Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Fix an incorrect assert() in fts3.c. Add further fts3 tests. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
75863c2d55e0801add5b8dcf88d575c5 |
User & Date: | dan 2009-12-03 17:36:22.000 |
Context
2009-12-03
| ||
19:40 | Remove a NEVER() from btree.c that could occur in a very obscure tested evaluation with an I/O error on fstat(). (check-in: d5861d9ffe user: drh tags: trunk) | |
17:36 | Fix an incorrect assert() in fts3.c. Add further fts3 tests. (check-in: 75863c2d55 user: dan tags: trunk) | |
06:26 | Updates to FTS3 to correct compiler warnings under MSVC. (check-in: 37495b55ff user: shaneh tags: trunk) | |
Changes
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
469 470 471 472 473 474 475 | if( *pp>=pEnd ){ *pp = 0; }else{ fts3GetDeltaVarint(pp, pVal); } } | < < < < < | 469 470 471 472 473 474 475 476 477 478 479 480 481 482 | if( *pp>=pEnd ){ *pp = 0; }else{ fts3GetDeltaVarint(pp, pVal); } } /* ** The xDisconnect() virtual table method. */ static int fts3DisconnectMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table *)pVtab; int i; |
︙ | ︙ | |||
645 646 647 648 649 650 651 652 653 654 655 656 657 658 | int nByte; /* Size of allocation used for *p */ int iCol; int nString = 0; int nCol = 0; char *zCsr; int nDb; int nName; const char *zTokenizer = 0; /* Name of tokenizer to use */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ nDb = (int)strlen(argv[1]) + 1; nName = (int)strlen(argv[2]) + 1; for(i=3; i<argc; i++){ | > > > > > > > > | 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 | int nByte; /* Size of allocation used for *p */ int iCol; int nString = 0; int nCol = 0; char *zCsr; int nDb; int nName; #ifdef SQLITE_TEST char *zTestParam = 0; if( strncmp(argv[argc-1], "test:", 5)==0 ){ zTestParam = argv[argc-1]; argc--; } #endif const char *zTokenizer = 0; /* Name of tokenizer to use */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ nDb = (int)strlen(argv[1]) + 1; nName = (int)strlen(argv[2]) + 1; for(i=3; i<argc; i++){ |
︙ | ︙ | |||
692 693 694 695 696 697 698 699 700 701 702 703 704 705 | memset(p, 0, nByte); p->db = db; p->nColumn = nCol; p->nPendingData = 0; p->azColumn = (char **)&p[1]; p->pTokenizer = pTokenizer; zCsr = (char *)&p->azColumn[nCol]; fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1); /* Fill in the zName and zDb fields of the vtab structure. */ p->zName = zCsr; memcpy(zCsr, argv[2], nName); | > | 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 | memset(p, 0, nByte); p->db = db; p->nColumn = nCol; p->nPendingData = 0; p->azColumn = (char **)&p[1]; p->pTokenizer = pTokenizer; p->nNodeSize = 1000; zCsr = (char *)&p->azColumn[nCol]; fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1); /* Fill in the zName and zDb fields of the vtab structure. */ p->zName = zCsr; memcpy(zCsr, argv[2], nName); |
︙ | ︙ | |||
735 736 737 738 739 740 741 742 743 744 745 746 747 748 | rc = fts3CreateTables(p); if( rc!=SQLITE_OK ) goto fts3_init_out; } rc = fts3DeclareVtab(p); if( rc!=SQLITE_OK ) goto fts3_init_out; *ppVTab = &p->base; fts3_init_out: assert( p || (pTokenizer && rc!=SQLITE_OK) ); if( rc!=SQLITE_OK ){ if( p ){ fts3DisconnectMethod((sqlite3_vtab *)p); | > > > > > | 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 | rc = fts3CreateTables(p); if( rc!=SQLITE_OK ) goto fts3_init_out; } rc = fts3DeclareVtab(p); if( rc!=SQLITE_OK ) goto fts3_init_out; #ifdef SQLITE_TEST if( zTestParam ){ p->nNodeSize = atoi(&zTestParam[5]); } #endif *ppVTab = &p->base; fts3_init_out: assert( p || (pTokenizer && rc!=SQLITE_OK) ); if( rc!=SQLITE_OK ){ if( p ){ fts3DisconnectMethod((sqlite3_vtab *)p); |
︙ | ︙ | |||
1006 1007 1008 1009 1010 1011 1012 1013 | if( rc!=SQLITE_OK ) break; zEnd = &zCsr[nBlock]; } sqlite3_free(zBuffer); return rc; } static void fts3PutDeltaVarint( | > > > > | | | | | 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 | if( rc!=SQLITE_OK ) break; zEnd = &zCsr[nBlock]; } sqlite3_free(zBuffer); return rc; } /* ** This function is used to create delta-encoded serialized lists of FTS3 ** varints. Each call to this function appends a single varint to a list. */ static void fts3PutDeltaVarint( char **pp, /* IN/OUT: Output pointer */ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ sqlite3_int64 iVal /* Write this value to the list */ ){ assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); *piPrev = iVal; } static void fts3PoslistCopy(char **pp, char **ppPoslist){ char *pEnd = *ppPoslist; char c = 0; |
︙ | ︙ | |||
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 | }else{ sqlite3_int64 i1; rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &i1); if( rc==SQLITE_OK ){ sqlite3_int64 i2 = sqlite3_column_int64(pStmt, 2); rc = sqlite3Fts3SegReaderNew(p, iAge, i1, i2, 0, 0, 0, &pNew); } } iAge++; /* If a new Fts3SegReader was allocated, add it to the apSegment array. */ assert( (rc==SQLITE_OK)==(pNew!=0) ); if( pNew ){ if( nSegment==nAlloc ){ | > | 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 | }else{ sqlite3_int64 i1; rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &i1); if( rc==SQLITE_OK ){ sqlite3_int64 i2 = sqlite3_column_int64(pStmt, 2); rc = sqlite3Fts3SegReaderNew(p, iAge, i1, i2, 0, 0, 0, &pNew); } sqlite3Fts3ReadBlock(p, 0, 0, 0); } iAge++; /* If a new Fts3SegReader was allocated, add it to the apSegment array. */ assert( (rc==SQLITE_OK)==(pNew!=0) ); if( pNew ){ if( nSegment==nAlloc ){ |
︙ | ︙ | |||
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 | char *aRight; int nLeft; int nRight; if( SQLITE_OK==(rc = evalFts3Expr(p, pExpr->pRight, &aRight, &nRight)) && SQLITE_OK==(rc = evalFts3Expr(p, pExpr->pLeft, &aLeft, &nLeft)) ){ switch( pExpr->eType ){ case FTSQUERY_NEAR: { Fts3Expr *pLeft; Fts3Expr *pRight; int mergetype = MERGE_NEAR; int nParam1; int nParam2; | > > > | 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 | char *aRight; int nLeft; int nRight; if( SQLITE_OK==(rc = evalFts3Expr(p, pExpr->pRight, &aRight, &nRight)) && SQLITE_OK==(rc = evalFts3Expr(p, pExpr->pLeft, &aLeft, &nLeft)) ){ assert( pExpr->eType==FTSQUERY_NEAR || pExpr->eType==FTSQUERY_OR || pExpr->eType==FTSQUERY_AND || pExpr->eType==FTSQUERY_NOT ); switch( pExpr->eType ){ case FTSQUERY_NEAR: { Fts3Expr *pLeft; Fts3Expr *pRight; int mergetype = MERGE_NEAR; int nParam1; int nParam2; |
︙ | ︙ | |||
1745 1746 1747 1748 1749 1750 1751 | aLeft, nLeft, aRight, nRight ); *paOut = aBuffer; sqlite3_free(aLeft); break; } | < | | 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 | aLeft, nLeft, aRight, nRight ); *paOut = aBuffer; sqlite3_free(aLeft); break; } default: { assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND ); fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut, aLeft, nLeft, aRight, nRight ); *paOut = aLeft; break; } |
︙ | ︙ | |||
1861 1862 1863 1864 1865 1866 1867 | ** This is the xEof method of the virtual table. SQLite calls this ** routine to find out if it has reached the end of a result set. */ static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){ return ((Fts3Cursor *)pCursor)->isEof; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 | ** This is the xEof method of the virtual table. SQLite calls this ** routine to find out if it has reached the end of a result set. */ static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){ return ((Fts3Cursor *)pCursor)->isEof; } /* ** This is the xRowid method. The SQLite core calls this routine to ** retrieve the rowid for the current row of the result set. fts3 ** exposes %_content.docid as the rowid for the virtual table. The ** rowid should be written to *pRowid. */ static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; if( pCsr->aDoclist ){ *pRowid = pCsr->iPrevId; }else{ *pRowid = sqlite3_column_int64(pCsr->pStmt, 0); } return SQLITE_OK; } /* ** This is the xColumn method, called by SQLite to request a value from ** the row that the supplied cursor currently points to. */ static int fts3ColumnMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite3_context *pContext, /* Context for sqlite3_result_xxx() calls */ int iCol /* Index of column to read value from */ ){ int rc; /* Return Code */ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; Fts3Table *p = (Fts3Table *)pCursor->pVtab; /* The column value supplied by SQLite must be in range. */ assert( iCol>=0 && iCol<=p->nColumn+1 ); rc = fts3CursorSeek(pCsr); if( rc==SQLITE_OK ){ if( iCol==p->nColumn+1 ){ /* This call is a request for the "docid" column. Since "docid" is an ** alias for "rowid", use the xRowid() method to obtain the value. */ sqlite3_int64 iRowid; rc = fts3RowidMethod(pCursor, &iRowid); sqlite3_result_int64(pContext, iRowid); }else if( iCol==p->nColumn ){ /* The extra column whose name is the same as the table. ** Return a blob which is a pointer to the cursor. */ sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT); }else{ sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1)); } } return rc; } /* ** This function is the implementation of the xUpdate callback used by ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be ** inserted, updated or deleted. */ static int fts3UpdateMethod( |
︙ | ︙ |
Changes to ext/fts3/fts3Int.h.
︙ | ︙ | |||
110 111 112 113 114 115 116 117 118 119 120 121 122 123 | ** ORDER BY blockid" */ char *zSelectLeaves; int nLeavesStmt; /* Valid statements in aLeavesStmt */ int nLeavesTotal; /* Total number of prepared leaves stmts */ int nLeavesAlloc; /* Allocated size of aLeavesStmt */ sqlite3_stmt **aLeavesStmt; /* Array of prepared zSelectLeaves stmts */ /* The following hash table is used to buffer pending index updates during ** transactions. Variable nPendingData estimates the memory size of the ** pending data, including hash table overhead, but not malloc overhead. ** When nPendingData exceeds FTS3_MAX_PENDING_DATA, the buffer is flushed ** automatically. Variable iPrevDocid is the docid of the most recently ** inserted record. | > > | 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | ** ORDER BY blockid" */ char *zSelectLeaves; int nLeavesStmt; /* Valid statements in aLeavesStmt */ int nLeavesTotal; /* Total number of prepared leaves stmts */ int nLeavesAlloc; /* Allocated size of aLeavesStmt */ sqlite3_stmt **aLeavesStmt; /* Array of prepared zSelectLeaves stmts */ int nNodeSize; /* Soft limit for node size */ /* The following hash table is used to buffer pending index updates during ** transactions. Variable nPendingData estimates the memory size of the ** pending data, including hash table overhead, but not malloc overhead. ** When nPendingData exceeds FTS3_MAX_PENDING_DATA, the buffer is flushed ** automatically. Variable iPrevDocid is the docid of the most recently ** inserted record. |
︙ | ︙ |
Changes to ext/fts3/fts3_write.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #include "fts3Int.h" #include <string.h> #include <assert.h> #include <stdlib.h> | < < < | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #include "fts3Int.h" #include <string.h> #include <assert.h> #include <stdlib.h> typedef struct PendingList PendingList; typedef struct SegmentNode SegmentNode; typedef struct SegmentWriter SegmentWriter; /* ** Data structure used while accumulating terms in the pending-terms hash ** table. The hash table entry maps from term (a string) to a malloced |
︙ | ︙ | |||
275 276 277 278 279 280 281 | int *pnBlock ){ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_GET_BLOCK, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; sqlite3_reset(pStmt); | > | | | | | | | | | | > | 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | int *pnBlock ){ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_GET_BLOCK, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; sqlite3_reset(pStmt); if( pzBlock ){ sqlite3_bind_int64(pStmt, 1, iBlock); rc = sqlite3_step(pStmt); if( rc!=SQLITE_ROW ){ return SQLITE_CORRUPT; } *pnBlock = sqlite3_column_bytes(pStmt, 0); *pzBlock = (char *)sqlite3_column_blob(pStmt, 0); if( !*pzBlock ){ return SQLITE_NOMEM; } } return SQLITE_OK; } /* ** Set *ppStmt to a statement handle that may be used to iterate through ** all rows in the %_segdir table, from oldest to newest. If successful, |
︙ | ︙ | |||
1189 1190 1191 1192 1193 1194 1195 | int nPrefix; /* Number of bytes of prefix compression */ int nSuffix; /* Suffix length */ nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); nSuffix = nTerm-nPrefix; nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; | | | | | | 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 | int nPrefix; /* Number of bytes of prefix compression */ int nSuffix; /* Suffix length */ nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); nSuffix = nTerm-nPrefix; nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; if( nReq<=p->nNodeSize || !pTree->zTerm ){ if( nReq>p->nNodeSize ){ /* An unusual case: this is the first term to be added to the node ** and the static node buffer (p->nNodeSize bytes) is not large ** enough. Use a separately malloced buffer instead This wastes ** p->nNodeSize bytes, but since this scenario only comes about when ** the database contain two terms that share a prefix of almost 2KB, ** this is not expected to be a serious problem. */ assert( pTree->aData==(char *)&pTree[1] ); pTree->aData = (char *)sqlite3_malloc(nReq); if( !pTree->aData ){ return SQLITE_NOMEM; |
︙ | ︙ | |||
1244 1245 1246 1247 1248 1249 1250 | ** current node. Create a new node (a right-sibling of the current node). ** If this is the first node in the tree, the term is added to it. ** ** Otherwise, the term is not added to the new node, it is left empty for ** now. Instead, the term is inserted into the parent of pTree. If pTree ** has no parent, one is created here. */ | | | 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 | ** current node. Create a new node (a right-sibling of the current node). ** If this is the first node in the tree, the term is added to it. ** ** Otherwise, the term is not added to the new node, it is left empty for ** now. Instead, the term is inserted into the parent of pTree. If pTree ** has no parent, one is created here. */ pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize); if( !pNew ){ return SQLITE_NOMEM; } memset(pNew, 0, sizeof(SegmentNode)); pNew->nData = 1 + FTS3_VARINT_MAX; pNew->aData = (char *)&pNew[1]; |
︙ | ︙ | |||
1397 1398 1399 1400 1401 1402 1403 | /* Allocate the SegmentWriter structure */ pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter)); if( !pWriter ) return SQLITE_NOMEM; memset(pWriter, 0, sizeof(SegmentWriter)); *ppWriter = pWriter; /* Allocate a buffer in which to accumulate data */ | | | | 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 | /* Allocate the SegmentWriter structure */ pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter)); if( !pWriter ) return SQLITE_NOMEM; memset(pWriter, 0, sizeof(SegmentWriter)); *ppWriter = pWriter; /* Allocate a buffer in which to accumulate data */ pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize); if( !pWriter->aData ) return SQLITE_NOMEM; pWriter->nSize = p->nNodeSize; /* Find the next free blockid in the %_segments table */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; if( SQLITE_ROW==sqlite3_step(pStmt) ){ pWriter->iFree = sqlite3_column_int64(pStmt, 0); pWriter->iFirst = pWriter->iFree; |
︙ | ︙ | |||
1423 1424 1425 1426 1427 1428 1429 | /* Figure out how many bytes are required by this new entry */ nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ nSuffix + /* Term suffix */ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ nDoclist; /* Doclist data */ | | | 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 | /* Figure out how many bytes are required by this new entry */ nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ nSuffix + /* Term suffix */ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ nDoclist; /* Doclist data */ if( nData>0 && nData+nReq>p->nNodeSize ){ int rc; /* The current leaf node is full. Write it out to the database. */ rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); if( rc!=SQLITE_OK ) return rc; /* Add the current term to the interior node tree. The term added to |
︙ | ︙ |
Changes to test/fts3malloc.test.
︙ | ︙ | |||
32 33 34 35 36 37 38 | # fts3_malloc-1.*: Test OOM during CREATE and DROP table statements. # fts3_malloc-2.*: Test OOM during SELECT operations. # fts3_malloc-3.*: Test OOM during SELECT operations with a larger database. # fts3_malloc-4.*: Test OOM during database write operations. # # | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | # fts3_malloc-1.*: Test OOM during CREATE and DROP table statements. # fts3_malloc-2.*: Test OOM during SELECT operations. # fts3_malloc-3.*: Test OOM during SELECT operations with a larger database. # fts3_malloc-4.*: Test OOM during database write operations. # # proc normal_list {l} { set ret [list] foreach elem $l {lappend ret $elem} set ret } |
︙ | ︙ |
Added test/fts3rnd.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | # 2009 December 03 # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Brute force (random data) tests for FTS3. # set testdir [file dirname $argv0] source $testdir/tester.tcl # If this build does not include FTS3, skip the tests in this file. # ifcapable !fts3 { finish_test ; return } source $testdir/fts3_common.tcl set nVocab 100 set lVocab [list] # Generate a vocabulary of nVocab words. Each word is 3 characters long. # set lChar {a b c d e f g h i j k l m n o p q r s t u v w x y z} for {set i 0} {$i < $nVocab} {incr i} { set word [lindex $lChar [expr int(rand()*26)]] append word [lindex $lChar [expr int(rand()*26)]] append word [lindex $lChar [expr int(rand()*26)]] lappend lVocab $word } proc random_term {} { lindex $::lVocab [expr {int(rand()*$::nVocab)}] } # Return a document consisting of $nWord arbitrarily selected terms # from the $::lVocab list. # proc generate_doc {nWord} { set doc [list] for {set i 0} {$i < $nWord} {incr i} { lappend doc [random_term] } return $doc } # Primitives to update the table. # proc insert_row {rowid} { set a [generate_doc [expr int((rand()*100))]] set b [generate_doc [expr int((rand()*100))]] set c [generate_doc [expr int((rand()*100))]] execsql { INSERT INTO t1(docid, a, b, c) VALUES($rowid, $a, $b, $c) } set ::t1($rowid) [list $a $b $c] } proc delete_row {rowid} { execsql { DELETE FROM t1 WHERE rowid = $rowid } catch {unset ::t1($rowid)} } proc update_row {rowid} { set cols {a b c} set iCol [expr int(rand()*3)] set doc [generate_doc [expr int((rand()*100))]] lset ::t1($rowid) $iCol $doc execsql "UPDATE t1 SET [lindex $cols $iCol] = \$doc WHERE rowid = \$rowid" } # Primitives to query the in-memory table. # proc simple_term {zTerm} { set ret [list] foreach {key value} [array get ::t1] { if {[string first $zTerm $value]>=0} { lappend ret $key } } lsort -integer $ret } foreach nodesize {50 500 1000 2000} { catch { array unset ::t1 } # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows. # db transaction { catchsql { DROP TABLE t1 } execsql "CREATE VIRTUAL TABLE t1 USING fts3(a, b, c, test:$nodesize)" for {set i 0} {$i < 100} {incr i} { insert_row $i } } for {set iTest 1} {$iTest <= 100} {incr iTest} { # Delete one row, update one row and insert one row. # set rows [array names ::t1] set nRow [llength $rows] set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]] set iDelete $iUpdate while {$iDelete == $iUpdate} { set iDelete [lindex $rows [expr {int(rand()*$nRow)}]] } set iInsert $iUpdate while {[info exists ::t1($iInsert)]} { set iInsert [expr {int(rand()*1000000)}] } db transaction { insert_row $iInsert update_row $iUpdate delete_row $iDelete } # Pick 10 terms from the vocabulary. Check that the results of querying # the database for the set of documents containing each of these terms # is the same as the result obtained by scanning the contents of the Tcl # array for each term. # set n [expr {$iTest % ([llength $::lVocab]-10)}] foreach term [lrange $::lVocab $n [expr $n+10]] { do_test fts3rnd-1.$nodesize.$iTest.$term { execsql { SELECT docid FROM t1 WHERE t1 MATCH $term } } [simple_term $term] } # Similar to the above, except for phrase queries. # for {set i 0} {$i < 10} {incr i} { set term [list [random_term] [random_term]] set match "\"$term\"" do_test fts3rnd-1.$nodesize.$iTest.$match { execsql { SELECT docid FROM t1 WHERE t1 MATCH $match } } [simple_term $term] } # Three word phrases. # for {set i 0} {$i < 10} {incr i} { set term [list [random_term] [random_term] [random_term]] set match "\"$term\"" do_test fts3rnd-1.$nodesize.$iTest.$match { execsql { SELECT docid FROM t1 WHERE t1 MATCH $match } } [simple_term $term] } } } finish_test |
Changes to test/quick.test.
︙ | ︙ | |||
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | crash2.test crash3.test crash4.test crash5.test crash6.test crash7.test delete3.test fts3.test fkey_malloc.test fuzz.test fuzz3.test fuzz_malloc.test in2.test loadext.test memleak.test | > > | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | crash2.test crash3.test crash4.test crash5.test crash6.test crash7.test delete3.test e_fts3.test fts3.test fts3fuzz.test fkey_malloc.test fuzz.test fuzz3.test fuzz_malloc.test in2.test loadext.test memleak.test |
︙ | ︙ |