SQLite

Check-in [7d6818da33]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Reduce the space allocated for the runtime virtual machine stack. (CVS 2428)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 7d6818da33a87076d1faf35ffc15a3aada0533b3
User & Date: danielk1977 2005-03-29 08:26:13.000
Context
2005-03-29
13:07
Change 'stack' to the more descriptive 'no-push' in vdbe.c. (CVS 2429) (check-in: 7e54d3c728 user: danielk1977 tags: trunk)
08:26
Reduce the space allocated for the runtime virtual machine stack. (CVS 2428) (check-in: 7d6818da33 user: danielk1977 tags: trunk)
03:10
Add the SQLITE_OMIT_TEMPDB compile time macro. (CVS 2427) (check-in: c41d55443c user: danielk1977 tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to mkopcodeh.awk.
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39


40
41
42



43
44
45
46
47
48
49
# are coded with TK_ values such as TK_ADD, TK_DIVIDE, and so forth.  Later
# during code generation, we need to generate corresponding opcodes like
# OP_Add and OP_Divide.  By making TK_ADD==OP_Add and TK_DIVIDE==OP_Divide,
# code to translation from one to the other is avoided.  This makes the
# code generator run (infinitesimally) faster and more importantly it makes
# the total library smaller.
#


# Remember the TK_ values from the parse.h file
/^#define TK_/ {
  tk[$2] = $3
}

# Scan for "case OP_aaaa:" lines in the vdbe.c file
/^case OP_/ {
  name = $2
  gsub(/:/,"",name)
  gsub("\r","",name)
  op[name] = -1
  for(i=3; i<NF-2; i++){
    if($i=="same" && $(i+1)=="as"){


      op[name] = tk[$(i+2)]
      used[op[name]] = 1
      sameas[op[name]] = $(i+2)



    }
  }
}

# Assign numbers to all opcodes and output the result.
END {
  cnt = 0







>












|

>
>
|

|
>
>
>







19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# are coded with TK_ values such as TK_ADD, TK_DIVIDE, and so forth.  Later
# during code generation, we need to generate corresponding opcodes like
# OP_Add and OP_Divide.  By making TK_ADD==OP_Add and TK_DIVIDE==OP_Divide,
# code to translation from one to the other is avoided.  This makes the
# code generator run (infinitesimally) faster and more importantly it makes
# the total library smaller.
#


# Remember the TK_ values from the parse.h file
/^#define TK_/ {
  tk[$2] = $3
}

# Scan for "case OP_aaaa:" lines in the vdbe.c file
/^case OP_/ {
  name = $2
  gsub(/:/,"",name)
  gsub("\r","",name)
  op[name] = -1
  for(i=3; i<NF; i++){
    if($i=="same" && $(i+1)=="as"){
      sym = $(i+2)
      sub(/,/,"",sym)
      op[name] = tk[sym]
      used[op[name]] = 1
      sameas[op[name]] = sym
    }
    if($i=="stack"){
      stack[name] = 1
    }
  }
}

# Assign numbers to all opcodes and output the result.
END {
  cnt = 0
71
72
73
74
75
76
77
78



























      if( !seenUnused ){
        printf "\n/* The following opcode values are never used */\n"
        seenUnused = 1
      }
      printf "#define %-25s %15d\n", sprintf( "OP_NotUsed_%-3d", i ), i
    }
  }
}


































|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
      if( !seenUnused ){
        printf "\n/* The following opcode values are never used */\n"
        seenUnused = 1
      }
      printf "#define %-25s %15d\n", sprintf( "OP_NotUsed_%-3d", i ), i
    }
  }

  # Generate the 10 16-bit bitmasks used by function opcodeUsesStack()
  # in vdbeaux.c. See comments in that function for details.
  # 
  stack[0] = 0              # 0..15
  stack[1] = 0              # 16..31
  stack[2] = 0              # 32..47
  stack[3] = 0              # 48..63
  stack[4] = 0              # 64..79
  stack[5] = 0              # 80..95
  stack[6] = 0              # 96..111
  stack[7] = 0              # 112..127
  stack[8] = 0              # 128..143
  stack[9] = 0              # 144..159
  for(name in op){
    if( stack[name] ){
      n = op[name]
      j = n%16
      i = ((n - j)/16)
      stack[i] = stack[i] + (2^j)
    }
  }
  printf "\n"
  for(i=0; i<10; i++){
    printf "#define STACK_MASK_%d %d\n", i, stack[i]
  }

}
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.461 2005/03/29 03:11:00 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.462 2005/03/29 08:26:13 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
458
459
460
461
462
463
464



465
466
467
468
469
470
471
#ifdef VDBE_PROFILE
  unsigned long long start;  /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif




  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
  assert( db->magic==SQLITE_MAGIC_BUSY );
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
  p->rc = SQLITE_OK;
  assert( p->explain==0 );
  pTos = p->pTos;







>
>
>







458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
#ifdef VDBE_PROFILE
  unsigned long long start;  /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif
#ifndef NDEBUG
  Mem *pStackLimit;
#endif

  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
  assert( db->magic==SQLITE_MAGIC_BUSY );
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
  p->rc = SQLITE_OK;
  assert( p->explain==0 );
  pTos = p->pTos;
528
529
530
531
532
533
534

















535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554





555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
          continue; /* skip to the next iteration of the for loop */
        }
        nProgressOps = 0;
      }
      nProgressOps++;
    }
#endif


















    switch( pOp->opcode ){

/*****************************************************************************
** What follows is a massive switch statement where each case implements a
** separate instruction in the virtual machine.  If we follow the usual
** indentation conventions, each case should be indented by 6 spaces.  But
** that is a lot of wasted space on the left margin.  So the code within
** the switch statement will break with convention and be flush-left. Another
** big comment (similar to this one) will mark the point in the code where
** we transition back to normal indentation.
**
** The formatting of each case is important.  The makefile for SQLite
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
** file looking for lines that begin with "case OP_".  The opcodes.h files
** will be filled with #defines that give unique integer values to each
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode.  If the
** case statement is followed by a comment of the form "/# same as ... #/"
** that comment is used to determine the particular value of the opcode.





**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:".  That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
** SUMMARY:
**
**     Formatting is important to scripts that scan this file.
**     Do not deviate from the formatting style currently in use.
**
*****************************************************************************/

/* Opcode:  Goto * P2 *
**
** An unconditional jump to address P2.
** The next instruction executed will be 
** the one at index P2 from the beginning of
** the program.
*/
case OP_Goto: {
  CHECK_FOR_INTERRUPT;
  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Gosub * P2 *
**
** Push the current address plus 1 onto the return address stack
** and then jump to address P2.
**
** The return address stack is of limited depth.  If too many
** OP_Gosub operations occur without intervening OP_Returns, then
** the return address stack will fill up and processing will abort
** with a fatal error.
*/
case OP_Gosub: {
  assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
  p->returnStack[p->returnDepth++] = pc+1;
  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Return * * *
**
** Jump immediately to the next instruction after the last unreturned
** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then
** processing aborts with a fatal error.
*/
case OP_Return: {
  assert( p->returnDepth>0 );
  p->returnDepth--;
  pc = p->returnStack[p->returnDepth] - 1;
  break;
}

/* Opcode:  Halt P1 P2 *







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




















>
>
>
>
>




















|















|












|







531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
          continue; /* skip to the next iteration of the for loop */
        }
        nProgressOps = 0;
      }
      nProgressOps++;
    }
#endif

#ifndef NDEBUG
    /* This is to check that the return value of static function
    ** opcodeUsesStack() (see vdbeaux.c) returns values that match the
    ** implementation of the virtual machine in this file. If
    ** opcodeUsesStack() returns non-zero, then the stack is guarenteed
    ** not to grow when the opcode is executed. If it returns zero, then
    ** the stack may grow by at most 1.
    **
    ** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not 
    ** available if NDEBUG is defined at build time.
    */ 
    pStackLimit = pTos;
    if( !sqlite3VdbeOpcodeUsesStack(pOp->opcode) ){
      pStackLimit++;
    }
#endif

    switch( pOp->opcode ){

/*****************************************************************************
** What follows is a massive switch statement where each case implements a
** separate instruction in the virtual machine.  If we follow the usual
** indentation conventions, each case should be indented by 6 spaces.  But
** that is a lot of wasted space on the left margin.  So the code within
** the switch statement will break with convention and be flush-left. Another
** big comment (similar to this one) will mark the point in the code where
** we transition back to normal indentation.
**
** The formatting of each case is important.  The makefile for SQLite
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
** file looking for lines that begin with "case OP_".  The opcodes.h files
** will be filled with #defines that give unique integer values to each
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode.  If the
** case statement is followed by a comment of the form "/# same as ... #/"
** that comment is used to determine the particular value of the opcode.
**
** If a comment on the same line as the "case OP_" construction contains
** the word "stack", then the opcode is guarenteed not to grow the 
** vdbe stack when it is executed. See function opcodeUsesStack() in
** vdbeaux.c for details.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:".  That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
** SUMMARY:
**
**     Formatting is important to scripts that scan this file.
**     Do not deviate from the formatting style currently in use.
**
*****************************************************************************/

/* Opcode:  Goto * P2 *
**
** An unconditional jump to address P2.
** The next instruction executed will be 
** the one at index P2 from the beginning of
** the program.
*/
case OP_Goto: {             /* no stack growth */
  CHECK_FOR_INTERRUPT;
  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Gosub * P2 *
**
** Push the current address plus 1 onto the return address stack
** and then jump to address P2.
**
** The return address stack is of limited depth.  If too many
** OP_Gosub operations occur without intervening OP_Returns, then
** the return address stack will fill up and processing will abort
** with a fatal error.
*/
case OP_Gosub: {            /* no stack growth */
  assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
  p->returnStack[p->returnDepth++] = pc+1;
  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Return * * *
**
** Jump immediately to the next instruction after the last unreturned
** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then
** processing aborts with a fatal error.
*/
case OP_Return: {           /* no stack growth */
  assert( p->returnDepth>0 );
  p->returnDepth--;
  pc = p->returnStack[p->returnDepth] - 1;
  break;
}

/* Opcode:  Halt P1 P2 *
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
** then back out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction. 
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
  p->pTos = pTos;
  p->rc = pOp->p1;
  p->pc = pc;
  p->errorAction = pOp->p2;
  if( pOp->p3 ){
    sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
  }







|







646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
** then back out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction. 
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program.  So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {            /* no stack growth */
  p->pTos = pTos;
  p->rc = pOp->p1;
  p->pc = pc;
  p->errorAction = pOp->p2;
  if( pOp->p3 ){
    sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
  }
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
  break;
}

/* Opcode: Real * * P3
**
** The string value P3 is converted to a real and pushed on to the stack.
*/
case OP_Real: {            /* same as TK_FLOAT */
  pTos++;
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;
  pTos->z = pOp->p3;
  pTos->n = strlen(pTos->z);
  pTos->enc = SQLITE_UTF8;
  pTos->r = sqlite3VdbeRealValue(pTos);
  pTos->flags |= MEM_Real;







|







692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
  break;
}

/* Opcode: Real * * P3
**
** The string value P3 is converted to a real and pushed on to the stack.
*/
case OP_Real: {            /* same as TK_FLOAT, */
  pTos++;
  pTos->flags = MEM_Str|MEM_Static|MEM_Term;
  pTos->z = pOp->p3;
  pTos->n = strlen(pTos->z);
  pTos->enc = SQLITE_UTF8;
  pTos->r = sqlite3VdbeRealValue(pTos);
  pTos->flags |= MEM_Real;
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
  break;
}

/* Opcode: Pop P1 * *
**
** P1 elements are popped off of the top of stack and discarded.
*/
case OP_Pop: {
  assert( pOp->p1>=0 );
  popStack(&pTos, pOp->p1);
  assert( pTos>=&p->aStack[-1] );
  break;
}

/* Opcode: Dup P1 P2 *







|







828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
  break;
}

/* Opcode: Pop P1 * *
**
** P1 elements are popped off of the top of stack and discarded.
*/
case OP_Pop: {            /* no stack growth */
  assert( pOp->p1>=0 );
  popStack(&pTos, pOp->p1);
  assert( pTos>=&p->aStack[-1] );
  break;
}

/* Opcode: Dup P1 P2 *
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
** the stack and pushed back on top of the stack.  The
** top of the stack is element 0, so "Pull 0 0 0" is
** a no-op.  "Pull 1 0 0" swaps the top two elements of
** the stack.
**
** See also the Dup instruction.
*/
case OP_Pull: {
  Mem *pFrom = &pTos[-pOp->p1];
  int i;
  Mem ts;

  ts = *pFrom;
  Deephemeralize(pTos);
  for(i=0; i<pOp->p1; i++, pFrom++){







|







871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
** the stack and pushed back on top of the stack.  The
** top of the stack is element 0, so "Pull 0 0 0" is
** a no-op.  "Pull 1 0 0" swaps the top two elements of
** the stack.
**
** See also the Dup instruction.
*/
case OP_Pull: {            /* no stack growth */
  Mem *pFrom = &pTos[-pOp->p1];
  int i;
  Mem ts;

  ts = *pFrom;
  Deephemeralize(pTos);
  for(i=0; i<pOp->p1; i++, pFrom++){
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

/* Opcode: Push P1 * *
**
** Overwrite the value of the P1-th element down on the
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack.  Then pop the top of the stack.
*/
case OP_Push: {
  Mem *pTo = &pTos[-pOp->p1];

  assert( pTo>=p->aStack );
  sqlite3VdbeMemMove(pTo, pTos);
  pTos--;
  break;
}

/* Opcode: Callback P1 * *
**
** Pop P1 values off the stack and form them into an array.  Then
** invoke the callback function using the newly formed array as the
** 3rd parameter.
*/
case OP_Callback: {
  int i;
  assert( p->nResColumn==pOp->p1 );

  for(i=0; i<pOp->p1; i++){
    Mem *pVal = &pTos[0-i];
    sqlite3VdbeMemNulTerminate(pVal);
    storeTypeInfo(pVal, db->enc);







|














|







903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

/* Opcode: Push P1 * *
**
** Overwrite the value of the P1-th element down on the
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack.  Then pop the top of the stack.
*/
case OP_Push: {            /* no stack growth */
  Mem *pTo = &pTos[-pOp->p1];

  assert( pTo>=p->aStack );
  sqlite3VdbeMemMove(pTo, pTos);
  pTos--;
  break;
}

/* Opcode: Callback P1 * *
**
** Pop P1 values off the stack and form them into an array.  Then
** invoke the callback function using the newly formed array as the
** 3rd parameter.
*/
case OP_Callback: {            /* no stack growth */
  int i;
  assert( p->nResColumn==pOp->p1 );

  for(i=0; i<pOp->p1; i++){
    Mem *pVal = &pTos[0-i];
    sqlite3VdbeMemNulTerminate(pVal);
    storeTypeInfo(pVal, db->enc);
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the remainder after division onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the division.  Division by zero returns NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add:                   /* same as TK_PLUS */
case OP_Subtract:              /* same as TK_MINUS */
case OP_Multiply:              /* same as TK_STAR */
case OP_Divide:                /* same as TK_SLASH */
case OP_Remainder: {           /* same as TK_REM */
  Mem *pNos = &pTos[-1];
  assert( pNos>=p->aStack );
  if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
    Release(pTos);
    pTos--;
    Release(pTos);
    pTos->flags = MEM_Null;







|
|
|
|
|







1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the remainder after division onto the stack.  If either element
** is a string then it is converted to a double using the atof()
** function before the division.  Division by zero returns NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add:                   /* same as TK_PLUS, no stack growth */
case OP_Subtract:              /* same as TK_MINUS, no stack growth */
case OP_Multiply:              /* same as TK_STAR, no stack growth */
case OP_Divide:                /* same as TK_SLASH, no stack growth */
case OP_Remainder: {           /* same as TK_REM, no stack growth */
  Mem *pNos = &pTos[-1];
  assert( pNos>=p->aStack );
  if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
    Release(pTos);
    pTos--;
    Release(pTos);
    pTos->flags = MEM_Null;
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly, only to user functions defined in func.c.
*/
case OP_CollSeq: {
  assert( pOp->p3type==P3_COLLSEQ );
  break;
}

/* Opcode: Function P1 P2 P3
**
** Invoke a user function (P3 is a pointer to a Function structure that







|







1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly, only to user functions defined in func.c.
*/
case OP_CollSeq: {             /* no stack growth */
  assert( pOp->p3type==P3_COLLSEQ );
  break;
}

/* Opcode: Function P1 P2 P3
**
** Invoke a user function (P3 is a pointer to a Function structure that
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
/* Opcode: ShiftRight * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the second element shifted
** right by N bits where N is the top element on the stack.
** If either operand is NULL, the result is NULL.
*/
case OP_BitAnd:                 /* same as TK_BITAND */
case OP_BitOr:                  /* same as TK_BITOR */
case OP_ShiftLeft:              /* same as TK_LSHIFT */
case OP_ShiftRight: {           /* same as TK_RSHIFT */
  Mem *pNos = &pTos[-1];
  int a, b;

  assert( pNos>=p->aStack );
  if( (pTos->flags | pNos->flags) & MEM_Null ){
    popStack(&pTos, 2);
    pTos++;







|
|
|
|







1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
/* Opcode: ShiftRight * * *
**
** Pop the top two elements from the stack.  Convert both elements
** to integers.  Push back onto the stack the second element shifted
** right by N bits where N is the top element on the stack.
** If either operand is NULL, the result is NULL.
*/
case OP_BitAnd:                 /* same as TK_BITAND, no stack growth */
case OP_BitOr:                  /* same as TK_BITOR, no stack growth */
case OP_ShiftLeft:              /* same as TK_LSHIFT, no stack growth */
case OP_ShiftRight: {           /* same as TK_RSHIFT, no stack growth */
  Mem *pNos = &pTos[-1];
  int a, b;

  assert( pNos>=p->aStack );
  if( (pTos->flags | pNos->flags) & MEM_Null ){
    popStack(&pTos, 2);
    pTos++;
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
/* Opcode: AddImm  P1 * *
** 
** Add the value P1 to whatever is on top of the stack.  The result
** is always an integer.
**
** To force the top of the stack to be an integer, just add 0.
*/
case OP_AddImm: {
  assert( pTos>=p->aStack );
  Integerify(pTos);
  pTos->i += pOp->p1;
  break;
}

/* Opcode: ForceInt P1 P2 *
**
** Convert the top of the stack into an integer.  If the current top of
** the stack is not numeric (meaning that is is a NULL or a string that
** does not look like an integer or floating point number) then pop the
** stack and jump to P2.  If the top of the stack is numeric then
** convert it into the least integer that is greater than or equal to its
** current value if P1==0, or to the least integer that is strictly
** greater than its current value if P1==1.
*/
case OP_ForceInt: {
  int v;
  assert( pTos>=p->aStack );
  applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc);
  if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
    Release(pTos);
    pTos--;
    pc = pOp->p2 - 1;







|
















|







1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
/* Opcode: AddImm  P1 * *
** 
** Add the value P1 to whatever is on top of the stack.  The result
** is always an integer.
**
** To force the top of the stack to be an integer, just add 0.
*/
case OP_AddImm: {            /* no stack growth */
  assert( pTos>=p->aStack );
  Integerify(pTos);
  pTos->i += pOp->p1;
  break;
}

/* Opcode: ForceInt P1 P2 *
**
** Convert the top of the stack into an integer.  If the current top of
** the stack is not numeric (meaning that is is a NULL or a string that
** does not look like an integer or floating point number) then pop the
** stack and jump to P2.  If the top of the stack is numeric then
** convert it into the least integer that is greater than or equal to its
** current value if P1==0, or to the least integer that is strictly
** greater than its current value if P1==1.
*/
case OP_ForceInt: {            /* no stack growth */
  int v;
  assert( pTos>=p->aStack );
  applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc);
  if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
    Release(pTos);
    pTos--;
    pc = pOp->p2 - 1;
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
** with out data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
**
** If the top of the stack is not an integer and P2 is not zero and
** P1 is 1, then the stack is popped.  In all other cases, the depth
** of the stack is unchanged.
*/
case OP_MustBeInt: {
  assert( pTos>=p->aStack );
  applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc);
  if( (pTos->flags & MEM_Int)==0 ){
    if( pOp->p2==0 ){
      rc = SQLITE_MISMATCH;
      goto abort_due_to_error;
    }else{







|







1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
** with out data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
**
** If the top of the stack is not an integer and P2 is not zero and
** P1 is 1, then the stack is popped.  In all other cases, the depth
** of the stack is unchanged.
*/
case OP_MustBeInt: {            /* no stack growth */
  assert( pTos>=p->aStack );
  applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc);
  if( (pTos->flags & MEM_Int)==0 ){
    if( pOp->p2==0 ){
      rc = SQLITE_MISMATCH;
      goto abort_due_to_error;
    }else{
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
*/
/* Opcode: Ge P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is greater than or equal to the
** top of the stack.  See the Eq opcode for additional information.
*/
case OP_Eq:               /* same as TK_EQ */
case OP_Ne:               /* same as TK_NE */
case OP_Lt:               /* same as TK_LT */
case OP_Le:               /* same as TK_LE */
case OP_Gt:               /* same as TK_GT */
case OP_Ge: {             /* same as TK_GE */
  Mem *pNos;
  int flags;
  int res;
  char affinity;

  pNos = &pTos[-1];
  flags = pTos->flags|pNos->flags;







|
|
|
|
|
|







1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
*/
/* Opcode: Ge P1 P2 P3
**
** This works just like the Eq opcode except that the jump is taken if
** the 2nd element down on the stack is greater than or equal to the
** top of the stack.  See the Eq opcode for additional information.
*/
case OP_Eq:               /* same as TK_EQ, no stack growth */
case OP_Ne:               /* same as TK_NE, no stack growth */
case OP_Lt:               /* same as TK_LT, no stack growth */
case OP_Le:               /* same as TK_LE, no stack growth */
case OP_Gt:               /* same as TK_GT, no stack growth */
case OP_Ge: {             /* same as TK_GE, no stack growth */
  Mem *pNos;
  int flags;
  int res;
  char affinity;

  pNos = &pTos[-1];
  flags = pTos->flags|pNos->flags;
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
*/
/* Opcode: Or * * *
**
** Pop two values off the stack.  Take the logical OR of the
** two values and push the resulting boolean value back onto the
** stack. 
*/
case OP_And:              /* same as TK_AND */
case OP_Or: {             /* same as TK_OR */
  Mem *pNos = &pTos[-1];
  int v1, v2;    /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */

  assert( pNos>=p->aStack );
  if( pTos->flags & MEM_Null ){
    v1 = 2;
  }else{







|
|







1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
*/
/* Opcode: Or * * *
**
** Pop two values off the stack.  Take the logical OR of the
** two values and push the resulting boolean value back onto the
** stack. 
*/
case OP_And:              /* same as TK_AND, no stack growth */
case OP_Or: {             /* same as TK_OR, no stack growth */
  Mem *pNos = &pTos[-1];
  int v1, v2;    /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */

  assert( pNos>=p->aStack );
  if( pTos->flags & MEM_Null ){
    v1 = 2;
  }else{
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
*/
/* Opcode: AbsValue * * *
**
** Treat the top of the stack as a numeric quantity.  Replace it
** with its absolute value. If the top of the stack is NULL
** its value is unchanged.
*/
case OP_Negative:              /* same as TK_UMINUS */
case OP_AbsValue: {
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Real ){
    Release(pTos);
    if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
      pTos->r = -pTos->r;
    }







|







1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
*/
/* Opcode: AbsValue * * *
**
** Treat the top of the stack as a numeric quantity.  Replace it
** with its absolute value. If the top of the stack is NULL
** its value is unchanged.
*/
case OP_Negative:              /* same as TK_UMINUS, no stack growth */
case OP_AbsValue: {
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Real ){
    Release(pTos);
    if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
      pTos->r = -pTos->r;
    }
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593

/* Opcode: Not * * *
**
** Interpret the top of the stack as a boolean value.  Replace it
** with its complement.  If the top of the stack is NULL its value
** is unchanged.
*/
case OP_Not: {                /* same as TK_NOT */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  Integerify(pTos);
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos->i = !pTos->i;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: BitNot * * *
**
** Interpret the top of the stack as an value.  Replace it
** with its ones-complement.  If the top of the stack is NULL its
** value is unchanged.
*/
case OP_BitNot: {             /* same as TK_BITNOT */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  Integerify(pTos);
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos->i = ~pTos->i;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: Noop * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
*/
case OP_Noop: {
  break;
}

/* Opcode: If P1 P2 *
**
** Pop a single boolean from the stack.  If the boolean popped is
** true, then jump to p2.  Otherwise continue to the next instruction.







|















|














|







1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618

/* Opcode: Not * * *
**
** Interpret the top of the stack as a boolean value.  Replace it
** with its complement.  If the top of the stack is NULL its value
** is unchanged.
*/
case OP_Not: {                /* same as TK_NOT, no stack growth */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  Integerify(pTos);
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos->i = !pTos->i;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: BitNot * * *
**
** Interpret the top of the stack as an value.  Replace it
** with its ones-complement.  If the top of the stack is NULL its
** value is unchanged.
*/
case OP_BitNot: {             /* same as TK_BITNOT, no stack growth */
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  Integerify(pTos);
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos->i = ~pTos->i;
  pTos->flags = MEM_Int;
  break;
}

/* Opcode: Noop * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
*/
case OP_Noop: {            /* no stack growth */
  break;
}

/* Opcode: If P1 P2 *
**
** Pop a single boolean from the stack.  If the boolean popped is
** true, then jump to p2.  Otherwise continue to the next instruction.
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
** false, then jump to p2.  Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise.  A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
case OP_If:
case OP_IfNot: {
  int c;
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ){
    c = pOp->p1;
  }else{
    c = sqlite3VdbeIntValue(pTos);
    if( pOp->opcode==OP_IfNot ) c = !c;
  }
  Release(pTos);
  pTos--;
  if( c ) pc = pOp->p2-1;
  break;
}

/* Opcode: IsNull P1 P2 *
**
** If any of the top abs(P1) values on the stack are NULL, then jump
** to P2.  Pop the stack P1 times if P1>0.   If P1<0 leave the stack
** unchanged.
*/
case OP_IsNull: {            /* same as TK_ISNULL */
  int i, cnt;
  Mem *pTerm;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  pTerm = &pTos[1-cnt];
  assert( pTerm>=p->aStack );
  for(i=0; i<cnt; i++, pTerm++){







|
|




















|







1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
** false, then jump to p2.  Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise.  A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
case OP_If:                 /* no stack growth */
case OP_IfNot: {            /* no stack growth */
  int c;
  assert( pTos>=p->aStack );
  if( pTos->flags & MEM_Null ){
    c = pOp->p1;
  }else{
    c = sqlite3VdbeIntValue(pTos);
    if( pOp->opcode==OP_IfNot ) c = !c;
  }
  Release(pTos);
  pTos--;
  if( c ) pc = pOp->p2-1;
  break;
}

/* Opcode: IsNull P1 P2 *
**
** If any of the top abs(P1) values on the stack are NULL, then jump
** to P2.  Pop the stack P1 times if P1>0.   If P1<0 leave the stack
** unchanged.
*/
case OP_IsNull: {            /* same as TK_ISNULL, no stack growth */
  int i, cnt;
  Mem *pTerm;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  pTerm = &pTos[1-cnt];
  assert( pTerm>=p->aStack );
  for(i=0; i<cnt; i++, pTerm++){
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683

/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the top P1 values on the stack are all not NULL.  Pop the
** stack if P1 times if P1 is greater than zero.  If P1 is less than
** zero then leave the stack unchanged.
*/
case OP_NotNull: {            /* same as TK_NOTNULL */
  int i, cnt;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  assert( &pTos[1-cnt] >= p->aStack );
  for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
  if( i>=cnt ) pc = pOp->p2-1;
  if( pOp->p1>0 ) popStack(&pTos, cnt);
  break;
}

/* Opcode: SetNumColumns P1 P2 *
**
** Before the OP_Column opcode can be executed on a cursor, this
** opcode must be called to set the number of fields in the table.
**
** This opcode sets the number of columns for cursor P1 to P2.
**
** If OP_KeyAsData is to be applied to cursor P1, it must be executed
** before this op-code.
*/
case OP_SetNumColumns: {
  Cursor *pC;
  assert( (pOp->p1)<p->nCursor );
  assert( p->apCsr[pOp->p1]!=0 );
  pC = p->apCsr[pOp->p1];
  pC->nField = pOp->p2;
  if( (!pC->keyAsData && pC->zeroData) || (pC->keyAsData && pC->intKey) ){
    rc = SQLITE_CORRUPT;







|




















|







1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708

/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the top P1 values on the stack are all not NULL.  Pop the
** stack if P1 times if P1 is greater than zero.  If P1 is less than
** zero then leave the stack unchanged.
*/
case OP_NotNull: {            /* same as TK_NOTNULL, no stack growth */
  int i, cnt;
  cnt = pOp->p1;
  if( cnt<0 ) cnt = -cnt;
  assert( &pTos[1-cnt] >= p->aStack );
  for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
  if( i>=cnt ) pc = pOp->p2-1;
  if( pOp->p1>0 ) popStack(&pTos, cnt);
  break;
}

/* Opcode: SetNumColumns P1 P2 *
**
** Before the OP_Column opcode can be executed on a cursor, this
** opcode must be called to set the number of fields in the table.
**
** This opcode sets the number of columns for cursor P1 to P2.
**
** If OP_KeyAsData is to be applied to cursor P1, it must be executed
** before this op-code.
*/
case OP_SetNumColumns: {       /* no stack growth */
  Cursor *pC;
  assert( (pOp->p1)<p->nCursor );
  assert( p->apCsr[pOp->p1]!=0 );
  pC = p->apCsr[pOp->p1];
  pC->nField = pOp->p2;
  if( (!pC->keyAsData && pC->zeroData) || (pC->keyAsData && pC->intKey) ){
    rc = SQLITE_CORRUPT;
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
** entire transaction.  The statement transaction will automatically
** commit when the VDBE halts.
**
** The statement is begun on the database file with index P1.  The main
** database file has an index of 0 and the file used for temporary tables
** has an index of 1.
*/
case OP_Statement: {
  int i = pOp->p1;
  Btree *pBt;
  if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt) && !(db->autoCommit) ){
    assert( sqlite3BtreeIsInTrans(pBt) );
    if( !sqlite3BtreeIsInStmt(pBt) ){
      rc = sqlite3BtreeBeginStmt(pBt);
    }
  }
  break;
}

/* Opcode: AutoCommit P1 P2 *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
  u8 i = pOp->p1;
  u8 rollback = pOp->p2;

  assert( i==1 || i==0 );
  assert( i==1 || rollback==0 );

  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */







|



















|







2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
** entire transaction.  The statement transaction will automatically
** commit when the VDBE halts.
**
** The statement is begun on the database file with index P1.  The main
** database file has an index of 0 and the file used for temporary tables
** has an index of 1.
*/
case OP_Statement: {       /* no stack growth */
  int i = pOp->p1;
  Btree *pBt;
  if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt) && !(db->autoCommit) ){
    assert( sqlite3BtreeIsInTrans(pBt) );
    if( !sqlite3BtreeIsInStmt(pBt) ){
      rc = sqlite3BtreeBeginStmt(pBt);
    }
  }
  break;
}

/* Opcode: AutoCommit P1 P2 *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {       /* no stack growth */
  u8 i = pOp->p1;
  u8 rollback = pOp->p2;

  assert( i==1 || i==0 );
  assert( i==1 || rollback==0 );

  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
** underway.  Starting a write transaction also creates a rollback journal. A
** write transaction must be started before any changes can be made to the
** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {
  int i = pOp->p1;
  Btree *pBt;

  assert( i>=0 && i<db->nDb );
  pBt = db->aDb[i].pBt;

  if( pBt ){







|







2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
** underway.  Starting a write transaction also creates a rollback journal. A
** write transaction must be started before any changes can be made to the
** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {       /* no stack growth */
  int i = pOp->p1;
  Btree *pBt;

  assert( i>=0 && i<db->nDb );
  pBt = db->aDb[i].pBt;

  if( pBt ){
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
** P2==0 is the schema version.  P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {
  Db *pDb;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( pTos>=p->aStack );
  Integerify(pTos);







|







2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
** P2==0 is the schema version.  P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* no stack growth */
  Db *pDb;
  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( pTos>=p->aStack );
  Integerify(pTos);
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {
  int iMeta;
  Btree *pBt;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  pBt = db->aDb[pOp->p1].pBt;
  if( pBt ){
    rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
  }else{







|







2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {       /* no stack growth */
  int iMeta;
  Btree *pBt;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  pBt = db->aDb[pOp->p1].pBt;
  if( pBt ){
    rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
  }else{
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
  int i = pOp->p1;
  int p2 = pOp->p2;
  int wrFlag;
  Btree *pX;
  int iDb;
  Cursor *pCur;
  







|
|







2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:          /* no stack growth */
case OP_OpenWrite: {       /* no stack growth */
  int i = pOp->p1;
  int p2 = pOp->p2;
  int wrFlag;
  Btree *pX;
  int iDb;
  Cursor *pCur;
  
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
** This opcode is used for tables that exist for the duration of a single
** SQL statement only.  Tables created using CREATE TEMPORARY TABLE
** are opened using OP_OpenRead or OP_OpenWrite.  "Temporary" in the
** context of this opcode means for the duration of a single SQL statement
** whereas "Temporary" in the context of CREATE TABLE means for the duration
** of the connection to the database.  Same word; different meanings.
*/
case OP_OpenTemp: {
  int i = pOp->p1;
  Cursor *pCx;
  assert( i>=0 );
  pCx = allocateCursor(p, i);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  rc = sqlite3BtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);







|







2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
** This opcode is used for tables that exist for the duration of a single
** SQL statement only.  Tables created using CREATE TEMPORARY TABLE
** are opened using OP_OpenRead or OP_OpenWrite.  "Temporary" in the
** context of this opcode means for the duration of a single SQL statement
** whereas "Temporary" in the context of CREATE TABLE means for the duration
** of the connection to the database.  Same word; different meanings.
*/
case OP_OpenTemp: {       /* no stack growth */
  int i = pOp->p1;
  Cursor *pCx;
  assert( i>=0 );
  pCx = allocateCursor(p, i);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  rc = sqlite3BtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
** row of data.  Any attempt to write a second row of data causes the
** first row to be deleted.  All data is deleted when the cursor is
** closed.
**
** A pseudo-table created by this opcode is useful for holding the
** NEW or OLD tables in a trigger.
*/
case OP_OpenPseudo: {
  int i = pOp->p1;
  Cursor *pCx;
  assert( i>=0 );
  pCx = allocateCursor(p, i);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->pseudoTable = 1;
  pCx->pIncrKey = &pCx->bogusIncrKey;
  break;
}
#endif

/* Opcode: Close P1 * *
**
** Close a cursor previously opened as P1.  If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close: {
  int i = pOp->p1;
  if( i>=0 && i<p->nCursor ){
    sqlite3VdbeFreeCursor(p->apCsr[i]);
    p->apCsr[i] = 0;
  }
  break;
}







|

















|







2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
** row of data.  Any attempt to write a second row of data causes the
** first row to be deleted.  All data is deleted when the cursor is
** closed.
**
** A pseudo-table created by this opcode is useful for holding the
** NEW or OLD tables in a trigger.
*/
case OP_OpenPseudo: {       /* no stack growth */
  int i = pOp->p1;
  Cursor *pCx;
  assert( i>=0 );
  pCx = allocateCursor(p, i);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->pseudoTable = 1;
  pCx->pIncrKey = &pCx->bogusIncrKey;
  break;
}
#endif

/* Opcode: Close P1 * *
**
** Close a cursor previously opened as P1.  If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close: {       /* no stack growth */
  int i = pOp->p1;
  if( i>=0 && i<p->nCursor ){
    sqlite3VdbeFreeCursor(p->apCsr[i]);
    p->apCsr[i] = 0;
  }
  break;
}
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
** cursor P1 so that it points to the largest entry that is less than
** or equal to the key that was popped from the stack.
** If there are no records less than or eqal to the key and P2 is not zero,
** then jump to P2.
**
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
*/
case OP_MoveLt:
case OP_MoveLe:
case OP_MoveGe:
case OP_MoveGt: {
  int i = pOp->p1;
  Cursor *pC;

  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );







|
|
|
|







2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
** cursor P1 so that it points to the largest entry that is less than
** or equal to the key that was popped from the stack.
** If there are no records less than or eqal to the key and P2 is not zero,
** then jump to P2.
**
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
*/
case OP_MoveLt:         /* no stack growth */
case OP_MoveLe:         /* no stack growth */
case OP_MoveGe:         /* no stack growth */
case OP_MoveGt: {       /* no stack growth */
  int i = pOp->p1;
  Cursor *pC;

  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
** record if it exists.  The key is popped from the stack.
**
** The difference between this operation and Distinct is that
** Distinct does not pop the key from the stack.
**
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
*/
case OP_Distinct:
case OP_NotFound:
case OP_Found: {
  int i = pOp->p1;
  int alreadyExists = 0;
  Cursor *pC;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor!=0 ){







|
|
|







2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
** record if it exists.  The key is popped from the stack.
**
** The difference between this operation and Distinct is that
** Distinct does not pop the key from the stack.
**
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
*/
case OP_Distinct:       /* no stack growth */
case OP_NotFound:       /* no stack growth */
case OP_Found: {        /* no stack growth */
  int i = pOp->p1;
  int alreadyExists = 0;
  Cursor *pC;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pC = p->apCsr[i])->pCursor!=0 ){
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
** jump to P2.  If any entry does exist where the index string
** matches K but the record number is not R, then the record
** number for that entry is pushed onto the stack and control
** falls through to the next instruction.
**
** See also: Distinct, NotFound, NotExists, Found
*/
case OP_IsUnique: {
  int i = pOp->p1;
  Mem *pNos = &pTos[-1];
  Cursor *pCx;
  BtCursor *pCrsr;
  i64 R;

  /* Pop the value R off the top of the stack







|







2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
** jump to P2.  If any entry does exist where the index string
** matches K but the record number is not R, then the record
** number for that entry is pushed onto the stack and control
** falls through to the next instruction.
**
** See also: Distinct, NotFound, NotExists, Found
*/
case OP_IsUnique: {        /* no stack growth */
  int i = pOp->p1;
  Mem *pNos = &pTos[-1];
  Cursor *pCx;
  BtCursor *pCrsr;
  i64 R;

  /* Pop the value R off the top of the stack
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and NotFound assumes it
** is a string.
**
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
*/
case OP_NotExists: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){







|







2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and NotFound assumes it
** is a string.
**
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
*/
case OP_NotExists: {        /* no stack growth */
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value on the top of the
** stack.  The key is the next value down on the stack.  The key must
** be a string.  The stack is popped twice by this instruction.
**
** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
*/
case OP_PutIntKey:
case OP_PutStrKey: {
  Mem *pNos = &pTos[-1];
  int i = pOp->p1;
  Cursor *pC;
  assert( pNos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){







|
|







3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
** created if it doesn't already exist or the data for an existing
** entry is overwritten.  The data is the value on the top of the
** stack.  The key is the next value down on the stack.  The key must
** be a string.  The stack is popped twice by this instruction.
**
** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
*/
case OP_PutIntKey:          /* no stack growth */
case OP_PutStrKey: {        /* no stack growth */
  Mem *pNos = &pTos[-1];
  int i = pOp->p1;
  Cursor *pC;
  assert( pNos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
** a record from within an Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
** If P1 is a pseudo-table, then this instruction is a no-op.
*/
case OP_Delete: {
  int i = pOp->p1;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( pC->pCursor!=0 ){
    rc = sqlite3VdbeCursorMoveto(pC);







|







3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
** a record from within an Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
** If P1 is a pseudo-table, then this instruction is a no-op.
*/
case OP_Delete: {        /* no stack growth */
  int i = pOp->p1;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  if( pC->pCursor!=0 ){
    rc = sqlite3VdbeCursorMoveto(pC);
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
/* Opcode: ResetCount P1 * *
**
** This opcode resets the VMs internal change counter to 0. If P1 is true,
** then the value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite3_changes())
** before it is reset. This is used by trigger programs.
*/
case OP_ResetCount: {
  if( pOp->p1 ){
    sqlite3VdbeSetChanges(db, p->nChange);
  }
  p->nChange = 0;
  break;
}

/* Opcode: KeyAsData P1 P2 *
**
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
** off (if P2==0).  In key-as-data mode, the OP_Column opcode pulls
** data off of the key rather than the data.  This is used for
** processing compound selects.
*/
case OP_KeyAsData: {
  int i = pOp->p1;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  pC->keyAsData = pOp->p2;
  break;







|














|







3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
/* Opcode: ResetCount P1 * *
**
** This opcode resets the VMs internal change counter to 0. If P1 is true,
** then the value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite3_changes())
** before it is reset. This is used by trigger programs.
*/
case OP_ResetCount: {        /* no stack growth */
  if( pOp->p1 ){
    sqlite3VdbeSetChanges(db, p->nChange);
  }
  p->nChange = 0;
  break;
}

/* Opcode: KeyAsData P1 P2 *
**
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
** off (if P2==0).  In key-as-data mode, the OP_Column opcode pulls
** data off of the key rather than the data.  This is used for
** processing compound selects.
*/
case OP_KeyAsData: {        /* no stack growth */
  int i = pOp->p1;
  Cursor *pC;
  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  pC->keyAsData = pOp->p2;
  break;
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376

/* Opcode: NullRow P1 * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always push 
** a NULL onto the stack.
*/
case OP_NullRow: {
  int i = pOp->p1;
  Cursor *pC;

  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->recnoIsValid = 0;
  break;
}

/* Opcode: Last P1 P2 *
**
** The next use of the Recno or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;

  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );







|



















|







3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

/* Opcode: NullRow P1 * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always push 
** a NULL onto the stack.
*/
case OP_NullRow: {        /* no stack growth */
  int i = pOp->p1;
  Cursor *pC;

  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->recnoIsValid = 0;
  break;
}

/* Opcode: Last P1 P2 *
**
** The next use of the Recno or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {        /* no stack growth */
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;

  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
  assert( pC!=0 );
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
**
** The next use of the Recno or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  int res;

  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];







|







3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
**
** The next use of the Recno or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {        /* no stack growth */
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  int res;

  assert( i>=0 && i<p->nCursor );
  pC = p->apCsr[i];
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
/* Opcode: Prev P1 P2 *
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
*/
case OP_Prev:
case OP_Next: {
  Cursor *pC;
  BtCursor *pCrsr;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );







|
|







3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
/* Opcode: Prev P1 P2 *
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
*/
case OP_Prev:          /* no stack growth */
case OP_Next: {        /* no stack growth */
  Cursor *pC;
  BtCursor *pCrsr;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
** index P1.  Data for the entry is nil.
**
** If P2==1, then the key must be unique.  If the key is not unique,
** the program aborts with a SQLITE_CONSTRAINT error and the database
** is rolled back.  If P3 is not null, then it becomes part of the
** error message returned with the SQLITE_CONSTRAINT.
*/
case OP_IdxPut: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pTos->flags & MEM_Blob );







|







3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
** index P1.  Data for the entry is nil.
**
** If P2==1, then the key must be unique.  If the key is not unique,
** the program aborts with a SQLITE_CONSTRAINT error and the database
** is rolled back.  If P3 is not null, then it becomes part of the
** error message returned with the SQLITE_CONSTRAINT.
*/
case OP_IdxPut: {        /* no stack growth */
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pTos->flags & MEM_Blob );
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
}

/* Opcode: IdxDelete P1 * *
**
** The top of the stack is an index key built using the MakeIdxKey opcode.
** This opcode removes that entry from the index.
*/
case OP_IdxDelete: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Blob );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );







|







3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
}

/* Opcode: IdxDelete P1 * *
**
** The top of the stack is an index key built using the MakeIdxKey opcode.
** This opcode removes that entry from the index.
*/
case OP_IdxDelete: {        /* no stack growth */
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Blob );
  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
** In either case, the stack is popped once.
**
** If P3 is the "+" string (or any other non-NULL string) then the
** index taken from the top of the stack is temporarily increased by
** an epsilon prior to the comparison.  This makes the opcode work
** like IdxLE.
*/
case OP_IdxLT:
case OP_IdxGT:
case OP_IdxGE: {
  int i= pOp->p1;
  BtCursor *pCrsr;
  Cursor *pC;

  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pTos>=p->aStack );







|
|
|







3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
** In either case, the stack is popped once.
**
** If P3 is the "+" string (or any other non-NULL string) then the
** index taken from the top of the stack is temporarily increased by
** an epsilon prior to the comparison.  This makes the opcode work
** like IdxLE.
*/
case OP_IdxLT:          /* no stack growth */
case OP_IdxGT:          /* no stack growth */
case OP_IdxGE: {        /* no stack growth */
  int i= pOp->p1;
  BtCursor *pCrsr;
  Cursor *pC;

  assert( i>=0 && i<p->nCursor );
  assert( p->apCsr[i]!=0 );
  assert( pTos>=p->aStack );
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
** The top of the stack contains an index entry such as might be generated
** by the MakeIdxKey opcode.  This routine looks at the first P1 fields of
** that key.  If any of the first P1 fields are NULL, then a jump is made
** to address P2.  Otherwise we fall straight through.
**
** The index entry is always popped from the stack.
*/
case OP_IdxIsNull: {
  int i = pOp->p1;
  int k, n;
  const char *z;
  u32 serial_type;

  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Blob );







|







3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
** The top of the stack contains an index entry such as might be generated
** by the MakeIdxKey opcode.  This routine looks at the first P1 fields of
** that key.  If any of the first P1 fields are NULL, then a jump is made
** to address P2.  Otherwise we fall straight through.
**
** The index entry is always popped from the stack.
*/
case OP_IdxIsNull: {        /* no stack growth */
  int i = pOp->p1;
  int k, n;
  const char *z;
  u32 serial_type;

  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Blob );
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
**
** The table being clear is in the main database file if P2==0.  If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Destroy
*/
case OP_Clear: {
  rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
  break;
}

/* Opcode: CreateTable P1 * *
**
** Allocate a new table in the main database file if P2==0 or in the







|







3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
**
** The table being clear is in the main database file if P2==0.  If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Destroy
*/
case OP_Clear: {        /* no stack growth */
  rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
  break;
}

/* Opcode: CreateTable P1 * *
**
** Allocate a new table in the main database file if P2==0 or in the
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P3.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a reentrant opcode.
*/
case OP_ParseSchema: {
  char *zSql;
  int iDb = pOp->p1;
  const char *zMaster;
  InitData initData;

  assert( iDb>=0 && iDb<db->nDb );
  if( !DbHasProperty(db, iDb, DB_SchemaLoaded) ) break;







|







3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P3.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a reentrant opcode.
*/
case OP_ParseSchema: {        /* no stack growth */
  char *zSql;
  int iDb = pOp->p1;
  const char *zMaster;
  InitData initData;

  assert( iDb>=0 && iDb<db->nDb );
  if( !DbHasProperty(db, iDb, DB_SchemaLoaded) ) break;
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
/* Opcode: DropTable P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the table named P3 in database P1.  This is called after a table
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {
  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
  break;
}

/* Opcode: DropIndex P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the index named P3 in database P1.  This is called after an index
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {
  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
  break;
}

/* Opcode: DropTrigger P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P3 in database P1.  This is called after a trigger
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {
  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
  break;
}


#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk * P2 *







|











|











|







3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
/* Opcode: DropTable P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the table named P3 in database P1.  This is called after a table
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {        /* no stack growth */
  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
  break;
}

/* Opcode: DropIndex P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the index named P3 in database P1.  This is called after an index
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {        /* no stack growth */
  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
  break;
}

/* Opcode: DropTrigger P1 * P3
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P3 in database P1.  This is called after a trigger
** is dropped in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {        /* no stack growth */
  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
  break;
}


#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk * P2 *
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: ListWrite * * *
**
** Write the integer on the top of the stack
** into the temporary storage list.
*/
case OP_ListWrite: {
  Keylist *pKeylist;
  assert( pTos>=p->aStack );
  pKeylist = p->pList;
  if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
    pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
    if( pKeylist==0 ) goto no_mem;
    pKeylist->nKey = 1000;







|







3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: ListWrite * * *
**
** Write the integer on the top of the stack
** into the temporary storage list.
*/
case OP_ListWrite: {        /* no stack growth */
  Keylist *pKeylist;
  assert( pTos>=p->aStack );
  pKeylist = p->pList;
  if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
    pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
    if( pKeylist==0 ) goto no_mem;
    pKeylist->nKey = 1000;
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
  break;
}

/* Opcode: ListRewind * * *
**
** Rewind the temporary buffer back to the beginning.
*/
case OP_ListRewind: {
  /* What this opcode codes, really, is reverse the order of the
  ** linked list of Keylist structures so that they are read out
  ** in the same order that they were read in. */
  Keylist *pRev, *pTop;
  pRev = 0;
  while( p->pList ){
    pTop = p->pList;







|







3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
  break;
}

/* Opcode: ListRewind * * *
**
** Rewind the temporary buffer back to the beginning.
*/
case OP_ListRewind: {        /* no stack growth */
  /* What this opcode codes, really, is reverse the order of the
  ** linked list of Keylist structures so that they are read out
  ** in the same order that they were read in. */
  Keylist *pRev, *pTop;
  pRev = 0;
  while( p->pList ){
    pTop = p->pList;
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
  break;
}

/* Opcode: ListReset * * *
**
** Reset the temporary storage buffer so that it holds nothing.
*/
case OP_ListReset: {
  if( p->pList ){
    sqlite3VdbeKeylistFree(p->pList);
    p->pList = 0;
  }
  break;
}

#ifndef SQLITE_OMIT_SUBQUERY
/* Opcode: AggContextPush * * * 
**
** Save the state of the current aggregator. It is restored an 
** AggContextPop opcode.
** 
*/
case OP_AggContextPush: {
  p->pAgg++;
  assert( p->pAgg<&p->apAgg[p->nAgg] );
  break;
}

/* Opcode: AggContextPop * * *
**
** Restore the aggregator to the state it was in when AggContextPush
** was last called. Any data in the current aggregator is deleted.
*/
case OP_AggContextPop: {
  p->pAgg--;
  assert( p->pAgg>=p->apAgg );
  break;
}
#endif

#ifndef SQLITE_OMIT_TRIGGER
/* Opcode: ContextPush * * * 
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/
case OP_ContextPush: {
  int i = p->contextStackTop++;
  Context *pContext;

  assert( i>=0 );
  /* FIX ME: This should be allocated as part of the vdbe at compile-time */
  if( i>=p->contextStackDepth ){
    p->contextStackDepth = i+1;







|














|










|













|







4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
  break;
}

/* Opcode: ListReset * * *
**
** Reset the temporary storage buffer so that it holds nothing.
*/
case OP_ListReset: {        /* no stack growth */
  if( p->pList ){
    sqlite3VdbeKeylistFree(p->pList);
    p->pList = 0;
  }
  break;
}

#ifndef SQLITE_OMIT_SUBQUERY
/* Opcode: AggContextPush * * * 
**
** Save the state of the current aggregator. It is restored an 
** AggContextPop opcode.
** 
*/
case OP_AggContextPush: {        /* no stack growth */
  p->pAgg++;
  assert( p->pAgg<&p->apAgg[p->nAgg] );
  break;
}

/* Opcode: AggContextPop * * *
**
** Restore the aggregator to the state it was in when AggContextPush
** was last called. Any data in the current aggregator is deleted.
*/
case OP_AggContextPop: {        /* no stack growth */
  p->pAgg--;
  assert( p->pAgg>=p->apAgg );
  break;
}
#endif

#ifndef SQLITE_OMIT_TRIGGER
/* Opcode: ContextPush * * * 
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/
case OP_ContextPush: {        /* no stack growth */
  int i = p->contextStackTop++;
  Context *pContext;

  assert( i>=0 );
  /* FIX ME: This should be allocated as part of the vdbe at compile-time */
  if( i>=p->contextStackDepth ){
    p->contextStackDepth = i+1;
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095

/* Opcode: ContextPop * * * 
**
** Restore the Vdbe context to the state it was in when contextPush was last
** executed. The context stores the last insert row id, the last statement
** change count, and the current statement change count.
*/
case OP_ContextPop: {
  Context *pContext = &p->contextStack[--p->contextStackTop];
  assert( p->contextStackTop>=0 );
  db->lastRowid = pContext->lastRowid;
  p->nChange = pContext->nChange;
  sqlite3VdbeKeylistFree(p->pList);
  p->pList = pContext->pList;
  break;
}
#endif /* #ifndef SQLITE_OMIT_TRIGGER */

/* Opcode: SortPut * * *
**
** The TOS is the key and the NOS is the data.  Pop both from the stack
** and put them on the sorter.  The key and data should have been
** made using the MakeRecord opcode.
*/
case OP_SortPut: {
  Mem *pNos = &pTos[-1];
  Sorter *pSorter;
  assert( pNos>=p->aStack );
  if( Dynamicify(pTos, db->enc) ) goto no_mem;
  pSorter = sqliteMallocRaw( sizeof(Sorter) );
  if( pSorter==0 ) goto no_mem;
  pSorter->pNext = p->pSort;







|
















|







4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120

/* Opcode: ContextPop * * * 
**
** Restore the Vdbe context to the state it was in when contextPush was last
** executed. The context stores the last insert row id, the last statement
** change count, and the current statement change count.
*/
case OP_ContextPop: {        /* no stack growth */
  Context *pContext = &p->contextStack[--p->contextStackTop];
  assert( p->contextStackTop>=0 );
  db->lastRowid = pContext->lastRowid;
  p->nChange = pContext->nChange;
  sqlite3VdbeKeylistFree(p->pList);
  p->pList = pContext->pList;
  break;
}
#endif /* #ifndef SQLITE_OMIT_TRIGGER */

/* Opcode: SortPut * * *
**
** The TOS is the key and the NOS is the data.  Pop both from the stack
** and put them on the sorter.  The key and data should have been
** made using the MakeRecord opcode.
*/
case OP_SortPut: {        /* no stack growth */
  Mem *pNos = &pTos[-1];
  Sorter *pSorter;
  assert( pNos>=p->aStack );
  if( Dynamicify(pTos, db->enc) ) goto no_mem;
  pSorter = sqliteMallocRaw( sizeof(Sorter) );
  if( pSorter==0 ) goto no_mem;
  pSorter->pNext = p->pSort;
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119

/* Opcode: Sort * * P3
**
** Sort all elements on the sorter.  The algorithm is a
** mergesort.  The P3 argument is a pointer to a KeyInfo structure
** that describes the keys to be sorted.
*/
case OP_Sort: {
  int i;
  KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
  Sorter *pElem;
  Sorter *apSorter[NSORT];
  sqlite3_sort_count++;
  pKeyInfo->enc = p->db->enc;
  for(i=0; i<NSORT; i++){







|







4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144

/* Opcode: Sort * * P3
**
** Sort all elements on the sorter.  The algorithm is a
** mergesort.  The P3 argument is a pointer to a KeyInfo structure
** that describes the keys to be sorted.
*/
case OP_Sort: {        /* no stack growth */
  int i;
  KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
  Sorter *pElem;
  Sorter *apSorter[NSORT];
  sqlite3_sort_count++;
  pKeyInfo->enc = p->db->enc;
  for(i=0; i<NSORT; i++){
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
  break;
}

/* Opcode: SortReset * * *
**
** Remove any elements that remain on the sorter.
*/
case OP_SortReset: {
  sqlite3VdbeSorterReset(p);
  break;
}

/* Opcode: MemStore P1 P2 *
**
** Write the top of the stack into memory location P1.
** P1 should be a small integer since space is allocated
** for all memory locations between 0 and P1 inclusive.
**
** After the data is stored in the memory location, the
** stack is popped once if P2 is 1.  If P2 is zero, then
** the original data remains on the stack.
*/
case OP_MemStore: {
  assert( pTos>=p->aStack );
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
  pTos--;

  /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
  ** restore the top of the stack to its original value.







|














|







4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
  break;
}

/* Opcode: SortReset * * *
**
** Remove any elements that remain on the sorter.
*/
case OP_SortReset: {        /* no stack growth */
  sqlite3VdbeSorterReset(p);
  break;
}

/* Opcode: MemStore P1 P2 *
**
** Write the top of the stack into memory location P1.
** P1 should be a small integer since space is allocated
** for all memory locations between 0 and P1 inclusive.
**
** After the data is stored in the memory location, the
** stack is popped once if P2 is 1.  If P2 is zero, then
** the original data remains on the stack.
*/
case OP_MemStore: {        /* no stack growth */
  assert( pTos>=p->aStack );
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
  pTos--;

  /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
  ** restore the top of the stack to its original value.
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
**
** Set the value of memory cell P1 to the maximum of its current value
** and the value on the top of the stack.  The stack is unchanged.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemMax: {
  int i = pOp->p1;
  Mem *pMem;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  Integerify(pMem);
  Integerify(pTos);







|







4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
**
** Set the value of memory cell P1 to the maximum of its current value
** and the value on the top of the stack.  The stack is unchanged.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemMax: {        /* no stack growth */
  int i = pOp->p1;
  Mem *pMem;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  Integerify(pMem);
  Integerify(pTos);
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
** Increment the integer valued memory cell P1 by 1.  If P2 is not zero
** and the result after the increment is exactly 1, then jump
** to P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemIncr: {
  int i = pOp->p1;
  Mem *pMem;
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  assert( pMem->flags==MEM_Int );
  pMem->i++;
  if( pOp->p2>0 && pMem->i==1 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IfMemPos P1 P2 *
**
** If the value of memory cell P1 is 1 or greater, jump to P2. This
** opcode assumes that memory cell P1 holds an integer value.
*/
case OP_IfMemPos: {
  int i = pOp->p1;
  Mem *pMem;
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  assert( pMem->flags==MEM_Int );
  if( pMem->i>0 ){
     pc = pOp->p2 - 1;







|

















|







4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
** Increment the integer valued memory cell P1 by 1.  If P2 is not zero
** and the result after the increment is exactly 1, then jump
** to P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemIncr: {        /* no stack growth */
  int i = pOp->p1;
  Mem *pMem;
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  assert( pMem->flags==MEM_Int );
  pMem->i++;
  if( pOp->p2>0 && pMem->i==1 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IfMemPos P1 P2 *
**
** If the value of memory cell P1 is 1 or greater, jump to P2. This
** opcode assumes that memory cell P1 holds an integer value.
*/
case OP_IfMemPos: {        /* no stack growth */
  int i = pOp->p1;
  Mem *pMem;
  assert( i>=0 && i<p->nMem );
  pMem = &p->aMem[i];
  assert( pMem->flags==MEM_Int );
  if( pMem->i>0 ){
     pc = pOp->p2 - 1;
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
** data. Future aggregator elements will contain P2 values each and be sorted
** using the KeyInfo structure pointed to by P3.
**
** If P1 is non-zero, then only a single aggregator row is available (i.e.
** there is no GROUP BY expression). In this case it is illegal to invoke
** OP_AggFocus.
*/
case OP_AggReset: {
  assert( !pOp->p3 || pOp->p3type==P3_KEYINFO );
  if( pOp->p1 ){
    rc = sqlite3VdbeAggReset(0, p->pAgg, (KeyInfo *)pOp->p3);
    p->pAgg->nMem = pOp->p2;    /* Agg.nMem is used by AggInsert() */
    rc = AggInsert(p->pAgg, 0, 0);
  }else{
    rc = sqlite3VdbeAggReset(db, p->pAgg, (KeyInfo *)pOp->p3);







|







4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
** data. Future aggregator elements will contain P2 values each and be sorted
** using the KeyInfo structure pointed to by P3.
**
** If P1 is non-zero, then only a single aggregator row is available (i.e.
** there is no GROUP BY expression). In this case it is illegal to invoke
** OP_AggFocus.
*/
case OP_AggReset: {        /* no stack growth */
  assert( !pOp->p3 || pOp->p3type==P3_KEYINFO );
  if( pOp->p1 ){
    rc = sqlite3VdbeAggReset(0, p->pAgg, (KeyInfo *)pOp->p3);
    p->pAgg->nMem = pOp->p2;    /* Agg.nMem is used by AggInsert() */
    rc = AggInsert(p->pAgg, 0, 0);
  }else{
    rc = sqlite3VdbeAggReset(db, p->pAgg, (KeyInfo *)pOp->p3);
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341

/* Opcode: AggInit * P2 P3
**
** Initialize the function parameters for an aggregate function.
** The aggregate will operate out of aggregate column P2.
** P3 is a pointer to the FuncDef structure for the function.
*/
case OP_AggInit: {
  int i = pOp->p2;
  assert( i>=0 && i<p->pAgg->nMem );
  p->pAgg->apFunc[i] = (FuncDef*)pOp->p3;
  break;
}

/* Opcode: AggFunc * P2 P3
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P3 is a pointer to the FuncDef
** structure that specifies the function.
**
** The top of the stack must be an integer which is the index of
** the aggregate column that corresponds to this aggregate function.
** Ideally, this index would be another parameter, but there are
** no free parameters left.  The integer is popped from the stack.
*/
case OP_AggFunc: {
  int n = pOp->p2;
  int i;
  Mem *pMem, *pRec;
  sqlite3_context ctx;
  sqlite3_value **apVal;

  assert( n>=0 );







|

















|







4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366

/* Opcode: AggInit * P2 P3
**
** Initialize the function parameters for an aggregate function.
** The aggregate will operate out of aggregate column P2.
** P3 is a pointer to the FuncDef structure for the function.
*/
case OP_AggInit: {        /* no stack growth */
  int i = pOp->p2;
  assert( i>=0 && i<p->pAgg->nMem );
  p->pAgg->apFunc[i] = (FuncDef*)pOp->p3;
  break;
}

/* Opcode: AggFunc * P2 P3
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P3 is a pointer to the FuncDef
** structure that specifies the function.
**
** The top of the stack must be an integer which is the index of
** the aggregate column that corresponds to this aggregate function.
** Ideally, this index would be another parameter, but there are
** no free parameters left.  The integer is popped from the stack.
*/
case OP_AggFunc: {        /* no stack growth */
  int n = pOp->p2;
  int i;
  Mem *pMem, *pRec;
  sqlite3_context ctx;
  sqlite3_value **apVal;

  assert( n>=0 );
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
**
** The order of aggregator opcodes is important.  The order is:
** AggReset AggFocus AggNext.  In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations.  You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggFocus: {
  char *zKey;
  int nKey;
  int res;
  assert( pTos>=p->aStack );
  Stringify(pTos, db->enc);
  zKey = pTos->z;
  nKey = pTos->n;







|







4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
**
** The order of aggregator opcodes is important.  The order is:
** AggReset AggFocus AggNext.  In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations.  You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggFocus: {        /* no stack growth */
  char *zKey;
  int nKey;
  int res;
  assert( pTos>=p->aStack );
  Stringify(pTos, db->enc);
  zKey = pTos->z;
  nKey = pTos->n;
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
}

/* Opcode: AggSet * P2 *
**
** Move the top of the stack into the P2-th field of the current
** aggregate.  String values are duplicated into new memory.
*/
case OP_AggSet: {
  AggElem *pFocus;
  int i = pOp->p2;
  pFocus = p->pAgg->pCurrent;
  assert( pTos>=p->aStack );
  if( pFocus==0 ) goto no_mem;
  assert( i>=0 && i<p->pAgg->nMem );
  rc = sqlite3VdbeMemMove(&pFocus->aMem[i], pTos);







|







4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
}

/* Opcode: AggSet * P2 *
**
** Move the top of the stack into the P2-th field of the current
** aggregate.  String values are duplicated into new memory.
*/
case OP_AggSet: {        /* no stack growth */
  AggElem *pFocus;
  int i = pOp->p2;
  pFocus = p->pAgg->pCurrent;
  assert( pTos>=p->aStack );
  if( pFocus==0 ) goto no_mem;
  assert( i>=0 && i<p->pAgg->nMem );
  rc = sqlite3VdbeMemMove(&pFocus->aMem[i], pTos);
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
**
** The order of aggregator opcodes is important.  The order is:
** AggReset AggFocus AggNext.  In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations.  You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggNext: {
  int res;
  assert( rc==SQLITE_OK );
  CHECK_FOR_INTERRUPT;
  if( p->pAgg->searching==0 ){
    p->pAgg->searching = 1;
    if( p->pAgg->pCsr ){
      rc = sqlite3BtreeFirst(p->pAgg->pCsr, &res);







|







4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
**
** The order of aggregator opcodes is important.  The order is:
** AggReset AggFocus AggNext.  In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations.  You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggNext: {        /* no stack growth */
  int res;
  assert( rc==SQLITE_OK );
  CHECK_FOR_INTERRUPT;
  if( p->pAgg->searching==0 ){
    p->pAgg->searching = 1;
    if( p->pAgg->pCsr ){
      rc = sqlite3BtreeFirst(p->pAgg->pCsr, &res);
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575

/* Opcode: Vacuum * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
** a transaction.
*/
case OP_Vacuum: {
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 
  rc = sqlite3RunVacuum(&p->zErrMsg, db);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  break;
}

/* Opcode: Expire P1 * *
**
** Cause precompiled statements to become expired. An expired statement
** fails with an error code of SQLITE_SCHEMA if it is ever executed 
** (via sqlite3_step()).
** 
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is affected. 
*/
case OP_Expire: {
  if( !pOp->p1 ){
    sqlite3ExpirePreparedStatements(db);
  }else{
    p->expired = 1;
  }
  break;
}







|















|







4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600

/* Opcode: Vacuum * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
** a transaction.
*/
case OP_Vacuum: {        /* no stack growth */
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 
  rc = sqlite3RunVacuum(&p->zErrMsg, db);
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  break;
}

/* Opcode: Expire P1 * *
**
** Cause precompiled statements to become expired. An expired statement
** fails with an error code of SQLITE_SCHEMA if it is ever executed 
** (via sqlite3_step()).
** 
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is affected. 
*/
case OP_Expire: {        /* no stack growth */
  if( !pOp->p1 ){
    sqlite3ExpirePreparedStatements(db);
  }else{
    p->expired = 1;
  }
  break;
}
4587
4588
4589
4590
4591
4592
4593



4594
4595
4596
4597
4598
4599
4600
/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
** readability.  From this point on down, the normal indentation rules are
** restored.
*****************************************************************************/
    }




#ifdef VDBE_PROFILE
    {
      long long elapse = hwtime() - start;
      pOp->cycles += elapse;
      pOp->cnt++;
#if 0







>
>
>







4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
** readability.  From this point on down, the normal indentation rules are
** restored.
*****************************************************************************/
    }

    /* Make sure the stack limit was not exceeded */
    assert( pTos<=pStackLimit );

#ifdef VDBE_PROFILE
    {
      long long elapse = hwtime() - start;
      pOp->cycles += elapse;
      pOp->cnt++;
#if 0
Changes to src/vdbeInt.h.
402
403
404
405
406
407
408

409
410
411
412
int sqlite3VdbeMemIntegerify(Mem*);
double sqlite3VdbeRealValue(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
#ifndef NDEBUG
void sqlite3VdbeMemSanity(Mem*, u8);

#endif
int sqlite3VdbeMemTranslate(Mem*, u8);
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf);
int sqlite3VdbeMemHandleBom(Mem *pMem);







>




402
403
404
405
406
407
408
409
410
411
412
413
int sqlite3VdbeMemIntegerify(Mem*);
double sqlite3VdbeRealValue(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
#ifndef NDEBUG
void sqlite3VdbeMemSanity(Mem*, u8);
int sqlite3VdbeOpcodeUsesStack(u8);
#endif
int sqlite3VdbeMemTranslate(Mem*, u8);
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf);
int sqlite3VdbeMemHandleBom(Mem *pMem);
Changes to src/vdbeaux.c.
162
163
164
165
166
167
168









































169
170
171
172
173
174
175
176
177
178



179
180
181
182

183
184
185
186
187
188
189
190

191
192
193
194




195
196
197
198
199
200
201
202

203

204
205
206
207
208
209
210
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( j>=0 && j<p->nLabel );
  if( p->aLabel ){
    p->aLabel[j] = p->nOp;
  }
}










































/*
** Loop through the program looking for P2 values that are negative.
** Each such value is a label.  Resolve the label by setting the P2
** value to its correct non-zero value.
**
** This routine is called once after all opcodes have been inserted.
**
** Variable *pMaxFuncArgs is set to the maximum value of any P1 argument 
** to an OP_Function or P2 to an OP_AggFunc opcode. This is used by 
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.



*/
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
  int i;
  int nMax = 0;

  Op *pOp;
  int *aLabel = p->aLabel;
  if( aLabel==0 ) return;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    /* Todo: Maybe OP_AggFunc should change to use P1 in the same
     * way as OP_Function. */

    if( opcode==OP_Function ){
      if( pOp->p1>nMax ) nMax = pOp->p1;
    }else if( opcode==OP_AggFunc ){
      if( pOp->p2>nMax ) nMax = pOp->p2;




    }

    if( pOp->p2>=0 ) continue;
    assert( -1-pOp->p2<p->nLabel );
    pOp->p2 = aLabel[-1-pOp->p2];
  }
  sqliteFree(p->aLabel);
  p->aLabel = 0;

  *pMaxFuncArgs = nMax;

}

/*
** Return the address of the next instruction to be inserted.
*/
int sqlite3VdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










>
>
>

|

|
>


<




|
>

|

|
>
>
>
>








>
|
>







162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( j>=0 && j<p->nLabel );
  if( p->aLabel ){
    p->aLabel[j] = p->nOp;
  }
}

/*
** Return non-zero if opcode 'op' is guarenteed not to push more values
** onto the VDBE stack than it pops off.
*/
static int opcodeUsesStack(u8 op){
  /* The 10 STACK_MASK_n constants are defined in the automatically
  ** generated header file opcodes.h. Each is a 16-bit bitmask, one
  ** bit corresponding to each opcode implemented by the virtual
  ** machine in vdbe.c. The bit is true if the word "stack" appears
  ** in a comment on the same line as the "case OP_XXX:" in 
  ** sqlite3VdbeExec() in vdbe.c.
  **
  ** If the bit is true, then the corresponding opcode is guarenteed not
  ** to grow the stack when it is executed. Otherwise, it may grow the
  ** stack by at most one entry.
  **
  ** STACK_MASK_0 corresponds to opcodes 0 to 15. STACK_MASK_1 contains
  ** one bit for opcodes 16 to 31, and so on.
  **
  ** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h 
  ** because the file is generated by an awk program. Awk manipulates
  ** all numbers as floating-point and we don't want to risk a rounding
  ** error if someone builds with an awk that uses (for example) 32-bit 
  ** IEEE floats.
  */ 
  static u32 masks[5] = {
    STACK_MASK_0 + (STACK_MASK_1<<16),
    STACK_MASK_2 + (STACK_MASK_3<<16),
    STACK_MASK_4 + (STACK_MASK_5<<16),
    STACK_MASK_6 + (STACK_MASK_7<<16),
    STACK_MASK_8 + (STACK_MASK_9<<16)
  };
  return (masks[op>>5] & (1<<(op&0x1F)));
}

#ifndef NDEBUG
int sqlite3VdbeOpcodeUsesStack(u8 op){
  return opcodeUsesStack(op);
}
#endif

/*
** Loop through the program looking for P2 values that are negative.
** Each such value is a label.  Resolve the label by setting the P2
** value to its correct non-zero value.
**
** This routine is called once after all opcodes have been inserted.
**
** Variable *pMaxFuncArgs is set to the maximum value of any P1 argument 
** to an OP_Function or P2 to an OP_AggFunc opcode. This is used by 
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
**
** The integer *pMaxStack is set to the maximum number of vdbe stack
** entries that static analysis reveals this program might need.
*/
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
  int i;
  int nMaxArgs = 0;
  int nMaxStack = p->nOp;
  Op *pOp;
  int *aLabel = p->aLabel;

  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    /* Todo: Maybe OP_AggFunc should change to use P1 in the same
     * way as OP_Function. 
     */
    if( opcode==OP_Function ){
      if( pOp->p1>nMaxArgs ) nMaxArgs = pOp->p1;
    }else if( opcode==OP_AggFunc ){
      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
    }

    if( opcodeUsesStack(opcode) ){
      nMaxStack--;
    }

    if( pOp->p2>=0 ) continue;
    assert( -1-pOp->p2<p->nLabel );
    pOp->p2 = aLabel[-1-pOp->p2];
  }
  sqliteFree(p->aLabel);
  p->aLabel = 0;

  *pMaxFuncArgs = nMaxArgs;
  *pMaxStack = nMaxStack;
}

/*
** Return the address of the next instruction to be inserted.
*/
int sqlite3VdbeCurrentAddr(Vdbe *p){
  assert( p->magic==VDBE_MAGIC_INIT );
637
638
639
640
641
642
643

644
645
646

647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
  ** same loop.  So the total number of instructions is an upper bound
  ** on the maximum stack depth required.
  **
  ** Allocation all the stack space we will ever need.
  */
  if( p->aStack==0 ){
    int nArg;       /* Maximum number of args passed to a user function. */

    resolveP2Values(p, &nArg);
    resizeOpArray(p, p->nOp);
    assert( nVar>=0 );

    n = isExplain ? 10 : p->nOp;
    p->aStack = sqliteMalloc(
        n*sizeof(p->aStack[0])         /* aStack */
      + nArg*sizeof(Mem*)              /* apArg */
      + nVar*sizeof(Mem)               /* aVar */
      + nVar*sizeof(char*)             /* azVar */
      + nMem*sizeof(Mem)               /* aMem */
      + nCursor*sizeof(Cursor*)        /* apCsr */
      + nAgg*sizeof(Agg)               /* Aggregate contexts */
    );
    if( !sqlite3_malloc_failed ){
      p->aMem = &p->aStack[n];
      p->nMem = nMem;
      p->aVar = &p->aMem[nMem];
      p->nVar = nVar;
      p->okVar = 0;
      p->apArg = (Mem**)&p->aVar[nVar];
      p->azVar = (char**)&p->apArg[nArg];
      p->apCsr = (Cursor**)&p->azVar[nVar];







>
|


>
|

|








|







688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
  ** same loop.  So the total number of instructions is an upper bound
  ** on the maximum stack depth required.
  **
  ** Allocation all the stack space we will ever need.
  */
  if( p->aStack==0 ){
    int nArg;       /* Maximum number of args passed to a user function. */
    int nStack;     /* Maximum number of stack entries required */
    resolveP2Values(p, &nArg, &nStack);
    resizeOpArray(p, p->nOp);
    assert( nVar>=0 );
    assert( nStack<p->nOp );
    nStack = isExplain ? 10 : nStack;
    p->aStack = sqliteMalloc(
        nStack*sizeof(p->aStack[0])    /* aStack */
      + nArg*sizeof(Mem*)              /* apArg */
      + nVar*sizeof(Mem)               /* aVar */
      + nVar*sizeof(char*)             /* azVar */
      + nMem*sizeof(Mem)               /* aMem */
      + nCursor*sizeof(Cursor*)        /* apCsr */
      + nAgg*sizeof(Agg)               /* Aggregate contexts */
    );
    if( !sqlite3_malloc_failed ){
      p->aMem = &p->aStack[nStack];
      p->nMem = nMem;
      p->aVar = &p->aMem[nMem];
      p->nVar = nVar;
      p->okVar = 0;
      p->apArg = (Mem**)&p->aVar[nVar];
      p->azVar = (char**)&p->apArg[nArg];
      p->apCsr = (Cursor**)&p->azVar[nVar];
Changes to test/quick.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file runs all tests.
#
# $Id: quick.test,v 1.35 2005/03/29 03:11:00 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
rename finish_test really_finish_test
proc finish_test {} {}
set ISQUICK 1

set EXCLUDE {
  alter.test
  all.test
  btree2.test
  btree3.test
  btree4.test
  btree5.test
  btree6.test
  corrupt.test












|








<







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file runs all tests.
#
# $Id: quick.test,v 1.36 2005/03/29 08:26:13 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
rename finish_test really_finish_test
proc finish_test {} {}
set ISQUICK 1

set EXCLUDE {

  all.test
  btree2.test
  btree3.test
  btree4.test
  btree5.test
  btree6.test
  corrupt.test
Changes to tool/memleak3.tcl.
30
31
32
33
34
35
36
37


38
39
40
41
42
43






























44
45
46
47
48
49
50
realloc().

Example:

$ ./testfixture ../sqlite/test/select1.test 2> memtrace.out
$ tclsh $argv0 ?-r <malloc-number>? ./testfixture memtrace.out
"
if { [llength $argv]!=2 && [llength $argv]!=4 } {


  set prg [file tail $argv0]
  puts "Usage: $prg ?-r <malloc-number>? <binary file> <mem trace file>"
  puts ""
  puts [string trim $doco]
  exit -1
}































# If stack traces are enabled, the 'addr2line' program is called to
# translate a binary stack address into a human-readable form.
set addr2line addr2line

# When the SQLITE_MEMDEBUG is set as described above, SQLite prints
# out a line for each malloc(), realloc() or free() call that the







|
>
>
|


|


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
realloc().

Example:

$ ./testfixture ../sqlite/test/select1.test 2> memtrace.out
$ tclsh $argv0 ?-r <malloc-number>? ./testfixture memtrace.out
"


proc usage {} {
  set prg [file tail $::argv0]
  puts "Usage: $prg ?-r <malloc-number>? <binary file> <mem trace file>"
  puts ""
  puts [string trim $::doco]
  exit -1
}

proc shift {listvar} {
  upvar $listvar l
  set ret [lindex $l 0]
  set l [lrange $l 1 end]
  return $ret
}

# Argument handling. The following vars are set:
#
# $exe       - the name of the executable (i.e. "testfixture" or "./sqlite3")
# $memfile   - the name of the file containing the trace output.
# $report_at - The malloc number to stop and report at. Or -1 to read 
#              all of $memfile.
#
set report_at -1
while {[llength $argv]>2} {
  set arg [shift argv]
  switch -- $arg {
    "-r" {
      set report_at [shift argv]
    }
    default {
      usage
    }
  }
}
if {[llength $argv]!=2} usage
set exe [lindex $argv 0]
set memfile [lindex $argv 1]

# If stack traces are enabled, the 'addr2line' program is called to
# translate a binary stack address into a human-readable form.
set addr2line addr2line

# When the SQLITE_MEMDEBUG is set as described above, SQLite prints
# out a line for each malloc(), realloc() or free() call that the
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# currently allocated from the heap. The value is a list of the 
# following form
# 
#     {<number-of-bytes> <malloc id> <stack trace>}
#
array unset memmap

# The executable program being analyzed.
if {[llength $argv]==2} {
  set exe [lindex $argv 0]
  set memfile [lindex $argv 1]
  set report_at -1
} else {
  set exe [lindex $argv 2]
  set memfile [lindex $argv 3]
  set report_at [lindex $argv 1]
}

proc process_input {input_file array_name} {
  upvar $array_name mem 
  set input [open $input_file]

  set MALLOC {([[:digit:]]+) malloc ([[:digit:]]+) bytes at 0x([[:xdigit:]]+)}
  # set STACK {^[[:digit:]]+: STACK: (.*)$}
  set STACK {^STACK: (.*)$}







<
<
<
<
<
<
<
<
<
<
<







97
98
99
100
101
102
103











104
105
106
107
108
109
110
# currently allocated from the heap. The value is a list of the 
# following form
# 
#     {<number-of-bytes> <malloc id> <stack trace>}
#
array unset memmap












proc process_input {input_file array_name} {
  upvar $array_name mem 
  set input [open $input_file]

  set MALLOC {([[:digit:]]+) malloc ([[:digit:]]+) bytes at 0x([[:xdigit:]]+)}
  # set STACK {^[[:digit:]]+: STACK: (.*)$}
  set STACK {^STACK: (.*)$}