Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Change the VdbeOp.p4 union to include specific pointer types for the various values of VdbeOp.p4type. (CVS 4667) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
7e8330c8044dc7718e720dbd33f6e2fe |
User & Date: | danielk1977 2008-01-03 11:50:30.000 |
Context
2008-01-03
| ||
17:31 | Modify OP_VUpdate to read arguments from a range of memory cells instead of from the stack. (CVS 4668) (check-in: 955b15a020 user: danielk1977 tags: trunk) | |
11:50 | Change the VdbeOp.p4 union to include specific pointer types for the various values of VdbeOp.p4type. (CVS 4667) (check-in: 7e8330c804 user: danielk1977 tags: trunk) | |
09:51 | Change the OP_Insert opcode to read the key and data to insert from memory cells, not the stack. (CVS 4666) (check-in: 46501f490a user: danielk1977 tags: trunk) | |
Changes
Changes to src/insert.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** ** $Id: insert.c,v 1.205 2008/01/03 11:50:30 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Set P4 of the most recently inserted opcode to a column affinity ** string for index pIdx. A column affinity string has one character ** for each column in the table, according to the affinity of the column: |
︙ | ︙ | |||
120 121 122 123 124 125 126 | for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( tnum==pIndex->tnum ){ return 1; } } } #ifndef SQLITE_OMIT_VIRTUALTABLE | | | | 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( tnum==pIndex->tnum ){ return 1; } } } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){ assert( pOp->p4.pVtab!=0 ); assert( pOp->p4type==P4_VTAB ); return 1; } #endif } return 0; } |
︙ | ︙ |
Changes to src/sqliteInt.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.633 2008/01/03 11:50:30 danielk1977 Exp $ */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ /* ** The macro unlikely() is a hint that surrounds a boolean ** expression that is usually false. Macro likely() surrounds |
︙ | ︙ | |||
303 304 305 306 307 308 309 | */ typedef struct BusyHandler BusyHandler; struct BusyHandler { int (*xFunc)(void *,int); /* The busy callback */ void *pArg; /* First arg to busy callback */ int nBusy; /* Incremented with each busy call */ }; | < < < < < < < < < | 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | */ typedef struct BusyHandler BusyHandler; struct BusyHandler { int (*xFunc)(void *,int); /* The busy callback */ void *pArg; /* First arg to busy callback */ int nBusy; /* Incremented with each busy call */ }; /* ** Name of the master database table. The master database table ** is a special table that holds the names and attributes of all ** user tables and indices. */ #define MASTER_NAME "sqlite_master" |
︙ | ︙ | |||
369 370 371 372 373 374 375 376 377 378 379 380 381 382 | typedef struct Token Token; typedef struct TriggerStack TriggerStack; typedef struct TriggerStep TriggerStep; typedef struct Trigger Trigger; typedef struct WhereInfo WhereInfo; typedef struct WhereLevel WhereLevel; #include "os.h" #include "mutex.h" /* ** Each database file to be accessed by the system is an instance ** of the following structure. There are normally two of these structures ** in the sqlite.aDb[] array. aDb[0] is the main database file and | > > > > > > > > > | 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | typedef struct Token Token; typedef struct TriggerStack TriggerStack; typedef struct TriggerStep TriggerStep; typedef struct Trigger Trigger; typedef struct WhereInfo WhereInfo; typedef struct WhereLevel WhereLevel; /* ** Defer sourcing vdbe.h and btree.h until after the "u8" and ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque ** pointer types (i.e. FuncDef) defined above. */ #include "btree.h" #include "vdbe.h" #include "pager.h" #include "os.h" #include "mutex.h" /* ** Each database file to be accessed by the system is an instance ** of the following structure. There are normally two of these structures ** in the sqlite.aDb[] array. aDb[0] is the main database file and |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.669 2008/01/03 11:50:30 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> #include "vdbeInt.h" /* ** The following global variable is incremented every time a cursor |
︙ | ︙ | |||
675 676 677 678 679 680 681 | ** is the same as executing Halt. */ case OP_Halt: { /* no-push */ p->pTos = pTos; p->rc = pOp->p1; p->pc = pc; p->errorAction = pOp->p2; | | | | 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | ** is the same as executing Halt. */ case OP_Halt: { /* no-push */ p->pTos = pTos; p->rc = pOp->p1; p->pc = pc; p->errorAction = pOp->p2; if( pOp->p4.z ){ sqlite3SetString(&p->zErrMsg, pOp->p4.z, (char*)0); } rc = sqlite3VdbeHalt(p); assert( rc==SQLITE_BUSY || rc==SQLITE_OK ); if( rc==SQLITE_BUSY ){ p->rc = rc = SQLITE_BUSY; }else{ rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; |
︙ | ︙ | |||
729 730 731 732 733 734 735 | /* Opcode: Int64 * * P4 ** ** P4 is a pointer to a 64-bit integer value. ** Push that value onto the stack. */ case OP_Int64: { pTos++; | | | | | | | | | | | | 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 | /* Opcode: Int64 * * P4 ** ** P4 is a pointer to a 64-bit integer value. ** Push that value onto the stack. */ case OP_Int64: { pTos++; assert( pOp->p4.pI64!=0 ); pTos->flags = MEM_Int; memcpy(&pTos->u.i, pOp->p4.pI64, 8); break; } /* Opcode: Real * * P4 ** ** P4 is a pointer to a 64-bit floating point value. Push that value ** onto the stack. */ case OP_Real: { /* same as TK_FLOAT, */ pTos++; pTos->flags = MEM_Real; memcpy(&pTos->r, pOp->p4.pReal, 8); break; } /* Opcode: String8 * * P4 ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed ** into an OP_String before it is executed for the first time. */ case OP_String8: { /* same as TK_STRING */ assert( pOp->p4.z!=0 ); pOp->opcode = OP_String; pOp->p1 = strlen(pOp->p4.z); #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ pTos++; sqlite3VdbeMemSetStr(pTos, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem; if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem; pTos->flags &= ~(MEM_Dyn); pTos->flags |= MEM_Static; if( pOp->p4type==P4_DYNAMIC ){ sqlite3_free(pOp->p4.z); } pOp->p4type = P4_DYNAMIC; pOp->p4.z = pTos->z; pOp->p1 = pTos->n; if( pOp->p1>SQLITE_MAX_LENGTH ){ goto too_big; } break; } #endif if( pOp->p1>SQLITE_MAX_LENGTH ){ goto too_big; } /* Fall through to the next case, OP_String */ } /* Opcode: String P1 * P4 ** ** The string value P4 of length P1 (bytes) is pushed onto the stack. */ case OP_String: { pTos++; assert( pOp->p4.z!=0 ); pTos->flags = MEM_Str|MEM_Static|MEM_Term; pTos->z = pOp->p4.z; pTos->n = pOp->p1; pTos->enc = encoding; break; } /* Opcode: Null * * * ** |
︙ | ︙ | |||
820 821 822 823 824 825 826 | ** vdbe stack. ** ** The first time this instruction executes, in transforms itself into a ** 'Blob' opcode with a binary blob as P4. */ case OP_HexBlob: { /* same as TK_BLOB */ pOp->opcode = OP_Blob; | | | | | | | | | 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 | ** vdbe stack. ** ** The first time this instruction executes, in transforms itself into a ** 'Blob' opcode with a binary blob as P4. */ case OP_HexBlob: { /* same as TK_BLOB */ pOp->opcode = OP_Blob; pOp->p1 = strlen(pOp->p4.z)/2; if( pOp->p1>SQLITE_MAX_LENGTH ){ goto too_big; } if( pOp->p1 ){ char *zBlob = sqlite3HexToBlob(db, pOp->p4.z); if( !zBlob ) goto no_mem; if( pOp->p4type==P4_DYNAMIC ){ sqlite3_free(pOp->p4.z); } pOp->p4.z = zBlob; pOp->p4type = P4_DYNAMIC; }else{ if( pOp->p4type==P4_DYNAMIC ){ sqlite3_free(pOp->p4.z); } pOp->p4type = P4_STATIC; pOp->p4.z = ""; } /* Fall through to the next case, OP_Blob. */ } /* Opcode: Blob P1 * P4 ** ** P4 points to a blob of data P1 bytes long. Push this ** value onto the stack. This instruction is not coded directly ** by the compiler. Instead, the compiler layer specifies ** an OP_HexBlob opcode, with the hex string representation of ** the blob as P4. This opcode is transformed to an OP_Blob ** the first time it is executed. */ case OP_Blob: { pTos++; assert( pOp->p1 <= SQLITE_MAX_LENGTH ); sqlite3VdbeMemSetStr(pTos, pOp->p4.z, pOp->p1, 0, 0); pTos->enc = encoding; break; } #endif /* SQLITE_OMIT_BLOB_LITERAL */ /* Opcode: Variable P1 * * ** |
︙ | ︙ | |||
1334 1335 1336 1337 1338 1339 1340 | for(i=0; i<n; i++, pArg++){ apVal[i] = pArg; storeTypeInfo(pArg, encoding); } assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); if( pOp->p4type==P4_FUNCDEF ){ | | | | | 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 | for(i=0; i<n; i++, pArg++){ apVal[i] = pArg; storeTypeInfo(pArg, encoding); } assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); if( pOp->p4type==P4_FUNCDEF ){ ctx.pFunc = pOp->p4.pFunc; ctx.pVdbeFunc = 0; }else{ ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; ctx.pFunc = ctx.pVdbeFunc->pFunc; } ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.s.xDel = 0; ctx.s.db = db; ctx.isError = 0; if( ctx.pFunc->needCollSeq ){ assert( pOp>p->aOp ); assert( pOp[-1].p4type==P4_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); ctx.pColl = pOp[-1].p4.pColl; } if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; (*ctx.pFunc->xFunc)(&ctx, n, apVal); if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; if( db->mallocFailed ){ /* Even though a malloc() has failed, the implementation of the ** user function may have called an sqlite3_result_XXX() function |
︙ | ︙ | |||
1375 1376 1377 1378 1379 1380 1381 | popStack(&pTos, n); /* If any auxilary data functions have been called by this user function, ** immediately call the destructor for any non-static values. */ if( ctx.pVdbeFunc ){ sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); | | | 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 | popStack(&pTos, n); /* If any auxilary data functions have been called by this user function, ** immediately call the destructor for any non-static values. */ if( ctx.pVdbeFunc ){ sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); pOp->p4.pVdbeFunc = ctx.pVdbeFunc; pOp->p4type = P4_VDBEFUNC; } /* If the function returned an error, throw an exception */ if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); rc = SQLITE_ERROR; |
︙ | ︙ | |||
1770 1771 1772 1773 1774 1775 1776 | affinity = pOp->p1 & 0xFF; if( affinity ){ applyAffinity(pNos, affinity, encoding); applyAffinity(pTos, affinity, encoding); } | | | | 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 | affinity = pOp->p1 & 0xFF; if( affinity ){ applyAffinity(pNos, affinity, encoding); applyAffinity(pTos, affinity, encoding); } assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); ExpandBlob(pNos); ExpandBlob(pTos); res = sqlite3MemCompare(pNos, pTos, pOp->p4.pColl); switch( pOp->opcode ){ case OP_Eq: res = res==0; break; case OP_Ne: res = res!=0; break; case OP_Lt: res = res<0; break; case OP_Le: res = res<=0; break; case OP_Gt: res = res>0; break; default: res = res>=0; break; |
︙ | ︙ | |||
2253 2254 2255 2256 2257 2258 2259 | } zData = sMem.z; } sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest); pDest->enc = encoding; }else{ if( pOp->p4type==P4_MEM ){ | | | 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 | } zData = sMem.z; } sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest); pDest->enc = encoding; }else{ if( pOp->p4type==P4_MEM ){ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); }else{ assert( pDest->flags==MEM_Null ); } } /* If we dynamically allocated space to hold the data (in the ** sqlite3VdbeMemFromBtree() call above) then transfer control of that |
︙ | ︙ | |||
2383 2384 2385 2386 2387 2388 2389 | nField = -pOp->p1; }else{ leaveOnStack = 0; nField = pOp->p1; } jumpIfNull = pOp->p2; addRowid = pOp->opcode==OP_MakeIdxRec || pOp->opcode==OP_RegMakeIRec; | | | 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 | nField = -pOp->p1; }else{ leaveOnStack = 0; nField = pOp->p1; } jumpIfNull = pOp->p2; addRowid = pOp->opcode==OP_MakeIdxRec || pOp->opcode==OP_RegMakeIRec; zAffinity = pOp->p4.z; if( pOp->opcode==OP_RegMakeRec || pOp->opcode==OP_RegMakeIRec ){ Mem *pCount; assert( nField>=0 && nField<p->nMem ); pCount = &p->aMem[nField]; assert( pCount->flags & MEM_Int ); assert( pCount->u.i>=0 && pCount->u.i+nField<p->nMem ); |
︙ | ︙ | |||
2858 2859 2860 2861 2862 2863 2864 | if( pX==0 ) break; /* We always provide a key comparison function. If the table being ** opened is of type INTKEY, the comparision function will be ignored. */ rc = sqlite3BtreeCursor(pX, p2, wrFlag, sqlite3VdbeRecordCompare, pOp->p4.p, &pCur->pCursor); if( pOp->p4type==P4_KEYINFO ){ | | | 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 | if( pX==0 ) break; /* We always provide a key comparison function. If the table being ** opened is of type INTKEY, the comparision function will be ignored. */ rc = sqlite3BtreeCursor(pX, p2, wrFlag, sqlite3VdbeRecordCompare, pOp->p4.p, &pCur->pCursor); if( pOp->p4type==P4_KEYINFO ){ pCur->pKeyInfo = pOp->p4.pKeyInfo; pCur->pIncrKey = &pCur->pKeyInfo->incrKey; pCur->pKeyInfo->enc = ENC(p->db); }else{ pCur->pKeyInfo = 0; pCur->pIncrKey = &pCur->bogusIncrKey; } switch( rc ){ |
︙ | ︙ | |||
2953 2954 2955 2956 2957 2958 2959 | } if( rc==SQLITE_OK ){ /* If a transient index is required, create it by calling ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before ** opening it. If a transient table is required, just use the ** automatically created table with root-page 1 (an INTKEY table). */ | | | | | 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 | } if( rc==SQLITE_OK ){ /* If a transient index is required, create it by calling ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before ** opening it. If a transient table is required, just use the ** automatically created table with root-page 1 (an INTKEY table). */ if( pOp->p4.pKeyInfo ){ int pgno; assert( pOp->p4type==P4_KEYINFO ); rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); if( rc==SQLITE_OK ){ assert( pgno==MASTER_ROOT+1 ); rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare, pOp->p4.z, &pCx->pCursor); pCx->pKeyInfo = pOp->p4.pKeyInfo; pCx->pKeyInfo->enc = ENC(p->db); pCx->pIncrKey = &pCx->pKeyInfo->incrKey; } pCx->isTable = 0; }else{ rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor); pCx->isTable = 1; |
︙ | ︙ | |||
3631 3632 3633 3634 3635 3636 3637 | } pC->rowidIsValid = 0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ | | | | 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 | } pC->rowidIsValid = 0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ const char *zDb = db->aDb[pC->iDb].zName; const char *zTbl = pOp->p4.z; int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); assert( pC->isTable ); db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); assert( pC->iDb>=0 ); } } |
︙ | ︙ | |||
3670 3671 3672 3673 3674 3675 3676 | assert( pC!=0 ); if( pC->pCursor!=0 ){ i64 iKey; /* If the update-hook will be invoked, set iKey to the rowid of the ** row being deleted. */ | | | | | 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 | assert( pC!=0 ); if( pC->pCursor!=0 ){ i64 iKey; /* If the update-hook will be invoked, set iKey to the rowid of the ** row being deleted. */ if( db->xUpdateCallback && pOp->p4.z ){ assert( pC->isTable ); if( pC->rowidIsValid ){ iKey = pC->lastRowid; }else{ rc = sqlite3BtreeKeySize(pC->pCursor, &iKey); if( rc ){ goto abort_due_to_error; } iKey = keyToInt(iKey); } } rc = sqlite3VdbeCursorMoveto(pC); if( rc ) goto abort_due_to_error; rc = sqlite3BtreeDelete(pC->pCursor); pC->nextRowidValid = 0; pC->cacheStatus = CACHE_STALE; /* Invoke the update-hook if required. */ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ const char *zDb = db->aDb[pC->iDb].zName; const char *zTbl = pOp->p4.z; db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); assert( pC->iDb>=0 ); } } if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; break; } |
︙ | ︙ | |||
4142 4143 4144 4145 4146 4147 4148 | assert( pTos>=p->aStack ); if( (pC = p->apCsr[i])->pCursor!=0 ){ int res; assert( pTos->flags & MEM_Blob ); /* Created using OP_MakeRecord */ assert( pC->deferredMoveto==0 ); ExpandBlob(pTos); | | | | 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 | assert( pTos>=p->aStack ); if( (pC = p->apCsr[i])->pCursor!=0 ){ int res; assert( pTos->flags & MEM_Blob ); /* Created using OP_MakeRecord */ assert( pC->deferredMoveto==0 ); ExpandBlob(pTos); *pC->pIncrKey = pOp->p4.z!=0; assert( pOp->p4.z==0 || pOp->opcode!=OP_IdxGT ); rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res); *pC->pIncrKey = 0; if( rc!=SQLITE_OK ){ break; } if( pOp->opcode==OP_IdxLT ){ res = -res; |
︙ | ︙ | |||
4343 4344 4345 4346 4347 4348 4349 | } zMaster = SCHEMA_TABLE(iDb); initData.db = db; initData.iDb = pOp->p1; initData.pzErrMsg = &p->zErrMsg; zSql = sqlite3MPrintf(db, "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s", | | | 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 | } zMaster = SCHEMA_TABLE(iDb); initData.db = db; initData.iDb = pOp->p1; initData.pzErrMsg = &p->zErrMsg; zSql = sqlite3MPrintf(db, "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s", db->aDb[iDb].zName, zMaster, pOp->p4.z); if( zSql==0 ) goto no_mem; sqlite3SafetyOff(db); assert( db->init.busy==0 ); db->init.busy = 1; assert( !db->mallocFailed ); rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); if( rc==SQLITE_ABORT ) rc = initData.rc; |
︙ | ︙ | |||
4383 4384 4385 4386 4387 4388 4389 | ** ** Remove the internal (in-memory) data structures that describe ** the table named P4 in database P1. This is called after a table ** is dropped in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTable: { /* no-push */ | | | | | 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 | ** ** Remove the internal (in-memory) data structures that describe ** the table named P4 in database P1. This is called after a table ** is dropped in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTable: { /* no-push */ sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropIndex P1 * P4 ** ** Remove the internal (in-memory) data structures that describe ** the index named P4 in database P1. This is called after an index ** is dropped in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropIndex: { /* no-push */ sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); break; } /* Opcode: DropTrigger P1 * P4 ** ** Remove the internal (in-memory) data structures that describe ** the trigger named P4 in database P1. This is called after a trigger ** is dropped in order to keep the internal representation of the ** schema consistent with what is on disk. */ case OP_DropTrigger: { /* no-push */ sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); break; } #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* Opcode: IntegrityCk P1 P2 * ** |
︙ | ︙ | |||
4766 4767 4768 4769 4770 4771 4772 | assert( pRec>=p->aStack ); apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ apVal[i] = pRec; storeTypeInfo(pRec, encoding); } | | | | 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 | assert( pRec>=p->aStack ); apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ apVal[i] = pRec; storeTypeInfo(pRec, encoding); } ctx.pFunc = pOp->p4.pFunc; assert( pOp->p1>=0 && pOp->p1<p->nMem ); ctx.pMem = pMem = &p->aMem[pOp->p1]; pMem->n++; ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.s.xDel = 0; ctx.s.db = db; ctx.isError = 0; ctx.pColl = 0; if( ctx.pFunc->needCollSeq ){ assert( pOp>p->aOp ); assert( pOp[-1].p4type==P4_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); ctx.pColl = pOp[-1].p4.pColl; } (ctx.pFunc->xStep)(&ctx, n, apVal); popStack(&pTos, n); if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); rc = SQLITE_ERROR; } |
︙ | ︙ | |||
4809 4810 4811 4812 4813 4814 4815 | ** the step function was not previously called. */ case OP_AggFinal: { /* no-push */ Mem *pMem; assert( pOp->p1>=0 && pOp->p1<p->nMem ); pMem = &p->aMem[pOp->p1]; assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); | | | 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 | ** the step function was not previously called. */ case OP_AggFinal: { /* no-push */ Mem *pMem; assert( pOp->p1>=0 && pOp->p1<p->nMem ); pMem = &p->aMem[pOp->p1]; assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); if( rc==SQLITE_ERROR ){ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0); } if( sqlite3VdbeMemTooBig(pMem) ){ goto too_big; } break; |
︙ | ︙ | |||
4902 4903 4904 4905 4906 4907 4908 | if( isWriteLock ){ p1 = (-1*p1)-1; } assert( p1>=0 && p1<db->nDb ); assert( (p->btreeMask & (1<<p1))!=0 ); rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); if( rc==SQLITE_LOCKED ){ | | | | | | | 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 | if( isWriteLock ){ p1 = (-1*p1)-1; } assert( p1>=0 && p1<db->nDb ); assert( (p->btreeMask & (1<<p1))!=0 ); rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); if( rc==SQLITE_LOCKED ){ const char *z = pOp->p4.z; sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0); } break; } #endif /* SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VBegin * * P4 ** ** P4 a pointer to an sqlite3_vtab structure. Call the xBegin method ** for that table. */ case OP_VBegin: { /* no-push */ rc = sqlite3VtabBegin(db, pOp->p4.pVtab); break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VCreate P1 * P4 ** ** P4 is the name of a virtual table in database P1. Call the xCreate method ** for that table. */ case OP_VCreate: { /* no-push */ rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VDestroy P1 * P4 ** ** P4 is the name of a virtual table in database P1. Call the xDestroy method ** of that table. */ case OP_VDestroy: { /* no-push */ p->inVtabMethod = 2; rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); p->inVtabMethod = 0; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VOpen P1 * P4 ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** P1 is a cursor number. This opcode opens a cursor to the virtual ** table and stores that cursor in P1. */ case OP_VOpen: { /* no-push */ Cursor *pCur = 0; sqlite3_vtab_cursor *pVtabCursor = 0; sqlite3_vtab *pVtab = pOp->p4.pVtab; sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule; assert(pVtab && pModule); if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = pModule->xOpen(pVtab, &pVtabCursor); if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; if( SQLITE_OK==rc ){ |
︙ | ︙ | |||
5032 5033 5034 5035 5036 5037 5038 | for(i = 0; i<nArg; i++){ apArg[i] = &pTos[i+1-2-nArg]; storeTypeInfo(apArg[i], 0); } if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; p->inVtabMethod = 1; | | | 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 | for(i = 0; i<nArg; i++){ apArg[i] = &pTos[i+1-2-nArg]; storeTypeInfo(apArg[i], 0); } if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; p->inVtabMethod = 1; rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p4.z, nArg, apArg); p->inVtabMethod = 0; if( rc==SQLITE_OK ){ res = pModule->xEof(pCur->pVtabCursor); } if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; if( res ){ |
︙ | ︙ | |||
5177 5178 5179 5180 5181 5182 5183 | ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** on the top of the stack is popped and passed as the zName argument ** to the xRename method. */ case OP_VRename: { /* no-push */ | | | 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 | ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** on the top of the stack is popped and passed as the zName argument ** to the xRename method. */ case OP_VRename: { /* no-push */ sqlite3_vtab *pVtab = pOp->p4.pVtab; assert( pVtab->pModule->xRename ); Stringify(pTos, encoding); if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; sqlite3VtabLock(pVtab); rc = pVtab->pModule->xRename(pVtab, pTos->z); |
︙ | ︙ | |||
5218 5219 5220 5221 5222 5223 5224 | ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. */ case OP_VUpdate: { /* no-push */ | | | 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 | ** a row to delete. ** ** P1 is a boolean flag. If it is set to true and the xUpdate call ** is successful, then the value returned by sqlite3_last_insert_rowid() ** is set to the value of the rowid for the row just inserted. */ case OP_VUpdate: { /* no-push */ sqlite3_vtab *pVtab = pOp->p4.pVtab; sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule; int nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( pModule->xUpdate==0 ){ sqlite3SetString(&p->zErrMsg, "read-only table", 0); rc = SQLITE_ERROR; }else{ |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
11 12 13 14 15 16 17 | ************************************************************************* ** Header file for the Virtual DataBase Engine (VDBE) ** ** This header defines the interface to the virtual database engine ** or VDBE. The VDBE implements an abstract machine that runs a ** simple program to access and modify the underlying database. ** | | > > > > > > > | | > > > > > > > > > | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | ************************************************************************* ** Header file for the Virtual DataBase Engine (VDBE) ** ** This header defines the interface to the virtual database engine ** or VDBE. The VDBE implements an abstract machine that runs a ** simple program to access and modify the underlying database. ** ** $Id: vdbe.h,v 1.122 2008/01/03 11:50:30 danielk1977 Exp $ */ #ifndef _SQLITE_VDBE_H_ #define _SQLITE_VDBE_H_ #include <stdio.h> /* ** A single VDBE is an opaque structure named "Vdbe". Only routines ** in the source file sqliteVdbe.c are allowed to see the insides ** of this structure. */ typedef struct Vdbe Vdbe; /* ** The names of the following types declared in vdbeInt.h are required ** for the VdbeOp definition. */ typedef struct VdbeFunc VdbeFunc; typedef struct Mem Mem; /* ** A single instruction of the virtual machine has an opcode ** and as many as three operands. The instruction is recorded ** as an instance of the following structure: */ struct VdbeOp { u8 opcode; /* What operation to perform */ char p4type; /* One of the P4_xxx constants for p4 */ u8 flags; /* Flags for internal use */ u8 p5; /* Fifth parameter is an unsigned character */ int p1; /* First operand */ int p2; /* Second parameter (often the jump destination) */ int p3; /* The third parameter */ union { /* forth parameter */ int i; /* Integer value if p4type==P4_INT32 */ void *p; /* Generic pointer */ char *z; /* Pointer to data for string (char array) types */ i64 *pI64; /* Used when p4type is P4_INT64 */ double *pReal; /* Used when p4type is P4_REAL */ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ Mem *pMem; /* Used when p4type is P4_MEM */ sqlite3_vtab *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ } p4; #ifdef SQLITE_DEBUG char *zComment; /* Comment to improve readability */ #endif #ifdef VDBE_PROFILE int cnt; /* Number of times this instruction was executed */ long long cycles; /* Total time spend executing this instruction */ |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
128 129 130 131 132 133 134 | int n; /* Number of characters in string value, including '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ char zShort[NBFS]; /* Space for short strings */ }; | < | 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | int n; /* Number of characters in string value, including '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ char zShort[NBFS]; /* Space for short strings */ }; /* One or more of the following flags are set to indicate the validOK ** representations of the value stored in the Mem struct. ** ** If the MEM_Null flag is set, then the value is an SQL NULL value. ** No other flags may be set in this case. ** |
︙ | ︙ | |||
187 188 189 190 191 192 193 | FuncDef *pFunc; /* The definition of the function */ int nAux; /* Number of entries allocated for apAux[] */ struct AuxData { void *pAux; /* Aux data for the i-th argument */ void (*xDelete)(void *); /* Destructor for the aux data */ } apAux[1]; /* One slot for each function argument */ }; | < | 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | FuncDef *pFunc; /* The definition of the function */ int nAux; /* Number of entries allocated for apAux[] */ struct AuxData { void *pAux; /* Aux data for the i-th argument */ void (*xDelete)(void *); /* Destructor for the aux data */ } apAux[1]; /* One slot for each function argument */ }; /* ** The "context" argument for a installable function. A pointer to an ** instance of this structure is the first argument to the routines used ** implement the SQL functions. ** ** There is a typedef for this structure in sqlite.h. So all routines, |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
289 290 291 292 293 294 295 | #ifndef SQLITE_OMIT_TRACE /* Invoke the trace callback if there is one */ if( db->xTrace && !db->init.busy ){ assert( p->nOp>0 ); assert( p->aOp[p->nOp-1].opcode==OP_Noop ); | | | | | 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | #ifndef SQLITE_OMIT_TRACE /* Invoke the trace callback if there is one */ if( db->xTrace && !db->init.busy ){ assert( p->nOp>0 ); assert( p->aOp[p->nOp-1].opcode==OP_Noop ); assert( p->aOp[p->nOp-1].p4.z!=0 ); assert( p->aOp[p->nOp-1].p4type==P4_DYNAMIC ); sqlite3SafetyOff(db); db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p4.z); if( sqlite3SafetyOn(db) ){ p->rc = SQLITE_MISUSE; return SQLITE_MISUSE; } } if( db->xProfile && !db->init.busy ){ double rNow; sqlite3OsCurrentTime(db->pVfs, &rNow); p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; } #endif /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned ** on in debugging mode. */ #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p4.z); } #endif /* SQLITE_DEBUG */ db->activeVdbeCnt++; p->pc = 0; } #ifndef SQLITE_OMIT_EXPLAIN |
︙ | ︙ | |||
341 342 343 344 345 346 347 | double rNow; u64 elapseTime; sqlite3OsCurrentTime(db->pVfs, &rNow); elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; assert( p->nOp>0 ); assert( p->aOp[p->nOp-1].opcode==OP_Noop ); | | | | 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | double rNow; u64 elapseTime; sqlite3OsCurrentTime(db->pVfs, &rNow); elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; assert( p->nOp>0 ); assert( p->aOp[p->nOp-1].opcode==OP_Noop ); assert( p->aOp[p->nOp-1].p4.z!=0 ); assert( p->aOp[p->nOp-1].p4type==P4_DYNAMIC ); db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p4.z, elapseTime); } #endif sqlite3Error(p->db, rc, 0); p->rc = sqlite3ApiExit(p->db, p->rc); end_of_step: assert( (rc&0xff)==rc ); |
︙ | ︙ | |||
997 998 999 1000 1001 1002 1003 | sqlite3_mutex_enter(p->db->mutex); if( !p->okVar ){ int j; Op *pOp; for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ if( pOp->opcode==OP_Variable ){ assert( pOp->p1>0 && pOp->p1<=p->nVar ); | | | 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 | sqlite3_mutex_enter(p->db->mutex); if( !p->okVar ){ int j; Op *pOp; for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ if( pOp->opcode==OP_Variable ){ assert( pOp->p1>0 && pOp->p1<=p->nVar ); p->azVar[pOp->p1-1] = pOp->p4.z; } } p->okVar = 1; } sqlite3_mutex_leave(p->db->mutex); } } |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
573 574 575 576 577 578 579 | }else if( n==P4_KEYINFO ){ KeyInfo *pKeyInfo; int nField, nByte; nField = ((KeyInfo*)zP4)->nField; nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; pKeyInfo = sqlite3_malloc( nByte ); | | | | | | 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | }else if( n==P4_KEYINFO ){ KeyInfo *pKeyInfo; int nField, nByte; nField = ((KeyInfo*)zP4)->nField; nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; pKeyInfo = sqlite3_malloc( nByte ); pOp->p4.pKeyInfo = pKeyInfo; if( pKeyInfo ){ unsigned char *aSortOrder; memcpy(pKeyInfo, zP4, nByte); aSortOrder = pKeyInfo->aSortOrder; if( aSortOrder ){ pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); } pOp->p4type = P4_KEYINFO; }else{ p->db->mallocFailed = 1; pOp->p4type = P4_NOTUSED; } }else if( n==P4_KEYINFO_HANDOFF ){ pOp->p4.p = (void*)zP4; pOp->p4type = P4_KEYINFO; }else if( n<0 ){ pOp->p4.p = (void*)zP4; pOp->p4type = n; }else{ if( n==0 ) n = strlen(zP4); pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); pOp->p4type = P4_DYNAMIC; } } #ifndef NDEBUG /* ** Change the comment on the the most recently coded instruction. |
︙ | ︙ | |||
635 636 637 638 639 640 641 | */ static char *displayP4(Op *pOp, char *zTemp, int nTemp){ char *zP4 = zTemp; assert( nTemp>=20 ); switch( pOp->p4type ){ case P4_KEYINFO: { int i, j; | | | 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 | */ static char *displayP4(Op *pOp, char *zTemp, int nTemp){ char *zP4 = zTemp; assert( nTemp>=20 ); switch( pOp->p4type ){ case P4_KEYINFO: { int i, j; KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); i = strlen(zTemp); for(j=0; j<pKeyInfo->nField; j++){ CollSeq *pColl = pKeyInfo->aColl[j]; if( pColl ){ int n = strlen(pColl->zName); if( i+n>nTemp-6 ){ |
︙ | ︙ | |||
663 664 665 666 667 668 669 | } zTemp[i++] = ')'; zTemp[i] = 0; assert( i<nTemp ); break; } case P4_COLLSEQ: { | | | | | | | | | 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 | } zTemp[i++] = ')'; zTemp[i] = 0; assert( i<nTemp ); break; } case P4_COLLSEQ: { CollSeq *pColl = pOp->p4.pColl; sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); break; } case P4_FUNCDEF: { FuncDef *pDef = pOp->p4.pFunc; sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); break; } case P4_INT64: { sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); break; } case P4_INT32: { sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); break; } case P4_REAL: { sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & MEM_Int ){ sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); }else if( pMem->flags & MEM_Null ){ sqlite3_snprintf(nTemp, zTemp, "NULL"); } break; } #ifndef SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab *pVtab = pOp->p4.pVtab; sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); break; } #endif default: { zP4 = pOp->p4.z; if( zP4==0 || pOp->opcode==OP_Noop ){ zP4 = zTemp; zTemp[0] = 0; } } } assert( zP4!=0 ); |
︙ | ︙ | |||
878 879 880 881 882 883 884 | ** Print the SQL that was used to generate a VDBE program. */ void sqlite3VdbePrintSql(Vdbe *p){ int nOp = p->nOp; VdbeOp *pOp; if( nOp<1 ) return; pOp = &p->aOp[nOp-1]; | | | | 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 | ** Print the SQL that was used to generate a VDBE program. */ void sqlite3VdbePrintSql(Vdbe *p){ int nOp = p->nOp; VdbeOp *pOp; if( nOp<1 ) return; pOp = &p->aOp[nOp-1]; if( pOp->opcode==OP_Noop && pOp->p4.z!=0 ){ const char *z = pOp->p4.z; while( isspace(*(u8*)z) ) z++; printf("SQL: [%s]\n", z); } } #endif #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) |
︙ | ︙ |