>=0 );
  pCx = allocateCursor(p, i, pOp->p3, -1, 0);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->pseudoTable = 1;
  pCx->ephemPseudoTable = (u8)pOp->p2;
  pCx->isTable = 1;
3109
3110
3111
3112
3113
3114
3115
3116


3117



3118

3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLt:         /* jump, in3 */
case OP_SeekLe:         /* jump, in3 */
case OP_SeekGe:         /* jump, in3 */
case OP_SeekGt: {       /* jump, in3 */
  int i = pOp->p1;


  VdbeCursor *pC;





  assert( i>=0 && i<p->nCursor );
  assert( pOp->p2!=0 );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( pC->pCursor!=0 ){
    int res, oc;
    oc = pOp->opcode;
    pC->nullRow = 0;
    if( pC->isTable ){
      i64 iKey;      /* The rowid we are to seek to */

      /* The input value in P3 might be of any type: integer, real, string,
      ** blob, or NULL.  But it needs to be an integer before we can do
      ** the seek, so covert it. */
      applyNumericAffinity(pIn3);
      iKey = sqlite3VdbeIntValue(pIn3);
      pC->rowidIsValid = 0;








|
>
>

>
>
>

>





<



<
<







3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179

3180
3181
3182


3183
3184
3185
3186
3187
3188
3189
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLt:         /* jump, in3 */
case OP_SeekLe:         /* jump, in3 */
case OP_SeekGe:         /* jump, in3 */
case OP_SeekGt: {       /* jump, in3 */
  int i;
  int res;
  int oc;
  VdbeCursor *pC;
  UnpackedRecord r;
  int nField;
  i64 iKey;      /* The rowid we are to seek to */

  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  assert( pOp->p2!=0 );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( pC->pCursor!=0 ){

    oc = pOp->opcode;
    pC->nullRow = 0;
    if( pC->isTable ){


      /* The input value in P3 might be of any type: integer, real, string,
      ** blob, or NULL.  But it needs to be an integer before we can do
      ** the seek, so covert it. */
      applyNumericAffinity(pIn3);
      iKey = sqlite3VdbeIntValue(pIn3);
      pC->rowidIsValid = 0;

3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
        goto abort_due_to_error;
      }
      if( res==0 ){
        pC->rowidIsValid = 1;
        pC->lastRowid = iKey;
      }
    }else{
      UnpackedRecord r;
      int nField = pOp->p4.i;
      assert( pOp->p4type==P4_INT32 );
      assert( nField>0 );
      r.pKeyInfo = pC->pKeyInfo;
      r.nField = (u16)nField;
      if( oc==OP_SeekGt || oc==OP_SeekLe ){
        r.flags = UNPACKED_INCRKEY;
      }else{







<
|







3233
3234
3235
3236
3237
3238
3239

3240
3241
3242
3243
3244
3245
3246
3247
        goto abort_due_to_error;
      }
      if( res==0 ){
        pC->rowidIsValid = 1;
        pC->lastRowid = iKey;
      }
    }else{

      nField = pOp->p4.i;
      assert( pOp->p4type==P4_INT32 );
      assert( nField>0 );
      r.pKeyInfo = pC->pKeyInfo;
      r.nField = (u16)nField;
      if( oc==OP_SeekGt || oc==OP_SeekLe ){
        r.flags = UNPACKED_INCRKEY;
      }else{
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257

3258
3259
3260
3261
3262
3263
3264
** for P1 to move so that it points to the rowid given by P2.
**
** This is actually a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
** occur, no unnecessary I/O happens.
*/
case OP_Seek: {    /* in2 */
  int i = pOp->p1;
  VdbeCursor *pC;


  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( pC->pCursor!=0 ){
    assert( pC->isTable );
    pC->nullRow = 0;
    pC->movetoTarget = sqlite3VdbeIntValue(pIn2);







|


>







3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
** for P1 to move so that it points to the rowid given by P2.
**
** This is actually a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
** occur, no unnecessary I/O happens.
*/
case OP_Seek: {    /* in2 */
  int i;
  VdbeCursor *pC;

  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( pC->pCursor!=0 ){
    assert( pC->isTable );
    pC->nullRow = 0;
    pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306






3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
** to P2.  If an entry does existing, fall through.  The cursor is left
** pointing to the entry that matches.
**
** See also: Found, NotExists, IsUnique
*/
case OP_NotFound:       /* jump, in3 */
case OP_Found: {        /* jump, in3 */
  int i = pOp->p1;
  int alreadyExists = 0;
  VdbeCursor *pC;






  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
    int res;
    UnpackedRecord *pIdxKey;

    assert( pC->isTable==0 );
    assert( pIn3->flags & MEM_Blob );
    pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
                                      aTempRec, sizeof(aTempRec));
    if( pIdxKey==0 ){
      goto no_mem;







|
|

>
>
>
>
>
>



<
<







3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368


3369
3370
3371
3372
3373
3374
3375
** to P2.  If an entry does existing, fall through.  The cursor is left
** pointing to the entry that matches.
**
** See also: Found, NotExists, IsUnique
*/
case OP_NotFound:       /* jump, in3 */
case OP_Found: {        /* jump, in3 */
  int i;
  int alreadyExists;
  VdbeCursor *pC;
  int res;
  UnpackedRecord *pIdxKey;
  char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];

  i = pOp->p1;
  alreadyExists = 0;
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor!=0 ){



    assert( pC->isTable==0 );
    assert( pIn3->flags & MEM_Blob );
    pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
                                      aTempRec, sizeof(aTempRec));
    if( pIdxKey==0 ){
      goto no_mem;
3363
3364
3365
3366
3367
3368
3369
3370


3371

3372
3373
3374
3375
3376
3377
3378
** See also: NotFound, NotExists, Found
*/
case OP_IsUnique: {        /* jump, in3 */
  u16 ii;
  VdbeCursor *pCx;
  BtCursor *pCrsr;
  u16 nField;
  Mem *aMem = &p->aMem[pOp->p4.i];




  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  pCx = p->apCsr[pOp->p1];







|
>
>

>







3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
** See also: NotFound, NotExists, Found
*/
case OP_IsUnique: {        /* jump, in3 */
  u16 ii;
  VdbeCursor *pCx;
  BtCursor *pCrsr;
  u16 nField;
  Mem *aMem;
  UnpackedRecord r;                  /* B-Tree index search key */
  i64 R;                             /* Rowid stored in register P3 */

  aMem = &p->aMem[pOp->p4.i];
  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  pCx = p->apCsr[pOp->p1];
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
      pCrsr = 0;
      break;
    }
  }
  assert( (aMem[nField].flags & MEM_Null)==0 );

  if( pCrsr!=0 ){
    UnpackedRecord r;                  /* B-Tree index search key */
    i64 R;                             /* Rowid stored in register P3 */

    /* Populate the index search key. */
    r.pKeyInfo = pCx->pKeyInfo;
    r.nField = nField + 1;
    r.flags = UNPACKED_PREFIX_SEARCH;
    r.aMem = aMem;

    /* Extract the value of R from register P3. */







<
<
<







3449
3450
3451
3452
3453
3454
3455



3456
3457
3458
3459
3460
3461
3462
      pCrsr = 0;
      break;
    }
  }
  assert( (aMem[nField].flags & MEM_Null)==0 );

  if( pCrsr!=0 ){



    /* Populate the index search key. */
    r.pKeyInfo = pCx->pKeyInfo;
    r.nField = nField + 1;
    r.flags = UNPACKED_PREFIX_SEARCH;
    r.aMem = aMem;

    /* Extract the value of R from register P3. */
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439




3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
** operation assumes the key is an integer and that P1 is a table whereas
** NotFound assumes key is a blob constructed from MakeRecord and
** P1 is an index.
**
** See also: Found, NotFound, IsUnique
*/
case OP_NotExists: {        /* jump, in3 */
  int i = pOp->p1;
  VdbeCursor *pC;
  BtCursor *pCrsr;




  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int res = 0;
    u64 iKey;
    assert( pIn3->flags & MEM_Int );
    assert( p->apCsr[i]->isTable );
    iKey = intToKey(pIn3->u.i);
    rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
    pC->lastRowid = pIn3->u.i;
    pC->rowidIsValid = res==0 ?1:0;
    pC->nullRow = 0;







|


>
>
>
>



|
<







3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504

3505
3506
3507
3508
3509
3510
3511
** operation assumes the key is an integer and that P1 is a table whereas
** NotFound assumes key is a blob constructed from MakeRecord and
** P1 is an index.
**
** See also: Found, NotFound, IsUnique
*/
case OP_NotExists: {        /* jump, in3 */
  int i;
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  u64 iKey;

  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    res = 0;

    assert( pIn3->flags & MEM_Int );
    assert( p->apCsr[i]->isTable );
    iKey = intToKey(pIn3->u.i);
    rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
    pC->lastRowid = pIn3->u.i;
    pC->rowidIsValid = res==0 ?1:0;
    pC->nullRow = 0;
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505










3506
3507
3508
3509
3510
3511
3512
** generated record number.  No new record numbers are allowed to be less
** than this value.  When this value reaches its maximum, a SQLITE_FULL
** error is generated.  The P3 register is updated with the generated
** record number.  This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: {           /* out2-prerelease */
  int i = pOp->p1;
  i64 v = 0;
  VdbeCursor *pC;










  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor==0 ){
    /* The zero initialization above is all that is needed */
  }else{
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.







|
|

>
>
>
>
>
>
>
>
>
>







3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
** generated record number.  No new record numbers are allowed to be less
** than this value.  When this value reaches its maximum, a SQLITE_FULL
** error is generated.  The P3 register is updated with the generated
** record number.  This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: {           /* out2-prerelease */
  int i;
  i64 v;
  VdbeCursor *pC;
  int res;
  int rx;
  int cnt;
  i64 x;
  Mem *pMem;

  i = pOp->p1;
  v = 0;
  res = 0;
  rx = SQLITE_OK;
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor==0 ){
    /* The zero initialization above is all that is needed */
  }else{
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
    ** random number generator based on the RC4 algorithm.
    **
    ** To promote locality of reference for repetitive inserts, the
    ** first few attempts at choosing a random rowid pick values just a little
    ** larger than the previous rowid.  This has been shown experimentally
    ** to double the speed of the COPY operation.
    */
    int res=0, rx=SQLITE_OK, cnt;
    i64 x;
    cnt = 0;
    if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
          BTREE_INTKEY ){
      rc = SQLITE_CORRUPT_BKPT;
      goto abort_due_to_error;
    }
    assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );







<
<







3605
3606
3607
3608
3609
3610
3611


3612
3613
3614
3615
3616
3617
3618
    ** random number generator based on the RC4 algorithm.
    **
    ** To promote locality of reference for repetitive inserts, the
    ** first few attempts at choosing a random rowid pick values just a little
    ** larger than the previous rowid.  This has been shown experimentally
    ** to double the speed of the COPY operation.
    */


    cnt = 0;
    if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
          BTREE_INTKEY ){
      rc = SQLITE_CORRUPT_BKPT;
      goto abort_due_to_error;
    }
    assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
            v++;
          }
        }
      }

#ifndef SQLITE_OMIT_AUTOINCREMENT
      if( pOp->p3 ){
        Mem *pMem;
        assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
        pMem = &p->aMem[pOp->p3];
	REGISTER_TRACE(pOp->p3, pMem);
        sqlite3VdbeMemIntegerify(pMem);
        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
          rc = SQLITE_FULL;







<







3646
3647
3648
3649
3650
3651
3652

3653
3654
3655
3656
3657
3658
3659
            v++;
          }
        }
      }

#ifndef SQLITE_OMIT_AUTOINCREMENT
      if( pOp->p3 ){

        assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
        pMem = &p->aMem[pOp->p3];
	REGISTER_TRACE(pOp->p3, pMem);
        sqlite3VdbeMemIntegerify(pMem);
        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
          rc = SQLITE_FULL;
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667









3668
3669
3670
3671
3672
3673
3674
** value of register P2 will then change.  Make sure this does not
** cause any problems.)
**
** This instruction only works on tables.  The equivalent instruction
** for indices is OP_IdxInsert.
*/
case OP_Insert: {
  Mem *pData = &p->aMem[pOp->p2];
  Mem *pKey = &p->aMem[pOp->p3];

  i64 iKey;   /* The integer ROWID or key for the record to be inserted */
  int i = pOp->p1;
  VdbeCursor *pC;









  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  assert( pC->pCursor!=0 || pC->pseudoTable );
  assert( pKey->flags & MEM_Int );
  assert( pC->isTable );
  REGISTER_TRACE(pOp->p2, pData);







|
|
<

|

>
>
>
>
>
>
>
>
>







3722
3723
3724
3725
3726
3727
3728
3729
3730

3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
** value of register P2 will then change.  Make sure this does not
** cause any problems.)
**
** This instruction only works on tables.  The equivalent instruction
** for indices is OP_IdxInsert.
*/
case OP_Insert: {
  Mem *pData;
  Mem *pKey;

  i64 iKey;   /* The integer ROWID or key for the record to be inserted */
  int i;
  VdbeCursor *pC;
  int nZero;
  int seekResult;
  const char *zDb;
  const char *zTbl;
  int op;

  pData = &p->aMem[pOp->p2];
  pKey = &p->aMem[pOp->p3];
  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  assert( pC->pCursor!=0 || pC->pseudoTable );
  assert( pKey->flags & MEM_Int );
  assert( pC->isTable );
  REGISTER_TRACE(pOp->p2, pData);
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
      if( !pC->pData ) goto no_mem;
      memcpy(pC->pData, pData->z, pC->nData);
      pC->pData[pC->nData] = 0;
      pC->pData[pC->nData+1] = 0;
    }
    pC->nullRow = 0;
  }else{
    int nZero;
    int seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
    if( pData->flags & MEM_Zero ){
      nZero = pData->u.nZero;
    }else{
      nZero = 0;
    }
    sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
    rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
                            pData->z, pData->n, nZero,
                            pOp->p5 & OPFLAG_APPEND, seekResult
    );
  }
  
  pC->rowidIsValid = 0;
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    const char *zDb = db->aDb[pC->iDb].zName;
    const char *zTbl = pOp->p4.z;
    int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
    assert( pC->isTable );
    db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
    assert( pC->iDb>=0 );
  }
  break;
}








<
|


















|
|
|







3776
3777
3778
3779
3780
3781
3782

3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
      if( !pC->pData ) goto no_mem;
      memcpy(pC->pData, pData->z, pC->nData);
      pC->pData[pC->nData] = 0;
      pC->pData[pC->nData+1] = 0;
    }
    pC->nullRow = 0;
  }else{

    seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
    if( pData->flags & MEM_Zero ){
      nZero = pData->u.nZero;
    }else{
      nZero = 0;
    }
    sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
    rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
                            pData->z, pData->n, nZero,
                            pOp->p5 & OPFLAG_APPEND, seekResult
    );
  }
  
  pC->rowidIsValid = 0;
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    zDb = db->aDb[pC->iDb].zName;
    zTbl = pOp->p4.z;
    op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
    assert( pC->isTable );
    db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
    assert( pC->iDb>=0 );
  }
  break;
}

3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762


3763
3764
3765
3766
3767
3768
3769
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
** using OP_NotFound prior to invoking this opcode.
*/
case OP_Delete: {
  int i = pOp->p1;
  i64 iKey = 0;
  VdbeCursor *pC;



  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */

  /* If the update-hook will be invoked, set iKey to the rowid of the
  ** row being deleted.







|
|


>
>







3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
** using OP_NotFound prior to invoking this opcode.
*/
case OP_Delete: {
  int i;
  i64 iKey;
  VdbeCursor *pC;

  i = pOp->p1;
  iKey = 0;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */

  /* If the update-hook will be invoked, set iKey to the rowid of the
  ** row being deleted.
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834

3835

3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
case OP_RowKey:
case OP_RowData: {
  int i = pOp->p1;
  VdbeCursor *pC;
  BtCursor *pCrsr;
  u32 n;



  pOut = &p->aMem[pOp->p2];

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC->isTable || pOp->opcode==OP_RowKey );
  assert( pC->isIndex || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTable==0 );
  assert( pC->pCursor!=0 );
  pCrsr = pC->pCursor;
  rc = sqlite3VdbeCursorMoveto(pC);
  if( rc ) goto abort_due_to_error;
  if( pC->isIndex ){
    i64 n64;
    assert( !pC->isTable );
    sqlite3BtreeKeySize(pCrsr, &n64);
    if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
    n = (int)n64;
  }else{







|



>

>















<







3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928

3929
3930
3931
3932
3933
3934
3935
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
case OP_RowKey:
case OP_RowData: {
  int i;
  VdbeCursor *pC;
  BtCursor *pCrsr;
  u32 n;
  i64 n64;

  i = pOp->p1;
  pOut = &p->aMem[pOp->p2];

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC->isTable || pOp->opcode==OP_RowKey );
  assert( pC->isIndex || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTable==0 );
  assert( pC->pCursor!=0 );
  pCrsr = pC->pCursor;
  rc = sqlite3VdbeCursorMoveto(pC);
  if( rc ) goto abort_due_to_error;
  if( pC->isIndex ){

    assert( !pC->isTable );
    sqlite3BtreeKeySize(pCrsr, &n64);
    if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
    n = (int)n64;
  }else{
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891


3892

3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table.  There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: {                 /* out2-prerelease */
  int i = pOp->p1;
  VdbeCursor *pC;
  i64 v;




  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( pC->nullRow ){
    /* Do nothing so that reg[P2] remains NULL */
    break;
  }else if( pC->deferredMoveto ){
    v = pC->movetoTarget;
  }else if( pC->pseudoTable ){
    v = keyToInt(pC->iKey);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->pVtabCursor ){
    sqlite3_vtab *pVtab;
    const sqlite3_module *pModule;
    pVtab = pC->pVtabCursor->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    sqlite3DbFree(db, p->zErrMsg);
    p->zErrMsg = pVtab->zErrMsg;







|


>
>

>












<
<







3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984


3985
3986
3987
3988
3989
3990
3991
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table.  There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: {                 /* out2-prerelease */
  int i;
  VdbeCursor *pC;
  i64 v;
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;

  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( pC->nullRow ){
    /* Do nothing so that reg[P2] remains NULL */
    break;
  }else if( pC->deferredMoveto ){
    v = pC->movetoTarget;
  }else if( pC->pseudoTable ){
    v = keyToInt(pC->iKey);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->pVtabCursor ){


    pVtab = pC->pVtabCursor->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    sqlite3DbFree(db, p->zErrMsg);
    p->zErrMsg = pVtab->zErrMsg;
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942

3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967

3968
3969
3970
3971
3972
3973
3974
/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow: {
  int i = pOp->p1;
  VdbeCursor *pC;


  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;
  if( pC->pCursor ){
    sqlite3BtreeClearCursor(pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {        /* jump */
  int i = pOp->p1;
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;


  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  rc = sqlite3BtreeLast(pCrsr, &res);
  pC->nullRow = (u8)res;







|


>




















|




>







4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow: {
  int i;
  VdbeCursor *pC;

  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;
  if( pC->pCursor ){
    sqlite3BtreeClearCursor(pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {        /* jump */
  int i;
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  rc = sqlite3BtreeLast(pCrsr, &res);
  pC->nullRow = (u8)res;
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018

4019
4020
4021
4022
4023
4024
4025
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {        /* jump */
  int i = pOp->p1;
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;


  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( (pCrsr = pC->pCursor)!=0 ){
    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->atFirst = res==0 ?1:0;
    pC->deferredMoveto = 0;







|




>







4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {        /* jump */
  int i;
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( (pCrsr = pC->pCursor)!=0 ){
    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->atFirst = res==0 ?1:0;
    pC->deferredMoveto = 0;
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105




4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134


4135
4136
4137
4138
4139
4140
4141
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_IdxInsert: {        /* in2 */
  int i = pOp->p1;
  VdbeCursor *pC;
  BtCursor *pCrsr;




  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pIn2->flags & MEM_Blob );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    assert( pC->isTable==0 );
    rc = ExpandBlob(pIn2);
    if( rc==SQLITE_OK ){
      int nKey = pIn2->n;
      const char *zKey = pIn2->z;
      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 
          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
      );
      assert( pC->deferredMoveto==0 );
      pC->cacheStatus = CACHE_STALE;
    }
  }
  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 
** index opened by cursor P1.
*/
case OP_IdxDelete: {
  int i = pOp->p1;
  VdbeCursor *pC;
  BtCursor *pCrsr;


  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int res;
    UnpackedRecord r;







|


>
>
>
>







|
|

















|


>
>







4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_IdxInsert: {        /* in2 */
  int i;
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int nKey;
  const char *zKey;

  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pIn2->flags & MEM_Blob );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    assert( pC->isTable==0 );
    rc = ExpandBlob(pIn2);
    if( rc==SQLITE_OK ){
      nKey = pIn2->n;
      zKey = pIn2->z;
      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 
          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
      );
      assert( pC->deferredMoveto==0 );
      pC->cacheStatus = CACHE_STALE;
    }
  }
  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 
** index opened by cursor P1.
*/
case OP_IdxDelete: {
  int i;
  VdbeCursor *pC;
  BtCursor *pCrsr;

  i = pOp->p1;
  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int res;
    UnpackedRecord r;
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169

4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_IdxRowid: {              /* out2-prerelease */
  int i = pOp->p1;
  BtCursor *pCrsr;
  VdbeCursor *pC;



  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    i64 rowid;
    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    assert( pC->deferredMoveto==0 );
    assert( pC->isTable==0 );
    if( !pC->nullRow ){
      rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
      if( rc!=SQLITE_OK ){







|


|

>



<







4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260

4261
4262
4263
4264
4265
4266
4267
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_IdxRowid: {              /* out2-prerelease */
  int i;
  BtCursor *pCrsr;
  VdbeCursor *pC;
  i64 rowid;

  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){

    rc = sqlite3VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    assert( pC->deferredMoveto==0 );
    assert( pC->isTable==0 );
    if( !pC->nullRow ){
      rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
      if( rc!=SQLITE_OK ){
4211
4212
4213
4214
4215
4216
4217
4218
4219


4220

4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
** Otherwise fall through to the next instruction.
**
** If P5 is non-zero then the key value is increased by an epsilon prior 
** to the comparison.  This makes the opcode work like IdxLE.
*/
case OP_IdxLT:          /* jump, in3 */
case OP_IdxGE: {        /* jump, in3 */
  int i= pOp->p1;
  VdbeCursor *pC;




  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
    int res;
    UnpackedRecord r;
    assert( pC->deferredMoveto==0 );
    assert( pOp->p5==0 || pOp->p5==1 );
    assert( pOp->p4type==P4_INT32 );
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p4.i;
    if( pOp->p5 ){
      r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;







|

>
>

>



<
<







4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313


4314
4315
4316
4317
4318
4319
4320
** Otherwise fall through to the next instruction.
**
** If P5 is non-zero then the key value is increased by an epsilon prior 
** to the comparison.  This makes the opcode work like IdxLE.
*/
case OP_IdxLT:          /* jump, in3 */
case OP_IdxGE: {        /* jump, in3 */
  int i;
  VdbeCursor *pC;
  int res;
  UnpackedRecord r;

  i = pOp->p1;
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor!=0 ){


    assert( pC->deferredMoveto==0 );
    assert( pOp->p5==0 || pOp->p5==1 );
    assert( pOp->p4type==P4_INT32 );
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p4.i;
    if( pOp->p5 ){
      r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
4267
4268
4269
4270
4271
4272
4273
4274
4275


4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2-prerelease */
  int iMoved;
  int iCnt;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  Vdbe *pVdbe;


  iCnt = 0;
  for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
      iCnt++;
    }
  }
#else
  iCnt = db->activeVdbeCnt;
#endif
  if( iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    int iDb = pOp->p3;
    assert( iCnt==1 );
    assert( (p->btreeMask & (1<<iDb))!=0 );
    rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
    MemSetTypeFlag(pOut, MEM_Int);
    pOut->u.i = iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( rc==SQLITE_OK && iMoved!=0 ){







<

>
>

|











|







4355
4356
4357
4358
4359
4360
4361

4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2-prerelease */
  int iMoved;
  int iCnt;

  Vdbe *pVdbe;
  int iDb;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  iCnt = 0;
  for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
      iCnt++;
    }
  }
#else
  iCnt = db->activeVdbeCnt;
#endif
  if( iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;
    assert( iCnt==1 );
    assert( (p->btreeMask & (1<<iDb))!=0 );
    rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
    MemSetTypeFlag(pOut, MEM_Int);
    pOut->u.i = iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( rc==SQLITE_OK && iMoved!=0 ){
4316
4317
4318
4319
4320
4321
4322
4323


4324
4325
4326
4327
4328
4329
4330
** count is incremented by the number of rows in the table being cleared. 
** If P3 is greater than zero, then the value stored in register P3 is
** also incremented by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {
  int nChange = 0;


  assert( (p->btreeMask & (1<<pOp->p2))!=0 );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){







|
>
>







4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
** count is incremented by the number of rows in the table being cleared. 
** If P3 is greater than zero, then the value stored in register P3 is
** also incremented by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 
  nChange = 0;
  assert( (p->btreeMask & (1<<pOp->p2))!=0 );
  rc = sqlite3BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363


4364
4365
4366
4367
4368
4369
4370
** P1>1.  Write the root page number of the new table into
** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:            /* out2-prerelease */
case OP_CreateTable: {          /* out2-prerelease */
  int pgno = 0;
  int flags;
  Db *pDb;


  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    /* flags = BTREE_INTKEY; */
    flags = BTREE_LEAFDATA|BTREE_INTKEY;







|


>
>







4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
** P1>1.  Write the root page number of the new table into
** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:            /* out2-prerelease */
case OP_CreateTable: {          /* out2-prerelease */
  int pgno;
  int flags;
  Db *pDb;

  pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
    /* flags = BTREE_INTKEY; */
    flags = BTREE_LEAFDATA|BTREE_INTKEY;
4386
4387
4388
4389
4390
4391
4392





4393
4394
4395
4396
4397
4398
4399
4400
** is false, the SQLITE_MASTER table is only parsed if the rest of the
** schema is already loaded into the symbol table.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a re-entrant opcode.
*/
case OP_ParseSchema: {





  int iDb = pOp->p1;
  assert( iDb>=0 && iDb<db->nDb );

  /* If pOp->p2 is 0, then this opcode is being executed to read a
  ** single row, for example the row corresponding to a new index
  ** created by this VDBE, from the sqlite_master table. It only
  ** does this if the corresponding in-memory schema is currently
  ** loaded. Otherwise, the new index definition can be loaded along







>
>
>
>
>
|







4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
** is false, the SQLITE_MASTER table is only parsed if the rest of the
** schema is already loaded into the symbol table.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a re-entrant opcode.
*/
case OP_ParseSchema: {
  int iDb;
  const char *zMaster;
  char *zSql;
  InitData initData;

  iDb = pOp->p1;
  assert( iDb>=0 && iDb<db->nDb );

  /* If pOp->p2 is 0, then this opcode is being executed to read a
  ** single row, for example the row corresponding to a new index
  ** created by this VDBE, from the sqlite_master table. It only
  ** does this if the corresponding in-memory schema is currently
  ** loaded. Otherwise, the new index definition can be loaded along
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
  ** will not be reloaded becuase the db->init.busy flag is set. This
  ** can result in a "no such table: sqlite_master" or "malformed
  ** database schema" error being returned to the user.
  */
  assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
  sqlite3BtreeEnterAll(db);
  if( pOp->p2 || DbHasProperty(db, iDb, DB_SchemaLoaded) ){
    const char *zMaster = SCHEMA_TABLE(iDb);
    char *zSql;
    InitData initData;
    initData.db = db;
    initData.iDb = pOp->p1;
    initData.pzErrMsg = &p->zErrMsg;
    zSql = sqlite3MPrintf(db,
       "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
       db->aDb[iDb].zName, zMaster, pOp->p4.z);
    if( zSql==0 ){







|
<
<







4511
4512
4513
4514
4515
4516
4517
4518


4519
4520
4521
4522
4523
4524
4525
  ** will not be reloaded becuase the db->init.busy flag is set. This
  ** can result in a "no such table: sqlite_master" or "malformed
  ** database schema" error being returned to the user.
  */
  assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
  sqlite3BtreeEnterAll(db);
  if( pOp->p2 || DbHasProperty(db, iDb, DB_SchemaLoaded) ){
    zMaster = SCHEMA_TABLE(iDb);


    initData.db = db;
    initData.iDb = pOp->p1;
    initData.pzErrMsg = &p->zErrMsg;
    zSql = sqlite3MPrintf(db,
       "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
       db->aDb[iDb].zName, zMaster, pOp->p4.z);
    if( zSql==0 ){
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
/* Opcode: LoadAnalysis P1 * * * *
**
** Read the sqlite_stat1 table for database P1 and load the content
** of that table into the internal index hash table.  This will cause
** the analysis to be used when preparing all subsequent queries.
*/
case OP_LoadAnalysis: {
  int iDb = pOp->p1;
  assert( iDb>=0 && iDb<db->nDb );
  rc = sqlite3AnalysisLoad(db, iDb);
  break;  
}
#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */

/* Opcode: DropTable P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe







<
|
|







4548
4549
4550
4551
4552
4553
4554

4555
4556
4557
4558
4559
4560
4561
4562
4563
/* Opcode: LoadAnalysis P1 * * * *
**
** Read the sqlite_stat1 table for database P1 and load the content
** of that table into the internal index hash table.  This will cause
** the analysis to be used when preparing all subsequent queries.
*/
case OP_LoadAnalysis: {

  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  rc = sqlite3AnalysisLoad(db, pOp->p1);
  break;  
}
#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */

/* Opcode: DropTable P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
4632
4633
4634
4635
4636
4637
4638



4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
** (b) when P4==-1 there is no need to insert the value, as it will
** never be tested for, and (c) when a value that is part of set X is
** inserted, there is no need to search to see if the same value was
** previously inserted as part of set X (only if it was previously
** inserted as part of some other set).
*/
case OP_RowSetTest: {                     /* jump, in1, in3 */



  int iSet = pOp->p4.i;
  assert( pIn3->flags&MEM_Int );

  /* If there is anything other than a rowset object in memory cell P1,
  ** delete it now and initialize P1 with an empty rowset
  */
  if( (pIn1->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(pIn1);
    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
  }

  assert( pOp->p4type==P4_INT32 );
  assert( iSet==-1 || iSet>=0 );
  if( iSet ){
    int exists;
    exists = sqlite3RowSetTest(pIn1->u.pRowSet, 
                               (u8)(iSet>=0 ? iSet & 0xf : 0xff),
                               pIn3->u.i);
    if( exists ){
      pc = pOp->p2 - 1;
      break;
    }







>
>
>
|













<







4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750

4751
4752
4753
4754
4755
4756
4757
** (b) when P4==-1 there is no need to insert the value, as it will
** never be tested for, and (c) when a value that is part of set X is
** inserted, there is no need to search to see if the same value was
** previously inserted as part of set X (only if it was previously
** inserted as part of some other set).
*/
case OP_RowSetTest: {                     /* jump, in1, in3 */
  int iSet;
  int exists;

  iSet = pOp->p4.i;
  assert( pIn3->flags&MEM_Int );

  /* If there is anything other than a rowset object in memory cell P1,
  ** delete it now and initialize P1 with an empty rowset
  */
  if( (pIn1->flags & MEM_RowSet)==0 ){
    sqlite3VdbeMemSetRowSet(pIn1);
    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
  }

  assert( pOp->p4type==P4_INT32 );
  assert( iSet==-1 || iSet>=0 );
  if( iSet ){

    exists = sqlite3RowSetTest(pIn1->u.pRowSet, 
                               (u8)(iSet>=0 ? iSet & 0xf : 0xff),
                               pIn3->u.i);
    if( exists ){
      pc = pOp->p2 - 1;
      break;
    }
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679

4680
4681
4682
4683
4684
4685
4686
/* Opcode: ContextPush * * * 
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/
case OP_ContextPush: {
  int i = p->contextStackTop++;
  Context *pContext;


  assert( i>=0 );
  /* FIX ME: This should be allocated as part of the vdbe at compile-time */
  if( i>=p->contextStackDepth ){
    p->contextStackDepth = i+1;
    p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
                                          sizeof(Context)*(i+1));
    if( p->contextStack==0 ) goto no_mem;







|


>







4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
/* Opcode: ContextPush * * * 
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/
case OP_ContextPush: {
  int i;
  Context *pContext;

  i = p->contextStackTop++;
  assert( i>=0 );
  /* FIX ME: This should be allocated as part of the vdbe at compile-time */
  if( i>=p->contextStackDepth ){
    p->contextStackDepth = i+1;
    p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
                                          sizeof(Context)*(i+1));
    if( p->contextStack==0 ) goto no_mem;
4694
4695
4696
4697
4698
4699
4700

4701
4702
4703
4704
4705
4706
4707
4708
/* Opcode: ContextPop * * * 
**
** Restore the Vdbe context to the state it was in when contextPush was last
** executed. The context stores the last insert row id, the last statement
** change count, and the current statement change count.
*/
case OP_ContextPop: {

  Context *pContext = &p->contextStack[--p->contextStackTop];
  assert( p->contextStackTop>=0 );
  db->lastRowid = pContext->lastRowid;
  p->nChange = pContext->nChange;
  break;
}
#endif /* #ifndef SQLITE_OMIT_TRIGGER */








>
|







4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
/* Opcode: ContextPop * * * 
**
** Restore the Vdbe context to the state it was in when contextPush was last
** executed. The context stores the last insert row id, the last statement
** change count, and the current statement change count.
*/
case OP_ContextPop: {
  Context *pContext;
  pContext = &p->contextStack[--p->contextStackTop];
  assert( p->contextStackTop>=0 );
  db->lastRowid = pContext->lastRowid;
  p->nChange = pContext->nChange;
  break;
}
#endif /* #ifndef SQLITE_OMIT_TRIGGER */

4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789

4790
4791
4792
4793
4794
4795
4796
** structure that specifies the function.  Use register
** P3 as the accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
*/
case OP_AggStep: {
  int n = pOp->p5;
  int i;
  Mem *pMem, *pRec;
  sqlite3_context ctx;
  sqlite3_value **apVal;


  assert( n>=0 );
  pRec = &p->aMem[pOp->p2];
  apVal = p->apArg;
  assert( apVal || n==0 );
  for(i=0; i<n; i++, pRec++){
    apVal[i] = pRec;
    storeTypeInfo(pRec, encoding);







|





>







4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
** structure that specifies the function.  Use register
** P3 as the accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
*/
case OP_AggStep: {
  int n;
  int i;
  Mem *pMem, *pRec;
  sqlite3_context ctx;
  sqlite3_value **apVal;

  n = pOp->p5;
  assert( n>=0 );
  pRec = &p->aMem[pOp->p2];
  apVal = p->apArg;
  assert( apVal || n==0 );
  for(i=0; i<n; i++, pRec++){
    apVal[i] = pRec;
    storeTypeInfo(pRec, encoding);
4918
4919
4920
4921
4922
4923
4924



4925
4926
4927
4928
4929
4930
4931
4932
4933
**
** P2 contains the root-page of the table to lock.
**
** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {



  int p1 = pOp->p1; 
  u8 isWriteLock = (u8)pOp->p3;
  assert( p1>=0 && p1<db->nDb );
  assert( (p->btreeMask & (1<<p1))!=0 );
  assert( isWriteLock==0 || isWriteLock==1 );
  rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
  if( (rc&0xFF)==SQLITE_LOCKED ){
    const char *z = pOp->p4.z;
    sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);







>
>
>
|
|







5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
**
** P2 contains the root-page of the table to lock.
**
** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {
  int p1;
  u8 isWriteLock;

  p1 = pOp->p1; 
  isWriteLock = (u8)pOp->p3;
  assert( p1>=0 && p1<db->nDb );
  assert( (p->btreeMask & (1<<p1))!=0 );
  assert( isWriteLock==0 || isWriteLock==1 );
  rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
  if( (rc&0xFF)==SQLITE_LOCKED ){
    const char *z = pOp->p4.z;
    sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
4943
4944
4945
4946
4947
4948
4949
4950

4951
4952
4953
4954
4955
4956
4957
** xBegin method for that table.
**
** Also, whether or not P4 is set, check that this is not being called from
** within a callback to a virtual table xSync() method. If it is, the error
** code will be set to SQLITE_LOCKED.
*/
case OP_VBegin: {
  sqlite3_vtab *pVtab = pOp->p4.pVtab;

  rc = sqlite3VtabBegin(db, pVtab);
  if( pVtab ){
    sqlite3DbFree(db, p->zErrMsg);
    p->zErrMsg = pVtab->zErrMsg;
    pVtab->zErrMsg = 0;
  }
  break;







|
>







5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
** xBegin method for that table.
**
** Also, whether or not P4 is set, check that this is not being called from
** within a callback to a virtual table xSync() method. If it is, the error
** code will be set to SQLITE_LOCKED.
*/
case OP_VBegin: {
  sqlite3_vtab *pVtab;
  pVtab = pOp->p4.pVtab;
  rc = sqlite3VtabBegin(db, pVtab);
  if( pVtab ){
    sqlite3DbFree(db, p->zErrMsg);
    p->zErrMsg = pVtab->zErrMsg;
    pVtab->zErrMsg = 0;
  }
  break;
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000




5001
5002
5003
5004
5005
5006
5007
/* Opcode: VOpen P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {
  VdbeCursor *pCur = 0;
  sqlite3_vtab_cursor *pVtabCursor = 0;

  sqlite3_vtab *pVtab = pOp->p4.pVtab;
  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;





  assert(pVtab && pModule);
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = pVtab->zErrMsg;
  pVtab->zErrMsg = 0;
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;







|
|
<
|
|

>
>
>
>







5092
5093
5094
5095
5096
5097
5098
5099
5100

5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
/* Opcode: VOpen P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {
  VdbeCursor *pCur;
  sqlite3_vtab_cursor *pVtabCursor;

  sqlite3_vtab *pVtab;
  sqlite3_module *pModule;

  pCur = 0;
  pVtabCursor = 0;
  pVtab = pOp->p4.pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;
  assert(pVtab && pModule);
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  sqlite3DbFree(db, p->zErrMsg);
  p->zErrMsg = pVtab->zErrMsg;
  pVtab->zErrMsg = 0;
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054



5055



5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
**
** A jump is made to P2 if the result set after filtering would be empty.
*/
case OP_VFilter: {   /* jump */
  int nArg;
  int iQuery;
  const sqlite3_module *pModule;
  Mem *pQuery = &p->aMem[pOp->p3];
  Mem *pArgc = &pQuery[1];
  sqlite3_vtab_cursor *pVtabCursor;
  sqlite3_vtab *pVtab;

  VdbeCursor *pCur = p->apCsr[pOp->p1];







  REGISTER_TRACE(pOp->p3, pQuery);
  assert( pCur->pVtabCursor );
  pVtabCursor = pCur->pVtabCursor;
  pVtab = pVtabCursor->pVtab;
  pModule = pVtab->pModule;

  /* Grab the index number and argc parameters */
  assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
  nArg = (int)pArgc->u.i;
  iQuery = (int)pQuery->u.i;

  /* Invoke the xFilter method */
  {
    int res = 0;
    int i;
    Mem **apArg = p->apArg;
    for(i = 0; i<nArg; i++){
      apArg[i] = &pArgc[i+1];
      storeTypeInfo(apArg[i], 0);
    }

    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    sqlite3VtabLock(pVtab);







|
|


<
|
>
>
>

>
>
>













|
<
|







5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159

5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181

5182
5183
5184
5185
5186
5187
5188
5189
**
** A jump is made to P2 if the result set after filtering would be empty.
*/
case OP_VFilter: {   /* jump */
  int nArg;
  int iQuery;
  const sqlite3_module *pModule;
  Mem *pQuery;
  Mem *pArgc;
  sqlite3_vtab_cursor *pVtabCursor;
  sqlite3_vtab *pVtab;

  VdbeCursor *pCur;
  int res;
  int i;
  Mem **apArg;

  pQuery = &p->aMem[pOp->p3];
  pArgc = &pQuery[1];
  pCur = p->apCsr[pOp->p1];
  REGISTER_TRACE(pOp->p3, pQuery);
  assert( pCur->pVtabCursor );
  pVtabCursor = pCur->pVtabCursor;
  pVtab = pVtabCursor->pVtab;
  pModule = pVtab->pModule;

  /* Grab the index number and argc parameters */
  assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
  nArg = (int)pArgc->u.i;
  iQuery = (int)pQuery->u.i;

  /* Invoke the xFilter method */
  {
    res = 0;

    apArg = p->apArg;
    for(i = 0; i<nArg; i++){
      apArg[i] = &pArgc[i+1];
      storeTypeInfo(apArg[i], 0);
    }

    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    sqlite3VtabLock(pVtab);
5164
5165
5166
5167
5168
5169
5170

5171
5172
5173
5174
5175
5176
5177
5178
5179
** jump to instruction P2.  Or, if the virtual table has reached
** the end of its result set, then fall through to the next instruction.
*/
case OP_VNext: {   /* jump */
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  int res = 0;


  VdbeCursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  if( pCur->nullRow ){
    break;
  }
  pVtab = pCur->pVtabCursor->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xNext );







>

|







5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
** jump to instruction P2.  Or, if the virtual table has reached
** the end of its result set, then fall through to the next instruction.
*/
case OP_VNext: {   /* jump */
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  int res = 0;
  VdbeCursor *pCur;

  pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  if( pCur->nullRow ){
    break;
  }
  pVtab = pCur->pVtabCursor->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xNext );
5210
5211
5212
5213
5214
5215
5216
5217



5218
5219
5220
5221
5222
5223
5224
5225
/* Opcode: VRename P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
case OP_VRename: {
  sqlite3_vtab *pVtab = pOp->p4.pVtab;



  Mem *pName = &p->aMem[pOp->p1];
  assert( pVtab->pModule->xRename );
  REGISTER_TRACE(pOp->p1, pName);

  Stringify(pName, encoding);

  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  sqlite3VtabLock(pVtab);







|
>
>
>
|







5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
/* Opcode: VRename P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
case OP_VRename: {
  sqlite3_vtab *pVtab;
  Mem *pName;

  pVtab = pOp->p4.pVtab;
  pName = &p->aMem[pOp->p1];
  assert( pVtab->pModule->xRename );
  REGISTER_TRACE(pOp->p1, pName);

  Stringify(pName, encoding);

  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  sqlite3VtabLock(pVtab);
5255
5256
5257
5258
5259
5260
5261
5262








5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid() 
** is set to the value of the rowid for the row just inserted.
*/
case OP_VUpdate: {
  sqlite3_vtab *pVtab = pOp->p4.pVtab;








  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
  int nArg = pOp->p2;
  assert( pOp->p4type==P4_VTAB );
  if( pModule->xUpdate==0 ){
    sqlite3SetString(&p->zErrMsg, db, "read-only table");
    rc = SQLITE_ERROR;
  }else{
    int i;
    sqlite_int64 rowid;
    Mem **apArg = p->apArg;
    Mem *pX = &p->aMem[pOp->p3];
    for(i=0; i<nArg; i++){
      storeTypeInfo(pX, 0);
      apArg[i] = pX;
      pX++;
    }
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    sqlite3VtabLock(pVtab);







|
>
>
>
>
>
>
>
>
|
|





<
<
|
|







5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392


5393
5394
5395
5396
5397
5398
5399
5400
5401
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid() 
** is set to the value of the rowid for the row just inserted.
*/
case OP_VUpdate: {
  sqlite3_vtab *pVtab;
  sqlite3_module *pModule;
  int nArg;
  int i;
  sqlite_int64 rowid;
  Mem **apArg;
  Mem *pX;

  pVtab = pOp->p4.pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;
  nArg = pOp->p2;
  assert( pOp->p4type==P4_VTAB );
  if( pModule->xUpdate==0 ){
    sqlite3SetString(&p->zErrMsg, db, "read-only table");
    rc = SQLITE_ERROR;
  }else{


    apArg = p->apArg;
    pX = &p->aMem[pOp->p3];
    for(i=0; i<nArg; i++){
      storeTypeInfo(pX, 0);
      apArg[i] = pX;
      pX++;
    }
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
    sqlite3VtabLock(pVtab);
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306


5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322


5323
5324
5325
5326
5327
5328
5329
5330

#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: Pagecount P1 P2 * * *
**
** Write the current number of pages in database P1 to memory cell P2.
*/
case OP_Pagecount: {            /* out2-prerelease */
  int p1 = pOp->p1; 
  int nPage;
  Pager *pPager = sqlite3BtreePager(db->aDb[p1].pBt);



  rc = sqlite3PagerPagecount(pPager, &nPage);
  if( rc==SQLITE_OK ){
    pOut->flags = MEM_Int;
    pOut->u.i = nPage;
  }
  break;
}
#endif

#ifndef SQLITE_OMIT_TRACE
/* Opcode: Trace * * * P4 *
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
*/
case OP_Trace: {


  char *zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
  if( zTrace ){
    if( db->xTrace ){
      db->xTrace(db->pTraceArg, zTrace);
    }
#ifdef SQLITE_DEBUG
    if( (db->flags & SQLITE_SqlTrace)!=0 ){
      sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);







|

|

>
>
















>
>
|







5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455

#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: Pagecount P1 P2 * * *
**
** Write the current number of pages in database P1 to memory cell P2.
*/
case OP_Pagecount: {            /* out2-prerelease */
  int p1;
  int nPage;
  Pager *pPager;

  p1 = pOp->p1; 
  pPager = sqlite3BtreePager(db->aDb[p1].pBt);
  rc = sqlite3PagerPagecount(pPager, &nPage);
  if( rc==SQLITE_OK ){
    pOut->flags = MEM_Int;
    pOut->u.i = nPage;
  }
  break;
}
#endif

#ifndef SQLITE_OMIT_TRACE
/* Opcode: Trace * * * P4 *
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
*/
case OP_Trace: {
  char *zTrace;

  zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
  if( zTrace ){
    if( db->xTrace ){
      db->xTrace(db->pTraceArg, zTrace);
    }
#ifdef SQLITE_DEBUG
    if( (db->flags & SQLITE_SqlTrace)!=0 ){
      sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
Added tool/vdbe-compress.tcl.
























































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/tcl
#
# This script makes modifications to the vdbe.c source file which reduce
# the amount of stack space required by the sqlite3VdbeExec() routine.
#
# The modifications performed by this script are optional.  The vdbe.c
# source file will compile correctly with and without the modifications
# performed by this script.  And all routines within vdbe.c will compute
# the same result.  The modifications made by this script merely help
# the C compiler to generate code for sqlite3VdbeExec() that uses less
# stack space.
#
# Script usage:
#
#          mv vdbe.c vdbe.c.template
#          tclsh vdbe-compress.tcl <vdbe.c.template >vdbe.c
#
# Modifications made:
#
# All modifications are within the sqlite3VdbeExec() function.  The
# modifications seek to reduce the amount of stack space allocated by
# this routine by moving local variable declarations out of individual
# opcode implementations and into a single large union.  The union contains
# a separate structure for each opcode and that structure contains the
# local variables used by that opcode.  In this way, the total amount
# of stack space required by sqlite3VdbeExec() is reduced from the
# sum of all local variables to the maximum of the local variable space
# required for any single opcode.
#
# In order to be recognized by this script, local variables must appear
# on the first line after the open curly-brace that begins a new opcode
# implementation.  Local variables must not have initializers, though they
# may be commented.
#
# The union definition is inserted in place of a special marker comment
# in the preamble to the sqlite3VdbeExec() implementation.
#
#############################################################################
#
set beforeUnion {}   ;# C code before union
set unionDef {}      ;# C code of the union
set afterUnion {}    ;# C code after the union
set sCtr 0           ;# Context counter

# Read program text up to the spot where the union should be
# inserted.
#
while {![eof stdin]} {
  set line [gets stdin]
  if {[regexp {INSERT STACK UNION HERE} $line]} break
  append beforeUnion $line\n
}

# Process the remaining text.  Build up the union definition as we go.
#
set vlist {}
set seenDecl 0
set namechars {abcdefghijklmnopqrstuvwxyz}
set nnc [string length $namechars]
while {![eof stdin]} {
  set line [gets stdin]
  if {[regexp "^case (OP_\\w+): \173" $line all operator]} {
    append afterUnion $line\n
    set vlist {}
    while {![eof stdin]} {
      set line [gets stdin]
      if {[regexp {^ +(const )?\w+ \*?(\w+)(\[.*\])?;} $line \
           all constKeyword vname notused1]} {
        if {!$seenDecl} {
          set sname {}
          append sname [string index $namechars [expr {$sCtr/$nnc}]]
          append sname [string index $namechars [expr {$sCtr%$nnc}]]
          incr sCtr
          append unionDef "    struct ${operator}_stack_vars \173\n"
          append afterUnion \
             "#if 0  /* local variables moved into u.$sname */\n"
          set seenDecl 1
        }
        append unionDef "    $line\n"
        append afterUnion $line\n
        lappend vlist $vname
      } else {
        break
      }
    }
    if {$seenDecl} {
      append unionDef   "    \175 $sname;\n"
      append afterUnion "#endif /* local variables moved into u.$sname */\n"
    }
    set seenDecl 0
  }
  if {[regexp "^\175" $line]} {
    append afterUnion $line\n
    set vlist {}
  } elseif {[llength $vlist]>0} {
    append line " "
    foreach v $vlist {
      regsub -all "(\[^a-zA-Z0-9>.\])${v}(\\W)" $line "\\1u.$sname.$v\\2" line
    }
    append afterUnion [string trimright $line]\n
  } elseif {$line=="" && [eof stdin]} {
    # no-op
  } else {
    append afterUnion $line\n
  }
}

# Output the resulting text.
#
puts -nonewline $beforeUnion
puts "  /********************************************************************"
puts "  ** Automatically generated code"
puts "  **"
puts "  ** The following union is automatically generated by the"
puts "  ** vdbe-compress.tcl script.  The purpose of this union is to"
puts "  ** reduce the amount of stack space required by this function."
puts "  ** See comments in the vdbe-compress.tcl script for details."
puts "  */"
puts "  union vdbeExecUnion \173"
puts -nonewline $unionDef
puts "  \175 u;"
puts "  /* End automatically generated code"
puts "  ********************************************************************/"
puts -nonewline $afterUnion