SQLite

Check-in [75863c2d55]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fix an incorrect assert() in fts3.c. Add further fts3 tests.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 75863c2d55e0801add5b8dcf88d575c5c870af04
User & Date: dan 2009-12-03 17:36:22.000
Context
2009-12-03
19:40
Remove a NEVER() from btree.c that could occur in a very obscure tested evaluation with an I/O error on fstat(). (check-in: d5861d9ffe user: drh tags: trunk)
17:36
Fix an incorrect assert() in fts3.c. Add further fts3 tests. (check-in: 75863c2d55 user: dan tags: trunk)
06:26
Updates to FTS3 to correct compiler warnings under MSVC. (check-in: 37495b55ff user: shaneh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/fts3/fts3.c.
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
  if( *pp>=pEnd ){
    *pp = 0;
  }else{
    fts3GetDeltaVarint(pp, pVal);
  }
}


static Fts3Table *cursor_vtab(Fts3Cursor *c){
  return (Fts3Table *) c->base.pVtab;
}

/*
** The xDisconnect() virtual table method.
*/
static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
  Fts3Table *p = (Fts3Table *)pVtab;
  int i;








<
<
<
<
<







469
470
471
472
473
474
475





476
477
478
479
480
481
482
  if( *pp>=pEnd ){
    *pp = 0;
  }else{
    fts3GetDeltaVarint(pp, pVal);
  }
}






/*
** The xDisconnect() virtual table method.
*/
static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
  Fts3Table *p = (Fts3Table *)pVtab;
  int i;

645
646
647
648
649
650
651








652
653
654
655
656
657
658
  int nByte;                      /* Size of allocation used for *p */
  int iCol;
  int nString = 0;
  int nCol = 0;
  char *zCsr;
  int nDb;
  int nName;









  const char *zTokenizer = 0;               /* Name of tokenizer to use */
  sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */

  nDb = (int)strlen(argv[1]) + 1;
  nName = (int)strlen(argv[2]) + 1;
  for(i=3; i<argc; i++){







>
>
>
>
>
>
>
>







640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
  int nByte;                      /* Size of allocation used for *p */
  int iCol;
  int nString = 0;
  int nCol = 0;
  char *zCsr;
  int nDb;
  int nName;

#ifdef SQLITE_TEST
  char *zTestParam = 0;
  if( strncmp(argv[argc-1], "test:", 5)==0 ){
    zTestParam = argv[argc-1];
    argc--;
  }
#endif

  const char *zTokenizer = 0;               /* Name of tokenizer to use */
  sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */

  nDb = (int)strlen(argv[1]) + 1;
  nName = (int)strlen(argv[2]) + 1;
  for(i=3; i<argc; i++){
692
693
694
695
696
697
698

699
700
701
702
703
704
705
  memset(p, 0, nByte);

  p->db = db;
  p->nColumn = nCol;
  p->nPendingData = 0;
  p->azColumn = (char **)&p[1];
  p->pTokenizer = pTokenizer;

  zCsr = (char *)&p->azColumn[nCol];

  fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1);

  /* Fill in the zName and zDb fields of the vtab structure. */
  p->zName = zCsr;
  memcpy(zCsr, argv[2], nName);







>







695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
  memset(p, 0, nByte);

  p->db = db;
  p->nColumn = nCol;
  p->nPendingData = 0;
  p->azColumn = (char **)&p[1];
  p->pTokenizer = pTokenizer;
  p->nNodeSize = 1000;
  zCsr = (char *)&p->azColumn[nCol];

  fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1);

  /* Fill in the zName and zDb fields of the vtab structure. */
  p->zName = zCsr;
  memcpy(zCsr, argv[2], nName);
735
736
737
738
739
740
741





742
743
744
745
746
747
748
    rc = fts3CreateTables(p);
    if( rc!=SQLITE_OK ) goto fts3_init_out;
  }

  rc = fts3DeclareVtab(p);
  if( rc!=SQLITE_OK ) goto fts3_init_out;






  *ppVTab = &p->base;

fts3_init_out:
  assert( p || (pTokenizer && rc!=SQLITE_OK) );
  if( rc!=SQLITE_OK ){
    if( p ){
      fts3DisconnectMethod((sqlite3_vtab *)p);







>
>
>
>
>







739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    rc = fts3CreateTables(p);
    if( rc!=SQLITE_OK ) goto fts3_init_out;
  }

  rc = fts3DeclareVtab(p);
  if( rc!=SQLITE_OK ) goto fts3_init_out;

#ifdef SQLITE_TEST
  if( zTestParam ){
    p->nNodeSize = atoi(&zTestParam[5]);
  }
#endif
  *ppVTab = &p->base;

fts3_init_out:
  assert( p || (pTokenizer && rc!=SQLITE_OK) );
  if( rc!=SQLITE_OK ){
    if( p ){
      fts3DisconnectMethod((sqlite3_vtab *)p);
1006
1007
1008
1009
1010
1011
1012




1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
    if( rc!=SQLITE_OK ) break;
    zEnd = &zCsr[nBlock];
  }
  sqlite3_free(zBuffer);
  return rc;
}





static void fts3PutDeltaVarint(
  char **pp, 
  sqlite3_int64 *piPrev, 
  sqlite3_int64 iVal
){
  assert( iVal-*piPrev > 0 );
  *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
  *piPrev = iVal;
}

static void fts3PoslistCopy(char **pp, char **ppPoslist){
  char *pEnd = *ppPoslist;
  char c = 0;







>
>
>
>

|
|
|

|







1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
    if( rc!=SQLITE_OK ) break;
    zEnd = &zCsr[nBlock];
  }
  sqlite3_free(zBuffer);
  return rc;
}

/*
** This function is used to create delta-encoded serialized lists of FTS3 
** varints. Each call to this function appends a single varint to a list.
*/
static void fts3PutDeltaVarint(
  char **pp,                      /* IN/OUT: Output pointer */
  sqlite3_int64 *piPrev,          /* IN/OUT: Previous value written to list */
  sqlite3_int64 iVal              /* Write this value to the list */
){
  assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
  *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
  *piPrev = iVal;
}

static void fts3PoslistCopy(char **pp, char **ppPoslist){
  char *pEnd = *ppPoslist;
  char c = 0;
1546
1547
1548
1549
1550
1551
1552

1553
1554
1555
1556
1557
1558
1559
    }else{
      sqlite3_int64 i1;
      rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &i1);
      if( rc==SQLITE_OK ){
        sqlite3_int64 i2 = sqlite3_column_int64(pStmt, 2);
        rc = sqlite3Fts3SegReaderNew(p, iAge, i1, i2, 0, 0, 0, &pNew);
      }

    }
    iAge++;

    /* If a new Fts3SegReader was allocated, add it to the apSegment array. */
    assert( (rc==SQLITE_OK)==(pNew!=0) );
    if( pNew ){
      if( nSegment==nAlloc ){







>







1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
    }else{
      sqlite3_int64 i1;
      rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &i1);
      if( rc==SQLITE_OK ){
        sqlite3_int64 i2 = sqlite3_column_int64(pStmt, 2);
        rc = sqlite3Fts3SegReaderNew(p, iAge, i1, i2, 0, 0, 0, &pNew);
      }
      sqlite3Fts3ReadBlock(p, 0, 0, 0);
    }
    iAge++;

    /* If a new Fts3SegReader was allocated, add it to the apSegment array. */
    assert( (rc==SQLITE_OK)==(pNew!=0) );
    if( pNew ){
      if( nSegment==nAlloc ){
1695
1696
1697
1698
1699
1700
1701



1702
1703
1704
1705
1706
1707
1708
      char *aRight;
      int nLeft;
      int nRight;

      if( SQLITE_OK==(rc = evalFts3Expr(p, pExpr->pRight, &aRight, &nRight))
       && SQLITE_OK==(rc = evalFts3Expr(p, pExpr->pLeft, &aLeft, &nLeft))
      ){



        switch( pExpr->eType ){
          case FTSQUERY_NEAR: {
            Fts3Expr *pLeft;
            Fts3Expr *pRight;
            int mergetype = MERGE_NEAR;
            int nParam1;
            int nParam2;







>
>
>







1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
      char *aRight;
      int nLeft;
      int nRight;

      if( SQLITE_OK==(rc = evalFts3Expr(p, pExpr->pRight, &aRight, &nRight))
       && SQLITE_OK==(rc = evalFts3Expr(p, pExpr->pLeft, &aLeft, &nLeft))
      ){
        assert( pExpr->eType==FTSQUERY_NEAR || pExpr->eType==FTSQUERY_OR     
            || pExpr->eType==FTSQUERY_AND  || pExpr->eType==FTSQUERY_NOT
        );
        switch( pExpr->eType ){
          case FTSQUERY_NEAR: {
            Fts3Expr *pLeft;
            Fts3Expr *pRight;
            int mergetype = MERGE_NEAR;
            int nParam1;
            int nParam2;
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
                aLeft, nLeft, aRight, nRight
            );
            *paOut = aBuffer;
            sqlite3_free(aLeft);
            break;
          }

          case FTSQUERY_AND:
          case FTSQUERY_NOT: {
            assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND );
            fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut,
                aLeft, nLeft, aRight, nRight
            );
            *paOut = aLeft;
            break;
          }







<
|







1762
1763
1764
1765
1766
1767
1768

1769
1770
1771
1772
1773
1774
1775
1776
                aLeft, nLeft, aRight, nRight
            );
            *paOut = aBuffer;
            sqlite3_free(aLeft);
            break;
          }


          default: {
            assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND );
            fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut,
                aLeft, nLeft, aRight, nRight
            );
            *paOut = aLeft;
            break;
          }
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914





































1915
1916
1917
1918
1919
1920
1921
** This is the xEof method of the virtual table. SQLite calls this 
** routine to find out if it has reached the end of a result set.
*/
static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
  return ((Fts3Cursor *)pCursor)->isEof;
}

/* 
** This is the xColumn method of the virtual table.  The SQLite
** core calls this method during a query when it needs the value
** of a column from the virtual table.  This method needs to use
** one of the sqlite3_result_*() routines to store the requested
** value back in the pContext.
*/
static int fts3ColumnMethod(sqlite3_vtab_cursor *pCursor,
                          sqlite3_context *pContext, int idxCol){
  Fts3Cursor *c = (Fts3Cursor *) pCursor;
  Fts3Table *v = cursor_vtab(c);
  int rc = fts3CursorSeek(c);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  if( idxCol<v->nColumn ){
    sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
    sqlite3_result_value(pContext, pVal);
  }else if( idxCol==v->nColumn ){
    /* The extra column whose name is the same as the table.
    ** Return a blob which is a pointer to the cursor
    */
    sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
  }else if( idxCol==v->nColumn+1 ){
    /* The docid column, which is an alias for rowid. */
    sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
    sqlite3_result_value(pContext, pVal);
  }
  return SQLITE_OK;
}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. fts3
** exposes %_content.docid as the rowid for the virtual table. The
** rowid should be written to *pRowid.
*/
static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  if( pCsr->aDoclist ){
    *pRowid = pCsr->iPrevId;
  }else{
    *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
  }
  return SQLITE_OK;
}






































/* 
** This function is the implementation of the xUpdate callback used by 
** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
** inserted, updated or deleted.
*/
static int fts3UpdateMethod(







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1877
1878
1879
1880
1881
1882
1883
































1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
** This is the xEof method of the virtual table. SQLite calls this 
** routine to find out if it has reached the end of a result set.
*/
static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
  return ((Fts3Cursor *)pCursor)->isEof;
}

































/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. fts3
** exposes %_content.docid as the rowid for the virtual table. The
** rowid should be written to *pRowid.
*/
static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  if( pCsr->aDoclist ){
    *pRowid = pCsr->iPrevId;
  }else{
    *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
  }
  return SQLITE_OK;
}

/* 
** This is the xColumn method, called by SQLite to request a value from
** the row that the supplied cursor currently points to.
*/
static int fts3ColumnMethod(
  sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
  sqlite3_context *pContext,      /* Context for sqlite3_result_xxx() calls */
  int iCol                        /* Index of column to read value from */
){
  int rc;                         /* Return Code */
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;

  /* The column value supplied by SQLite must be in range. */
  assert( iCol>=0 && iCol<=p->nColumn+1 );

  rc = fts3CursorSeek(pCsr);
  if( rc==SQLITE_OK ){
    if( iCol==p->nColumn+1 ){
      /* This call is a request for the "docid" column. Since "docid" is an 
      ** alias for "rowid", use the xRowid() method to obtain the value.
      */
      sqlite3_int64 iRowid;
      rc = fts3RowidMethod(pCursor, &iRowid);
      sqlite3_result_int64(pContext, iRowid);
    }else if( iCol==p->nColumn ){
      /* The extra column whose name is the same as the table.
      ** Return a blob which is a pointer to the cursor.
      */
      sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
    }else{
      sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1));
    }
  }
  return rc;
}

/* 
** This function is the implementation of the xUpdate callback used by 
** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
** inserted, updated or deleted.
*/
static int fts3UpdateMethod(
Changes to ext/fts3/fts3Int.h.
110
111
112
113
114
115
116


117
118
119
120
121
122
123
  **    ORDER BY blockid"
  */
  char *zSelectLeaves;
  int nLeavesStmt;                /* Valid statements in aLeavesStmt */
  int nLeavesTotal;               /* Total number of prepared leaves stmts */
  int nLeavesAlloc;               /* Allocated size of aLeavesStmt */
  sqlite3_stmt **aLeavesStmt;     /* Array of prepared zSelectLeaves stmts */



  /* The following hash table is used to buffer pending index updates during
  ** transactions. Variable nPendingData estimates the memory size of the 
  ** pending data, including hash table overhead, but not malloc overhead. 
  ** When nPendingData exceeds FTS3_MAX_PENDING_DATA, the buffer is flushed 
  ** automatically. Variable iPrevDocid is the docid of the most recently
  ** inserted record.







>
>







110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  **    ORDER BY blockid"
  */
  char *zSelectLeaves;
  int nLeavesStmt;                /* Valid statements in aLeavesStmt */
  int nLeavesTotal;               /* Total number of prepared leaves stmts */
  int nLeavesAlloc;               /* Allocated size of aLeavesStmt */
  sqlite3_stmt **aLeavesStmt;     /* Array of prepared zSelectLeaves stmts */

  int nNodeSize;                  /* Soft limit for node size */

  /* The following hash table is used to buffer pending index updates during
  ** transactions. Variable nPendingData estimates the memory size of the 
  ** pending data, including hash table overhead, but not malloc overhead. 
  ** When nPendingData exceeds FTS3_MAX_PENDING_DATA, the buffer is flushed 
  ** automatically. Variable iPrevDocid is the docid of the most recently
  ** inserted record.
Changes to ext/fts3/fts3_write.c.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include "fts3Int.h"
#include <string.h>
#include <assert.h>
#include <stdlib.h>

#define INTERIOR_MAX 2048         /* Soft limit for segment node size */
#define LEAF_MAX 2048             /* Soft limit for segment leaf size */

typedef struct PendingList PendingList;
typedef struct SegmentNode SegmentNode;
typedef struct SegmentWriter SegmentWriter;

/*
** Data structure used while accumulating terms in the pending-terms hash
** table. The hash table entry maps from term (a string) to a malloced







<
<
<







20
21
22
23
24
25
26



27
28
29
30
31
32
33
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include "fts3Int.h"
#include <string.h>
#include <assert.h>
#include <stdlib.h>




typedef struct PendingList PendingList;
typedef struct SegmentNode SegmentNode;
typedef struct SegmentWriter SegmentWriter;

/*
** Data structure used while accumulating terms in the pending-terms hash
** table. The hash table entry maps from term (a string) to a malloced
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291

292
293
294
295
296
297
298
  int *pnBlock
){
  sqlite3_stmt *pStmt;
  int rc = fts3SqlStmt(p, SQL_GET_BLOCK, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  sqlite3_reset(pStmt);


  sqlite3_bind_int64(pStmt, 1, iBlock);
  rc = sqlite3_step(pStmt); 
  if( rc!=SQLITE_ROW ){
    return SQLITE_CORRUPT;
  }

  *pnBlock = sqlite3_column_bytes(pStmt, 0);
  *pzBlock = (char *)sqlite3_column_blob(pStmt, 0);
  if( !*pzBlock ){
    return SQLITE_NOMEM;

  }
  return SQLITE_OK;
}

/*
** Set *ppStmt to a statement handle that may be used to iterate through
** all rows in the %_segdir table, from oldest to newest. If successful,







>
|
|
|
|
|
|
|
|
|
|
>







272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
  int *pnBlock
){
  sqlite3_stmt *pStmt;
  int rc = fts3SqlStmt(p, SQL_GET_BLOCK, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  sqlite3_reset(pStmt);

  if( pzBlock ){
    sqlite3_bind_int64(pStmt, 1, iBlock);
    rc = sqlite3_step(pStmt); 
    if( rc!=SQLITE_ROW ){
      return SQLITE_CORRUPT;
    }
  
    *pnBlock = sqlite3_column_bytes(pStmt, 0);
    *pzBlock = (char *)sqlite3_column_blob(pStmt, 0);
    if( !*pzBlock ){
      return SQLITE_NOMEM;
    }
  }
  return SQLITE_OK;
}

/*
** Set *ppStmt to a statement handle that may be used to iterate through
** all rows in the %_segdir table, from oldest to newest. If successful,
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    int nPrefix;                  /* Number of bytes of prefix compression */
    int nSuffix;                  /* Suffix length */

    nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
    nSuffix = nTerm-nPrefix;

    nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
    if( nReq<=INTERIOR_MAX || !pTree->zTerm ){

      if( nReq>INTERIOR_MAX ){
        /* An unusual case: this is the first term to be added to the node
        ** and the static node buffer (INTERIOR_MAX bytes) is not large
        ** enough. Use a separately malloced buffer instead This wastes
        ** INTERIOR_MAX bytes, but since this scenario only comes about when
        ** the database contain two terms that share a prefix of almost 2KB, 
        ** this is not expected to be a serious problem. 
        */
        assert( pTree->aData==(char *)&pTree[1] );
        pTree->aData = (char *)sqlite3_malloc(nReq);
        if( !pTree->aData ){
          return SQLITE_NOMEM;







|

|

|

|







1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
    int nPrefix;                  /* Number of bytes of prefix compression */
    int nSuffix;                  /* Suffix length */

    nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
    nSuffix = nTerm-nPrefix;

    nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
    if( nReq<=p->nNodeSize || !pTree->zTerm ){

      if( nReq>p->nNodeSize ){
        /* An unusual case: this is the first term to be added to the node
        ** and the static node buffer (p->nNodeSize bytes) is not large
        ** enough. Use a separately malloced buffer instead This wastes
        ** p->nNodeSize bytes, but since this scenario only comes about when
        ** the database contain two terms that share a prefix of almost 2KB, 
        ** this is not expected to be a serious problem. 
        */
        assert( pTree->aData==(char *)&pTree[1] );
        pTree->aData = (char *)sqlite3_malloc(nReq);
        if( !pTree->aData ){
          return SQLITE_NOMEM;
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
  ** current node. Create a new node (a right-sibling of the current node).
  ** If this is the first node in the tree, the term is added to it.
  **
  ** Otherwise, the term is not added to the new node, it is left empty for
  ** now. Instead, the term is inserted into the parent of pTree. If pTree 
  ** has no parent, one is created here.
  */
  pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + INTERIOR_MAX);
  if( !pNew ){
    return SQLITE_NOMEM;
  }
  memset(pNew, 0, sizeof(SegmentNode));
  pNew->nData = 1 + FTS3_VARINT_MAX;
  pNew->aData = (char *)&pNew[1];








|







1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
  ** current node. Create a new node (a right-sibling of the current node).
  ** If this is the first node in the tree, the term is added to it.
  **
  ** Otherwise, the term is not added to the new node, it is left empty for
  ** now. Instead, the term is inserted into the parent of pTree. If pTree 
  ** has no parent, one is created here.
  */
  pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize);
  if( !pNew ){
    return SQLITE_NOMEM;
  }
  memset(pNew, 0, sizeof(SegmentNode));
  pNew->nData = 1 + FTS3_VARINT_MAX;
  pNew->aData = (char *)&pNew[1];

1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
    /* Allocate the SegmentWriter structure */
    pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
    if( !pWriter ) return SQLITE_NOMEM;
    memset(pWriter, 0, sizeof(SegmentWriter));
    *ppWriter = pWriter;

    /* Allocate a buffer in which to accumulate data */
    pWriter->aData = (char *)sqlite3_malloc(LEAF_MAX);
    if( !pWriter->aData ) return SQLITE_NOMEM;
    pWriter->nSize = LEAF_MAX;

    /* Find the next free blockid in the %_segments table */
    rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
    if( rc!=SQLITE_OK ) return rc;
    if( SQLITE_ROW==sqlite3_step(pStmt) ){
      pWriter->iFree = sqlite3_column_int64(pStmt, 0);
      pWriter->iFirst = pWriter->iFree;







|

|







1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
    /* Allocate the SegmentWriter structure */
    pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
    if( !pWriter ) return SQLITE_NOMEM;
    memset(pWriter, 0, sizeof(SegmentWriter));
    *ppWriter = pWriter;

    /* Allocate a buffer in which to accumulate data */
    pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize);
    if( !pWriter->aData ) return SQLITE_NOMEM;
    pWriter->nSize = p->nNodeSize;

    /* Find the next free blockid in the %_segments table */
    rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
    if( rc!=SQLITE_OK ) return rc;
    if( SQLITE_ROW==sqlite3_step(pStmt) ){
      pWriter->iFree = sqlite3_column_int64(pStmt, 0);
      pWriter->iFirst = pWriter->iFree;
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
  /* Figure out how many bytes are required by this new entry */
  nReq = sqlite3Fts3VarintLen(nPrefix) +    /* varint containing prefix size */
    sqlite3Fts3VarintLen(nSuffix) +         /* varint containing suffix size */
    nSuffix +                               /* Term suffix */
    sqlite3Fts3VarintLen(nDoclist) +        /* Size of doclist */
    nDoclist;                               /* Doclist data */

  if( nData>0 && nData+nReq>LEAF_MAX ){
    int rc;

    /* The current leaf node is full. Write it out to the database. */
    rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
    if( rc!=SQLITE_OK ) return rc;

    /* Add the current term to the interior node tree. The term added to







|







1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
  /* Figure out how many bytes are required by this new entry */
  nReq = sqlite3Fts3VarintLen(nPrefix) +    /* varint containing prefix size */
    sqlite3Fts3VarintLen(nSuffix) +         /* varint containing suffix size */
    nSuffix +                               /* Term suffix */
    sqlite3Fts3VarintLen(nDoclist) +        /* Size of doclist */
    nDoclist;                               /* Doclist data */

  if( nData>0 && nData+nReq>p->nNodeSize ){
    int rc;

    /* The current leaf node is full. Write it out to the database. */
    rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
    if( rc!=SQLITE_OK ) return rc;

    /* Add the current term to the interior node tree. The term added to
Changes to test/fts3malloc.test.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# fts3_malloc-1.*: Test OOM during CREATE and DROP table statements.
# fts3_malloc-2.*: Test OOM during SELECT operations.
# fts3_malloc-3.*: Test OOM during SELECT operations with a larger database.
# fts3_malloc-4.*: Test OOM during database write operations.
#
#

#-------------------------------------------------------------------------
# This proc is used to test a single SELECT statement. Parameter $name is
# passed a name for the test case (i.e. "fts3_malloc-1.4.1") and parameter
# $sql is passed the text of the SELECT statement. Parameter $result is
# set to the expected output if the SELECT statement is successfully
# executed using [db eval].
#
# Example:
#
#   do_select_test testcase-1.1 "SELECT 1+1, 1+2" {1 2}
#
# If global variable DO_MALLOC_TEST is set to a non-zero value, or if
# it is not defined at all, then OOM testing is performed on the SELECT
# statement. Each OOM test case is said to pass if either (a) executing
# the SELECT statement succeeds and the results match those specified
# by parameter $result, or (b) TCL throws an "out of memory" error.
#
# If DO_MALLOC_TEST is defined and set to zero, then the SELECT statement
# is executed just once. In this case the test case passes if the results
# match the expected results passed via parameter $result.
#
proc do_select_test {name sql result} {
  doPassiveTest $name $sql [list 0 $result]
}

proc do_error_test {name sql error} {
  doPassiveTest $name $sql [list 1 $error]
}

proc doPassiveTest {name sql catchres} {
  if {![info exists ::DO_MALLOC_TEST]} { set ::DO_MALLOC_TEST 1 }

  if {$::DO_MALLOC_TEST} {
    set answers [list {1 {out of memory}} $catchres]
    set modes [list 100000 transient 1 persistent]
  } else {
    set answers [list $catchres]
    set modes [list 0 nofail]
  }
  set str [join $answers " OR "]

  foreach {nRepeat zName} $modes {
    for {set iFail 1} 1 {incr iFail} {
      if {$::DO_MALLOC_TEST} {sqlite3_memdebug_fail $iFail -repeat $nRepeat}

      set res [catchsql $sql]
      if {[lsearch $answers $res]>=0} {
        set res $str
      }
      do_test $name.$zName.$iFail [list set {} $res] $str
      set nFail [sqlite3_memdebug_fail -1 -benigncnt nBenign]
      if {$nFail==0} break
    }
  }
}


#-------------------------------------------------------------------------
# Test a single write to the database. In this case a  "write" is a 
# DELETE, UPDATE or INSERT statement.
#
# If OOM testing is performed, there are several acceptable outcomes:
#
#   1) The write succeeds. No error is returned.
#
#   2) An "out of memory" exception is thrown and:
#
#     a) The statement has no effect, OR
#     b) The current transaction is rolled back, OR
#     c) The statement succeeds. This can only happen if the connection
#        is in auto-commit mode (after the statement is executed, so this
#        includes COMMIT statements).
#
# If the write operation eventually succeeds, zero is returned. If a
# transaction is rolled back, non-zero is returned.
#
# Parameter $name is the name to use for the test case (or test cases).
# The second parameter, $tbl, should be the name of the database table
# being modified. Parameter $sql contains the SQL statement to test.
#
proc do_write_test {name tbl sql} {
  if {![info exists ::DO_MALLOC_TEST]} { set ::DO_MALLOC_TEST 1 }

  # Figure out an statement to get a checksum for table $tbl.
  db eval "SELECT * FROM $tbl" V break
  set cksumsql "SELECT md5sum([join [concat rowid $V(*)] ,]) FROM $tbl"

  # Calculate the initial table checksum.
  set cksum1 [db one $cksumsql]


  if {$::DO_MALLOC_TEST } {
    set answers [list {1 {out of memory}} {0 {}}]
    set modes [list 100000 transient 1 persistent]
  } else {
    set answers [list {0 {}}]
    set modes [list 0 nofail]
  }
  set str [join $answers " OR "]

  foreach {nRepeat zName} $modes {
    for {set iFail 1} 1 {incr iFail} {
      if {$::DO_MALLOC_TEST} {sqlite3_memdebug_fail $iFail -repeat $nRepeat}

      set res [catchsql $sql]
      set nFail [sqlite3_memdebug_fail -1 -benigncnt nBenign]
      if {$nFail==0} {
        do_test $name.$zName.$iFail [list set {} $res] {0 {}}
        return
      } else {
        if {[lsearch $answers $res]>=0} {
          set res $str
        }
        do_test $name.$zName.$iFail [list set {} $res] $str
        set cksum2 [db one $cksumsql]
        if {$cksum1 != $cksum2} return
      }
    }
  }
}

proc normal_list {l} {
  set ret [list]
  foreach elem $l {lappend ret $elem}
  set ret
}








<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







32
33
34
35
36
37
38
























































































































39
40
41
42
43
44
45
# fts3_malloc-1.*: Test OOM during CREATE and DROP table statements.
# fts3_malloc-2.*: Test OOM during SELECT operations.
# fts3_malloc-3.*: Test OOM during SELECT operations with a larger database.
# fts3_malloc-4.*: Test OOM during database write operations.
#
#


























































































































proc normal_list {l} {
  set ret [list]
  foreach elem $l {lappend ret $elem}
  set ret
}

Added test/fts3rnd.test.








































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# 2009 December 03
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Brute force (random data) tests for FTS3.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# If this build does not include FTS3, skip the tests in this file.
#
ifcapable !fts3 { finish_test ; return }
source $testdir/fts3_common.tcl

set nVocab 100
set lVocab [list]

# Generate a vocabulary of nVocab words. Each word is 3 characters long.
#
set lChar {a b c d e f g h i j k l m n o p q r s t u v w x y z}
for {set i 0} {$i < $nVocab} {incr i} {
  set    word [lindex $lChar [expr int(rand()*26)]]
  append word [lindex $lChar [expr int(rand()*26)]]
  append word [lindex $lChar [expr int(rand()*26)]]
  lappend lVocab $word
}

proc random_term {} {
  lindex $::lVocab [expr {int(rand()*$::nVocab)}]
}

# Return a document consisting of $nWord arbitrarily selected terms
# from the $::lVocab list.
#
proc generate_doc {nWord} {
  set doc [list]
  for {set i 0} {$i < $nWord} {incr i} {
    lappend doc [random_term]
  }
  return $doc
}



# Primitives to update the table.
#
proc insert_row {rowid} {
  set a [generate_doc [expr int((rand()*100))]]
  set b [generate_doc [expr int((rand()*100))]]
  set c [generate_doc [expr int((rand()*100))]]
  execsql { INSERT INTO t1(docid, a, b, c) VALUES($rowid, $a, $b, $c) }
  set ::t1($rowid) [list $a $b $c]
}
proc delete_row {rowid} {
  execsql { DELETE FROM t1 WHERE rowid = $rowid }
  catch {unset ::t1($rowid)}
}
proc update_row {rowid} {
  set cols {a b c}
  set iCol [expr int(rand()*3)]
  set doc  [generate_doc [expr int((rand()*100))]]
  lset ::t1($rowid) $iCol $doc
  execsql "UPDATE t1 SET [lindex $cols $iCol] = \$doc WHERE rowid = \$rowid"
}

# Primitives to query the in-memory table.
#
proc simple_term {zTerm} {
  set ret [list]
  foreach {key value} [array get ::t1] {
    if {[string first $zTerm $value]>=0} { lappend ret $key }
  }
  lsort -integer $ret
}

foreach nodesize {50 500 1000 2000} {
  catch { array unset ::t1 }

  # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows.
  #
  db transaction {
    catchsql { DROP TABLE t1 }
    execsql "CREATE VIRTUAL TABLE t1 USING fts3(a, b, c, test:$nodesize)"
    for {set i 0} {$i < 100} {incr i} { insert_row $i }
  }
  
  for {set iTest 1} {$iTest <= 100} {incr iTest} {
  
    # Delete one row, update one row and insert one row.
    #
    set rows [array names ::t1]
    set nRow [llength $rows]
    set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]]
    set iDelete $iUpdate
    while {$iDelete == $iUpdate} {
      set iDelete [lindex $rows [expr {int(rand()*$nRow)}]]
    }
    set iInsert $iUpdate
    while {[info exists ::t1($iInsert)]} {
      set iInsert [expr {int(rand()*1000000)}]
    }
    db transaction {
      insert_row $iInsert
      update_row $iUpdate
      delete_row $iDelete
    }
  
    # Pick 10 terms from the vocabulary. Check that the results of querying
    # the database for the set of documents containing each of these terms
    # is the same as the result obtained by scanning the contents of the Tcl 
    # array for each term.
    #
    set n [expr {$iTest % ([llength $::lVocab]-10)}]
    foreach term [lrange $::lVocab $n [expr $n+10]] {
      do_test fts3rnd-1.$nodesize.$iTest.$term {
        execsql { SELECT docid FROM t1 WHERE t1 MATCH $term }
      } [simple_term $term]
    }

    # Similar to the above, except for phrase queries.
    #
    for {set i 0} {$i < 10} {incr i} {
      set term [list [random_term] [random_term]]
      set match "\"$term\""
      do_test fts3rnd-1.$nodesize.$iTest.$match {
        execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }
      } [simple_term $term]
    }
    
    # Three word phrases.
    #
    for {set i 0} {$i < 10} {incr i} {
      set term [list [random_term] [random_term] [random_term]]
      set match "\"$term\""
      do_test fts3rnd-1.$nodesize.$iTest.$match {
        execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }
      } [simple_term $term]
    }
  }
}

finish_test

Changes to test/quick.test.
53
54
55
56
57
58
59

60

61
62
63
64
65
66
67
  crash2.test
  crash3.test
  crash4.test
  crash5.test
  crash6.test
  crash7.test
  delete3.test

  fts3.test

  fkey_malloc.test
  fuzz.test
  fuzz3.test
  fuzz_malloc.test
  in2.test
  loadext.test
  memleak.test







>

>







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
  crash2.test
  crash3.test
  crash4.test
  crash5.test
  crash6.test
  crash7.test
  delete3.test
  e_fts3.test
  fts3.test
  fts3fuzz.test
  fkey_malloc.test
  fuzz.test
  fuzz3.test
  fuzz_malloc.test
  in2.test
  loadext.test
  memleak.test