Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge latest trunk changes with this branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | ota-update |
Files: | files | file ages | folders |
SHA1: |
7ef44c5b5bd30bcc4ef59ed172b9ce9a |
User & Date: | dan 2014-11-21 14:37:24.898 |
Context
2014-11-22
| ||
09:09 | Add SQLITE_ENABLE_OTA pre-processor directives so that this branch may be compiled with or without OTA. (check-in: 600cefdd4d user: dan tags: ota-update) | |
2014-11-21
| ||
14:37 | Merge latest trunk changes with this branch. (check-in: 7ef44c5b5b user: dan tags: ota-update) | |
11:22 | Changes to comments in sqlite3ota.h. (check-in: 14139542b6 user: dan tags: ota-update) | |
2014-11-20
| ||
23:21 | Fix a typo in a requirements mark on the abs() SQL function. (check-in: b1e6c02f8b user: drh tags: trunk) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
390 391 392 393 394 395 396 397 398 399 400 401 402 403 | $(TOP)/ext/fts3/fts3_test.c # Statically linked extensions # TESTSRC += \ $(TOP)/ext/misc/amatch.c \ $(TOP)/ext/misc/closure.c \ $(TOP)/ext/misc/fileio.c \ $(TOP)/ext/misc/fuzzer.c \ $(TOP)/ext/misc/ieee754.c \ $(TOP)/ext/misc/nextchar.c \ $(TOP)/ext/misc/percentile.c \ $(TOP)/ext/misc/regexp.c \ $(TOP)/ext/misc/spellfix.c \ | > | 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 | $(TOP)/ext/fts3/fts3_test.c # Statically linked extensions # TESTSRC += \ $(TOP)/ext/misc/amatch.c \ $(TOP)/ext/misc/closure.c \ $(TOP)/ext/misc/eval.c \ $(TOP)/ext/misc/fileio.c \ $(TOP)/ext/misc/fuzzer.c \ $(TOP)/ext/misc/ieee754.c \ $(TOP)/ext/misc/nextchar.c \ $(TOP)/ext/misc/percentile.c \ $(TOP)/ext/misc/regexp.c \ $(TOP)/ext/misc/spellfix.c \ |
︙ | ︙ |
Changes to Makefile.msc.
︙ | ︙ | |||
859 860 861 862 863 864 865 866 867 868 869 870 871 872 | $(TOP)\ext\fts3\fts3_test.c # Statically linked extensions # TESTEXT = \ $(TOP)\ext\misc\amatch.c \ $(TOP)\ext\misc\closure.c \ $(TOP)\ext\misc\fileio.c \ $(TOP)\ext\misc\fuzzer.c \ $(TOP)\ext\misc\ieee754.c \ $(TOP)\ext\misc\nextchar.c \ $(TOP)\ext\misc\percentile.c \ $(TOP)\ext\misc\regexp.c \ $(TOP)\ext\misc\spellfix.c \ | > | 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 | $(TOP)\ext\fts3\fts3_test.c # Statically linked extensions # TESTEXT = \ $(TOP)\ext\misc\amatch.c \ $(TOP)\ext\misc\closure.c \ $(TOP)\ext\misc\eval.c \ $(TOP)\ext\misc\fileio.c \ $(TOP)\ext\misc\fuzzer.c \ $(TOP)\ext\misc\ieee754.c \ $(TOP)\ext\misc\nextchar.c \ $(TOP)\ext\misc\percentile.c \ $(TOP)\ext\misc\regexp.c \ $(TOP)\ext\misc\spellfix.c \ |
︙ | ︙ |
Changes to VERSION.
|
| | | 1 | 3.8.8 |
Changes to configure.
1 2 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. | | | 1 2 3 4 5 6 7 8 9 10 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.62 for sqlite 3.8.8. # # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, # 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## --------------------- ## ## M4sh Initialization. ## |
︙ | ︙ | |||
739 740 741 742 743 744 745 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' | | | | 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' PACKAGE_VERSION='3.8.8' PACKAGE_STRING='sqlite 3.8.8' PACKAGE_BUGREPORT='' # Factoring default headers for most tests. ac_includes_default="\ #include <stdio.h> #ifdef HAVE_SYS_TYPES_H # include <sys/types.h> |
︙ | ︙ | |||
1479 1480 1481 1482 1483 1484 1485 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF | | | 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures sqlite 3.8.8 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. |
︙ | ︙ | |||
1544 1545 1546 1547 1548 1549 1550 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in | | | 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of sqlite 3.8.8:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] |
︙ | ︙ | |||
1660 1661 1662 1663 1664 1665 1666 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF | | | | 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF sqlite configure 3.8.8 generated by GNU Autoconf 2.62 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by sqlite $as_me 3.8.8, which was generated by GNU Autoconf 2.62. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { |
︙ | ︙ | |||
14017 14018 14019 14020 14021 14022 14023 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" | | | 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by sqlite $as_me 3.8.8, which was generated by GNU Autoconf 2.62. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ |
︙ | ︙ | |||
14070 14071 14072 14073 14074 14075 14076 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ | | | 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ sqlite config.status 3.8.8 configured by $0, generated by GNU Autoconf 2.62, with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\" Copyright (C) 2008 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." |
︙ | ︙ |
Added ext/misc/eval.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | /* ** 2014-11-10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This SQLite extension implements SQL function eval() which runs ** SQL statements recursively. */ #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #include <string.h> /* ** Structure used to accumulate the output */ struct EvalResult { char *z; /* Accumulated output */ const char *zSep; /* Separator */ int szSep; /* Size of the separator string */ int nAlloc; /* Number of bytes allocated for z[] */ int nUsed; /* Number of bytes of z[] actually used */ }; /* ** Callback from sqlite_exec() for the eval() function. */ static int callback(void *pCtx, int argc, char **argv, char **colnames){ struct EvalResult *p = (struct EvalResult*)pCtx; int i; for(i=0; i<argc; i++){ const char *z = argv[i] ? argv[i] : ""; size_t sz = strlen(z); if( sz+p->nUsed+p->szSep+1 > p->nAlloc ){ char *zNew; p->nAlloc = p->nAlloc*2 + sz + p->szSep + 1; zNew = sqlite3_realloc(p->z, p->nAlloc); if( zNew==0 ){ sqlite3_free(p->z); memset(p, 0, sizeof(*p)); return 1; } p->z = zNew; } if( p->nUsed>0 ){ memcpy(&p->z[p->nUsed], p->zSep, p->szSep); p->nUsed += p->szSep; } memcpy(&p->z[p->nUsed], z, sz); p->nUsed += sz; } return 0; } /* ** Implementation of the eval(X) and eval(X,Y) SQL functions. ** ** Evaluate the SQL text in X. Return the results, using string ** Y as the separator. If Y is omitted, use a single space character. */ static void sqlEvalFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *zSql; sqlite3 *db; char *zErr = 0; int rc; struct EvalResult x; memset(&x, 0, sizeof(x)); x.zSep = " "; zSql = (const char*)sqlite3_value_text(argv[0]); if( zSql==0 ) return; if( argc>1 ){ x.zSep = (const char*)sqlite3_value_text(argv[1]); if( x.zSep==0 ) return; } x.szSep = (int)strlen(x.zSep); db = sqlite3_context_db_handle(context); rc = sqlite3_exec(db, zSql, callback, &x, &zErr); if( rc!=SQLITE_OK ){ sqlite3_result_error(context, zErr, -1); sqlite3_free(zErr); }else if( x.zSep==0 ){ sqlite3_result_error_nomem(context); sqlite3_free(x.z); }else{ sqlite3_result_text(context, x.z, x.nUsed, sqlite3_free); } } #ifdef _WIN32 __declspec(dllexport) #endif int sqlite3_eval_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); (void)pzErrMsg; /* Unused parameter */ rc = sqlite3_create_function(db, "eval", 1, SQLITE_UTF8, 0, sqlEvalFunc, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "eval", 2, SQLITE_UTF8, 0, sqlEvalFunc, 0, 0); } return rc; } |
Changes to ext/rtree/rtree6.test.
︙ | ︙ | |||
98 99 100 101 102 103 104 | 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1} 0 1 1 {SEARCH TABLE t2 USING AUTOMATIC COVERING INDEX (v=?)} } do_eqp_test rtree6.2.4.2 { SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10 } { 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1} | | | 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1} 0 1 1 {SEARCH TABLE t2 USING AUTOMATIC COVERING INDEX (v=?)} } do_eqp_test rtree6.2.4.2 { SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10 } { 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:C0E1} 0 1 1 {SEARCH TABLE t2 USING AUTOMATIC PARTIAL COVERING INDEX (v=?)} } do_eqp_test rtree6.2.5 { SELECT * FROM t1,t2 WHERE k=ii AND x1<v } { 0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:} 0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)} |
︙ | ︙ |
Changes to main.mk.
︙ | ︙ | |||
242 243 244 245 246 247 248 249 250 251 252 253 254 255 | $(TOP)/src/test6.c \ $(TOP)/src/test7.c \ $(TOP)/src/test8.c \ $(TOP)/src/test9.c \ $(TOP)/src/test_autoext.c \ $(TOP)/src/test_async.c \ $(TOP)/src/test_backup.c \ $(TOP)/src/test_btree.c \ $(TOP)/src/test_config.c \ $(TOP)/src/test_demovfs.c \ $(TOP)/src/test_devsym.c \ $(TOP)/src/test_fs.c \ $(TOP)/src/test_func.c \ $(TOP)/src/test_hexio.c \ | > | 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | $(TOP)/src/test6.c \ $(TOP)/src/test7.c \ $(TOP)/src/test8.c \ $(TOP)/src/test9.c \ $(TOP)/src/test_autoext.c \ $(TOP)/src/test_async.c \ $(TOP)/src/test_backup.c \ $(TOP)/src/test_blob.c \ $(TOP)/src/test_btree.c \ $(TOP)/src/test_config.c \ $(TOP)/src/test_demovfs.c \ $(TOP)/src/test_devsym.c \ $(TOP)/src/test_fs.c \ $(TOP)/src/test_func.c \ $(TOP)/src/test_hexio.c \ |
︙ | ︙ | |||
276 277 278 279 280 281 282 283 284 285 286 287 288 289 | $(TOP)/src/test_wsd.c # Extensions to be statically loaded. # TESTSRC += \ $(TOP)/ext/misc/amatch.c \ $(TOP)/ext/misc/closure.c \ $(TOP)/ext/misc/fileio.c \ $(TOP)/ext/misc/fuzzer.c \ $(TOP)/ext/misc/ieee754.c \ $(TOP)/ext/misc/nextchar.c \ $(TOP)/ext/misc/percentile.c \ $(TOP)/ext/misc/regexp.c \ $(TOP)/ext/misc/spellfix.c \ | > | 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | $(TOP)/src/test_wsd.c # Extensions to be statically loaded. # TESTSRC += \ $(TOP)/ext/misc/amatch.c \ $(TOP)/ext/misc/closure.c \ $(TOP)/ext/misc/eval.c \ $(TOP)/ext/misc/fileio.c \ $(TOP)/ext/misc/fuzzer.c \ $(TOP)/ext/misc/ieee754.c \ $(TOP)/ext/misc/nextchar.c \ $(TOP)/ext/misc/percentile.c \ $(TOP)/ext/misc/regexp.c \ $(TOP)/ext/misc/spellfix.c \ |
︙ | ︙ |
Changes to sqlite3.1.
1 2 3 4 | .\" Hey, EMACS: -*- nroff -*- .\" First parameter, NAME, should be all caps .\" Second parameter, SECTION, should be 1-8, maybe w/ subsection .\" other parameters are allowed: see man(7), man(1) | | | 1 2 3 4 5 6 7 8 9 10 11 12 | .\" Hey, EMACS: -*- nroff -*- .\" First parameter, NAME, should be all caps .\" Second parameter, SECTION, should be 1-8, maybe w/ subsection .\" other parameters are allowed: see man(7), man(1) .TH SQLITE3 1 "Fri Oct 31 10:41:31 EDT 2014" .\" Please adjust this date whenever revising the manpage. .\" .\" Some roff macros, for reference: .\" .nh disable hyphenation .\" .hy enable hyphenation .\" .ad l left justify .\" .ad b justify to both left and right margins |
︙ | ︙ | |||
45 46 47 48 49 50 51 | For example, to create a new database file named "mydata.db", create a table named "memos" and insert a couple of records into that table: .sp $ .B sqlite3 mydata.db .br | | | 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | For example, to create a new database file named "mydata.db", create a table named "memos" and insert a couple of records into that table: .sp $ .B sqlite3 mydata.db .br SQLite version 3.8.8 .br Enter ".help" for instructions .br sqlite> .B create table memos(text, priority INTEGER); .br sqlite> |
︙ | ︙ | |||
103 104 105 106 107 108 109 | A list of available meta-commands can be viewed at any time by issuing the '.help' command. For example: .sp sqlite> .B .help .nf | | | | > | | | > | | > | | | | | | | | > | | < | | | | | > | | > > | | > | | > | | | < > < | 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | A list of available meta-commands can be viewed at any time by issuing the '.help' command. For example: .sp sqlite> .B .help .nf .tr %. %backup ?DB? FILE Backup DB (default "main") to FILE %bail on|off Stop after hitting an error. Default OFF %clone NEWDB Clone data into NEWDB from the existing database %databases List names and files of attached databases %dump ?TABLE? ... Dump the database in an SQL text format If TABLE specified, only dump tables matching LIKE pattern TABLE. %echo on|off Turn command echo on or off %eqp on|off Enable or disable automatic EXPLAIN QUERY PLAN %exit Exit this program %explain ?on|off? Turn output mode suitable for EXPLAIN on or off. With no args, it turns EXPLAIN on. %fullschema Show schema and the content of sqlite_stat tables %headers on|off Turn display of headers on or off %help Show this message %import FILE TABLE Import data from FILE into TABLE %indices ?TABLE? Show names of all indices If TABLE specified, only show indices for tables matching LIKE pattern TABLE. %load FILE ?ENTRY? Load an extension library %log FILE|off Turn logging on or off. FILE can be stderr/stdout %mode MODE ?TABLE? Set output mode where MODE is one of: csv Comma-separated values column Left-aligned columns. (See .width) html HTML <table> code insert SQL insert statements for TABLE line One value per line list Values delimited by .separator string tabs Tab-separated values tcl TCL list elements %nullvalue STRING Use STRING in place of NULL values %once FILENAME Output for the next SQL command only to FILENAME %open ?FILENAME? Close existing database and reopen FILENAME %output ?FILENAME? Send output to FILENAME or stdout %print STRING... Print literal STRING %prompt MAIN CONTINUE Replace the standard prompts %quit Exit this program %read FILENAME Execute SQL in FILENAME %restore ?DB? FILE Restore content of DB (default "main") from FILE %save FILE Write in-memory database into FILE %schema ?TABLE? Show the CREATE statements If TABLE specified, only show tables matching LIKE pattern TABLE. %separator STRING ?NL? Change separator used by output mode and .import NL is the end-of-line mark for CSV %shell CMD ARGS... Run CMD ARGS... in a system shell %show Show the current values for various settings %stats on|off Turn stats on or off %system CMD ARGS... Run CMD ARGS... in a system shell %tables ?TABLE? List names of tables If TABLE specified, only list tables matching LIKE pattern TABLE. %timeout MS Try opening locked tables for MS milliseconds %timer on|off Turn SQL timer on or off %trace FILE|off Output each SQL statement as it is run %vfsname ?AUX? Print the name of the VFS stack %width NUM1 NUM2 ... Set column widths for "column" mode Negative values right-justify sqlite> .sp .fi .SH OPTIONS .B sqlite3 has the following options: .TP .B \-bail |
︙ | ︙ | |||
265 266 267 268 269 270 271 | read and processed. It should generally only contain meta-commands. o If the -init option is present, the specified file is processed. o All other command line options are processed. .SH SEE ALSO | | | 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | read and processed. It should generally only contain meta-commands. o If the -init option is present, the specified file is processed. o All other command line options are processed. .SH SEE ALSO http://www.sqlite.org/cli.html .br The sqlite3-doc package. .SH AUTHOR This manual page was originally written by Andreas Rottmann <rotty@debian.org>, for the Debian GNU/Linux system (but may be used by others). It was subsequently revised by Bill Bumgarner <bbum@mac.com> and further updated by Laszlo Boszormenyi <gcs@debian.hu> . |
Changes to src/analyze.c.
︙ | ︙ | |||
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 | int i; tRowcnt v; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( z==0 ) z = ""; #else assert( z!=0 ); #endif for(i=0; *z && i<nOut; i++){ v = 0; while( (c=z[0])>='0' && c<='9' ){ v = v*10 + c - '0'; z++; } | > > | 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 | int i; tRowcnt v; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( z==0 ) z = ""; #else assert( z!=0 ); pIndex->bUnordered = 0; pIndex->noSkipScan = 0; #endif for(i=0; *z && i<nOut; i++){ v = 0; while( (c=z[0])>='0' && c<='9' ){ v = v*10 + c - '0'; z++; } |
︙ | ︙ | |||
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 | if( pIndex ) #endif while( z[0] ){ if( sqlite3_strglob("unordered*", z)==0 ){ pIndex->bUnordered = 1; }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3)); } #ifdef SQLITE_ENABLE_COSTMULT else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); } #endif while( z[0]!=0 && z[0]!=' ' ) z++; | > > | 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 | if( pIndex ) #endif while( z[0] ){ if( sqlite3_strglob("unordered*", z)==0 ){ pIndex->bUnordered = 1; }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3)); }else if( sqlite3_strglob("noskipscan*", z)==0 ){ pIndex->noSkipScan = 1; } #ifdef SQLITE_ENABLE_COSTMULT else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); } #endif while( z[0]!=0 && z[0]!=' ' ) z++; |
︙ | ︙ | |||
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 | nRow = pFinal->anLt[iCol]; nDist100 = (i64)100 * pFinal->anDLt[iCol]; nSample--; }else{ nRow = pIdx->aiRowEst[0]; nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; } /* Set nSum to the number of distinct (iCol+1) field prefixes that ** occur in the stat4 table for this index. Set sumEq to the sum of ** the nEq values for column iCol for the same set (adding the value ** only once where there exist duplicate prefixes). */ for(i=0; i<nSample; i++){ if( i==(pIdx->nSample-1) | > | 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 | nRow = pFinal->anLt[iCol]; nDist100 = (i64)100 * pFinal->anDLt[iCol]; nSample--; }else{ nRow = pIdx->aiRowEst[0]; nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; } pIdx->nRowEst0 = nRow; /* Set nSum to the number of distinct (iCol+1) field prefixes that ** occur in the stat4 table for this index. Set sumEq to the sum of ** the nEq values for column iCol for the same set (adding the value ** only once where there exist duplicate prefixes). */ for(i=0; i<nSample; i++){ if( i==(pIdx->nSample-1) |
︙ | ︙ | |||
1856 1857 1858 1859 1860 1861 1862 | rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); sqlite3DbFree(db, zSql); } /* Load the statistics from the sqlite_stat4 table. */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | | | 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 | rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); sqlite3DbFree(db, zSql); } /* Load the statistics from the sqlite_stat4 table. */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){ int lookasideEnabled = db->lookaside.bEnabled; db->lookaside.bEnabled = 0; rc = loadStat4(db, sInfo.zDatabase); db->lookaside.bEnabled = lookasideEnabled; } for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); |
︙ | ︙ |
Changes to src/auth.c.
︙ | ︙ | |||
68 69 70 71 72 73 74 75 76 77 78 79 80 81 | ** setting of the auth function is NULL. */ int sqlite3_set_authorizer( sqlite3 *db, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pArg ){ sqlite3_mutex_enter(db->mutex); db->xAuth = (sqlite3_xauth)xAuth; db->pAuthArg = pArg; sqlite3ExpirePreparedStatements(db); sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } | > > > | 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | ** setting of the auth function is NULL. */ int sqlite3_set_authorizer( sqlite3 *db, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pArg ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->xAuth = (sqlite3_xauth)xAuth; db->pAuthArg = pArg; sqlite3ExpirePreparedStatements(db); sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } |
︙ | ︙ |
Changes to src/backup.c.
︙ | ︙ | |||
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | ** of the source. */ static int setDestPgsz(sqlite3_backup *p){ int rc; rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0); return rc; } /* ** Create an sqlite3_backup process to copy the contents of zSrcDb from ** connection handle pSrcDb to zDestDb in pDestDb. If successful, return ** a pointer to the new sqlite3_backup object. ** ** If an error occurs, NULL is returned and an error code and error message ** stored in database handle pDestDb. */ sqlite3_backup *sqlite3_backup_init( sqlite3* pDestDb, /* Database to write to */ const char *zDestDb, /* Name of database within pDestDb */ sqlite3* pSrcDb, /* Database connection to read from */ const char *zSrcDb /* Name of database within pSrcDb */ ){ sqlite3_backup *p; /* Value to return */ /* Lock the source database handle. The destination database ** handle is not locked in this routine, but it is locked in ** sqlite3_backup_step(). The user is required to ensure that no ** other thread accesses the destination handle for the duration ** of the backup operation. Any attempt to use the destination ** database connection while a backup is in progress may cause | > > > > > > > > > > > > > > > > > > > > > | 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | ** of the source. */ static int setDestPgsz(sqlite3_backup *p){ int rc; rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0); return rc; } /* ** Check that there is no open read-transaction on the b-tree passed as the ** second argument. If there is not, return SQLITE_OK. Otherwise, if there ** is an open read-transaction, return SQLITE_ERROR and leave an error ** message in database handle db. */ static int checkReadTransaction(sqlite3 *db, Btree *p){ if( sqlite3BtreeIsInReadTrans(p) ){ sqlite3ErrorWithMsg(db, SQLITE_ERROR, "destination database is in use"); return SQLITE_ERROR; } return SQLITE_OK; } /* ** Create an sqlite3_backup process to copy the contents of zSrcDb from ** connection handle pSrcDb to zDestDb in pDestDb. If successful, return ** a pointer to the new sqlite3_backup object. ** ** If an error occurs, NULL is returned and an error code and error message ** stored in database handle pDestDb. */ sqlite3_backup *sqlite3_backup_init( sqlite3* pDestDb, /* Database to write to */ const char *zDestDb, /* Name of database within pDestDb */ sqlite3* pSrcDb, /* Database connection to read from */ const char *zSrcDb /* Name of database within pSrcDb */ ){ sqlite3_backup *p; /* Value to return */ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(pSrcDb)||!sqlite3SafetyCheckOk(pDestDb) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif /* Lock the source database handle. The destination database ** handle is not locked in this routine, but it is locked in ** sqlite3_backup_step(). The user is required to ensure that no ** other thread accesses the destination handle for the duration ** of the backup operation. Any attempt to use the destination ** database connection while a backup is in progress may cause |
︙ | ︙ | |||
170 171 172 173 174 175 176 | p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb); p->pDest = findBtree(pDestDb, pDestDb, zDestDb); p->pDestDb = pDestDb; p->pSrcDb = pSrcDb; p->iNext = 1; p->isAttached = 0; | | > > > > | | | < | 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb); p->pDest = findBtree(pDestDb, pDestDb, zDestDb); p->pDestDb = pDestDb; p->pSrcDb = pSrcDb; p->iNext = 1; p->isAttached = 0; if( 0==p->pSrc || 0==p->pDest || setDestPgsz(p)==SQLITE_NOMEM || checkReadTransaction(pDestDb, p->pDest)!=SQLITE_OK ){ /* One (or both) of the named databases did not exist or an OOM ** error was hit. Or there is a transaction open on the destination ** database. The error has already been written into the pDestDb ** handle. All that is left to do here is free the sqlite3_backup ** structure. */ sqlite3_free(p); p = 0; } } if( p ){ p->pSrc->nBackup++; } |
︙ | ︙ | |||
330 331 332 333 334 335 336 337 338 339 340 341 342 343 | */ int sqlite3_backup_step(sqlite3_backup *p, int nPage){ int rc; int destMode; /* Destination journal mode */ int pgszSrc = 0; /* Source page size */ int pgszDest = 0; /* Destination page size */ sqlite3_mutex_enter(p->pSrcDb->mutex); sqlite3BtreeEnter(p->pSrc); if( p->pDestDb ){ sqlite3_mutex_enter(p->pDestDb->mutex); } rc = p->rc; | > > > | 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | */ int sqlite3_backup_step(sqlite3_backup *p, int nPage){ int rc; int destMode; /* Destination journal mode */ int pgszSrc = 0; /* Source page size */ int pgszDest = 0; /* Destination page size */ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(p->pSrcDb->mutex); sqlite3BtreeEnter(p->pSrc); if( p->pDestDb ){ sqlite3_mutex_enter(p->pDestDb->mutex); } rc = p->rc; |
︙ | ︙ | |||
593 594 595 596 597 598 599 | while( *pp!=p ){ pp = &(*pp)->pNext; } *pp = p->pNext; } /* If a transaction is still open on the Btree, roll it back. */ | | | 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 | while( *pp!=p ){ pp = &(*pp)->pNext; } *pp = p->pNext; } /* If a transaction is still open on the Btree, roll it back. */ sqlite3BtreeRollback(p->pDest, SQLITE_OK, 0); /* Set the error code of the destination database handle. */ rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc; if( p->pDestDb ){ sqlite3Error(p->pDestDb, rc); /* Exit the mutexes and free the backup context structure. */ |
︙ | ︙ | |||
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 | } /* ** Return the number of pages still to be backed up as of the most recent ** call to sqlite3_backup_step(). */ int sqlite3_backup_remaining(sqlite3_backup *p){ return p->nRemaining; } /* ** Return the total number of pages in the source database as of the most ** recent call to sqlite3_backup_step(). */ int sqlite3_backup_pagecount(sqlite3_backup *p){ return p->nPagecount; } /* ** This function is called after the contents of page iPage of the ** source database have been modified. If page iPage has already been ** copied into the destination database, then the data written to the | > > > > > > > > > > > > | 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 | } /* ** Return the number of pages still to be backed up as of the most recent ** call to sqlite3_backup_step(). */ int sqlite3_backup_remaining(sqlite3_backup *p){ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return p->nRemaining; } /* ** Return the total number of pages in the source database as of the most ** recent call to sqlite3_backup_step(). */ int sqlite3_backup_pagecount(sqlite3_backup *p){ #ifdef SQLITE_ENABLE_API_ARMOR if( p==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return p->nPagecount; } /* ** This function is called after the contents of page iPage of the ** source database have been modified. If page iPage has already been ** copied into the destination database, then the data written to the |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 | /* ** Defragment the page given. All Cells are moved to the ** end of the page and all free space is collected into one ** big FreeBlk that occurs in between the header and cell ** pointer array and the cell content area. */ static int defragmentPage(MemPage *pPage){ int i; /* Loop counter */ int pc; /* Address of the i-th cell */ int hdr; /* Offset to the page header */ int size; /* Size of a cell */ int usableSize; /* Number of usable bytes on a page */ int cellOffset; /* Offset to the cell pointer array */ int cbrk; /* Offset to the cell content area */ int nCell; /* Number of cells on the page */ unsigned char *data; /* The page data */ unsigned char *temp; /* Temp area for cell content */ int iCellFirst; /* First allowable cell index */ int iCellLast; /* Last possible cell index */ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( pPage->pBt!=0 ); assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); assert( pPage->nOverflow==0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | > > > > > > | | < < | < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < | > > > > > | < < < < | < < | < < < < < < | < < < | | < < < < | < < < < | < | | < | | 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 | /* ** Defragment the page given. All Cells are moved to the ** end of the page and all free space is collected into one ** big FreeBlk that occurs in between the header and cell ** pointer array and the cell content area. ** ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a ** b-tree page so that there are no freeblocks or fragment bytes, all ** unused bytes are contained in the unallocated space region, and all ** cells are packed tightly at the end of the page. */ static int defragmentPage(MemPage *pPage){ int i; /* Loop counter */ int pc; /* Address of the i-th cell */ int hdr; /* Offset to the page header */ int size; /* Size of a cell */ int usableSize; /* Number of usable bytes on a page */ int cellOffset; /* Offset to the cell pointer array */ int cbrk; /* Offset to the cell content area */ int nCell; /* Number of cells on the page */ unsigned char *data; /* The page data */ unsigned char *temp; /* Temp area for cell content */ unsigned char *src; /* Source of content */ int iCellFirst; /* First allowable cell index */ int iCellLast; /* Last possible cell index */ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( pPage->pBt!=0 ); assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); assert( pPage->nOverflow==0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); temp = 0; src = data = pPage->aData; hdr = pPage->hdrOffset; cellOffset = pPage->cellOffset; nCell = pPage->nCell; assert( nCell==get2byte(&data[hdr+3]) ); usableSize = pPage->pBt->usableSize; cbrk = usableSize; iCellFirst = cellOffset + 2*nCell; iCellLast = usableSize - 4; for(i=0; i<nCell; i++){ u8 *pAddr; /* The i-th cell pointer */ pAddr = &data[cellOffset + i*2]; pc = get2byte(pAddr); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) /* These conditions have already been verified in btreeInitPage() ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined */ if( pc<iCellFirst || pc>iCellLast ){ return SQLITE_CORRUPT_BKPT; } #endif assert( pc>=iCellFirst && pc<=iCellLast ); size = cellSizePtr(pPage, &src[pc]); cbrk -= size; #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) if( cbrk<iCellFirst ){ return SQLITE_CORRUPT_BKPT; } #else if( cbrk<iCellFirst || pc+size>usableSize ){ return SQLITE_CORRUPT_BKPT; } #endif assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); testcase( cbrk+size==usableSize ); testcase( pc+size==usableSize ); put2byte(pAddr, cbrk); if( temp==0 ){ int x; if( cbrk==pc ) continue; temp = sqlite3PagerTempSpace(pPage->pBt->pPager); x = get2byte(&data[hdr+5]); memcpy(&temp[x], &data[x], (cbrk+size) - x); src = temp; } memcpy(&data[cbrk], &src[pc], size); } assert( cbrk>=iCellFirst ); put2byte(&data[hdr+5], cbrk); data[hdr+1] = 0; data[hdr+2] = 0; data[hdr+7] = 0; memset(&data[iCellFirst], 0, cbrk-iCellFirst); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); if( cbrk-iCellFirst!=pPage->nFree ){ return SQLITE_CORRUPT_BKPT; } return SQLITE_OK; } /* ** Search the free-list on page pPg for space to store a cell nByte bytes in ** size. If one can be found, return a pointer to the space and remove it ** from the free-list. ** ** If no suitable space can be found on the free-list, return NULL. ** ** This function may detect corruption within pPg. If corruption is ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. ** ** If a slot of at least nByte bytes is found but cannot be used because ** there are already at least 60 fragmented bytes on the page, return NULL. ** In this case, if pbDefrag parameter is not NULL, set *pbDefrag to true. */ static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc, int *pbDefrag){ const int hdr = pPg->hdrOffset; u8 * const aData = pPg->aData; int iAddr; int pc; int usableSize = pPg->pBt->usableSize; for(iAddr=hdr+1; (pc = get2byte(&aData[iAddr]))>0; iAddr=pc){ int size; /* Size of the free slot */ /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of ** increasing offset. */ if( pc>usableSize-4 || pc<iAddr+4 ){ *pRc = SQLITE_CORRUPT_BKPT; return 0; } /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each ** freeblock form a big-endian integer which is the size of the freeblock ** in bytes, including the 4-byte header. */ size = get2byte(&aData[pc+2]); if( size>=nByte ){ int x = size - nByte; testcase( x==4 ); testcase( x==3 ); if( x<4 ){ /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total ** number of bytes in fragments may not exceed 60. */ if( aData[hdr+7]>=60 ){ if( pbDefrag ) *pbDefrag = 1; return 0; } /* Remove the slot from the free-list. Update the number of ** fragmented bytes within the page. */ memcpy(&aData[iAddr], &aData[pc], 2); aData[hdr+7] += (u8)x; }else if( size+pc > usableSize ){ *pRc = SQLITE_CORRUPT_BKPT; return 0; }else{ /* The slot remains on the free-list. Reduce its size to account ** for the portion used by the new allocation. */ put2byte(&aData[pc+2], x); } return &aData[pc + x]; } } return 0; } /* ** Allocate nByte bytes of space from within the B-Tree page passed ** as the first argument. Write into *pIdx the index into pPage->aData[] ** of the first byte of allocated space. Return either SQLITE_OK or ** an error code (usually SQLITE_CORRUPT). ** ** The caller guarantees that there is sufficient space to make the ** allocation. This routine might need to defragment in order to bring ** all the space together, however. This routine will avoid using ** the first two bytes past the cell pointer area since presumably this ** allocation is being made in order to insert a new cell, so we will ** also end up needing a new cell pointer. */ static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ u8 * const data = pPage->aData; /* Local cache of pPage->aData */ int top; /* First byte of cell content area */ int rc = SQLITE_OK; /* Integer return code */ int gap; /* First byte of gap between cell pointers and cell content */ assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( pPage->pBt ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( nByte>=0 ); /* Minimum cell size is 4 */ assert( pPage->nFree>=nByte ); assert( pPage->nOverflow==0 ); assert( nByte < (int)(pPage->pBt->usableSize-8) ); assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); gap = pPage->cellOffset + 2*pPage->nCell; assert( gap<=65536 ); /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size ** and the reserved space is zero (the usual value for reserved space) ** then the cell content offset of an empty page wants to be 65536. ** However, that integer is too large to be stored in a 2-byte unsigned ** integer, so a value of 0 is used in its place. */ top = get2byteNotZero(&data[hdr+5]); if( gap>top ) return SQLITE_CORRUPT_BKPT; /* If there is enough space between gap and top for one more cell pointer ** array entry offset, and if the freelist is not empty, then search the ** freelist looking for a free slot big enough to satisfy the request. */ testcase( gap+2==top ); testcase( gap+1==top ); testcase( gap==top ); if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){ int bDefrag = 0; u8 *pSpace = pageFindSlot(pPage, nByte, &rc, &bDefrag); if( rc ) return rc; if( bDefrag ) goto defragment_page; if( pSpace ){ assert( pSpace>=data && (pSpace - data)<65536 ); *pIdx = (int)(pSpace - data); return SQLITE_OK; } } /* The request could not be fulfilled using a freelist slot. Check ** to see if defragmentation is necessary. */ testcase( gap+2+nByte==top ); if( gap+2+nByte>top ){ defragment_page: testcase( pPage->nCell==0 ); rc = defragmentPage(pPage); if( rc ) return rc; top = get2byteNotZero(&data[hdr+5]); assert( gap+nByte<=top ); } |
︙ | ︙ | |||
1347 1348 1349 1350 1351 1352 1353 | u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */ u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ unsigned char *data = pPage->aData; /* Page content */ assert( pPage->pBt!=0 ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); | | | 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 | u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */ u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ unsigned char *data = pPage->aData; /* Page content */ assert( pPage->pBt!=0 ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( iSize>=4 ); /* Minimum cell size is 4 */ assert( iStart<=iLast ); /* Overwrite deleted information with zeros when the secure_delete ** option is enabled */ if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){ |
︙ | ︙ | |||
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 | assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); flagByte &= ~PTF_LEAF; pPage->childPtrSize = 4-4*pPage->leaf; pBt = pPage->pBt; if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ pPage->intKey = 1; pPage->intKeyLeaf = pPage->leaf; pPage->noPayload = !pPage->leaf; pPage->maxLocal = pBt->maxLeaf; pPage->minLocal = pBt->minLeaf; }else if( flagByte==PTF_ZERODATA ){ pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->noPayload = 0; pPage->maxLocal = pBt->maxLocal; pPage->minLocal = pBt->minLocal; }else{ return SQLITE_CORRUPT_BKPT; } pPage->max1bytePayload = pBt->max1bytePayload; return SQLITE_OK; } /* | > > > > > > > > > > > > > > | 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 | assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); flagByte &= ~PTF_LEAF; pPage->childPtrSize = 4-4*pPage->leaf; pBt = pPage->pBt; if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior ** table b-tree page. */ assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf ** table b-tree page. */ assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); pPage->intKey = 1; pPage->intKeyLeaf = pPage->leaf; pPage->noPayload = !pPage->leaf; pPage->maxLocal = pBt->maxLeaf; pPage->minLocal = pBt->minLeaf; }else if( flagByte==PTF_ZERODATA ){ /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior ** index b-tree page. */ assert( (PTF_ZERODATA)==2 ); /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf ** index b-tree page. */ assert( (PTF_ZERODATA|PTF_LEAF)==10 ); pPage->intKey = 0; pPage->intKeyLeaf = 0; pPage->noPayload = 0; pPage->maxLocal = pBt->maxLocal; pPage->minLocal = pBt->minLocal; }else{ /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is ** an error. */ return SQLITE_CORRUPT_BKPT; } pPage->max1bytePayload = pBt->max1bytePayload; return SQLITE_OK; } /* |
︙ | ︙ | |||
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 | int iCellFirst; /* First allowable cell or freeblock offset */ int iCellLast; /* Last possible cell or freeblock offset */ pBt = pPage->pBt; hdr = pPage->hdrOffset; data = pPage->aData; if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nOverflow = 0; usableSize = pBt->usableSize; | > > | > > > > > > > > > > | 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 | int iCellFirst; /* First allowable cell or freeblock offset */ int iCellLast; /* Last possible cell or freeblock offset */ pBt = pPage->pBt; hdr = pPage->hdrOffset; data = pPage->aData; /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating ** the b-tree page type. */ if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nOverflow = 0; usableSize = pBt->usableSize; pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; pPage->aDataEnd = &data[usableSize]; pPage->aCellIdx = &data[cellOffset]; /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates ** the start of the cell content area. A zero value for this integer is ** interpreted as 65536. */ top = get2byteNotZero(&data[hdr+5]); /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ pPage->nCell = get2byte(&data[hdr+3]); if( pPage->nCell>MX_CELL(pBt) ){ /* To many cells for a single page. The page must be corrupt */ return SQLITE_CORRUPT_BKPT; } testcase( pPage->nCell==MX_CELL(pBt) ); /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only ** possible for a root page of a table that contains no rows) then the ** offset to the cell content area will equal the page size minus the ** bytes of reserved space. */ assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB ); /* A malformed database page might cause us to read past the end ** of page when parsing a cell. ** ** The following block of code checks early to see if a cell extends ** past the end of a page boundary and causes SQLITE_CORRUPT to be ** returned if it does. |
︙ | ︙ | |||
1541 1542 1543 1544 1545 1546 1547 | return SQLITE_CORRUPT_BKPT; } } if( !pPage->leaf ) iCellLast++; } #endif | | > > > | > > > | > | 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 | return SQLITE_CORRUPT_BKPT; } } if( !pPage->leaf ) iCellLast++; } #endif /* Compute the total free space on the page ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the ** start of the first freeblock on the page, or is zero if there are no ** freeblocks. */ pc = get2byte(&data[hdr+1]); nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ while( pc>0 ){ u16 next, size; if( pc<iCellFirst || pc>iCellLast ){ /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will ** always be at least one cell before the first freeblock. ** ** Or, the freeblock is off the end of the page */ return SQLITE_CORRUPT_BKPT; } next = get2byte(&data[pc]); size = get2byte(&data[pc+2]); if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){ /* Free blocks must be in ascending order. And the last byte of ** the free-block must lie on the database page. */ |
︙ | ︙ | |||
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 | pBt->pCursor = 0; pBt->pPage1 = 0; if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; #ifdef SQLITE_SECURE_DELETE pBt->btsFlags |= BTS_SECURE_DELETE; #endif pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ pBt->pageSize = 0; #ifndef SQLITE_OMIT_AUTOVACUUM /* If the magic name ":memory:" will create an in-memory database, then ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a ** regular file-name. In this case the auto-vacuum applies as per normal. */ if( zFilename && !isMemdb ){ pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); } #endif nReserve = 0; }else{ nReserve = zDbHeader[20]; pBt->btsFlags |= BTS_PAGESIZE_FIXED; #ifndef SQLITE_OMIT_AUTOVACUUM pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); #endif } | > > > > > > | 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 | pBt->pCursor = 0; pBt->pPage1 = 0; if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; #ifdef SQLITE_SECURE_DELETE pBt->btsFlags |= BTS_SECURE_DELETE; #endif /* EVIDENCE-OF: R-51873-39618 The page size for a database file is ** determined by the 2-byte integer located at an offset of 16 bytes from ** the beginning of the database file. */ pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ pBt->pageSize = 0; #ifndef SQLITE_OMIT_AUTOVACUUM /* If the magic name ":memory:" will create an in-memory database, then ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a ** regular file-name. In this case the auto-vacuum applies as per normal. */ if( zFilename && !isMemdb ){ pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); } #endif nReserve = 0; }else{ /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is ** determined by the one-byte unsigned integer found at an offset of 20 ** into the database file header. */ nReserve = zDbHeader[20]; pBt->btsFlags |= BTS_PAGESIZE_FIXED; #ifndef SQLITE_OMIT_AUTOVACUUM pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); #endif } |
︙ | ︙ | |||
2168 2169 2170 2171 2172 2173 2174 | } } /* Rollback any active transaction and free the handle structure. ** The call to sqlite3BtreeRollback() drops any table-locks held by ** this handle. */ | | | 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 | } } /* Rollback any active transaction and free the handle structure. ** The call to sqlite3BtreeRollback() drops any table-locks held by ** this handle. */ sqlite3BtreeRollback(p, SQLITE_OK, 0); sqlite3BtreeLeave(p); /* If there are still other outstanding references to the shared-btree ** structure, return now. The remainder of this procedure cleans ** up the shared-btree. */ assert( p->wantToLock==0 && p->locked==0 ); |
︙ | ︙ | |||
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 | nPage = nPageFile; } if( nPage>0 ){ u32 pageSize; u32 usableSize; u8 *page1 = pPage1->aData; rc = SQLITE_NOTADB; if( memcmp(page1, zMagicHeader, 16)!=0 ){ goto page1_init_failed; } #ifdef SQLITE_OMIT_WAL if( page1[18]>1 ){ pBt->btsFlags |= BTS_READ_ONLY; | > > > | 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 | nPage = nPageFile; } if( nPage>0 ){ u32 pageSize; u32 usableSize; u8 *page1 = pPage1->aData; rc = SQLITE_NOTADB; /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d ** 61 74 20 33 00. */ if( memcmp(page1, zMagicHeader, 16)!=0 ){ goto page1_init_failed; } #ifdef SQLITE_OMIT_WAL if( page1[18]>1 ){ pBt->btsFlags |= BTS_READ_ONLY; |
︙ | ︙ | |||
2520 2521 2522 2523 2524 2525 2526 | releasePage(pPage1); return SQLITE_OK; } rc = SQLITE_NOTADB; } #endif | | | > > > > > > > > > > > > > > > > | 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 | releasePage(pPage1); return SQLITE_OK; } rc = SQLITE_NOTADB; } #endif /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload ** fractions and the leaf payload fraction values must be 64, 32, and 32. ** ** The original design allowed these amounts to vary, but as of ** version 3.6.0, we require them to be fixed. */ if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ goto page1_init_failed; } /* EVIDENCE-OF: R-51873-39618 The page size for a database file is ** determined by the 2-byte integer located at an offset of 16 bytes from ** the beginning of the database file. */ pageSize = (page1[16]<<8) | (page1[17]<<16); /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two ** between 512 and 65536 inclusive. */ if( ((pageSize-1)&pageSize)!=0 || pageSize>SQLITE_MAX_PAGE_SIZE || pageSize<=256 ){ goto page1_init_failed; } assert( (pageSize & 7)==0 ); /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte ** integer at offset 20 is the number of bytes of space at the end of ** each page to reserve for extensions. ** ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is ** determined by the one-byte unsigned integer found at an offset of 20 ** into the database file header. */ usableSize = pageSize - page1[20]; if( (u32)pageSize!=pBt->pageSize ){ /* After reading the first page of the database assuming a page size ** of BtShared.pageSize, we have discovered that the page-size is ** actually pageSize. Unlock the database, leave pBt->pPage1 at ** zero and return SQLITE_OK. The caller will call this function ** again with the correct page-size. */ releasePage(pPage1); pBt->usableSize = usableSize; pBt->pageSize = pageSize; freeTempSpace(pBt); rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, pageSize-usableSize); return rc; } if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){ rc = SQLITE_CORRUPT_BKPT; goto page1_init_failed; } /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to ** be less than 480. In other words, if the page size is 512, then the ** reserved space size cannot exceed 32. */ if( usableSize<480 ){ goto page1_init_failed; } pBt->pageSize = pageSize; pBt->usableSize = usableSize; #ifndef SQLITE_OMIT_AUTOVACUUM pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); |
︙ | ︙ | |||
3461 3462 3463 3464 3465 3466 3467 | } sqlite3BtreeLeave(p); return rc; } /* ** This routine sets the state to CURSOR_FAULT and the error | | | > | | | | | < > | > > | | | > > > > > > | > > > | | | | > > > > > > > > > | | | > | | | | | | | > | > | > > > | < | | > > > | > > | 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 | } sqlite3BtreeLeave(p); return rc; } /* ** This routine sets the state to CURSOR_FAULT and the error ** code to errCode for every cursor on any BtShared that pBtree ** references. Or if the writeOnly flag is set to 1, then only ** trip write cursors and leave read cursors unchanged. ** ** Every cursor is a candidate to be tripped, including cursors ** that belong to other database connections that happen to be ** sharing the cache with pBtree. ** ** This routine gets called when a rollback occurs. If the writeOnly ** flag is true, then only write-cursors need be tripped - read-only ** cursors save their current positions so that they may continue ** following the rollback. Or, if writeOnly is false, all cursors are ** tripped. In general, writeOnly is false if the transaction being ** rolled back modified the database schema. In this case b-tree root ** pages may be moved or deleted from the database altogether, making ** it unsafe for read cursors to continue. ** ** If the writeOnly flag is true and an error is encountered while ** saving the current position of a read-only cursor, all cursors, ** including all read-cursors are tripped. ** ** SQLITE_OK is returned if successful, or if an error occurs while ** saving a cursor position, an SQLite error code. */ int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ BtCursor *p; int rc = SQLITE_OK; assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); if( pBtree ){ sqlite3BtreeEnter(pBtree); for(p=pBtree->pBt->pCursor; p; p=p->pNext){ int i; if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ if( p->eState==CURSOR_VALID ){ rc = saveCursorPosition(p); if( rc!=SQLITE_OK ){ (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); break; } } }else{ sqlite3BtreeClearCursor(p); p->eState = CURSOR_FAULT; p->skipNext = errCode; } for(i=0; i<=p->iPage; i++){ releasePage(p->apPage[i]); p->apPage[i] = 0; } } sqlite3BtreeLeave(pBtree); } return rc; } /* ** Rollback the transaction in progress. ** ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). ** Only write cursors are tripped if writeOnly is true but all cursors are ** tripped if writeOnly is false. Any attempt to use ** a tripped cursor will result in an error. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ int rc; BtShared *pBt = p->pBt; MemPage *pPage1; assert( writeOnly==1 || writeOnly==0 ); assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); sqlite3BtreeEnter(p); if( tripCode==SQLITE_OK ){ rc = tripCode = saveAllCursors(pBt, 0, 0); if( rc ) writeOnly = 0; }else{ rc = SQLITE_OK; } if( tripCode ){ int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); if( rc2!=SQLITE_OK ) rc = rc2; } btreeIntegrity(p); if( p->inTrans==TRANS_WRITE ){ int rc2; assert( TRANS_WRITE==pBt->inTransaction ); |
︙ | ︙ | |||
3849 3850 3851 3852 3853 3854 3855 | ** ** The caller must position the cursor prior to invoking this routine. ** ** This routine cannot fail. It always returns SQLITE_OK. */ int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ assert( cursorHoldsMutex(pCur) ); | | < < < | | < | 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 | ** ** The caller must position the cursor prior to invoking this routine. ** ** This routine cannot fail. It always returns SQLITE_OK. */ int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); getCellInfo(pCur); *pSize = pCur->info.nKey; return SQLITE_OK; } /* ** Set *pSize to the number of bytes of data in the entry the ** cursor currently points to. ** |
︙ | ︙ | |||
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 | MemPage *pPrevTrunk = 0; Pgno mxPage; /* Total size of the database file */ assert( sqlite3_mutex_held(pBt->mutex) ); assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); pPage1 = pBt->pPage1; mxPage = btreePagecount(pBt); n = get4byte(&pPage1->aData[36]); testcase( n==mxPage-1 ); if( n>=mxPage ){ return SQLITE_CORRUPT_BKPT; } if( n>0 ){ /* There are pages on the freelist. Reuse one of those pages. */ | > > | 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 | MemPage *pPrevTrunk = 0; Pgno mxPage; /* Total size of the database file */ assert( sqlite3_mutex_held(pBt->mutex) ); assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); pPage1 = pBt->pPage1; mxPage = btreePagecount(pBt); /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 ** stores stores the total number of pages on the freelist. */ n = get4byte(&pPage1->aData[36]); testcase( n==mxPage-1 ); if( n>=mxPage ){ return SQLITE_CORRUPT_BKPT; } if( n>0 ){ /* There are pages on the freelist. Reuse one of those pages. */ |
︙ | ︙ | |||
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 | ** is not true. Otherwise, it runs once for each trunk-page on the ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) */ do { pPrevTrunk = pTrunk; if( pPrevTrunk ){ iTrunk = get4byte(&pPrevTrunk->aData[0]); }else{ iTrunk = get4byte(&pPage1->aData[32]); } testcase( iTrunk==mxPage ); if( iTrunk>mxPage ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); } if( rc ){ pTrunk = 0; goto end_allocate_page; } assert( pTrunk!=0 ); assert( pTrunk->aData!=0 ); | > > > > > > | > | | 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 | ** is not true. Otherwise, it runs once for each trunk-page on the ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) */ do { pPrevTrunk = pTrunk; if( pPrevTrunk ){ /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page ** is the page number of the next freelist trunk page in the list or ** zero if this is the last freelist trunk page. */ iTrunk = get4byte(&pPrevTrunk->aData[0]); }else{ /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 ** stores the page number of the first page of the freelist, or zero if ** the freelist is empty. */ iTrunk = get4byte(&pPage1->aData[32]); } testcase( iTrunk==mxPage ); if( iTrunk>mxPage ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); } if( rc ){ pTrunk = 0; goto end_allocate_page; } assert( pTrunk!=0 ); assert( pTrunk->aData!=0 ); /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page ** is the number of leaf page pointers to follow. */ k = get4byte(&pTrunk->aData[4]); if( k==0 && !searchList ){ /* The trunk has no leaves and the list is not being searched. ** So extract the trunk page itself and use it as the newly ** allocated page */ assert( pPrevTrunk==0 ); rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc ){ |
︙ | ︙ | |||
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 | ** 3.6.0, databases with freelist trunk pages holding more than ** usableSize/4 - 8 entries will be reported as corrupt. In order ** to maintain backwards compatibility with older versions of SQLite, ** we will continue to restrict the number of entries to usableSize/4 - 8 ** for now. At some point in the future (once everyone has upgraded ** to 3.6.0 or later) we should consider fixing the conditional above ** to read "usableSize/4-2" instead of "usableSize/4-8". */ rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc==SQLITE_OK ){ put4byte(&pTrunk->aData[4], nLeaf+1); put4byte(&pTrunk->aData[8+nLeaf*4], iPage); if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ sqlite3PagerDontWrite(pPage->pDbPage); | > > > > > | 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 | ** 3.6.0, databases with freelist trunk pages holding more than ** usableSize/4 - 8 entries will be reported as corrupt. In order ** to maintain backwards compatibility with older versions of SQLite, ** we will continue to restrict the number of entries to usableSize/4 - 8 ** for now. At some point in the future (once everyone has upgraded ** to 3.6.0 or later) we should consider fixing the conditional above ** to read "usableSize/4-2" instead of "usableSize/4-8". ** ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still ** avoid using the last six entries in the freelist trunk page array in ** order that database files created by newer versions of SQLite can be ** read by older versions of SQLite. */ rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc==SQLITE_OK ){ put4byte(&pTrunk->aData[4], nLeaf+1); put4byte(&pTrunk->aData[8+nLeaf*4], iPage); if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ sqlite3PagerDontWrite(pPage->pDbPage); |
︙ | ︙ | |||
5838 5839 5840 5841 5842 5843 5844 | } rc = freeSpace(pPage, pc, sz); if( rc ){ *pRC = rc; return; } pPage->nCell--; | > > > > > > > | | | > | 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 | } rc = freeSpace(pPage, pc, sz); if( rc ){ *pRC = rc; return; } pPage->nCell--; if( pPage->nCell==0 ){ memset(&data[hdr+1], 0, 4); data[hdr+7] = 0; put2byte(&data[hdr+5], pPage->pBt->usableSize); pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset - pPage->childPtrSize - 8; }else{ memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); put2byte(&data[hdr+3], pPage->nCell); pPage->nFree += 2; } } /* ** Insert a new cell on pPage at cell index "i". pCell points to the ** content of the cell. ** ** If the cell content will fit on the page, then put it there. If it |
︙ | ︙ | |||
5935 5936 5937 5938 5939 5940 5941 | ptrmapPutOvflPtr(pPage, pCell, pRC); } #endif } } /* | > > > > > > > > > > > > > > > > > > > > > > > > > > | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > | | | > > > | > | | > > | < > > | > > > > > | < > | > > | < > > | | > > | > > > > > | > > > > > > > > > | > | > | > > > > | > | < > | > > | > > | | | | > > > > > > > > > > | > > > > | 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 | ptrmapPutOvflPtr(pPage, pCell, pRC); } #endif } } /* ** Array apCell[] contains pointers to nCell b-tree page cells. The ** szCell[] array contains the size in bytes of each cell. This function ** replaces the current contents of page pPg with the contents of the cell ** array. ** ** Some of the cells in apCell[] may currently be stored in pPg. This ** function works around problems caused by this by making a copy of any ** such cells before overwriting the page data. ** ** The MemPage.nFree field is invalidated by this function. It is the ** responsibility of the caller to set it correctly. */ static void rebuildPage( MemPage *pPg, /* Edit this page */ int nCell, /* Final number of cells on page */ u8 **apCell, /* Array of cells */ u16 *szCell /* Array of cell sizes */ ){ const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ u8 * const aData = pPg->aData; /* Pointer to data for pPg */ const int usableSize = pPg->pBt->usableSize; u8 * const pEnd = &aData[usableSize]; int i; u8 *pCellptr = pPg->aCellIdx; u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); u8 *pData; i = get2byte(&aData[hdr+5]); memcpy(&pTmp[i], &aData[i], usableSize - i); pData = pEnd; for(i=0; i<nCell; i++){ u8 *pCell = apCell[i]; if( pCell>aData && pCell<pEnd ){ pCell = &pTmp[pCell - aData]; } pData -= szCell[i]; memcpy(pData, pCell, szCell[i]); put2byte(pCellptr, (pData - aData)); pCellptr += 2; assert( szCell[i]==cellSizePtr(pPg, pCell) ); } /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ pPg->nCell = nCell; pPg->nOverflow = 0; put2byte(&aData[hdr+1], 0); put2byte(&aData[hdr+3], pPg->nCell); put2byte(&aData[hdr+5], pData - aData); aData[hdr+7] = 0x00; } /* ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell ** contains the size in bytes of each such cell. This function attempts to ** add the cells stored in the array to page pPg. If it cannot (because ** the page needs to be defragmented before the cells will fit), non-zero ** is returned. Otherwise, if the cells are added successfully, zero is ** returned. ** ** Argument pCellptr points to the first entry in the cell-pointer array ** (part of page pPg) to populate. After cell apCell[0] is written to the ** page body, a 16-bit offset is written to pCellptr. And so on, for each ** cell in the array. It is the responsibility of the caller to ensure ** that it is safe to overwrite this part of the cell-pointer array. ** ** When this function is called, *ppData points to the start of the ** content area on page pPg. If the size of the content area is extended, ** *ppData is updated to point to the new start of the content area ** before returning. ** ** Finally, argument pBegin points to the byte immediately following the ** end of the space required by this page for the cell-pointer area (for ** all cells - not just those inserted by the current call). If the content ** area must be extended to before this point in order to accomodate all ** cells in apCell[], then the cells do not fit and non-zero is returned. */ static int pageInsertArray( MemPage *pPg, /* Page to add cells to */ u8 *pBegin, /* End of cell-pointer array */ u8 **ppData, /* IN/OUT: Page content -area pointer */ u8 *pCellptr, /* Pointer to cell-pointer area */ int nCell, /* Number of cells to add to pPg */ u8 **apCell, /* Array of cells */ u16 *szCell /* Array of cell sizes */ ){ int i; u8 *aData = pPg->aData; u8 *pData = *ppData; const int bFreelist = aData[1] || aData[2]; assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ for(i=0; i<nCell; i++){ int sz = szCell[i]; int rc; u8 *pSlot; if( bFreelist==0 || (pSlot = pageFindSlot(pPg, sz, &rc, 0))==0 ){ pData -= sz; if( pData<pBegin ) return 1; pSlot = pData; } memcpy(pSlot, apCell[i], sz); put2byte(pCellptr, (pSlot - aData)); pCellptr += 2; } *ppData = pData; return 0; } /* ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell ** contains the size in bytes of each such cell. This function adds the ** space associated with each cell in the array that is currently stored ** within the body of pPg to the pPg free-list. The cell-pointers and other ** fields of the page are not updated. ** ** This function returns the total number of cells added to the free-list. */ static int pageFreeArray( MemPage *pPg, /* Page to edit */ int nCell, /* Cells to delete */ u8 **apCell, /* Array of cells */ u16 *szCell /* Array of cell sizes */ ){ u8 * const aData = pPg->aData; u8 * const pEnd = &aData[pPg->pBt->usableSize]; u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; int nRet = 0; int i; u8 *pFree = 0; int szFree = 0; for(i=0; i<nCell; i++){ u8 *pCell = apCell[i]; if( pCell>=pStart && pCell<pEnd ){ int sz = szCell[i]; if( pFree!=(pCell + sz) ){ if( pFree ){ assert( pFree>aData && (pFree - aData)<65536 ); freeSpace(pPg, (u16)(pFree - aData), szFree); } pFree = pCell; szFree = sz; if( pFree+sz>pEnd ) return 0; }else{ pFree = pCell; szFree += sz; } nRet++; } } if( pFree ){ assert( pFree>aData && (pFree - aData)<65536 ); freeSpace(pPg, (u16)(pFree - aData), szFree); } return nRet; } /* ** The pPg->nFree field is invalid when this function returns. It is the ** responsibility of the caller to set it correctly. */ static void editPage( MemPage *pPg, /* Edit this page */ int iOld, /* Index of first cell currently on page */ int iNew, /* Index of new first cell on page */ int nNew, /* Final number of cells on page */ u8 **apCell, /* Array of cells */ u16 *szCell /* Array of cell sizes */ ){ u8 * const aData = pPg->aData; const int hdr = pPg->hdrOffset; u8 *pBegin = &pPg->aCellIdx[nNew * 2]; int nCell = pPg->nCell; /* Cells stored on pPg */ u8 *pData; u8 *pCellptr; int i; int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; int iNewEnd = iNew + nNew; #ifdef SQLITE_DEBUG u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); memcpy(pTmp, aData, pPg->pBt->usableSize); #endif /* Remove cells from the start and end of the page */ if( iOld<iNew ){ int nShift = pageFreeArray( pPg, iNew-iOld, &apCell[iOld], &szCell[iOld] ); memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); nCell -= nShift; } if( iNewEnd < iOldEnd ){ nCell -= pageFreeArray( pPg, iOldEnd-iNewEnd, &apCell[iNewEnd], &szCell[iNewEnd] ); } pData = &aData[get2byte(&aData[hdr+5])]; if( pData<pBegin ) goto editpage_fail; /* Add cells to the start of the page */ if( iNew<iOld ){ int nAdd = iOld-iNew; pCellptr = pPg->aCellIdx; memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); if( pageInsertArray( pPg, pBegin, &pData, pCellptr, nAdd, &apCell[iNew], &szCell[iNew] ) ) goto editpage_fail; nCell += nAdd; } /* Add any overflow cells */ for(i=0; i<pPg->nOverflow; i++){ int iCell = (iOld + pPg->aiOvfl[i]) - iNew; if( iCell>=0 && iCell<nNew ){ pCellptr = &pPg->aCellIdx[iCell * 2]; memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); nCell++; if( pageInsertArray( pPg, pBegin, &pData, pCellptr, 1, &apCell[iCell + iNew], &szCell[iCell + iNew] ) ) goto editpage_fail; } } /* Append cells to the end of the page */ pCellptr = &pPg->aCellIdx[nCell*2]; if( pageInsertArray( pPg, pBegin, &pData, pCellptr, nNew-nCell, &apCell[iNew+nCell], &szCell[iNew+nCell] ) ) goto editpage_fail; pPg->nCell = nNew; pPg->nOverflow = 0; put2byte(&aData[hdr+3], pPg->nCell); put2byte(&aData[hdr+5], pData - aData); #ifdef SQLITE_DEBUG for(i=0; i<nNew && !CORRUPT_DB; i++){ u8 *pCell = apCell[i+iNew]; int iOff = get2byte(&pPg->aCellIdx[i*2]); if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){ pCell = &pTmp[pCell - aData]; } assert( 0==memcmp(pCell, &aData[iOff], szCell[i+iNew]) ); } #endif return; editpage_fail: /* Unable to edit this page. Rebuild it from scratch instead. */ rebuildPage(pPg, nNew, &apCell[iNew], &szCell[iNew]); } /* ** The following parameters determine how many adjacent pages get involved ** in a balancing operation. NN is the number of neighbors on either side ** of the page that participate in the balancing operation. NB is the ** total number of pages that participate, including the target page and |
︙ | ︙ | |||
6045 6046 6047 6048 6049 6050 6051 | u8 *pCell = pPage->apOvfl[0]; u16 szCell = cellSizePtr(pPage, pCell); u8 *pStop; assert( sqlite3PagerIswriteable(pNew->pDbPage) ); assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); | | > | 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 | u8 *pCell = pPage->apOvfl[0]; u16 szCell = cellSizePtr(pPage, pCell); u8 *pStop; assert( sqlite3PagerIswriteable(pNew->pDbPage) ); assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); rebuildPage(pNew, 1, &pCell, &szCell); pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; /* If this is an auto-vacuum database, update the pointer map ** with entries for the new page, and any pointer from the ** cell on the page to an overflow page. If either of these ** operations fails, the return code is set, but the contents ** of the parent page are still manipulated by thh code below. ** That is Ok, at this point the parent page is guaranteed to |
︙ | ︙ | |||
6264 6265 6266 6267 6268 6269 6270 | int usableSpace; /* Bytes in pPage beyond the header */ int pageFlags; /* Value of pPage->aData[0] */ int subtotal; /* Subtotal of bytes in cells on one page */ int iSpace1 = 0; /* First unused byte of aSpace1[] */ int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ int szScratch; /* Size of scratch memory requested */ MemPage *apOld[NB]; /* pPage and up to two siblings */ | < > | > > > > > | 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 | int usableSpace; /* Bytes in pPage beyond the header */ int pageFlags; /* Value of pPage->aData[0] */ int subtotal; /* Subtotal of bytes in cells on one page */ int iSpace1 = 0; /* First unused byte of aSpace1[] */ int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ int szScratch; /* Size of scratch memory requested */ MemPage *apOld[NB]; /* pPage and up to two siblings */ MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ u8 *pRight; /* Location in parent of right-sibling pointer */ u8 *apDiv[NB-1]; /* Divider cells in pParent */ int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ int cntOld[NB+2]; /* Old index in aCell[] after i-th page */ int szNew[NB+2]; /* Combined size of cells placed on i-th page */ u8 **apCell = 0; /* All cells begin balanced */ u16 *szCell; /* Local size of all cells in apCell[] */ u8 *aSpace1; /* Space for copies of dividers cells */ Pgno pgno; /* Temp var to store a page number in */ u8 abDone[NB+2]; /* True after i'th new page is populated */ Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ memset(abDone, 0, sizeof(abDone)); pBt = pParent->pBt; assert( sqlite3_mutex_held(pBt->mutex) ); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); #if 0 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); #endif |
︙ | ︙ | |||
6383 6384 6385 6386 6387 6388 6389 | /* Make nMaxCells a multiple of 4 in order to preserve 8-byte ** alignment */ nMaxCells = (nMaxCells + 3)&~3; /* ** Allocate space for memory structures */ | < | | > > > | | < < < < < | < < < > | 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 | /* Make nMaxCells a multiple of 4 in order to preserve 8-byte ** alignment */ nMaxCells = (nMaxCells + 3)&~3; /* ** Allocate space for memory structures */ szScratch = nMaxCells*sizeof(u8*) /* apCell */ + nMaxCells*sizeof(u16) /* szCell */ + pBt->pageSize; /* aSpace1 */ /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer ** that is more than 6 times the database page size. */ assert( szScratch<=6*pBt->pageSize ); apCell = sqlite3ScratchMalloc( szScratch ); if( apCell==0 ){ rc = SQLITE_NOMEM; goto balance_cleanup; } szCell = (u16*)&apCell[nMaxCells]; aSpace1 = (u8*)&szCell[nMaxCells]; assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); /* ** Load pointers to all cells on sibling pages and the divider cells ** into the local apCell[] array. Make copies of the divider cells ** into space obtained from aSpace1[]. The divider cells have already ** been removed from pParent. ** ** If the siblings are on leaf pages, then the child pointers of the ** divider cells are stripped from the cells before they are copied ** into aSpace1[]. In this way, all cells in apCell[] are without ** child pointers. If siblings are not leaves, then all cell in ** apCell[] include child pointers. Either way, all cells in apCell[] ** are alike. ** ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. ** leafData: 1 if pPage holds key+data and pParent holds only keys. */ leafCorrection = apOld[0]->leaf*4; leafData = apOld[0]->intKeyLeaf; for(i=0; i<nOld; i++){ int limit; MemPage *pOld = apOld[i]; limit = pOld->nCell+pOld->nOverflow; if( pOld->nOverflow>0 ){ for(j=0; j<limit; j++){ assert( nCell<nMaxCells ); apCell[nCell] = findOverflowCell(pOld, j); szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); nCell++; } }else{ u8 *aData = pOld->aData; u16 maskPage = pOld->maskPage; u16 cellOffset = pOld->cellOffset; for(j=0; j<limit; j++){ assert( nCell<nMaxCells ); apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j); szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); nCell++; } } cntOld[i] = nCell; if( i<nOld-1 && !leafData){ u16 sz = (u16)szNew[i]; u8 *pTemp; assert( nCell<nMaxCells ); szCell[nCell] = sz; pTemp = &aSpace1[iSpace1]; iSpace1 += sz; |
︙ | ︙ | |||
6498 6499 6500 6501 6502 6503 6504 | ** */ usableSpace = pBt->usableSize - 12 + leafCorrection; for(subtotal=k=i=0; i<nCell; i++){ assert( i<nMaxCells ); subtotal += szCell[i] + 2; if( subtotal > usableSpace ){ | | | | > | | 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 | ** */ usableSpace = pBt->usableSize - 12 + leafCorrection; for(subtotal=k=i=0; i<nCell; i++){ assert( i<nMaxCells ); subtotal += szCell[i] + 2; if( subtotal > usableSpace ){ szNew[k] = subtotal - szCell[i] - 2; cntNew[k] = i; if( leafData ){ i--; } subtotal = 0; k++; if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } } } szNew[k] = subtotal; cntNew[k] = nCell; k++; /* ** The packing computed by the previous block is biased toward the siblings ** on the left side (siblings with smaller keys). The left siblings are ** always nearly full, while the right-most sibling might be nearly empty. ** The next block of code attempts to adjust the packing of siblings to ** get a better balance. ** ** This adjustment is more than an optimization. The packing above might ** be so out of balance as to be illegal. For example, the right-most ** sibling might be completely empty. This adjustment is not optional. */ for(i=k-1; i>0; i--){ int szRight = szNew[i]; /* Size of sibling on the right */ |
︙ | ︙ | |||
6543 6544 6545 6546 6547 6548 6549 | r = cntNew[i-1] - 1; d = r + 1 - leafData; } szNew[i] = szRight; szNew[i-1] = szLeft; } | > > | | | | < < < < | < < | | | | | 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 | r = cntNew[i-1] - 1; d = r + 1 - leafData; } szNew[i] = szRight; szNew[i-1] = szLeft; } /* Sanity check: For a non-corrupt database file one of the follwing ** must be true: ** (1) We found one or more cells (cntNew[0])>0), or ** (2) pPage is a virtual root page. A virtual root page is when ** the real root page is page 1 and we are the only child of ** that page. */ assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", apOld[0]->pgno, apOld[0]->nCell, nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 )); /* ** Allocate k new pages. Reuse old pages where possible. */ if( apOld[0]->pgno<=1 ){ rc = SQLITE_CORRUPT_BKPT; |
︙ | ︙ | |||
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 | rc = sqlite3PagerWrite(pNew->pDbPage); nNew++; if( rc ) goto balance_cleanup; }else{ assert( i>0 ); rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); if( rc ) goto balance_cleanup; apNew[i] = pNew; nNew++; /* Set the pointer-map entry for the new sibling page. */ if( ISAUTOVACUUM ){ ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); if( rc!=SQLITE_OK ){ goto balance_cleanup; } } } } | > > < < < < < < < < < < | | | | < | | < | | | > | > > > > > > > > > | > > > > | > | | < | > > > > > | < | | < < | > > | > > > | > > > > > > > > > > > > > > | < > > > > | > > > > > > > > > > | > > | < > > > > > > > | > > | > > > | < > > | > > > | > | > > > > > > > > > > < < < < < < < < < | | | | | | | | | | | | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < < < < < < < < < < < | | | | > > | | | < < < | < < | | > > | < < < < | < | > > | > > | > | < < < < < < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < | | | | | > > > > > > > > > > > < | < < < | 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 | rc = sqlite3PagerWrite(pNew->pDbPage); nNew++; if( rc ) goto balance_cleanup; }else{ assert( i>0 ); rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); if( rc ) goto balance_cleanup; zeroPage(pNew, pageFlags); apNew[i] = pNew; nNew++; cntOld[i] = nCell; /* Set the pointer-map entry for the new sibling page. */ if( ISAUTOVACUUM ){ ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); if( rc!=SQLITE_OK ){ goto balance_cleanup; } } } } /* ** Reassign page numbers so that the new pages are in ascending order. ** This helps to keep entries in the disk file in order so that a scan ** of the table is closer to a linear scan through the file. That in turn ** helps the operating system to deliver pages from the disk more rapidly. ** ** An O(n^2) insertion sort algorithm is used, but since n is never more ** than (NB+2) (a small constant), that should not be a problem. ** ** When NB==3, this one optimization makes the database about 25% faster ** for large insertions and deletions. */ for(i=0; i<nNew; i++){ aPgOrder[i] = aPgno[i] = apNew[i]->pgno; aPgFlags[i] = apNew[i]->pDbPage->flags; for(j=0; j<i; j++){ if( aPgno[j]==aPgno[i] ){ /* This branch is taken if the set of sibling pages somehow contains ** duplicate entries. This can happen if the database is corrupt. ** It would be simpler to detect this as part of the loop below, but ** we do the detection here in order to avoid populating the pager ** cache with two separate objects associated with the same ** page number. */ assert( CORRUPT_DB ); rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } } } for(i=0; i<nNew; i++){ int iBest = 0; /* aPgno[] index of page number to use */ for(j=1; j<nNew; j++){ if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; } pgno = aPgOrder[iBest]; aPgOrder[iBest] = 0xffffffff; if( iBest!=i ){ if( iBest>i ){ sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); } sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); apNew[i]->pgno = pgno; } } TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " "%d(%d nc=%d) %d(%d nc=%d)\n", apNew[0]->pgno, szNew[0], cntNew[0], nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 )); assert( sqlite3PagerIswriteable(pParent->pDbPage) ); put4byte(pRight, apNew[nNew-1]->pgno); /* If the sibling pages are not leaves, ensure that the right-child pointer ** of the right-most new sibling page is set to the value that was ** originally in the same field of the right-most old sibling page. */ if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); } /* Make any required updates to pointer map entries associated with ** cells stored on sibling pages following the balance operation. Pointer ** map entries associated with divider cells are set by the insertCell() ** routine. The associated pointer map entries are: ** ** a) if the cell contains a reference to an overflow chain, the ** entry associated with the first page in the overflow chain, and ** ** b) if the sibling pages are not leaves, the child page associated ** with the cell. ** ** If the sibling pages are not leaves, then the pointer map entry ** associated with the right-child of each sibling may also need to be ** updated. This happens below, after the sibling pages have been ** populated, not here. */ if( ISAUTOVACUUM ){ MemPage *pNew = apNew[0]; u8 *aOld = pNew->aData; int cntOldNext = pNew->nCell + pNew->nOverflow; int usableSize = pBt->usableSize; int iNew = 0; int iOld = 0; for(i=0; i<nCell; i++){ u8 *pCell = apCell[i]; if( i==cntOldNext ){ MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld]; cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; aOld = pOld->aData; } if( i==cntNew[iNew] ){ pNew = apNew[++iNew]; if( !leafData ) continue; } /* Cell pCell is destined for new sibling page pNew. Originally, it ** was either part of sibling page iOld (possibly an overflow cell), ** or else the divider cell to the left of sibling page iOld. So, ** if sibling page iOld had the same page number as pNew, and if ** pCell really was a part of sibling page iOld (not a divider or ** overflow cell), we can skip updating the pointer map entries. */ if( pNew->pgno!=aPgno[iOld] || pCell<aOld || pCell>=&aOld[usableSize] ){ if( !leafCorrection ){ ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); } if( szCell[i]>pNew->minLocal ){ ptrmapPutOvflPtr(pNew, pCell, &rc); } } } } /* Insert new divider cells into pParent. */ for(i=0; i<nNew-1; i++){ u8 *pCell; u8 *pTemp; int sz; MemPage *pNew = apNew[i]; j = cntNew[i]; assert( j<nMaxCells ); pCell = apCell[j]; sz = szCell[j] + leafCorrection; pTemp = &aOvflSpace[iOvflSpace]; if( !pNew->leaf ){ memcpy(&pNew->aData[8], pCell, 4); }else if( leafData ){ /* If the tree is a leaf-data tree, and the siblings are leaves, ** then there is no divider cell in apCell[]. Instead, the divider ** cell consists of the integer key for the right-most cell of ** the sibling-page assembled above only. */ CellInfo info; j--; btreeParseCellPtr(pNew, apCell[j], &info); pCell = pTemp; sz = 4 + putVarint(&pCell[4], info.nKey); pTemp = 0; }else{ pCell -= 4; /* Obscure case for non-leaf-data trees: If the cell at pCell was ** previously stored on a leaf node, and its reported size was 4 ** bytes, then it may actually be smaller than this ** (see btreeParseCellPtr(), 4 bytes is the minimum size of ** any cell). But it is important to pass the correct size to ** insertCell(), so reparse the cell now. ** ** Note that this can never happen in an SQLite data file, as all ** cells are at least 4 bytes. It only happens in b-trees used ** to evaluate "IN (SELECT ...)" and similar clauses. */ if( szCell[j]==4 ){ assert(leafCorrection==4); sz = cellSizePtr(pParent, pCell); } } iOvflSpace += sz; assert( sz<=pBt->maxLocal+23 ); assert( iOvflSpace <= (int)pBt->pageSize ); insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); if( rc!=SQLITE_OK ) goto balance_cleanup; assert( sqlite3PagerIswriteable(pParent->pDbPage) ); } /* Now update the actual sibling pages. The order in which they are updated ** is important, as this code needs to avoid disrupting any page from which ** cells may still to be read. In practice, this means: ** ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) ** then it is not safe to update page apNew[iPg] until after ** the left-hand sibling apNew[iPg-1] has been updated. ** ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) ** then it is not safe to update page apNew[iPg] until after ** the right-hand sibling apNew[iPg+1] has been updated. ** ** If neither of the above apply, the page is safe to update. ** ** The iPg value in the following loop starts at nNew-1 goes down ** to 0, then back up to nNew-1 again, thus making two passes over ** the pages. On the initial downward pass, only condition (1) above ** needs to be tested because (2) will always be true from the previous ** step. On the upward pass, both conditions are always true, so the ** upwards pass simply processes pages that were missed on the downward ** pass. */ for(i=1-nNew; i<nNew; i++){ int iPg = i<0 ? -i : i; assert( iPg>=0 && iPg<nNew ); if( abDone[iPg] ) continue; /* Skip pages already processed */ if( i>=0 /* On the upwards pass, or... */ || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ ){ int iNew; int iOld; int nNewCell; /* Verify condition (1): If cells are moving left, update iPg ** only after iPg-1 has already been updated. */ assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); /* Verify condition (2): If cells are moving right, update iPg ** only after iPg+1 has already been updated. */ assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); if( iPg==0 ){ iNew = iOld = 0; nNewCell = cntNew[0]; }else{ iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : nCell; iNew = cntNew[iPg-1] + !leafData; nNewCell = cntNew[iPg] - iNew; } editPage(apNew[iPg], iOld, iNew, nNewCell, apCell, szCell); abDone[iPg]++; apNew[iPg]->nFree = usableSpace-szNew[iPg]; assert( apNew[iPg]->nOverflow==0 ); assert( apNew[iPg]->nCell==nNewCell ); } } /* All pages have been processed exactly once */ assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); assert( nOld>0 ); assert( nNew>0 ); if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ /* The root page of the b-tree now contains no cells. The only sibling ** page is the right-child of the parent. Copy the contents of the ** child page into the parent, decreasing the overall height of the ** b-tree structure by one. This is described as the "balance-shallower" ** sub-algorithm in some documentation. ** ** If this is an auto-vacuum database, the call to copyNodeContent() ** sets all pointer-map entries corresponding to database image pages ** for which the pointer is stored within the content being copied. ** ** It is critical that the child page be defragmented before being ** copied into the parent, because if the parent is page 1 then it will ** by smaller than the child due to the database header, and so all the ** free space needs to be up front. */ assert( nNew==1 ); rc = defragmentPage(apNew[0]); testcase( rc!=SQLITE_OK ); assert( apNew[0]->nFree == (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) || rc!=SQLITE_OK ); copyNodeContent(apNew[0], pParent, &rc); freePage(apNew[0], &rc); }else if( ISAUTOVACUUM && !leafCorrection ){ /* Fix the pointer map entries associated with the right-child of each ** sibling page. All other pointer map entries have already been taken ** care of. */ for(i=0; i<nNew; i++){ u32 key = get4byte(&apNew[i]->aData[8]); ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); } } assert( pParent->isInit ); TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", nOld, nNew, nCell)); /* Free any old pages that were not reused as new pages. */ for(i=nNew; i<nOld; i++){ freePage(apOld[i], &rc); } #if 0 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ /* The ptrmapCheckPages() contains assert() statements that verify that ** all pointer map pages are set correctly. This is helpful while ** debugging. This is usually disabled because a corrupt database may ** cause an assert() statement to fail. */ ptrmapCheckPages(apNew, nNew); ptrmapCheckPages(&pParent, 1); } #endif /* ** Cleanup before returning. */ balance_cleanup: sqlite3ScratchFree(apCell); for(i=0; i<nOld; i++){ |
︙ | ︙ | |||
8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 | if( hit==0 ){ pCheck->mallocFailed = 1; }else{ int contentOffset = get2byteNotZero(&data[hdr+5]); assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ memset(hit+contentOffset, 0, usableSize-contentOffset); memset(hit, 1, contentOffset); nCell = get2byte(&data[hdr+3]); cellStart = hdr + 12 - 4*pPage->leaf; for(i=0; i<nCell; i++){ int pc = get2byte(&data[cellStart+i*2]); u32 size = 65536; int j; if( pc<=usableSize-4 ){ size = cellSizePtr(pPage, &data[pc]); } if( (int)(pc+size-1)>=usableSize ){ pCheck->zPfx = 0; checkAppendMsg(pCheck, "Corruption detected in cell %d on page %d",i,iPage); }else{ for(j=pc+size-1; j>=pc; j--) hit[j]++; } } i = get2byte(&data[hdr+1]); while( i>0 ){ int size, j; assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */ size = get2byte(&data[i+2]); assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */ for(j=i+size-1; j>=i; j--) hit[j]++; j = get2byte(&data[i]); assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */ i = j; } for(i=cnt=0; i<usableSize; i++){ if( hit[i]==0 ){ cnt++; }else if( hit[i]>1 ){ checkAppendMsg(pCheck, "Multiple uses for byte %d of page %d", i, iPage); break; } } if( cnt!=data[hdr+7] ){ checkAppendMsg(pCheck, "Fragmentation of %d bytes reported as %d on page %d", cnt, data[hdr+7], iPage); } } sqlite3PageFree(hit); | > > > > > > > > > > > > > > > > > > > > | 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 | if( hit==0 ){ pCheck->mallocFailed = 1; }else{ int contentOffset = get2byteNotZero(&data[hdr+5]); assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ memset(hit+contentOffset, 0, usableSize-contentOffset); memset(hit, 1, contentOffset); /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ nCell = get2byte(&data[hdr+3]); /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page ** immediately follows the b-tree page header. */ cellStart = hdr + 12 - 4*pPage->leaf; /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte ** integer offsets to the cell contents. */ for(i=0; i<nCell; i++){ int pc = get2byte(&data[cellStart+i*2]); u32 size = 65536; int j; if( pc<=usableSize-4 ){ size = cellSizePtr(pPage, &data[pc]); } if( (int)(pc+size-1)>=usableSize ){ pCheck->zPfx = 0; checkAppendMsg(pCheck, "Corruption detected in cell %d on page %d",i,iPage); }else{ for(j=pc+size-1; j>=pc; j--) hit[j]++; } } /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header ** is the offset of the first freeblock, or zero if there are no ** freeblocks on the page. */ i = get2byte(&data[hdr+1]); while( i>0 ){ int size, j; assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */ size = get2byte(&data[i+2]); assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */ for(j=i+size-1; j>=i; j--) hit[j]++; /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a ** big-endian integer which is the offset in the b-tree page of the next ** freeblock in the chain, or zero if the freeblock is the last on the ** chain. */ j = get2byte(&data[i]); /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of ** increasing offset. */ assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */ i = j; } for(i=cnt=0; i<usableSize; i++){ if( hit[i]==0 ){ cnt++; }else if( hit[i]>1 ){ checkAppendMsg(pCheck, "Multiple uses for byte %d of page %d", i, iPage); break; } } /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments ** is stored in the fifth field of the b-tree page header. ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the ** number of fragmented free bytes within the cell content area. */ if( cnt!=data[hdr+7] ){ checkAppendMsg(pCheck, "Fragmentation of %d bytes reported as %d on page %d", cnt, data[hdr+7], iPage); } } sqlite3PageFree(hit); |
︙ | ︙ | |||
8679 8680 8681 8682 8683 8684 8685 | /* ** Return true if the given Btree is read-only. */ int sqlite3BtreeIsReadonly(Btree *p){ return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; } | > > > > > | 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 | /* ** Return true if the given Btree is read-only. */ int sqlite3BtreeIsReadonly(Btree *p){ return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; } /* ** Return the size of the header added to each page by this module. */ int sqlite3HeaderSizeBtree(void){ return sizeof(MemPage); } |
Changes to src/btree.h.
︙ | ︙ | |||
79 80 81 82 83 84 85 | #endif int sqlite3BtreeSetAutoVacuum(Btree *, int); int sqlite3BtreeGetAutoVacuum(Btree *); int sqlite3BtreeBeginTrans(Btree*,int); int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); int sqlite3BtreeCommitPhaseTwo(Btree*, int); int sqlite3BtreeCommit(Btree*); | | | 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | #endif int sqlite3BtreeSetAutoVacuum(Btree *, int); int sqlite3BtreeGetAutoVacuum(Btree *); int sqlite3BtreeBeginTrans(Btree*,int); int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); int sqlite3BtreeCommitPhaseTwo(Btree*, int); int sqlite3BtreeCommit(Btree*); int sqlite3BtreeRollback(Btree*,int,int); int sqlite3BtreeBeginStmt(Btree*,int); int sqlite3BtreeCreateTable(Btree*, int*, int flags); int sqlite3BtreeIsInTrans(Btree*); int sqlite3BtreeIsInReadTrans(Btree*); int sqlite3BtreeIsInBackup(Btree*); void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); int sqlite3BtreeSchemaLocked(Btree *pBtree); |
︙ | ︙ | |||
112 113 114 115 116 117 118 | */ #define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ #define BTREE_BLOBKEY 2 /* Table has keys only - no data */ int sqlite3BtreeDropTable(Btree*, int, int*); int sqlite3BtreeClearTable(Btree*, int, int*); int sqlite3BtreeClearTableOfCursor(BtCursor*); | | | 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | */ #define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ #define BTREE_BLOBKEY 2 /* Table has keys only - no data */ int sqlite3BtreeDropTable(Btree*, int, int*); int sqlite3BtreeClearTable(Btree*, int, int*); int sqlite3BtreeClearTableOfCursor(BtCursor*); int sqlite3BtreeTripAllCursors(Btree*, int, int); void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue); int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); int sqlite3BtreeNewDb(Btree *p); /* |
︙ | ︙ | |||
192 193 194 195 196 197 198 199 200 201 202 203 204 205 | int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); void sqlite3BtreeIncrblobCursor(BtCursor *); void sqlite3BtreeClearCursor(BtCursor *); int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask); int sqlite3BtreeIsReadonly(Btree *pBt); #ifndef NDEBUG int sqlite3BtreeCursorIsValid(BtCursor*); #endif #ifndef SQLITE_OMIT_BTREECOUNT int sqlite3BtreeCount(BtCursor *, i64 *); | > | 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); void sqlite3BtreeIncrblobCursor(BtCursor *); void sqlite3BtreeClearCursor(BtCursor *); int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask); int sqlite3BtreeIsReadonly(Btree *pBt); int sqlite3HeaderSizeBtree(void); #ifndef NDEBUG int sqlite3BtreeCursorIsValid(BtCursor*); #endif #ifndef SQLITE_OMIT_BTREECOUNT int sqlite3BtreeCount(BtCursor *, i64 *); |
︙ | ︙ |
Changes to src/btreeInt.h.
︙ | ︙ | |||
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 | ** ** A single database file can be shared by two more database connections, ** but cursors cannot be shared. Each cursor is associated with a ** particular database connection identified BtCursor.pBtree.db. ** ** Fields in this structure are accessed under the BtShared.mutex ** found at self->pBt->mutex. */ struct BtCursor { Btree *pBtree; /* The Btree to which this cursor belongs */ BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ Pgno *aOverflow; /* Cache of overflow page locations */ CellInfo info; /* A parse of the cell we are pointing at */ i64 nKey; /* Size of pKey, or last integer key */ void *pKey; /* Saved key that was cursor last known position */ Pgno pgnoRoot; /* The root page of this tree */ int nOvflAlloc; /* Allocated size of aOverflow[] array */ | > > > > > | > | 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | ** ** A single database file can be shared by two more database connections, ** but cursors cannot be shared. Each cursor is associated with a ** particular database connection identified BtCursor.pBtree.db. ** ** Fields in this structure are accessed under the BtShared.mutex ** found at self->pBt->mutex. ** ** skipNext meaning: ** eState==SKIPNEXT && skipNext>0: Next sqlite3BtreeNext() is no-op. ** eState==SKIPNEXT && skipNext<0: Next sqlite3BtreePrevious() is no-op. ** eState==FAULT: Cursor fault with skipNext as error code. */ struct BtCursor { Btree *pBtree; /* The Btree to which this cursor belongs */ BtShared *pBt; /* The BtShared this cursor points to */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ Pgno *aOverflow; /* Cache of overflow page locations */ CellInfo info; /* A parse of the cell we are pointing at */ i64 nKey; /* Size of pKey, or last integer key */ void *pKey; /* Saved key that was cursor last known position */ Pgno pgnoRoot; /* The root page of this tree */ int nOvflAlloc; /* Allocated size of aOverflow[] array */ int skipNext; /* Prev() is noop if negative. Next() is noop if positive. ** Error code if eState==CURSOR_FAULT */ u8 curFlags; /* zero or more BTCF_* flags defined below */ u8 eState; /* One of the CURSOR_XXX constants (see below) */ u8 hints; /* As configured by CursorSetHints() */ i16 iPage; /* Index of current page in apPage */ u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ }; |
︙ | ︙ | |||
543 544 545 546 547 548 549 | ** seek the cursor to the saved position. ** ** CURSOR_FAULT: ** An unrecoverable error (an I/O error or a malloc failure) has occurred ** on a different connection that shares the BtShared cache with this ** cursor. The error has left the cache in an inconsistent state. ** Do nothing else with this cursor. Any attempt to use the cursor | | | 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 | ** seek the cursor to the saved position. ** ** CURSOR_FAULT: ** An unrecoverable error (an I/O error or a malloc failure) has occurred ** on a different connection that shares the BtShared cache with this ** cursor. The error has left the cache in an inconsistent state. ** Do nothing else with this cursor. Any attempt to use the cursor ** should return the error code stored in BtCursor.skipNext */ #define CURSOR_INVALID 0 #define CURSOR_VALID 1 #define CURSOR_SKIPNEXT 2 #define CURSOR_REQUIRESEEK 3 #define CURSOR_FAULT 4 |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
303 304 305 306 307 308 309 | ** auxiliary databases added using the ATTACH command. ** ** See also sqlite3LocateTable(). */ Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; | | > > > > | 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | ** auxiliary databases added using the ATTACH command. ** ** See also sqlite3LocateTable(). */ Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return 0; #endif /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); #if SQLITE_USER_AUTHENTICATION /* Only the admin user is allowed to know that the sqlite_user table ** exists */ if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ return 0; |
︙ | ︙ |
Changes to src/complete.c.
︙ | ︙ | |||
100 101 102 103 104 105 106 107 108 109 110 111 112 113 | ** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed ** to recognize the end of a trigger can be omitted. All we have to do ** is look for a semicolon that is not part of an string or comment. */ int sqlite3_complete(const char *zSql){ u8 state = 0; /* Current state, using numbers defined in header comment */ u8 token; /* Value of the next token */ #ifndef SQLITE_OMIT_TRIGGER /* A complex statement machine used to detect the end of a CREATE TRIGGER ** statement. This is the normal case. */ static const u8 trans[8][8] = { /* Token: */ | > > > > > > > | 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | ** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed ** to recognize the end of a trigger can be omitted. All we have to do ** is look for a semicolon that is not part of an string or comment. */ int sqlite3_complete(const char *zSql){ u8 state = 0; /* Current state, using numbers defined in header comment */ u8 token; /* Value of the next token */ #ifdef SQLITE_ENABLE_API_ARMOR if( zSql==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_TRIGGER /* A complex statement machine used to detect the end of a CREATE TRIGGER ** statement. This is the normal case. */ static const u8 trans[8][8] = { /* Token: */ |
︙ | ︙ |
Changes to src/ctime.c.
︙ | ︙ | |||
58 59 60 61 62 63 64 65 66 67 68 69 70 71 | "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE), #endif #ifdef SQLITE_DISABLE_DIRSYNC "DISABLE_DIRSYNC", #endif #ifdef SQLITE_DISABLE_LFS "DISABLE_LFS", #endif #ifdef SQLITE_ENABLE_ATOMIC_WRITE "ENABLE_ATOMIC_WRITE", #endif #ifdef SQLITE_ENABLE_CEROD "ENABLE_CEROD", #endif | > > > | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE), #endif #ifdef SQLITE_DISABLE_DIRSYNC "DISABLE_DIRSYNC", #endif #ifdef SQLITE_DISABLE_LFS "DISABLE_LFS", #endif #ifdef SQLITE_ENABLE_API_ARMOR "ENABLE_API_ARMOR", #endif #ifdef SQLITE_ENABLE_ATOMIC_WRITE "ENABLE_ATOMIC_WRITE", #endif #ifdef SQLITE_ENABLE_CEROD "ENABLE_CEROD", #endif |
︙ | ︙ | |||
384 385 386 387 388 389 390 391 392 393 394 395 396 397 | ** was used and false if not. ** ** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix ** is not required for a match. */ int sqlite3_compileoption_used(const char *zOptName){ int i, n; if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7; n = sqlite3Strlen30(zOptName); /* Since ArraySize(azCompileOpt) is normally in single digits, a ** linear search is adequate. No need for a binary search. */ for(i=0; i<ArraySize(azCompileOpt); i++){ if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0 | > > > > > > > | 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | ** was used and false if not. ** ** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix ** is not required for a match. */ int sqlite3_compileoption_used(const char *zOptName){ int i, n; #ifdef SQLITE_ENABLE_API_ARMOR if( zOptName==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7; n = sqlite3Strlen30(zOptName); /* Since ArraySize(azCompileOpt) is normally in single digits, a ** linear search is adequate. No need for a binary search. */ for(i=0; i<ArraySize(azCompileOpt); i++){ if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0 |
︙ | ︙ |
Changes to src/date.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** This file contains the C functions that implement date and time ** functions for SQLite. ** ** There is only one exported symbol in this file - the function ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. ** All other code has file scope. ** | | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | ** This file contains the C functions that implement date and time ** functions for SQLite. ** ** There is only one exported symbol in this file - the function ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. ** All other code has file scope. ** ** SQLite processes all times and dates as julian day numbers. The ** dates and times are stored as the number of days since noon ** in Greenwich on November 24, 4714 B.C. according to the Gregorian ** calendar system. ** ** 1970-01-01 00:00:00 is JD 2440587.5 ** 2000-01-01 00:00:00 is JD 2451544.5 ** ** This implementation requires years to be expressed as a 4-digit number ** which means that only dates between 0000-01-01 and 9999-12-31 can ** be represented, even though julian day numbers allow a much wider ** range of dates. ** ** The Gregorian calendar system is used for all dates and times, ** even those that predate the Gregorian calendar. Historians usually ** use the julian calendar for dates prior to 1582-10-15 and for some ** dates afterwards, depending on locale. Beware of this difference. ** ** The conversion algorithms are implemented based on descriptions ** in the following text: ** ** Jean Meeus ** Astronomical Algorithms, 2nd Edition, 1998 |
︙ | ︙ | |||
300 301 302 303 304 305 306 | return 0; }else{ return 1; } } /* | | | 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | return 0; }else{ return 1; } } /* ** Attempt to parse the given string into a julian day number. Return ** the number of errors. ** ** The following are acceptable forms for the input string: ** ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM ** DDDD.DD ** now |
︙ | ︙ | |||
871 872 873 874 875 876 877 | ** ** Return a string described by FORMAT. Conversions as follows: ** ** %d day of month ** %f ** fractional seconds SS.SSS ** %H hour 00-24 ** %j day of year 000-366 | | | 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 | ** ** Return a string described by FORMAT. Conversions as follows: ** ** %d day of month ** %f ** fractional seconds SS.SSS ** %H hour 00-24 ** %j day of year 000-366 ** %J ** julian day number ** %m month 01-12 ** %M minute 00-59 ** %s seconds since 1970-01-01 ** %S seconds 00-59 ** %w day of week 0-6 sunday==0 ** %W week of year 00-53 ** %Y year 0000-9999 |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
477 478 479 480 481 482 483 | ** where-clause loop above. */ if( okOnePass ){ /* Just one row. Hence the top-of-loop is a no-op */ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ assert( !IsVirtual(pTab) ); if( aToOpen[iDataCur-iTabCur] ){ | | | 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 | ** where-clause loop above. */ if( okOnePass ){ /* Just one row. Hence the top-of-loop is a no-op */ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ assert( !IsVirtual(pTab) ); if( aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 || pTab->pSelect!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); VdbeCoverage(v); } }else if( pPk ){ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_RowKey, iEphCur, iKey); assert( nKey==0 ); /* OP_Found will use a composite key */ |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
1206 1207 1208 1209 1210 1211 1212 | sqlite3DbFree(db, pItem->zSpan); } sqlite3DbFree(db, pList->a); sqlite3DbFree(db, pList); } /* | | | | | | | > | > > > | | | | | | | | | > > > < > > > | | > | | | | | | > | | | | > > > > > > > > > > | | | | 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 | sqlite3DbFree(db, pItem->zSpan); } sqlite3DbFree(db, pList->a); sqlite3DbFree(db, pList); } /* ** These routines are Walker callbacks used to check expressions to ** see if they are "constant" for some definition of constant. The ** Walker.eCode value determines the type of "constant" we are looking ** for. ** ** These callback routines are used to implement the following: ** ** sqlite3ExprIsConstant() pWalker->eCode==1 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 ** sqlite3ExprRefOneTableOnly() pWalker->eCode==3 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 ** ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression ** is found to not be a constant. ** ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing ** an existing schema and 4 when processing a new statement. A bound ** parameter raises an error for new statements, but is silently converted ** to NULL for existing schemas. This allows sqlite_master tables that ** contain a bound parameter because they were generated by older versions ** of SQLite to be parsed by newer versions of SQLite without raising a ** malformed schema error. */ static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ /* If pWalker->eCode is 2 then any term of the expression that comes from ** the ON or USING clauses of a left join disqualifies the expression ** from being considered constant. */ if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ pWalker->eCode = 0; return WRC_Abort; } switch( pExpr->op ){ /* Consider functions to be constant if all their arguments are constant ** and either pWalker->eCode==4 or 5 or the function has the ** SQLITE_FUNC_CONST flag. */ case TK_FUNCTION: if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_Constant) ){ return WRC_Continue; }else{ pWalker->eCode = 0; return WRC_Abort; } case TK_ID: case TK_COLUMN: case TK_AGG_FUNCTION: case TK_AGG_COLUMN: testcase( pExpr->op==TK_ID ); testcase( pExpr->op==TK_COLUMN ); testcase( pExpr->op==TK_AGG_FUNCTION ); testcase( pExpr->op==TK_AGG_COLUMN ); if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ return WRC_Continue; }else{ pWalker->eCode = 0; return WRC_Abort; } case TK_VARIABLE: if( pWalker->eCode==5 ){ /* Silently convert bound parameters that appear inside of CREATE ** statements into a NULL when parsing the CREATE statement text out ** of the sqlite_master table */ pExpr->op = TK_NULL; }else if( pWalker->eCode==4 ){ /* A bound parameter in a CREATE statement that originates from ** sqlite3_prepare() causes an error */ pWalker->eCode = 0; return WRC_Abort; } /* Fall through */ default: testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ return WRC_Continue; } } static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ UNUSED_PARAMETER(NotUsed); pWalker->eCode = 0; return WRC_Abort; } static int exprIsConst(Expr *p, int initFlag, int iCur){ Walker w; memset(&w, 0, sizeof(w)); w.eCode = initFlag; w.xExprCallback = exprNodeIsConstant; w.xSelectCallback = selectNodeIsConstant; w.u.iCur = iCur; sqlite3WalkExpr(&w, p); return w.eCode; } /* ** Walk an expression tree. Return non-zero if the expression is constant ** and 0 if it involves variables or function calls. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ int sqlite3ExprIsConstant(Expr *p){ return exprIsConst(p, 1, 0); } /* ** Walk an expression tree. Return non-zero if the expression is constant ** that does no originate from the ON or USING clauses of a join. ** Return 0 if it involves variables or function calls or terms from ** an ON or USING clause. */ int sqlite3ExprIsConstantNotJoin(Expr *p){ return exprIsConst(p, 2, 0); } /* ** Walk an expression tree. Return non-zero if the expression constant ** for any single row of the table with cursor iCur. In other words, the ** expression must not refer to any non-deterministic function nor any ** table other than iCur. */ int sqlite3ExprIsTableConstant(Expr *p, int iCur){ return exprIsConst(p, 3, iCur); } /* ** Walk an expression tree. Return non-zero if the expression is constant ** or a function call with constant arguments. Return and 0 if there ** are any variables. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ assert( isInit==0 || isInit==1 ); return exprIsConst(p, 4+isInit, 0); } /* ** If the expression p codes a constant integer that is small enough ** to fit in a 32-bit integer, return 1 and put the value of the integer ** in *pValue. If the expression is not an integer or if it is too big ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
︙ | ︙ | |||
1832 1833 1834 1835 1836 1837 1838 | assert( !isRowid ); sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); dest.affSdst = (u8)affinity; assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); pSelect->iLimit = 0; testcase( pSelect->selFlags & SF_Distinct ); | < | 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 | assert( !isRowid ); sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); dest.affSdst = (u8)affinity; assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); pSelect->iLimit = 0; testcase( pSelect->selFlags & SF_Distinct ); testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ if( sqlite3Select(pParse, pSelect, &dest) ){ sqlite3KeyInfoUnref(pKeyInfo); return 0; } pEList = pSelect->pEList; assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ |
︙ | ︙ | |||
2979 2980 2981 2982 2983 2984 2985 | (pExpr->iTable ? "new" : "old"), (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), target )); #ifndef SQLITE_OMIT_FLOATING_POINT /* If the column has REAL affinity, it may currently be stored as an | | > > > | 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 | (pExpr->iTable ? "new" : "old"), (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), target )); #ifndef SQLITE_OMIT_FLOATING_POINT /* If the column has REAL affinity, it may currently be stored as an ** integer. Use OP_RealAffinity to make sure it is really real. ** ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to ** floating point when extracting it from the record. */ if( pExpr->iColumn>=0 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, target); } #endif break; |
︙ | ︙ |
Changes to src/func.c.
︙ | ︙ | |||
153 154 155 156 157 158 159 | /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ sqlite3_result_null(context); break; } default: { /* Because sqlite3_value_double() returns 0.0 if the argument is not ** something that can be converted into a number, we have: | | | | 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ sqlite3_result_null(context); break; } default: { /* Because sqlite3_value_double() returns 0.0 if the argument is not ** something that can be converted into a number, we have: ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob ** that cannot be converted to a numeric value. */ double rVal = sqlite3_value_double(argv[0]); if( rVal<0 ) rVal = -rVal; sqlite3_result_double(context, rVal); break; } } |
︙ | ︙ |
Changes to src/global.c.
︙ | ︙ | |||
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | /* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards ** compatibility for legacy applications, the URI filename capability is ** disabled by default. ** ** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled ** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options. */ #ifndef SQLITE_USE_URI # define SQLITE_USE_URI 0 #endif #ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN # define SQLITE_ALLOW_COVERING_INDEX_SCAN 1 #endif /* ** The following singleton contains the global configuration for ** the SQLite library. | > > > > > > > > | 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | /* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards ** compatibility for legacy applications, the URI filename capability is ** disabled by default. ** ** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled ** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options. ** ** EVIDENCE-OF: R-43642-56306 By default, URI handling is globally ** disabled. The default value may be changed by compiling with the ** SQLITE_USE_URI symbol defined. */ #ifndef SQLITE_USE_URI # define SQLITE_USE_URI 0 #endif /* EVIDENCE-OF: R-38720-18127 The default setting is determined by the ** SQLITE_ALLOW_COVERING_INDEX_SCAN compile-time option, or is "on" if ** that compile-time option is omitted. */ #ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN # define SQLITE_ALLOW_COVERING_INDEX_SCAN 1 #endif /* ** The following singleton contains the global configuration for ** the SQLite library. |
︙ | ︙ | |||
225 226 227 228 229 230 231 | ** a different position in the file. This allows code that has to ** deal with the pending byte to run on files that are much smaller ** than 1 GiB. The sqlite3_test_control() interface can be used to ** move the pending byte. ** ** IMPORTANT: Changing the pending byte to any value other than ** 0x40000000 results in an incompatible database file format! | | | | 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | ** a different position in the file. This allows code that has to ** deal with the pending byte to run on files that are much smaller ** than 1 GiB. The sqlite3_test_control() interface can be used to ** move the pending byte. ** ** IMPORTANT: Changing the pending byte to any value other than ** 0x40000000 results in an incompatible database file format! ** Changing the pending byte during operation will result in undefined ** and incorrect behavior. */ #ifndef SQLITE_OMIT_WSD int sqlite3PendingByte = 0x40000000; #endif #include "opcodes.h" /* ** Properties of opcodes. The OPFLG_INITIALIZER macro is ** created by mkopcodeh.awk during compilation. Data is obtained ** from the comments following the "case OP_xxxx:" statements in ** the vdbe.c file. */ const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER; |
Changes to src/main.c.
︙ | ︙ | |||
325 326 327 328 329 330 331 | ** the SQLite library is in use. */ if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; va_start(ap, op); switch( op ){ /* Mutex configuration options are only available in a threadsafe | | | > > > > > > > > < > > > > | > > > | > > | > > | > > > | > > > > > > > > > > > > > > | > > > > > > > > | > > | > > > | | < | > | < < | 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | ** the SQLite library is in use. */ if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; va_start(ap, op); switch( op ){ /* Mutex configuration options are only available in a threadsafe ** compile. */ #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ case SQLITE_CONFIG_SINGLETHREAD: { /* Disable all mutexing */ sqlite3GlobalConfig.bCoreMutex = 0; sqlite3GlobalConfig.bFullMutex = 0; break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ case SQLITE_CONFIG_MULTITHREAD: { /* Disable mutexing of database connections */ /* Enable mutexing of core data structures */ sqlite3GlobalConfig.bCoreMutex = 1; sqlite3GlobalConfig.bFullMutex = 0; break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ case SQLITE_CONFIG_SERIALIZED: { /* Enable all mutexing */ sqlite3GlobalConfig.bCoreMutex = 1; sqlite3GlobalConfig.bFullMutex = 1; break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ case SQLITE_CONFIG_MUTEX: { /* Specify an alternative mutex implementation */ sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ case SQLITE_CONFIG_GETMUTEX: { /* Retrieve the current mutex implementation */ *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; break; } #endif case SQLITE_CONFIG_MALLOC: { /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a ** single argument which is a pointer to an instance of the ** sqlite3_mem_methods structure. The argument specifies alternative ** low-level memory allocation routines to be used in place of the memory ** allocation routines built into SQLite. */ sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); break; } case SQLITE_CONFIG_GETMALLOC: { /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a ** single argument which is a pointer to an instance of the ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is ** filled with the currently defined memory allocation routines. */ if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; break; } case SQLITE_CONFIG_MEMSTATUS: { /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes ** single argument of type int, interpreted as a boolean, which enables ** or disables the collection of memory allocation statistics. */ sqlite3GlobalConfig.bMemstat = va_arg(ap, int); break; } case SQLITE_CONFIG_SCRATCH: { /* EVIDENCE-OF: R-08404-60887 There are three arguments to ** SQLITE_CONFIG_SCRATCH: A pointer an 8-byte aligned memory buffer from ** which the scratch allocations will be drawn, the size of each scratch ** allocation (sz), and the maximum number of scratch allocations (N). */ sqlite3GlobalConfig.pScratch = va_arg(ap, void*); sqlite3GlobalConfig.szScratch = va_arg(ap, int); sqlite3GlobalConfig.nScratch = va_arg(ap, int); break; } case SQLITE_CONFIG_PAGECACHE: { /* EVIDENCE-OF: R-31408-40510 There are three arguments to ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory, the size ** of each page buffer (sz), and the number of pages (N). */ sqlite3GlobalConfig.pPage = va_arg(ap, void*); sqlite3GlobalConfig.szPage = va_arg(ap, int); sqlite3GlobalConfig.nPage = va_arg(ap, int); break; } case SQLITE_CONFIG_PCACHE_HDRSZ: { /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes ** a single parameter which is a pointer to an integer and writes into ** that integer the number of extra bytes per page required for each page ** in SQLITE_CONFIG_PAGECACHE. */ *va_arg(ap, int*) = sqlite3HeaderSizeBtree() + sqlite3HeaderSizePcache() + sqlite3HeaderSizePcache1(); break; } case SQLITE_CONFIG_PCACHE: { /* no-op */ break; } case SQLITE_CONFIG_GETPCACHE: { /* now an error */ rc = SQLITE_ERROR; break; } case SQLITE_CONFIG_PCACHE2: { /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a ** single argument which is a pointer to an sqlite3_pcache_methods2 ** object. This object specifies the interface to a custom page cache ** implementation. */ sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); break; } case SQLITE_CONFIG_GETPCACHE2: { /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a ** single argument which is a pointer to an sqlite3_pcache_methods2 ** object. SQLite copies of the current page cache implementation into ** that object. */ if( sqlite3GlobalConfig.pcache2.xInit==0 ){ sqlite3PCacheSetDefault(); } *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; break; } /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) case SQLITE_CONFIG_HEAP: { /* EVIDENCE-OF: R-19854-42126 There are three arguments to ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the ** number of bytes in the memory buffer, and the minimum allocation size. */ sqlite3GlobalConfig.pHeap = va_arg(ap, void*); sqlite3GlobalConfig.nHeap = va_arg(ap, int); sqlite3GlobalConfig.mnReq = va_arg(ap, int); if( sqlite3GlobalConfig.mnReq<1 ){ sqlite3GlobalConfig.mnReq = 1; }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ /* cap min request size at 2^12 */ sqlite3GlobalConfig.mnReq = (1<<12); } if( sqlite3GlobalConfig.pHeap==0 ){ /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) ** is NULL, then SQLite reverts to using its default memory allocator ** (the system malloc() implementation), undoing any prior invocation of ** SQLITE_CONFIG_MALLOC. ** ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to ** revert to its default implementation when sqlite3_initialize() is run */ memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); }else{ /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the ** alternative memory allocator is engaged to handle all of SQLites ** memory allocation needs. */ #ifdef SQLITE_ENABLE_MEMSYS3 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); #endif #ifdef SQLITE_ENABLE_MEMSYS5 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); #endif } |
︙ | ︙ | |||
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 | /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames ** can be changed at start-time using the ** sqlite3_config(SQLITE_CONFIG_URI,1) or ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. */ case SQLITE_CONFIG_URI: { sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); break; } case SQLITE_CONFIG_COVERING_INDEX_SCAN: { sqlite3GlobalConfig.bUseCis = va_arg(ap, int); break; } #ifdef SQLITE_ENABLE_SQLLOG case SQLITE_CONFIG_SQLLOG: { typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); break; } #endif case SQLITE_CONFIG_MMAP_SIZE: { sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); | > > > > > > > > > > > > > > > > > > > > | < < < > | > > > | 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames ** can be changed at start-time using the ** sqlite3_config(SQLITE_CONFIG_URI,1) or ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. */ case SQLITE_CONFIG_URI: { /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single ** argument of type int. If non-zero, then URI handling is globally ** enabled. If the parameter is zero, then URI handling is globally ** disabled. */ sqlite3GlobalConfig.bOpenUri = va_arg(ap, int); break; } case SQLITE_CONFIG_COVERING_INDEX_SCAN: { /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN ** option takes a single integer argument which is interpreted as a ** boolean in order to enable or disable the use of covering indices for ** full table scans in the query optimizer. */ sqlite3GlobalConfig.bUseCis = va_arg(ap, int); break; } #ifdef SQLITE_ENABLE_SQLLOG case SQLITE_CONFIG_SQLLOG: { typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); break; } #endif case SQLITE_CONFIG_MMAP_SIZE: { /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit ** integer (sqlite3_int64) values that are the default mmap size limit ** (the default setting for PRAGMA mmap_size) and the maximum allowed ** mmap size limit. */ sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); /* EVIDENCE-OF: R-53367-43190 If either argument to this option is ** negative, then that argument is changed to its compile-time default. ** ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be ** silently truncated if necessary so that it does not exceed the ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE ** compile-time option. */ if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ) mxMmap = SQLITE_MAX_MMAP_SIZE; if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; if( szMmap>mxMmap) szMmap = mxMmap; sqlite3GlobalConfig.mxMmap = mxMmap; sqlite3GlobalConfig.szMmap = szMmap; break; } #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ case SQLITE_CONFIG_WIN32_HEAPSIZE: { /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit ** unsigned integer value that specifies the maximum size of the created ** heap. */ sqlite3GlobalConfig.nHeap = va_arg(ap, int); break; } #endif default: { rc = SQLITE_ERROR; |
︙ | ︙ | |||
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 | return SQLITE_OK; } /* ** Return the mutex associated with a database connection. */ sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ return db->mutex; } /* ** Free up as much memory as we can from the given database ** connection. */ int sqlite3_db_release_memory(sqlite3 *db){ int i; sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); sqlite3PagerShrink(pPager); | > > > > > > > > > > | 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 | return SQLITE_OK; } /* ** Return the mutex associated with a database connection. */ sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->mutex; } /* ** Free up as much memory as we can from the given database ** connection. */ int sqlite3_db_release_memory(sqlite3 *db){ int i; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); sqlite3PagerShrink(pPager); |
︙ | ︙ | |||
692 693 694 695 696 697 698 699 700 701 702 703 704 | static int binCollFunc( void *padFlag, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ int rc, n; n = nKey1<nKey2 ? nKey1 : nKey2; rc = memcmp(pKey1, pKey2, n); if( rc==0 ){ if( padFlag && allSpaces(((char*)pKey1)+n, nKey1-n) && allSpaces(((char*)pKey2)+n, nKey2-n) ){ | > > > | > > > > | 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 | static int binCollFunc( void *padFlag, int nKey1, const void *pKey1, int nKey2, const void *pKey2 ){ int rc, n; n = nKey1<nKey2 ? nKey1 : nKey2; /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares ** strings byte by byte using the memcmp() function from the standard C ** library. */ rc = memcmp(pKey1, pKey2, n); if( rc==0 ){ if( padFlag && allSpaces(((char*)pKey1)+n, nKey1-n) && allSpaces(((char*)pKey2)+n, nKey2-n) ){ /* EVIDENCE-OF: R-31624-24737 RTRIM is like BINARY except that extra ** spaces at the end of either string do not change the result. In other ** words, strings will compare equal to one another as long as they ** differ only in the number of spaces at the end. */ }else{ rc = nKey1 - nKey2; } } return rc; } |
︙ | ︙ | |||
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 | return r; } /* ** Return the ROWID of the most recent insert */ sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ return db->lastRowid; } /* ** Return the number of changes in the most recent call to sqlite3_exec(). */ int sqlite3_changes(sqlite3 *db){ return db->nChange; } /* ** Return the number of changes since the database handle was opened. */ int sqlite3_total_changes(sqlite3 *db){ return db->nTotalChange; } /* ** Close all open savepoints. This function only manipulates fields of the ** database handle object, it does not close any savepoints that may be open ** at the b-tree/pager level. | > > > > > > > > > > > > > > > > > > | 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 | return r; } /* ** Return the ROWID of the most recent insert */ sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->lastRowid; } /* ** Return the number of changes in the most recent call to sqlite3_exec(). */ int sqlite3_changes(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->nChange; } /* ** Return the number of changes since the database handle was opened. */ int sqlite3_total_changes(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->nTotalChange; } /* ** Close all open savepoints. This function only manipulates fields of the ** database handle object, it does not close any savepoints that may be open ** at the b-tree/pager level. |
︙ | ︙ | |||
1012 1013 1014 1015 1016 1017 1018 | sqlite3_free(db->lookaside.pStart); } sqlite3_free(db); } /* ** Rollback all database files. If tripCode is not SQLITE_OK, then | | | > > > | | 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 | sqlite3_free(db->lookaside.pStart); } sqlite3_free(db); } /* ** Rollback all database files. If tripCode is not SQLITE_OK, then ** any write cursors are invalidated ("tripped" - as in "tripping a circuit ** breaker") and made to return tripCode if there are any further ** attempts to use that cursor. Read cursors remain open and valid ** but are "saved" in case the table pages are moved around. */ void sqlite3RollbackAll(sqlite3 *db, int tripCode){ int i; int inTrans = 0; int schemaChange; assert( sqlite3_mutex_held(db->mutex) ); sqlite3BeginBenignMalloc(); /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). ** This is important in case the transaction being rolled back has ** modified the database schema. If the b-tree mutexes are not taken ** here, then another shared-cache connection might sneak in between ** the database rollback and schema reset, which can cause false ** corruption reports in some cases. */ sqlite3BtreeEnterAll(db); schemaChange = (db->flags & SQLITE_InternChanges)!=0 && db->init.busy==0; for(i=0; i<db->nDb; i++){ Btree *p = db->aDb[i].pBt; if( p ){ if( sqlite3BtreeIsInTrans(p) ){ inTrans = 1; } sqlite3BtreeRollback(p, tripCode, !schemaChange); } } sqlite3VtabRollback(db); sqlite3EndBenignMalloc(); if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ sqlite3ExpirePreparedStatements(db); |
︙ | ︙ | |||
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 | ** given callback function with the given argument. */ int sqlite3_busy_handler( sqlite3 *db, int (*xBusy)(void*,int), void *pArg ){ sqlite3_mutex_enter(db->mutex); db->busyHandler.xFunc = xBusy; db->busyHandler.pArg = pArg; db->busyHandler.nBusy = 0; db->busyTimeout = 0; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; | > > > | 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 | ** given callback function with the given argument. */ int sqlite3_busy_handler( sqlite3 *db, int (*xBusy)(void*,int), void *pArg ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE; #endif sqlite3_mutex_enter(db->mutex); db->busyHandler.xFunc = xBusy; db->busyHandler.pArg = pArg; db->busyHandler.nBusy = 0; db->busyTimeout = 0; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; |
︙ | ︙ | |||
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 | */ void sqlite3_progress_handler( sqlite3 *db, int nOps, int (*xProgress)(void*), void *pArg ){ sqlite3_mutex_enter(db->mutex); if( nOps>0 ){ db->xProgress = xProgress; db->nProgressOps = (unsigned)nOps; db->pProgressArg = pArg; }else{ db->xProgress = 0; db->nProgressOps = 0; db->pProgressArg = 0; } sqlite3_mutex_leave(db->mutex); } #endif /* ** This routine installs a default busy handler that waits for the ** specified number of milliseconds before returning 0. */ int sqlite3_busy_timeout(sqlite3 *db, int ms){ if( ms>0 ){ sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); db->busyTimeout = ms; }else{ sqlite3_busy_handler(db, 0, 0); } return SQLITE_OK; } /* ** Cause any pending operation to stop at its earliest opportunity. */ void sqlite3_interrupt(sqlite3 *db){ db->u1.isInterrupted = 1; } /* ** This function is exactly the same as sqlite3_create_function(), except ** that it is designed to be called by internal code. The difference is | > > > > > > > > > > > > > > > | 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 | */ void sqlite3_progress_handler( sqlite3 *db, int nOps, int (*xProgress)(void*), void *pArg ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return; } #endif sqlite3_mutex_enter(db->mutex); if( nOps>0 ){ db->xProgress = xProgress; db->nProgressOps = (unsigned)nOps; db->pProgressArg = pArg; }else{ db->xProgress = 0; db->nProgressOps = 0; db->pProgressArg = 0; } sqlite3_mutex_leave(db->mutex); } #endif /* ** This routine installs a default busy handler that waits for the ** specified number of milliseconds before returning 0. */ int sqlite3_busy_timeout(sqlite3 *db, int ms){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif if( ms>0 ){ sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); db->busyTimeout = ms; }else{ sqlite3_busy_handler(db, 0, 0); } return SQLITE_OK; } /* ** Cause any pending operation to stop at its earliest opportunity. */ void sqlite3_interrupt(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return; } #endif db->u1.isInterrupted = 1; } /* ** This function is exactly the same as sqlite3_create_function(), except ** that it is designed to be called by internal code. The difference is |
︙ | ︙ | |||
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 | void (*xFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*), void (*xDestroy)(void *) ){ int rc = SQLITE_ERROR; FuncDestructor *pArg = 0; sqlite3_mutex_enter(db->mutex); if( xDestroy ){ pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); if( !pArg ){ xDestroy(p); goto out; } | > > > > > > | 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 | void (*xFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*), void (*xDestroy)(void *) ){ int rc = SQLITE_ERROR; FuncDestructor *pArg = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( xDestroy ){ pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); if( !pArg ){ xDestroy(p); goto out; } |
︙ | ︙ | |||
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 | void *p, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ){ int rc; char *zFunc8; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); sqlite3DbFree(db, zFunc8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); | > > > > | 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 | void *p, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ){ int rc; char *zFunc8; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); sqlite3DbFree(db, zFunc8); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); |
︙ | ︙ | |||
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 | int sqlite3_overload_function( sqlite3 *db, const char *zName, int nArg ){ int nName = sqlite3Strlen30(zName); int rc = SQLITE_OK; sqlite3_mutex_enter(db->mutex); if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 0, sqlite3InvalidFunction, 0, 0, 0); } rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); | > > > > > > | 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 | int sqlite3_overload_function( sqlite3 *db, const char *zName, int nArg ){ int nName = sqlite3Strlen30(zName); int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 0, sqlite3InvalidFunction, 0, 0, 0); } rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); |
︙ | ︙ | |||
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 | ** ** A NULL trace function means that no tracing is executes. A non-NULL ** trace is a pointer to a function that is invoked at the start of each ** SQL statement. */ void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ void *pOld; sqlite3_mutex_enter(db->mutex); pOld = db->pTraceArg; db->xTrace = xTrace; db->pTraceArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } | > > > > > > > | 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 | ** ** A NULL trace function means that no tracing is executes. A non-NULL ** trace is a pointer to a function that is invoked at the start of each ** SQL statement. */ void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ void *pOld; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pOld = db->pTraceArg; db->xTrace = xTrace; db->pTraceArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } |
︙ | ︙ | |||
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 | */ void *sqlite3_profile( sqlite3 *db, void (*xProfile)(void*,const char*,sqlite_uint64), void *pArg ){ void *pOld; sqlite3_mutex_enter(db->mutex); pOld = db->pProfileArg; db->xProfile = xProfile; db->pProfileArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } #endif /* SQLITE_OMIT_TRACE */ /* ** Register a function to be invoked when a transaction commits. ** If the invoked function returns non-zero, then the commit becomes a ** rollback. */ void *sqlite3_commit_hook( sqlite3 *db, /* Attach the hook to this database */ int (*xCallback)(void*), /* Function to invoke on each commit */ void *pArg /* Argument to the function */ ){ void *pOld; sqlite3_mutex_enter(db->mutex); pOld = db->pCommitArg; db->xCommitCallback = xCallback; db->pCommitArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } /* ** Register a callback to be invoked each time a row is updated, ** inserted or deleted using this database connection. */ void *sqlite3_update_hook( sqlite3 *db, /* Attach the hook to this database */ void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), void *pArg /* Argument to the function */ ){ void *pRet; sqlite3_mutex_enter(db->mutex); pRet = db->pUpdateArg; db->xUpdateCallback = xCallback; db->pUpdateArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } /* ** Register a callback to be invoked each time a transaction is rolled ** back by this database connection. */ void *sqlite3_rollback_hook( sqlite3 *db, /* Attach the hook to this database */ void (*xCallback)(void*), /* Callback function */ void *pArg /* Argument to the function */ ){ void *pRet; sqlite3_mutex_enter(db->mutex); pRet = db->pRollbackArg; db->xRollbackCallback = xCallback; db->pRollbackArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 | */ void *sqlite3_profile( sqlite3 *db, void (*xProfile)(void*,const char*,sqlite_uint64), void *pArg ){ void *pOld; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pOld = db->pProfileArg; db->xProfile = xProfile; db->pProfileArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } #endif /* SQLITE_OMIT_TRACE */ /* ** Register a function to be invoked when a transaction commits. ** If the invoked function returns non-zero, then the commit becomes a ** rollback. */ void *sqlite3_commit_hook( sqlite3 *db, /* Attach the hook to this database */ int (*xCallback)(void*), /* Function to invoke on each commit */ void *pArg /* Argument to the function */ ){ void *pOld; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pOld = db->pCommitArg; db->xCommitCallback = xCallback; db->pCommitArg = pArg; sqlite3_mutex_leave(db->mutex); return pOld; } /* ** Register a callback to be invoked each time a row is updated, ** inserted or deleted using this database connection. */ void *sqlite3_update_hook( sqlite3 *db, /* Attach the hook to this database */ void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), void *pArg /* Argument to the function */ ){ void *pRet; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pRet = db->pUpdateArg; db->xUpdateCallback = xCallback; db->pUpdateArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } /* ** Register a callback to be invoked each time a transaction is rolled ** back by this database connection. */ void *sqlite3_rollback_hook( sqlite3 *db, /* Attach the hook to this database */ void (*xCallback)(void*), /* Callback function */ void *pArg /* Argument to the function */ ){ void *pRet; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pRet = db->pRollbackArg; db->xRollbackCallback = xCallback; db->pRollbackArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; } |
︙ | ︙ | |||
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 | ** configured by this function. */ int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ #ifdef SQLITE_OMIT_WAL UNUSED_PARAMETER(db); UNUSED_PARAMETER(nFrame); #else if( nFrame>0 ){ sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); }else{ sqlite3_wal_hook(db, 0, 0); } #endif return SQLITE_OK; } /* ** Register a callback to be invoked each time a transaction is written ** into the write-ahead-log by this database connection. */ void *sqlite3_wal_hook( sqlite3 *db, /* Attach the hook to this db handle */ int(*xCallback)(void *, sqlite3*, const char*, int), void *pArg /* First argument passed to xCallback() */ ){ #ifndef SQLITE_OMIT_WAL void *pRet; sqlite3_mutex_enter(db->mutex); pRet = db->pWalArg; db->xWalCallback = xCallback; db->pWalArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; #else | > > > > > > > > > | 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 | ** configured by this function. */ int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ #ifdef SQLITE_OMIT_WAL UNUSED_PARAMETER(db); UNUSED_PARAMETER(nFrame); #else #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif if( nFrame>0 ){ sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); }else{ sqlite3_wal_hook(db, 0, 0); } #endif return SQLITE_OK; } /* ** Register a callback to be invoked each time a transaction is written ** into the write-ahead-log by this database connection. */ void *sqlite3_wal_hook( sqlite3 *db, /* Attach the hook to this db handle */ int(*xCallback)(void *, sqlite3*, const char*, int), void *pArg /* First argument passed to xCallback() */ ){ #ifndef SQLITE_OMIT_WAL void *pRet; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(db->mutex); pRet = db->pWalArg; db->xWalCallback = xCallback; db->pWalArg = pArg; sqlite3_mutex_leave(db->mutex); return pRet; #else |
︙ | ︙ | |||
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 | int *pnCkpt /* OUT: Total number of frames checkpointed */ ){ #ifdef SQLITE_OMIT_WAL return SQLITE_OK; #else int rc; /* Return code */ int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ /* Initialize the output variables to -1 in case an error occurs. */ if( pnLog ) *pnLog = -1; if( pnCkpt ) *pnCkpt = -1; assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART ); | > > > > | 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 | int *pnCkpt /* OUT: Total number of frames checkpointed */ ){ #ifdef SQLITE_OMIT_WAL return SQLITE_OK; #else int rc; /* Return code */ int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif /* Initialize the output variables to -1 in case an error occurs. */ if( pnLog ) *pnLog = -1; if( pnCkpt ) *pnCkpt = -1; assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART ); |
︙ | ︙ | |||
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 | ** A new lower limit does not shrink existing constructs. ** It merely prevents new constructs that exceed the limit ** from forming. */ int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ int oldLimit; /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME ** there is a hard upper bound set at compile-time by a C preprocessor ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to ** "_MAX_".) */ assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); | > > > > > > | 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 | ** A new lower limit does not shrink existing constructs. ** It merely prevents new constructs that exceed the limit ** from forming. */ int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ int oldLimit; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return -1; } #endif /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME ** there is a hard upper bound set at compile-time by a C preprocessor ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to ** "_MAX_".) */ assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); |
︙ | ︙ | |||
2238 2239 2240 2241 2242 2243 2244 | const char *zVfs = zDefaultVfs; char *zFile; char c; int nUri = sqlite3Strlen30(zUri); assert( *pzErrMsg==0 ); | > | | 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 | const char *zVfs = zDefaultVfs; char *zFile; char c; int nUri = sqlite3Strlen30(zUri); assert( *pzErrMsg==0 ); if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */ && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ ){ char *zOpt; int eState; /* Parser state when parsing URI */ int iIn; /* Input character index */ int iOut = 0; /* Output character index */ int nByte = nUri+2; /* Bytes of space to allocate */ |
︙ | ︙ | |||
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 | ){ sqlite3 *db; /* Store allocated handle here */ int rc; /* Return code */ int isThreadsafe; /* True for threadsafe connections */ char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ *ppDb = 0; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif /* Only allow sensible combinations of bits in the flags argument. | > > > | 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 | ){ sqlite3 *db; /* Store allocated handle here */ int rc; /* Return code */ int isThreadsafe; /* True for threadsafe connections */ char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ #ifdef SQLITE_ENABLE_API_ARMOR if( ppDb==0 ) return SQLITE_MISUSE_BKPT; #endif *ppDb = 0; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif /* Only allow sensible combinations of bits in the flags argument. |
︙ | ︙ | |||
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 | #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3HashInit(&db->aModule); #endif /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. */ createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); if( db->mallocFailed ){ goto opendb_out; } db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); assert( db->pDfltColl!=0 ); | > > > > > > > < < < | 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 | #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3HashInit(&db->aModule); #endif /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. ** ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating ** functions: */ createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); if( db->mallocFailed ){ goto opendb_out; } /* EVIDENCE-OF: R-08308-17224 The default collating function for all ** strings is BINARY. */ db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); assert( db->pDfltColl!=0 ); /* Parse the filename/URI argument. */ db->openFlags = flags; rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); sqlite3_free(zErrMsg); |
︙ | ︙ | |||
2736 2737 2738 2739 2740 2741 2742 | const void *zFilename, sqlite3 **ppDb ){ char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ sqlite3_value *pVal; int rc; | | | > > | 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 | const void *zFilename, sqlite3 **ppDb ){ char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ sqlite3_value *pVal; int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( ppDb==0 ) return SQLITE_MISUSE_BKPT; #endif *ppDb = 0; #ifndef SQLITE_OMIT_AUTOINIT rc = sqlite3_initialize(); if( rc ) return rc; #endif if( zFilename==0 ) zFilename = "\000\000"; pVal = sqlite3ValueNew(0); sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); if( zFilename8 ){ rc = openDatabase(zFilename8, ppDb, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); assert( *ppDb || rc==SQLITE_NOMEM ); |
︙ | ︙ | |||
2772 2773 2774 2775 2776 2777 2778 | int sqlite3_create_collation( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ | < < < | < < < > > > > | 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 | int sqlite3_create_collation( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); } /* ** Register a new collation sequence with the database handle db. */ int sqlite3_create_collation_v2( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDel)(void*) ){ int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } |
︙ | ︙ | |||
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 | const void *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ int rc = SQLITE_OK; char *zName8; sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); if( zName8 ){ rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); sqlite3DbFree(db, zName8); } | > > > > | 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 | const void *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*) ){ int rc = SQLITE_OK; char *zName8; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); assert( !db->mallocFailed ); zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); if( zName8 ){ rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); sqlite3DbFree(db, zName8); } |
︙ | ︙ | |||
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 | ** db. Replace any previously installed collation sequence factory. */ int sqlite3_collation_needed( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) ){ sqlite3_mutex_enter(db->mutex); db->xCollNeeded = xCollNeeded; db->xCollNeeded16 = 0; db->pCollNeededArg = pCollNeededArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_UTF16 /* ** Register a collation sequence factory callback with the database handle ** db. Replace any previously installed collation sequence factory. */ int sqlite3_collation_needed16( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) ){ sqlite3_mutex_enter(db->mutex); db->xCollNeeded = 0; db->xCollNeeded16 = xCollNeeded16; db->pCollNeededArg = pCollNeededArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } | > > > > > > | 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 | ** db. Replace any previously installed collation sequence factory. */ int sqlite3_collation_needed( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->xCollNeeded = xCollNeeded; db->xCollNeeded16 = 0; db->pCollNeededArg = pCollNeededArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } #ifndef SQLITE_OMIT_UTF16 /* ** Register a collation sequence factory callback with the database handle ** db. Replace any previously installed collation sequence factory. */ int sqlite3_collation_needed16( sqlite3 *db, void *pCollNeededArg, void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->xCollNeeded = 0; db->xCollNeeded16 = xCollNeeded16; db->pCollNeededArg = pCollNeededArg; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } |
︙ | ︙ | |||
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 | /* ** Test to see whether or not the database connection is in autocommit ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on ** by default. Autocommit is disabled by a BEGIN statement and reenabled ** by the next COMMIT or ROLLBACK. */ int sqlite3_get_autocommit(sqlite3 *db){ return db->autoCommit; } /* ** The following routines are substitutes for constants SQLITE_CORRUPT, ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error ** constants. They serve two purposes: | > > > > > > | 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 | /* ** Test to see whether or not the database connection is in autocommit ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on ** by default. Autocommit is disabled by a BEGIN statement and reenabled ** by the next COMMIT or ROLLBACK. */ int sqlite3_get_autocommit(sqlite3 *db){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif return db->autoCommit; } /* ** The following routines are substitutes for constants SQLITE_CORRUPT, ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error ** constants. They serve two purposes: |
︙ | ︙ | |||
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 | return rc; } /* ** Enable or disable the extended result codes. */ int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ sqlite3_mutex_enter(db->mutex); db->errMask = onoff ? 0xffffffff : 0xff; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Invoke the xFileControl method on a particular database. */ int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ int rc = SQLITE_ERROR; Btree *pBtree; sqlite3_mutex_enter(db->mutex); pBtree = sqlite3DbNameToBtree(db, zDbName); if( pBtree ){ Pager *pPager; sqlite3_file *fd; sqlite3BtreeEnter(pBtree); pPager = sqlite3BtreePager(pBtree); | > > > > > > | 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 | return rc; } /* ** Enable or disable the extended result codes. */ int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); db->errMask = onoff ? 0xffffffff : 0xff; sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* ** Invoke the xFileControl method on a particular database. */ int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ int rc = SQLITE_ERROR; Btree *pBtree; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); pBtree = sqlite3DbNameToBtree(db, zDbName); if( pBtree ){ Pager *pPager; sqlite3_file *fd; sqlite3BtreeEnter(pBtree); pPager = sqlite3BtreePager(pBtree); |
︙ | ︙ | |||
3417 3418 3419 3420 3421 3422 3423 | ** The zFilename argument is the filename pointer passed into the xOpen() ** method of a VFS implementation. The zParam argument is the name of the ** query parameter we seek. This routine returns the value of the zParam ** parameter if it exists. If the parameter does not exist, this routine ** returns a NULL pointer. */ const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ | | | 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 | ** The zFilename argument is the filename pointer passed into the xOpen() ** method of a VFS implementation. The zParam argument is the name of the ** query parameter we seek. This routine returns the value of the zParam ** parameter if it exists. If the parameter does not exist, this routine ** returns a NULL pointer. */ const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ if( zFilename==0 || zParam==0 ) return 0; zFilename += sqlite3Strlen30(zFilename) + 1; while( zFilename[0] ){ int x = strcmp(zFilename, zParam); zFilename += sqlite3Strlen30(zFilename) + 1; if( x==0 ) return zFilename; zFilename += sqlite3Strlen30(zFilename) + 1; } |
︙ | ︙ | |||
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 | } /* ** Return the filename of the database associated with a database ** connection. */ const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ Btree *pBt = sqlite3DbNameToBtree(db, zDbName); return pBt ? sqlite3BtreeGetFilename(pBt) : 0; } /* ** Return 1 if database is read-only or 0 if read/write. Return -1 if ** no such database exists. */ int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ Btree *pBt = sqlite3DbNameToBtree(db, zDbName); return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; } | > > > > > > > > > > > > | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 | } /* ** Return the filename of the database associated with a database ** connection. */ const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif Btree *pBt = sqlite3DbNameToBtree(db, zDbName); return pBt ? sqlite3BtreeGetFilename(pBt) : 0; } /* ** Return 1 if database is read-only or 0 if read/write. Return -1 if ** no such database exists. */ int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ){ (void)SQLITE_MISUSE_BKPT; return -1; } #endif Btree *pBt = sqlite3DbNameToBtree(db, zDbName); return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; } |
Changes to src/malloc.c.
︙ | ︙ | |||
373 374 375 376 377 378 379 | } sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); } assert( sqlite3_mutex_notheld(mem0.mutex) ); #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | > | < > | < > | | 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | } sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); } assert( sqlite3_mutex_notheld(mem0.mutex) ); #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch ** buffers per thread. ** ** This can only be checked in single-threaded mode. */ assert( scratchAllocOut==0 ); if( p ) scratchAllocOut++; #endif return p; } void sqlite3ScratchFree(void *p){ if( p ){ |
︙ | ︙ |
Changes to src/mutex.c.
︙ | ︙ | |||
78 79 80 81 82 83 84 85 86 87 88 89 90 91 | /* ** Retrieve a pointer to a static mutex or allocate a new dynamic one. */ sqlite3_mutex *sqlite3_mutex_alloc(int id){ #ifndef SQLITE_OMIT_AUTOINIT if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0; #endif return sqlite3GlobalConfig.mutex.xMutexAlloc(id); } sqlite3_mutex *sqlite3MutexAlloc(int id){ if( !sqlite3GlobalConfig.bCoreMutex ){ return 0; | > | 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | /* ** Retrieve a pointer to a static mutex or allocate a new dynamic one. */ sqlite3_mutex *sqlite3_mutex_alloc(int id){ #ifndef SQLITE_OMIT_AUTOINIT if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0; if( id>SQLITE_MUTEX_RECURSIVE && sqlite3MutexInit() ) return 0; #endif return sqlite3GlobalConfig.mutex.xMutexAlloc(id); } sqlite3_mutex *sqlite3MutexAlloc(int id){ if( !sqlite3GlobalConfig.bCoreMutex ){ return 0; |
︙ | ︙ |
Changes to src/mutex_unix.c.
︙ | ︙ | |||
171 172 173 174 175 176 177 | p->id = iType; #endif pthread_mutex_init(&p->mutex, 0); } break; } default: { | | | > > > > | 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | p->id = iType; #endif pthread_mutex_init(&p->mutex, 0); } break; } default: { #ifdef SQLITE_ENABLE_API_ARMOR if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif p = &staticMutexes[iType-2]; #if SQLITE_MUTEX_NREF p->id = iType; #endif break; } } |
︙ | ︙ |
Changes to src/os.c.
︙ | ︙ | |||
357 358 359 360 361 362 363 364 365 366 367 368 369 370 | */ int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){ MUTEX_LOGIC(sqlite3_mutex *mutex;) #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return rc; #endif MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) sqlite3_mutex_enter(mutex); vfsUnlink(pVfs); if( makeDflt || vfsList==0 ){ pVfs->pNext = vfsList; vfsList = pVfs; }else{ | > > > > | 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 | */ int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){ MUTEX_LOGIC(sqlite3_mutex *mutex;) #ifndef SQLITE_OMIT_AUTOINIT int rc = sqlite3_initialize(); if( rc ) return rc; #endif #ifdef SQLITE_ENABLE_API_ARMOR if( pVfs==0 ) return SQLITE_MISUSE_BKPT; #endif MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) sqlite3_mutex_enter(mutex); vfsUnlink(pVfs); if( makeDflt || vfsList==0 ){ pVfs->pNext = vfsList; vfsList = pVfs; }else{ |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ** available in Windows platforms based on the NT kernel. */ #if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL) # error "WAL mode requires support from the Windows NT kernel, compile\ with SQLITE_OMIT_WAL." #endif /* ** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions ** based on the sub-platform)? */ #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI) # define SQLITE_WIN32_HAS_ANSI #endif | > > > > > | 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | ** available in Windows platforms based on the NT kernel. */ #if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL) # error "WAL mode requires support from the Windows NT kernel, compile\ with SQLITE_OMIT_WAL." #endif #if !SQLITE_OS_WINNT && SQLITE_MAX_MMAP_SIZE>0 # error "Memory mapped files require support from the Windows NT kernel,\ compile with SQLITE_MAX_MMAP_SIZE=0." #endif /* ** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions ** based on the sub-platform)? */ #if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI) # define SQLITE_WIN32_HAS_ANSI #endif |
︙ | ︙ | |||
159 160 161 162 163 164 165 | */ #ifndef winGetDirSep # define winGetDirSep() '\\' #endif /* ** Do we need to manually define the Win32 file mapping APIs for use with WAL | | | | > | 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | */ #ifndef winGetDirSep # define winGetDirSep() '\\' #endif /* ** Do we need to manually define the Win32 file mapping APIs for use with WAL ** mode or memory mapped files (e.g. these APIs are available in the Windows ** CE SDK; however, they are not present in the header file)? */ #if SQLITE_WIN32_FILEMAPPING_API && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) /* ** Two of the file mapping APIs are different under WinRT. Figure out which ** set we need. */ #if SQLITE_OS_WINRT WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \ LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR); |
︙ | ︙ | |||
190 191 192 193 194 195 196 | WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T); #endif /* SQLITE_OS_WINRT */ /* ** This file mapping API is common to both Win32 and WinRT. */ WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID); | | | 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T); #endif /* SQLITE_OS_WINRT */ /* ** This file mapping API is common to both Win32 and WinRT. */ WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID); #endif /* SQLITE_WIN32_FILEMAPPING_API */ /* ** Some Microsoft compilers lack this definition. */ #ifndef INVALID_FILE_ATTRIBUTES # define INVALID_FILE_ATTRIBUTES ((DWORD)-1) #endif |
︙ | ︙ | |||
483 484 485 486 487 488 489 | { "CreateFileW", (SYSCALL)0, 0 }, #endif #define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent) #if (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \ | | | | 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | { "CreateFileW", (SYSCALL)0, 0 }, #endif #define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \ LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent) #if (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)) { "CreateFileMappingA", (SYSCALL)CreateFileMappingA, 0 }, #else { "CreateFileMappingA", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \ DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent) #if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)) { "CreateFileMappingW", (SYSCALL)CreateFileMappingW, 0 }, #else { "CreateFileMappingW", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \ DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent) |
︙ | ︙ | |||
833 834 835 836 837 838 839 | #endif #ifndef osLockFileEx #define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[48].pCurrent) #endif | | > | 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 | #endif #ifndef osLockFileEx #define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[48].pCurrent) #endif #if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && \ (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)) { "MapViewOfFile", (SYSCALL)MapViewOfFile, 0 }, #else { "MapViewOfFile", (SYSCALL)0, 0 }, #endif #define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ SIZE_T))aSyscall[49].pCurrent) |
︙ | ︙ | |||
903 904 905 906 907 908 909 | #else { "UnlockFileEx", (SYSCALL)0, 0 }, #endif #define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[58].pCurrent) | | | 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 | #else { "UnlockFileEx", (SYSCALL)0, 0 }, #endif #define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \ LPOVERLAPPED))aSyscall[58].pCurrent) #if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 { "UnmapViewOfFile", (SYSCALL)UnmapViewOfFile, 0 }, #else { "UnmapViewOfFile", (SYSCALL)0, 0 }, #endif #define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent) |
︙ | ︙ | |||
966 967 968 969 970 971 972 | #else { "GetFileInformationByHandleEx", (SYSCALL)0, 0 }, #endif #define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \ FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent) | | | 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 | #else { "GetFileInformationByHandleEx", (SYSCALL)0, 0 }, #endif #define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \ FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent) #if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) { "MapViewOfFileFromApp", (SYSCALL)MapViewOfFileFromApp, 0 }, #else { "MapViewOfFileFromApp", (SYSCALL)0, 0 }, #endif #define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \ SIZE_T))aSyscall[67].pCurrent) |
︙ | ︙ | |||
1030 1031 1032 1033 1034 1035 1036 | #define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent) { "GetProcessHeap", (SYSCALL)GetProcessHeap, 0 }, #define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent) | | | 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 | #define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent) { "GetProcessHeap", (SYSCALL)GetProcessHeap, 0 }, #define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent) #if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 }, #else { "CreateFileMappingFromApp", (SYSCALL)0, 0 }, #endif #define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \ LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent) |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 | assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); sqlite3OsClose(pPager->jfd); }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ if( pPager->journalOff==0 ){ rc = SQLITE_OK; }else{ rc = sqlite3OsTruncate(pPager->jfd, 0); } pPager->journalOff = 0; }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) ){ rc = zeroJournalHdr(pPager, hasMaster); pPager->journalOff = 0; | > > > > > > > > | 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 | assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); sqlite3OsClose(pPager->jfd); }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ if( pPager->journalOff==0 ){ rc = SQLITE_OK; }else{ rc = sqlite3OsTruncate(pPager->jfd, 0); if( rc==SQLITE_OK && pPager->fullSync ){ /* Make sure the new file size is written into the inode right away. ** Otherwise the journal might resurrect following a power loss and ** cause the last transaction to roll back. See ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773 */ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); } } pPager->journalOff = 0; }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) ){ rc = zeroJournalHdr(pPager, hasMaster); pPager->journalOff = 0; |
︙ | ︙ | |||
2902 2903 2904 2905 2906 2907 2908 | ** of bytes 24..39 of the database. Bytes 28..31 should always be ** zero or the size of the database in page. Bytes 32..35 and 35..39 ** should be page numbers which are never 0xffffffff. So filling ** pPager->dbFileVers[] with all 0xff bytes should suffice. ** ** For an encrypted database, the situation is more complex: bytes ** 24..39 of the database are white noise. But the probability of | | | 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 | ** of bytes 24..39 of the database. Bytes 28..31 should always be ** zero or the size of the database in page. Bytes 32..35 and 35..39 ** should be page numbers which are never 0xffffffff. So filling ** pPager->dbFileVers[] with all 0xff bytes should suffice. ** ** For an encrypted database, the situation is more complex: bytes ** 24..39 of the database are white noise. But the probability of ** white noise equaling 16 bytes of 0xff is vanishingly small so ** we should still be ok. */ memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); }else{ u8 *dbFileVers = &((u8*)pPg->pData)[24]; memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); } |
︙ | ︙ | |||
6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 | sqlite3PcacheMakeDirty(pPgHdr); sqlite3PagerUnrefNotNull(pPgHdr); } return SQLITE_OK; } #endif /* ** Return a pointer to the data for the specified page. */ void *sqlite3PagerGetData(DbPage *pPg){ assert( pPg->nRef>0 || pPg->pPager->memDb ); return pPg->pData; | > > > > > > > > > > > > | 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 | sqlite3PcacheMakeDirty(pPgHdr); sqlite3PagerUnrefNotNull(pPgHdr); } return SQLITE_OK; } #endif /* ** The page handle passed as the first argument refers to a dirty page ** with a page number other than iNew. This function changes the page's ** page number to iNew and sets the value of the PgHdr.flags field to ** the value passed as the third parameter. */ void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){ assert( pPg->pgno!=iNew ); pPg->flags = flags; sqlite3PcacheMove(pPg, iNew); } /* ** Return a pointer to the data for the specified page. */ void *sqlite3PagerGetData(DbPage *pPg){ assert( pPg->nRef>0 || pPg->pPager->memDb ); return pPg->pData; |
︙ | ︙ |
Changes to src/pager.h.
︙ | ︙ | |||
183 184 185 186 187 188 189 190 191 192 193 194 195 196 | int sqlite3PagerIsMemdb(Pager*); void sqlite3PagerCacheStat(Pager *, int, int, int *); void sqlite3PagerClearCache(Pager *); int sqlite3SectorSize(sqlite3_file *); /* Functions used to truncate the database file. */ void sqlite3PagerTruncateImage(Pager*,Pgno); #if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL) void *sqlite3PagerCodec(DbPage *); #endif /* Functions to support testing and debugging. */ #if !defined(NDEBUG) || defined(SQLITE_TEST) | > > | 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | int sqlite3PagerIsMemdb(Pager*); void sqlite3PagerCacheStat(Pager *, int, int, int *); void sqlite3PagerClearCache(Pager *); int sqlite3SectorSize(sqlite3_file *); /* Functions used to truncate the database file. */ void sqlite3PagerTruncateImage(Pager*,Pgno); void sqlite3PagerRekey(DbPage*, Pgno, u16); #if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL) void *sqlite3PagerCodec(DbPage *); #endif /* Functions to support testing and debugging. */ #if !defined(NDEBUG) || defined(SQLITE_TEST) |
︙ | ︙ |
Changes to src/pcache.c.
︙ | ︙ | |||
646 647 648 649 650 651 652 653 654 655 656 657 658 659 | /* ** Free up as much memory as possible from the page cache. */ void sqlite3PcacheShrink(PCache *pCache){ assert( pCache->pCache!=0 ); sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); } #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) /* ** For all dirty pages currently in the cache, invoke the specified ** callback. This is only used if the SQLITE_CHECK_PAGES macro is ** defined. */ | > > > > > > > | 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 | /* ** Free up as much memory as possible from the page cache. */ void sqlite3PcacheShrink(PCache *pCache){ assert( pCache->pCache!=0 ); sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); } /* ** Return the size of the header added by this middleware layer ** in the page-cache hierarchy. */ int sqlite3HeaderSizePcache(void){ return sizeof(PgHdr); } #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) /* ** For all dirty pages currently in the cache, invoke the specified ** callback. This is only used if the SQLITE_CHECK_PAGES macro is ** defined. */ |
︙ | ︙ |
Changes to src/pcache.h.
︙ | ︙ | |||
156 157 158 159 160 161 162 163 | #ifdef SQLITE_TEST void sqlite3PcacheStats(int*,int*,int*,int*); #endif void sqlite3PCacheSetDefault(void); #endif /* _PCACHE_H_ */ | > > > > | 156 157 158 159 160 161 162 163 164 165 166 167 | #ifdef SQLITE_TEST void sqlite3PcacheStats(int*,int*,int*,int*); #endif void sqlite3PCacheSetDefault(void); /* Return the header size */ int sqlite3HeaderSizePcache(void); int sqlite3HeaderSizePcache1(void); #endif /* _PCACHE_H_ */ |
Changes to src/pcache1.c.
︙ | ︙ | |||
977 978 979 980 981 982 983 984 985 986 987 988 989 990 | pcache1Truncate, /* xTruncate */ pcache1Destroy, /* xDestroy */ pcache1Shrink /* xShrink */ }; sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* ** This function is called to free superfluous dynamically allocated memory ** held by the pager system. Memory in use by any SQLite pager allocated ** by the current thread may be sqlite3_free()ed. ** ** nReq is the number of bytes of memory required. Once this much has | > > > > > | 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 | pcache1Truncate, /* xTruncate */ pcache1Destroy, /* xDestroy */ pcache1Shrink /* xShrink */ }; sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); } /* ** Return the size of the header on each page of this PCACHE implementation. */ int sqlite3HeaderSizePcache1(void){ return sizeof(PgHdr1); } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* ** This function is called to free superfluous dynamically allocated memory ** held by the pager system. Memory in use by any SQLite pager allocated ** by the current thread may be sqlite3_free()ed. ** ** nReq is the number of bytes of memory required. Once this much has |
︙ | ︙ |
Changes to src/prepare.c.
︙ | ︙ | |||
705 706 707 708 709 710 711 | int nBytes, /* Length of zSql in bytes. */ int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ Vdbe *pOld, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; | | > > > | | 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 | int nBytes, /* Length of zSql in bytes. */ int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ Vdbe *pOld, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; #ifdef SQLITE_ENABLE_API_ARMOR if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; #endif *ppStmt = 0; if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail); if( rc==SQLITE_SCHEMA ){ sqlite3_finalize(*ppStmt); |
︙ | ︙ | |||
814 815 816 817 818 819 820 | ** encoded string to UTF-8, then invoking sqlite3_prepare(). The ** tricky bit is figuring out the pointer to return in *pzTail. */ char *zSql8; const char *zTail8 = 0; int rc = SQLITE_OK; | > | > | | 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 | ** encoded string to UTF-8, then invoking sqlite3_prepare(). The ** tricky bit is figuring out the pointer to return in *pzTail. */ char *zSql8; const char *zTail8 = 0; int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_API_ARMOR if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; #endif *ppStmt = 0; if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ return SQLITE_MISUSE_BKPT; } if( nBytes>=0 ){ int sz; const char *z = (const char*)zSql; for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){} nBytes = sz; |
︙ | ︙ |
Changes to src/printf.c.
︙ | ︙ | |||
17 18 19 20 21 22 23 | /* ** If the strchrnul() library function is available, then set ** HAVE_STRCHRNUL. If that routine is not available, this module ** will supply its own. The built-in version is slower than ** the glibc version so the glibc version is definitely preferred. */ #if !defined(HAVE_STRCHRNUL) | < < < | < | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | /* ** If the strchrnul() library function is available, then set ** HAVE_STRCHRNUL. If that routine is not available, this module ** will supply its own. The built-in version is slower than ** the glibc version so the glibc version is definitely preferred. */ #if !defined(HAVE_STRCHRNUL) # define HAVE_STRCHRNUL 0 #endif /* ** Conversion types fall into various categories as defined by the ** following enumeration. */ |
︙ | ︙ | |||
212 213 214 215 216 217 218 | u8 useIntern; /* Ok to use internal conversions (ex: %T) */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ sqlite_uint64 longvalue; /* Value for integer types */ LONGDOUBLE_TYPE realvalue; /* Value for real types */ const et_info *infop; /* Pointer to the appropriate info structure */ char *zOut; /* Rendering buffer */ int nOut; /* Size of the rendering buffer */ | | > > > > > > > | 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | u8 useIntern; /* Ok to use internal conversions (ex: %T) */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ sqlite_uint64 longvalue; /* Value for integer types */ LONGDOUBLE_TYPE realvalue; /* Value for real types */ const et_info *infop; /* Pointer to the appropriate info structure */ char *zOut; /* Rendering buffer */ int nOut; /* Size of the rendering buffer */ char *zExtra = 0; /* Malloced memory used by some conversion */ #ifndef SQLITE_OMIT_FLOATING_POINT int exp, e2; /* exponent of real numbers */ int nsd; /* Number of significant digits returned */ double rounder; /* Used for rounding floating point values */ etByte flag_dp; /* True if decimal point should be shown */ etByte flag_rtz; /* True if trailing zeros should be removed */ #endif PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */ char buf[etBUFSIZE]; /* Conversion buffer */ #ifdef SQLITE_ENABLE_API_ARMOR if( ap==0 ){ (void)SQLITE_MISUSE_BKPT; sqlite3StrAccumReset(pAccum); return; } #endif bufpt = 0; if( bFlags ){ if( (bArgList = (bFlags & SQLITE_PRINTF_SQLFUNC))!=0 ){ pArgList = va_arg(ap, PrintfArguments*); } useIntern = bFlags & SQLITE_PRINTF_INTERNAL; }else{ |
︙ | ︙ | |||
329 330 331 332 333 334 335 | xtype = infop->type; }else{ return; } break; } } | < | 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | xtype = infop->type; }else{ return; } break; } } /* ** At this point, variables are initialized as follows: ** ** flag_alternateform TRUE if a '#' is present. ** flag_altform2 TRUE if a '!' is present. ** flag_plussign TRUE if a '+' is present. |
︙ | ︙ | |||
620 621 622 623 624 625 626 | case etCHARX: if( bArgList ){ bufpt = getTextArg(pArgList); c = bufpt ? bufpt[0] : 0; }else{ c = va_arg(ap,int); } | < | < | < > > | | > > > > | 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 | case etCHARX: if( bArgList ){ bufpt = getTextArg(pArgList); c = bufpt ? bufpt[0] : 0; }else{ c = va_arg(ap,int); } if( precision>1 ){ width -= precision-1; if( width>1 && !flag_leftjustify ){ sqlite3AppendChar(pAccum, width-1, ' '); width = 0; } sqlite3AppendChar(pAccum, precision-1, c); } length = 1; buf[0] = c; bufpt = buf; break; case etSTRING: case etDYNSTRING: if( bArgList ){ bufpt = getTextArg(pArgList); }else{ |
︙ | ︙ | |||
727 728 729 730 731 732 733 | }/* End switch over the format type */ /* ** The text of the conversion is pointed to by "bufpt" and is ** "length" characters long. The field width is "width". Do ** the output. */ width -= length; | | | | > > > | 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 | }/* End switch over the format type */ /* ** The text of the conversion is pointed to by "bufpt" and is ** "length" characters long. The field width is "width". Do ** the output. */ width -= length; if( width>0 && !flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' '); sqlite3StrAccumAppend(pAccum, bufpt, length); if( width>0 && flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' '); if( zExtra ){ sqlite3_free(zExtra); zExtra = 0; } }/* End for loop over the format string */ } /* End of function */ /* ** Enlarge the memory allocation on a StrAccum object so that it is ** able to accept at least N more bytes of text. ** |
︙ | ︙ | |||
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 | N = p->nAlloc - p->nChar - 1; setStrAccumError(p, STRACCUM_TOOBIG); return N; }else{ char *zOld = (p->zText==p->zBase ? 0 : p->zText); i64 szNew = p->nChar; szNew += N + 1; if( szNew > p->mxAlloc ){ sqlite3StrAccumReset(p); setStrAccumError(p, STRACCUM_TOOBIG); return 0; }else{ p->nAlloc = (int)szNew; } if( p->useMalloc==1 ){ zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); }else{ zNew = sqlite3_realloc(zOld, p->nAlloc); } if( zNew ){ assert( p->zText!=0 || p->nChar==0 ); if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); p->zText = zNew; }else{ sqlite3StrAccumReset(p); setStrAccumError(p, STRACCUM_NOMEM); return 0; } } return N; } /* | > > > > > > | | | | 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 | N = p->nAlloc - p->nChar - 1; setStrAccumError(p, STRACCUM_TOOBIG); return N; }else{ char *zOld = (p->zText==p->zBase ? 0 : p->zText); i64 szNew = p->nChar; szNew += N + 1; if( szNew+p->nChar<=p->mxAlloc ){ /* Force exponential buffer size growth as long as it does not overflow, ** to avoid having to call this routine too often */ szNew += p->nChar; } if( szNew > p->mxAlloc ){ sqlite3StrAccumReset(p); setStrAccumError(p, STRACCUM_TOOBIG); return 0; }else{ p->nAlloc = (int)szNew; } if( p->useMalloc==1 ){ zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc); }else{ zNew = sqlite3_realloc(zOld, p->nAlloc); } if( zNew ){ assert( p->zText!=0 || p->nChar==0 ); if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar); p->zText = zNew; p->nAlloc = sqlite3DbMallocSize(p->db, zNew); }else{ sqlite3StrAccumReset(p); setStrAccumError(p, STRACCUM_NOMEM); return 0; } } return N; } /* ** Append N copies of character c to the given string buffer. */ void sqlite3AppendChar(StrAccum *p, int N, char c){ if( p->nChar+N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ) return; while( (N--)>0 ) p->zText[p->nChar++] = c; } /* ** The StrAccum "p" is not large enough to accept N new bytes of z[]. ** So enlarge if first, then do the append. ** ** This is a helper routine to sqlite3StrAccumAppend() that does special-case |
︙ | ︙ | |||
943 944 945 946 947 948 949 950 951 952 953 954 955 956 | ** Print into memory obtained from sqlite3_malloc(). Omit the internal ** %-conversion extensions. */ char *sqlite3_vmprintf(const char *zFormat, va_list ap){ char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); acc.useMalloc = 2; sqlite3VXPrintf(&acc, 0, zFormat, ap); z = sqlite3StrAccumFinish(&acc); | > > > > > > > | 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 | ** Print into memory obtained from sqlite3_malloc(). Omit the internal ** %-conversion extensions. */ char *sqlite3_vmprintf(const char *zFormat, va_list ap){ char *z; char zBase[SQLITE_PRINT_BUF_SIZE]; StrAccum acc; #ifdef SQLITE_ENABLE_API_ARMOR if( zFormat==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); acc.useMalloc = 2; sqlite3VXPrintf(&acc, 0, zFormat, ap); z = sqlite3StrAccumFinish(&acc); |
︙ | ︙ | |||
985 986 987 988 989 990 991 992 993 994 995 996 997 998 | ** mistake. ** ** sqlite3_vsnprintf() is the varargs version. */ char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ StrAccum acc; if( n<=0 ) return zBuf; sqlite3StrAccumInit(&acc, zBuf, n, 0); acc.useMalloc = 0; sqlite3VXPrintf(&acc, 0, zFormat, ap); return sqlite3StrAccumFinish(&acc); } char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ char *z; | > > > > > > > | 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 | ** mistake. ** ** sqlite3_vsnprintf() is the varargs version. */ char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){ StrAccum acc; if( n<=0 ) return zBuf; #ifdef SQLITE_ENABLE_API_ARMOR if( zBuf==0 || zFormat==0 ) { (void)SQLITE_MISUSE_BKPT; if( zBuf && n>0 ) zBuf[0] = 0; return zBuf; } #endif sqlite3StrAccumInit(&acc, zBuf, n, 0); acc.useMalloc = 0; sqlite3VXPrintf(&acc, 0, zFormat, ap); return sqlite3StrAccumFinish(&acc); } char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ char *z; |
︙ | ︙ |
Changes to src/random.c.
︙ | ︙ | |||
44 45 46 47 48 49 50 | struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng); # define wsdPrng p[0] #else # define wsdPrng sqlite3Prng #endif #if SQLITE_THREADSAFE | | > | > > > > > > > | | 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng); # define wsdPrng p[0] #else # define wsdPrng sqlite3Prng #endif #if SQLITE_THREADSAFE sqlite3_mutex *mutex; #endif #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return; #endif #if SQLITE_THREADSAFE mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG); #endif sqlite3_mutex_enter(mutex); if( N<=0 || pBuf==0 ){ wsdPrng.isInit = 0; sqlite3_mutex_leave(mutex); return; } /* Initialize the state of the random number generator once, ** the first time this routine is called. The seed value does |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
24 25 26 27 28 29 30 | ** This needs to occur when copying a TK_AGG_FUNCTION node from an ** outer query into an inner subquery. ** ** incrAggFunctionDepth(pExpr,n) is the main routine. incrAggDepth(..) ** is a helper function - a callback for the tree walker. */ static int incrAggDepth(Walker *pWalker, Expr *pExpr){ | | | | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | ** This needs to occur when copying a TK_AGG_FUNCTION node from an ** outer query into an inner subquery. ** ** incrAggFunctionDepth(pExpr,n) is the main routine. incrAggDepth(..) ** is a helper function - a callback for the tree walker. */ static int incrAggDepth(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.n; return WRC_Continue; } static void incrAggFunctionDepth(Expr *pExpr, int N){ if( N>0 ){ Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = incrAggDepth; w.u.n = N; sqlite3WalkExpr(&w, pExpr); } } /* ** Turn the pExpr expression into an alias for the iCol-th column of the ** result set in pEList. |
︙ | ︙ | |||
580 581 582 583 584 585 586 | */ static int exprProbability(Expr *p){ double r = -1.0; if( p->op!=TK_FLOAT ) return -1; sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8); assert( r>=0.0 ); if( r>1.0 ) return -1; | | | 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 | */ static int exprProbability(Expr *p){ double r = -1.0; if( p->op!=TK_FLOAT ) return -1; sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8); assert( r>=0.0 ); if( r>1.0 ) return -1; return (int)(r*134217728.0); } /* ** This routine is callback for sqlite3WalkExpr(). ** ** Resolve symbolic names into TK_COLUMN operators for the current ** node in the expression tree. Return 0 to continue the search down |
︙ | ︙ | |||
712 713 714 715 716 717 718 | ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is short-hand for ** likelihood(X,0.0625). ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand for ** likelihood(X,0.9375). ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent to ** likelihood(X,0.9375). */ /* TUNING: unlikely() probability is 0.0625. likely() is 0.9375 */ | | | 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 | ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is short-hand for ** likelihood(X,0.0625). ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand for ** likelihood(X,0.9375). ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent to ** likelihood(X,0.9375). */ /* TUNING: unlikely() probability is 0.0625. likely() is 0.9375 */ pExpr->iTable = pDef->zName[0]=='u' ? 8388608 : 125829120; } } #ifndef SQLITE_OMIT_AUTHORIZATION auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); if( auth!=SQLITE_OK ){ if( auth==SQLITE_DENY ){ sqlite3ErrorMsg(pParse, "not authorized to use function: %s", |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
168 169 170 171 172 173 174 | #include <windows.h> /* Saved resource information for the beginning of an operation */ static HANDLE hProcess; static FILETIME ftKernelBegin; static FILETIME ftUserBegin; static sqlite3_int64 ftWallBegin; | | > | | | > | | > | | 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | #include <windows.h> /* Saved resource information for the beginning of an operation */ static HANDLE hProcess; static FILETIME ftKernelBegin; static FILETIME ftUserBegin; static sqlite3_int64 ftWallBegin; typedef BOOL (WINAPI *GETPROCTIMES)(HANDLE, LPFILETIME, LPFILETIME, LPFILETIME, LPFILETIME); static GETPROCTIMES getProcessTimesAddr = NULL; /* ** Check to see if we have timer support. Return 1 if necessary ** support found (or found previously). */ static int hasTimer(void){ if( getProcessTimesAddr ){ return 1; } else { /* GetProcessTimes() isn't supported in WIN95 and some other Windows ** versions. See if the version we are running on has it, and if it ** does, save off a pointer to it and the current process handle. */ hProcess = GetCurrentProcess(); if( hProcess ){ HINSTANCE hinstLib = LoadLibrary(TEXT("Kernel32.dll")); if( NULL != hinstLib ){ getProcessTimesAddr = (GETPROCTIMES) GetProcAddress(hinstLib, "GetProcessTimes"); if( NULL != getProcessTimesAddr ){ return 1; } FreeLibrary(hinstLib); } } } return 0; } /* ** Begin timing an operation */ static void beginTimer(void){ if( enableTimer && getProcessTimesAddr ){ FILETIME ftCreation, ftExit; getProcessTimesAddr(hProcess,&ftCreation,&ftExit, &ftKernelBegin,&ftUserBegin); ftWallBegin = timeOfDay(); } } /* Return the difference of two FILETIME structs in seconds */ static double timeDiff(FILETIME *pStart, FILETIME *pEnd){ sqlite_int64 i64Start = *((sqlite_int64 *) pStart); sqlite_int64 i64End = *((sqlite_int64 *) pEnd); return (double) ((i64End - i64Start) / 10000000.0); } /* ** Print the timing results. */ static void endTimer(void){ if( enableTimer && getProcessTimesAddr){ FILETIME ftCreation, ftExit, ftKernelEnd, ftUserEnd; sqlite3_int64 ftWallEnd = timeOfDay(); getProcessTimesAddr(hProcess,&ftCreation,&ftExit,&ftKernelEnd,&ftUserEnd); printf("Run Time: real %.3f user %f sys %f\n", (ftWallEnd - ftWallBegin)*0.001, timeDiff(&ftUserBegin, &ftUserEnd), timeDiff(&ftKernelBegin, &ftKernelEnd)); } } |
︙ | ︙ | |||
453 454 455 456 457 458 459 460 461 462 463 464 465 466 | */ typedef struct ShellState ShellState; struct ShellState { sqlite3 *db; /* The database */ int echoOn; /* True to echo input commands */ int autoEQP; /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */ int statsOn; /* True to display memory stats before each finalize */ int outCount; /* Revert to stdout when reaching zero */ int cnt; /* Number of records displayed so far */ FILE *out; /* Write results here */ FILE *traceOut; /* Output for sqlite3_trace() */ int nErr; /* Number of errors seen */ int mode; /* An output mode setting */ int writableSchema; /* True if PRAGMA writable_schema=ON */ | > | 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | */ typedef struct ShellState ShellState; struct ShellState { sqlite3 *db; /* The database */ int echoOn; /* True to echo input commands */ int autoEQP; /* Run EXPLAIN QUERY PLAN prior to seach SQL stmt */ int statsOn; /* True to display memory stats before each finalize */ int scanstatsOn; /* True to display scan stats before each finalize */ int outCount; /* Revert to stdout when reaching zero */ int cnt; /* Number of records displayed so far */ FILE *out; /* Write results here */ FILE *traceOut; /* Output for sqlite3_trace() */ int nErr; /* Number of errors seen */ int mode; /* An output mode setting */ int writableSchema; /* True if PRAGMA writable_schema=ON */ |
︙ | ︙ | |||
721 722 723 724 725 726 727 | } #endif /* ** This is the callback routine that the shell ** invokes for each row of a query result. */ | | > > > > > > | 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 | } #endif /* ** This is the callback routine that the shell ** invokes for each row of a query result. */ static int shell_callback( void *pArg, int nArg, /* Number of result columns */ char **azArg, /* Text of each result column */ char **azCol, /* Column names */ int *aiType /* Column types */ ){ int i; ShellState *p = (ShellState*)pArg; switch( p->mode ){ case MODE_Line: { int w = 5; if( azArg==0 ) break; |
︙ | ︙ | |||
1100 1101 1102 1103 1104 1105 1106 | int iCur; int iHiwtr; if( pArg && pArg->out ){ iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_MEMORY_USED, &iCur, &iHiwtr, bReset); | > | > | > > | > > | > | > > | > | > | > | > | > | > | > | > | > | > | > | | | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 | int iCur; int iHiwtr; if( pArg && pArg->out ){ iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_MEMORY_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Memory Used: %d (max %d) bytes\n", iCur, iHiwtr); iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_MALLOC_COUNT, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Number of Outstanding Allocations: %d (max %d)\n", iCur, iHiwtr); if( pArg->shellFlgs & SHFLG_Pagecache ){ iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_PAGECACHE_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Number of Pcache Pages Used: %d (max %d) pages\n", iCur, iHiwtr); } iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_PAGECACHE_OVERFLOW, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Number of Pcache Overflow Bytes: %d (max %d) bytes\n", iCur, iHiwtr); if( pArg->shellFlgs & SHFLG_Scratch ){ iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_SCRATCH_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Number of Scratch Allocations Used: %d (max %d)\n", iCur, iHiwtr); } iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_SCRATCH_OVERFLOW, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Number of Scratch Overflow Bytes: %d (max %d) bytes\n", iCur, iHiwtr); iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_MALLOC_SIZE, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Largest Allocation: %d bytes\n", iHiwtr); iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_PAGECACHE_SIZE, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Largest Pcache Allocation: %d bytes\n", iHiwtr); iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_SCRATCH_SIZE, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Largest Scratch Allocation: %d bytes\n", iHiwtr); #ifdef YYTRACKMAXSTACKDEPTH iHiwtr = iCur = -1; sqlite3_status(SQLITE_STATUS_PARSER_STACK, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Deepest Parser Stack: %d (max %d)\n", iCur, iHiwtr); #endif } if( pArg && pArg->out && db ){ if( pArg->shellFlgs & SHFLG_Lookaside ){ iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Lookaside Slots Used: %d (max %d)\n", iCur, iHiwtr); sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_HIT, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Successful lookaside attempts: %d\n", iHiwtr); sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Lookaside failures due to size: %d\n", iHiwtr); sqlite3_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Lookaside failures due to OOM: %d\n", iHiwtr); } iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Pager Heap Usage: %d bytes\n",iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_HIT, &iCur, &iHiwtr, 1); fprintf(pArg->out, "Page cache hits: %d\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_MISS, &iCur, &iHiwtr, 1); fprintf(pArg->out, "Page cache misses: %d\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_CACHE_WRITE, &iCur, &iHiwtr, 1); fprintf(pArg->out, "Page cache writes: %d\n", iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_SCHEMA_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Schema Heap Usage: %d bytes\n",iCur); iHiwtr = iCur = -1; sqlite3_db_status(db, SQLITE_DBSTATUS_STMT_USED, &iCur, &iHiwtr, bReset); fprintf(pArg->out, "Statement Heap/Lookaside Usage: %d bytes\n",iCur); } if( pArg && pArg->out && db && pArg->pStmt ){ iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_FULLSCAN_STEP, bReset); fprintf(pArg->out, "Fullscan Steps: %d\n", iCur); iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_SORT, bReset); fprintf(pArg->out, "Sort Operations: %d\n", iCur); iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_AUTOINDEX,bReset); fprintf(pArg->out, "Autoindex Inserts: %d\n", iCur); iCur = sqlite3_stmt_status(pArg->pStmt, SQLITE_STMTSTATUS_VM_STEP, bReset); fprintf(pArg->out, "Virtual Machine Steps: %d\n", iCur); } return 0; } /* ** Display scan stats. */ static void display_scanstats( sqlite3 *db, /* Database to query */ ShellState *pArg /* Pointer to ShellState */ ){ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int i, k, n, mx; fprintf(pArg->out, "-------- scanstats --------\n"); mx = 0; for(k=0; k<=mx; k++){ double rEstLoop = 1.0; for(i=n=0; 1; i++){ sqlite3_stmt *p = pArg->pStmt; sqlite3_int64 nLoop, nVisit; double rEst; int iSid; const char *zExplain; if( sqlite3_stmt_scanstatus(p, i, SQLITE_SCANSTAT_NLOOP, (void*)&nLoop) ){ break; } sqlite3_stmt_scanstatus(p, i, SQLITE_SCANSTAT_SELECTID, (void*)&iSid); if( iSid>mx ) mx = iSid; if( iSid!=k ) continue; if( n==0 ){ rEstLoop = (double)nLoop; if( k>0 ) fprintf(pArg->out, "-------- subquery %d -------\n", k); } n++; sqlite3_stmt_scanstatus(p, i, SQLITE_SCANSTAT_NVISIT, (void*)&nVisit); sqlite3_stmt_scanstatus(p, i, SQLITE_SCANSTAT_EST, (void*)&rEst); sqlite3_stmt_scanstatus(p, i, SQLITE_SCANSTAT_EXPLAIN, (void*)&zExplain); fprintf(pArg->out, "Loop %2d: %s\n", n, zExplain); rEstLoop *= rEst; fprintf(pArg->out, " nLoop=%-8lld nRow=%-8lld estRow=%-8lld estRow/Loop=%-8g\n", nLoop, nVisit, (sqlite3_int64)(rEstLoop+0.5), rEst ); } } fprintf(pArg->out, "---------------------------\n"); #endif } /* ** Parameter azArray points to a zero-terminated array of strings. zStr ** points to a single nul-terminated string. Return non-zero if zStr ** is equal, according to strcmp(), to any of the strings in the array. ** Otherwise, return zero. */ |
︙ | ︙ | |||
1222 1223 1224 1225 1226 1227 1228 | const char *z; /* Used to check if this is an EXPLAIN */ int *abYield = 0; /* True if op is an OP_Yield */ int nAlloc = 0; /* Allocated size of p->aiIndent[], abYield */ int iOp; /* Index of operation in p->aiIndent[] */ const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext", "NextIfOpen", "PrevIfOpen", 0 }; | | > | 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 | const char *z; /* Used to check if this is an EXPLAIN */ int *abYield = 0; /* True if op is an OP_Yield */ int nAlloc = 0; /* Allocated size of p->aiIndent[], abYield */ int iOp; /* Index of operation in p->aiIndent[] */ const char *azNext[] = { "Next", "Prev", "VPrev", "VNext", "SorterNext", "NextIfOpen", "PrevIfOpen", 0 }; const char *azYield[] = { "Yield", "SeekLT", "SeekGT", "RowSetRead", "Rewind", 0 }; const char *azGoto[] = { "Goto", 0 }; /* Try to figure out if this is really an EXPLAIN statement. If this ** cannot be verified, return early. */ zSql = sqlite3_sql(pSql); if( zSql==0 ) return; for(z=zSql; *z==' ' || *z=='\t' || *z=='\n' || *z=='\f' || *z=='\r'; z++); |
︙ | ︙ | |||
1335 1336 1337 1338 1339 1340 1341 | const char *zStmtSql = sqlite3_sql(pStmt); fprintf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql); } /* Show the EXPLAIN QUERY PLAN if .eqp is on */ if( pArg && pArg->autoEQP ){ sqlite3_stmt *pExplain; | | > | 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 | const char *zStmtSql = sqlite3_sql(pStmt); fprintf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql); } /* Show the EXPLAIN QUERY PLAN if .eqp is on */ if( pArg && pArg->autoEQP ){ sqlite3_stmt *pExplain; char *zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", sqlite3_sql(pStmt)); rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0); if( rc==SQLITE_OK ){ while( sqlite3_step(pExplain)==SQLITE_ROW ){ fprintf(pArg->out,"--EQP-- %d,", sqlite3_column_int(pExplain, 0)); fprintf(pArg->out,"%d,", sqlite3_column_int(pExplain, 1)); fprintf(pArg->out,"%d,", sqlite3_column_int(pExplain, 2)); fprintf(pArg->out,"%s\n", sqlite3_column_text(pExplain, 3)); |
︙ | ︙ | |||
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 | explain_data_delete(pArg); /* print usage stats if stats on */ if( pArg && pArg->statsOn ){ display_stats(db, pArg, 0); } /* Finalize the statement just executed. If this fails, save a ** copy of the error message. Otherwise, set zSql to point to the ** next statement to execute. */ rc2 = sqlite3_finalize(pStmt); if( rc!=SQLITE_NOMEM ) rc = rc2; if( rc==SQLITE_OK ){ | > > > > > | 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 | explain_data_delete(pArg); /* print usage stats if stats on */ if( pArg && pArg->statsOn ){ display_stats(db, pArg, 0); } /* print loop-counters if required */ if( pArg && pArg->scanstatsOn ){ display_scanstats(db, pArg); } /* Finalize the statement just executed. If this fails, save a ** copy of the error message. Otherwise, set zSql to point to the ** next statement to execute. */ rc2 = sqlite3_finalize(pStmt); if( rc!=SQLITE_NOMEM ) rc = rc2; if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 | ".output ?FILENAME? Send output to FILENAME or stdout\n" ".print STRING... Print literal STRING\n" ".prompt MAIN CONTINUE Replace the standard prompts\n" ".quit Exit this program\n" ".read FILENAME Execute SQL in FILENAME\n" ".restore ?DB? FILE Restore content of DB (default \"main\") from FILE\n" ".save FILE Write in-memory database into FILE\n" ".schema ?TABLE? Show the CREATE statements\n" " If TABLE specified, only show tables matching\n" " LIKE pattern TABLE.\n" ".separator STRING ?NL? Change separator used by output mode and .import\n" " NL is the end-of-line mark for CSV\n" ".shell CMD ARGS... Run CMD ARGS... in a system shell\n" ".show Show the current values for various settings\n" | > | 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 | ".output ?FILENAME? Send output to FILENAME or stdout\n" ".print STRING... Print literal STRING\n" ".prompt MAIN CONTINUE Replace the standard prompts\n" ".quit Exit this program\n" ".read FILENAME Execute SQL in FILENAME\n" ".restore ?DB? FILE Restore content of DB (default \"main\") from FILE\n" ".save FILE Write in-memory database into FILE\n" ".scanstats on|off Turn sqlite3_stmt_scanstatus() metrics on or off\n" ".schema ?TABLE? Show the CREATE statements\n" " If TABLE specified, only show tables matching\n" " LIKE pattern TABLE.\n" ".separator STRING ?NL? Change separator used by output mode and .import\n" " NL is the end-of-line mark for CSV\n" ".shell CMD ARGS... Run CMD ARGS... in a system shell\n" ".show Show the current values for various settings\n" |
︙ | ︙ | |||
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 | }else{ fprintf(stderr, "Error: %s\n", sqlite3_errmsg(p->db)); rc = 1; } sqlite3_close(pSrc); }else if( c=='s' && strncmp(azArg[0], "schema", n)==0 ){ ShellState data; char *zErrMsg = 0; open_db(p, 0); memcpy(&data, p, sizeof(data)); data.showHeader = 0; data.mode = MODE_Semi; | > > > > > > > > > > > > > | 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 | }else{ fprintf(stderr, "Error: %s\n", sqlite3_errmsg(p->db)); rc = 1; } sqlite3_close(pSrc); }else if( c=='s' && strncmp(azArg[0], "scanstats", n)==0 ){ if( nArg==2 ){ p->scanstatsOn = booleanValue(azArg[1]); #ifndef SQLITE_ENABLE_STMT_SCANSTATUS fprintf(stderr, "Warning: .scanstats not available in this build.\n"); #endif }else{ fprintf(stderr, "Usage: .scanstats on|off\n"); rc = 1; } }else if( c=='s' && strncmp(azArg[0], "schema", n)==0 ){ ShellState data; char *zErrMsg = 0; open_db(p, 0); memcpy(&data, p, sizeof(data)); data.showHeader = 0; data.mode = MODE_Semi; |
︙ | ︙ | |||
3267 3268 3269 3270 3271 3272 3273 | } nPrintCol = 80/(maxlen+2); if( nPrintCol<1 ) nPrintCol = 1; nPrintRow = (nRow + nPrintCol - 1)/nPrintCol; for(i=0; i<nPrintRow; i++){ for(j=i; j<nRow; j+=nPrintRow){ char *zSp = j<nPrintRow ? "" : " "; | | | 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 | } nPrintCol = 80/(maxlen+2); if( nPrintCol<1 ) nPrintCol = 1; nPrintRow = (nRow + nPrintCol - 1)/nPrintCol; for(i=0; i<nPrintRow; i++){ for(j=i; j<nRow; j+=nPrintRow){ char *zSp = j<nPrintRow ? "" : " "; fprintf(p->out, "%s%-*s", zSp, maxlen, azResult[j] ? azResult[j]:""); } fprintf(p->out, "\n"); } } for(ii=0; ii<nRow; ii++) sqlite3_free(azResult[ii]); sqlite3_free(azResult); }else |
︙ | ︙ | |||
3737 3738 3739 3740 3741 3742 3743 | ** Return a pathname which is the user's home directory. A ** 0 return indicates an error of some kind. */ static char *find_home_dir(void){ static char *home_dir = NULL; if( home_dir ) return home_dir; | | > | 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 | ** Return a pathname which is the user's home directory. A ** 0 return indicates an error of some kind. */ static char *find_home_dir(void){ static char *home_dir = NULL; if( home_dir ) return home_dir; #if !defined(_WIN32) && !defined(WIN32) && !defined(_WIN32_WCE) \ && !defined(__RTP__) && !defined(_WRS_KERNEL) { struct passwd *pwent; uid_t uid = getuid(); if( (pwent=getpwuid(uid)) != NULL) { home_dir = pwent->pw_dir; } } |
︙ | ︙ | |||
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 | data.showHeader = 0; }else if( strcmp(z,"-echo")==0 ){ data.echoOn = 1; }else if( strcmp(z,"-eqp")==0 ){ data.autoEQP = 1; }else if( strcmp(z,"-stats")==0 ){ data.statsOn = 1; }else if( strcmp(z,"-bail")==0 ){ bail_on_error = 1; }else if( strcmp(z,"-version")==0 ){ printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid()); return 0; }else if( strcmp(z,"-interactive")==0 ){ stdin_is_interactive = 1; | > > | 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 | data.showHeader = 0; }else if( strcmp(z,"-echo")==0 ){ data.echoOn = 1; }else if( strcmp(z,"-eqp")==0 ){ data.autoEQP = 1; }else if( strcmp(z,"-stats")==0 ){ data.statsOn = 1; }else if( strcmp(z,"-scanstats")==0 ){ data.scanstatsOn = 1; }else if( strcmp(z,"-bail")==0 ){ bail_on_error = 1; }else if( strcmp(z,"-version")==0 ){ printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid()); return 0; }else if( strcmp(z,"-interactive")==0 ){ stdin_is_interactive = 1; |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
48 49 50 51 52 53 54 | #ifndef SQLITE_EXTERN # define SQLITE_EXTERN extern #endif /* ** These no-op macros are used in front of interfaces to mark those ** interfaces as either deprecated or experimental. New applications | | | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | #ifndef SQLITE_EXTERN # define SQLITE_EXTERN extern #endif /* ** These no-op macros are used in front of interfaces to mark those ** interfaces as either deprecated or experimental. New applications ** should not use deprecated interfaces - they are supported for backwards ** compatibility only. Application writers should be aware that ** experimental interfaces are subject to change in point releases. ** ** These macros used to resolve to various kinds of compiler magic that ** would generate warning messages when they were used. But that ** compiler magic ended up generating such a flurry of bug reports ** that we have taken it all out and gone back to using simple |
︙ | ︙ | |||
1500 1501 1502 1503 1504 1505 1506 | ** ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** it is not possible to set the Serialized [threading mode] and ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the ** SQLITE_CONFIG_SERIALIZED configuration option.</dd> ** ** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt> | | | > | | > | | | | > | | < | < | | > | > > > > > > | | > | > | | | > > | | > | > | < < < | | | > > > > | | < | | | | | | | | | | | | | | | | | | 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 | ** ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** it is not possible to set the Serialized [threading mode] and ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the ** SQLITE_CONFIG_SERIALIZED configuration option.</dd> ** ** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt> ** <dd> ^(The SQLITE_CONFIG_MALLOC option takes a single argument which is ** a pointer to an instance of the [sqlite3_mem_methods] structure. ** The argument specifies ** alternative low-level memory allocation routines to be used in place of ** the memory allocation routines built into SQLite.)^ ^SQLite makes ** its own private copy of the content of the [sqlite3_mem_methods] structure ** before the [sqlite3_config()] call returns.</dd> ** ** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt> ** <dd> ^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which ** is a pointer to an instance of the [sqlite3_mem_methods] structure. ** The [sqlite3_mem_methods] ** structure is filled with the currently defined memory allocation routines.)^ ** This option can be used to overload the default memory allocation ** routines with a wrapper that simulations memory allocation failure or ** tracks memory usage, for example. </dd> ** ** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt> ** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int, ** interpreted as a boolean, which enables or disables the collection of ** memory allocation statistics. ^(When memory allocation statistics are disabled, the ** following SQLite interfaces become non-operational: ** <ul> ** <li> [sqlite3_memory_used()] ** <li> [sqlite3_memory_highwater()] ** <li> [sqlite3_soft_heap_limit64()] ** <li> [sqlite3_status()] ** </ul>)^ ** ^Memory allocation statistics are enabled by default unless SQLite is ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory ** allocation statistics are disabled by default. ** </dd> ** ** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt> ** <dd> ^The SQLITE_CONFIG_SCRATCH option specifies a static memory buffer ** that SQLite can use for scratch memory. ^(There are three arguments ** to SQLITE_CONFIG_SCRATCH: A pointer an 8-byte ** aligned memory buffer from which the scratch allocations will be ** drawn, the size of each scratch allocation (sz), ** and the maximum number of scratch allocations (N).)^ ** The first argument must be a pointer to an 8-byte aligned buffer ** of at least sz*N bytes of memory. ** ^SQLite will not use more than one scratch buffers per thread. ** ^SQLite will never request a scratch buffer that is more than 6 ** times the database page size. ** ^If SQLite needs needs additional ** scratch memory beyond what is provided by this configuration option, then ** [sqlite3_malloc()] will be used to obtain the memory needed.<p> ** ^When the application provides any amount of scratch memory using ** SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary large ** [sqlite3_malloc|heap allocations]. ** This can help [Robson proof|prevent memory allocation failures] due to heap ** fragmentation in low-memory embedded systems. ** </dd> ** ** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt> ** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a static memory buffer ** that SQLite can use for the database page cache with the default page ** cache implementation. ** This configuration should not be used if an application-define page ** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2] ** configuration option. ** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned ** memory, the size of each page buffer (sz), and the number of pages (N). ** The sz argument should be the size of the largest database page ** (a power of two between 512 and 32768) plus some extra bytes for each ** page header. ^The number of extra bytes needed by the page header ** can be determined using the [SQLITE_CONFIG_PCACHE_HDRSZ] option ** to [sqlite3_config()]. ** ^It is harmless, apart from the wasted memory, ** for the sz parameter to be larger than necessary. The first ** argument should pointer to an 8-byte aligned block of memory that ** is at least sz*N bytes of memory, otherwise subsequent behavior is ** undefined. ** ^SQLite will use the memory provided by the first argument to satisfy its ** memory needs for the first N pages that it adds to cache. ^If additional ** page cache memory is needed beyond what is provided by this option, then ** SQLite goes to [sqlite3_malloc()] for the additional storage space.</dd> ** ** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt> ** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer ** that SQLite will use for all of its dynamic memory allocation needs ** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE]. ** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled ** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns ** [SQLITE_ERROR] if invoked otherwise. ** ^There are three arguments to SQLITE_CONFIG_HEAP: ** An 8-byte aligned pointer to the memory, ** the number of bytes in the memory buffer, and the minimum allocation size. ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts ** to using its default memory allocator (the system malloc() implementation), ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the ** memory pointer is not NULL then the alternative memory ** allocator is engaged to handle all of SQLites memory allocation needs. ** The first pointer (the memory pointer) must be aligned to an 8-byte ** boundary or subsequent behavior of SQLite will be undefined. ** The minimum allocation size is capped at 2**12. Reasonable values ** for the minimum allocation size are 2**5 through 2**8.</dd> ** ** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt> ** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a ** pointer to an instance of the [sqlite3_mutex_methods] structure. ** The argument specifies alternative low-level mutex routines to be used in place ** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the ** content of the [sqlite3_mutex_methods] structure before the call to ** [sqlite3_config()] returns. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** the entire mutexing subsystem is omitted from the build and hence calls to ** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will ** return [SQLITE_ERROR].</dd> ** ** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt> ** <dd> ^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which ** is a pointer to an instance of the [sqlite3_mutex_methods] structure. The ** [sqlite3_mutex_methods] ** structure is filled with the currently defined mutex routines.)^ ** This option can be used to overload the default mutex allocation ** routines with a wrapper used to track mutex usage for performance ** profiling or testing, for example. ^If SQLite is compiled with ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then ** the entire mutexing subsystem is omitted from the build and hence calls to ** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will ** return [SQLITE_ERROR].</dd> ** ** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt> ** <dd> ^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine ** the default size of lookaside memory on each [database connection]. ** The first argument is the ** size of each lookaside buffer slot and the second is the number of ** slots allocated to each database connection.)^ ^(SQLITE_CONFIG_LOOKASIDE ** sets the <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE] ** option to [sqlite3_db_config()] can be used to change the lookaside ** configuration on individual connections.)^ </dd> ** ** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt> ** <dd> ^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is ** a pointer to an [sqlite3_pcache_methods2] object. This object specifies ** the interface to a custom page cache implementation.)^ ** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.</dd> ** ** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt> ** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which ** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of the current ** page cache implementation into that object.)^ </dd> ** ** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt> ** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite ** global [error log]. ** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a ** function with a call signature of void(*)(void*,int,const char*), |
︙ | ︙ | |||
1652 1653 1654 1655 1656 1657 1658 | ** log message after formatting via [sqlite3_snprintf()]. ** The SQLite logging interface is not reentrant; the logger function ** supplied by the application must not invoke any SQLite interface. ** In a multi-threaded application, the application-defined logger ** function must be threadsafe. </dd> ** ** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI | | | | | | | > | | 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 | ** log message after formatting via [sqlite3_snprintf()]. ** The SQLite logging interface is not reentrant; the logger function ** supplied by the application must not invoke any SQLite interface. ** In a multi-threaded application, the application-defined logger ** function must be threadsafe. </dd> ** ** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI ** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int. ** If non-zero, then URI handling is globally enabled. If the parameter is zero, ** then URI handling is globally disabled.)^ ^If URI handling is globally enabled, ** all filenames passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or ** specified as part of [ATTACH] commands are interpreted as URIs, regardless ** of whether or not the [SQLITE_OPEN_URI] flag is set when the database ** connection is opened. ^If it is globally disabled, filenames are ** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the ** database connection is opened. ^(By default, URI handling is globally ** disabled. The default value may be changed by compiling with the ** [SQLITE_USE_URI] symbol defined.)^ ** ** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN ** <dd>^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer ** argument which is interpreted as a boolean in order to enable or disable ** the use of covering indices for full table scans in the query optimizer. ** ^The default setting is determined ** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on" ** if that compile-time option is omitted. ** The ability to disable the use of covering indices for full table scans ** is because some incorrectly coded legacy applications might malfunction ** when the optimization is enabled. Providing the ability to ** disable the optimization allows the older, buggy application code to work ** without change even with newer versions of SQLite. |
︙ | ︙ | |||
1707 1708 1709 1710 1711 1712 1713 | ** <dt>SQLITE_CONFIG_MMAP_SIZE ** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values ** that are the default mmap size limit (the default setting for ** [PRAGMA mmap_size]) and the maximum allowed mmap size limit. ** ^The default setting can be overridden by each database connection using ** either the [PRAGMA mmap_size] command, or by using the ** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size | | | | | | > > > > > > > > > | 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 | ** <dt>SQLITE_CONFIG_MMAP_SIZE ** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values ** that are the default mmap size limit (the default setting for ** [PRAGMA mmap_size]) and the maximum allowed mmap size limit. ** ^The default setting can be overridden by each database connection using ** either the [PRAGMA mmap_size] command, or by using the ** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size ** will be silently truncated if necessary so that it does not exceed the ** compile-time maximum mmap size set by the ** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^ ** ^If either argument to this option is negative, then that argument is ** changed to its compile-time default. ** ** [[SQLITE_CONFIG_WIN32_HEAPSIZE]] ** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE ** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is ** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro defined. ** ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value ** that specifies the maximum size of the created heap. ** </dl> ** ** [[SQLITE_CONFIG_PCACHE_HDRSZ]] ** <dt>SQLITE_CONFIG_PCACHE_HDRSZ ** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which ** is a pointer to an integer and writes into that integer the number of extra ** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE]. The amount of ** extra space required can change depending on the compiler, ** target platform, and SQLite version. ** </dl> */ #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */ #define SQLITE_CONFIG_MULTITHREAD 2 /* nil */ #define SQLITE_CONFIG_SERIALIZED 3 /* nil */ #define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */ #define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */ #define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */ |
︙ | ︙ | |||
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 | #define SQLITE_CONFIG_URI 17 /* int */ #define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */ #define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ #define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */ #define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */ /* ** CAPI3REF: Database Connection Configuration Options ** ** These constants are the available integer configuration options that ** can be passed as the second argument to the [sqlite3_db_config()] interface. ** | > | 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 | #define SQLITE_CONFIG_URI 17 /* int */ #define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */ #define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */ #define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */ #define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */ #define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */ #define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */ /* ** CAPI3REF: Database Connection Configuration Options ** ** These constants are the available integer configuration options that ** can be passed as the second argument to the [sqlite3_db_config()] interface. ** |
︙ | ︙ | |||
1871 1872 1873 1874 1875 1876 1877 | ** last insert [rowid]. */ sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); /* ** CAPI3REF: Count The Number Of Rows Modified ** | | | | > > > | | | < < | | > > > | < < < < > > | > | < < < < < < < | > | < > | < | > > > > | | | | > | | < | < < | | > > | < > | < < | | | < < < | | 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 | ** last insert [rowid]. */ sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); /* ** CAPI3REF: Count The Number Of Rows Modified ** ** ^This function returns the number of rows modified, inserted or ** deleted by the most recently completed INSERT, UPDATE or DELETE ** statement on the database connection specified by the only parameter. ** ^Executing any other type of SQL statement does not modify the value ** returned by this function. ** ** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are ** considered - auxiliary changes caused by [CREATE TRIGGER | triggers], ** [foreign key actions] or [REPLACE] constraint resolution are not counted. ** ** Changes to a view that are intercepted by ** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value ** returned by sqlite3_changes() immediately after an INSERT, UPDATE or ** DELETE statement run on a view is always zero. Only changes made to real ** tables are counted. ** ** Things are more complicated if the sqlite3_changes() function is ** executed while a trigger program is running. This may happen if the ** program uses the [changes() SQL function], or if some other callback ** function invokes sqlite3_changes() directly. Essentially: ** ** <ul> ** <li> ^(Before entering a trigger program the value returned by ** sqlite3_changes() function is saved. After the trigger program ** has finished, the original value is restored.)^ ** ** <li> ^(Within a trigger program each INSERT, UPDATE and DELETE ** statement sets the value returned by sqlite3_changes() ** upon completion as normal. Of course, this value will not include ** any changes performed by sub-triggers, as the sqlite3_changes() ** value will be saved and restored after each sub-trigger has run.)^ ** </ul> ** ** ^This means that if the changes() SQL function (or similar) is used ** by the first INSERT, UPDATE or DELETE statement within a trigger, it ** returns the value as set when the calling statement began executing. ** ^If it is used by the second or subsequent such statement within a trigger ** program, the value returned reflects the number of rows modified by the ** previous INSERT, UPDATE or DELETE statement within the same trigger. ** ** See also the [sqlite3_total_changes()] interface, the ** [count_changes pragma], and the [changes() SQL function]. ** ** If a separate thread makes changes on the same database connection ** while [sqlite3_changes()] is running then the value returned ** is unpredictable and not meaningful. */ int sqlite3_changes(sqlite3*); /* ** CAPI3REF: Total Number Of Rows Modified ** ** ^This function returns the total number of rows inserted, modified or ** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed ** since the database connection was opened, including those executed as ** part of trigger programs. ^Executing any other type of SQL statement ** does not affect the value returned by sqlite3_total_changes(). ** ** ^Changes made as part of [foreign key actions] are included in the ** count, but those made as part of REPLACE constraint resolution are ** not. ^Changes to a view that are intercepted by INSTEAD OF triggers ** are not counted. ** ** See also the [sqlite3_changes()] interface, the ** [count_changes pragma], and the [total_changes() SQL function]. ** ** If a separate thread makes changes on the same database connection ** while [sqlite3_total_changes()] is running then the value ** returned is unpredictable and not meaningful. */ |
︙ | ︙ | |||
2416 2417 2418 2419 2420 2421 2422 | ** SQLite contains a high-quality pseudo-random number generator (PRNG) used to ** select random [ROWID | ROWIDs] when inserting new records into a table that ** already uses the largest possible [ROWID]. The PRNG is also used for ** the build-in random() and randomblob() SQL functions. This interface allows ** applications to access the same PRNG for other purposes. ** ** ^A call to this routine stores N bytes of randomness into buffer P. | | | > | | | | 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 | ** SQLite contains a high-quality pseudo-random number generator (PRNG) used to ** select random [ROWID | ROWIDs] when inserting new records into a table that ** already uses the largest possible [ROWID]. The PRNG is also used for ** the build-in random() and randomblob() SQL functions. This interface allows ** applications to access the same PRNG for other purposes. ** ** ^A call to this routine stores N bytes of randomness into buffer P. ** ^The P parameter can be a NULL pointer. ** ** ^If this routine has not been previously called or if the previous ** call had N less than one or a NULL pointer for P, then the PRNG is ** seeded using randomness obtained from the xRandomness method of ** the default [sqlite3_vfs] object. ** ^If the previous call to this routine had an N of 1 or more and a ** non-NULL P then the pseudo-randomness is generated ** internally and without recourse to the [sqlite3_vfs] xRandomness ** method. */ void sqlite3_randomness(int N, void *P); /* ** CAPI3REF: Compile-Time Authorization Callbacks |
︙ | ︙ | |||
4144 4145 4146 4147 4148 4149 4150 | /* ** CAPI3REF: Text Encodings ** ** These constant define integer codes that represent the various ** text encodings supported by SQLite. */ | | | | | 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 | /* ** CAPI3REF: Text Encodings ** ** These constant define integer codes that represent the various ** text encodings supported by SQLite. */ #define SQLITE_UTF8 1 /* IMP: R-37514-35566 */ #define SQLITE_UTF16LE 2 /* IMP: R-03371-37637 */ #define SQLITE_UTF16BE 3 /* IMP: R-51971-34154 */ #define SQLITE_UTF16 4 /* Use native byte order */ #define SQLITE_ANY 5 /* Deprecated */ #define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ /* ** CAPI3REF: Function Flags ** |
︙ | ︙ | |||
5636 5637 5638 5639 5640 5641 5642 5643 | ** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located ** in row iRow, column zColumn, table zTable in database zDb; ** in other words, the same BLOB that would be selected by: ** ** <pre> ** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow; ** </pre>)^ ** | < < < < < < | | | | | > > > > | | > > > > > | > > > > > > > > > > > > > > > | | < < < > < < < | | < | 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 | ** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located ** in row iRow, column zColumn, table zTable in database zDb; ** in other words, the same BLOB that would be selected by: ** ** <pre> ** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow; ** </pre>)^ ** ** ^(Parameter zDb is not the filename that contains the database, but ** rather the symbolic name of the database. For attached databases, this is ** the name that appears after the AS keyword in the [ATTACH] statement. ** For the main database file, the database name is "main". For TEMP ** tables, the database name is "temp".)^ ** ** ^If the flags parameter is non-zero, then the BLOB is opened for read ** and write access. ^If the flags parameter is zero, the BLOB is opened for ** read-only access. ** ** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored ** in *ppBlob. Otherwise an [error code] is returned and, unless the error ** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided ** the API is not misused, it is always safe to call [sqlite3_blob_close()] ** on *ppBlob after this function it returns. ** ** This function fails with SQLITE_ERROR if any of the following are true: ** <ul> ** <li> ^(Database zDb does not exist)^, ** <li> ^(Table zTable does not exist within database zDb)^, ** <li> ^(Table zTable is a WITHOUT ROWID table)^, ** <li> ^(Column zColumn does not exist)^, ** <li> ^(Row iRow is not present in the table)^, ** <li> ^(The specified column of row iRow contains a value that is not ** a TEXT or BLOB value)^, ** <li> ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE ** constraint and the blob is being opened for read/write access)^, ** <li> ^([foreign key constraints | Foreign key constraints] are enabled, ** column zColumn is part of a [child key] definition and the blob is ** being opened for read/write access)^. ** </ul> ** ** ^Unless it returns SQLITE_MISUSE, this function sets the ** [database connection] error code and message accessible via ** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. ** ** ** ^(If the row that a BLOB handle points to is modified by an ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects ** then the BLOB handle is marked as "expired". ** This is true if any column of the row is changed, even a column ** other than the one the BLOB handle is open on.)^ ** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for ** an expired BLOB handle fail with a return code of [SQLITE_ABORT]. ** ^(Changes written into a BLOB prior to the BLOB expiring are not ** rolled back by the expiration of the BLOB. Such changes will eventually ** commit if the transaction continues to completion.)^ ** ** ^Use the [sqlite3_blob_bytes()] interface to determine the size of ** the opened blob. ^The size of a blob may not be changed by this ** interface. Use the [UPDATE] SQL command to change the size of a ** blob. ** ** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces ** and the built-in [zeroblob] SQL function may be used to create a ** zero-filled blob to read or write using the incremental-blob interface. ** ** To avoid a resource leak, every open [BLOB handle] should eventually ** be released by a call to [sqlite3_blob_close()]. */ int sqlite3_blob_open( sqlite3*, const char *zDb, |
︙ | ︙ | |||
5722 5723 5724 5725 5726 5727 5728 | ** ^This function sets the database handle error code and message. */ SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); /* ** CAPI3REF: Close A BLOB Handle ** | | > > > > | > | < < < | < < | < < < < | | > > | 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 | ** ^This function sets the database handle error code and message. */ SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64); /* ** CAPI3REF: Close A BLOB Handle ** ** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed ** unconditionally. Even if this routine returns an error code, the ** handle is still closed.)^ ** ** ^If the blob handle being closed was opened for read-write access, and if ** the database is in auto-commit mode and there are no other open read-write ** blob handles or active write statements, the current transaction is ** committed. ^If an error occurs while committing the transaction, an error ** code is returned and the transaction rolled back. ** ** Calling this function with an argument that is not a NULL pointer or an ** open blob handle results in undefined behaviour. ^Calling this routine ** with a null pointer (such as would be returned by a failed call to ** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function ** is passed a valid open blob handle, the values returned by the ** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning. */ int sqlite3_blob_close(sqlite3_blob *); /* ** CAPI3REF: Return The Size Of An Open BLOB ** ** ^Returns the size in bytes of the BLOB accessible via the |
︙ | ︙ | |||
5789 5790 5791 5792 5793 5794 5795 | ** See also: [sqlite3_blob_write()]. */ int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); /* ** CAPI3REF: Write Data Into A BLOB Incrementally ** | | | | > > > > > > | | < | | > < < < | 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 | ** See also: [sqlite3_blob_write()]. */ int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); /* ** CAPI3REF: Write Data Into A BLOB Incrementally ** ** ^(This function is used to write data into an open [BLOB handle] from a ** caller-supplied buffer. N bytes of data are copied from the buffer Z ** into the open BLOB, starting at offset iOffset.)^ ** ** ^(On success, sqlite3_blob_write() returns SQLITE_OK. ** Otherwise, an [error code] or an [extended error code] is returned.)^ ** ^Unless SQLITE_MISUSE is returned, this function sets the ** [database connection] error code and message accessible via ** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. ** ** ^If the [BLOB handle] passed as the first argument was not opened for ** writing (the flags parameter to [sqlite3_blob_open()] was zero), ** this function returns [SQLITE_READONLY]. ** ** This function may only modify the contents of the BLOB; it is ** not possible to increase the size of a BLOB using this API. ** ^If offset iOffset is less than N bytes from the end of the BLOB, ** [SQLITE_ERROR] is returned and no data is written. The size of the ** BLOB (and hence the maximum value of N+iOffset) can be determined ** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less ** than zero [SQLITE_ERROR] is returned and no data is written. ** ** ^An attempt to write to an expired [BLOB handle] fails with an ** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred ** before the [BLOB handle] expired are not rolled back by the ** expiration of the handle, though of course those changes might ** have been overwritten by the statement that expired the BLOB handle ** or by other independent statements. ** ** This routine only works on a [BLOB handle] which has been created ** by a prior successful call to [sqlite3_blob_open()] and which has not ** been closed by [sqlite3_blob_close()]. Passing any other pointer in ** to this routine results in undefined and probably undesirable behavior. ** ** See also: [sqlite3_blob_read()]. */ |
︙ | ︙ | |||
5867 5868 5869 5870 5871 5872 5873 | ** The SQLite core uses these routines for thread ** synchronization. Though they are intended for internal ** use by SQLite, code that links against SQLite is ** permitted to use any of these routines. ** ** The SQLite source code contains multiple implementations ** of these mutex routines. An appropriate implementation | | | | | | | | | | | > | | | | | < < | | < | | | < < | | > | | < | | | 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 | ** The SQLite core uses these routines for thread ** synchronization. Though they are intended for internal ** use by SQLite, code that links against SQLite is ** permitted to use any of these routines. ** ** The SQLite source code contains multiple implementations ** of these mutex routines. An appropriate implementation ** is selected automatically at compile-time. The following ** implementations are available in the SQLite core: ** ** <ul> ** <li> SQLITE_MUTEX_PTHREADS ** <li> SQLITE_MUTEX_W32 ** <li> SQLITE_MUTEX_NOOP ** </ul> ** ** The SQLITE_MUTEX_NOOP implementation is a set of routines ** that does no real locking and is appropriate for use in ** a single-threaded application. The SQLITE_MUTEX_PTHREADS and ** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix ** and Windows. ** ** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor ** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex ** implementation is included with the library. In this case the ** application must supply a custom mutex implementation using the ** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function ** before calling sqlite3_initialize() or any other public sqlite3_ ** function that calls sqlite3_initialize(). ** ** ^The sqlite3_mutex_alloc() routine allocates a new ** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc() ** routine returns NULL if it is unable to allocate the requested ** mutex. The argument to sqlite3_mutex_alloc() must one of these ** integer constants: ** ** <ul> ** <li> SQLITE_MUTEX_FAST ** <li> SQLITE_MUTEX_RECURSIVE ** <li> SQLITE_MUTEX_STATIC_MASTER ** <li> SQLITE_MUTEX_STATIC_MEM ** <li> SQLITE_MUTEX_STATIC_OPEN ** <li> SQLITE_MUTEX_STATIC_PRNG ** <li> SQLITE_MUTEX_STATIC_LRU ** <li> SQLITE_MUTEX_STATIC_PMEM ** <li> SQLITE_MUTEX_STATIC_APP1 ** <li> SQLITE_MUTEX_STATIC_APP2 ** <li> SQLITE_MUTEX_STATIC_APP3 ** </ul> ** ** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) ** cause sqlite3_mutex_alloc() to create ** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. ** The mutex implementation does not need to make a distinction ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does ** not want to. SQLite will only request a recursive mutex in ** cases where it really needs one. If a faster non-recursive mutex ** implementation is available on the host platform, the mutex subsystem ** might return such a mutex in response to SQLITE_MUTEX_FAST. ** ** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other ** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return ** a pointer to a static preexisting mutex. ^Nine static mutexes are ** used by the current version of SQLite. Future versions of SQLite ** may add additional static mutexes. Static mutexes are for internal ** use by SQLite only. Applications that use SQLite mutexes should ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or ** SQLITE_MUTEX_RECURSIVE. ** ** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() ** returns a different mutex on every call. ^For the static ** mutex types, the same mutex is returned on every call that has ** the same type number. ** ** ^The sqlite3_mutex_free() routine deallocates a previously ** allocated dynamic mutex. Attempting to deallocate a static ** mutex results in undefined behavior. ** ** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt ** to enter a mutex. ^If another thread is already within the mutex, ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return ** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK] ** upon successful entry. ^(Mutexes created using ** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. ** In such cases, the ** mutex must be exited an equal number of times before another thread ** can enter.)^ If the same thread tries to enter any mutex other ** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined. ** ** ^(Some systems (for example, Windows 95) do not support the operation ** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() ** will always return SQLITE_BUSY. The SQLite core only ever uses ** sqlite3_mutex_try() as an optimization so this is acceptable ** behavior.)^ ** ** ^The sqlite3_mutex_leave() routine exits a mutex that was ** previously entered by the same thread. The behavior ** is undefined if the mutex is not currently entered by the ** calling thread or is not currently allocated. ** ** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or ** sqlite3_mutex_leave() is a NULL pointer, then all three routines ** behave as no-ops. ** ** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. */ sqlite3_mutex *sqlite3_mutex_alloc(int); void sqlite3_mutex_free(sqlite3_mutex*); void sqlite3_mutex_enter(sqlite3_mutex*); int sqlite3_mutex_try(sqlite3_mutex*); void sqlite3_mutex_leave(sqlite3_mutex*); /* ** CAPI3REF: Mutex Methods Object ** ** An instance of this structure defines the low-level routines ** used to allocate and use mutexes. ** ** Usually, the default mutex implementations provided by SQLite are ** sufficient, however the application has the option of substituting a custom ** implementation for specialized deployments or systems for which SQLite ** does not provide a suitable implementation. In this case, the application ** creates and populates an instance of this structure to pass ** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option. ** Additionally, an instance of this structure can be used as an ** output variable when querying the system for the current mutex ** implementation, using the [SQLITE_CONFIG_GETMUTEX] option. ** ** ^The xMutexInit method defined by this structure is invoked as |
︙ | ︙ | |||
6028 6029 6030 6031 6032 6033 6034 | ** above silently ignore any invocations that pass a NULL pointer instead ** of a valid mutex handle. The implementations of the methods defined ** by this structure are not required to handle this case, the results ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). ** | | | | | 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 | ** above silently ignore any invocations that pass a NULL pointer instead ** of a valid mutex handle. The implementations of the methods defined ** by this structure are not required to handle this case, the results ** of passing a NULL pointer instead of a valid mutex handle are undefined ** (i.e. it is acceptable to provide an implementation that segfaults if ** it is passed a NULL pointer). ** ** The xMutexInit() method must be threadsafe. It must be harmless to ** invoke xMutexInit() multiple times within the same process and without ** intervening calls to xMutexEnd(). Second and subsequent calls to ** xMutexInit() must be no-ops. ** ** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()] ** and its associates). Similarly, xMutexAlloc() must not use SQLite memory ** allocation for a static mutex. ^However xMutexAlloc() may use SQLite ** memory allocation for a fast or recursive mutex. ** ** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is ** called, but only if the prior call to xMutexInit returned SQLITE_OK. ** If xMutexInit fails in any way, it is expected to clean up after itself ** prior to returning. |
︙ | ︙ | |||
6060 6061 6062 6063 6064 6065 6066 | int (*xMutexNotheld)(sqlite3_mutex *); }; /* ** CAPI3REF: Mutex Verification Routines ** ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines | | | | | | | | | 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 | int (*xMutexNotheld)(sqlite3_mutex *); }; /* ** CAPI3REF: Mutex Verification Routines ** ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines ** are intended for use inside assert() statements. The SQLite core ** never uses these routines except inside an assert() and applications ** are advised to follow the lead of the core. The SQLite core only ** provides implementations for these routines when it is compiled ** with the SQLITE_DEBUG flag. External mutex implementations ** are only required to provide these routines if SQLITE_DEBUG is ** defined and if NDEBUG is not defined. ** ** These routines should return true if the mutex in their argument ** is held or not held, respectively, by the calling thread. ** ** The implementation is not required to provide versions of these ** routines that actually work. If the implementation does not provide working ** versions of these routines, it should at least provide stubs that always ** return true so that one does not get spurious assertion failures. ** ** If the argument to sqlite3_mutex_held() is a NULL pointer then ** the routine should return 1. This seems counter-intuitive since ** clearly the mutex cannot be held if it does not exist. But ** the reason the mutex does not exist is because the build is not ** using mutexes. And we do not want the assert() containing the ** call to sqlite3_mutex_held() to fail, so a non-zero return is ** the appropriate thing to do. The sqlite3_mutex_notheld() ** interface should also return 1 when given a NULL pointer. */ #ifndef NDEBUG int sqlite3_mutex_held(sqlite3_mutex*); int sqlite3_mutex_notheld(sqlite3_mutex*); #endif |
︙ | ︙ | |||
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 | ** an [ATTACH] statement for an attached database. ** ^The S and M arguments passed to ** sqlite3_backup_init(D,N,S,M) identify the [database connection] ** and database name of the source database, respectively. ** ^The source and destination [database connections] (parameters S and D) ** must be different or else sqlite3_backup_init(D,N,S,M) will fail with ** an error. ** ** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is ** returned and an error code and error message are stored in the ** destination [database connection] D. ** ^The error code and message for the failed call to sqlite3_backup_init() ** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or ** [sqlite3_errmsg16()] functions. | > > > > | 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 | ** an [ATTACH] statement for an attached database. ** ^The S and M arguments passed to ** sqlite3_backup_init(D,N,S,M) identify the [database connection] ** and database name of the source database, respectively. ** ^The source and destination [database connections] (parameters S and D) ** must be different or else sqlite3_backup_init(D,N,S,M) will fail with ** an error. ** ** ^A call to sqlite3_backup_init() will fail, returning SQLITE_ERROR, if ** there is already a read or read-write transaction open on the ** destination database. ** ** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is ** returned and an error code and error message are stored in the ** destination [database connection] D. ** ^The error code and message for the failed call to sqlite3_backup_init() ** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or ** [sqlite3_errmsg16()] functions. |
︙ | ︙ | |||
7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 | int bDelete, /* Zero for insert, non-zero for delete */ const char *zIndex, /* Index to write to */ sqlite3_stmt**, /* OUT: New statement handle */ const char ***pazColl, /* OUT: Collation sequences for each column */ int **paiCol, int *pnCol /* OUT: See above */ ); /* ** Incremental checkpoint API. ** ** An incremental checkpoint handle is opened using the sqlite3_ckpt_open() ** API. To begin a new checkpoint, the second and third arguments should both ** be passed zero. To resume an earlier checkpoint, the second and third ** arguments should specify a buffer returned by an earlier call to | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 | int bDelete, /* Zero for insert, non-zero for delete */ const char *zIndex, /* Index to write to */ sqlite3_stmt**, /* OUT: New statement handle */ const char ***pazColl, /* OUT: Collation sequences for each column */ int **paiCol, int *pnCol /* OUT: See above */ ); /* ** CAPI3REF: Prepared Statement Scan Status Opcodes ** KEYWORDS: {scanstatus options} ** ** The following constants can be used for the T parameter to the ** [sqlite3_stmt_scanstatus(S,X,T,V)] interface. Each constant designates a ** different metric for sqlite3_stmt_scanstatus() to return. ** ** <dl> ** [[SQLITE_SCANSTAT_NLOOP]] <dt>SQLITE_SCANSTAT_NLOOP</dt> ** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be set to the ** total number of times that the X-th loop has run.</dd> ** ** [[SQLITE_SCANSTAT_NVISIT]] <dt>SQLITE_SCANSTAT_NVISIT</dt> ** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be set to the ** total number of rows examined by all iterations of the X-th loop.</dd> ** ** [[SQLITE_SCANSTAT_EST]] <dt>SQLITE_SCANSTAT_EST</dt> ** <dd>^The "double" variable pointed to by the T parameter will be set to the ** query planner's estimate for the average number of rows output from each ** iteration of the X-th loop. If the query planner's estimates was accurate, ** then this value will approximate the quotient NVISIT/NLOOP and the ** product of this value for all prior loops with the same SELECTID will ** be the NLOOP value for the current loop. ** ** [[SQLITE_SCANSTAT_NAME]] <dt>SQLITE_SCANSTAT_NAME</dt> ** <dd>^The "const char *" variable pointed to by the T parameter will be set to ** a zero-terminated UTF-8 string containing the name of the index or table used ** for the X-th loop. ** ** [[SQLITE_SCANSTAT_EXPLAIN]] <dt>SQLITE_SCANSTAT_EXPLAIN</dt> ** <dd>^The "const char *" variable pointed to by the T parameter will be set to ** a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN] description ** for the X-th loop. ** ** [[SQLITE_SCANSTAT_SELECTID]] <dt>SQLITE_SCANSTAT_SELECT</dt> ** <dd>^The "int" variable pointed to by the T parameter will be set to the ** "select-id" for the X-th loop. The select-id identifies which query or ** subquery the loop is part of. The main query has a select-id of zero. ** The select-id is the same value as is output in the first column ** of an [EXPLAIN QUERY PLAN] query. ** </dl> */ #define SQLITE_SCANSTAT_NLOOP 0 #define SQLITE_SCANSTAT_NVISIT 1 #define SQLITE_SCANSTAT_EST 2 #define SQLITE_SCANSTAT_NAME 3 #define SQLITE_SCANSTAT_EXPLAIN 4 #define SQLITE_SCANSTAT_SELECTID 5 /* ** CAPI3REF: Prepared Statement Scan Status ** ** Return status data for a single loop within query pStmt. ** ** The "iScanStatusOp" parameter determines which status information to return. ** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior of ** this interface is undefined. ** ^The requested measurement is written into a variable pointed to by ** the "pOut" parameter. ** Parameter "idx" identifies the specific loop to retrieve statistics for. ** Loops are numbered starting from zero. ^If idx is out of range - less than ** zero or greater than or equal to the total number of loops used to implement ** the statement - a non-zero value is returned and the variable that pOut ** points to is unchanged. ** ** ^Statistics might not be available for all loops in all statements. ^In cases ** where there exist loops with no available statistics, this function behaves ** as if the loop did not exist - it returns non-zero and leave the variable ** that pOut points to unchanged. ** ** This API is only available if the library is built with pre-processor ** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined. ** ** See also: [sqlite3_stmt_scanstatus_reset()] */ SQLITE_EXPERIMENTAL int sqlite3_stmt_scanstatus( sqlite3_stmt *pStmt, /* Prepared statement for which info desired */ int idx, /* Index of loop to report on */ int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */ void *pOut /* Result written here */ ); /* ** CAPI3REF: Zero Scan-Status Counters ** ** ^Zero all [sqlite3_stmt_scanstatus()] related event counters. ** ** This API is only available if the library is built with pre-processor ** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined. */ SQLITE_EXPERIMENTAL void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*); /* ** Incremental checkpoint API. ** ** An incremental checkpoint handle is opened using the sqlite3_ckpt_open() ** API. To begin a new checkpoint, the second and third arguments should both ** be passed zero. To resume an earlier checkpoint, the second and third ** arguments should specify a buffer returned by an earlier call to |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
189 190 191 192 193 194 195 | ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. */ #ifndef SQLITE_POWERSAFE_OVERWRITE # define SQLITE_POWERSAFE_OVERWRITE 1 #endif /* | > | < | < | 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | ** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option. */ #ifndef SQLITE_POWERSAFE_OVERWRITE # define SQLITE_POWERSAFE_OVERWRITE 1 #endif /* ** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by ** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in ** which case memory allocation statistics are disabled by default. */ #if !defined(SQLITE_DEFAULT_MEMSTATUS) # define SQLITE_DEFAULT_MEMSTATUS 1 #endif /* ** Exactly one of the following macros must be defined in order to |
︙ | ︙ | |||
559 560 561 562 563 564 565 | /* ** Estimated quantities used for query planning are stored as 16-bit ** logarithms. For quantity X, the value stored is 10*log2(X). This ** gives a possible range of values of approximately 1.0e986 to 1e-986. ** But the allowed values are "grainy". Not every value is representable. ** For example, quantities 16 and 17 are both represented by a LogEst | | | 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 | /* ** Estimated quantities used for query planning are stored as 16-bit ** logarithms. For quantity X, the value stored is 10*log2(X). This ** gives a possible range of values of approximately 1.0e986 to 1e-986. ** But the allowed values are "grainy". Not every value is representable. ** For example, quantities 16 and 17 are both represented by a LogEst ** of 40. However, since LogEst quantities are suppose to be estimates, ** not exact values, this imprecision is not a problem. ** ** "LogEst" is short for "Logarithmic Estimate". ** ** Examples: ** 1 -> 0 20 -> 43 10000 -> 132 ** 2 -> 10 25 -> 46 25000 -> 146 |
︙ | ︙ | |||
1212 1213 1214 1215 1216 1217 1218 | /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ #define SQLITE_Transitive 0x0200 /* Transitive constraints */ #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ | | | 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 | /* not used 0x0010 // Was: SQLITE_IdxRealAsInt */ #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ #define SQLITE_Transitive 0x0200 /* Transitive constraints */ #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ #define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */ #define SQLITE_AllOpts 0xffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ #ifndef SQLITE_OMIT_BUILTIN_TEST #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) |
︙ | ︙ | |||
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 | u16 nColumn; /* Number of columns stored in the index */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ unsigned bUnordered:1; /* Use this index for == or IN queries only */ unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ unsigned isResized:1; /* True if resizeIndexObject() has been called */ unsigned isCovering:1; /* True if this is a covering index */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 int nSample; /* Number of elements in aSample[] */ int nSampleCol; /* Size of IndexSample.anEq[] and so on */ tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ IndexSample *aSample; /* Samples of the left-most key */ | > | > | 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 | u16 nColumn; /* Number of columns stored in the index */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ unsigned bUnordered:1; /* Use this index for == or IN queries only */ unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */ unsigned isResized:1; /* True if resizeIndexObject() has been called */ unsigned isCovering:1; /* True if this is a covering index */ unsigned noSkipScan:1; /* Do not try to use skip-scan if true */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 int nSample; /* Number of elements in aSample[] */ int nSampleCol; /* Size of IndexSample.anEq[] and so on */ tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */ IndexSample *aSample; /* Samples of the left-most key */ tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */ tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */ #endif }; /* ** Allowed values for Index.idxType */ #define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */ |
︙ | ︙ | |||
1997 1998 1999 2000 2001 2002 2003 | #if SQLITE_MAX_EXPR_DEPTH>0 int nHeight; /* Height of the tree headed by this node */ #endif int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number ** TK_TRIGGER: 1 -> new, 0 -> old | | | 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 | #if SQLITE_MAX_EXPR_DEPTH>0 int nHeight; /* Height of the tree headed by this node */ #endif int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number ** TK_TRIGGER: 1 -> new, 0 -> old ** EP_Unlikely: 134217728 times likelihood */ ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. ** TK_VARIABLE: variable number (always >= 1). */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ u8 op2; /* TK_REGISTER: original value of Expr.op ** TK_COLUMN: the value of p5 for OP_Column ** TK_AGG_FUNCTION: nesting depth */ |
︙ | ︙ | |||
2889 2890 2891 2892 2893 2894 2895 2896 2897 | */ struct Walker { int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ Parse *pParse; /* Parser context. */ int walkerDepth; /* Number of subqueries */ union { /* Extra data for callback */ NameContext *pNC; /* Naming context */ | > | > | 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 | */ struct Walker { int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */ Parse *pParse; /* Parser context. */ int walkerDepth; /* Number of subqueries */ u8 eCode; /* A small processing code */ union { /* Extra data for callback */ NameContext *pNC; /* Naming context */ int n; /* A counter */ int iCur; /* A cursor number */ SrcList *pSrcList; /* FROM clause */ struct SrcCount *pSrcCount; /* Counting column references */ } u; }; /* Forward declarations */ int sqlite3WalkExpr(Walker*, Expr*); |
︙ | ︙ | |||
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 | void sqlite3RollbackTransaction(Parse*); void sqlite3Savepoint(Parse*, int, Token*); void sqlite3CloseSavepoints(sqlite3 *); void sqlite3LeaveMutexAndCloseZombie(sqlite3*); int sqlite3ExprIsConstant(Expr*); int sqlite3ExprIsConstantNotJoin(Expr*); int sqlite3ExprIsConstantOrFunction(Expr*, u8); int sqlite3ExprIsInteger(Expr*, int*); int sqlite3ExprCanBeNull(const Expr*); int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); int sqlite3IsRowid(const char*); void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); | > | 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 | void sqlite3RollbackTransaction(Parse*); void sqlite3Savepoint(Parse*, int, Token*); void sqlite3CloseSavepoints(sqlite3 *); void sqlite3LeaveMutexAndCloseZombie(sqlite3*); int sqlite3ExprIsConstant(Expr*); int sqlite3ExprIsConstantNotJoin(Expr*); int sqlite3ExprIsConstantOrFunction(Expr*, u8); int sqlite3ExprIsTableConstant(Expr*,int); int sqlite3ExprIsInteger(Expr*, int*); int sqlite3ExprCanBeNull(const Expr*); int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); int sqlite3IsRowid(const char*); void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8); void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*); int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); |
︙ | ︙ | |||
3537 3538 3539 3540 3541 3542 3543 | ); int sqlite3ApiExit(sqlite3 *db, int); int sqlite3OpenTempDatabase(Parse *); void sqlite3StrAccumInit(StrAccum*, char*, int, int); void sqlite3StrAccumAppend(StrAccum*,const char*,int); void sqlite3StrAccumAppendAll(StrAccum*,const char*); | | | 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 | ); int sqlite3ApiExit(sqlite3 *db, int); int sqlite3OpenTempDatabase(Parse *); void sqlite3StrAccumInit(StrAccum*, char*, int, int); void sqlite3StrAccumAppend(StrAccum*,const char*,int); void sqlite3StrAccumAppendAll(StrAccum*,const char*); void sqlite3AppendChar(StrAccum*,int,char); char *sqlite3StrAccumFinish(StrAccum*); void sqlite3StrAccumReset(StrAccum*); void sqlite3SelectDestInit(SelectDest*,int,int); Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); void sqlite3BackupRestart(sqlite3_backup *); void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); |
︙ | ︙ |
Changes to src/status.c.
︙ | ︙ | |||
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | ** then this routine is not threadsafe. */ int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){ wsdStatInit; if( op<0 || op>=ArraySize(wsdStat.nowValue) ){ return SQLITE_MISUSE_BKPT; } *pCurrent = wsdStat.nowValue[op]; *pHighwater = wsdStat.mxValue[op]; if( resetFlag ){ wsdStat.mxValue[op] = wsdStat.nowValue[op]; } return SQLITE_OK; } /* ** Query status information for a single database connection */ int sqlite3_db_status( sqlite3 *db, /* The database connection whose status is desired */ int op, /* Status verb */ int *pCurrent, /* Write current value here */ int *pHighwater, /* Write high-water mark here */ int resetFlag /* Reset high-water mark if true */ ){ int rc = SQLITE_OK; /* Return code */ sqlite3_mutex_enter(db->mutex); switch( op ){ case SQLITE_DBSTATUS_LOOKASIDE_USED: { *pCurrent = db->lookaside.nOut; *pHighwater = db->lookaside.mxOut; if( resetFlag ){ db->lookaside.mxOut = db->lookaside.nOut; | > > > > > > > > | 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | ** then this routine is not threadsafe. */ int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){ wsdStatInit; if( op<0 || op>=ArraySize(wsdStat.nowValue) ){ return SQLITE_MISUSE_BKPT; } #ifdef SQLITE_ENABLE_API_ARMOR if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT; #endif *pCurrent = wsdStat.nowValue[op]; *pHighwater = wsdStat.mxValue[op]; if( resetFlag ){ wsdStat.mxValue[op] = wsdStat.nowValue[op]; } return SQLITE_OK; } /* ** Query status information for a single database connection */ int sqlite3_db_status( sqlite3 *db, /* The database connection whose status is desired */ int op, /* Status verb */ int *pCurrent, /* Write current value here */ int *pHighwater, /* Write high-water mark here */ int resetFlag /* Reset high-water mark if true */ ){ int rc = SQLITE_OK; /* Return code */ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || pCurrent==0|| pHighwater==0 ){ return SQLITE_MISUSE_BKPT; } #endif sqlite3_mutex_enter(db->mutex); switch( op ){ case SQLITE_DBSTATUS_LOOKASIDE_USED: { *pCurrent = db->lookaside.nOut; *pHighwater = db->lookaside.mxOut; if( resetFlag ){ db->lookaside.mxOut = db->lookaside.nOut; |
︙ | ︙ |
Changes to src/table.c.
︙ | ︙ | |||
122 123 124 125 126 127 128 129 130 131 132 133 134 135 | int *pnRow, /* Write the number of rows in the result here */ int *pnColumn, /* Write the number of columns of result here */ char **pzErrMsg /* Write error messages here */ ){ int rc; TabResult res; *pazResult = 0; if( pnColumn ) *pnColumn = 0; if( pnRow ) *pnRow = 0; if( pzErrMsg ) *pzErrMsg = 0; res.zErrMsg = 0; res.nRow = 0; res.nColumn = 0; | > > > | 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | int *pnRow, /* Write the number of rows in the result here */ int *pnColumn, /* Write the number of columns of result here */ char **pzErrMsg /* Write error messages here */ ){ int rc; TabResult res; #ifdef SQLITE_ENABLE_API_ARMOR if( pazResult==0 ) return SQLITE_MISUSE_BKPT; #endif *pazResult = 0; if( pnColumn ) *pnColumn = 0; if( pnRow ) *pnRow = 0; if( pzErrMsg ) *pzErrMsg = 0; res.zErrMsg = 0; res.nRow = 0; res.nColumn = 0; |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 | } pDb->bLegacyPrepare = bPrepare; Tcl_ResetResult(interp); return TCL_OK; } #endif /* ** Configure the interpreter passed as the first argument to have access ** to the commands and linked variables that make up: ** ** * the [sqlite3] extension itself, | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 | } pDb->bLegacyPrepare = bPrepare; Tcl_ResetResult(interp); return TCL_OK; } /* ** Tclcmd: db_last_stmt_ptr DB ** ** If the statement cache associated with database DB is not empty, ** return the text representation of the most recently used statement ** handle. */ static int db_last_stmt_ptr( ClientData cd, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ extern int sqlite3TestMakePointerStr(Tcl_Interp*, char*, void*); Tcl_CmdInfo cmdInfo; SqliteDb *pDb; sqlite3_stmt *pStmt = 0; char zBuf[100]; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB"); return TCL_ERROR; } if( !Tcl_GetCommandInfo(interp, Tcl_GetString(objv[1]), &cmdInfo) ){ Tcl_AppendResult(interp, "no such db: ", Tcl_GetString(objv[1]), (char*)0); return TCL_ERROR; } pDb = (SqliteDb*)cmdInfo.objClientData; if( pDb->stmtList ) pStmt = pDb->stmtList->pStmt; if( sqlite3TestMakePointerStr(interp, zBuf, pStmt) ){ return TCL_ERROR; } Tcl_SetResult(interp, zBuf, TCL_VOLATILE); return TCL_OK; } #endif /* ** Configure the interpreter passed as the first argument to have access ** to the commands and linked variables that make up: ** ** * the [sqlite3] extension itself, |
︙ | ︙ | |||
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 | extern int Sqlitetest5_Init(Tcl_Interp*); extern int Sqlitetest6_Init(Tcl_Interp*); extern int Sqlitetest7_Init(Tcl_Interp*); extern int Sqlitetest8_Init(Tcl_Interp*); extern int Sqlitetest9_Init(Tcl_Interp*); extern int Sqlitetestasync_Init(Tcl_Interp*); extern int Sqlitetest_autoext_Init(Tcl_Interp*); extern int Sqlitetest_demovfs_Init(Tcl_Interp *); extern int Sqlitetest_func_Init(Tcl_Interp*); extern int Sqlitetest_hexio_Init(Tcl_Interp*); extern int Sqlitetest_init_Init(Tcl_Interp*); extern int Sqlitetest_malloc_Init(Tcl_Interp*); extern int Sqlitetest_mutex_Init(Tcl_Interp*); extern int Sqlitetestschema_Init(Tcl_Interp*); | > | 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 | extern int Sqlitetest5_Init(Tcl_Interp*); extern int Sqlitetest6_Init(Tcl_Interp*); extern int Sqlitetest7_Init(Tcl_Interp*); extern int Sqlitetest8_Init(Tcl_Interp*); extern int Sqlitetest9_Init(Tcl_Interp*); extern int Sqlitetestasync_Init(Tcl_Interp*); extern int Sqlitetest_autoext_Init(Tcl_Interp*); extern int Sqlitetest_blob_Init(Tcl_Interp*); extern int Sqlitetest_demovfs_Init(Tcl_Interp *); extern int Sqlitetest_func_Init(Tcl_Interp*); extern int Sqlitetest_hexio_Init(Tcl_Interp*); extern int Sqlitetest_init_Init(Tcl_Interp*); extern int Sqlitetest_malloc_Init(Tcl_Interp*); extern int Sqlitetest_mutex_Init(Tcl_Interp*); extern int Sqlitetestschema_Init(Tcl_Interp*); |
︙ | ︙ | |||
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 | Sqlitetest5_Init(interp); Sqlitetest6_Init(interp); Sqlitetest7_Init(interp); Sqlitetest8_Init(interp); Sqlitetest9_Init(interp); Sqlitetestasync_Init(interp); Sqlitetest_autoext_Init(interp); Sqlitetest_demovfs_Init(interp); Sqlitetest_func_Init(interp); Sqlitetest_hexio_Init(interp); Sqlitetest_init_Init(interp); Sqlitetest_malloc_Init(interp); Sqlitetest_mutex_Init(interp); Sqlitetestschema_Init(interp); | > | 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 | Sqlitetest5_Init(interp); Sqlitetest6_Init(interp); Sqlitetest7_Init(interp); Sqlitetest8_Init(interp); Sqlitetest9_Init(interp); Sqlitetestasync_Init(interp); Sqlitetest_autoext_Init(interp); Sqlitetest_blob_Init(interp); Sqlitetest_demovfs_Init(interp); Sqlitetest_func_Init(interp); Sqlitetest_hexio_Init(interp); Sqlitetest_init_Init(interp); Sqlitetest_malloc_Init(interp); Sqlitetest_mutex_Init(interp); Sqlitetestschema_Init(interp); |
︙ | ︙ | |||
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 | Tcl_CreateObjCommand( interp, "load_testfixture_extensions", init_all_cmd, 0, 0 ); Tcl_CreateObjCommand( interp, "db_use_legacy_prepare", db_use_legacy_prepare_cmd, 0, 0 ); #ifdef SQLITE_SSE Sqlitetestsse_Init(interp); #endif } #endif } | > > > | 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 | Tcl_CreateObjCommand( interp, "load_testfixture_extensions", init_all_cmd, 0, 0 ); Tcl_CreateObjCommand( interp, "db_use_legacy_prepare", db_use_legacy_prepare_cmd, 0, 0 ); Tcl_CreateObjCommand( interp, "db_last_stmt_ptr", db_last_stmt_ptr, 0, 0 ); #ifdef SQLITE_SSE Sqlitetestsse_Init(interp); #endif } #endif } |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
1647 1648 1649 1650 1651 1652 1653 | instanceData = Tcl_GetChannelInstanceData(channel); *ppBlob = *((sqlite3_blob **)instanceData); } return TCL_OK; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 | instanceData = Tcl_GetChannelInstanceData(channel); *ppBlob = *((sqlite3_blob **)instanceData); } return TCL_OK; } static int test_blob_reopen( ClientData clientData, /* Not used */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ Tcl_WideInt iRowid; |
︙ | ︙ | |||
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 | if( Tcl_GetIntFromObj(interp, objv[2], &op) ) return TCL_ERROR; } if( Tcl_GetBooleanFromObj(interp, objv[3], &resetFlag) ) return TCL_ERROR; iValue = sqlite3_stmt_status(pStmt, op, resetFlag); Tcl_SetObjResult(interp, Tcl_NewIntObj(iValue)); return TCL_OK; } /* ** Usage: sqlite3_next_stmt DB STMT ** ** Return the next statment in sequence after STMT. */ static int test_next_stmt( | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 | if( Tcl_GetIntFromObj(interp, objv[2], &op) ) return TCL_ERROR; } if( Tcl_GetBooleanFromObj(interp, objv[3], &resetFlag) ) return TCL_ERROR; iValue = sqlite3_stmt_status(pStmt, op, resetFlag); Tcl_SetObjResult(interp, Tcl_NewIntObj(iValue)); return TCL_OK; } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Usage: sqlite3_stmt_scanstatus STMT IDX */ static int test_stmt_scanstatus( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ sqlite3_stmt *pStmt; /* First argument */ int idx; /* Second argument */ const char *zName; const char *zExplain; sqlite3_int64 nLoop; sqlite3_int64 nVisit; double rEst; int res; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "STMT IDX"); return TCL_ERROR; } if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR; if( Tcl_GetIntFromObj(interp, objv[2], &idx) ) return TCL_ERROR; res = sqlite3_stmt_scanstatus(pStmt, idx, SQLITE_SCANSTAT_NLOOP, (void*)&nLoop); if( res==0 ){ Tcl_Obj *pRet = Tcl_NewObj(); Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj("nLoop", -1)); Tcl_ListObjAppendElement(0, pRet, Tcl_NewWideIntObj(nLoop)); sqlite3_stmt_scanstatus(pStmt, idx, SQLITE_SCANSTAT_NVISIT, (void*)&nVisit); Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj("nVisit", -1)); Tcl_ListObjAppendElement(0, pRet, Tcl_NewWideIntObj(nVisit)); sqlite3_stmt_scanstatus(pStmt, idx, SQLITE_SCANSTAT_EST, (void*)&rEst); Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj("nEst", -1)); Tcl_ListObjAppendElement(0, pRet, Tcl_NewDoubleObj(rEst)); sqlite3_stmt_scanstatus(pStmt, idx, SQLITE_SCANSTAT_NAME, (void*)&zName); Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj("zName", -1)); Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zName, -1)); sqlite3_stmt_scanstatus(pStmt, idx, SQLITE_SCANSTAT_EXPLAIN, (void*)&zExplain); Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj("zExplain", -1)); Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zExplain, -1)); Tcl_SetObjResult(interp, pRet); }else{ Tcl_ResetResult(interp); } return TCL_OK; } /* ** Usage: sqlite3_stmt_scanstatus_reset STMT */ static int test_stmt_scanstatus_reset( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ sqlite3_stmt *pStmt; /* First argument */ if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "STMT"); return TCL_ERROR; } if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR; sqlite3_stmt_scanstatus_reset(pStmt); return TCL_OK; } #endif /* ** Usage: sqlite3_next_stmt DB STMT ** ** Return the next statment in sequence after STMT. */ static int test_next_stmt( |
︙ | ︙ | |||
6289 6290 6291 6292 6293 6294 6295 | { "factor-constants", SQLITE_FactorOutConst }, { "distinct-opt", SQLITE_DistinctOpt }, { "cover-idx-scan", SQLITE_CoverIdxScan }, { "order-by-idx-join", SQLITE_OrderByIdxJoin }, { "transitive", SQLITE_Transitive }, { "subquery-coroutine", SQLITE_SubqCoroutine }, { "omit-noop-join", SQLITE_OmitNoopJoin }, | | > | 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 | { "factor-constants", SQLITE_FactorOutConst }, { "distinct-opt", SQLITE_DistinctOpt }, { "cover-idx-scan", SQLITE_CoverIdxScan }, { "order-by-idx-join", SQLITE_OrderByIdxJoin }, { "transitive", SQLITE_Transitive }, { "subquery-coroutine", SQLITE_SubqCoroutine }, { "omit-noop-join", SQLITE_OmitNoopJoin }, { "stat3", SQLITE_Stat34 }, { "stat4", SQLITE_Stat34 }, }; if( objc!=4 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB OPT BOOLEAN"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
︙ | ︙ | |||
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 | void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ extern int sqlite3_amatch_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_closure_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_fileio_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_fuzzer_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_ieee_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_nextchar_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_percentile_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_regexp_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_spellfix_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_totype_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_wholenumber_init(sqlite3*,char**,const sqlite3_api_routines*); static const struct { const char *zExtName; int (*pInit)(sqlite3*,char**,const sqlite3_api_routines*); } aExtension[] = { { "amatch", sqlite3_amatch_init }, { "closure", sqlite3_closure_init }, { "fileio", sqlite3_fileio_init }, { "fuzzer", sqlite3_fuzzer_init }, { "ieee754", sqlite3_ieee_init }, { "nextchar", sqlite3_nextchar_init }, { "percentile", sqlite3_percentile_init }, { "regexp", sqlite3_regexp_init }, { "spellfix", sqlite3_spellfix_init }, | > > | 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 | void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ extern int sqlite3_amatch_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_closure_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_eval_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_fileio_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_fuzzer_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_ieee_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_nextchar_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_percentile_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_regexp_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_spellfix_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_totype_init(sqlite3*,char**,const sqlite3_api_routines*); extern int sqlite3_wholenumber_init(sqlite3*,char**,const sqlite3_api_routines*); static const struct { const char *zExtName; int (*pInit)(sqlite3*,char**,const sqlite3_api_routines*); } aExtension[] = { { "amatch", sqlite3_amatch_init }, { "closure", sqlite3_closure_init }, { "eval", sqlite3_eval_init }, { "fileio", sqlite3_fileio_init }, { "fuzzer", sqlite3_fuzzer_init }, { "ieee754", sqlite3_ieee_init }, { "nextchar", sqlite3_nextchar_init }, { "percentile", sqlite3_percentile_init }, { "regexp", sqlite3_regexp_init }, { "spellfix", sqlite3_spellfix_init }, |
︙ | ︙ | |||
6834 6835 6836 6837 6838 6839 6840 | { "sqlite3_shared_cache_report", sqlite3BtreeSharedCacheReport, 0}, #endif { "sqlite3_libversion_number", test_libversion_number, 0 }, #ifdef SQLITE_ENABLE_COLUMN_METADATA { "sqlite3_table_column_metadata", test_table_column_metadata, 0 }, #endif #ifndef SQLITE_OMIT_INCRBLOB | < < < < | 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 | { "sqlite3_shared_cache_report", sqlite3BtreeSharedCacheReport, 0}, #endif { "sqlite3_libversion_number", test_libversion_number, 0 }, #ifdef SQLITE_ENABLE_COLUMN_METADATA { "sqlite3_table_column_metadata", test_table_column_metadata, 0 }, #endif #ifndef SQLITE_OMIT_INCRBLOB { "sqlite3_blob_reopen", test_blob_reopen, 0 }, #endif { "pcache_stats", test_pcache_stats, 0 }, #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY { "sqlite3_unlock_notify", test_unlock_notify, 0 }, #endif { "sqlite3_wal_checkpoint", test_wal_checkpoint, 0 }, { "sqlite3_wal_checkpoint_v2",test_wal_checkpoint_v2, 0 }, |
︙ | ︙ | |||
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 | { "sorter_test_sort4_helper", sorter_test_sort4_helper }, #ifdef SQLITE_USER_AUTHENTICATION { "sqlite3_user_authenticate", test_user_authenticate, 0 }, { "sqlite3_user_add", test_user_add, 0 }, { "sqlite3_user_change", test_user_change, 0 }, { "sqlite3_user_delete", test_user_delete, 0 }, #endif }; static int bitmask_size = sizeof(Bitmask)*8; int i; extern int sqlite3_sync_count, sqlite3_fullsync_count; extern int sqlite3_opentemp_count; extern int sqlite3_like_count; | > > > > > | 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 | { "sorter_test_sort4_helper", sorter_test_sort4_helper }, #ifdef SQLITE_USER_AUTHENTICATION { "sqlite3_user_authenticate", test_user_authenticate, 0 }, { "sqlite3_user_add", test_user_add, 0 }, { "sqlite3_user_change", test_user_change, 0 }, { "sqlite3_user_delete", test_user_delete, 0 }, #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS { "sqlite3_stmt_scanstatus", test_stmt_scanstatus, 0 }, { "sqlite3_stmt_scanstatus_reset", test_stmt_scanstatus_reset, 0 }, #endif }; static int bitmask_size = sizeof(Bitmask)*8; int i; extern int sqlite3_sync_count, sqlite3_fullsync_count; extern int sqlite3_opentemp_count; extern int sqlite3_like_count; |
︙ | ︙ |
Added src/test_blob.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | /* ** 2014 October 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** */ #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> #include <assert.h> /* These functions are implemented in main.c. */ extern const char *sqlite3ErrName(int); /* From test1.c: */ extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); extern void *sqlite3TestTextToPtr(const char *z); /* ** Return a pointer to a buffer containing a text representation of the ** pointer passed as the only argument. The original pointer may be extracted ** from the text using sqlite3TestTextToPtr(). */ static char *ptrToText(void *p){ static char buf[100]; sqlite3_snprintf(sizeof(buf)-1, buf, "%p", p); return buf; } /* ** Attempt to extract a blob handle (type sqlite3_blob*) from the Tcl ** object passed as the second argument. If successful, set *ppBlob to ** point to the blob handle and return TCL_OK. Otherwise, store an error ** message in the tcl interpreter and return TCL_ERROR. The final value ** of *ppBlob is undefined in this case. ** ** If the object contains a string that begins with "incrblob_", then it ** is assumed to be the name of a Tcl channel opened using the [db incrblob] ** command (see tclsqlite.c). Otherwise, it is assumed to be a pointer ** encoded using the ptrToText() routine or similar. */ static int blobHandleFromObj( Tcl_Interp *interp, Tcl_Obj *pObj, sqlite3_blob **ppBlob ){ char *z; int n; z = Tcl_GetStringFromObj(pObj, &n); if( n==0 ){ *ppBlob = 0; }else if( n>9 && 0==memcmp("incrblob_", z, 9) ){ int notUsed; Tcl_Channel channel; ClientData instanceData; channel = Tcl_GetChannel(interp, z, ¬Used); if( !channel ) return TCL_ERROR; Tcl_Flush(channel); Tcl_Seek(channel, 0, SEEK_SET); instanceData = Tcl_GetChannelInstanceData(channel); *ppBlob = *((sqlite3_blob **)instanceData); }else{ *ppBlob = (sqlite3_blob*)sqlite3TestTextToPtr(z); } return TCL_OK; } /* ** Like Tcl_GetString(), except that if the string is 0 bytes in size, a ** NULL Pointer is returned. */ static char *blobStringFromObj(Tcl_Obj *pObj){ int n; char *z; z = Tcl_GetStringFromObj(pObj, &n); return (n ? z : 0); } /* ** sqlite3_blob_open DB DATABASE TABLE COLUMN ROWID FLAGS VARNAME ** ** Tcl test harness for the sqlite3_blob_open() function. */ static int test_blob_open( ClientData clientData, /* Not used */ Tcl_Interp *interp, /* Calling TCL interpreter */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3 *db; const char *zDb; const char *zTable; const char *zColumn; sqlite_int64 iRowid; int flags; const char *zVarname; int nVarname; sqlite3_blob *pBlob = (sqlite3_blob*)0xFFFFFFFF; int rc; if( objc!=8 ){ const char *zUsage = "DB DATABASE TABLE COLUMN ROWID FLAGS VARNAME"; Tcl_WrongNumArgs(interp, 1, objv, zUsage); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; zDb = Tcl_GetString(objv[2]); zTable = blobStringFromObj(objv[3]); zColumn = Tcl_GetString(objv[4]); if( Tcl_GetWideIntFromObj(interp, objv[5], &iRowid) ) return TCL_ERROR; if( Tcl_GetIntFromObj(interp, objv[6], &flags) ) return TCL_ERROR; zVarname = Tcl_GetStringFromObj(objv[7], &nVarname); if( nVarname>0 ){ rc = sqlite3_blob_open(db, zDb, zTable, zColumn, iRowid, flags, &pBlob); Tcl_SetVar(interp, zVarname, ptrToText(pBlob), 0); }else{ rc = sqlite3_blob_open(db, zDb, zTable, zColumn, iRowid, flags, 0); } if( rc==SQLITE_OK ){ Tcl_ResetResult(interp); }else{ Tcl_SetResult(interp, (char*)sqlite3ErrName(rc), TCL_VOLATILE); return TCL_ERROR; } return TCL_OK; } /* ** sqlite3_blob_close HANDLE */ static int test_blob_close( ClientData clientData, /* Not used */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3_blob *pBlob; int rc; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE"); return TCL_ERROR; } if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR; rc = sqlite3_blob_close(pBlob); if( rc ){ Tcl_SetResult(interp, (char*)sqlite3ErrName(rc), TCL_VOLATILE); }else{ Tcl_ResetResult(interp); } return TCL_OK; } /* ** sqlite3_blob_bytes HANDLE */ static int test_blob_bytes( ClientData clientData, /* Not used */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3_blob *pBlob; int nByte; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE"); return TCL_ERROR; } if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR; nByte = sqlite3_blob_bytes(pBlob); Tcl_SetObjResult(interp, Tcl_NewIntObj(nByte)); return TCL_OK; } /* ** sqlite3_blob_read CHANNEL OFFSET N ** ** This command is used to test the sqlite3_blob_read() in ways that ** the Tcl channel interface does not. The first argument should ** be the name of a valid channel created by the [incrblob] method ** of a database handle. This function calls sqlite3_blob_read() ** to read N bytes from offset OFFSET from the underlying SQLite ** blob handle. ** ** On success, a byte-array object containing the read data is ** returned. On failure, the interpreter result is set to the ** text representation of the returned error code (i.e. "SQLITE_NOMEM") ** and a Tcl exception is thrown. */ static int test_blob_read( ClientData clientData, /* Not used */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3_blob *pBlob; int nByte; int iOffset; unsigned char *zBuf = 0; int rc; if( objc!=4 ){ Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL OFFSET N"); return TCL_ERROR; } if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR; if( TCL_OK!=Tcl_GetIntFromObj(interp, objv[2], &iOffset) || TCL_OK!=Tcl_GetIntFromObj(interp, objv[3], &nByte) ){ return TCL_ERROR; } if( nByte>0 ){ zBuf = (unsigned char *)Tcl_Alloc(nByte); } rc = sqlite3_blob_read(pBlob, zBuf, nByte, iOffset); if( rc==SQLITE_OK ){ Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(zBuf, nByte)); }else{ Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_VOLATILE); } Tcl_Free((char *)zBuf); return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR); } /* ** sqlite3_blob_write HANDLE OFFSET DATA ?NDATA? ** ** This command is used to test the sqlite3_blob_write() in ways that ** the Tcl channel interface does not. The first argument should ** be the name of a valid channel created by the [incrblob] method ** of a database handle. This function calls sqlite3_blob_write() ** to write the DATA byte-array to the underlying SQLite blob handle. ** at offset OFFSET. ** ** On success, an empty string is returned. On failure, the interpreter ** result is set to the text representation of the returned error code ** (i.e. "SQLITE_NOMEM") and a Tcl exception is thrown. */ static int test_blob_write( ClientData clientData, /* Not used */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3_blob *pBlob; int iOffset; int rc; unsigned char *zBuf; int nBuf; if( objc!=4 && objc!=5 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE OFFSET DATA ?NDATA?"); return TCL_ERROR; } if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR; if( TCL_OK!=Tcl_GetIntFromObj(interp, objv[2], &iOffset) ){ return TCL_ERROR; } zBuf = Tcl_GetByteArrayFromObj(objv[3], &nBuf); if( objc==5 && Tcl_GetIntFromObj(interp, objv[4], &nBuf) ){ return TCL_ERROR; } rc = sqlite3_blob_write(pBlob, zBuf, nBuf, iOffset); if( rc!=SQLITE_OK ){ Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_VOLATILE); } return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR); } /* ** Register commands with the TCL interpreter. */ int Sqlitetest_blob_Init(Tcl_Interp *interp){ static struct { char *zName; Tcl_ObjCmdProc *xProc; } aObjCmd[] = { { "sqlite3_blob_open", test_blob_open }, { "sqlite3_blob_close", test_blob_close }, { "sqlite3_blob_bytes", test_blob_bytes }, { "sqlite3_blob_read", test_blob_read }, { "sqlite3_blob_write", test_blob_write }, }; int i; for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0); } return TCL_OK; } |
Changes to src/test_config.c.
︙ | ︙ | |||
150 151 152 153 154 155 156 157 158 159 160 161 162 163 | #endif #ifdef SQLITE_OMIT_ANALYZE Tcl_SetVar2(interp, "sqlite_options", "analyze", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "analyze", "1", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_ENABLE_ATOMIC_WRITE Tcl_SetVar2(interp, "sqlite_options", "atomicwrite", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "atomicwrite", "0", TCL_GLOBAL_ONLY); #endif | > > > > > > | 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | #endif #ifdef SQLITE_OMIT_ANALYZE Tcl_SetVar2(interp, "sqlite_options", "analyze", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "analyze", "1", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_ENABLE_API_ARMOR Tcl_SetVar2(interp, "sqlite_options", "api_armor", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "api_armor", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_ENABLE_ATOMIC_WRITE Tcl_SetVar2(interp, "sqlite_options", "atomicwrite", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "atomicwrite", "0", TCL_GLOBAL_ONLY); #endif |
︙ | ︙ | |||
479 480 481 482 483 484 485 486 487 488 489 490 491 492 | Tcl_SetVar2(interp, "sqlite_options", "stat4", "0", TCL_GLOBAL_ONLY); #endif #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) Tcl_SetVar2(interp, "sqlite_options", "stat3", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "stat3", "0", TCL_GLOBAL_ONLY); #endif #if !defined(SQLITE_ENABLE_LOCKING_STYLE) # if defined(__APPLE__) # define SQLITE_ENABLE_LOCKING_STYLE 1 # else # define SQLITE_ENABLE_LOCKING_STYLE 0 # endif | > > > > > > | 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 | Tcl_SetVar2(interp, "sqlite_options", "stat4", "0", TCL_GLOBAL_ONLY); #endif #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) Tcl_SetVar2(interp, "sqlite_options", "stat3", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "stat3", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS Tcl_SetVar2(interp, "sqlite_options", "scanstatus", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "scanstatus", "0", TCL_GLOBAL_ONLY); #endif #if !defined(SQLITE_ENABLE_LOCKING_STYLE) # if defined(__APPLE__) # define SQLITE_ENABLE_LOCKING_STYLE 1 # else # define SQLITE_ENABLE_LOCKING_STYLE 0 # endif |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
427 428 429 430 431 432 433 | } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, iBaseCur, aToOpen, 0, 0); } /* Top of the update loop */ if( okOnePass ){ | | | | 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, iBaseCur, aToOpen, 0, 0); } /* Top of the update loop */ if( okOnePass ){ if( aToOpen[iDataCur-iBaseCur] && !isView ){ assert( pPk ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey); VdbeCoverageNeverTaken(v); } labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); VdbeCoverageIf(v, pPk==0); VdbeCoverageIf(v, pPk!=0); |
︙ | ︙ |
Changes to src/util.c.
︙ | ︙ | |||
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | ** sqlite3_strnicmp() APIs allow applications and extensions to compare ** the contents of two buffers containing UTF-8 strings in a ** case-independent fashion, using the same definition of "case ** independence" that SQLite uses internally when comparing identifiers. */ int sqlite3_stricmp(const char *zLeft, const char *zRight){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return UpperToLower[*a] - UpperToLower[*b]; } int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; } /* | > > > > > > > > > > | 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | ** sqlite3_strnicmp() APIs allow applications and extensions to compare ** the contents of two buffers containing UTF-8 strings in a ** case-independent fashion, using the same definition of "case ** independence" that SQLite uses internally when comparing identifiers. */ int sqlite3_stricmp(const char *zLeft, const char *zRight){ register unsigned char *a, *b; if( zLeft==0 ){ return zRight ? -1 : 0; }else if( zRight==0 ){ return 1; } a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return UpperToLower[*a] - UpperToLower[*b]; } int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ register unsigned char *a, *b; if( zLeft==0 ){ return zRight ? -1 : 0; }else if( zRight==0 ){ return 1; } a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; } /* |
︙ | ︙ |
Changes to src/vacuum.c.
︙ | ︙ | |||
90 91 92 93 94 95 96 | ** original database is required. Every page of the database is written ** approximately 3 times: Once for step (2) and twice for step (3). ** Two writes per page are required in step (3) because the original ** database content must be written into the rollback journal prior to ** overwriting the database with the vacuumed content. ** ** Only 1x temporary space and only 1x writes would be required if | | | 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | ** original database is required. Every page of the database is written ** approximately 3 times: Once for step (2) and twice for step (3). ** Two writes per page are required in step (3) because the original ** database content must be written into the rollback journal prior to ** overwriting the database with the vacuumed content. ** ** Only 1x temporary space and only 1x writes would be required if ** the copy of step (3) were replaced by deleting the original database ** and renaming the transient database as the original. But that will ** not work if other processes are attached to the original database. ** And a power loss in between deleting the original and renaming the ** transient would cause the database file to appear to be deleted ** following reboot. */ void sqlite3Vacuum(Parse *pParse){ |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
604 605 606 607 608 609 610 611 612 613 614 615 616 617 | assert( pc>=0 && pc<p->nOp ); if( db->mallocFailed ) goto no_mem; #ifdef VDBE_PROFILE start = sqlite3Hwtime(); #endif nVmStep++; pOp = &aOp[pc]; /* Only allow tracing if SQLITE_DEBUG is defined. */ #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ sqlite3VdbePrintOp(stdout, pc, pOp); } | > > > | 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 | assert( pc>=0 && pc<p->nOp ); if( db->mallocFailed ) goto no_mem; #ifdef VDBE_PROFILE start = sqlite3Hwtime(); #endif nVmStep++; pOp = &aOp[pc]; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS if( p->anExec ) p->anExec[pc]++; #endif /* Only allow tracing if SQLITE_DEBUG is defined. */ #ifdef SQLITE_DEBUG if( db->flags & SQLITE_VdbeTrace ){ sqlite3VdbePrintOp(stdout, pc, pOp); } |
︙ | ︙ | |||
2294 2295 2296 2297 2298 2299 2300 | assert( pC->pseudoTableReg>0 ); pReg = &aMem[pC->pseudoTableReg]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); pC->payloadSize = pC->szRow = avail = pReg->n; pC->aRow = (u8*)pReg->z; }else{ | | | 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 | assert( pC->pseudoTableReg>0 ); pReg = &aMem[pC->pseudoTableReg]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); pC->payloadSize = pC->szRow = avail = pReg->n; pC->aRow = (u8*)pReg->z; }else{ sqlite3VdbeMemSetNull(pDest); goto op_column_out; } }else{ assert( pCrsr ); if( pC->isTable==0 ){ assert( sqlite3BtreeCursorIsValid(pCrsr) ); VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); |
︙ | ︙ | |||
2437 2438 2439 2440 2441 2442 2443 | ** still not up to p2, that means that the record has fewer than p2 ** columns. So the result will be either the default value or a NULL. */ if( pC->nHdrParsed<=p2 ){ if( pOp->p4type==P4_MEM ){ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); }else{ | | | 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 | ** still not up to p2, that means that the record has fewer than p2 ** columns. So the result will be either the default value or a NULL. */ if( pC->nHdrParsed<=p2 ){ if( pOp->p4type==P4_MEM ){ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); }else{ sqlite3VdbeMemSetNull(pDest); } goto op_column_out; } } /* Extract the content for the p2+1-th column. Control can only ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are |
︙ | ︙ | |||
2629 2630 2631 2632 2633 2634 2635 | } nData += len; testcase( serial_type==127 ); testcase( serial_type==128 ); nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); }while( (--pRec)>=pData0 ); | > > | > | 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 | } nData += len; testcase( serial_type==127 ); testcase( serial_type==128 ); nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); }while( (--pRec)>=pData0 ); /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint ** which determines the total number of bytes in the header. The varint ** value is the size of the header in bytes including the size varint ** itself. */ testcase( nHdr==126 ); testcase( nHdr==127 ); if( nHdr<=126 ){ /* The common case */ nHdr += 1; }else{ /* Rare case of a really large header */ |
︙ | ︙ | |||
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 | /* Write the record */ i = putVarint32(zNewRecord, nHdr); j = nHdr; assert( pData0<=pLast ); pRec = pData0; do{ serial_type = pRec->uTemp; i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ }while( (++pRec)<=pLast ); assert( i==nHdr ); assert( j==nByte ); assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); pOut->n = (int)nByte; | > > > > | 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 | /* Write the record */ i = putVarint32(zNewRecord, nHdr); j = nHdr; assert( pData0<=pLast ); pRec = pData0; do{ serial_type = pRec->uTemp; /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more ** additional varints, one per column. */ i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ /* EVIDENCE-OF: R-64536-51728 The values for each column in the record ** immediately follow the header. */ j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ }while( (++pRec)<=pLast ); assert( i==nHdr ); assert( j==nByte ); assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); pOut->n = (int)nByte; |
︙ | ︙ | |||
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 | db->autoCommit = 0; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } db->isTransactionSavepoint = 0; rc = p->rc; }else{ iSavepoint = db->nSavepoint - iSavepoint - 1; if( p1==SAVEPOINT_ROLLBACK ){ for(ii=0; ii<db->nDb; ii++){ | > > | > > > > > | | 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 | db->autoCommit = 0; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } db->isTransactionSavepoint = 0; rc = p->rc; }else{ int isSchemaChange; iSavepoint = db->nSavepoint - iSavepoint - 1; if( p1==SAVEPOINT_ROLLBACK ){ isSchemaChange = (db->flags & SQLITE_InternChanges)!=0; for(ii=0; ii<db->nDb; ii++){ rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT_ROLLBACK, isSchemaChange==0); if( rc!=SQLITE_OK ) goto abort_due_to_error; } }else{ isSchemaChange = 0; } for(ii=0; ii<db->nDb; ii++){ rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } } if( isSchemaChange ){ sqlite3ExpirePreparedStatements(db); sqlite3ResetAllSchemasOfConnection(db); db->flags = (db->flags | SQLITE_InternChanges); } } /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all |
︙ | ︙ | |||
3227 3228 3229 3230 3231 3232 3233 | assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); assert( p->bIsReader ); assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx || p->readOnly==0 ); if( p->expired ){ | | | 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 | assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); assert( p->bIsReader ); assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx || p->readOnly==0 ); if( p->expired ){ rc = SQLITE_ABORT_ROLLBACK; break; } nField = 0; pKeyInfo = 0; p2 = pOp->p2; iDb = pOp->p3; |
︙ | ︙ | |||
3791 3792 3793 3794 3795 3796 3797 | if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); #endif } pIdxKey = &r; }else{ pIdxKey = sqlite3VdbeAllocUnpackedRecord( pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree | | | | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 | if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); #endif } pIdxKey = &r; }else{ pIdxKey = sqlite3VdbeAllocUnpackedRecord( pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree ); if( pIdxKey==0 ) goto no_mem; assert( pIn3->flags & MEM_Blob ); ExpandBlob(pIn3); sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); } pIdxKey->default_rc = 0; if( pOp->opcode==OP_NoConflict ){ /* For the OP_NoConflict opcode, take the jump if any of the ** input fields are NULL, since any key with a NULL will not ** conflict */ |
︙ | ︙ | |||
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 | rc = pModule->xRowid(pC->pVtabCursor, &v); sqlite3VtabImportErrmsg(p, pVtab); #endif /* SQLITE_OMIT_VIRTUALTABLE */ }else{ assert( pC->pCursor!=0 ); rc = sqlite3VdbeCursorRestore(pC); if( rc ) goto abort_due_to_error; rc = sqlite3BtreeKeySize(pC->pCursor, &v); assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ } pOut->u.i = v; break; } | > > > > | 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 | rc = pModule->xRowid(pC->pVtabCursor, &v); sqlite3VtabImportErrmsg(p, pVtab); #endif /* SQLITE_OMIT_VIRTUALTABLE */ }else{ assert( pC->pCursor!=0 ); rc = sqlite3VdbeCursorRestore(pC); if( rc ) goto abort_due_to_error; if( pC->nullRow ){ pOut->flags = MEM_Null; break; } rc = sqlite3BtreeKeySize(pC->pCursor, &v); assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ } pOut->u.i = v; break; } |
︙ | ︙ | |||
4484 4485 4486 4487 4488 4489 4490 | p->aCounter[SQLITE_STMTSTATUS_SORT]++; /* Fall through into OP_Rewind */ } /* Opcode: Rewind P1 P2 * * * ** ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. | | | | | 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 | p->aCounter[SQLITE_STMTSTATUS_SORT]++; /* Fall through into OP_Rewind */ } /* Opcode: Rewind P1 P2 * * * ** ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty, jump immediately to P2. ** If the table or index is not empty, fall through to the following ** instruction. ** ** This opcode leaves the cursor configured to move in forward order, ** from the beginning toward the end. In other words, the cursor is ** configured to use Next, not Prev. */ case OP_Rewind: { /* jump */ VdbeCursor *pC; |
︙ | ︙ | |||
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 | pFrame->apCsr = p->apCsr; pFrame->nCursor = p->nCursor; pFrame->aOp = p->aOp; pFrame->nOp = p->nOp; pFrame->token = pProgram->token; pFrame->aOnceFlag = p->aOnceFlag; pFrame->nOnceFlag = p->nOnceFlag; pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ pMem->flags = MEM_Undefined; pMem->db = db; } }else{ pFrame = pRt->u.pFrame; assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); assert( pProgram->nCsr==pFrame->nChildCsr ); assert( pc==pFrame->pc ); } p->nFrame++; pFrame->pParent = p->pFrame; pFrame->lastRowid = lastRowid; pFrame->nChange = p->nChange; p->nChange = 0; p->pFrame = pFrame; p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; p->nMem = pFrame->nChildMem; p->nCursor = (u16)pFrame->nChildCsr; p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; p->aOp = aOp = pProgram->aOp; p->nOp = pProgram->nOp; p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; p->nOnceFlag = pProgram->nOnce; pc = -1; memset(p->aOnceFlag, 0, p->nOnceFlag); break; } /* Opcode: Param P1 P2 * * * | > > > > > > > | 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 | pFrame->apCsr = p->apCsr; pFrame->nCursor = p->nCursor; pFrame->aOp = p->aOp; pFrame->nOp = p->nOp; pFrame->token = pProgram->token; pFrame->aOnceFlag = p->aOnceFlag; pFrame->nOnceFlag = p->nOnceFlag; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pFrame->anExec = p->anExec; #endif pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ pMem->flags = MEM_Undefined; pMem->db = db; } }else{ pFrame = pRt->u.pFrame; assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); assert( pProgram->nCsr==pFrame->nChildCsr ); assert( pc==pFrame->pc ); } p->nFrame++; pFrame->pParent = p->pFrame; pFrame->lastRowid = lastRowid; pFrame->nChange = p->nChange; pFrame->nDbChange = p->db->nChange; p->nChange = 0; p->pFrame = pFrame; p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; p->nMem = pFrame->nChildMem; p->nCursor = (u16)pFrame->nChildCsr; p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; p->aOp = aOp = pProgram->aOp; p->nOp = pProgram->nOp; p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; p->nOnceFlag = pProgram->nOnce; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS p->anExec = 0; #endif pc = -1; memset(p->aOnceFlag, 0, p->nOnceFlag); break; } /* Opcode: Param P1 P2 * * * |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
277 278 279 280 281 282 283 284 285 | #else # define VdbeCoverage(v) # define VdbeCoverageIf(v,x) # define VdbeCoverageAlwaysTaken(v) # define VdbeCoverageNeverTaken(v) # define VDBE_OFFSET_LINENO(x) 0 #endif #endif | > > > > > > | 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | #else # define VdbeCoverage(v) # define VdbeCoverageIf(v,x) # define VdbeCoverageAlwaysTaken(v) # define VdbeCoverageNeverTaken(v) # define VDBE_OFFSET_LINENO(x) 0 #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS void sqlite3VdbeScanStatus(Vdbe*, int, int, int, LogEst, const char*); #else # define sqlite3VdbeScanStatus(a,b,c,d,e) #endif #endif |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | ** set to NULL if the currently executing frame is the main program. */ typedef struct VdbeFrame VdbeFrame; struct VdbeFrame { Vdbe *v; /* VM this frame belongs to */ VdbeFrame *pParent; /* Parent of this frame, or NULL if parent is main */ Op *aOp; /* Program instructions for parent frame */ Mem *aMem; /* Array of memory cells for parent frame */ u8 *aOnceFlag; /* Array of OP_Once flags for parent frame */ VdbeCursor **apCsr; /* Array of Vdbe cursors for parent frame */ void *token; /* Copy of SubProgram.token */ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */ int nCursor; /* Number of entries in apCsr */ int pc; /* Program Counter in parent (calling) frame */ int nOp; /* Size of aOp array */ int nMem; /* Number of entries in aMem */ int nOnceFlag; /* Number of entries in aOnceFlag */ int nChildMem; /* Number of memory cells for child frame */ int nChildCsr; /* Number of cursors for child frame */ | > | > | 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | ** set to NULL if the currently executing frame is the main program. */ typedef struct VdbeFrame VdbeFrame; struct VdbeFrame { Vdbe *v; /* VM this frame belongs to */ VdbeFrame *pParent; /* Parent of this frame, or NULL if parent is main */ Op *aOp; /* Program instructions for parent frame */ i64 *anExec; /* Event counters from parent frame */ Mem *aMem; /* Array of memory cells for parent frame */ u8 *aOnceFlag; /* Array of OP_Once flags for parent frame */ VdbeCursor **apCsr; /* Array of Vdbe cursors for parent frame */ void *token; /* Copy of SubProgram.token */ i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */ int nCursor; /* Number of entries in apCsr */ int pc; /* Program Counter in parent (calling) frame */ int nOp; /* Size of aOp array */ int nMem; /* Number of entries in aMem */ int nOnceFlag; /* Number of entries in aOnceFlag */ int nChildMem; /* Number of memory cells for child frame */ int nChildCsr; /* Number of cursors for child frame */ int nChange; /* Statement changes (Vdbe.nChange) */ int nDbChange; /* Value of db->nChange */ }; #define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))]) /* ** A value for VdbeCursor.cacheValid that means the cache is always invalid. */ |
︙ | ︙ | |||
291 292 293 294 295 296 297 298 299 300 301 302 303 304 | }; /* A bitfield type for use inside of structures. Always follow with :N where ** N is the number of bits. */ typedef unsigned bft; /* Bit Field Type */ /* ** An instance of the virtual machine. This structure contains the complete ** state of the virtual machine. ** ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare() ** is really a pointer to an instance of this structure. ** | > > > > > > > > > > | 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | }; /* A bitfield type for use inside of structures. Always follow with :N where ** N is the number of bits. */ typedef unsigned bft; /* Bit Field Type */ typedef struct ScanStatus ScanStatus; struct ScanStatus { int addrExplain; /* OP_Explain for loop */ int addrLoop; /* Address of "loops" counter */ int addrVisit; /* Address of "rows visited" counter */ int iSelectID; /* The "Select-ID" for this loop */ LogEst nEst; /* Estimated output rows per loop */ char *zName; /* Name of table or index */ }; /* ** An instance of the virtual machine. This structure contains the complete ** state of the virtual machine. ** ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare() ** is really a pointer to an instance of this structure. ** |
︙ | ︙ | |||
363 364 365 366 367 368 369 370 371 372 373 374 375 376 | VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ int nOnceFlag; /* Size of array aOnceFlag[] */ u8 *aOnceFlag; /* Flags for OP_Once */ AuxData *pAuxData; /* Linked list of auxdata allocations */ }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ | > > > > > | 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 | VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ int nOnceFlag; /* Size of array aOnceFlag[] */ u8 *aOnceFlag; /* Flags for OP_Once */ AuxData *pAuxData; /* Linked list of auxdata allocations */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS i64 *anExec; /* Number of times each op has been executed */ int nScan; /* Entries in aScan[] */ ScanStatus *aScan; /* Scan definitions for sqlite3_stmt_scanstatus() */ #endif }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
962 963 964 965 966 967 968 | */ static const void *columnName( sqlite3_stmt *pStmt, int N, const void *(*xFunc)(Mem*), int useType ){ | | | | > > > > | > > > > | 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 | */ static const void *columnName( sqlite3_stmt *pStmt, int N, const void *(*xFunc)(Mem*), int useType ){ const void *ret; Vdbe *p; int n; sqlite3 *db; #ifdef SQLITE_ENABLE_API_ARMOR if( pStmt==0 ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif ret = 0; p = (Vdbe *)pStmt; db = p->db; assert( db!=0 ); n = sqlite3_column_count(pStmt); if( N<n && N>=0 ){ N += useType*n; sqlite3_mutex_enter(db->mutex); assert( db->mallocFailed==0 ); ret = xFunc(&p->aColName[N]); |
︙ | ︙ | |||
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 | ** Return a pointer to the next prepared statement after pStmt associated ** with database connection pDb. If pStmt is NULL, return the first ** prepared statement for the database connection. Return NULL if there ** are no more. */ sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ sqlite3_stmt *pNext; sqlite3_mutex_enter(pDb->mutex); if( pStmt==0 ){ pNext = (sqlite3_stmt*)pDb->pVdbe; }else{ pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; } sqlite3_mutex_leave(pDb->mutex); return pNext; } /* ** Return the value of a status counter for a prepared statement */ int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ Vdbe *pVdbe = (Vdbe*)pStmt; | > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 | ** Return a pointer to the next prepared statement after pStmt associated ** with database connection pDb. If pStmt is NULL, return the first ** prepared statement for the database connection. Return NULL if there ** are no more. */ sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ sqlite3_stmt *pNext; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(pDb) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif sqlite3_mutex_enter(pDb->mutex); if( pStmt==0 ){ pNext = (sqlite3_stmt*)pDb->pVdbe; }else{ pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; } sqlite3_mutex_leave(pDb->mutex); return pNext; } /* ** Return the value of a status counter for a prepared statement */ int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ Vdbe *pVdbe = (Vdbe*)pStmt; u32 v; #ifdef SQLITE_ENABLE_API_ARMOR if( !pStmt ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif v = pVdbe->aCounter[op]; if( resetFlag ) pVdbe->aCounter[op] = 0; return (int)v; } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Return status data for a single loop within query pStmt. */ int sqlite3_stmt_scanstatus( sqlite3_stmt *pStmt, /* Prepared statement being queried */ int idx, /* Index of loop to report on */ int iScanStatusOp, /* Which metric to return */ void *pOut /* OUT: Write the answer here */ ){ Vdbe *p = (Vdbe*)pStmt; ScanStatus *pScan; if( idx<0 || idx>=p->nScan ) return 1; pScan = &p->aScan[idx]; switch( iScanStatusOp ){ case SQLITE_SCANSTAT_NLOOP: { *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; break; } case SQLITE_SCANSTAT_NVISIT: { *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; break; } case SQLITE_SCANSTAT_EST: { double r = 1.0; LogEst x = pScan->nEst; while( x<100 ){ x += 10; r *= 0.5; } *(double*)pOut = r*sqlite3LogEstToInt(x); break; } case SQLITE_SCANSTAT_NAME: { *(const char**)pOut = pScan->zName; break; } case SQLITE_SCANSTAT_EXPLAIN: { if( pScan->addrExplain ){ *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; }else{ *(const char**)pOut = 0; } break; } case SQLITE_SCANSTAT_SELECTID: { if( pScan->addrExplain ){ *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; }else{ *(int*)pOut = -1; } break; } default: { return 1; } } return 0; } /* ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. */ void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; memset(p->anExec, 0, p->nOp * sizeof(i64)); } #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
592 593 594 595 596 597 598 599 600 601 602 603 604 605 | } #endif } p->nOp += nOp; } return addr; } /* ** Change the value of the P1 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqlite3VdbeAddOpList but we want to make a ** few minor changes to the program. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 | } #endif } p->nOp += nOp; } return addr; } #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) /* ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). */ void sqlite3VdbeScanStatus( Vdbe *p, /* VM to add scanstatus() to */ int addrExplain, /* Address of OP_Explain (or 0) */ int addrLoop, /* Address of loop counter */ int addrVisit, /* Address of rows visited counter */ LogEst nEst, /* Estimated number of output rows */ const char *zName /* Name of table or index being scanned */ ){ int nByte = (p->nScan+1) * sizeof(ScanStatus); ScanStatus *aNew; aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); if( aNew ){ ScanStatus *pNew = &aNew[p->nScan++]; pNew->addrExplain = addrExplain; pNew->addrLoop = addrLoop; pNew->addrVisit = addrVisit; pNew->nEst = nEst; pNew->zName = sqlite3DbStrDup(p->db, zName); p->aScan = aNew; } } #endif /* ** Change the value of the P1 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqlite3VdbeAddOpList but we want to make a ** few minor changes to the program. */ |
︙ | ︙ | |||
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 | p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), &zCsr, zEnd, &nByte); p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte); if( nByte ){ p->pFree = sqlite3DbMallocZero(db, nByte); } zCsr = p->pFree; zEnd = &zCsr[nByte]; }while( nByte && !db->mallocFailed ); | > > > | 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 | p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), &zCsr, zEnd, &nByte); p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte); #ifdef SQLITE_ENABLE_STMT_SCANSTATUS p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte); #endif if( nByte ){ p->pFree = sqlite3DbMallocZero(db, nByte); } zCsr = p->pFree; zEnd = &zCsr[nByte]; }while( nByte && !db->mallocFailed ); |
︙ | ︙ | |||
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 | /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ Vdbe *v = pFrame->v; v->aOnceFlag = pFrame->aOnceFlag; v->nOnceFlag = pFrame->nOnceFlag; v->aOp = pFrame->aOp; v->nOp = pFrame->nOp; v->aMem = pFrame->aMem; v->nMem = pFrame->nMem; v->apCsr = pFrame->apCsr; v->nCursor = pFrame->nCursor; v->db->lastRowid = pFrame->lastRowid; v->nChange = pFrame->nChange; return pFrame->pc; } /* ** Close all cursors. ** ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory | > > > > | 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 | /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ Vdbe *v = pFrame->v; #ifdef SQLITE_ENABLE_STMT_SCANSTATUS v->anExec = pFrame->anExec; #endif v->aOnceFlag = pFrame->aOnceFlag; v->nOnceFlag = pFrame->nOnceFlag; v->aOp = pFrame->aOp; v->nOp = pFrame->nOp; v->aMem = pFrame->aMem; v->nMem = pFrame->nMem; v->apCsr = pFrame->apCsr; v->nCursor = pFrame->nCursor; v->db->lastRowid = pFrame->lastRowid; v->nChange = pFrame->nChange; v->db->nChange = pFrame->nDbChange; return pFrame->pc; } /* ** Close all cursors. ** ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory |
︙ | ︙ | |||
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 | }else{ /* We are forced to roll back the active transaction. Before doing ** so, abort any other statements this handle currently has active. */ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; } } } /* Check for immediate foreign key violations. */ if( p->rc==SQLITE_OK ){ sqlite3VdbeCheckFk(p, 0); | > | 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 | }else{ /* We are forced to roll back the active transaction. Before doing ** so, abort any other statements this handle currently has active. */ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } } /* Check for immediate foreign key violations. */ if( p->rc==SQLITE_OK ){ sqlite3VdbeCheckFk(p, 0); |
︙ | ︙ | |||
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 | } if( rc==SQLITE_BUSY && p->readOnly ){ sqlite3VdbeLeave(p); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ p->rc = rc; sqlite3RollbackAll(db, SQLITE_OK); }else{ db->nDeferredCons = 0; db->nDeferredImmCons = 0; db->flags &= ~SQLITE_DeferFKs; sqlite3CommitInternalChanges(db); } }else{ sqlite3RollbackAll(db, SQLITE_OK); } db->nStatement = 0; }else if( eStatementOp==0 ){ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ eStatementOp = SAVEPOINT_RELEASE; }else if( p->errorAction==OE_Abort ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; } } /* If eStatementOp is non-zero, then a statement transaction needs to ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to ** do so. If this operation returns an error, and the current statement ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the ** current statement error code. */ if( eStatementOp ){ rc = sqlite3VdbeCloseStatement(p, eStatementOp); if( rc ){ if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ p->rc = rc; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; } sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; } } /* If this was an INSERT, UPDATE or DELETE and no statement transaction ** has been rolled back, update the database connection change-counter. */ if( p->changeCntOn ){ | > > > > | 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 | } if( rc==SQLITE_BUSY && p->readOnly ){ sqlite3VdbeLeave(p); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ p->rc = rc; sqlite3RollbackAll(db, SQLITE_OK); p->nChange = 0; }else{ db->nDeferredCons = 0; db->nDeferredImmCons = 0; db->flags &= ~SQLITE_DeferFKs; sqlite3CommitInternalChanges(db); } }else{ sqlite3RollbackAll(db, SQLITE_OK); p->nChange = 0; } db->nStatement = 0; }else if( eStatementOp==0 ){ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ eStatementOp = SAVEPOINT_RELEASE; }else if( p->errorAction==OE_Abort ){ eStatementOp = SAVEPOINT_ROLLBACK; }else{ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } /* If eStatementOp is non-zero, then a statement transaction needs to ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to ** do so. If this operation returns an error, and the current statement ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the ** current statement error code. */ if( eStatementOp ){ rc = sqlite3VdbeCloseStatement(p, eStatementOp); if( rc ){ if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ p->rc = rc; sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = 0; } sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); sqlite3CloseSavepoints(db); db->autoCommit = 1; p->nChange = 0; } } /* If this was an INSERT, UPDATE or DELETE and no statement transaction ** has been rolled back, update the database connection change-counter. */ if( p->changeCntOn ){ |
︙ | ︙ | |||
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 | sqlite3DbFree(db, pSub); } for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); sqlite3DbFree(db, p->pFree); } /* ** Delete an entire VDBE. */ void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; | > > > > > > | 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 | sqlite3DbFree(db, pSub); } for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); sqlite3DbFree(db, p->pFree); #ifdef SQLITE_ENABLE_STMT_SCANSTATUS for(i=0; i<p->nScan; i++){ sqlite3DbFree(db, p->aScan[i].zName); } sqlite3DbFree(db, p->aScan); #endif } /* ** Delete an entire VDBE. */ void sqlite3VdbeDelete(Vdbe *p){ sqlite3 *db; |
︙ | ︙ | |||
2833 2834 2835 2836 2837 2838 2839 | } if( flags&MEM_Int ){ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) i64 i = pMem->u.i; u64 u; if( i<0 ){ | < < | | 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 | } if( flags&MEM_Int ){ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) i64 i = pMem->u.i; u64 u; if( i<0 ){ u = ~i; }else{ u = i; } if( u<=127 ){ return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1; } if( u<=32767 ) return 2; |
︙ | ︙ | |||
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 | u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ u64 x = FOUR_BYTE_UINT(buf); u32 y = FOUR_BYTE_UINT(buf+4); x = (x<<32) + y; if( serial_type==6 ){ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); }else{ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ static const u64 t1 = ((u64)0x3ff00000)<<32; | > > > > | 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 | u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ u64 x = FOUR_BYTE_UINT(buf); u32 y = FOUR_BYTE_UINT(buf+4); x = (x<<32) + y; if( serial_type==6 ){ /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit ** twos-complement integer. */ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); }else{ /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit ** floating point number. */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ static const u64 t1 = ((u64)0x3ff00000)<<32; |
︙ | ︙ | |||
3032 3033 3034 3035 3036 3037 3038 | const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ switch( serial_type ){ case 10: /* Reserved for future use */ case 11: /* Reserved for future use */ | | > | > > > > > > > > > > > > > > > > | 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 | const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ switch( serial_type ){ case 10: /* Reserved for future use */ case 11: /* Reserved for future use */ case 0: { /* Null */ /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ pMem->flags = MEM_Null; break; } case 1: { /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement ** integer. */ pMem->u.i = ONE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 1; } case 2: { /* 2-byte signed integer */ /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit ** twos-complement integer. */ pMem->u.i = TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 2; } case 3: { /* 3-byte signed integer */ /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit ** twos-complement integer. */ pMem->u.i = THREE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 3; } case 4: { /* 4-byte signed integer */ /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit ** twos-complement integer. */ pMem->u.i = FOUR_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 4; } case 5: { /* 6-byte signed integer */ /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit ** twos-complement integer. */ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ /* These use local variables, so do them in a separate routine ** to avoid having to move the frame pointer in the common case */ return serialGet(buf,serial_type,pMem); } case 8: /* Integer 0 */ case 9: { /* Integer 1 */ /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ pMem->u.i = serial_type-8; pMem->flags = MEM_Int; return 0; } default: { /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in ** length. ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and ** (N-13)/2 bytes in length. */ static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; pMem->z = (char *)buf; pMem->n = (serial_type-12)/2; pMem->flags = aFlag[serial_type&1]; return pMem->n; } } |
︙ | ︙ |
Changes to src/vdbeblob.c.
︙ | ︙ | |||
149 150 151 152 153 154 155 156 157 158 159 160 161 162 | int rc = SQLITE_OK; char *zErr = 0; Table *pTab; Parse *pParse = 0; Incrblob *pBlob = 0; flags = !!flags; /* flags = (flags ? 1 : 0); */ *ppBlob = 0; sqlite3_mutex_enter(db->mutex); pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob)); if( !pBlob ) goto blob_open_out; | > > > > > | 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | int rc = SQLITE_OK; char *zErr = 0; Table *pTab; Parse *pParse = 0; Incrblob *pBlob = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || ppBlob==0 || zTable==0 ){ return SQLITE_MISUSE_BKPT; } #endif flags = !!flags; /* flags = (flags ? 1 : 0); */ *ppBlob = 0; sqlite3_mutex_enter(db->mutex); pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob)); if( !pBlob ) goto blob_open_out; |
︙ | ︙ | |||
367 368 369 370 371 372 373 | db = p->db; sqlite3_mutex_enter(db->mutex); v = (Vdbe*)p->pStmt; if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){ /* Request is out of range. Return a transient error. */ rc = SQLITE_ERROR; | < < > | 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | db = p->db; sqlite3_mutex_enter(db->mutex); v = (Vdbe*)p->pStmt; if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){ /* Request is out of range. Return a transient error. */ rc = SQLITE_ERROR; }else if( v==0 ){ /* If there is no statement handle, then the blob-handle has ** already been invalidated. Return SQLITE_ABORT in this case. */ rc = SQLITE_ABORT; }else{ /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is ** returned, clean-up the statement handle. */ assert( db == v->db ); sqlite3BtreeEnterCursor(p->pCsr); rc = xCall(p->pCsr, iOffset+p->iOffset, n, z); sqlite3BtreeLeaveCursor(p->pCsr); if( rc==SQLITE_ABORT ){ sqlite3VdbeFinalize(v); p->pStmt = 0; }else{ v->rc = rc; } } sqlite3Error(db, rc); rc = sqlite3ApiExit(db, rc); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Read data from a blob handle. |
︙ | ︙ |
Changes to src/vdbesort.c.
︙ | ︙ | |||
96 97 98 99 100 101 102 | ** calling thread usually launches a worker thread to do so. Except, if ** there are already N worker threads running, the main thread does the work ** itself. ** ** The sorter is running in multi-threaded mode if (a) the library was built ** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater ** than zero, and (b) worker threads have been enabled at runtime by calling | | | 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | ** calling thread usually launches a worker thread to do so. Except, if ** there are already N worker threads running, the main thread does the work ** itself. ** ** The sorter is running in multi-threaded mode if (a) the library was built ** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater ** than zero, and (b) worker threads have been enabled at runtime by calling ** "PRAGMA threads=N" with some value of N greater than 0. ** ** When Rewind() is called, any data remaining in memory is flushed to a ** final PMA. So at this point the data is stored in some number of sorted ** PMAs within temporary files on disk. ** ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the ** sorter is running in single-threaded mode, then these PMAs are merged |
︙ | ︙ | |||
843 844 845 846 847 848 849 | if( !sqlite3TempInMemory(db) ){ pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz; mxCache = db->aDb[0].pSchema->cache_size; if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING; pSorter->mxPmaSize = mxCache * pgsz; | | | < | < | 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 | if( !sqlite3TempInMemory(db) ){ pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz; mxCache = db->aDb[0].pSchema->cache_size; if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING; pSorter->mxPmaSize = mxCache * pgsz; /* EVIDENCE-OF: R-26747-61719 When the application provides any amount of ** scratch memory using SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary ** large heap allocations. */ if( sqlite3GlobalConfig.pScratch==0 ){ assert( pSorter->iMemory==0 ); pSorter->nMemory = pgsz; pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz); if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM; } |
︙ | ︙ |
Changes to src/vtab.c.
︙ | ︙ | |||
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | */ int sqlite3_create_module( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux /* Context pointer for xCreate/xConnect */ ){ return createModule(db, zName, pModule, pAux, 0); } /* ** External API function used to create a new virtual-table module. */ int sqlite3_create_module_v2( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ return createModule(db, zName, pModule, pAux, xDestroy); } /* ** Lock the virtual table so that it cannot be disconnected. ** Locks nest. Every lock should have a corresponding unlock. ** If an unlock is omitted, resources leaks will occur. | > > > > > > | 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | */ int sqlite3_create_module( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux /* Context pointer for xCreate/xConnect */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif return createModule(db, zName, pModule, pAux, 0); } /* ** External API function used to create a new virtual-table module. */ int sqlite3_create_module_v2( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; #endif return createModule(db, zName, pModule, pAux, xDestroy); } /* ** Lock the virtual table so that it cannot be disconnected. ** Locks nest. Every lock should have a corresponding unlock. ** If an unlock is omitted, resources leaks will occur. |
︙ | ︙ | |||
694 695 696 697 698 699 700 701 702 703 704 705 706 707 | int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ Parse *pParse; int rc = SQLITE_OK; Table *pTab; char *zErr = 0; sqlite3_mutex_enter(db->mutex); if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){ sqlite3Error(db, SQLITE_MISUSE); sqlite3_mutex_leave(db->mutex); return SQLITE_MISUSE_BKPT; } assert( (pTab->tabFlags & TF_Virtual)!=0 ); | > > > | 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 | int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ Parse *pParse; int rc = SQLITE_OK; Table *pTab; char *zErr = 0; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){ sqlite3Error(db, SQLITE_MISUSE); sqlite3_mutex_leave(db->mutex); return SQLITE_MISUSE_BKPT; } assert( (pTab->tabFlags & TF_Virtual)!=0 ); |
︙ | ︙ | |||
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 | ** The results of this routine are undefined unless it is called from ** within an xUpdate method. */ int sqlite3_vtab_on_conflict(sqlite3 *db){ static const unsigned char aMap[] = { SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE }; assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); assert( OE_Ignore==4 && OE_Replace==5 ); assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); return (int)aMap[db->vtabOnConflict-1]; } /* ** Call from within the xCreate() or xConnect() methods to provide ** the SQLite core with additional information about the behavior ** of the virtual table being implemented. */ int sqlite3_vtab_config(sqlite3 *db, int op, ...){ va_list ap; int rc = SQLITE_OK; sqlite3_mutex_enter(db->mutex); | > > > > > > < | 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 | ** The results of this routine are undefined unless it is called from ** within an xUpdate method. */ int sqlite3_vtab_on_conflict(sqlite3 *db){ static const unsigned char aMap[] = { SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE }; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); assert( OE_Ignore==4 && OE_Replace==5 ); assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); return (int)aMap[db->vtabOnConflict-1]; } /* ** Call from within the xCreate() or xConnect() methods to provide ** the SQLite core with additional information about the behavior ** of the virtual table being implemented. */ int sqlite3_vtab_config(sqlite3 *db, int op, ...){ va_list ap; int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; #endif sqlite3_mutex_enter(db->mutex); va_start(ap, op); switch( op ){ case SQLITE_VTAB_CONSTRAINT_SUPPORT: { VtabCtx *p = db->pVtabCtx; if( !p ){ rc = SQLITE_MISUSE_BKPT; }else{ |
︙ | ︙ |
Changes to src/wal.c.
︙ | ︙ | |||
1518 1519 1520 1521 1522 1523 1524 | #endif } /* ** Free an iterator allocated by walIteratorInit(). */ static void walIteratorFree(WalIterator *p){ | | | 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 | #endif } /* ** Free an iterator allocated by walIteratorInit(). */ static void walIteratorFree(WalIterator *p){ sqlite3_free(p); } /* ** Construct a WalInterator object that can be used to loop over all ** pages in the WAL in ascending order. The caller must hold the checkpoint ** lock. ** |
︙ | ︙ | |||
1553 1554 1555 1556 1557 1558 1559 | iLast = pWal->hdr.mxFrame; /* Allocate space for the WalIterator object. */ nSegment = walFramePage(iLast) + 1; nByte = sizeof(WalIterator) + (nSegment-1)*sizeof(struct WalSegment) + iLast*sizeof(ht_slot); | | | | 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 | iLast = pWal->hdr.mxFrame; /* Allocate space for the WalIterator object. */ nSegment = walFramePage(iLast) + 1; nByte = sizeof(WalIterator) + (nSegment-1)*sizeof(struct WalSegment) + iLast*sizeof(ht_slot); p = (WalIterator *)sqlite3_malloc(nByte); if( !p ){ return SQLITE_NOMEM; } memset(p, 0, nByte); p->nSegment = nSegment; /* Allocate temporary space used by the merge-sort routine. This block ** of memory will be freed before this function returns. */ aTmp = (ht_slot *)sqlite3_malloc( sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) ); if( !aTmp ){ rc = SQLITE_NOMEM; } for(i=0; rc==SQLITE_OK && i<nSegment; i++){ |
︙ | ︙ | |||
1600 1601 1602 1603 1604 1605 1606 | walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); p->aSegment[i].iZero = iZero; p->aSegment[i].nEntry = nEntry; p->aSegment[i].aIndex = aIndex; p->aSegment[i].aPgno = (u32 *)aPgno; } } | | | 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 | walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); p->aSegment[i].iZero = iZero; p->aSegment[i].nEntry = nEntry; p->aSegment[i].aIndex = aIndex; p->aSegment[i].aPgno = (u32 *)aPgno; } } sqlite3_free(aTmp); if( rc!=SQLITE_OK ){ walIteratorFree(p); p = 0; } *pp = p; return rc; |
︙ | ︙ | |||
2600 2601 2602 2603 2604 2605 2606 | ** committed. As a result, the call to xUndo may not fail. */ assert( walFramePgno(pWal, iFrame)!=1 ); rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); } if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); } | < | 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 | ** committed. As a result, the call to xUndo may not fail. */ assert( walFramePgno(pWal, iFrame)!=1 ); rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); } if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); } return rc; } /* ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 ** values. This function populates the array with values required to ** "rollback" the write position of the WAL handle back to the current |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
221 222 223 224 225 226 227 | if( pOld!=pWC->aStatic ){ sqlite3DbFree(db, pOld); } pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); } pTerm = &pWC->a[idx = pWC->nTerm++]; if( p && ExprHasProperty(p, EP_Unlikely) ){ | | | 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | if( pOld!=pWC->aStatic ){ sqlite3DbFree(db, pOld); } pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); } pTerm = &pWC->a[idx = pWC->nTerm++]; if( p && ExprHasProperty(p, EP_Unlikely) ){ pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; }else{ pTerm->truthProb = 1; } pTerm->pExpr = sqlite3ExprSkipCollate(p); pTerm->wtFlags = wtFlags; pTerm->pWC = pWC; pTerm->iParent = -1; |
︙ | ︙ | |||
751 752 753 754 755 756 757 758 759 760 761 762 763 764 | */ static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ if( pDerived ){ pDerived->flags |= pBase->flags & EP_FromJoin; pDerived->iRightJoinTable = pBase->iRightJoinTable; } } #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* ** Analyze a term that consists of two or more OR-connected ** subterms. So in: ** ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) | > > > > > > > > > | 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 | */ static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ if( pDerived ){ pDerived->flags |= pBase->flags & EP_FromJoin; pDerived->iRightJoinTable = pBase->iRightJoinTable; } } /* ** Mark term iChild as being a child of term iParent */ static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ pWC->a[iChild].iParent = iParent; pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; pWC->a[iParent].nChild++; } #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* ** Analyze a term that consists of two or more OR-connected ** subterms. So in: ** ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) |
︙ | ︙ | |||
1049 1050 1051 1052 1053 1054 1055 | transferJoinMarkings(pNew, pExpr); assert( !ExprHasProperty(pNew, EP_xIsSelect) ); pNew->x.pList = pList; idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; | | < | 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 | transferJoinMarkings(pNew, pExpr); assert( !ExprHasProperty(pNew, EP_xIsSelect) ); pNew->x.pList = pList; idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); }else{ sqlite3ExprListDelete(db, pList); } pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ } } } |
︙ | ︙ | |||
1152 1153 1154 1155 1156 1157 1158 | if( db->mallocFailed ){ sqlite3ExprDelete(db, pDup); return; } idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); if( idxNew==0 ) return; pNew = &pWC->a[idxNew]; | | < | 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 | if( db->mallocFailed ){ sqlite3ExprDelete(db, pDup); return; } idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); if( idxNew==0 ) return; pNew = &pWC->a[idxNew]; markTermAsChild(pWC, idxNew, idxTerm); pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; if( pExpr->op==TK_EQ && !ExprHasProperty(pExpr, EP_FromJoin) && OptimizationEnabled(db, SQLITE_Transitive) ){ pTerm->eOperator |= WO_EQUIV; eExtraOp = WO_EQUIV; |
︙ | ︙ | |||
1211 1212 1213 1214 1215 1216 1217 | sqlite3ExprDup(db, pExpr->pLeft, 0), sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); transferJoinMarkings(pNewExpr, pExpr); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; | | < | 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 | sqlite3ExprDup(db, pExpr->pLeft, 0), sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); transferJoinMarkings(pNewExpr, pExpr); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); } } #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* Analyze a term that is composed of two or more subterms connected by ** an OR operator. */ |
︙ | ︙ | |||
1288 1289 1290 1291 1292 1293 1294 | pStr2, 0); transferJoinMarkings(pNewExpr2, pExpr); idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew2==0 ); exprAnalyze(pSrc, pWC, idxNew2); pTerm = &pWC->a[idxTerm]; if( isComplete ){ | < | | | 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 | pStr2, 0); transferJoinMarkings(pNewExpr2, pExpr); idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew2==0 ); exprAnalyze(pSrc, pWC, idxNew2); pTerm = &pWC->a[idxTerm]; if( isComplete ){ markTermAsChild(pWC, idxNew1, idxTerm); markTermAsChild(pWC, idxNew2, idxTerm); } } #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Add a WO_MATCH auxiliary term to the constraint set if the ** current expression is of the form: column MATCH expr. |
︙ | ︙ | |||
1323 1324 1325 1326 1327 1328 1329 | idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = prereqExpr; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_MATCH; | | < | | < | 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 | idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew==0 ); pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = prereqExpr; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_MATCH; markTermAsChild(pWC, idxNew, idxTerm); pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 /* When sqlite_stat3 histogram data is available an operator of the ** form "x IS NOT NULL" can sometimes be evaluated more efficiently ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a ** virtual term of that form. ** ** Note that the virtual term must be tagged with TERM_VNULL. This ** TERM_VNULL tag will suppress the not-null check at the beginning ** of the loop. Without the TERM_VNULL flag, the not-null check at ** the start of the loop will prevent any results from being returned. */ if( pExpr->op==TK_NOTNULL && pExpr->pLeft->op==TK_COLUMN && pExpr->pLeft->iColumn>=0 && OptimizationEnabled(db, SQLITE_Stat34) ){ Expr *pNewExpr; Expr *pLeft = pExpr->pLeft; int idxNew; WhereTerm *pNewTerm; pNewExpr = sqlite3PExpr(pParse, TK_GT, sqlite3ExprDup(db, pLeft, 0), sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); if( idxNew ){ pNewTerm = &pWC->a[idxNew]; pNewTerm->prereqRight = 0; pNewTerm->leftCursor = pLeft->iTable; pNewTerm->u.leftColumn = pLeft->iColumn; pNewTerm->eOperator = WO_GT; markTermAsChild(pWC, idxNew, idxTerm); pTerm = &pWC->a[idxTerm]; pTerm->wtFlags |= TERM_COPIED; pNewTerm->prereqAll = pTerm->prereqAll; } } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
︙ | ︙ | |||
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 | int mxBitCol; /* Maximum column in pSrc->colUsed */ CollSeq *pColl; /* Collating sequence to on a column */ WhereLoop *pLoop; /* The Loop object */ char *zNotUsed; /* Extra space on the end of pIdx */ Bitmask idxCols; /* Bitmap of columns used for indexing */ Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warnning has been issued */ /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); /* Count the number of columns that will be added to the index ** and used to match WHERE clause constraints */ nKeyCol = 0; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; pLoop = pLevel->pWLoop; idxCols = 0; for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ int iCol = pTerm->u.leftColumn; Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); testcase( iCol==BMS ); testcase( iCol==BMS-1 ); if( !sentWarning ){ sqlite3_log(SQLITE_WARNING_AUTOINDEX, "automatic index on %s(%s)", pTable->zName, pTable->aCol[iCol].zName); sentWarning = 1; } if( (idxCols & cMask)==0 ){ | > > > > > > > > | > > | < | | 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 | int mxBitCol; /* Maximum column in pSrc->colUsed */ CollSeq *pColl; /* Collating sequence to on a column */ WhereLoop *pLoop; /* The Loop object */ char *zNotUsed; /* Extra space on the end of pIdx */ Bitmask idxCols; /* Bitmap of columns used for indexing */ Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warnning has been issued */ Expr *pPartial = 0; /* Partial Index Expression */ int iContinue = 0; /* Jump here to skip excluded rows */ /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); /* Count the number of columns that will be added to the index ** and used to match WHERE clause constraints */ nKeyCol = 0; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; pLoop = pLevel->pWLoop; idxCols = 0; for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( pLoop->prereq==0 && (pTerm->wtFlags & TERM_VIRTUAL)==0 && sqlite3ExprIsTableConstant(pTerm->pExpr, pSrc->iCursor) ){ pPartial = sqlite3ExprAnd(pParse->db, pPartial, sqlite3ExprDup(pParse->db, pTerm->pExpr, 0)); } if( termCanDriveIndex(pTerm, pSrc, notReady) ){ int iCol = pTerm->u.leftColumn; Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); testcase( iCol==BMS ); testcase( iCol==BMS-1 ); if( !sentWarning ){ sqlite3_log(SQLITE_WARNING_AUTOINDEX, "automatic index on %s(%s)", pTable->zName, pTable->aCol[iCol].zName); sentWarning = 1; } if( (idxCols & cMask)==0 ){ if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ goto end_auto_index_create; } pLoop->aLTerm[nKeyCol++] = pTerm; idxCols |= cMask; } } } assert( nKeyCol>0 ); pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED | WHERE_AUTO_INDEX; /* Count the number of additional columns needed to create a ** covering index. A "covering index" is an index that contains all ** columns that are needed by the query. With a covering index, the ** original table never needs to be accessed. Automatic indices must ** be a covering index because the index will not be updated if the ** original table changes and the index and table cannot both be used ** if they go out of sync. */ extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); mxBitCol = MIN(BMS-1,pTable->nCol); testcase( pTable->nCol==BMS-1 ); testcase( pTable->nCol==BMS-2 ); for(i=0; i<mxBitCol; i++){ if( extraCols & MASKBIT(i) ) nKeyCol++; } if( pSrc->colUsed & MASKBIT(BMS-1) ){ nKeyCol += pTable->nCol - BMS + 1; } /* Construct the Index object to describe this index */ pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); if( pIdx==0 ) goto end_auto_index_create; pLoop->u.btree.pIndex = pIdx; pIdx->zName = "auto-index"; pIdx->pTable = pTable; n = 0; idxCols = 0; for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
︙ | ︙ | |||
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 | assert( pLevel->iIdxCur>=0 ); pLevel->iIdxCur = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "for %s", pTable->zName)); /* Fill the automatic index with content */ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); sqlite3VdbeJumpHere(v, addrTop); sqlite3ReleaseTempReg(pParse, regRecord); /* Jump here when skipping the initialization */ sqlite3VdbeJumpHere(v, addrInit); } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Allocate and populate an sqlite3_index_info structure. It is the ** responsibility of the caller to eventually release the structure | > > > > > > > > > > > | 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 | assert( pLevel->iIdxCur>=0 ); pLevel->iIdxCur = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "for %s", pTable->zName)); /* Fill the automatic index with content */ sqlite3ExprCachePush(pParse); addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); if( pPartial ){ iContinue = sqlite3VdbeMakeLabel(v); sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); pLoop->wsFlags |= WHERE_PARTIALIDX; } regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); sqlite3VdbeJumpHere(v, addrTop); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3ExprCachePop(pParse); /* Jump here when skipping the initialization */ sqlite3VdbeJumpHere(v, addrInit); end_auto_index_create: sqlite3ExprDelete(pParse->db, pPartial); } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Allocate and populate an sqlite3_index_info structure. It is the ** responsibility of the caller to eventually release the structure |
︙ | ︙ | |||
1870 1871 1872 1873 1874 1875 1876 | } } return pParse->nErr; } #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ | < | > | | 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 | } } return pParse->nErr; } #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 /* ** Estimate the location of a particular key among all keys in an ** index. Store the results in aStat as follows: ** ** aStat[0] Est. number of rows less than pVal ** aStat[1] Est. number of rows equal to pVal ** ** Return the index of the sample that is the smallest sample that ** is greater than or equal to pRec. */ static int whereKeyStats( Parse *pParse, /* Database connection */ Index *pIdx, /* Index to consider domain of */ UnpackedRecord *pRec, /* Vector of values to consider */ int roundUp, /* Round up if true. Round down if false */ tRowcnt *aStat /* OUT: stats written here */ ){ IndexSample *aSample = pIdx->aSample; |
︙ | ︙ | |||
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 | if( roundUp ){ iGap = (iGap*2)/3; }else{ iGap = iGap/3; } aStat[0] = iLower + iGap; } } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* ** If it is not NULL, pTerm is a term that provides an upper or lower ** bound on a range scan. Without considering pTerm, it is estimated ** that the scan will visit nNew rows. This function returns the number | > | 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 | if( roundUp ){ iGap = (iGap*2)/3; }else{ iGap = iGap/3; } aStat[0] = iLower + iGap; } return i; } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* ** If it is not NULL, pTerm is a term that provides an upper or lower ** bound on a range scan. Without considering pTerm, it is estimated ** that the scan will visit nNew rows. This function returns the number |
︙ | ︙ | |||
2113 2114 2115 2116 2117 2118 2119 | ** |_____| |_____| ** | | ** pLower pUpper ** ** If either of the upper or lower bound is not present, then NULL is passed in ** place of the corresponding WhereTerm. ** | | | | 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 | ** |_____| |_____| ** | | ** pLower pUpper ** ** If either of the upper or lower bound is not present, then NULL is passed in ** place of the corresponding WhereTerm. ** ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index ** column subject to the range constraint. Or, equivalently, the number of ** equality constraints optimized by the proposed index scan. For example, ** assuming index p is on t1(a, b), and the SQL query is: ** ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... ** ** then nEq is set to 1 (as the range restricted column, b, is the second ** left-most column of the index). Or, if the query is: ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** ** then nEq is set to 0. ** ** When this function is called, *pnOut is set to the sqlite3LogEst() of the ** number of rows that the index scan is expected to visit without ** considering the range constraints. If nEq is 0, then *pnOut is the number of ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) ** to account for the range constraints pLower and pUpper. ** ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be ** used, a single range inequality reduces the search space by a factor of 4. ** and a pair of constraints (x>? AND x<?) reduces the expected number of ** rows visited by a factor of 64. |
︙ | ︙ | |||
2153 2154 2155 2156 2157 2158 2159 | int nOut = pLoop->nOut; LogEst nNew; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 Index *p = pLoop->u.btree.pIndex; int nEq = pLoop->u.btree.nEq; | | < < < | > > | | > > | | 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 | int nOut = pLoop->nOut; LogEst nNew; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 Index *p = pLoop->u.btree.pIndex; int nEq = pLoop->u.btree.nEq; if( p->nSample>0 && nEq<p->nSampleCol ){ if( nEq==pBuilder->nRecValid ){ UnpackedRecord *pRec = pBuilder->pRec; tRowcnt a[2]; u8 aff; /* Variable iLower will be set to the estimate of the number of rows in ** the index that are less than the lower bound of the range query. The ** lower bound being the concatenation of $P and $L, where $P is the ** key-prefix formed by the nEq values matched against the nEq left-most ** columns of the index, and $L is the value in pLower. ** ** Or, if pLower is NULL or $L cannot be extracted from it (because it ** is not a simple variable or literal value), the lower bound of the ** range is $P. Due to a quirk in the way whereKeyStats() works, even ** if $L is available, whereKeyStats() is called for both ($P) and ** ($P:$L) and the larger of the two returned values is used. ** ** Similarly, iUpper is to be set to the estimate of the number of rows ** less than the upper bound of the range query. Where the upper bound ** is either ($P) or ($P:$U). Again, even if $U is available, both values ** of iUpper are requested of whereKeyStats() and the smaller used. ** ** The number of rows between the two bounds is then just iUpper-iLower. */ tRowcnt iLower; /* Rows less than the lower bound */ tRowcnt iUpper; /* Rows less than the upper bound */ int iLwrIdx = -2; /* aSample[] for the lower bound */ int iUprIdx = -1; /* aSample[] for the upper bound */ if( pRec ){ testcase( pRec->nField!=pBuilder->nRecValid ); pRec->nField = pBuilder->nRecValid; } if( nEq==p->nKeyCol ){ aff = SQLITE_AFF_INTEGER; }else{ aff = p->pTable->aCol[p->aiColumn[nEq]].affinity; } /* Determine iLower and iUpper using ($P) only. */ if( nEq==0 ){ iLower = 0; iUpper = p->nRowEst0; }else{ /* Note: this call could be optimized away - since the same values must ** have been requested when testing key $P in whereEqualScanEst(). */ whereKeyStats(pParse, p, pRec, 0, a); iLower = a[0]; iUpper = a[0] + a[1]; } |
︙ | ︙ | |||
2218 2219 2220 2221 2222 2223 2224 | /* If possible, improve on the iLower estimate using ($P:$L). */ if( pLower ){ int bOk; /* True if value is extracted from pExpr */ Expr *pExpr = pLower->pExpr->pRight; rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); if( rc==SQLITE_OK && bOk ){ tRowcnt iNew; | | | > > > > > | 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 | /* If possible, improve on the iLower estimate using ($P:$L). */ if( pLower ){ int bOk; /* True if value is extracted from pExpr */ Expr *pExpr = pLower->pExpr->pRight; rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); if( rc==SQLITE_OK && bOk ){ tRowcnt iNew; iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); if( iNew>iLower ) iLower = iNew; nOut--; pLower = 0; } } /* If possible, improve on the iUpper estimate using ($P:$U). */ if( pUpper ){ int bOk; /* True if value is extracted from pExpr */ Expr *pExpr = pUpper->pExpr->pRight; rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); if( rc==SQLITE_OK && bOk ){ tRowcnt iNew; iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); if( iNew<iUpper ) iUpper = iNew; nOut--; pUpper = 0; } } pBuilder->pRec = pRec; if( rc==SQLITE_OK ){ if( iUpper>iLower ){ nNew = sqlite3LogEst(iUpper - iLower); /* TUNING: If both iUpper and iLower are derived from the same ** sample, then assume they are 4x more selective. This brings ** the estimated selectivity more in line with what it would be ** if estimated without the use of STAT3/4 tables. */ if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); }else{ nNew = 10; assert( 10==sqlite3LogEst(2) ); } if( nNew<nOut ){ nOut = nNew; } WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", |
︙ | ︙ | |||
2269 2270 2271 2272 2273 2274 2275 | UNUSED_PARAMETER(pBuilder); assert( pLower || pUpper ); #endif assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); nNew = whereRangeAdjust(pLower, nOut); nNew = whereRangeAdjust(pUpper, nNew); | | > > | > | 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 | UNUSED_PARAMETER(pBuilder); assert( pLower || pUpper ); #endif assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); nNew = whereRangeAdjust(pLower, nOut); nNew = whereRangeAdjust(pUpper, nNew); /* TUNING: If there is both an upper and lower limit and neither limit ** has an application-defined likelihood(), assume the range is ** reduced by an additional 75%. This means that, by default, an open-ended ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to ** match 1/64 of the index. */ if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ nNew -= 20; } nOut -= (pLower!=0) + (pUpper!=0); if( nNew<10 ) nNew = 10; if( nNew<nOut ) nOut = nNew; #if defined(WHERETRACE_ENABLED) if( pLoop->nOut>nOut ){ WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", |
︙ | ︙ | |||
2634 2635 2636 2637 2638 2639 2640 | int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ pLoop = pLevel->pWLoop; assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); nEq = pLoop->u.btree.nEq; | | | 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 | int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ pLoop = pLevel->pWLoop; assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); nEq = pLoop->u.btree.nEq; nSkip = pLoop->nSkip; pIdx = pLoop->u.btree.pIndex; assert( pIdx!=0 ); /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; nReg = pLoop->u.btree.nEq + nExtraReg; |
︙ | ︙ | |||
2748 2749 2750 2751 2752 2753 2754 | ** string similar to: ** ** "a=? AND b>?" */ static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ Index *pIndex = pLoop->u.btree.pIndex; u16 nEq = pLoop->u.btree.nEq; | | | 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 | ** string similar to: ** ** "a=? AND b>?" */ static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ Index *pIndex = pLoop->u.btree.pIndex; u16 nEq = pLoop->u.btree.nEq; u16 nSkip = pLoop->nSkip; int i, j; Column *aCol = pTab->aCol; i16 *aiColumn = pIndex->aiColumn; if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; sqlite3StrAccumAppend(pStr, " (", 2); for(i=0; i<nEq; i++){ |
︙ | ︙ | |||
2779 2780 2781 2782 2783 2784 2785 | explainAppendTerm(pStr, i, z, "<"); } sqlite3StrAccumAppend(pStr, ")", 1); } /* ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN | | > | | > > | > | | | 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 | explainAppendTerm(pStr, i, z, "<"); } sqlite3StrAccumAppend(pStr, ")", 1); } /* ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode ** is added to the output to describe the table scan strategy in pLevel. ** ** If an OP_Explain opcode is added to the VM, its address is returned. ** Otherwise, if no OP_Explain is coded, zero is returned. */ static int explainOneScan( Parse *pParse, /* Parse context */ SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ int iLevel, /* Value for "level" column of output */ int iFrom, /* Value for "from" column of output */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ){ int ret = 0; #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) if( pParse->explain==2 ) #endif { struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ int iId = pParse->iSelectId; /* Select id (left-most output column) */ int isSearch; /* True for a SEARCH. False for SCAN. */ WhereLoop *pLoop; /* The controlling WhereLoop object */ u32 flags; /* Flags that describe this loop */ char *zMsg; /* Text to add to EQP output */ StrAccum str; /* EQP output string */ char zBuf[100]; /* Initial space for EQP output string */ pLoop = pLevel->pWLoop; flags = pLoop->wsFlags; if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0; isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); str.db = db; |
︙ | ︙ | |||
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 | assert( pLoop->u.btree.pIndex!=0 ); pIdx = pLoop->u.btree.pIndex; assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ if( isSearch ){ zFmt = "PRIMARY KEY"; } }else if( flags & WHERE_AUTO_INDEX ){ zFmt = "AUTOMATIC COVERING INDEX"; }else if( flags & WHERE_IDX_ONLY ){ zFmt = "COVERING INDEX %s"; }else{ zFmt = "INDEX %s"; } | > > | 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 | assert( pLoop->u.btree.pIndex!=0 ); pIdx = pLoop->u.btree.pIndex; assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ if( isSearch ){ zFmt = "PRIMARY KEY"; } }else if( flags & WHERE_PARTIALIDX ){ zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; }else if( flags & WHERE_AUTO_INDEX ){ zFmt = "AUTOMATIC COVERING INDEX"; }else if( flags & WHERE_IDX_ONLY ){ zFmt = "COVERING INDEX %s"; }else{ zFmt = "INDEX %s"; } |
︙ | ︙ | |||
2878 2879 2880 2881 2882 2883 2884 | if( pLoop->nOut>=10 ){ sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); }else{ sqlite3StrAccumAppend(&str, " (~1 row)", 9); } #endif zMsg = sqlite3StrAccumFinish(&str); | | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 | if( pLoop->nOut>=10 ){ sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); }else{ sqlite3StrAccumAppend(&str, " (~1 row)", 9); } #endif zMsg = sqlite3StrAccumFinish(&str); ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); } return ret; } #else # define explainOneScan(u,v,w,x,y,z) 0 #endif /* SQLITE_OMIT_EXPLAIN */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS /* ** Configure the VM passed as the first argument with an ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to ** implement level pLvl. Argument pSrclist is a pointer to the FROM ** clause that the scan reads data from. ** ** If argument addrExplain is not 0, it must be the address of an ** OP_Explain instruction that describes the same loop. */ static void addScanStatus( Vdbe *v, /* Vdbe to add scanstatus entry to */ SrcList *pSrclist, /* FROM clause pLvl reads data from */ WhereLevel *pLvl, /* Level to add scanstatus() entry for */ int addrExplain /* Address of OP_Explain (or 0) */ ){ const char *zObj = 0; WhereLoop *pLoop = pLvl->pWLoop; if( (pLoop->wsFlags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ zObj = pLoop->u.btree.pIndex->zName; }else{ zObj = pSrclist->a[pLvl->iFrom].zName; } sqlite3VdbeScanStatus( v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj ); } #else # define addScanStatus(a, b, c, d) ((void)d) #endif /* ** Generate code for the start of the iLevel-th loop in the WHERE clause ** implementation described by pWInfo. */ static Bitmask codeOneLoopStart( |
︙ | ︙ | |||
3185 3186 3187 3188 3189 3190 3191 | char *zStartAff; /* Affinity for start of range constraint */ char cEndAff = 0; /* Affinity for end of range constraint */ u8 bSeekPastNull = 0; /* True to seek past initial nulls */ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; | | | | 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 | char *zStartAff; /* Affinity for start of range constraint */ char cEndAff = 0; /* Affinity for end of range constraint */ u8 bSeekPastNull = 0; /* True to seek past initial nulls */ u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; assert( nEq>=pLoop->nSkip ); /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." ** query, then the caller will only allow the loop to run for ** a single iteration. This means that the first row returned ** should not have a NULL value stored in 'x'. If column 'x' is ** the first one after the nEq equality constraints in the index, ** this requires some special handling. */ assert( pWInfo->pOrderBy==0 || pWInfo->pOrderBy->nExpr==1 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 && pWInfo->nOBSat>0 && (pIdx->nKeyCol>nEq) ){ assert( pLoop->nSkip==0 ); bSeekPastNull = 1; nExtraReg = 1; } /* Find any inequality constraint terms for the start and end ** of the range. */ |
︙ | ︙ | |||
3551 3552 3553 3554 3555 3556 3557 | /* Loop through table entries that match term pOrTerm. */ WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, wctrlFlags, iCovCur); assert( pSubWInfo || pParse->nErr || db->mallocFailed ); if( pSubWInfo ){ WhereLoop *pSubLoop; | | > > | 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 | /* Loop through table entries that match term pOrTerm. */ WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, wctrlFlags, iCovCur); assert( pSubWInfo || pParse->nErr || db->mallocFailed ); if( pSubWInfo ){ WhereLoop *pSubLoop; int addrExplain = explainOneScan( pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 ); addScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); /* This is the sub-WHERE clause body. First skip over ** duplicate rows from prior sub-WHERE clauses, and record the ** rowid (or PRIMARY KEY) for the current row so that the same ** row will be skipped in subsequent sub-WHERE clauses. */ if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int r; |
︙ | ︙ | |||
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 | pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } } /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; testcase( pTerm->wtFlags & TERM_VIRTUAL ); | > > > > | 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 | pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } } #ifdef SQLITE_ENABLE_STMT_SCANSTATUS pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); #endif /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
︙ | ︙ | |||
3823 3824 3825 3826 3827 3828 3829 | }else{ z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); } sqlite3DebugPrintf(" %-19s", z); sqlite3_free(z); } if( p->wsFlags & WHERE_SKIPSCAN ){ | | | 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 | }else{ z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); } sqlite3DebugPrintf(" %-19s", z); sqlite3_free(z); } if( p->wsFlags & WHERE_SKIPSCAN ){ sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); }else{ sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); } sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ int i; for(i=0; i<p->nLTerm; i++){ |
︙ | ︙ | |||
3934 3935 3936 3937 3938 3939 3940 | whereLoopDelete(db, p); } sqlite3DbFree(db, pWInfo); } } /* | | > | > > > | > > > | 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 | whereLoopDelete(db, p); } sqlite3DbFree(db, pWInfo); } } /* ** Return TRUE if all of the following are true: ** ** (1) X has the same or lower cost that Y ** (2) X is a proper subset of Y ** (3) X skips at least as many columns as Y ** ** By "proper subset" we mean that X uses fewer WHERE clause terms ** than Y and that every WHERE clause term used by X is also used ** by Y. ** ** If X is a proper subset of Y then Y is a better choice and ought ** to have a lower cost. This routine returns TRUE when that cost ** relationship is inverted and needs to be adjusted. The third rule ** was added because if X uses skip-scan less than Y it still might ** deserve a lower cost even if it is a proper subset of Y. */ static int whereLoopCheaperProperSubset( const WhereLoop *pX, /* First WhereLoop to compare */ const WhereLoop *pY /* Compare against this WhereLoop */ ){ int i, j; if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ return 0; /* X is not a subset of Y */ } if( pY->nSkip > pX->nSkip ) return 0; if( pX->rRun >= pY->rRun ){ if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ } for(i=pX->nLTerm-1; i>=0; i--){ if( pX->aLTerm[i]==0 ) continue; for(j=pY->nLTerm-1; j>=0; j--){ if( pY->aLTerm[j]==pX->aLTerm[i] ) break; } if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ } return 1; /* All conditions meet */ } |
︙ | ︙ | |||
3979 3980 3981 3982 3983 3984 3985 | ** ** (2) pTemplate costs more than any other WhereLoops for which pTemplate ** is a proper subset. ** ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer ** WHERE clause terms than Y and that every WHERE clause term used by X is ** also used by Y. | < < < < < < < < < < < < < | > > > > | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 | ** ** (2) pTemplate costs more than any other WhereLoops for which pTemplate ** is a proper subset. ** ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer ** WHERE clause terms than Y and that every WHERE clause term used by X is ** also used by Y. */ static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; for(; p; p=p->pNextLoop){ if( p->iTab!=pTemplate->iTab ) continue; if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; if( whereLoopCheaperProperSubset(p, pTemplate) ){ /* Adjust pTemplate cost downward so that it is cheaper than its ** subset p. */ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); pTemplate->rRun = p->rRun; pTemplate->nOut = p->nOut - 1; }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ /* Adjust pTemplate cost upward so that it is costlier than p since ** pTemplate is a proper subset of p */ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); pTemplate->rRun = p->rRun; pTemplate->nOut = p->nOut + 1; } } } /* |
︙ | ︙ | |||
4050 4051 4052 4053 4054 4055 4056 | /* whereLoopAddBtree() always generates and inserts the automatic index ** case first. Hence compatible candidate WhereLoops never have a larger ** rSetup. Call this SETUP-INVARIANT */ assert( p->rSetup>=pTemplate->rSetup ); /* Any loop using an appliation-defined index (or PRIMARY KEY or ** UNIQUE constraint) with one or more == constraints is better | | > | 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 | /* whereLoopAddBtree() always generates and inserts the automatic index ** case first. Hence compatible candidate WhereLoops never have a larger ** rSetup. Call this SETUP-INVARIANT */ assert( p->rSetup>=pTemplate->rSetup ); /* Any loop using an appliation-defined index (or PRIMARY KEY or ** UNIQUE constraint) with one or more == constraints is better ** than an automatic index. Unless it is a skip-scan. */ if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && (pTemplate->nSkip)==0 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 && (p->prereq & pTemplate->prereq)==pTemplate->prereq ){ break; } |
︙ | ︙ | |||
4291 4292 4293 4294 4295 4296 4297 | WhereLoop *pNew; /* Template WhereLoop under construction */ WhereTerm *pTerm; /* A WhereTerm under consideration */ int opMask; /* Valid operators for constraints */ WhereScan scan; /* Iterator for WHERE terms */ Bitmask saved_prereq; /* Original value of pNew->prereq */ u16 saved_nLTerm; /* Original value of pNew->nLTerm */ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ | | | 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 | WhereLoop *pNew; /* Template WhereLoop under construction */ WhereTerm *pTerm; /* A WhereTerm under consideration */ int opMask; /* Valid operators for constraints */ WhereScan scan; /* Iterator for WHERE terms */ Bitmask saved_prereq; /* Original value of pNew->prereq */ u16 saved_nLTerm; /* Original value of pNew->nLTerm */ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ u16 saved_nSkip; /* Original value of pNew->nSkip */ u32 saved_wsFlags; /* Original value of pNew->wsFlags */ LogEst saved_nOut; /* Original value of pNew->nOut */ int iCol; /* Index of the column in the table */ int rc = SQLITE_OK; /* Return code */ LogEst rSize; /* Number of rows in the table */ LogEst rLogSize; /* Logarithm of table size */ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ |
︙ | ︙ | |||
4320 4321 4322 4323 4324 4325 4326 | assert( pNew->u.btree.nEq<pProbe->nColumn ); iCol = pProbe->aiColumn[pNew->u.btree.nEq]; pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, opMask, pProbe); saved_nEq = pNew->u.btree.nEq; | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 | assert( pNew->u.btree.nEq<pProbe->nColumn ); iCol = pProbe->aiColumn[pNew->u.btree.nEq]; pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, opMask, pProbe); saved_nEq = pNew->u.btree.nEq; saved_nSkip = pNew->nSkip; saved_nLTerm = pNew->nLTerm; saved_wsFlags = pNew->wsFlags; saved_prereq = pNew->prereq; saved_nOut = pNew->nOut; pNew->rSetup = 0; rSize = pProbe->aiRowLogEst[0]; rLogSize = estLog(rSize); for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ LogEst rCostIdx; LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ int nIn = 0; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 int nRecValid = pBuilder->nRecValid; |
︙ | ︙ | |||
4460 4461 4462 4463 4464 4465 4466 | pNew->nOut -= nIn; }else{ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 tRowcnt nOut = 0; if( nInMul==0 && pProbe->nSample && pNew->u.btree.nEq<=pProbe->nSampleCol | < | 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 | pNew->nOut -= nIn; }else{ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 tRowcnt nOut = 0; if( nInMul==0 && pProbe->nSample && pNew->u.btree.nEq<=pProbe->nSampleCol && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) ){ Expr *pExpr = pTerm->pExpr; if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){ testcase( eOp & WO_EQ ); testcase( eOp & WO_ISNULL ); rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); |
︙ | ︙ | |||
4528 4529 4530 4531 4532 4533 4534 | pNew->nOut = saved_nOut; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 pBuilder->nRecValid = nRecValid; #endif } pNew->prereq = saved_prereq; pNew->u.btree.nEq = saved_nEq; | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 | pNew->nOut = saved_nOut; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 pBuilder->nRecValid = nRecValid; #endif } pNew->prereq = saved_prereq; pNew->u.btree.nEq = saved_nEq; pNew->nSkip = saved_nSkip; pNew->wsFlags = saved_wsFlags; pNew->nOut = saved_nOut; pNew->nLTerm = saved_nLTerm; /* Consider using a skip-scan if there are no WHERE clause constraints ** available for the left-most terms of the index, and if the average ** number of repeats in the left-most terms is at least 18. ** ** The magic number 18 is selected on the basis that scanning 17 rows ** is almost always quicker than an index seek (even though if the index ** contains fewer than 2^17 rows we assume otherwise in other parts of ** the code). And, even if it is not, it should not be too much slower. ** On the other hand, the extra seeks could end up being significantly ** more expensive. */ assert( 42==sqlite3LogEst(18) ); if( saved_nEq==saved_nSkip && saved_nEq+1<pProbe->nKeyCol && pProbe->noSkipScan==0 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK ){ LogEst nIter; pNew->u.btree.nEq++; pNew->nSkip++; pNew->aLTerm[pNew->nLTerm++] = 0; pNew->wsFlags |= WHERE_SKIPSCAN; nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; pNew->nOut -= nIter; /* TUNING: Because uncertainties in the estimates for skip-scan queries, ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ nIter += 5; whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); pNew->nOut = saved_nOut; pNew->u.btree.nEq = saved_nEq; pNew->nSkip = saved_nSkip; pNew->wsFlags = saved_wsFlags; } return rc; } /* ** Return True if it is possible that pIndex might be useful in ** implementing the ORDER BY clause in pBuilder. ** |
︙ | ︙ | |||
4710 4711 4712 4713 4714 4715 4716 | /* Generate auto-index WhereLoops */ WhereTerm *pTerm; WhereTerm *pWCEnd = pWC->a + pWC->nTerm; for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ if( pTerm->prereqRight & pNew->maskSelf ) continue; if( termCanDriveIndex(pTerm, pSrc, 0) ){ pNew->u.btree.nEq = 1; | | | 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 | /* Generate auto-index WhereLoops */ WhereTerm *pTerm; WhereTerm *pWCEnd = pWC->a + pWC->nTerm; for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ if( pTerm->prereqRight & pNew->maskSelf ) continue; if( termCanDriveIndex(pTerm, pSrc, 0) ){ pNew->u.btree.nEq = 1; pNew->nSkip = 0; pNew->u.btree.pIndex = 0; pNew->nLTerm = 1; pNew->aLTerm[0] = pTerm; /* TUNING: One-time cost for computing the automatic index is ** estimated to be X*N*log2(N) where N is the number of rows in ** the table being indexed and where X is 7 (LogEst=28) for normal ** tables or 1.375 (LogEst=4) for views and subqueries. The value |
︙ | ︙ | |||
4751 4752 4753 4754 4755 4756 4757 | if( pProbe->pPartIdxWhere!=0 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ continue; /* Partial index inappropriate for this query */ } rSize = pProbe->aiRowLogEst[0]; pNew->u.btree.nEq = 0; | | | 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 | if( pProbe->pPartIdxWhere!=0 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ continue; /* Partial index inappropriate for this query */ } rSize = pProbe->aiRowLogEst[0]; pNew->u.btree.nEq = 0; pNew->nSkip = 0; pNew->nLTerm = 0; pNew->iSortIdx = 0; pNew->rSetup = 0; pNew->prereq = mExtra; pNew->nOut = rSize; pNew->u.btree.pIndex = pProbe; b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); |
︙ | ︙ | |||
5301 5302 5303 5304 5305 5306 5307 | rev = revSet = 0; distinctColumns = 0; for(j=0; j<nColumn; j++){ u8 bOnce; /* True to run the ORDER BY search loop */ /* Skip over == and IS NULL terms */ if( j<pLoop->u.btree.nEq | | | 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 | rev = revSet = 0; distinctColumns = 0; for(j=0; j<nColumn; j++){ u8 bOnce; /* True to run the ORDER BY search loop */ /* Skip over == and IS NULL terms */ if( j<pLoop->u.btree.nEq && pLoop->nSkip==0 && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0 ){ if( i & WO_ISNULL ){ testcase( isOrderDistinct ); isOrderDistinct = 0; } continue; |
︙ | ︙ | |||
5755 5756 5757 5758 5759 5760 5761 | } } } } } #ifdef WHERETRACE_ENABLED /* >=2 */ | | | 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 | } } } } } #ifdef WHERETRACE_ENABLED /* >=2 */ if( sqlite3WhereTrace & 0x02 ){ sqlite3DebugPrintf("---- after round %d ----\n", iLoop); for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); if( pTo->isOrdered>0 ){ sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); |
︙ | ︙ | |||
5874 5875 5876 5877 5878 5879 5880 | pTab = pItem->pTab; if( IsVirtual(pTab) ) return 0; if( pItem->zIndex ) return 0; iCur = pItem->iCursor; pWC = &pWInfo->sWC; pLoop = pBuilder->pNew; pLoop->wsFlags = 0; | | < | 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 | pTab = pItem->pTab; if( IsVirtual(pTab) ) return 0; if( pItem->zIndex ) return 0; iCur = pItem->iCursor; pWC = &pWInfo->sWC; pLoop = pBuilder->pNew; pLoop->wsFlags = 0; pLoop->nSkip = 0; pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0); if( pTerm ){ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; pLoop->aLTerm[0] = pTerm; pLoop->nLTerm = 1; pLoop->u.btree.nEq = 1; /* TUNING: Cost of a rowid lookup is 10 */ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ }else{ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pLoop->aLTermSpace==pLoop->aLTerm ); if( !IsUniqueIndex(pIdx) || pIdx->pPartIdxWhere!=0 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) ) continue; for(j=0; j<pIdx->nKeyCol; j++){ pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx); if( pTerm==0 ) break; |
︙ | ︙ | |||
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 | /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. */ notReady = ~(Bitmask)0; for(ii=0; ii<nTabList; ii++){ pLevel = &pWInfo->a[ii]; #ifndef SQLITE_OMIT_AUTOMATIC_INDEX if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ constructAutomaticIndex(pParse, &pWInfo->sWC, &pTabList->a[pLevel->iFrom], notReady, pLevel); if( db->mallocFailed ) goto whereBeginError; } #endif | > > > > | > > > > | 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 | /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. */ notReady = ~(Bitmask)0; for(ii=0; ii<nTabList; ii++){ int addrExplain; int wsFlags; pLevel = &pWInfo->a[ii]; wsFlags = pLevel->pWLoop->wsFlags; #ifndef SQLITE_OMIT_AUTOMATIC_INDEX if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ constructAutomaticIndex(pParse, &pWInfo->sWC, &pTabList->a[pLevel->iFrom], notReady, pLevel); if( db->mallocFailed ) goto whereBeginError; } #endif addrExplain = explainOneScan( pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags ); pLevel->addrBody = sqlite3VdbeCurrentAddr(v); notReady = codeOneLoopStart(pWInfo, ii, notReady); pWInfo->iContinue = pLevel->addrCont; if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){ addScanStatus(v, pTabList, pLevel, addrExplain); } } /* Done. */ VdbeModuleComment((v, "Begin WHERE-core")); return pWInfo; /* Jump here if malloc fails */ |
︙ | ︙ |
Changes to src/whereInt.h.
︙ | ︙ | |||
81 82 83 84 85 86 87 88 89 90 91 92 93 94 | u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ } *aInLoop; /* Information about each nested IN operator */ } in; /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */ Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ } u; struct WhereLoop *pWLoop; /* The selected WhereLoop object */ Bitmask notReady; /* FROM entries not usable at this level */ }; /* ** Each instance of this object represents an algorithm for evaluating one ** term of a join. Every term of the FROM clause will have at least ** one corresponding WhereLoop object (unless INDEXED BY constraints ** prevent a query solution - which is an error) and many terms of the | > > > | 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ } *aInLoop; /* Information about each nested IN operator */ } in; /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */ Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ } u; struct WhereLoop *pWLoop; /* The selected WhereLoop object */ Bitmask notReady; /* FROM entries not usable at this level */ #ifdef SQLITE_ENABLE_STMT_SCANSTATUS int addrVisit; /* Address at which row is visited */ #endif }; /* ** Each instance of this object represents an algorithm for evaluating one ** term of a join. Every term of the FROM clause will have at least ** one corresponding WhereLoop object (unless INDEXED BY constraints ** prevent a query solution - which is an error) and many terms of the |
︙ | ︙ | |||
111 112 113 114 115 116 117 | u8 iSortIdx; /* Sorting index number. 0==None */ LogEst rSetup; /* One-time setup cost (ex: create transient index) */ LogEst rRun; /* Cost of running each loop */ LogEst nOut; /* Estimated number of output rows */ union { struct { /* Information for internal btree tables */ u16 nEq; /* Number of equality constraints */ | < > | | 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | u8 iSortIdx; /* Sorting index number. 0==None */ LogEst rSetup; /* One-time setup cost (ex: create transient index) */ LogEst rRun; /* Cost of running each loop */ LogEst nOut; /* Estimated number of output rows */ union { struct { /* Information for internal btree tables */ u16 nEq; /* Number of equality constraints */ Index *pIndex; /* Index used, or NULL */ } btree; struct { /* Information for virtual tables */ int idxNum; /* Index number */ u8 needFree; /* True if sqlite3_free(idxStr) is needed */ i8 isOrdered; /* True if satisfies ORDER BY */ u16 omitMask; /* Terms that may be omitted */ char *idxStr; /* Index identifier string */ } vtab; } u; u32 wsFlags; /* WHERE_* flags describing the plan */ u16 nLTerm; /* Number of entries in aLTerm[] */ u16 nSkip; /* Number of NULL aLTerm[] entries */ /**** whereLoopXfer() copies fields above ***********************/ # define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot) u16 nLSlot; /* Number of slots allocated for aLTerm[] */ WhereTerm **aLTerm; /* WhereTerms used */ WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */ WhereTerm *aLTermSpace[3]; /* Initial aLTerm[] space */ }; /* This object holds the prerequisites and the cost of running a ** subquery on one operand of an OR operator in the WHERE clause. ** See WhereOrSet for additional information */ struct WhereOrCost { |
︙ | ︙ | |||
455 456 457 458 459 460 461 | #define WHERE_VIRTUALTABLE 0x00000400 /* WhereLoop.u.vtab is valid */ #define WHERE_IN_ABLE 0x00000800 /* Able to support an IN operator */ #define WHERE_ONEROW 0x00001000 /* Selects no more than one row */ #define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */ #define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */ #define WHERE_SKIPSCAN 0x00008000 /* Uses the skip-scan algorithm */ #define WHERE_UNQ_WANTED 0x00010000 /* WHERE_ONEROW would have been helpful*/ | > | 458 459 460 461 462 463 464 465 | #define WHERE_VIRTUALTABLE 0x00000400 /* WhereLoop.u.vtab is valid */ #define WHERE_IN_ABLE 0x00000800 /* Able to support an IN operator */ #define WHERE_ONEROW 0x00001000 /* Selects no more than one row */ #define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */ #define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */ #define WHERE_SKIPSCAN 0x00008000 /* Uses the skip-scan algorithm */ #define WHERE_UNQ_WANTED 0x00010000 /* WHERE_ONEROW would have been helpful*/ #define WHERE_PARTIALIDX 0x00020000 /* The automatic index is partial */ |
Changes to test/analyze8.test.
︙ | ︙ | |||
82 83 84 85 86 87 88 | } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}} # There are many more values of c between 0 and 100000 than there are # between 800000 and 900000. So t1c is more selective for the latter # range. # # Test 3.2 is a little unstable. It depends on the planner estimating | | | | | | 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}} # There are many more values of c between 0 and 100000 than there are # between 800000 and 900000. So t1c is more selective for the latter # range. # # Test 3.2 is a little unstable. It depends on the planner estimating # that (b BETWEEN 30 AND 34) will match more rows than (c BETWEEN # 800000 AND 900000). Which is a pretty close call (50 vs. 32), so # the planner could get it wrong with an unlucky set of samples. This # case happens to work, but others ("b BETWEEN 40 AND 44" for example) # will fail. # do_execsql_test 3.0 { SELECT count(*) FROM t1 WHERE b BETWEEN 30 AND 34; SELECT count(*) FROM t1 WHERE c BETWEEN 0 AND 100000; SELECT count(*) FROM t1 WHERE c BETWEEN 800000 AND 900000; } {50 376 32} do_test 3.1 { eqp {SELECT * FROM t1 WHERE b BETWEEN 30 AND 34 AND c BETWEEN 0 AND 100000} } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}} do_test 3.2 { eqp {SELECT * FROM t1 WHERE b BETWEEN 30 AND 34 AND c BETWEEN 800000 AND 900000} } {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}} do_test 3.3 { eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000} } {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}} do_test 3.4 { eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 800000 AND 900000} |
︙ | ︙ |
Changes to test/autoindex3.test.
︙ | ︙ | |||
13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # focus of this script is testing automatic index creation logic, # and specifically that an automatic index will not be created that # shadows a declared index. # set testdir [file dirname $argv0] source $testdir/tester.tcl # The t1b and t2d indexes are not very selective. It used to be that # the autoindex mechanism would create automatic indexes on t1(b) or # t2(d), make assumptions that they were reasonably selective, and use # them instead of t1b or t2d. But that would be cheating, because the # automatic index cannot be any more selective than the real index. # | > | 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | # focus of this script is testing automatic index creation logic, # and specifically that an automatic index will not be created that # shadows a declared index. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix autoindex3 # The t1b and t2d indexes are not very selective. It used to be that # the autoindex mechanism would create automatic indexes on t1(b) or # t2(d), make assumptions that they were reasonably selective, and use # them instead of t1b or t2d. But that would be cheating, because the # automatic index cannot be any more selective than the real index. # |
︙ | ︙ | |||
49 50 51 52 53 54 55 56 57 58 | } {/AUTO/} do_execsql_test autoindex3-130 { EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE d IS NULL AND x=y; } {/AUTO/} do_execsql_test autoindex3-140 { EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE d IN (5,b) AND x=y; } {/AUTO/} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | } {/AUTO/} do_execsql_test autoindex3-130 { EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE d IS NULL AND x=y; } {/AUTO/} do_execsql_test autoindex3-140 { EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE d IN (5,b) AND x=y; } {/AUTO/} reset_db do_execsql_test 210 { CREATE TABLE v(b, d, e); CREATE TABLE u(a, b, c); ANALYZE sqlite_master; INSERT INTO "sqlite_stat1" VALUES('u','uab','40000 400 1'); INSERT INTO "sqlite_stat1" VALUES('v','vbde','40000 400 1 1'); INSERT INTO "sqlite_stat1" VALUES('v','ve','40000 21'); CREATE INDEX uab on u(a, b); CREATE INDEX ve on v(e); CREATE INDEX vbde on v(b,d,e); DROP TABLE IF EXISTS sqlite_stat4; ANALYZE sqlite_master; } # At one point, SQLite was using the inferior plan: # # 0|0|1|SEARCH TABLE v USING INDEX ve (e>?) # 0|1|0|SEARCH TABLE u USING COVERING INDEX uab (ANY(a) AND b=?) # # on the basis that the real index "uab" must be better than the automatic # index. This is not right - a skip-scan is not necessarily better than an # automatic index scan. # do_eqp_test 220 { select count(*) from u, v where u.b = v.b and v.e > 34; } { 0 0 1 {SEARCH TABLE v USING INDEX ve (e>?)} 0 1 0 {SEARCH TABLE u USING AUTOMATIC COVERING INDEX (b=?)} } finish_test |
Added test/autoindex4.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | # 2014-10-24 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #************************************************************************* # # This file implements regression tests for SQLite library. The # focus of this script is testing automatic index creation logic, # and specifically creation of automatic partial indexes. # set testdir [file dirname $argv0] source $testdir/tester.tcl do_execsql_test autoindex4-1.0 { CREATE TABLE t1(a,b); INSERT INTO t1 VALUES(123,'abc'),(234,'def'),(234,'ghi'),(345,'jkl'); CREATE TABLE t2(x,y); INSERT INTO t2 VALUES(987,'zyx'),(654,'wvu'),(987,'rqp'); SELECT *, '|' FROM t1, t2 WHERE a=234 AND x=987 ORDER BY +b; } {234 def 987 rqp | 234 def 987 zyx | 234 ghi 987 rqp | 234 ghi 987 zyx |} do_execsql_test autoindex4-1.1 { SELECT *, '|' FROM t1, t2 WHERE a=234 AND x=555; } {} do_execsql_test autoindex4-1.2 { SELECT *, '|' FROM t1 LEFT JOIN t2 ON a=234 AND x=555; } {123 abc {} {} | 234 def {} {} | 234 ghi {} {} | 345 jkl {} {} |} do_execsql_test autoindex4-1.3 { SELECT *, '|' FROM t1 LEFT JOIN t2 ON x=555 WHERE a=234; } {234 def {} {} | 234 ghi {} {} |} do_execsql_test autoindex4-1.4 { SELECT *, '|' FROM t1 LEFT JOIN t2 WHERE a=234 AND x=555; } {} do_execsql_test autoindex4-2.0 { CREATE TABLE t3(e,f); INSERT INTO t3 VALUES(123,654),(555,444),(234,987); SELECT (SELECT count(*) FROM t1, t2 WHERE a=e AND x=f), e, f, '|' FROM t3 ORDER BY rowid; } {1 123 654 | 0 555 444 | 4 234 987 |} finish_test |
Changes to test/backup.test.
︙ | ︙ | |||
213 214 215 216 217 218 219 220 221 222 223 224 225 226 | CREATE INDEX ${file_dest}.i1 ON t1(a, b); " $db_dest for {set ii 0} {$ii < $rows_dest} {incr ii} { execsql " INSERT INTO ${file_dest}.t1 VALUES(1, randstr(1000,1000)) " $db_dest } } # Backup the source database. do_test backup-2.$iTest.1 { sqlite3_backup B $db_dest $file_dest db main while {[B step $nPagePerStep]=="SQLITE_OK"} {} B finish | > | 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | CREATE INDEX ${file_dest}.i1 ON t1(a, b); " $db_dest for {set ii 0} {$ii < $rows_dest} {incr ii} { execsql " INSERT INTO ${file_dest}.t1 VALUES(1, randstr(1000,1000)) " $db_dest } execsql COMMIT $db_dest } # Backup the source database. do_test backup-2.$iTest.1 { sqlite3_backup B $db_dest $file_dest db main while {[B step $nPagePerStep]=="SQLITE_OK"} {} B finish |
︙ | ︙ |
Added test/backup5.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | # 2014 November 13 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix backup5 forcedelete test2.db do_execsql_test 1.0 { CREATE TABLE t1(a, b); CREATE TABLE t2(a, b); INSERT INTO t2 VALUES(1, 1); INSERT INTO t2 VALUES(2, 2); INSERT INTO t2 VALUES(3, 3); } do_test 1.1 { forcecopy test.db test.db2 db eval { DROP TABLE t2; INSERT INTO t1 VALUES(zeroblob(1000), zeroblob(1000)); INSERT INTO t1 VALUES(randomblob(1000), randomblob(1000)); } } {} do_test 1.2 { sqlite3 db2 test.db2 set stmt [sqlite3_prepare_v2 db2 "SELECT * FROM t2" -1 dummy] sqlite3_step $stmt } {SQLITE_ROW} do_test 1.3 { list [catch { sqlite3_backup B db2 main db main } msg] $msg } {1 {sqlite3_backup_init() failed}} do_test 1.4 { sqlite3_errmsg db2 } {destination database is in use} do_test 1.5 { sqlite3_reset $stmt sqlite3_backup B db2 main db main B step 200 B finish } {SQLITE_OK} do_test 1.6 { list [sqlite3_step $stmt] [sqlite3_finalize $stmt] } {SQLITE_ERROR SQLITE_ERROR} do_test 1.7 { sqlite3_errmsg db2 } {no such table: t2} finish_test |
Changes to test/capi3.test.
︙ | ︙ | |||
908 909 910 911 912 913 914 | } } {0 {}} do_test capi3-11.9.3 { sqlite3_get_autocommit $DB } 1 do_test capi3-11.10 { sqlite3_step $STMT | | | | | 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 | } } {0 {}} do_test capi3-11.9.3 { sqlite3_get_autocommit $DB } 1 do_test capi3-11.10 { sqlite3_step $STMT } {SQLITE_ROW} ifcapable !autoreset { # If SQLITE_OMIT_AUTORESET is defined, then the statement must be # reset() before it can be passed to step() again. do_test capi3-11.11a { sqlite3_step $STMT } {SQLITE_MISUSE} do_test capi3-11.11b { sqlite3_reset $STMT } {SQLITE_ABORT} } do_test capi3-11.11 { sqlite3_step $STMT } {SQLITE_DONE} do_test capi3-11.12 { sqlite3_step $STMT sqlite3_step $STMT } {SQLITE_ROW} do_test capi3-11.13 { sqlite3_finalize $STMT } {SQLITE_OK} do_test capi3-11.14 { execsql { SELECT a FROM t2; } |
︙ | ︙ |
Changes to test/capi3c.test.
︙ | ︙ | |||
859 860 861 862 863 864 865 | } } {0 {}} do_test capi3c-11.9.3 { sqlite3_get_autocommit $DB } 1 do_test capi3c-11.10 { sqlite3_step $STMT | | | | | 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 | } } {0 {}} do_test capi3c-11.9.3 { sqlite3_get_autocommit $DB } 1 do_test capi3c-11.10 { sqlite3_step $STMT } {SQLITE_ROW} ifcapable !autoreset { # If SQLITE_OMIT_AUTORESET is defined, then the statement must be # reset() before it can be passed to step() again. do_test capi3-11.11a { sqlite3_step $STMT } {SQLITE_MISUSE} do_test capi3-11.11b { sqlite3_reset $STMT } {SQLITE_ABORT} } do_test capi3c-11.11 { sqlite3_step $STMT } {SQLITE_DONE} do_test capi3c-11.12 { sqlite3_step $STMT sqlite3_step $STMT } {SQLITE_ROW} do_test capi3c-11.13 { sqlite3_finalize $STMT } {SQLITE_OK} do_test capi3c-11.14 { execsql { SELECT a FROM t2; } |
︙ | ︙ |
Changes to test/capi3d.test.
︙ | ︙ | |||
151 152 153 154 155 156 157 | do_execsql_test capi3d-4.1 { CREATE TABLE t4(x,y); BEGIN; } do_test capi3d-4.2.1 { | < | 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | do_execsql_test capi3d-4.1 { CREATE TABLE t4(x,y); BEGIN; } do_test capi3d-4.2.1 { set ::s1 [sqlite3_prepare_v2 db "ROLLBACK" -1 notused] sqlite3_step $::s1 } {SQLITE_DONE} do_test capi3d-4.2.2 { sqlite3_stmt_busy $::s1 } {1} |
︙ | ︙ |
Changes to test/corruptH.test.
︙ | ︙ | |||
60 61 62 63 64 65 66 | } db close hexio_write test.db [expr {($r(t2)-1)*1024 + 11}] [format %.2X $r(t1)] sqlite3 db test.db } {} do_test 1.3 { | < | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | } db close hexio_write test.db [expr {($r(t2)-1)*1024 + 11}] [format %.2X $r(t1)] sqlite3 db test.db } {} do_test 1.3 { db eval { PRAGMA secure_delete=1 } list [catch { db eval { SELECT * FROM t1 WHERE a IN (1, 2) } { db eval { DELETE FROM t2 } } } msg] $msg } {1 {database disk image is malformed}} |
︙ | ︙ |
Added test/e_blobbytes.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | # 2014 October 30 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix e_blobbytes do_execsql_test 1.0 { CREATE TABLE q1(r INTEGER PRIMARY KEY, s TEXT); WITH d(a, b) AS ( SELECT 0, '' UNION ALL SELECT a+1, b||'.' FROM d WHERE a<10000 ) INSERT INTO q1 SELECT * FROM d; } # EVIDENCE-OF: R-07796-55423 Returns the size in bytes of the BLOB # accessible via the successfully opened BLOB handle in its only # argument. # proc check_blob_size {tn rowid bytes} { uplevel [list do_test $tn [subst -nocommands { sqlite3_blob_open db main q1 s $rowid 0 B set res [sqlite3_blob_bytes [set B]] sqlite3_blob_close [set B] set res }] $bytes] } check_blob_size 1.1 43 43 check_blob_size 1.2 391 391 check_blob_size 1.3 6349 6349 check_blob_size 1.4 2621 2621 check_blob_size 1.5 7771 7771 check_blob_size 1.6 7949 7949 check_blob_size 1.7 4374 4374 check_blob_size 1.8 2578 2578 check_blob_size 1.9 7004 7004 check_blob_size 1.10 2180 2180 check_blob_size 1.11 3796 3796 check_blob_size 1.12 7101 7101 check_blob_size 1.13 7449 7449 check_blob_size 1.14 7224 7224 check_blob_size 1.15 3038 3038 check_blob_size 1.16 1083 1083 check_blob_size 1.17 5157 5157 check_blob_size 1.18 6686 6686 check_blob_size 1.19 6592 6592 check_blob_size 1.20 0 0 # EVIDENCE-OF: R-53088-19343 The incremental blob I/O routines can only # read or overwriting existing blob content; they cannot change the size # of a blob. # # Also demonstrated in other e_blobXXX.test files. # do_test 2.1 { sqlite3_blob_open db main q1 s 86 1 B list [catch { sqlite3_blob_write $B 86 "1" 1 } msg] $msg } {1 SQLITE_ERROR} sqlite3_blob_close $B finish_test |
Added test/e_blobclose.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | # 2014 October 30 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix e_blobclose set dots [string repeat . 40] do_execsql_test 1.0 { CREATE TABLE x1(a INTEGER PRIMARY KEY, b DOTS); INSERT INTO x1 VALUES(-1, $dots); INSERT INTO x1 VALUES(-10, $dots); INSERT INTO x1 VALUES(-100, $dots); INSERT INTO x1 VALUES(-1000, $dots); INSERT INTO x1 VALUES(-10000, $dots); } # EVIDENCE-OF: R-03145-46390 This function closes an open BLOB handle. # # It's not clear how to test that a blob handle really is closed. # Attempting to use a closed blob handle will likely crash the process. # Assume here that if the SHARED lock on the db file is released, # the blob handle has been closed. # do_execsql_test 1.1 { PRAGMA lock_status } {main unlocked temp closed} sqlite3_blob_open db main x1 b -1 0 B do_execsql_test 1.2 { PRAGMA lock_status } {main shared temp closed} sqlite3_blob_close $B do_execsql_test 1.3 { PRAGMA lock_status } {main unlocked temp closed} # EVIDENCE-OF: R-34027-00617 If the blob handle being closed was opened # for read-write access, and if the database is in auto-commit mode and # there are no other open read-write blob handles or active write # statements, the current transaction is committed. # # 2.1.*: Transaction is not committed if there are other open # read-write blob handles. # # 2.2.*: Transaction is not committed if not in auto-commit mode. # # 2.3.*: Active write statements. # do_test 2.1.1 { sqlite3_blob_open db main x1 b -100 1 B1 sqlite3_blob_open db main x1 b -1000 1 B2 sqlite3_blob_open db main x1 b -10000 1 B3 sqlite3_blob_open db main x1 b -10000 0 B4 ;# B4 is read-only! execsql { PRAGMA lock_status } } {main reserved temp closed} do_test 2.1.2 { sqlite3_blob_close $B1 execsql { PRAGMA lock_status } } {main reserved temp closed} do_test 2.1.3 { sqlite3_blob_close $B2 execsql { PRAGMA lock_status } } {main reserved temp closed} do_test 2.1.4 { sqlite3_blob_close $B3 execsql { PRAGMA lock_status } } {main shared temp closed} do_test 2.1.5 { sqlite3_blob_close $B4 execsql { PRAGMA lock_status } } {main unlocked temp closed} do_test 2.2.1 { sqlite3_blob_open db main x1 b -100 1 B1 execsql { PRAGMA lock_status } } {main reserved temp closed} do_test 2.2.2 { execsql { BEGIN } sqlite3_blob_close $B1 execsql { PRAGMA lock_status } } {main reserved temp closed} do_test 2.2.3 { execsql { COMMIT } execsql { PRAGMA lock_status } } {main unlocked temp closed} proc val {} { sqlite3_blob_close $::B db eval { PRAGMA lock_status } } db func val val do_test 2.3.1 { sqlite3_blob_open db main x1 b -100 1 B execsql { PRAGMA lock_status } } {main reserved temp closed} do_test 2.3.2 { execsql { INSERT INTO x1 VALUES(15, val()) } execsql { PRAGMA lock_status } } {main unlocked temp closed} do_test 2.3.3 { execsql { SELECT * FROM x1 WHERE a = 15 } } {15 {main reserved temp closed}} # A reader does not inhibit commit. do_test 2.3.4 { sqlite3_blob_open db main x1 b -100 1 B execsql { PRAGMA lock_status } } {main reserved temp closed} do_test 2.3.5 { execsql { SELECT a, val() FROM x1 LIMIT 1 } } {-10000 {main shared temp closed}} do_test 3.1 { sqlite3_blob_open db main x1 b -10 1 B execsql { INSERT INTO x1 VALUES(1, 'abc'); SELECT * FROM x1 WHERE a=1; } } {1 abc} do_test 3.2 { sqlite3_blob_write $B 0 "abcdefghij" 10 execsql { SELECT * FROM x1 WHERE a=-10 } } {-10 abcdefghij..............................} do_test 3.3 { sqlite3 db2 test.db execsql { BEGIN ; SELECT * FROM x1 } db2 sqlite3_blob_close $B } {SQLITE_BUSY} # EVIDENCE-OF: R-41959-38737 Otherwise, if this function is passed a # valid open blob handle, the values returned by the sqlite3_errcode() # and sqlite3_errmsg() functions are set before returning. # do_test 3.4 { list [sqlite3_errcode db] [sqlite3_errmsg db] } {SQLITE_BUSY {database is locked}} # EVIDENCE-OF: R-37801-37633 The BLOB handle is closed unconditionally. # Even if this routine returns an error code, the handle is still # closed. # # Test that the lock has been released. Assume this means the handle # is closed, even though blob_close() returned SQLITE_BUSY. # do_execsql_test 3.4 { PRAGMA lock_status } {main unlocked temp closed} # EVIDENCE-OF: R-35111-05628 If an error occurs while committing the # transaction, an error code is returned and the transaction rolled # back. # # Row 1 is removed (it was inserted this transaction) and row -10 # is restored to its original state. Transaction has been rolled back. # do_execsql_test 3.5 { SELECT * FROM x1 WHERE a IN (1, -10); } {-10 ........................................} # EVIDENCE-OF: R-25894-51060 Calling this routine with a null pointer # (such as would be returned by a failed call to sqlite3_blob_open()) is # a harmless no-op. # do_test 4.0 { sqlite3_blob_close 0 } {} finish_test |
Added test/e_blobopen.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 | # 2014 October 30 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix e_blobopen forcedelete test.db2 do_execsql_test 1.0 { ATTACH 'test.db2' AS aux; CREATE TABLE main.t1(a INTEGER PRIMARY KEY, b TEXT, c BLOB); CREATE TEMP TABLE t1(a INTEGER PRIMARY KEY, b TEXT, c BLOB); CREATE TABLE aux.t1(a INTEGER PRIMARY KEY, b TEXT, c BLOB); CREATE TABLE main.x1(a INTEGER PRIMARY KEY, b TEXT, c BLOB); CREATE TEMP TABLE x2(a INTEGER PRIMARY KEY, b TEXT, c BLOB); CREATE TABLE aux.x3(a INTEGER PRIMARY KEY, b TEXT, c BLOB); INSERT INTO main.t1 VALUES(1, 'main one', X'0101'); INSERT INTO main.t1 VALUES(2, 'main two', X'0102'); INSERT INTO main.t1 VALUES(3, 'main three', X'0103'); INSERT INTO main.t1 VALUES(4, 'main four', X'0104'); INSERT INTO main.t1 VALUES(5, 'main five', X'0105'); INSERT INTO main.x1 VALUES(1, 'x main one', X'000101'); INSERT INTO main.x1 VALUES(2, 'x main two', X'000102'); INSERT INTO main.x1 VALUES(3, 'x main three', X'000103'); INSERT INTO main.x1 VALUES(4, 'x main four', X'000104'); INSERT INTO main.x1 VALUES(5, 'x main five', X'000105'); INSERT INTO temp.t1 VALUES(1, 'temp one', X'0201'); INSERT INTO temp.t1 VALUES(2, 'temp two', X'0202'); INSERT INTO temp.t1 VALUES(3, 'temp three', X'0203'); INSERT INTO temp.t1 VALUES(4, 'temp four', X'0204'); INSERT INTO temp.t1 VALUES(5, 'temp five', X'0205'); INSERT INTO temp.x2 VALUES(1, 'x temp one', X'000201'); INSERT INTO temp.x2 VALUES(2, 'x temp two', X'000202'); INSERT INTO temp.x2 VALUES(3, 'x temp three', X'000203'); INSERT INTO temp.x2 VALUES(4, 'x temp four', X'000204'); INSERT INTO temp.x2 VALUES(5, 'x temp five', X'000205'); INSERT INTO aux.t1 VALUES(1, 'aux one', X'0301'); INSERT INTO aux.t1 VALUES(2, 'aux two', X'0302'); INSERT INTO aux.t1 VALUES(3, 'aux three', X'0303'); INSERT INTO aux.t1 VALUES(4, 'aux four', X'0304'); INSERT INTO aux.t1 VALUES(5, 'aux five', X'0305'); INSERT INTO aux.x3 VALUES(1, 'x aux one', X'000301'); INSERT INTO aux.x3 VALUES(2, 'x aux two', X'000302'); INSERT INTO aux.x3 VALUES(3, 'x aux three', X'000303'); INSERT INTO aux.x3 VALUES(4, 'x aux four', X'000304'); INSERT INTO aux.x3 VALUES(5, 'x aux five', X'000305'); } #------------------------------------------------------------------------- # EVIDENCE-OF: R-37639-55938 This interfaces opens a handle to the BLOB # located in row iRow, column zColumn, table zTable in database zDb; in # other words, the same BLOB that would be selected by: SELECT zColumn # FROM zDb.zTable WHERE rowid = iRow; # proc read_blob {zDb zTab zCol iRow} { sqlite3_blob_open db $zDb $zTab $zCol $iRow 0 B set nByte [sqlite3_blob_bytes $B] set data [sqlite3_blob_read $B 0 $nByte] sqlite3_blob_close $B return $data } do_test 1.1.1 { read_blob main t1 b 1 } "main one" do_test 1.1.2 { read_blob main t1 c 1 } "\01\01" do_test 1.1.3 { read_blob temp t1 b 1 } "temp one" do_test 1.1.4 { read_blob temp t1 c 1 } "\02\01" do_test 1.1.6 { read_blob aux t1 b 1 } "aux one" do_test 1.1.7 { read_blob aux t1 c 1 } "\03\01" do_test 1.2.1 { read_blob main t1 b 4 } "main four" do_test 1.2.2 { read_blob main t1 c 4 } "\01\04" do_test 1.2.3 { read_blob temp t1 b 4 } "temp four" do_test 1.2.4 { read_blob temp t1 c 4 } "\02\04" do_test 1.2.6 { read_blob aux t1 b 4 } "aux four" do_test 1.2.7 { read_blob aux t1 c 4 } "\03\04" do_test 1.3.1 { read_blob main x1 b 2 } "x main two" do_test 1.3.2 { read_blob main x1 c 2 } "\00\01\02" do_test 1.3.3 { read_blob temp x2 b 2 } "x temp two" do_test 1.3.4 { read_blob temp x2 c 2 } "\00\02\02" do_test 1.3.6 { read_blob aux x3 b 2 } "x aux two" do_test 1.3.7 { read_blob aux x3 c 2 } "\00\03\02" #------------------------------------------------------------------------- # EVIDENCE-OF: R-27234-05761 Parameter zDb is not the filename that # contains the database, but rather the symbolic name of the database. # For attached databases, this is the name that appears after the AS # keyword in the ATTACH statement. For the main database file, the # database name is "main". For TEMP tables, the database name is "temp". # # The test cases immediately above demonstrate that the database name # for the main db, for TEMP tables and for those in attached databases # is correct. The following tests check that filenames cannot be # used as well. # do_test 2.1 { list [catch { sqlite3_blob_open db "test.db" t1 b 1 0 B } msg] $msg } {1 SQLITE_ERROR} do_test 2.2 { list [catch { sqlite3_blob_open db "test.db2" t1 b 1 0 B } msg] $msg } {1 SQLITE_ERROR} #------------------------------------------------------------------------- # EVIDENCE-OF: R-50854-53979 If the flags parameter is non-zero, then # the BLOB is opened for read and write access. # # EVIDENCE-OF: R-03922-41160 If the flags parameter is zero, the BLOB is # opened for read-only access. # foreach {tn iRow flags} { 1 1 0 2 2 1 3 3 -1 4 4 2147483647 5 5 -2147483648 } { do_test 3.$tn.1 { sqlite3_blob_open db main x1 c $iRow $flags B set n [sqlite3_blob_bytes $B] sqlite3_blob_read $B 0 $n } [binary format ccc 0 1 $iRow] if {$flags==0} { # Blob was opened for read-only access - writing returns an error. do_test 3.$tn.2 { list [catch { sqlite3_blob_write $B 0 xxx 3 } msg] $msg } {1 SQLITE_READONLY} do_execsql_test 3.$tn.3 { SELECT c FROM x1 WHERE a=$iRow; } [binary format ccc 0 1 $iRow] } else { # Blob was opened for read/write access - writing succeeds do_test 3.$tn.4 { list [catch { sqlite3_blob_write $B 0 xxx 3 } msg] $msg } {0 {}} do_execsql_test 3.$tn.5 { SELECT c FROM x1 WHERE a=$iRow; } {xxx} } sqlite3_blob_close $B } #------------------------------------------------------------------------- # reset_db do_execsql_test 4.0 { CREATE TABLE t1(x, y); INSERT INTO t1 VALUES('abcd', 152); INSERT INTO t1 VALUES(NULL, X'00010203'); INSERT INTO t1 VALUES('', 154.2); CREATE TABLE t2(x PRIMARY KEY, y) WITHOUT ROWID; INSERT INTO t2 VALUES(1, 'blob'); CREATE TABLE t3(a PRIMARY KEY, b, c, d, e, f, UNIQUE(e, f)); INSERT INTO t3 VALUES('aaaa', 'bbbb', 'cccc', 'dddd', 'eeee', 'ffff'); CREATE INDEX t3b ON t3(b); CREATE TABLE p1(x PRIMARY KEY); INSERT INTO p1 VALUES('abc'); CREATE TABLE c1(a INTEGER PRIMARY KEY, b REFERENCES p1); INSERT INTO c1 VALUES(45, 'abc'); } proc test_blob_open {tn zDb zTab zCol iRow flags errcode errmsg} { global B set B "0x1234" if {$errcode=="SQLITE_OK"} { set expected "0 {}" } else { set expected "1 $errcode" } set ::res [list [ catch { sqlite3_blob_open db $zDb $zTab $zCol $iRow $flags B } msg ] $msg] do_test 4.$tn.1 { set ::res } $expected # EVIDENCE-OF: R-08940-21305 Unless it returns SQLITE_MISUSE, this # function sets the database connection error code and message # accessible via sqlite3_errcode() and sqlite3_errmsg() and related # functions. # # This proc (test_blob_open) is used below to test various error and # non-error conditions. But never SQLITE_MISUSE conditions. So these # test cases are considered as partly verifying the requirement above. # See below for a test of the SQLITE_MISUSE case. # do_test 4.$tn.2 { sqlite3_errcode db } $errcode do_test 4.$tn.3 { sqlite3_errmsg db } $errmsg # EVIDENCE-OF: R-31086-35521 On success, SQLITE_OK is returned and the # new BLOB handle is stored in *ppBlob. Otherwise an error code is # returned and, unless the error code is SQLITE_MISUSE, *ppBlob is set # to NULL. # do_test 4.$tn.4 { expr {$B == "0"} } [expr {$errcode != "SQLITE_OK"}] # EVIDENCE-OF: R-63421-15521 This means that, provided the API is not # misused, it is always safe to call sqlite3_blob_close() on *ppBlob # after this function it returns. do_test 4.$tn.5 { sqlite3_blob_close $B } {} } # EVIDENCE-OF: R-31204-44780 Database zDb does not exist test_blob_open 1 nosuchdb t1 x 1 0 SQLITE_ERROR "no such table: nosuchdb.t1" # EVIDENCE-OF: R-28676-08005 Table zTable does not exist within database zDb test_blob_open 2 main tt1 x 1 0 SQLITE_ERROR "no such table: main.tt1" # EVIDENCE-OF: R-40134-30296 Table zTable is a WITHOUT ROWID table test_blob_open 3 main t2 y 1 0 SQLITE_ERROR \ "cannot open table without rowid: t2" # EVIDENCE-OF: R-56376-21261 Column zColumn does not exist test_blob_open 4 main t1 z 2 0 SQLITE_ERROR "no such column: \"z\"" # EVIDENCE-OF: R-28258-23166 Row iRow is not present in the table test_blob_open 5 main t1 y 6 0 SQLITE_ERROR "no such rowid: 6" # EVIDENCE-OF: R-11683-62380 The specified column of row iRow contains a # value that is not a TEXT or BLOB value test_blob_open 6 main t1 x 2 0 SQLITE_ERROR "cannot open value of type null" test_blob_open 7 main t1 y 1 0 SQLITE_ERROR "cannot open value of type integer" test_blob_open 8 main t1 y 3 0 SQLITE_ERROR "cannot open value of type real" # EVIDENCE-OF: R-34146-30782 Column zColumn is part of an index, PRIMARY # KEY or UNIQUE constraint and the blob is being opened for read/write # access # # Test cases 8.1.* show that such columns can be opened for read-access. # Tests 8.2.* show that read-write access is different. Columns "c" and "c" # are not part of an index, PK or UNIQUE constraint, so they work in both # cases. # test_blob_open 8.1.1 main t3 a 1 0 SQLITE_OK "not an error" test_blob_open 8.1.2 main t3 b 1 0 SQLITE_OK "not an error" test_blob_open 8.1.3 main t3 c 1 0 SQLITE_OK "not an error" test_blob_open 8.1.4 main t3 d 1 0 SQLITE_OK "not an error" test_blob_open 8.1.5 main t3 e 1 0 SQLITE_OK "not an error" test_blob_open 8.1.6 main t3 f 1 0 SQLITE_OK "not an error" set cannot "cannot open indexed column for writing" test_blob_open 8.2.1 main t3 a 1 8 SQLITE_ERROR $cannot test_blob_open 8.2.2 main t3 b 1 8 SQLITE_ERROR $cannot test_blob_open 8.2.3 main t3 c 1 8 SQLITE_OK "not an error" test_blob_open 8.2.4 main t3 d 1 8 SQLITE_OK "not an error" test_blob_open 8.2.5 main t3 e 1 8 SQLITE_ERROR $cannot test_blob_open 8.2.6 main t3 f 1 8 SQLITE_ERROR $cannot # EVIDENCE-OF: R-50117-55204 Foreign key constraints are enabled, column # zColumn is part of a child key definition and the blob is being opened # for read/write access # # 9.1: FK disabled, read-only access. # 9.2: FK disabled, read-only access. # 9.3: FK enabled, read/write access. # 9.4: FK enabled, read/write access. # test_blob_open 9.1 main c1 b 45 0 SQLITE_OK "not an error" test_blob_open 9.2 main c1 b 45 1 SQLITE_OK "not an error" execsql { PRAGMA foreign_keys = ON } test_blob_open 9.3 main c1 b 45 0 SQLITE_OK "not an error" test_blob_open 9.4 main c1 b 45 1 SQLITE_ERROR \ "cannot open foreign key column for writing" #------------------------------------------------------------------------- # EVIDENCE-OF: R-08940-21305 Unless it returns SQLITE_MISUSE, this # function sets the database connection error code and message # accessible via sqlite3_errcode() and sqlite3_errmsg() and related # functions. # # This requirement is partially verified by the many uses of test # command [test_blob_open] above. All that is left is to verify the # SQLITE_MISUSE case. # # SQLITE_MISUSE is only returned if SQLITE_ENABLE_API_ARMOR is defined # during compilation. # ifcapable api_armor { sqlite3_blob_open db main t1 x 1 0 B do_test 10.1.1 { list [catch {sqlite3_blob_open $B main t1 x 1 0 B2} msg] $msg } {1 SQLITE_MISUSE} do_test 10.1.2 { list [sqlite3_errcode db] [sqlite3_errmsg db] } {SQLITE_OK {not an error}} sqlite3_blob_close $B do_test 10.2.1 { list [catch {sqlite3_blob_open db main {} x 1 0 B} msg] $msg } {1 SQLITE_MISUSE} do_test 10.2.2 { list [sqlite3_errcode db] [sqlite3_errmsg db] } {SQLITE_OK {not an error}} } #------------------------------------------------------------------------- # EVIDENCE-OF: R-50542-62589 If the row that a BLOB handle points to is # modified by an UPDATE, DELETE, or by ON CONFLICT side-effects then the # BLOB handle is marked as "expired". This is true if any column of the # row is changed, even a column other than the one the BLOB handle is # open on. # # EVIDENCE-OF: R-48367-20048 Calls to sqlite3_blob_read() and # sqlite3_blob_write() for an expired BLOB handle fail with a return # code of SQLITE_ABORT. # # 11.2: read-only handle, DELETE. # 11.3: read-only handle, UPDATE. # 11.4: read-only handle, REPLACE. # 11.5: read/write handle, DELETE. # 11.6: read/write handle, UPDATE. # 11.7: read/write handle, REPLACE. # do_execsql_test 11.1 { CREATE TABLE b1(a INTEGER PRIMARY KEY, b, c UNIQUE); INSERT INTO b1 VALUES(1, '1234567890', 1); INSERT INTO b1 VALUES(2, '1234567890', 2); INSERT INTO b1 VALUES(3, '1234567890', 3); INSERT INTO b1 VALUES(4, '1234567890', 4); INSERT INTO b1 VALUES(5, '1234567890', 5); INSERT INTO b1 VALUES(6, '1234567890', 6); CREATE TABLE b2(a INTEGER PRIMARY KEY, b, c UNIQUE); INSERT INTO b2 VALUES(1, '1234567890', 1); INSERT INTO b2 VALUES(2, '1234567890', 2); INSERT INTO b2 VALUES(3, '1234567890', 3); INSERT INTO b2 VALUES(4, '1234567890', 4); INSERT INTO b2 VALUES(5, '1234567890', 5); INSERT INTO b2 VALUES(6, '1234567890', 6); } do_test 11.2.1 { sqlite3_blob_open db main b1 b 2 0 B sqlite3_blob_read $B 0 10 } {1234567890} do_test 11.2.2 { # Deleting a different row does not invalidate the blob handle. execsql { DELETE FROM b1 WHERE a = 1 } sqlite3_blob_read $B 0 10 } {1234567890} do_test 11.2.3 { execsql { DELETE FROM b1 WHERE a = 2 } list [catch { sqlite3_blob_read $B 0 10 } msg] $msg } {1 SQLITE_ABORT} do_test 11.2.4 { sqlite3_blob_close $B } {} do_test 11.3.1 { sqlite3_blob_open db main b1 b 3 0 B sqlite3_blob_read $B 0 10 } {1234567890} do_test 11.3.2 { # Updating a different row execsql { UPDATE b1 SET c = 42 WHERE a=4 } sqlite3_blob_read $B 0 10 } {1234567890} do_test 11.3.3 { execsql { UPDATE b1 SET c = 43 WHERE a=3 } list [catch { sqlite3_blob_read $B 0 10 } msg] $msg } {1 SQLITE_ABORT} do_test 11.3.4 { sqlite3_blob_close $B } {} do_test 11.4.1 { sqlite3_blob_open db main b1 b 6 0 B sqlite3_blob_read $B 0 10 } {1234567890} do_test 11.4.2 { # Replace a different row execsql { INSERT OR REPLACE INTO b1 VALUES(10, 'abcdefghij', 5) } sqlite3_blob_read $B 0 10 } {1234567890} do_test 11.4.3 { execsql { INSERT OR REPLACE INTO b1 VALUES(11, 'abcdefghij', 6) } list [catch { sqlite3_blob_read $B 0 10 } msg] $msg } {1 SQLITE_ABORT} do_test 11.4.4 { sqlite3_blob_close $B } {} do_test 11.4.1 { sqlite3_blob_open db main b2 b 2 1 B sqlite3_blob_write $B 0 "abcdefghij" } {} do_test 11.4.2 { # Deleting a different row does not invalidate the blob handle. execsql { DELETE FROM b2 WHERE a = 1 } sqlite3_blob_write $B 0 "ABCDEFGHIJ" } {} do_test 11.4.3 { execsql { DELETE FROM b2 WHERE a = 2 } list [catch { sqlite3_blob_write $B 0 "0987654321" } msg] $msg } {1 SQLITE_ABORT} do_test 11.4.4 { sqlite3_blob_close $B } {} do_test 11.5.1 { sqlite3_blob_open db main b2 b 3 1 B sqlite3_blob_write $B 0 "abcdefghij" } {} do_test 11.5.2 { # Updating a different row execsql { UPDATE b2 SET c = 42 WHERE a=4 } sqlite3_blob_write $B 0 "ABCDEFGHIJ" } {} do_test 11.5.3 { execsql { UPDATE b2 SET c = 43 WHERE a=3 } list [catch { sqlite3_blob_write $B 0 "0987654321" } msg] $msg } {1 SQLITE_ABORT} do_test 11.5.4 { sqlite3_blob_close $B } {} do_test 11.6.1 { sqlite3_blob_open db main b2 b 6 1 B sqlite3_blob_write $B 0 "abcdefghij" } {} do_test 11.6.2 { # Replace a different row execsql { INSERT OR REPLACE INTO b2 VALUES(10, 'abcdefghij', 5) } sqlite3_blob_write $B 0 "ABCDEFGHIJ" } {} do_test 11.6.3 { execsql { INSERT OR REPLACE INTO b2 VALUES(11, 'abcdefghij', 6) } list [catch { sqlite3_blob_write $B 0 "0987654321" } msg] $msg } {1 SQLITE_ABORT} do_test 11.6.4 { sqlite3_blob_close $B } {} #------------------------------------------------------------------------- # EVIDENCE-OF: R-45408-40694 Changes written into a BLOB prior to the # BLOB expiring are not rolled back by the expiration of the BLOB. Such # changes will eventually commit if the transaction continues to # completion. # do_execsql_test 12.1 { CREATE TABLE b3(x INTEGER PRIMARY KEY, y TEXT, z INTEGER); INSERT INTO b3 VALUES(22, '..........', NULL); } do_test 12.2 { sqlite3_blob_open db main b3 y 22 1 B sqlite3_blob_write $B 0 "xxxxx" 5 } {} do_execsql_test 12.3 { UPDATE b3 SET z = 'not null'; } do_test 12.4 { list [catch {sqlite3_blob_write $B 5 "xxxxx" 5} msg] $msg } {1 SQLITE_ABORT} do_execsql_test 12.5 { SELECT * FROM b3; } {22 xxxxx..... {not null}} do_test 12.5 { sqlite3_blob_close $B } {} do_execsql_test 12.6 { SELECT * FROM b3; } {22 xxxxx..... {not null}} #------------------------------------------------------------------------- # EVIDENCE-OF: R-58813-55036 The sqlite3_bind_zeroblob() and # sqlite3_result_zeroblob() interfaces and the built-in zeroblob SQL # function may be used to create a zero-filled blob to read or write # using the incremental-blob interface. # do_execsql_test 13.1 { CREATE TABLE c2(i INTEGER PRIMARY KEY, j); INSERT INTO c2 VALUES(10, zeroblob(24)); } do_test 13.2 { set stmt [sqlite3_prepare_v2 db "INSERT INTO c2 VALUES(11, ?)" -1] sqlite3_bind_zeroblob $stmt 1 45 sqlite3_step $stmt sqlite3_finalize $stmt } {SQLITE_OK} # The blobs can be read: # do_test 13.3.1 { sqlite3_blob_open db main c2 j 10 1 B sqlite3_blob_open db main c2 j 11 1 B2 list [sqlite3_blob_bytes $B] [sqlite3_blob_bytes $B2] } {24 45} do_test 13.3.2 { sqlite3_blob_read $B 0 24 } [string repeat [binary format c 0] 24] do_test 13.3.3 { sqlite3_blob_read $B2 0 45 } [string repeat [binary format c 0] 45] # And also written: # do_test 13.4.1 { sqlite3_blob_write $B 0 [string repeat [binary format c 1] 24] } {} do_test 13.4.2 { sqlite3_blob_write $B2 0 [string repeat [binary format c 1] 45] } {} do_test 13.5 { sqlite3_blob_close $B sqlite3_blob_close $B2 execsql { SELECT j FROM c2 } } [list \ [string repeat [binary format c 1] 24] \ [string repeat [binary format c 1] 45] \ ] finish_test |
Added test/e_blobwrite.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | # 2014 October 30 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix e_blobwrite #-------------------------------------------------------------------------- # EVIDENCE-OF: R-62898-22698 This function is used to write data into an # open BLOB handle from a caller-supplied buffer. N bytes of data are # copied from the buffer Z into the open BLOB, starting at offset # iOffset. # set dots [string repeat . 40] do_execsql_test 1.0 { CREATE TABLE t1(a INTEGER PRIMARY KEY, t TEXT); INSERT INTO t1 VALUES(-1, $dots); INSERT INTO t1 VALUES(-2, $dots); INSERT INTO t1 VALUES(-3, $dots); INSERT INTO t1 VALUES(-4, $dots); INSERT INTO t1 VALUES(-5, $dots); INSERT INTO t1 VALUES(-6, $dots); } proc blob_write_test {tn id iOffset blob nData final} { sqlite3_blob_open db main t1 t $id 1 B # EVIDENCE-OF: R-45864-01884 On success, sqlite3_blob_write() returns # SQLITE_OK. Otherwise, an error code or an extended error code is # returned. # # This block tests the SQLITE_OK case in the requirement above (the # Tcl sqlite3_blob_write() wrapper uses an empty string in place of # "SQLITE_OK"). The error cases are tested by the "blob_write_error_test" # tests below. # set res [sqlite3_blob_write $B $iOffset $blob $nData] uplevel [list do_test $tn.1 [list set {} $res] {}] sqlite3_blob_close $B uplevel [list do_execsql_test $tn.3 "SELECT t FROM t1 WHERE a=$id" $final] } set blob "0123456789012345678901234567890123456789" blob_write_test 1.1 -1 0 $blob 10 { 0123456789.............................. } blob_write_test 1.2 -2 8 $blob 10 { ........0123456789...................... } blob_write_test 1.3 -3 8 $blob 1 { ........0............................... } blob_write_test 1.4 -4 18 $blob 22 { ..................0123456789012345678901 } blob_write_test 1.5 -5 18 $blob 0 { ........................................ } blob_write_test 1.6 -6 0 $blob 40 { 0123456789012345678901234567890123456789 } proc blob_write_error_test {tn B iOffset blob nData errcode errmsg} { # In cases where the underlying sqlite3_blob_write() function returns # SQLITE_OK, the Tcl wrapper returns an empty string. If the underlying # function returns an error, the Tcl wrapper throws an exception with # the error code as the Tcl exception message. # if {$errcode=="SQLITE_OK"} { set ret "" set isError 0 } else { set ret $errcode set isError 1 } set cmd [list sqlite3_blob_write $B $iOffset $blob $nData] uplevel [list do_test $tn.1 [subst -nocommands { list [catch {$cmd} msg] [set msg] }] [list $isError $ret]] # EVIDENCE-OF: R-34782-18311 Unless SQLITE_MISUSE is returned, this # function sets the database connection error code and message # accessible via sqlite3_errcode() and sqlite3_errmsg() and related # functions. # if {$errcode == "SQLITE_MISUSE"} { error "test proc misuse!" } uplevel [list do_test $tn.2 [list sqlite3_errcode db] $errcode] uplevel [list do_test $tn.3 [list sqlite3_errmsg db] $errmsg] } do_execsql_test 2.0 { CREATE TABLE t2(a TEXT, b INTEGER PRIMARY KEY); INSERT INTO t2 VALUES($dots, 43); INSERT INTO t2 VALUES($dots, 44); INSERT INTO t2 VALUES($dots, 45); } # EVIDENCE-OF: R-63341-57517 If the BLOB handle passed as the first # argument was not opened for writing (the flags parameter to # sqlite3_blob_open() was zero), this function returns SQLITE_READONLY. # sqlite3_blob_open db main t2 a 43 0 B blob_write_error_test 2.1 $B 0 $blob 10 \ SQLITE_READONLY {attempt to write a readonly database} sqlite3_blob_close $B # EVIDENCE-OF: R-29804-27366 If offset iOffset is less than N bytes from # the end of the BLOB, SQLITE_ERROR is returned and no data is written. # sqlite3_blob_open db main t2 a 44 3 B blob_write_error_test 2.2.1 $B 31 $blob 10 \ SQLITE_ERROR {SQL logic error or missing database} # Make a successful write to the blob handle. This shows that the # sqlite3_errcode() and sqlite3_errmsg() values are set even if the # blob_write() call succeeds (see requirement in the [blob_write_error_test] # proc). blob_write_error_test 2.2.1 $B 30 $blob 10 SQLITE_OK {not an error} # EVIDENCE-OF: R-58570-38916 If N or iOffset are less than zero # SQLITE_ERROR is returned and no data is written. # blob_write_error_test 2.2.2 $B 31 $blob -1 \ SQLITE_ERROR {SQL logic error or missing database} blob_write_error_test 2.2.3 $B 20 $blob 10 SQLITE_OK {not an error} blob_write_error_test 2.2.4 $B -1 $blob 10 \ SQLITE_ERROR {SQL logic error or missing database} sqlite3_blob_close $B # EVIDENCE-OF: R-20958-54138 An attempt to write to an expired BLOB # handle fails with an error code of SQLITE_ABORT. # do_test 2.3 { sqlite3_blob_open db main t2 a 43 0 B execsql { DELETE FROM t2 WHERE b=43 } } {} blob_write_error_test 2.3.1 $B 5 $blob 5 \ SQLITE_ABORT {callback requested query abort} do_test 2.3.2 { execsql { SELECT 1, 2, 3 } sqlite3_errcode db } {SQLITE_OK} blob_write_error_test 2.3.3 $B 5 $blob 5 \ SQLITE_ABORT {callback requested query abort} sqlite3_blob_close $B # EVIDENCE-OF: R-08382-59936 Writes to the BLOB that occurred before the # BLOB handle expired are not rolled back by the expiration of the # handle, though of course those changes might have been overwritten by # the statement that expired the BLOB handle or by other independent # statements. # # 3.1.*: not rolled back, # 3.2.*: overwritten. # do_execsql_test 3.0 { CREATE TABLE t3(i INTEGER PRIMARY KEY, j TEXT, k TEXT); INSERT INTO t3 VALUES(1, $dots, $dots); INSERT INTO t3 VALUES(2, $dots, $dots); SELECT * FROM t3 WHERE i=1; } { 1 ........................................ ........................................ } sqlite3_blob_open db main t3 j 1 1 B blob_write_error_test 3.1.1 $B 5 $blob 10 SQLITE_OK {not an error} do_execsql_test 3.1.2 { UPDATE t3 SET k = 'xyz' WHERE i=1; SELECT * FROM t3 WHERE i=1; } { 1 .....0123456789......................... xyz } blob_write_error_test 3.1.3 $B 15 $blob 10 \ SQLITE_ABORT {callback requested query abort} sqlite3_blob_close $B do_execsql_test 3.1.4 { SELECT * FROM t3 WHERE i=1; } { 1 .....0123456789......................... xyz } sqlite3_blob_open db main t3 j 2 1 B blob_write_error_test 3.2.1 $B 5 $blob 10 SQLITE_OK {not an error} do_execsql_test 3.2.2 { UPDATE t3 SET j = 'xyz' WHERE i=2; SELECT * FROM t3 WHERE i=2; } { 2 xyz ........................................ } blob_write_error_test 3.2.3 $B 15 $blob 10 \ SQLITE_ABORT {callback requested query abort} sqlite3_blob_close $B do_execsql_test 3.2.4 { SELECT * FROM t3 WHERE i=2; } { 2 xyz ........................................ } finish_test |
Added test/e_changes.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 | # 2011 October 28 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix e_changes # Like [do_execsql_test], except it appends the value returned by # [db changes] to the result of executing the SQL script. # proc do_changes_test {tn sql res} { uplevel [list \ do_test $tn "concat \[execsql {$sql}\] \[db changes\]" $res ] } #-------------------------------------------------------------------------- # EVIDENCE-OF: R-15996-49369 This function returns the number of rows # modified, inserted or deleted by the most recently completed INSERT, # UPDATE or DELETE statement on the database connection specified by the # only parameter. # do_execsql_test 1.0 { CREATE TABLE t1(a, b); CREATE TABLE t2(x, y, PRIMARY KEY(x, y)) WITHOUT ROWID; CREATE INDEX i1 ON t1(a); CREATE INDEX i2 ON t2(y); } foreach {tn schema} { 1 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(b); } 2 { CREATE TABLE t1(a, b, PRIMARY KEY(a, b)) WITHOUT ROWID; CREATE INDEX i1 ON t1(b); } } { reset_db execsql $schema # Insert 1 row. do_changes_test 1.$tn.1 { INSERT INTO t1 VALUES(0, 0) } 1 # Insert 10 rows. do_changes_test 1.$tn.2 { WITH rows(i, j) AS ( SELECT 1, 1 UNION ALL SELECT i+1, j+i FROM rows WHERE i<10 ) INSERT INTO t1 SELECT * FROM rows } 10 # Modify 5 rows. do_changes_test 1.$tn.3 { UPDATE t1 SET b=b+1 WHERE a<5; } 5 # Delete 4 rows do_changes_test 1.$tn.4 { DELETE FROM t1 WHERE a>6 } 4 # Check the "on the database connecton specified" part of hte # requirement - changes made by other connections do not show up in # the return value of sqlite3_changes(). do_test 1.$tn.5 { sqlite3 db2 test.db execsql { INSERT INTO t1 VALUES(-1, -1) } db2 db2 changes } 1 do_test 1.$tn.6 { db changes } 4 db2 close # Test that statements that modify no rows because they hit UNIQUE # constraints set the sqlite3_changes() value to 0. Regardless of # whether or not they are executed inside an explicit transaction. # # 1.$tn.8-9: outside of a transaction # 1.$tn.10-12: inside a transaction # do_changes_test 1.$tn.7 { CREATE UNIQUE INDEX i2 ON t1(a); } 4 do_catchsql_test 1.$tn.8 { INSERT INTO t1 VALUES('a', 0), ('b', 0), ('c', 0), (0, 11); } {1 {UNIQUE constraint failed: t1.a}} do_test 1.$tn.9 { db changes } 0 do_catchsql_test 1.$tn.10 { BEGIN; INSERT INTO t1 VALUES('a', 0), ('b', 0), ('c', 0), (0, 11); } {1 {UNIQUE constraint failed: t1.a}} do_test 1.$tn.11 { db changes } 0 do_changes_test 1.$tn.12 COMMIT 0 } #-------------------------------------------------------------------------- # EVIDENCE-OF: R-44877-05564 Executing any other type of SQL statement # does not modify the value returned by this function. # reset_db do_changes_test 2.1 { CREATE TABLE t1(x) } 0 do_changes_test 2.2 { WITH d(y) AS (SELECT 1 UNION ALL SELECT y+1 FROM d WHERE y<47) INSERT INTO t1 SELECT y FROM d; } 47 # The statement above set changes() to 47. Check that none of the following # modify this. do_changes_test 2.3 { SELECT count(x) FROM t1 } {47 47} do_changes_test 2.4 { DROP TABLE t1 } 47 do_changes_test 2.5 { CREATE TABLE t1(x) } 47 do_changes_test 2.6 { ALTER TABLE t1 ADD COLUMN b } 47 #-------------------------------------------------------------------------- # EVIDENCE-OF: R-53938-27527 Only changes made directly by the INSERT, # UPDATE or DELETE statement are considered - auxiliary changes caused # by triggers, foreign key actions or REPLACE constraint resolution are # not counted. # # 3.1.*: triggers # 3.2.*: foreign key actions # 3.3.*: replace constraints # reset_db do_execsql_test 3.1.0 { CREATE TABLE log(x); CREATE TABLE p1(one PRIMARY KEY, two); CREATE TRIGGER tr_ai AFTER INSERT ON p1 BEGIN INSERT INTO log VALUES('insert'); END; CREATE TRIGGER tr_bd BEFORE DELETE ON p1 BEGIN INSERT INTO log VALUES('delete'); END; CREATE TRIGGER tr_au AFTER UPDATE ON p1 BEGIN INSERT INTO log VALUES('update'); END; } do_changes_test 3.1.1 { INSERT INTO p1 VALUES('a', 'A'), ('b', 'B'), ('c', 'C'); } 3 do_changes_test 3.1.2 { UPDATE p1 SET two = two||two; } 3 do_changes_test 3.1.3 { DELETE FROM p1 WHERE one IN ('a', 'c'); } 2 do_execsql_test 3.1.4 { -- None of the inserts on table log were counted. SELECT count(*) FROM log } 8 do_execsql_test 3.2.0 { DELETE FROM p1; INSERT INTO p1 VALUES('a', 'A'), ('b', 'B'), ('c', 'C'); CREATE TABLE c1(a, b, FOREIGN KEY(a) REFERENCES p1 ON DELETE SET NULL); CREATE TABLE c2(a, b, FOREIGN KEY(a) REFERENCES p1 ON DELETE SET DEFAULT); CREATE TABLE c3(a, b, FOREIGN KEY(a) REFERENCES p1 ON DELETE CASCADE); INSERT INTO c1 VALUES('a', 'aaa'); INSERT INTO c2 VALUES('b', 'bbb'); INSERT INTO c3 VALUES('c', 'ccc'); INSERT INTO p1 VALUES('d', 'D'), ('e', 'E'), ('f', 'F'); CREATE TABLE c4(a, b, FOREIGN KEY(a) REFERENCES p1 ON UPDATE SET NULL); CREATE TABLE c5(a, b, FOREIGN KEY(a) REFERENCES p1 ON UPDATE SET DEFAULT); CREATE TABLE c6(a, b, FOREIGN KEY(a) REFERENCES p1 ON UPDATE CASCADE); INSERT INTO c4 VALUES('d', 'aaa'); INSERT INTO c5 VALUES('e', 'bbb'); INSERT INTO c6 VALUES('f', 'ccc'); PRAGMA foreign_keys = ON; } do_changes_test 3.2.1 { DELETE FROM p1 WHERE one = 'a' } 1 do_changes_test 3.2.2 { DELETE FROM p1 WHERE one = 'b' } 1 do_changes_test 3.2.3 { DELETE FROM p1 WHERE one = 'c' } 1 do_execsql_test 3.2.4 { SELECT * FROM c1; SELECT * FROM c2; SELECT * FROM c3; } {{} aaa {} bbb} do_changes_test 3.2.5 { UPDATE p1 SET one = 'g' WHERE one = 'd' } 1 do_changes_test 3.2.6 { UPDATE p1 SET one = 'h' WHERE one = 'e' } 1 do_changes_test 3.2.7 { UPDATE p1 SET one = 'i' WHERE one = 'f' } 1 do_execsql_test 3.2.8 { SELECT * FROM c4; SELECT * FROM c5; SELECT * FROM c6; } {{} aaa {} bbb i ccc} do_execsql_test 3.3.0 { CREATE TABLE r1(a UNIQUE, b UNIQUE); INSERT INTO r1 VALUES('i', 'i'); INSERT INTO r1 VALUES('ii', 'ii'); INSERT INTO r1 VALUES('iii', 'iii'); INSERT INTO r1 VALUES('iv', 'iv'); INSERT INTO r1 VALUES('v', 'v'); INSERT INTO r1 VALUES('vi', 'vi'); INSERT INTO r1 VALUES('vii', 'vii'); } do_changes_test 3.3.1 { INSERT OR REPLACE INTO r1 VALUES('i', 1) } 1 do_changes_test 3.3.2 { INSERT OR REPLACE INTO r1 VALUES('iv', 'v') } 1 do_changes_test 3.3.3 { UPDATE OR REPLACE r1 SET b='v' WHERE a='iii' } 1 do_changes_test 3.3.4 { UPDATE OR REPLACE r1 SET b='vi',a='vii' WHERE a='ii' } 1 do_execsql_test 3.3.5 { SELECT * FROM r1 ORDER BY a; } {i 1 iii v vii vi} #-------------------------------------------------------------------------- # EVIDENCE-OF: R-09813-48563 The value returned by sqlite3_changes() # immediately after an INSERT, UPDATE or DELETE statement run on a view # is always zero. # reset_db do_execsql_test 4.1 { CREATE TABLE log(log); CREATE TABLE t1(x, y); INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); CREATE VIEW v1 AS SELECT * FROM t1; CREATE TRIGGER v1_i INSTEAD OF INSERT ON v1 BEGIN INSERT INTO log VALUES('insert'); END; CREATE TRIGGER v1_u INSTEAD OF UPDATE ON v1 BEGIN INSERT INTO log VALUES('update'), ('update'); END; CREATE TRIGGER v1_d INSTEAD OF DELETE ON v1 BEGIN INSERT INTO log VALUES('delete'), ('delete'), ('delete'); END; } do_changes_test 4.2.1 { INSERT INTO t1 SELECT * FROM t1 } 3 do_changes_test 4.2.2 { INSERT INTO v1 VALUES(1, 2) } 0 do_changes_test 4.3.1 { INSERT INTO t1 SELECT * FROM t1 } 6 do_changes_test 4.3.2 { UPDATE v1 SET y='xyz' WHERE x=1 } 0 do_changes_test 4.4.1 { INSERT INTO t1 SELECT * FROM t1 } 12 do_changes_test 4.4.2 { DELETE FROM v1 WHERE x=5 } 0 #-------------------------------------------------------------------------- # EVIDENCE-OF: R-32918-61474 Before entering a trigger program the value # returned by sqlite3_changes() function is saved. After the trigger # program has finished, the original value is restored. # reset_db db func my_changes my_changes set ::changes [list] proc my_changes {x} { set res [db changes] lappend ::changes $x $res return $res } do_execsql_test 5.1.0 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b); CREATE TABLE t2(x); INSERT INTO t1 VALUES(1, NULL); INSERT INTO t1 VALUES(2, NULL); INSERT INTO t1 VALUES(3, NULL); CREATE TRIGGER AFTER UPDATE ON t1 BEGIN INSERT INTO t2 VALUES('a'), ('b'), ('c'); SELECT my_changes('trigger'); END; } do_execsql_test 5.1.1 { INSERT INTO t2 VALUES('a'), ('b'); UPDATE t1 SET b = my_changes('update'); SELECT * FROM t1; } {1 2 2 2 3 2} # Value is being restored to "2" when the trigger program exits. do_test 5.1.2 { set ::changes } {update 2 trigger 3 update 2 trigger 3 update 2 trigger 3} reset_db do_execsql_test 5.2.0 { CREATE TABLE t1(a, b); CREATE TABLE log(x); INSERT INTO t1 VALUES(1, 0); INSERT INTO t1 VALUES(2, 0); INSERT INTO t1 VALUES(3, 0); CREATE TRIGGER t1_a_u AFTER UPDATE ON t1 BEGIN INSERT INTO log VALUES(old.b || ' -> ' || new.b || ' c = ' || changes() ); END; CREATE TABLE t2(a); INSERT INTO t2 VALUES(1), (2), (3); UPDATE t1 SET b = changes(); } do_execsql_test 5.2.1 { SELECT * FROM t1; } {1 3 2 3 3 3} do_execsql_test 5.2.2 { SELECT * FROM log; } {{0 -> 3 c = 3} {0 -> 3 c = 3} {0 -> 3 c = 3}} #-------------------------------------------------------------------------- # EVIDENCE-OF: R-17146-37073 Within a trigger program each INSERT, # UPDATE and DELETE statement sets the value returned by # sqlite3_changes() upon completion as normal. Of course, this value # will not include any changes performed by sub-triggers, as the # sqlite3_changes() value will be saved and restored after each # sub-trigger has run. reset_db do_execsql_test 6.0 { CREATE TABLE t1(a, b); CREATE TABLE t2(a, b); CREATE TABLE t3(a, b); CREATE TABLE log(x); CREATE TRIGGER t1_i BEFORE INSERT ON t1 BEGIN INSERT INTO t2 VALUES(new.a, new.b), (new.a, new.b); INSERT INTO log VALUES('t2->' || changes()); END; CREATE TRIGGER t2_i AFTER INSERT ON t2 BEGIN INSERT INTO t3 VALUES(new.a, new.b), (new.a, new.b), (new.a, new.b); INSERT INTO log VALUES('t3->' || changes()); END; CREATE TRIGGER t1_u AFTER UPDATE ON t1 BEGIN UPDATE t2 SET b=new.b WHERE a=old.a; INSERT INTO log VALUES('t2->' || changes()); END; CREATE TRIGGER t2_u BEFORE UPDATE ON t2 BEGIN UPDATE t3 SET b=new.b WHERE a=old.a; INSERT INTO log VALUES('t3->' || changes()); END; CREATE TRIGGER t1_d AFTER DELETE ON t1 BEGIN DELETE FROM t2 WHERE a=old.a AND b=old.b; INSERT INTO log VALUES('t2->' || changes()); END; CREATE TRIGGER t2_d BEFORE DELETE ON t2 BEGIN DELETE FROM t3 WHERE a=old.a AND b=old.b; INSERT INTO log VALUES('t3->' || changes()); END; } do_changes_test 6.1 { INSERT INTO t1 VALUES('+', 'o'); SELECT * FROM log; } {t3->3 t3->3 t2->2 1} do_changes_test 6.2 { DELETE FROM log; UPDATE t1 SET b='*'; SELECT * FROM log; } {t3->6 t3->6 t2->2 1} do_changes_test 6.3 { DELETE FROM log; DELETE FROM t1; SELECT * FROM log; } {t3->6 t3->0 t2->2 1} #-------------------------------------------------------------------------- # EVIDENCE-OF: R-43399-09409 This means that if the changes() SQL # function (or similar) is used by the first INSERT, UPDATE or DELETE # statement within a trigger, it returns the value as set when the # calling statement began executing. # # EVIDENCE-OF: R-53215-27584 If it is used by the second or subsequent # such statement within a trigger program, the value returned reflects # the number of rows modified by the previous INSERT, UPDATE or DELETE # statement within the same trigger. # reset_db do_execsql_test 7.1 { CREATE TABLE q1(t); CREATE TABLE q2(u, v); CREATE TABLE q3(w); CREATE TRIGGER q2_insert BEFORE INSERT ON q2 BEGIN /* changes() returns value from previous I/U/D in callers context */ INSERT INTO q1 VALUES('1:' || changes()); /* changes() returns value of previous I/U/D in this context */ INSERT INTO q3 VALUES(changes()), (2), (3); INSERT INTO q1 VALUES('2:' || changes()); INSERT INTO q3 VALUES(changes() + 3), (changes()+4); SELECT 'this does not affect things!'; INSERT INTO q1 VALUES('3:' || changes()); UPDATE q3 SET w = w+10 WHERE w%2; INSERT INTO q1 VALUES('4:' || changes()); DELETE FROM q3; INSERT INTO q1 VALUES('5:' || changes()); END; } do_execsql_test 7.2 { INSERT INTO q2 VALUES('x', 'y'); SELECT * FROM q1; } { 1:0 2:3 3:2 4:3 5:5 } do_execsql_test 7.3 { DELETE FROM q1; INSERT INTO q2 VALUES('x', 'y'); SELECT * FROM q1; } { 1:5 2:3 3:2 4:3 5:5 } finish_test |
Added test/e_totalchanges.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | # 2011 May 06 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix e_totalchanges # Like [do_execsql_test], except it appends the value returned by # [db total_changes] to the result of executing the SQL script. # proc do_tc_test {tn sql res} { uplevel [list \ do_test $tn "concat \[execsql {$sql}\] \[db total_changes\]" $res ] } do_execsql_test 1.0 { CREATE TABLE t1(a, b); CREATE INDEX t1_b ON t1(b); CREATE TABLE t2(x, y, PRIMARY KEY(x, y)) WITHOUT ROWID; CREATE INDEX t2_y ON t2(y); } #-------------------------------------------------------------------------- # EVIDENCE-OF: R-65438-26258 This function returns the total number of # rows inserted, modified or deleted by all INSERT, UPDATE or DELETE # statements completed since the database connection was opened, # including those executed as part of trigger programs. # # 1.1.*: different types of I/U/D statements, # 1.2.*: trigger programs. # do_tc_test 1.1.1 { INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); UPDATE t1 SET a = a+1; DELETE FROM t1; } {6} do_tc_test 1.1.2 { DELETE FROM t1 } {6} do_tc_test 1.1.3 { WITH data(a,b) AS ( SELECT 0, 0 UNION ALL SELECT a+1, b+1 FROM data WHERE a<99 ) INSERT INTO t1 SELECT * FROM data; } {106} do_tc_test 1.1.4 { INSERT INTO t2 SELECT * FROM t1 WHERE a<50; UPDATE t2 SET y=y+1; } {206} do_tc_test 1.1.5 { DELETE FROM t2 WHERE y<=25 } {231} do_execsql_test 1.2.1 { DELETE FROM t1; DELETE FROM t2; } sqlite3 db test.db ; # To reset total_changes do_tc_test 1.2.2 { CREATE TABLE log(detail); CREATE TRIGGER t1_after_insert AFTER INSERT ON t1 BEGIN INSERT INTO log VALUES('inserted into t1'); END; CREATE TRIGGER t1_before_delete BEFORE DELETE ON t1 BEGIN INSERT INTO log VALUES('deleting from t1'); INSERT INTO log VALUES('here we go!'); END; CREATE TRIGGER t1_after_update AFTER UPDATE ON t1 BEGIN INSERT INTO log VALUES('update'); DELETE FROM log; END; INSERT INTO t1 VALUES('a', 'b'); -- 1 + 1 UPDATE t1 SET b='c'; -- 1 + 1 + 2 DELETE FROM t1; -- 1 + 1 + 1 } {9} #-------------------------------------------------------------------------- # EVIDENCE-OF: R-61766-15253 Executing any other type of SQL statement # does not affect the value returned by sqlite3_total_changes(). do_tc_test 2.1 { INSERT INTO t1 VALUES(1, 2), (3, 4); INSERT INTO t2 VALUES(1, 2), (3, 4); } {15} do_tc_test 2.2 { SELECT count(*) FROM t1; } {2 15} do_tc_test 2.3 { CREATE TABLE t4(a, b); ALTER TABLE t4 ADD COLUMN c; CREATE INDEX i4 ON t4(c); ALTER TABLE t4 RENAME TO t5; ANALYZE; BEGIN; DROP TABLE t2; ROLLBACK; VACUUM; } {15} #-------------------------------------------------------------------------- # EVIDENCE-OF: R-36043-10590 Changes made as part of foreign key # actions are included in the count, but those made as part of REPLACE # constraint resolution are not. # # 3.1.*: foreign key actions # 3.2.*: REPLACE constraints. # sqlite3 db test.db ; # To reset total_changes do_tc_test 3.1.1 { CREATE TABLE p1(c PRIMARY KEY, d); CREATE TABLE c1(a, b, FOREIGN KEY(a) REFERENCES p1 ON DELETE SET NULL); CREATE TABLE c2(a, b, FOREIGN KEY(a) REFERENCES p1 ON DELETE CASCADE); CREATE TABLE c3(a, b, FOREIGN KEY(a) REFERENCES p1 ON DELETE SET DEFAULT); INSERT INTO p1 VALUES(1, 'one'); INSERT INTO p1 VALUES(2, 'two'); INSERT INTO p1 VALUES(3, 'three'); INSERT INTO p1 VALUES(4, 'four'); INSERT INTO c1 VALUES(1, 'i'); INSERT INTO c2 VALUES(2, 'ii'); INSERT INTO c3 VALUES(3, 'iii'); PRAGMA foreign_keys = ON; } {7} do_tc_test 3.1.2 { DELETE FROM p1 WHERE c=1; } {9} do_tc_test 3.1.3 { DELETE FROM p1 WHERE c=2; } {11} do_tc_test 3.1.4 { DELETE FROM p1 WHERE c=3; } {13} do_tc_test 3.1.5 { DELETE FROM p1 WHERE c=4; } {14} ; # only 1 this time. sqlite3 db test.db ; # To reset total_changes do_tc_test 3.1.6 { DROP TABLE c1; DROP TABLE c2; DROP TABLE c3; CREATE TABLE c1(a, b, FOREIGN KEY(a) REFERENCES p1 ON UPDATE SET NULL); CREATE TABLE c2(a, b, FOREIGN KEY(a) REFERENCES p1 ON UPDATE CASCADE); CREATE TABLE c3(a, b, FOREIGN KEY(a) REFERENCES p1 ON UPDATE SET DEFAULT); INSERT INTO p1 VALUES(1, 'one'); INSERT INTO p1 VALUES(2, 'two'); INSERT INTO p1 VALUES(3, 'three'); INSERT INTO p1 VALUES(4, 'four'); INSERT INTO c1 VALUES(1, 'i'); INSERT INTO c2 VALUES(2, 'ii'); INSERT INTO c3 VALUES(3, 'iii'); PRAGMA foreign_keys = ON; } {7} do_tc_test 3.1.7 { UPDATE p1 SET c=c+4 WHERE c=1; } {9} do_tc_test 3.1.8 { UPDATE p1 SET c=c+4 WHERE c=2; } {11} do_tc_test 3.1.9 { UPDATE p1 SET c=c+4 WHERE c=3; } {13} do_tc_test 3.1.10 { UPDATE p1 SET c=c+4 WHERE c=4; } {14} ; # only 1 this time. sqlite3 db test.db ; # To reset total_changes do_tc_test 3.2.1 { CREATE TABLE t3(a UNIQUE, b UNIQUE); INSERT INTO t3 VALUES('one', 'one'); INSERT INTO t3 VALUES('two', 'two'); INSERT OR REPLACE INTO t3 VALUES('one', 'two'); } {3} do_tc_test 3.2.2 { INSERT INTO t3 VALUES('three', 'one'); UPDATE OR REPLACE t3 SET b='two' WHERE b='one'; SELECT * FROM t3; } {three two 5} #-------------------------------------------------------------------------- # EVIDENCE-OF: R-54872-08741 Changes to a view that are intercepted by # INSTEAD OF triggers are not counted. # sqlite3 db test.db ; # To reset total_changes do_tc_test 4.1 { CREATE TABLE t6(x); CREATE VIEW v1 AS SELECT * FROM t6; CREATE TRIGGER v1_tr1 INSTEAD OF INSERT ON v1 BEGIN SELECT 'no-op'; END; INSERT INTO v1 VALUES('a'); INSERT INTO v1 VALUES('b'); } {0} do_tc_test 4.2 { CREATE TRIGGER v1_tr2 INSTEAD OF INSERT ON v1 BEGIN INSERT INTO t6 VALUES(new.x); END; INSERT INTO v1 VALUES('c'); INSERT INTO v1 VALUES('d'); } {2} finish_test |
Added test/e_wal.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | # 2011 May 06 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix e_wal db close testvfs oldvfs -iversion 1 # EVIDENCE-OF: R-58297-14483 WAL databases can be created, read, and # written even if shared memory is unavailable as long as the # locking_mode is set to EXCLUSIVE before the first attempted access. # # EVIDENCE-OF: R-00449-33772 This feature allows WAL databases to be # created, read, and written by legacy VFSes that lack the "version 2" # shared-memory methods xShmMap, xShmLock, xShmBarrier, and xShmUnmap on # the sqlite3_io_methods object. # # 1.1: "create" tests. # 1.2: "read" tests. # 1.3: "write" tests. # # All three done with VFS "oldvfs", which has iVersion==1 and so does # not support shared memory. # sqlite3 db test.db -vfs oldvfs do_execsql_test 1.1.1 { PRAGMA journal_mode = WAL; } {delete} do_execsql_test 1.1.2 { PRAGMA locking_mode = EXCLUSIVE; PRAGMA journal_mode = WAL; } {exclusive wal} do_execsql_test 1.1.3 { CREATE TABLE t1(x, y); INSERT INTO t1 VALUES(1, 2); } {} do_test 1.1.4 { list [file exists test.db-shm] [file exists test.db-wal] } {0 1} do_test 1.2.1 { db close sqlite3 db test.db -vfs oldvfs catchsql { SELECT * FROM t1 } } {1 {unable to open database file}} do_test 1.2.2 { execsql { PRAGMA locking_mode = EXCLUSIVE } execsql { SELECT * FROM t1 } } {1 2} do_test 1.2.3 { list [file exists test.db-shm] [file exists test.db-wal] } {0 1} do_test 1.3.1 { db close sqlite3 db test.db -vfs oldvfs catchsql { INSERT INTO t1 VALUES(3, 4) } } {1 {unable to open database file}} do_test 1.3.2 { execsql { PRAGMA locking_mode = EXCLUSIVE } execsql { INSERT INTO t1 VALUES(3, 4) } execsql { SELECT * FROM t1 } } {1 2 3 4} do_test 1.3.3 { list [file exists test.db-shm] [file exists test.db-wal] } {0 1} # EVIDENCE-OF: R-31969-57825 If EXCLUSIVE locking mode is set prior to # the first WAL-mode database access, then SQLite never attempts to call # any of the shared-memory methods and hence no shared-memory wal-index # is ever created. # db close sqlite3 db test.db do_execsql_test 2.1.1 { PRAGMA locking_mode = EXCLUSIVE; SELECT * FROM t1; } {exclusive 1 2 3 4} do_test 2.1.2 { list [file exists test.db-shm] [file exists test.db-wal] } {0 1} # EVIDENCE-OF: R-36328-16367 In that case, the database connection # remains in EXCLUSIVE mode as long as the journal mode is WAL; attempts # to change the locking mode using "PRAGMA locking_mode=NORMAL;" are # no-ops. # do_execsql_test 2.2.1 { PRAGMA locking_mode = NORMAL; SELECT * FROM t1; } {exclusive 1 2 3 4} do_test 2.2.2 { sqlite3 db2 test.db catchsql {SELECT * FROM t1} db2 } {1 {database is locked}} db2 close # EVIDENCE-OF: R-63522-46088 The only way to change out of EXCLUSIVE # locking mode is to first change out of WAL journal mode. # do_execsql_test 2.3.1 { PRAGMA journal_mode = DELETE; SELECT * FROM t1; } {delete 1 2 3 4} do_test 2.3.2 { sqlite3 db2 test.db catchsql {SELECT * FROM t1} db2 } {1 {database is locked}} do_execsql_test 2.3.3 { PRAGMA locking_mode = NORMAL; SELECT * FROM t1; } {normal 1 2 3 4} do_test 2.3.4 { sqlite3 db2 test.db catchsql {SELECT * FROM t1} db2 } {0 {1 2 3 4}} db2 close db close # EVIDENCE-OF: R-57239-11845 If NORMAL locking mode is in effect for the # first WAL-mode database access, then the shared-memory wal-index is # created. # do_test 3.0 { sqlite3 db test.db execsql { PRAGMA journal_mode = WAL } db close } {} do_test 3.1 { sqlite3 db test.db execsql { SELECT * FROM t1 } list [file exists test.db-shm] [file exists test.db-wal] } {1 1} # EVIDENCE-OF: R-13779-07711 As long as exactly one connection is using # a shared-memory wal-index, the locking mode can be changed freely # between NORMAL and EXCLUSIVE. # do_execsql_test 3.2.1 { PRAGMA locking_mode = EXCLUSIVE; PRAGMA locking_mode = NORMAL; PRAGMA locking_mode = EXCLUSIVE; INSERT INTO t1 VALUES(5, 6); } {exclusive normal exclusive} do_test 3.2.2 { sqlite3 db2 test.db catchsql { SELECT * FROM t1 } db2 } {1 {database is locked}} # EVIDENCE-OF: R-10993-11647 It is only when the shared-memory wal-index # is omitted, when the locking mode is EXCLUSIVE prior to the first # WAL-mode database access, that the locking mode is stuck in EXCLUSIVE. # do_execsql_test 3.2.3 { PRAGMA locking_mode = NORMAL; SELECT * FROM t1; } {normal 1 2 3 4 5 6} do_test 3.2.4 { catchsql { SELECT * FROM t1 } db2 } {0 {1 2 3 4 5 6}} do_catchsql_test 3.2.5 { PRAGMA locking_mode = EXCLUSIVE; INSERT INTO t1 VALUES(7, 8); } {1 {database is locked}} db2 close # EVIDENCE-OF: R-46197-42811 This means that the underlying VFS must # support the "version 2" shared-memory. # # EVIDENCE-OF: R-55316-21772 If the VFS does not support shared-memory # methods, then the attempt to open a database that is already in WAL # mode, or the attempt convert a database into WAL mode, will fail. # db close do_test 3.4.1 { sqlite3 db test.db -vfs oldvfs catchsql { SELECT * FROM t1 } } {1 {unable to open database file}} db close do_test 3.4.2 { forcedelete test.db2 sqlite3 db test.db2 -vfs oldvfs catchsql { PRAGMA journal_mode = WAL } } {0 delete} db close # EVIDENCE-OF: R-22428-28959 To prevent older versions of SQLite from # trying to recover a WAL-mode database (and making matters worse) the # database file format version numbers (bytes 18 and 19 in the database # header) are increased from 1 to 2 in WAL mode. # reset_db do_execsql_test 4.1.1 { CREATE TABLE t1(x, y) } do_test 4.1.2 { hexio_read test.db 18 2 } {0101} do_execsql_test 4.1.3 { PRAGMA journal_mode = wAL } {wal} do_test 4.1.4 { hexio_read test.db 18 2 } {0202} # EVIDENCE-OF: R-02535-05811 One can explicitly change out of WAL mode # using a pragma such as this: PRAGMA journal_mode=DELETE; # do_execsql_test 4.2.1 { INSERT INTO t1 VALUES(1, 1); } {} do_test 4.2.2 { file exists test.db-wal } {1} do_execsql_test 4.2.3 { PRAGMA journal_mode = delete } {delete} do_test 4.2.4 { file exists test.db-wal } {0} # EVIDENCE-OF: R-60175-02388 Deliberately changing out of WAL mode # changes the database file format version numbers back to 1 so that # older versions of SQLite can once again access the database file. # do_test 4.3 { hexio_read test.db 18 2 } {0101} finish_test |
Changes to test/fkey7.test.
︙ | ︙ | |||
46 47 48 49 50 51 52 53 54 | } do_tblsread_test 1.2 { UPDATE par SET b=? WHERE a=? } {par s1} do_tblsread_test 1.3 { UPDATE par SET a=? WHERE b=? } {c1 c2 par} do_tblsread_test 1.4 { UPDATE par SET c=? WHERE b=? } {c3 par} do_tblsread_test 1.5 { UPDATE par SET a=?,b=?,c=? WHERE b=? } {c1 c2 c3 par s1} finish_test | > > > > > > > > > > > > > > > > > | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | } do_tblsread_test 1.2 { UPDATE par SET b=? WHERE a=? } {par s1} do_tblsread_test 1.3 { UPDATE par SET a=? WHERE b=? } {c1 c2 par} do_tblsread_test 1.4 { UPDATE par SET c=? WHERE b=? } {c3 par} do_tblsread_test 1.5 { UPDATE par SET a=?,b=?,c=? WHERE b=? } {c1 c2 c3 par s1} ifcapable incrblob { do_execsql_test 2.0 { CREATE TABLE pX(x PRIMARY KEY); CREATE TABLE cX(a INTEGER PRIMARY KEY, b REFERENCES pX); } do_catchsql_test 2.1 { INSERT INTO cX VALUES(11, zeroblob(40)); } {1 {FOREIGN KEY constraint failed}} do_test 2.2 { set stmt [sqlite3_prepare_v2 db "INSERT INTO cX VALUES(11, ?)" -1] sqlite3_bind_zeroblob $stmt 1 45 sqlite3_step $stmt sqlite3_finalize $stmt } {SQLITE_CONSTRAINT} } finish_test |
Changes to test/in5.test.
︙ | ︙ | |||
8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl do_test in5-1.1 { execsql { CREATE TABLE t1x(x INTEGER PRIMARY KEY); INSERT INTO t1x VALUES(1),(3),(5),(7),(9); CREATE TABLE t1y(y INTEGER UNIQUE); INSERT INTO t1y VALUES(2),(4),(6),(8); | > | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix in5 do_test in5-1.1 { execsql { CREATE TABLE t1x(x INTEGER PRIMARY KEY); INSERT INTO t1x VALUES(1),(3),(5),(7),(9); CREATE TABLE t1y(y INTEGER UNIQUE); INSERT INTO t1y VALUES(2),(4),(6),(8); |
︙ | ︙ | |||
130 131 132 133 134 135 136 137 138 | } } {23g} do_test in5-5.3 { regexp {OpenEphemeral} [db eval { EXPLAIN SELECT d FROM t2 WHERE a IN t1x AND b IN t1y AND c IN t1z }] } {0} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | } } {23g} do_test in5-5.3 { regexp {OpenEphemeral} [db eval { EXPLAIN SELECT d FROM t2 WHERE a IN t1x AND b IN t1y AND c IN t1z }] } {0} #------------------------------------------------------------------------- # At one point SQLite was removing the DISTINCT keyword from expressions # similar to: # # <expr1> IN (SELECT DISTINCT <expr2> FROM...) # # However, there are a few obscure cases where this is incorrect. For # example, if the SELECT features a LIMIT clause, or if the collation # sequence or affinity used by the DISTINCT does not match the one used # by the IN(...) expression. # do_execsql_test 6.1.1 { CREATE TABLE t1(a COLLATE nocase); INSERT INTO t1 VALUES('one'); INSERT INTO t1 VALUES('ONE'); } do_execsql_test 6.1.2 { SELECT count(*) FROM t1 WHERE a COLLATE BINARY IN (SELECT DISTINCT a FROM t1) } {1} do_execsql_test 6.2.1 { CREATE TABLE t3(a, b); INSERT INTO t3 VALUES(1, 1); INSERT INTO t3 VALUES(1, 2); INSERT INTO t3 VALUES(1, 3); INSERT INTO t3 VALUES(2, 4); INSERT INTO t3 VALUES(2, 5); INSERT INTO t3 VALUES(2, 6); INSERT INTO t3 VALUES(3, 7); INSERT INTO t3 VALUES(3, 8); INSERT INTO t3 VALUES(3, 9); } do_execsql_test 6.2.2 { SELECT count(*) FROM t3 WHERE b IN (SELECT DISTINCT a FROM t3 LIMIT 5); } {3} do_execsql_test 6.2.3 { SELECT count(*) FROM t3 WHERE b IN (SELECT a FROM t3 LIMIT 5); } {2} do_execsql_test 6.3.1 { CREATE TABLE x1(a); CREATE TABLE x2(b); INSERT INTO x1 VALUES(1), (1), (2); INSERT INTO x2 VALUES(1), (2); SELECT count(*) FROM x2 WHERE b IN (SELECT DISTINCT a FROM x1 LIMIT 2); } {2} finish_test |
Changes to test/ioerr2.test.
︙ | ︙ | |||
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | set ::sqlite_io_error_pending $::N foreach {::go res} [catchsql $sql] {} check_db ioerr2-4.[expr {$bPersist+2}].$::N } } do_test ioerr2-5 { execsql { CREATE TABLE t2 AS SELECT * FROM t1; PRAGMA temp_store = memory; } set ::sqlite_io_error_persist 0 set ::go 1 set rc [catch { for {set ::N 2} {$::N<200} {incr ::N} { db eval {SELECT * FROM t1 WHERE rowid IN (1, 5, 10, 15, 20)} { set ::sqlite_io_error_hit 0 set ::sqlite_io_error_pending $::N set sql {UPDATE t2 SET b = randstr(400,400)} foreach {::go res} [catchsql $sql] {} } } } msg] list $rc $msg | > > > > > > | | 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | set ::sqlite_io_error_pending $::N foreach {::go res} [catchsql $sql] {} check_db ioerr2-4.[expr {$bPersist+2}].$::N } } # When this test was written, an IO error within the UPDATE statement caused # a rollback, which tripped all read-cursors, causing the outer SELECT to # fail with "abort due to ROLLBACK". Now, the loop continues until the UPDATE # is run successfully. At this point the next IO error occurs within the # SELECT - throwing the "disk I/O error" that the test case now expects. # do_test ioerr2-5 { execsql { CREATE TABLE t2 AS SELECT * FROM t1; PRAGMA temp_store = memory; } set ::sqlite_io_error_persist 0 set ::go 1 set rc [catch { for {set ::N 2} {$::N<200} {incr ::N} { db eval {SELECT * FROM t1 WHERE rowid IN (1, 5, 10, 15, 20)} { set ::sqlite_io_error_hit 0 set ::sqlite_io_error_pending $::N set sql {UPDATE t2 SET b = randstr(400,400)} foreach {::go res} [catchsql $sql] {} } } } msg] list $rc $msg } {1 {disk I/O error}} ;# used to be "{1 {abort due to ROLLBACK}}" if {$::tcl_platform(platform) == "unix"} { # Cause the call to xAccess used by [pragma temp_store_directory] to # determine if the specified directory is writable to fail. This causes # SQLite to report "not a writable directory", which is probably the # right answer. # |
︙ | ︙ |
Added test/misc8.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | # 2014-11-10 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. # The focus of this script is testing the "eval.c" loadable extension. # set testdir [file dirname $argv0] source $testdir/tester.tcl load_static_extension db eval do_execsql_test misc8-1.0 { CREATE TABLE t1(a,b,c); INSERT INTO t1 VALUES(1,2,3),(4,5,6); SELECT quote(eval('SELECT * FROM t1 ORDER BY a','-abc-')); } {'1-abc-2-abc-3-abc-4-abc-5-abc-6'} do_execsql_test misc8-1.1 { SELECT quote(eval('SELECT * FROM t1 ORDER BY a')); } {{'1 2 3 4 5 6'}} do_catchsql_test misc8-1.2 { SELECT quote(eval('SELECT d FROM t1 ORDER BY a')); } {1 {no such column: d}} do_execsql_test misc8-1.3 { INSERT INTO t1 VALUES(7,null,9); SELECT eval('SELECT * FROM t1 ORDER BY a',','); } {1,2,3,4,5,6,7,,9} do_catchsql_test misc8-1.4 { BEGIN; INSERT INTO t1 VALUES(10,11,12); SELECT a, coalesce(b, eval('ROLLBACK; SELECT ''bam'';')), c FROM t1 ORDER BY a; } {0 {1 2 3 4 5 6 7 bam 9}} do_catchsql_test misc8-1.5 { INSERT INTO t1 VALUES(10,11,12); SELECT a, coalesce(b, eval('SELECT ''bam''')), c FROM t1 ORDER BY rowid; } {0 {1 2 3 4 5 6 7 bam 9 10 11 12}} do_catchsql_test misc8-1.6 { SELECT a, coalesce(b, eval('DELETE FROM t1; SELECT ''bam''')), c FROM t1 ORDER BY rowid; } {0 {1 2 3 4 5 6 7 bam {}}} do_catchsql_test misc8-1.7 { INSERT INTO t1 VALUES(1,2,3),(4,5,6),(7,null,9); BEGIN; CREATE TABLE t2(x); SELECT a, coalesce(b, eval('ROLLBACK; SELECT ''bam''')), c FROM t1 ORDER BY rowid; } {1 {abort due to ROLLBACK}} reset_db proc dbeval {sql} { db eval $sql } db func eval dbeval do_execsql_test misc8-2.1 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b INTEGER) WITHOUT ROWID; CREATE TABLE t2(c INTEGER PRIMARY KEY, d INTEGER, x BLOB); INSERT INTO t1 VALUES(0,0); INSERT INTO t1 VALUES(10,10); INSERT INTO t2 VALUES(1,1,zeroblob(200)); INSERT INTO t2 VALUES(2,2,zeroblob(200)); INSERT INTO t2 VALUES(3,3,zeroblob(200)); INSERT INTO t2 VALUES(4,4,zeroblob(200)); INSERT INTO t2 VALUES(5,5,zeroblob(200)); INSERT INTO t2 VALUES(6,6,zeroblob(200)); INSERT INTO t2 VALUES(7,7,zeroblob(200)); INSERT INTO t2 VALUES(8,8,zeroblob(200)); INSERT INTO t2 VALUES(9,9,zeroblob(200)); INSERT INTO t2 VALUES(10,10,zeroblob(200)); SELECT a, c, eval( printf('DELETE FROM t2 WHERE c=%d AND %d>5', a+c, a+c) ) FROM t1, t2; } { 0 1 {} 10 1 {} 0 2 {} 10 2 {} 0 3 {} 10 3 {} 0 4 {} 10 4 {} 0 5 {} 10 5 {} 0 6 {} 10 {} {} 0 7 {} 10 {} {} 0 8 {} 10 {} {} 0 9 {} 10 {} {} 0 10 {} 10 {} {} } finish_test |
Changes to test/mmap1.test.
︙ | ︙ | |||
29 30 31 32 33 34 35 | } proc register_rblob_code {dbname seed} { return [subst -nocommands { set ::rcnt $seed proc rblob {n} { set ::rcnt [expr (([set ::rcnt] << 3) + [set ::rcnt] + 456) & 0xFFFFFFFF] | | | | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | } proc register_rblob_code {dbname seed} { return [subst -nocommands { set ::rcnt $seed proc rblob {n} { set ::rcnt [expr (([set ::rcnt] << 3) + [set ::rcnt] + 456) & 0xFFFFFFFF] set str [format %.8x [expr [set ::rcnt] ^ 0xbdf20da3]] string range [string repeat [set str] [expr [set n]/4]] 1 [set n] } $dbname func rblob rblob }] } # For cases 1.1 and 1.4, the number of pages read using xRead() is 4 on # unix and 9 on windows. The difference is that windows only ever maps # an integer number of OS pages (i.e. creates mappings that are a multiple # of 4KB in size). Whereas on unix any sized mapping may be created. # foreach {t mmap_size nRead c2init} { 1.1 { PRAGMA mmap_size = 67108864 } /[49]/ {PRAGMA mmap_size = 0} 1.2 { PRAGMA mmap_size = 53248 } 150 {PRAGMA mmap_size = 0} 1.3 { PRAGMA mmap_size = 0 } 344 {PRAGMA mmap_size = 0} 1.4 { PRAGMA mmap_size = 67108864 } /[49]/ {PRAGMA mmap_size = 67108864 } |
︙ | ︙ | |||
102 103 104 105 106 107 108 | do_test $t.$tn.5 { nRead db } $nRead } } set ::rcnt 0 proc rblob {n} { set ::rcnt [expr (($::rcnt << 3) + $::rcnt + 456) & 0xFFFFFFFF] | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | do_test $t.$tn.5 { nRead db } $nRead } } set ::rcnt 0 proc rblob {n} { set ::rcnt [expr (($::rcnt << 3) + $::rcnt + 456) & 0xFFFFFFFF] set str [format %.8x [expr $::rcnt ^ 0xbdf20da3]] string range [string repeat $str [expr $n/4]] 1 $n } reset_db db func rblob rblob ifcapable wal { do_execsql_test 2.1 { PRAGMA auto_vacuum = 1; PRAGMA mmap_size = 67108864; PRAGMA journal_mode = wal; CREATE TABLE t1(a, b, UNIQUE(a, b)); INSERT INTO t1 VALUES(rblob(500), rblob(500)); INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; -- 2 INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; -- 4 INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; -- 8 INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; -- 16 INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; -- 32 PRAGMA wal_checkpoint; } {67108864 wal 0 103 103} do_execsql_test 2.2 { PRAGMA auto_vacuum; SELECT count(*) FROM t1; } {1 32} if {[permutation] != "inmemory_journal"} { do_test 2.3 { sqlite3 db2 test.db db2 func rblob rblob db2 eval { DELETE FROM t1 WHERE (rowid%4); PRAGMA wal_checkpoint; } db2 eval { INSERT INTO t1 SELECT rblob(500), rblob(500) FROM t1; -- 16 SELECT count(*) FROM t1; } } {16} do_execsql_test 2.4 { PRAGMA wal_checkpoint; } {0 24 24} db2 close } } reset_db execsql { PRAGMA mmap_size = 67108864; } db func rblob rblob do_execsql_test 3.1 { PRAGMA auto_vacuum = 1; |
︙ | ︙ | |||
223 224 225 226 227 228 229 | do_test 4.4 { sqlite3_finalize $::STMT } SQLITE_OK do_execsql_test 4.5 { COMMIT } #------------------------------------------------------------------------- | | | 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | do_test 4.4 { sqlite3_finalize $::STMT } SQLITE_OK do_execsql_test 4.5 { COMMIT } #------------------------------------------------------------------------- # Ensure that existing cursors holding xFetch() references are not # confused if those pages are moved to make way for the root page of a # new table or index. # reset_db execsql { PRAGMA mmap_size = 67108864; } do_execsql_test 5.1 { PRAGMA auto_vacuum = 2; |
︙ | ︙ | |||
292 293 294 295 296 297 298 | code1 [register_rblob_code db 0] code2 [register_rblob_code db2 444] sql1 "PRAGMA mmap_size = $mmap1" sql2 "PRAGMA mmap_size = $mmap2" | | | | 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | code1 [register_rblob_code db 0] code2 [register_rblob_code db2 444] sql1 "PRAGMA mmap_size = $mmap1" sql2 "PRAGMA mmap_size = $mmap2" do_test $tn1.$tn { for {set i 1} {$i <= 100} {incr i} { if {$i % 2} { set c1 sql1 set c2 sql2 } else { set c1 sql2 set c2 sql1 } $c1 { INSERT INTO t1 VALUES( rblob(5000) ); UPDATE t2 SET x = (SELECT md5sum(a) FROM t1); } set res [$c2 { SELECT count(*) FROM t1; SELECT x == (SELECT md5sum(a) FROM t1) FROM t2; PRAGMA integrity_check; }] if {$res != [list $i 1 ok]} { do_test $tn1.$tn.$i { set ::res |
︙ | ︙ |
Changes to test/pragma.test.
︙ | ︙ | |||
1186 1187 1188 1189 1190 1191 1192 | } ;# ifcapable trigger ifcapable schema_pragmas { do_test pragma-11.1 { execsql2 { pragma collation_list; } | | | | 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 | } ;# ifcapable trigger ifcapable schema_pragmas { do_test pragma-11.1 { execsql2 { pragma collation_list; } } {seq 0 name RTRIM seq 1 name NOCASE seq 2 name BINARY} do_test pragma-11.2 { db collate New_Collation blah... execsql { pragma collation_list; } } {0 New_Collation 1 RTRIM 2 NOCASE 3 BINARY} } ifcapable schema_pragmas&&tempdb { do_test pragma-12.1 { sqlite3 db2 test.db execsql { PRAGMA temp.table_info('abc'); |
︙ | ︙ |
Changes to test/printf2.test.
︙ | ︙ | |||
90 91 92 93 94 95 96 97 98 99 | # argument list, missing arguments are assumed to have a NULL value, # which is translated into 0 or 0.0 for numeric formats or an empty # string for %s. # do_execsql_test printf2-2.3 { SELECT printf('%s=(%d/%g/%s)',a) FROM t1 ORDER BY a; } {-1=(0/0/) 1=(0/0/) 1.5=(0/0/) abc=(0/0/)} finish_test | > > > > > > > > > > > > > > > > > > > > | 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | # argument list, missing arguments are assumed to have a NULL value, # which is translated into 0 or 0.0 for numeric formats or an empty # string for %s. # do_execsql_test printf2-2.3 { SELECT printf('%s=(%d/%g/%s)',a) FROM t1 ORDER BY a; } {-1=(0/0/) 1=(0/0/) 1.5=(0/0/) abc=(0/0/)} # The precision of the %c conversion causes the character to repeat. # do_execsql_test printf2-3.1 { SELECT printf('|%110.100c|','*'); } {{| ****************************************************************************************************|}} do_execsql_test printf2-3.2 { SELECT printf('|%-110.100c|','*'); } {{|**************************************************************************************************** |}} do_execsql_test printf2-3.3 { SELECT printf('|%9.8c|%-9.8c|','*','*'); } {{| ********|******** |}} do_execsql_test printf2-3.4 { SELECT printf('|%8.8c|%-8.8c|','*','*'); } {|********|********|} do_execsql_test printf2-3.5 { SELECT printf('|%7.8c|%-7.8c|','*','*'); } {|********|********|} finish_test |
Changes to test/rollback.test.
︙ | ︙ | |||
56 57 58 59 60 61 62 | } } {1 {UNIQUE constraint failed: t3.a}} # Try to continue with the SELECT statement # do_test rollback-1.5 { sqlite3_step $STMT | | | | 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | } } {1 {UNIQUE constraint failed: t3.a}} # Try to continue with the SELECT statement # do_test rollback-1.5 { sqlite3_step $STMT } {SQLITE_ROW} # Restart the SELECT statement # do_test rollback-1.6 { sqlite3_reset $STMT } {SQLITE_OK} } else { do_test rollback-1.6 { sqlite3_reset $STMT } {SQLITE_OK} } do_test rollback-1.7 { sqlite3_step $STMT } {SQLITE_ROW} |
︙ | ︙ |
Added test/rollback2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | # 2014 November 12 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file containst tests to verify that ROLLBACK or ROLLBACK TO # operations interact correctly with ongoing SELECT statements. # set testdir [file dirname $argv0] source $testdir/tester.tcl set ::testprefix rollback2 proc int2hex {i} { format %.2X $i } db func int2hex int2hex do_execsql_test 1.0 { SELECT int2hex(0), int2hex(100), int2hex(255) } {00 64 FF} do_execsql_test 1.1 { CREATE TABLE t1(i, h); CREATE INDEX i1 ON t1(h); WITH data(a, b) AS ( SELECT 1, int2hex(1) UNION ALL SELECT a+1, int2hex(a+1) FROM data WHERE a<40 ) INSERT INTO t1 SELECT * FROM data; } {} # do_rollback_test ID SWITCHES # # where SWITCHES are: # # -setup SQL script to open transaction and begin writing. # -select SELECT to execute after -setup script # -result Expected result of -select statement # -rollback Use this SQL command ("ROLLBACK" or "ROLLBACK TO ...") to # rollback the transaction in the middle of the -select statment # execution. # proc do_rollback_test {tn args} { set A(-setup) "" set A(-select) "" set A(-result) "" set A(-rollback) ROLLBACK array set O $args foreach k [array names O] { if {[info exists A($k)]==0} { error "unknown option: $k" } set A($k) $O($k) } for {set iRollback 0} 1 {incr iRollback} { catch { db eval ROLLBACK } set res [list] db eval $A(-setup) set i 0 db eval $A(-select) x { if {$i==$iRollback} { db eval $A(-rollback) } foreach k $x(*) { lappend res $x($k) } incr i } do_test $tn.$iRollback [list set {} $res] [list {*}$A(-result)] if {$i < $iRollback} break } } do_rollback_test 2.1 -setup { BEGIN; DELETE FROM t1 WHERE (i%2)==1; } -select { SELECT i FROM t1 WHERE (i%2)==0 } -result { 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 } do_rollback_test 2.2 -setup { BEGIN; DELETE FROM t1 WHERE (i%4)==1; SAVEPOINT one; DELETE FROM t1 WHERE (i%2)==1; } -rollback { ROLLBACK TO one; } -select { SELECT i FROM t1 WHERE (i%2)==0 } -result { 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 } #-------------------------------------------------------------------- # Try with some index scans # do_eqp_test 3.1 { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC; } {0 0 0 {SCAN TABLE t1 USING INDEX i1}} do_rollback_test 3.2 -setup { BEGIN; DELETE FROM t1 WHERE (i%2)==1; } -select { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC; } -result { 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 } do_rollback_test 3.3 -setup { BEGIN; DELETE FROM t1 WHERE (i%4)==1; SAVEPOINT one; DELETE FROM t1 WHERE (i%2)==1; } -rollback { ROLLBACK TO one; } -select { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h DESC; } -result { 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 } #-------------------------------------------------------------------- # Now with some index scans that feature overflow keys. # set leader [string repeat "abcdefghij" 70] do_execsql_test 4.1 { UPDATE t1 SET h = $leader || h; } do_eqp_test 4.2 { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC; } {0 0 0 {SCAN TABLE t1 USING INDEX i1}} do_rollback_test 4.3 -setup { BEGIN; DELETE FROM t1 WHERE (i%2)==1; } -select { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC; } -result { 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 } do_rollback_test 4.4 -setup { BEGIN; DELETE FROM t1 WHERE (i%4)==1; SAVEPOINT one; DELETE FROM t1 WHERE (i%2)==1; } -rollback { ROLLBACK TO one; } -select { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h ASC; } -result { 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 } finish_test |
Added test/rollbackfault.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | # 2014-11-12 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Test that errors encountered during a ROLLBACK operation correctly # affect ongoing SQL statements. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/malloc_common.tcl set testprefix rollbackfault proc int2hex {i} { format %.2X $i } db func int2hex int2hex do_execsql_test 1.0 { SELECT int2hex(0), int2hex(100), int2hex(255) } {00 64 FF} do_execsql_test 1.1 { CREATE TABLE t1(i, h); CREATE INDEX i1 ON t1(h); WITH data(a, b) AS ( SELECT 1, int2hex(1) UNION ALL SELECT a+1, int2hex(a+1) FROM data WHERE a<40 ) INSERT INTO t1 SELECT * FROM data; } {} foreach f {oom ioerr} { do_faultsim_test 1.2 -faults $f* -prep { set sql1 { SELECT i FROM t1 WHERE (i%2)==0 } set sql2 { SELECT i FROM t1 WHERE (i%2)==0 ORDER BY h } set ::s1 [sqlite3_prepare db $sql1 -1 dummy] set ::s2 [sqlite3_prepare db $sql2 -1 dummy] for {set i 0} {$i < 10} {incr i} { sqlite3_step $::s1 } for {set i 0} {$i < 3} {incr i} { sqlite3_step $::s2 } execsql { BEGIN; DELETE FROM t1 WHERE (i%2) } } -body { execsql { ROLLBACK } } -test { set res1 [list] set res2 [list] while {"SQLITE_ROW" == [sqlite3_step $::s1]} { lappend res1 [sqlite3_column_text $::s1 0] } while {"SQLITE_ROW" == [sqlite3_step $::s2]} { lappend res2 [sqlite3_column_text $::s2 0] } set rc1 [sqlite3_finalize $::s1] set rc2 [sqlite3_finalize $::s2] catchsql { ROLLBACK } if {$rc1=="SQLITE_OK" && $rc2=="SQLITE_OK" && $res1=="22 24 26 28 30 32 34 36 38 40" && $res2=="8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40" } { # This is Ok. } elseif {$rc1!="SQLITE_OK" && $rc2!="SQLITE_OK" && $res1=="" &&$res2==""} { # Also Ok. } else { error "statements don't look right" } } } finish_test |
Changes to test/savepoint.test.
︙ | ︙ | |||
311 312 313 314 315 316 317 | } {0 {hellontyeight character blob}} do_test savepoint-5.3.2.2 { catchsql {ROLLBACK TO def} } {0 {}} do_test savepoint-5.3.2.3 { set rc [catch {seek $fd 0; read $fd} res] set rc | | | 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | } {0 {hellontyeight character blob}} do_test savepoint-5.3.2.2 { catchsql {ROLLBACK TO def} } {0 {}} do_test savepoint-5.3.2.3 { set rc [catch {seek $fd 0; read $fd} res] set rc } {0} do_test savepoint-5.3.3 { catchsql {RELEASE def} } {0 {}} do_test savepoint-5.3.4 { close $fd execsql {savepoint def} set fd [db incrblob blobs x 1] |
︙ | ︙ |
Changes to test/savepoint7.test.
︙ | ︙ | |||
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | INSERT INTO t1 VALUES(4,5,6); INSERT INTO t1 VALUES(7,8,9); SAVEPOINT x1; } db eval {SELECT * FROM t1} { db eval { SAVEPOINT x2; INSERT INTO t2 VALUES($a,$b,$c); RELEASE x2; } } db eval {SELECT * FROM t2; RELEASE x1} } {1 2 3 4 5 6 7 8 9} do_test savepoint7-1.2 { db eval {DELETE FROM t2;} db eval {SELECT * FROM t1} { db eval { SAVEPOINT x2; INSERT INTO t2 VALUES($a,$b,$c); RELEASE x2; } } | > | | | > | | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | INSERT INTO t1 VALUES(4,5,6); INSERT INTO t1 VALUES(7,8,9); SAVEPOINT x1; } db eval {SELECT * FROM t1} { db eval { SAVEPOINT x2; CREATE TABLE IF NOT EXISTS t3(xyz); INSERT INTO t2 VALUES($a,$b,$c); RELEASE x2; } } db eval {SELECT * FROM t2; RELEASE x1} } {1 2 3 4 5 6 7 8 9} do_test savepoint7-1.2 { db eval {DELETE FROM t2;} db eval {SELECT * FROM t1} { db eval { SAVEPOINT x2; INSERT INTO t2 VALUES($a,$b,$c); RELEASE x2; } } db eval {SELECT * FROM t2;} } {1 2 3 4 5 6 7 8 9} do_test savepoint7-1.3 { db eval {DELETE FROM t2; BEGIN;} db eval {SELECT * FROM t1} { db eval { SAVEPOINT x2; INSERT INTO t2 VALUES($a,$b,$c); RELEASE x2; } } db eval {SELECT * FROM t2; ROLLBACK;} } {1 2 3 4 5 6 7 8 9} # However, a ROLLBACK of an inner savepoint will abort all queries, including # queries in outer contexts. # do_test savepoint7-2.1 { db eval {DELETE FROM t2; SAVEPOINT x1; CREATE TABLE t4(abc);} set rc [catch { db eval {SELECT * FROM t1} { db eval { SAVEPOINT x2; INSERT INTO t2 VALUES($a,$b,$c); ROLLBACK TO x2; } } } msg] db eval {RELEASE x1} list $rc $msg [db eval {SELECT * FROM t2}] } {1 {abort due to ROLLBACK} {}} do_test savepoint7-2.2 { db eval {DELETE FROM t2;} set rc [catch { db eval {SELECT * FROM t1} { db eval { SAVEPOINT x2; CREATE TABLE t5(pqr); INSERT INTO t2 VALUES($a,$b,$c); ROLLBACK TO x2; } } } msg] list $rc $msg [db eval {SELECT * FROM t2}] } {1 {abort due to ROLLBACK} {}} finish_test |
Added test/scanstatus.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 | # 2014 November 1 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix scanstatus ifcapable !scanstatus { finish_test return } do_execsql_test 1.0 { CREATE TABLE t1(a, b); CREATE TABLE t2(x, y); INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); INSERT INTO t2 VALUES('a', 'b'); INSERT INTO t2 VALUES('c', 'd'); INSERT INTO t2 VALUES('e', 'f'); } proc do_scanstatus_test {tn res} { set stmt [db_last_stmt_ptr db] set idx 0 set ret [list] while {1} { set r [sqlite3_stmt_scanstatus $stmt $idx] if {[llength $r]==0} break lappend ret {*}$r incr idx } uplevel [list do_test $tn [list set {} $ret] [list {*}$res]] } do_execsql_test 1.1 { SELECT count(*) FROM t1, t2; } 6 do_scanstatus_test 1.2 { nLoop 1 nVisit 2 nEst 1048576.0 zName t1 zExplain {SCAN TABLE t1} nLoop 2 nVisit 6 nEst 1048576.0 zName t2 zExplain {SCAN TABLE t2} } do_execsql_test 1.3 { ANALYZE; SELECT count(*) FROM t1, t2; } 6 do_scanstatus_test 1.4 { nLoop 1 nVisit 2 nEst 2.0 zName t1 zExplain {SCAN TABLE t1} nLoop 2 nVisit 6 nEst 3.0 zName t2 zExplain {SCAN TABLE t2} } do_execsql_test 1.5 { ANALYZE } do_execsql_test 1.6 { SELECT count(*) FROM t1, t2 WHERE t2.rowid>1; } 4 do_scanstatus_test 1.7 { nLoop 1 nVisit 2 nEst 2.0 zName t2 zExplain {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid>?)} nLoop 2 nVisit 4 nEst 2.0 zName t1 zExplain {SCAN TABLE t1} } do_execsql_test 1.8 { SELECT count(*) FROM t1, t2 WHERE t2.rowid>1; } 4 do_scanstatus_test 1.9 { nLoop 2 nVisit 4 nEst 2.0 zName t2 zExplain {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid>?)} nLoop 4 nVisit 8 nEst 2.0 zName t1 zExplain {SCAN TABLE t1} } do_test 1.9 { sqlite3_stmt_scanstatus_reset [db_last_stmt_ptr db] } {} do_scanstatus_test 1.10 { nLoop 0 nVisit 0 nEst 2.0 zName t2 zExplain {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid>?)} nLoop 0 nVisit 0 nEst 2.0 zName t1 zExplain {SCAN TABLE t1} } #------------------------------------------------------------------------- # Try a few different types of scans. # reset_db do_execsql_test 2.1 { CREATE TABLE x1(i INTEGER PRIMARY KEY, j); INSERT INTO x1 VALUES(1, 'one'); INSERT INTO x1 VALUES(2, 'two'); INSERT INTO x1 VALUES(3, 'three'); INSERT INTO x1 VALUES(4, 'four'); CREATE INDEX x1j ON x1(j); SELECT * FROM x1 WHERE i=2; } {2 two} do_scanstatus_test 2.2 { nLoop 1 nVisit 1 nEst 1.0 zName x1 zExplain {SEARCH TABLE x1 USING INTEGER PRIMARY KEY (rowid=?)} } do_execsql_test 2.3.1 { SELECT * FROM x1 WHERE j='two' } {2 two} do_scanstatus_test 2.3.2 { nLoop 1 nVisit 1 nEst 10.0 zName x1j zExplain {SEARCH TABLE x1 USING COVERING INDEX x1j (j=?)} } do_execsql_test 2.4.1 { SELECT * FROM x1 WHERE j<'two' } {4 four 1 one 3 three} do_scanstatus_test 2.4.2 { nLoop 1 nVisit 3 nEst 262144.0 zName x1j zExplain {SEARCH TABLE x1 USING COVERING INDEX x1j (j<?)} } do_execsql_test 2.5.1 { SELECT * FROM x1 WHERE j>='two' } {2 two} do_scanstatus_test 2.5.2 { nLoop 1 nVisit 1 nEst 262144.0 zName x1j zExplain {SEARCH TABLE x1 USING COVERING INDEX x1j (j>?)} } do_execsql_test 2.6.1 { SELECT * FROM x1 WHERE j BETWEEN 'three' AND 'two' } {3 three 2 two} do_scanstatus_test 2.6.2 { nLoop 1 nVisit 2 nEst 16384.0 zName x1j zExplain {SEARCH TABLE x1 USING COVERING INDEX x1j (j>? AND j<?)} } do_execsql_test 2.7.1 { CREATE TABLE x2(i INTEGER, j, k); INSERT INTO x2 SELECT i, j, i || ' ' || j FROM x1; CREATE INDEX x2j ON x2(j); CREATE INDEX x2ij ON x2(i, j); SELECT * FROM x2 WHERE j BETWEEN 'three' AND 'two' } {3 three {3 three} 2 two {2 two}} do_scanstatus_test 2.7.2 { nLoop 1 nVisit 2 nEst 16384.0 zName x2j zExplain {SEARCH TABLE x2 USING INDEX x2j (j>? AND j<?)} } do_execsql_test 2.8.1 { SELECT * FROM x2 WHERE i=1 AND j='two' } do_scanstatus_test 2.8.2 { nLoop 1 nVisit 0 nEst 8.0 zName x2ij zExplain {SEARCH TABLE x2 USING INDEX x2ij (i=? AND j=?)} } do_execsql_test 2.9.1 { SELECT * FROM x2 WHERE i=5 AND j='two' } do_scanstatus_test 2.9.2 { nLoop 1 nVisit 0 nEst 8.0 zName x2ij zExplain {SEARCH TABLE x2 USING INDEX x2ij (i=? AND j=?)} } do_execsql_test 2.10.1 { SELECT * FROM x2 WHERE i=3 AND j='three' } {3 three {3 three}} do_scanstatus_test 2.10.2 { nLoop 1 nVisit 1 nEst 8.0 zName x2ij zExplain {SEARCH TABLE x2 USING INDEX x2ij (i=? AND j=?)} } #------------------------------------------------------------------------- # Try with queries that use the OR optimization. # do_execsql_test 3.1 { CREATE TABLE a1(a, b, c, d); CREATE INDEX a1a ON a1(a); CREATE INDEX a1bc ON a1(b, c); WITH d(x) AS (SELECT 1 UNION ALL SELECT x+1 AS n FROM d WHERE n<=100) INSERT INTO a1 SELECT x, x, x, x FROM d; } do_execsql_test 3.2.1 { SELECT d FROM a1 WHERE (a=4 OR b=13) } {4 13} do_scanstatus_test 3.2.2 { nLoop 1 nVisit 1 nEst 10.0 zName a1a zExplain {SEARCH TABLE a1 USING INDEX a1a (a=?)} nLoop 1 nVisit 1 nEst 10.0 zName a1bc zExplain {SEARCH TABLE a1 USING INDEX a1bc (b=?)} } do_execsql_test 3.2.1 { SELECT count(*) FROM a1 WHERE (a BETWEEN 4 AND 12) OR (b BETWEEN 40 AND 60) } {30} do_scanstatus_test 3.2.2 { nLoop 1 nVisit 9 nEst 16384.0 zName a1a zExplain {SEARCH TABLE a1 USING INDEX a1a (a>? AND a<?)} nLoop 1 nVisit 21 nEst 16384.0 zName a1bc zExplain {SEARCH TABLE a1 USING INDEX a1bc (b>? AND b<?)} } do_execsql_test 3.3.1 { SELECT count(*) FROM a1 AS x, a1 AS y WHERE (x.a BETWEEN 4 AND 12) AND (y.b BETWEEN 1 AND 10) } {90} do_scanstatus_test 3.2.2 { nLoop 1 nVisit 10 nEst 16384.0 zName a1bc zExplain {SEARCH TABLE a1 AS y USING COVERING INDEX a1bc (b>? AND b<?)} nLoop 10 nVisit 90 nEst 16384.0 zName a1a zExplain {SEARCH TABLE a1 AS x USING COVERING INDEX a1a (a>? AND a<?)} } do_execsql_test 3.4.1 { SELECT count(*) FROM a1 WHERE a IN (1, 5, 10, 15); } {4} do_scanstatus_test 3.4.2 { nLoop 1 nVisit 4 nEst 40.0 zName a1a zExplain {SEARCH TABLE a1 USING COVERING INDEX a1a (a=?)} } do_execsql_test 3.4.1 { SELECT count(*) FROM a1 WHERE rowid IN (1, 5, 10, 15); } {4} do_scanstatus_test 3.4.2 { nLoop 1 nVisit 4 nEst 4.0 zName a1 zExplain {SEARCH TABLE a1 USING INTEGER PRIMARY KEY (rowid=?)} } #------------------------------------------------------------------------- # Test that scanstatus() data is not available for searches performed # by triggers. # # It is available for searches performed as part of FK processing, but # not FK action processing. # do_execsql_test 4.0 { CREATE TABLE t1(a, b, c); CREATE TABLE t2(x PRIMARY KEY, y, z); CREATE TRIGGER tr1 AFTER INSERT ON t1 BEGIN SELECT * FROM t2 WHERE x BETWEEN 20 AND 40; END; WITH d(x) AS (SELECT 1 UNION ALL SELECT x+1 AS n FROM d WHERE n<=100) INSERT INTO t2 SELECT x, x*2, x*3 FROM d; } do_execsql_test 4.1.1 { INSERT INTO t1 VALUES(1, 2, 3); } do_scanstatus_test 4.1.2 { } do_execsql_test 4.2 { CREATE TABLE p1(x PRIMARY KEY); INSERT INTO p1 VALUES(1), (2), (3), (4); CREATE TABLE c1(y REFERENCES p1); INSERT INTO c1 VALUES(1), (2), (3); PRAGMA foreign_keys=on; } do_execsql_test 4.2.1 { DELETE FROM p1 WHERE x=4 } do_scanstatus_test 4.2.2 { nLoop 1 nVisit 1 nEst 1.0 zName sqlite_autoindex_p1_1 zExplain {SEARCH TABLE p1 USING INDEX sqlite_autoindex_p1_1 (x=?)} nLoop 1 nVisit 3 nEst 524288.0 zName c1 zExplain {SCAN TABLE c1} } #------------------------------------------------------------------------- # Further tests of different scan types. # reset_db proc tochar {i} { set alphabet {a b c d e f g h i j k l m n o p q r s t u v w x y z} return [lindex $alphabet [expr $i % [llength $alphabet]]] } db func tochar tochar do_execsql_test 5.0 { CREATE TABLE t1(a PRIMARY KEY, b, c); INSERT INTO t1 VALUES(0, 1, 'a'); INSERT INTO t1 VALUES(1, 0, 'b'); INSERT INTO t1 VALUES(2, 1, 'c'); INSERT INTO t1 VALUES(3, 0, 'd'); INSERT INTO t1 VALUES(4, 1, 'e'); INSERT INTO t1 VALUES(5, 0, 'a'); INSERT INTO t1 VALUES(6, 1, 'b'); INSERT INTO t1 VALUES(7, 0, 'c'); INSERT INTO t1 VALUES(8, 1, 'd'); INSERT INTO t1 VALUES(9, 0, 'e'); CREATE INDEX t1bc ON t1(b, c); CREATE TABLE t2(x, y); CREATE INDEX t2xy ON t2(x, y); WITH data(i, x, y) AS ( SELECT 0, 0, tochar(0) UNION ALL SELECT i+1, (i+1)%2, tochar(i+1) FROM data WHERE i<500 ) INSERT INTO t2 SELECT x, y FROM data; CREATE TABLE t3(x, y); INSERT INTO t3 SELECT * FROM t2; ANALYZE; } do_execsql_test 5.1.1 { SELECT count(*) FROM t1 WHERE a IN (SELECT b FROM t1 AS ii) } {2} do_scanstatus_test 5.1.2 { nLoop 1 nVisit 10 nEst 10.0 zName t1bc zExplain {SCAN TABLE t1 AS ii USING COVERING INDEX t1bc} nLoop 1 nVisit 2 nEst 8.0 zName sqlite_autoindex_t1_1 zExplain {SEARCH TABLE t1 USING COVERING INDEX sqlite_autoindex_t1_1 (a=?)} } do_execsql_test 5.2.1 { SELECT count(*) FROM t1 WHERE a IN (0, 1) } {2} do_scanstatus_test 5.2.2 { nLoop 1 nVisit 2 nEst 2.0 zName sqlite_autoindex_t1_1 zExplain {SEARCH TABLE t1 USING COVERING INDEX sqlite_autoindex_t1_1 (a=?)} } do_eqp_test 5.3.1 { SELECT count(*) FROM t2 WHERE y = 'j'; } {0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)}} do_execsql_test 5.3.2 { SELECT count(*) FROM t2 WHERE y = 'j'; } {19} do_scanstatus_test 5.3.3 { nLoop 1 nVisit 19 nEst 56.0 zName t2xy zExplain {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)} } do_eqp_test 5.4.1 { SELECT count(*) FROM t1, t2 WHERE y = c; } { 0 0 0 {SCAN TABLE t1 USING COVERING INDEX t1bc} 0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)} } do_execsql_test 5.4.2 { SELECT count(*) FROM t1, t2 WHERE y = c; } {200} do_scanstatus_test 5.4.3 { nLoop 1 nVisit 10 nEst 10.0 zName t1bc zExplain {SCAN TABLE t1 USING COVERING INDEX t1bc} nLoop 10 nVisit 200 nEst 56.0 zName t2xy zExplain {SEARCH TABLE t2 USING COVERING INDEX t2xy (ANY(x) AND y=?)} } do_eqp_test 5.5.1 { SELECT count(*) FROM t1, t3 WHERE y = c; } { 0 0 1 {SCAN TABLE t3} 0 1 0 {SEARCH TABLE t1 USING AUTOMATIC COVERING INDEX (c=?)} } do_execsql_test 5.5.2 { SELECT count(*) FROM t1, t3 WHERE y = c; } {200} do_scanstatus_test 5.5.3 { nLoop 1 nVisit 501 nEst 480.0 zName t3 zExplain {SCAN TABLE t3} nLoop 501 nVisit 200 nEst 20.0 zName auto-index zExplain {SEARCH TABLE t1 USING AUTOMATIC COVERING INDEX (c=?)} } #------------------------------------------------------------------------- # Virtual table scans # ifcapable fts3 { do_execsql_test 6.0 { CREATE VIRTUAL TABLE ft1 USING fts4; INSERT INTO ft1 VALUES('a d c f g h e i f c'); INSERT INTO ft1 VALUES('g c h b g b f f f g'); INSERT INTO ft1 VALUES('h h c c h f a e d d'); INSERT INTO ft1 VALUES('e j i j i e b c f g'); INSERT INTO ft1 VALUES('g f b g j c h a d f'); INSERT INTO ft1 VALUES('j i a e g f a i a c'); INSERT INTO ft1 VALUES('f d g g j j c a h g'); INSERT INTO ft1 VALUES('b d h a d j j j b i'); INSERT INTO ft1 VALUES('j e a b j e c b c i'); INSERT INTO ft1 VALUES('a d e f b j j c g d'); } do_execsql_test 6.1.1 { SELECT count(*) FROM ft1 WHERE ft1 MATCH 'd' } {6} do_scanstatus_test 6.1.2 { nLoop 1 nVisit 6 nEst 24.0 zName ft1 zExplain {SCAN TABLE ft1 VIRTUAL TABLE INDEX 3:} } } finish_test |
Changes to test/shared_err.test.
︙ | ︙ | |||
442 443 444 445 446 447 448 449 450 | ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_NOMEM") || ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_IOERR") || ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_CORRUPT") } } {1} db2 close } do_test shared_malloc-8.X { # Test that one or more queries were aborted due to the malloc() failure. | > > > > > | > | 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 | ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_NOMEM") || ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_IOERR") || ($rc1=="SQLITE_ERROR" && $rc2=="SQLITE_CORRUPT") } } {1} db2 close } # When this test case was written, OOM errors in write statements would # cause transaction rollback, which would trip cursors in other statements, # aborting them. This no longer happens. # do_test shared_malloc-8.X { # Test that one or more queries were aborted due to the malloc() failure. # expr $::aborted>=1 expr $::aborted==0 } {1} # This test is designed to catch a specific bug that was present during # development of 3.5.0. If a malloc() failed while setting the page-size, # a buffer (Pager.pTmpSpace) was being freed. This could cause a seg-fault # later if another connection tried to use the pager. # |
︙ | ︙ |
Changes to test/skipscan1.test.
︙ | ︙ | |||
268 269 270 271 272 273 274 275 276 | } {/ANY.a. AND b=/} do_execsql_test skipscan1-6.3 { -- Two distinct values for the skip-scan column again. Skip-scan is not used. UPDATE sqlite_stat1 SET stat='500000 125000 62500'; ANALYZE sqlite_master; EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1; } {~/ANY/} finish_test | > > > > > > > > > > > > > > > > > > > | 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | } {/ANY.a. AND b=/} do_execsql_test skipscan1-6.3 { -- Two distinct values for the skip-scan column again. Skip-scan is not used. UPDATE sqlite_stat1 SET stat='500000 125000 62500'; ANALYZE sqlite_master; EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1; } {~/ANY/} # If the sqlite_stat1 entry includes the "noskipscan" token, then never use # skipscan with that index. # do_execsql_test skipscan1-7.1 { UPDATE sqlite_stat1 SET stat='500000 125000 1 sz=100'; ANALYZE sqlite_master; EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1; } {/ANY/} do_execsql_test skipscan1-7.2 { UPDATE sqlite_stat1 SET stat='500000 125000 1 noskipscan sz=100'; ANALYZE sqlite_master; EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1; } {~/ANY/} do_execsql_test skipscan1-7.3 { UPDATE sqlite_stat1 SET stat='500000 125000 1 sz=100 noskipscan'; ANALYZE sqlite_master; EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=1; } {~/ANY/} finish_test |
Added test/skipscan6.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | # 2014-10-21 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file implements tests of the "skip-scan" query strategy. In # particular, this file verifies that use of all columns of an index # is always preferred over the use of a skip-scan on some columns of # the same index. Because of difficulties in scoring a skip-scan, # the skip-scan can sometimes come out with a lower raw score when # using STAT4. But the query planner should detect this and use the # full index rather than the skip-scan. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix skipscan6 ifcapable !stat4 { finish_test return } do_execsql_test 1.1 { CREATE TABLE t1( aa int, bb int, cc int, dd int, ee int ); CREATE INDEX ix on t1(aa, bb, cc, dd DESC); ANALYZE sqlite_master; INSERT INTO sqlite_stat1 VALUES('t1','ix','2695116 1347558 264 18 2'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 196859 196859 32 1','0 15043 15043 92468 92499','0 19 286 81846 92499',X'0609010804031552977BD725BD28'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 14687 161 1 1','0 289067 299306 299457 299457','0 199 6772 273984 299457',X'060902020403013406314D67456415B819'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 19313 19308 22 1','0 325815 325815 343725 343746','0 261 9545 315009 343746',X'060902080403018A49B0A3AD1ED931'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 25047 9051 15 1','0 350443 350443 356590 356604','0 266 9795 325519 356604',X'06090208040301914C2DD2E91F93CF'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 42327 9906 7 1','0 376381 376381 380291 380297','0 268 10100 344232 380297',X'06090208040301934BF672511F7ED3'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 24513 2237 1 1','0 455150 467779 470015 470015','0 286 10880 425401 470015',X'06090202040301A703464A28F2611EF1EE'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 18730 18724 15 1','0 479663 479663 498271 498285','0 287 10998 450793 498285',X'06090208040301A8494AF3A41EC50C'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 119603 47125 1 1','0 572425 572425 598915 598915','0 404 14230 546497 598915',X'06090208040302474FD1929A03194F'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 1454 1454 1 1','0 898346 898346 898373 898373','0 952 31165 827562 898373',X'06090208040304FD53F6A2A2097F64'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 57138 7069 1 1','0 1122389 1122389 1129457 1129457','0 1967 46801 1045943 1129457',X'06090208040309884BC4C52F1F6EB7'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 285 11 1 1','0 1197683 1197824 1197831 1197831','0 2033 50990 1112280 1197831',X'06090202040309D80346503FE2A9038E4F'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 25365 9773 1 1','0 1301013 1301013 1310785 1310785','0 2561 58806 1217877 1310785',X'0609020804030C5F4C8F88AB0AF2A2'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 45180 7222 1 1','0 1326378 1326378 1333599 1333599','0 2562 59921 1240187 1333599',X'0609020804030C604CAB75490B0351'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 8537 41 1 1','0 1496959 1497288 1497289 1497289','0 3050 68246 1394126 1497289',X'0609020204030EA0057F527459B0257C4B'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 26139 26131 17 1','0 1507977 1507977 1520578 1520594','0 3074 69188 1416111 1520594',X'0609020804030EB95169453423D4EA'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 102894 29678 1 1','0 1537421 1550467 1564894 1564894','0 3109 69669 1459820 1564894',X'0609020204030EE3183652A6ED3006EBCB'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 319 3 1 1','0 1796728 1796746 1796747 1796747','0 3650 86468 1682243 1796747',X'0609020204031163033550D0C41018C28D'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 127 127 1 1','0 2096194 2096194 2096205 2096205','0 5145 106437 1951535 2096205',X'060902080403180F53BB1AF727EE50'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 66574 5252 1 1','0 2230524 2265961 2271212 2271212','0 5899 114976 2085829 2271212',X'0609020204031B8A05195009976D223B90'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 19440 19440 1 1','0 2391680 2391680 2395663 2395663','0 6718 123714 2184781 2395663',X'0609020804031F7452E00A7B07431A'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 18321 2177 1 1','0 2522928 2523231 2525407 2525407','0 7838 139084 2299958 2525407',X'06090201040324A7475231103B1AA7B8'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 22384 1361 1 1','0 2541249 2544834 2546194 2546194','0 7839 139428 2308416 2546194',X'06090202040324A8011652323D4B1AA9EB'); INSERT INTO sqlite_stat4 VALUES('t1','ix','2677151 18699 855 1 1','0 2563633 2578178 2579032 2579032','0 7840 139947 2321671 2579032',X'06090202040324A9077452323D7D1052C5'); INSERT INTO sqlite_stat4 VALUES('t1','ix','17965 1579 1579 1 1','2677151 2690666 2690666 2692244 2692244','1 9870 153959 2418294 2692244',X'060102080403021B8A4FE1AB84032B35'); ANALYZE sqlite_master; } {} do_execsql_test 1.2 { EXPLAIN QUERY PLAN SELECT COUNT(*) FROM t1 WHERE bb=21 AND aa=1 AND dd BETWEEN 1413833728 and 1413837331; } {/INDEX ix .aa=. AND bb=../} do_execsql_test 2.1 { DROP INDEX ix; CREATE INDEX good on t1(bb, aa, dd DESC); CREATE INDEX bad on t1(aa, bb, cc, dd DESC); DELETE FROM sqlite_stat1; DELETE FROM sqlite_stat4; INSERT INTO sqlite_stat1 VALUES('t1','good','2695116 299 264 2'); INSERT INTO sqlite_stat1 VALUES('t1','bad','2695116 1347558 264 18 2'); INSERT INTO sqlite_stat4 VALUES('t1','good','197030 196859 32 1','15086 15086 92511 92536','19 25 81644 92536',X'05010904031552977BD725BD22'); INSERT INTO sqlite_stat4 VALUES('t1','good','14972 14687 1 1','289878 289878 299457 299457','199 244 267460 299457',X'050209040301344F7E569402C419'); INSERT INTO sqlite_stat4 VALUES('t1','good','19600 19313 22 1','327127 327127 346222 346243','261 319 306884 346243',X'0502090403018A49503BC01EC577'); INSERT INTO sqlite_stat4 VALUES('t1','good','25666 25047 15 1','352087 352087 372692 372706','266 327 325601 372706',X'050209040301914C2DD2E91F93CF'); INSERT INTO sqlite_stat4 VALUES('t1','good','42392 42327 26 1','378657 378657 382547 382572','268 331 333529 382572',X'05020904030193533B2FE326ED48'); INSERT INTO sqlite_stat4 VALUES('t1','good','24619 24513 11 1','457872 457872 461748 461758','286 358 399322 461758',X'050209040301A752B1557825EA7C'); INSERT INTO sqlite_stat4 VALUES('t1','good','18969 18730 15 1','482491 482491 501105 501119','287 360 433605 501119',X'050209040301A8494AF3A41EC50C'); INSERT INTO sqlite_stat4 VALUES('t1','good','119710 119603 1 1','576500 576500 598915 598915','404 505 519877 598915',X'05020904030247539A7A7912F617'); INSERT INTO sqlite_stat4 VALUES('t1','good','11955 11946 1 1','889796 889796 898373 898373','938 1123 794694 898373',X'050209040304EF4DF9C4150BBB28'); INSERT INTO sqlite_stat4 VALUES('t1','good','57197 57138 24 1','1129865 1129865 1151492 1151515','1967 2273 1027048 1151515',X'05020904030988533510BC26E20A'); INSERT INTO sqlite_stat4 VALUES('t1','good','3609 3543 1 1','1196265 1196265 1197831 1197831','2002 2313 1070108 1197831',X'050209040309B050E95CD718D94D'); INSERT INTO sqlite_stat4 VALUES('t1','good','25391 25365 13 1','1309378 1309378 1315567 1315579','2561 2936 1178358 1315579',X'05020904030C5F53DF9E13283570'); INSERT INTO sqlite_stat4 VALUES('t1','good','45232 45180 17 1','1334769 1334769 1337946 1337962','2562 2938 1198998 1337962',X'05020904030C60541CACEE28BCAC'); INSERT INTO sqlite_stat4 VALUES('t1','good','5496 5493 1 1','1495882 1495882 1497289 1497289','3043 3479 1348695 1497289',X'05020904030E99515C62AD0F0B34'); INSERT INTO sqlite_stat4 VALUES('t1','good','26348 26139 17 1','1517381 1517381 1529990 1530006','3074 3519 1378320 1530006',X'05020904030EB95169453423D4EA'); INSERT INTO sqlite_stat4 VALUES('t1','good','102927 102894 10 1','1547088 1547088 1649950 1649959','3109 3559 1494260 1649959',X'05020904030EE34D309F671FFA47'); INSERT INTO sqlite_stat4 VALUES('t1','good','3602 3576 1 1','1793873 1793873 1796747 1796747','3601 4128 1630783 1796747',X'050209040311294FE88B432219B9'); INSERT INTO sqlite_stat4 VALUES('t1','good','154 154 1 1','2096059 2096059 2096205 2096205','5037 5779 1893039 2096205',X'050209040317994EFF05A016DCED'); INSERT INTO sqlite_stat4 VALUES('t1','good','68153 66574 60 1','2244039 2244039 2268892 2268951','5899 6749 2027553 2268951',X'05020904031B8A532DBC5A26D2BA'); INSERT INTO sqlite_stat4 VALUES('t1','good','321 321 1 1','2395618 2395618 2395663 2395663','6609 7528 2118435 2395663',X'05020904031EFA54078EEE1E2D65'); INSERT INTO sqlite_stat4 VALUES('t1','good','19449 19440 22 1','2407769 2407769 2426049 2426070','6718 7651 2146904 2426070',X'05020904031F7450E6118C2336BD'); INSERT INTO sqlite_stat4 VALUES('t1','good','18383 18321 56 1','2539949 2539949 2551080 2551135','7838 8897 2245459 2551135',X'050209040324A752EA2E1E2642B2'); INSERT INTO sqlite_stat4 VALUES('t1','good','22479 22384 60 1','2558332 2558332 2565233 2565292','7839 8899 2251202 2565292',X'050209040324A853926538279A5F'); INSERT INTO sqlite_stat4 VALUES('t1','good','18771 18699 63 1','2580811 2580811 2596914 2596976','7840 8901 2263572 2596976',X'050209040324A9526C1DE9256E72'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 196859 196859 32 1','0 15043 15043 92468 92499','0 19 286 81846 92499',X'0609010804031552977BD725BD28'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 14687 161 1 1','0 289067 299306 299457 299457','0 199 6772 273984 299457',X'060902020403013406314D67456415B819'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 19313 19308 22 1','0 325815 325815 343725 343746','0 261 9545 315009 343746',X'060902080403018A49B0A3AD1ED931'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 25047 9051 15 1','0 350443 350443 356590 356604','0 266 9795 325519 356604',X'06090208040301914C2DD2E91F93CF'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 42327 9906 7 1','0 376381 376381 380291 380297','0 268 10100 344232 380297',X'06090208040301934BF672511F7ED3'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 24513 2237 1 1','0 455150 467779 470015 470015','0 286 10880 425401 470015',X'06090202040301A703464A28F2611EF1EE'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 18730 18724 15 1','0 479663 479663 498271 498285','0 287 10998 450793 498285',X'06090208040301A8494AF3A41EC50C'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 119603 47125 1 1','0 572425 572425 598915 598915','0 404 14230 546497 598915',X'06090208040302474FD1929A03194F'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 1454 1454 1 1','0 898346 898346 898373 898373','0 952 31165 827562 898373',X'06090208040304FD53F6A2A2097F64'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 57138 7069 1 1','0 1122389 1122389 1129457 1129457','0 1967 46801 1045943 1129457',X'06090208040309884BC4C52F1F6EB7'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 285 11 1 1','0 1197683 1197824 1197831 1197831','0 2033 50990 1112280 1197831',X'06090202040309D80346503FE2A9038E4F'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 25365 9773 1 1','0 1301013 1301013 1310785 1310785','0 2561 58806 1217877 1310785',X'0609020804030C5F4C8F88AB0AF2A2'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 45180 7222 1 1','0 1326378 1326378 1333599 1333599','0 2562 59921 1240187 1333599',X'0609020804030C604CAB75490B0351'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 8537 41 1 1','0 1496959 1497288 1497289 1497289','0 3050 68246 1394126 1497289',X'0609020204030EA0057F527459B0257C4B'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 26139 26131 17 1','0 1507977 1507977 1520578 1520594','0 3074 69188 1416111 1520594',X'0609020804030EB95169453423D4EA'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 102894 29678 1 1','0 1537421 1550467 1564894 1564894','0 3109 69669 1459820 1564894',X'0609020204030EE3183652A6ED3006EBCB'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 319 3 1 1','0 1796728 1796746 1796747 1796747','0 3650 86468 1682243 1796747',X'0609020204031163033550D0C41018C28D'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 127 127 1 1','0 2096194 2096194 2096205 2096205','0 5145 106437 1951535 2096205',X'060902080403180F53BB1AF727EE50'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 66574 5252 1 1','0 2230524 2265961 2271212 2271212','0 5899 114976 2085829 2271212',X'0609020204031B8A05195009976D223B90'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 19440 19440 1 1','0 2391680 2391680 2395663 2395663','0 6718 123714 2184781 2395663',X'0609020804031F7452E00A7B07431A'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 18321 2177 1 1','0 2522928 2523231 2525407 2525407','0 7838 139084 2299958 2525407',X'06090201040324A7475231103B1AA7B8'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 22384 1361 1 1','0 2541249 2544834 2546194 2546194','0 7839 139428 2308416 2546194',X'06090202040324A8011652323D4B1AA9EB'); INSERT INTO sqlite_stat4 VALUES('t1','bad','2677151 18699 855 1 1','0 2563633 2578178 2579032 2579032','0 7840 139947 2321671 2579032',X'06090202040324A9077452323D7D1052C5'); INSERT INTO sqlite_stat4 VALUES('t1','bad','17965 1579 1579 1 1','2677151 2690666 2690666 2692244 2692244','1 9870 153959 2418294 2692244',X'060102080403021B8A4FE1AB84032B35'); ANALYZE sqlite_master; } {} do_execsql_test 2.2 { EXPLAIN QUERY PLAN SELECT COUNT(*) FROM t1 WHERE bb=21 AND aa=1 AND dd BETWEEN 1413833728 and 1413837331; } {/INDEX good .bb=. AND aa=. AND dd>. AND dd<../} # Create a table containing 100 rows. Column "a" contains a copy of the # rowid value - sequentially increasing integers from 1 to 100. Column # "b" contains the value of (a % 5). Columns "c" and "d" both contain # constant values (i.e. the same for every row). # # Then create a second table t2. t2 is the same as t3 except for the # order in which the indexes are created. # do_execsql_test 3.0 { CREATE TABLE t3(a, b, c, d); CREATE INDEX t3_ba ON t3(b, a, c); CREATE INDEX t3_a ON t3(a); WITH d(a, b) AS ( SELECT 1, 1 UNION ALL SELECT a+1, (a+1) % 5 FROM d WHERE a<100 ) INSERT INTO t3 SELECT a, b, 'c', 'd' FROM d; CREATE TABLE t2(a, b, c, d); CREATE INDEX t2_a ON t2(a); CREATE INDEX t2_ba ON t2(b, a, c); INSERT INTO t2 SELECT * FROM t3; ANALYZE; SELECT * FROM sqlite_stat1; } { t2 t2_ba {100 20 1 1} t2 t2_a {100 1} t3 t3_a {100 1} t3 t3_ba {100 20 1 1} } # Use index "t3_a", as (a=?) is expected to match only a single row. # do_eqp_test 3.1 { SELECT * FROM t3 WHERE a = ? AND c = ? } { 0 0 0 {SEARCH TABLE t3 USING INDEX t3_a (a=?)} } # The same query on table t2. This should use index "t2_a", for the # same reason. At one point though, it was mistakenly using a skip-scan. # do_eqp_test 3.2 { SELECT * FROM t2 WHERE a = ? AND c = ? } { 0 0 0 {SEARCH TABLE t2 USING INDEX t2_a (a=?)} } finish_test finish_test |
Changes to test/sort2.test.
︙ | ︙ | |||
58 59 60 61 62 63 64 | do_execsql_test $tn.2.3 { CREATE UNIQUE INDEX i2 ON t1(a); } do_execsql_test $tn.2.4 { PRAGMA integrity_check } {ok} | < | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | do_execsql_test $tn.2.3 { CREATE UNIQUE INDEX i2 ON t1(a); } do_execsql_test $tn.2.4 { PRAGMA integrity_check } {ok} do_execsql_test $tn.3 { PRAGMA cache_size = 5; WITH r(x,y) AS ( SELECT 1, randomblob(100) UNION ALL SELECT x+1, randomblob(100) FROM r LIMIT 1000000 |
︙ | ︙ |
Changes to test/table.test.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the CREATE TABLE statement. # | < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the CREATE TABLE statement. # set testdir [file dirname $argv0] source $testdir/tester.tcl # Create a basic table and verify it is added to sqlite_master # do_test table-1.1 { |
︙ | ︙ | |||
768 769 770 771 772 773 774 775 776 | CREATE TABLE t16(x DEFAULT(group_concat('x',','))); INSERT INTO t16(rowid) VALUES(123); SELECT rowid, x FROM t16; } {1 {unknown function: group_concat()}} do_catchsql_test table-16.7 { INSERT INTO t16 DEFAULT VALUES; } {1 {unknown function: group_concat()}} finish_test | > > > > > > > > > > > > > > > > > | 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 | CREATE TABLE t16(x DEFAULT(group_concat('x',','))); INSERT INTO t16(rowid) VALUES(123); SELECT rowid, x FROM t16; } {1 {unknown function: group_concat()}} do_catchsql_test table-16.7 { INSERT INTO t16 DEFAULT VALUES; } {1 {unknown function: group_concat()}} # Ticket [https://www.sqlite.org/src/info/094d39a4c95ee4abbc417f04214617675ba15c63] # describes a assertion fault that occurs on a CREATE TABLE .. AS SELECT statement. # the following test verifies that the problem has been fixed. # do_execsql_test table-17.1 { DROP TABLE IF EXISTS t1; CREATE TABLE t1(a TEXT); INSERT INTO t1(a) VALUES(1),(2); DROP TABLE IF EXISTS t2; CREATE TABLE t2(x TEXT, y TEXT); INSERT INTO t2(x,y) VALUES(3,4); DROP TABLE IF EXISTS t3; CREATE TABLE t3 AS SELECT a AS p, coalesce(y,a) AS q FROM t1 LEFT JOIN t2 ON a=x; SELECT p, q, '|' FROM t3 ORDER BY p; } {1 1 | 2 2 |} finish_test |
Changes to test/tkt-f777251dc7a.test.
︙ | ︙ | |||
36 37 38 39 40 41 42 43 44 45 46 47 48 49 | catch {db eval {INSERT OR ROLLBACK INTO t1 VALUES(1)}} } db function force_rollback force_rollback do_test tkt-f7772-1.2 { catchsql { BEGIN IMMEDIATE; SELECT x, force_rollback(), EXISTS(SELECT 1 FROM t3 WHERE w=x) FROM t2; } } {1 {abort due to ROLLBACK}} do_test tkt-f7772-1.3 { sqlite3_get_autocommit db } {1} | > | 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | catch {db eval {INSERT OR ROLLBACK INTO t1 VALUES(1)}} } db function force_rollback force_rollback do_test tkt-f7772-1.2 { catchsql { BEGIN IMMEDIATE; CREATE TABLE xyzzy(abc); SELECT x, force_rollback(), EXISTS(SELECT 1 FROM t3 WHERE w=x) FROM t2; } } {1 {abort due to ROLLBACK}} do_test tkt-f7772-1.3 { sqlite3_get_autocommit db } {1} |
︙ | ︙ | |||
63 64 65 66 67 68 69 | execsql { BEGIN IMMEDIATE; CREATE TEMP TABLE t3(w, z); } catchsql { SELECT x, force_rollback(), EXISTS(SELECT 1 FROM t3 WHERE w=x) FROM t2 } | | | 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | execsql { BEGIN IMMEDIATE; CREATE TEMP TABLE t3(w, z); } catchsql { SELECT x, force_rollback(), EXISTS(SELECT 1 FROM t3 WHERE w=x) FROM t2 } } {1 {abort due to ROLLBACK}} do_test tkt-f7772-2.3 { sqlite3_get_autocommit db } {1} do_test tkt-f7772-3.1 { execsql { DROP TABLE IF EXISTS t1; |
︙ | ︙ |
Changes to test/trans3.test.
︙ | ︙ | |||
48 49 50 51 52 53 54 | do_test trans3-1.3.1 { sqlite3_get_autocommit db } 1 do_test trans3-1.4 { db eval {SELECT * FROM t1} } {1 2 3 4} do_test trans3-1.5 { | | | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | do_test trans3-1.3.1 { sqlite3_get_autocommit db } 1 do_test trans3-1.4 { db eval {SELECT * FROM t1} } {1 2 3 4} do_test trans3-1.5 { db eval {BEGIN; CREATE TABLE xyzzy(abc);} db eval {INSERT INTO t1 VALUES(5);} set ::ecode {} set x [catch { db eval {SELECT * FROM t1} { if {[catch {db eval ROLLBACK} errmsg]} { set ::ecode [sqlite3_extended_errcode db] error $errmsg |
︙ | ︙ |
Changes to test/trigger9.test.
︙ | ︙ | |||
28 29 30 31 32 33 34 35 36 37 38 39 40 41 | set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable {!trigger} { finish_test return } proc has_rowdata {sql} { expr {[lsearch [execsql "explain $sql"] RowData]>=0} } do_test trigger9-1.1 { execsql { | > | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable {!trigger} { finish_test return } set ::testprefix trigger9 proc has_rowdata {sql} { expr {[lsearch [execsql "explain $sql"] RowData]>=0} } do_test trigger9-1.1 { execsql { |
︙ | ︙ | |||
215 216 217 218 219 220 221 222 223 | END; UPDATE v1 SET b = 'hello'; SELECT * FROM t2; ROLLBACK; } } {2} } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | END; UPDATE v1 SET b = 'hello'; SELECT * FROM t2; ROLLBACK; } } {2} } reset_db do_execsql_test 4.1 { CREATE TABLE t1(a, b); CREATE TABLE log(x); INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); CREATE VIEW v1 AS SELECT a, b FROM t1; CREATE TRIGGER tr1 INSTEAD OF DELETE ON v1 BEGIN INSERT INTO log VALUES('delete'); END; CREATE TRIGGER tr2 INSTEAD OF UPDATE ON v1 BEGIN INSERT INTO log VALUES('update'); END; CREATE TRIGGER tr3 INSTEAD OF INSERT ON v1 BEGIN INSERT INTO log VALUES('insert'); END; } do_execsql_test 4.2 { DELETE FROM v1 WHERE rowid=1; } {} do_execsql_test 4.3 { UPDATE v1 SET a=b WHERE rowid=2; } {} finish_test |
Changes to test/update.test.
︙ | ︙ | |||
600 601 602 603 604 605 606 607 608 | catchsql { UPDATE t4 SET a=1; } } {1 {no such column: nosuchcol}} } ;# ifcapable {trigger} finish_test | > > > > > > > > > > > > > > | 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 | catchsql { UPDATE t4 SET a=1; } } {1 {no such column: nosuchcol}} } ;# ifcapable {trigger} # Ticket [https://www.sqlite.org/src/tktview/43107840f1c02] on 2014-10-29 # An assertion fault on UPDATE # do_execsql_test update-15.1 { CREATE TABLE t15(a INTEGER PRIMARY KEY, b); INSERT INTO t15(a,b) VALUES(10,'abc'),(20,'def'),(30,'ghi'); ALTER TABLE t15 ADD COLUMN c; CREATE INDEX t15c ON t15(c); INSERT INTO t15(a,b) VALUES(5,'zyx'),(15,'wvu'),(25,'tsr'),(35,'qpo'); UPDATE t15 SET c=printf("y%d",a) WHERE c IS NULL; SELECT a,b,c,'|' FROM t15 ORDER BY a; } {5 zyx y5 | 10 abc y10 | 15 wvu y15 | 20 def y20 | 25 tsr y25 | 30 ghi y30 | 35 qpo y35 |} finish_test |
Changes to test/without_rowid5.test.
︙ | ︙ | |||
181 182 183 184 185 186 187 | do_execsql_test without_rowid5-5.9 { SELECT count(*) FROM nnw; } {1} # EVIDENCE-OF: R-12643-30541 The incremental blob I/O mechanism does not # work for WITHOUT ROWID tables. # | < | | 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | do_execsql_test without_rowid5-5.9 { SELECT count(*) FROM nnw; } {1} # EVIDENCE-OF: R-12643-30541 The incremental blob I/O mechanism does not # work for WITHOUT ROWID tables. # # EVIDENCE-OF: R-40134-30296 Table zTable is a WITHOUT ROWID table # do_execsql_test without_rowid5-6.1 { CREATE TABLE b1(a INTEGER PRIMARY KEY, b BLOB) WITHOUT ROWID; INSERT INTO b1 VALUES(1,x'0102030405060708090a0b0c0d0e0f'); } {} do_test without_rowid5-6.2 { set rc [catch {db incrblob b1 b 1} msg] |
︙ | ︙ |
Changes to tool/showstat4.c.
︙ | ︙ | |||
35 36 37 38 39 40 41 42 43 44 45 46 47 48 | sqlite3_stmt *pStmt; char *zIdx = 0; int rc, j, x, y, mxHdr; const unsigned char *aSample; int nSample; i64 iVal; const char *zSep; if( argc!=2 ){ fprintf(stderr, "Usage: %s DATABASE-FILE\n", argv[0]); exit(1); } rc = sqlite3_open(argv[1], &db); if( rc!=SQLITE_OK || db==0 ){ | > | 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | sqlite3_stmt *pStmt; char *zIdx = 0; int rc, j, x, y, mxHdr; const unsigned char *aSample; int nSample; i64 iVal; const char *zSep; int iRow = 0; if( argc!=2 ){ fprintf(stderr, "Usage: %s DATABASE-FILE\n", argv[0]); exit(1); } rc = sqlite3_open(argv[1], &db); if( rc!=SQLITE_OK || db==0 ){ |
︙ | ︙ | |||
56 57 58 59 60 61 62 | if( rc!=SQLITE_OK || pStmt==0 ){ fprintf(stderr, "%s\n", sqlite3_errmsg(db)); sqlite3_close(db); exit(1); } while( SQLITE_ROW==sqlite3_step(pStmt) ){ if( zIdx==0 || strcmp(zIdx, (const char*)sqlite3_column_text(pStmt,0))!=0 ){ | | > < < < > > | 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | if( rc!=SQLITE_OK || pStmt==0 ){ fprintf(stderr, "%s\n", sqlite3_errmsg(db)); sqlite3_close(db); exit(1); } while( SQLITE_ROW==sqlite3_step(pStmt) ){ if( zIdx==0 || strcmp(zIdx, (const char*)sqlite3_column_text(pStmt,0))!=0 ){ if( zIdx ) printf("\n**************************************" "**************\n\n"); sqlite3_free(zIdx); zIdx = sqlite3_mprintf("%s", sqlite3_column_text(pStmt,0)); iRow = 0; } printf("%s sample %d ------------------------------------\n", zIdx, ++iRow); printf(" nEq = %s\n", sqlite3_column_text(pStmt,1)); printf(" nLt = %s\n", sqlite3_column_text(pStmt,2)); printf(" nDLt = %s\n", sqlite3_column_text(pStmt,3)); printf(" sample = x'"); aSample = sqlite3_column_blob(pStmt,4); nSample = sqlite3_column_bytes(pStmt,4); for(j=0; j<nSample; j++) printf("%02x", aSample[j]); |
︙ | ︙ |
Added tool/varint.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | /* ** A utility program to translate SQLite varints into decimal and decimal ** integers into varints. */ #include <stdio.h> #include <string.h> #include <stdlib.h> #if defined(_MSC_VER) || defined(__BORLANDC__) typedef __int64 i64; typedef unsigned __int64 u64; #else typedef long long int i64; typedef unsigned long long int u64; #endif static int hexValue(char c){ if( c>='0' && c<='9' ) return c - '0'; if( c>='a' && c<='f' ) return c - 'a' + 10; if( c>='A' && c<='F' ) return c - 'A' + 10; return -1; } static char toHex(unsigned char c){ return "0123456789abcdef"[c&0xf]; } static int putVarint(unsigned char *p, u64 v){ int i, j, n; unsigned char buf[10]; if( v & (((u64)0xff000000)<<32) ){ p[8] = (unsigned char)v; v >>= 8; for(i=7; i>=0; i--){ p[i] = (unsigned char)((v & 0x7f) | 0x80); v >>= 7; } return 9; } n = 0; do{ buf[n++] = (unsigned char)((v & 0x7f) | 0x80); v >>= 7; }while( v!=0 ); buf[0] &= 0x7f; for(i=0, j=n-1; j>=0; j--, i++){ p[i] = buf[j]; } return n; } int main(int argc, char **argv){ int i; u64 x; u64 uX = 0; i64 iX; int n; unsigned char zHex[20]; if( argc==1 ){ fprintf(stderr, "Usage:\n" " %s HH HH HH ... Convert varint to decimal\n" " %s DDDDD Convert decimal to varint\n" " Add '+' or '-' before DDDDD to disambiguate.\n", argv[0], argv[0]); exit(1); } if( argc>2 || (strlen(argv[1])==2 && hexValue(argv[1][0])>=0 && hexValue(argv[1][1])>=0) ){ /* Hex to decimal */ for(i=1; i<argc && i<9; i++){ if( strlen(argv[i])!=2 ){ fprintf(stderr, "Not a hex byte: %s\n", argv[i]); exit(1); } x = (hexValue(argv[i][0])<<4) + hexValue(argv[i][1]); uX = (uX<<7) + (x&0x7f); if( (x&0x80)==0 ) break; } if( i==9 && i<argc ){ if( strlen(argv[i])!=2 ){ fprintf(stderr, "Not a hex byte: %s\n", argv[i]); exit(1); } x = (hexValue(argv[i][0])<<4) + hexValue(argv[i][1]); uX = (uX<<8) + x; } i++; if( i<argc ){ fprintf(stderr, "Extra arguments: %s...\n", argv[i]); exit(1); } }else{ char *z = argv[1]; int sign = 1; if( z[0]=='+' ) z++; else if( z[0]=='-' ){ z++; sign = -1; } uX = 0; while( z[0] ){ if( z[0]<'0' || z[0]>'9' ){ fprintf(stderr, "Not a decimal number: %s", argv[1]); exit(1); } uX = uX*10 + z[0] - '0'; z++; } if( sign<0 ){ memcpy(&iX, &uX, 8); iX = -iX; memcpy(&uX, &iX, 8); } } n = putVarint(zHex, uX); printf("%lld =", (i64)uX); for(i=0; i<n; i++){ printf(" %c%c", toHex(zHex[i]>>4), toHex(zHex[i]&0x0f)); } printf("\n"); return 0; } |