/ Check-in [740a93e8]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge 29cafcfdcc and a6f39181a7.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1:740a93e89c5f12672d72de7b3c55807deac613d4
User & Date: dan 2009-08-19 16:21:25
Context
2009-08-19
16:34
Fix an assert() failure that may follow an OOM error. check-in: 14a715c5 user: dan tags: trunk
16:21
Merge 29cafcfdcc and a6f39181a7. check-in: 740a93e8 user: dan tags: trunk
15:57
Documentation improvements in sqlite.h.in. No changes to code. check-in: a6f39181 user: drh tags: trunk
15:34
Add some tests that use the sqlite_stat2 table in shared-cache mode. check-in: 29cafcfd user: dan tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/analyze.c.

13
14
15
16
17
18
19
20
21


22
23
24
25








26
27
28
29
30
31
32














33
34
35
36
37
38
39
40
41
42
43




44
45

46
47
48
49
50
51

52
53
54







55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76



77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99
100













101
102
103
104
105
106
107
...
115
116
117
118
119
120
121

122
123
124

125
126
127
128
129

130
131
132
133
134
135
136
137

138
139
140
141
142

143
144























145

146
147
148

149
150

151
152
153



154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
































172
173
174
175
176
177
178
179
180
181


182
183
184
185
186
187
188
189
190
191
192
193
...
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
...
241
242
243
244
245
246
247
248

249
250
251
252
253
254
255
...
263
264
265
266
267
268
269
270

271
272
273
274
275
276
277
...
383
384
385
386
387
388
389





















390

















391
392
393
394
395
396
397
...
399
400
401
402
403
404
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425













































































426

427
428
429
430
431
432
**
** @(#) $Id: analyze.c,v 1.52 2009/04/16 17:45:48 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

/*
** This routine generates code that opens the sqlite_stat1 table on cursor
** iStatCur.


**
** If the sqlite_stat1 tables does not previously exist, it is created.
** If it does previously exist, all entires associated with table zWhere
** are removed.  If zWhere==0 then all entries are removed.








*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
  const char *zWhere      /* Delete entries associated with this table */
){














  sqlite3 *db = pParse->db;
  Db *pDb;
  int iRootPage;
  u8 createStat1 = 0;
  Table *pStat;
  Vdbe *v = sqlite3GetVdbe(pParse);

  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];




  if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
    /* The sqlite_stat1 tables does not exist.  Create it.  

    ** Note that a side-effect of the CREATE TABLE statement is to leave
    ** the rootpage of the new table in register pParse->regRoot.  This is
    ** important because the OpenWrite opcode below will be needing it. */
    sqlite3NestedParse(pParse,
      "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
      pDb->zName

    );
    iRootPage = pParse->regRoot;
    createStat1 = 1;  /* Cause rootpage to be taken from top of stack */







  }else if( zWhere ){
    /* The sqlite_stat1 table exists.  Delete all entries associated with
    ** the table zWhere. */
    sqlite3NestedParse(pParse,
       "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
       pDb->zName, zWhere

    );
    iRootPage = pStat->tnum;
  }else{
    /* The sqlite_stat1 table already exists.  Delete all rows. */
    iRootPage = pStat->tnum;
    sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb);
  }

  /* Open the sqlite_stat1 table for writing. Unless it was created
  ** by this vdbe program, lock it for writing at the shared-cache level. 
  ** If this vdbe did create the sqlite_stat1 table, then it must have 
  ** already obtained a schema-lock, making the write-lock redundant.
  */
  if( !createStat1 ){
    sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
  }



  sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb);
  sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
  sqlite3VdbeChangeP5(v, createStat1);
}


/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem         /* Available memory locations begin here */
){
  Index *pIdx;     /* An index to being analyzed */
  int iIdxCur;     /* Index of VdbeCursor for index being analyzed */
  int nCol;        /* Number of columns in the index */

  Vdbe *v;         /* The virtual machine being built up */
  int i;           /* Loop counter */
  int topOfLoop;   /* The top of the loop */
  int endOfLoop;   /* The end of the loop */
  int addr;        /* The address of an instruction */
  int iDb;         /* Index of database containing pTab */














  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) || pTab->pIndex==0 ){
    /* Do no analysis for tables that have no indices */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
................................................................................
#endif

  /* Establish a read-lock on the table at the shared-cache level. */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){

    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
    int regFields;    /* Register block for building records */
    int regRec;       /* Register holding completed record */

    int regTemp;      /* Temporary use register */
    int regCol;       /* Content of a column from the table being analyzed */
    int regRowid;     /* Rowid for the inserted record */
    int regF2;


    /* Open a cursor to the index to be analyzed
    */
    assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
    nCol = pIdx->nColumn;
    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    VdbeComment((v, "%s", pIdx->zName));
    regFields = iMem+nCol*2;

    regTemp = regRowid = regCol = regFields+3;
    regRec = regCol+1;
    if( regRec>pParse->nMem ){
      pParse->nMem = regRec;
    }


    /* Memory cells are used as follows:























    **

    **    mem[iMem]:             The total number of rows in the table.
    **    mem[iMem+1]:           Number of distinct values in column 1
    **    ...

    **    mem[iMem+nCol]:        Number of distinct values in column N
    **    mem[iMem+nCol+1]       Last observed value of column 1

    **    ...
    **    mem[iMem+nCol+nCol]:   Last observed value of column N
    **



    ** Cells iMem through iMem+nCol are initialized to 0.  The others
    ** are initialized to NULL.
    */
    for(i=0; i<=nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
    }

    /* Do the analysis.
    */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);

    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
































      sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
      /**** TODO:  add collating sequence *****/
      sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, topOfLoop + 2*(i + 1));
      sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }


    sqlite3VdbeResolveLabel(v, endOfLoop);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);

    /* Store the results.  
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries
    ** in the index.  There is one additional integer in the list for each
    ** column of the table.  This additional integer is a guess of how many
................................................................................
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
    sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0);
    sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0);
    regF2 = regFields+2;
    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
      sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
    }
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, addr);
  }
}

................................................................................
  sqlite3 *db = pParse->db;
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab++;

  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem+1;
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
................................................................................
  int iDb;
  int iStatCur;

  assert( pTab!=0 );
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab++;

  openStatTable(pParse, iDb, iStatCur, pTab->zName);
  analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
................................................................................
    pIndex->aiRowEst[i] = v;
    if( *z==' ' ) z++;
  }
  return 0;
}

/*





















** Load the content of the sqlite_stat1 table into the index hash tables.

















*/
int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
  analysisInfo sInfo;
  HashElem *i;
  char *zSql;
  int rc;

................................................................................
  assert( db->aDb[iDb].pBt!=0 );
  assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  /* Clear any prior statistics */
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);

  }

  /* Check to make sure the sqlite_stat1 table existss */
  sInfo.db = db;
  sInfo.zDatabase = db->aDb[iDb].zName;
  if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
     return SQLITE_ERROR;
  }


  /* Load new statistics out of the sqlite_stat1 table */
  zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1",
                        sInfo.zDatabase);
  if( zSql==0 ){
    rc = SQLITE_NOMEM;
  }else{
    (void)sqlite3SafetyOff(db);
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    (void)sqlite3SafetyOn(db);
    sqlite3DbFree(db, zSql);













































































    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;

  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */







|
|
>
>


<
<
>
>
>
>
>
>
>
>







>
>
>
>
>
>
>
>
>
>
>
>
>
>


<
<
<

<




>
>
>
>
|
<
>
|
|
|
|
<
<
>
|
|
<
>
>
>
>
>
>
>
|
<
<
|
<
<
>
|
<
|
|
<
|
|
|
<
<
<
<
<
<
<

>
>
>
|
|
|
|
|
>










|
<
<
>
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>

<
<
>
|
|
<
<
|
>
|
<

<



<
>
|
|
|
<

>

|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
|
<
|
>
|
<
>
|
<

>
>
>
|
|








|
|




>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|



>
>




|







 







<
<
<
|


|




|

|







 







|
>







 







|
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>


|



|


<

|
|







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>






13
14
15
16
17
18
19
20
21
22
23
24
25


26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56



57

58
59
60
61
62
63
64
65
66

67
68
69
70
71


72
73
74

75
76
77
78
79
80
81
82


83


84
85

86
87

88
89
90







91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
...
146
147
148
149
150
151
152
153
154


155
156
157


158
159
160

161

162
163
164

165
166
167
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199
200
201

202
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
...
287
288
289
290
291
292
293



294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
...
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
...
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
...
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
...
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
**
** @(#) $Id: analyze.c,v 1.52 2009/04/16 17:45:48 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

/*
** This routine generates code that opens the sqlite_stat1 table for
** writing with cursor iStatCur. If the library was built with the
** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is
** opened for writing using cursor (iStatCur+1)
**
** If the sqlite_stat1 tables does not previously exist, it is created.


** Similarly, if the sqlite_stat2 table does not exist and the library
** is compiled with SQLITE_ENABLE_STAT2 defined, it is created. 
**
** Argument zWhere may be a pointer to a buffer containing a table name,
** or it may be a NULL pointer. If it is not NULL, then all entries in
** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated
** with the named table are deleted. If zWhere==0, then code is generated
** to delete all stat table entries.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
  const char *zWhere      /* Delete entries associated with this table */
){
  static struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },
#ifdef SQLITE_ENABLE_STAT2
    { "sqlite_stat2", "tbl,idx,sampleno,sample" },
#endif
  };

  int aRoot[] = {0, 0};
  int aCreateTbl[] = {0, 0};

  int i;
  sqlite3 *db = pParse->db;
  Db *pDb;



  Vdbe *v = sqlite3GetVdbe(pParse);

  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];

  for(i=0; i<ArraySize(aTable); i++){
    const char *zTab = aTable[i].zName;
    Table *pStat;
    if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){

      /* The sqlite_stat[12] table does not exist. Create it. Note that a 
      ** side-effect of the CREATE TABLE statement is to leave the rootpage 
      ** of the new table in register pParse->regRoot. This is important 
      ** because the OpenWrite opcode below will be needing it. */
      sqlite3NestedParse(pParse,


          "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
      );
      aRoot[i] = pParse->regRoot;

      aCreateTbl[i] = 1;
    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){


        sqlite3NestedParse(pParse,


           "DELETE FROM %Q.%s WHERE tbl=%Q", pDb->zName, zTab, zWhere
        );

      }else{
        /* The sqlite_stat[12] table already exists.  Delete all rows. */

        sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
      }
    }







  }

  /* Open the sqlite_stat[12] tables for writing. */
  for(i=0; i<ArraySize(aTable); i++){
    sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
    sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
  }
}

/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem         /* Available memory locations begin here */
){
  Index *pIdx;                 /* An index to being analyzed */


  int iIdxCur;                 /* Cursor open on index being analyzed */
  Vdbe *v;                     /* The virtual machine being built up */
  int i;                       /* Loop counter */
  int topOfLoop;               /* The top of the loop */
  int endOfLoop;               /* The end of the loop */
  int addr;                    /* The address of an instruction */
  int iDb;                     /* Index of database containing pTab */
  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regSampleno = iMem++;    /* Register containing next sample number */
  int regCol = iMem++;         /* Content of a column analyzed table */
  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regRowid = iMem++;       /* Rowid for the inserted record */
#ifdef SQLITE_ENABLE_STAT2
  int regTemp2 = iMem++;       /* Temporary use register */
  int regSamplerecno = iMem++; /* Next sample index record number */
  int regRecno = iMem++;       /* Register next index record number */
  int regCount = iMem++;       /* Total number of records in table */
#endif

  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) || pTab->pIndex==0 ){
    /* Do no analysis for tables that have no indices */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
................................................................................
#endif

  /* Establish a read-lock on the table at the shared-cache level. */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);

  iIdxCur = pParse->nTab++;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol = pIdx->nColumn;
    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);



    if( iMem+1+(nCol*2)>pParse->nMem ){
      pParse->nMem = iMem+1+(nCol*2);


    }

    /* Open a cursor to the index to be analyzed. */

    assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );

    sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
        (char *)pKey, P4_KEYINFO_HANDOFF);
    VdbeComment((v, "%s", pIdx->zName));


    /* Populate the registers containing the table and index names. */
    if( pTab->pIndex==pIdx ){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);

    }
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

#ifdef SQLITE_ENABLE_STAT2
    /* If this iteration of the loop is generating code to analyze the
    ** first index in the pTab->pIndex list, then register regCount has
    ** not been populated. In this case populate it now.  */
    if( pTab->pIndex==pIdx ){
      sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
    }

    /* Zero the regSampleno and regRecno registers. */
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno);

    /* If there are less than INDEX_SAMPLES records in the index, then
    ** set the contents of regSampleRecno to integer value INDEX_SAMPLES.
    ** Otherwise, set it to zero. This is to ensure that if there are 
    ** less than the said number of entries in the index, no samples at
    ** all are collected.  */
    sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno);
    sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, sqlite3VdbeCurrentAddr(v)+2,
        regCount);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regSamplerecno);
#endif

    /* The block of memory cells initialized here is used as follows.
    **
    **    iMem:                
    **        The total number of rows in the table.

    **
    **    iMem+1 .. iMem+nCol: 
    **        Number of distinct entries in index considering the 

    **        left-most N columns only, where N is between 1 and nCol, 
    **        inclusive.

    **
    **    iMem+nCol+1 .. Mem+2*nCol:  
    **        Previous value of indexed columns, from left to right.
    **
    ** Cells iMem through iMem+nCol are initialized to 0. The others are 
    ** initialized to contain an SQL NULL.
    */
    for(i=0; i<=nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
    }
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
    }

    /* Start the analysis loop. This loop runs through all the entries in
    ** the index b-tree.  */
    endOfLoop = sqlite3VdbeMakeLabel(v);
    sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);

    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
#ifdef SQLITE_ENABLE_STAT2
      if( i==0 ){
        /* Check if the record that cursor iIdxCur points to contains a
        ** value that should be stored in the sqlite_stat2 table. If so,
        ** store it.  */
        int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno);
        assert( regTabname+1==regIdxname 
             && regTabname+2==regSampleno
             && regTabname+3==regCol
        );
        sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid);
        sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid);

        /* Calculate new values for regSamplerecno and regSampleno.
        **
        **   sampleno = sampleno + 1
        **   samplerecno = samplerecno+(remaining records)/(remaining samples)
        */
        sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1);
        sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regCount, regTemp);
        sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
        sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2);
        sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2);
        sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp);
        sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno);

        sqlite3VdbeJumpHere(v, ne);
        sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1);
      }
#endif

      sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
      /**** TODO:  add collating sequence *****/
      sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-(nCol*2));
      sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }

    /* End of the analysis loop. */
    sqlite3VdbeResolveLabel(v, endOfLoop);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);

    /* Store the results in sqlite_stat1.
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries
    ** in the index.  There is one additional integer in the list for each
    ** column of the table.  This additional integer is a guess of how many
................................................................................
    **        I = (K+D-1)/D
    **
    ** If K==0 then no entry is made into the sqlite_stat1 table.  
    ** If K>0 then it is always the case the D>0 so division by zero
    ** is never possible.
    */
    addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);



    sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
      sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
      sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
      sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
      sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
      sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
    }
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, addr);
  }
}

................................................................................
  sqlite3 *db = pParse->db;
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;
  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem+1;
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
................................................................................
  int iDb;
  int iStatCur;

  assert( pTab!=0 );
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;
  openStatTable(pParse, iDb, iStatCur, pTab->zName);
  analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
................................................................................
    pIndex->aiRowEst[i] = v;
    if( *z==' ' ) z++;
  }
  return 0;
}

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite3DeleteIndexSamples(Index *pIdx){
#ifdef SQLITE_ENABLE_STAT2
  if( pIdx->aSample ){
    int j;
    sqlite3 *dbMem = pIdx->pTable->dbMem;
    for(j=0; j<SQLITE_INDEX_SAMPLES; j++){
      IndexSample *p = &pIdx->aSample[j];
      if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
        sqlite3DbFree(pIdx->pTable->dbMem, p->u.z);
      }
    }
    sqlite3DbFree(dbMem, pIdx->aSample);
    pIdx->aSample = 0;
  }
#endif
}

/*
** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
** arrays. The contents of sqlite_stat2 are used to populate the
** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined 
** during compilation and the sqlite_stat2 table is present, no data is 
** read from it.
**
** If SQLITE_ENABLE_STAT2 was defined during compilation and the 
** sqlite_stat2 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
** If an OOM error occurs, this function always sets db->mallocFailed.
** This means if the caller does not care about other errors, the return
** code may be ignored.
*/
int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
  analysisInfo sInfo;
  HashElem *i;
  char *zSql;
  int rc;

................................................................................
  assert( db->aDb[iDb].pBt!=0 );
  assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );

  /* Clear any prior statistics */
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);
    sqlite3DeleteIndexSamples(pIdx);
  }

  /* Check to make sure the sqlite_stat1 table exists */
  sInfo.db = db;
  sInfo.zDatabase = db->aDb[iDb].zName;
  if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
    return SQLITE_ERROR;
  }


  /* Load new statistics out of the sqlite_stat1 table */
  zSql = sqlite3MPrintf(db, 
      "SELECT idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
  if( zSql==0 ){
    rc = SQLITE_NOMEM;
  }else{
    (void)sqlite3SafetyOff(db);
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    (void)sqlite3SafetyOn(db);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat2 table. */
#ifdef SQLITE_ENABLE_STAT2
  if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){
    rc = SQLITE_ERROR;
  }
  if( rc==SQLITE_OK ){
    sqlite3_stmt *pStmt = 0;

    zSql = sqlite3MPrintf(db, 
        "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase);
    if( !zSql ){
      rc = SQLITE_NOMEM;
    }else{
      (void)sqlite3SafetyOff(db);
      rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
      (void)sqlite3SafetyOn(db);
      sqlite3DbFree(db, zSql);
    }

    if( rc==SQLITE_OK ){
      (void)sqlite3SafetyOff(db);
      while( sqlite3_step(pStmt)==SQLITE_ROW ){
        char *zIndex = (char *)sqlite3_column_text(pStmt, 0);
        Index *pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase);
        if( pIdx ){
          int iSample = sqlite3_column_int(pStmt, 1);
          sqlite3 *dbMem = pIdx->pTable->dbMem;
          assert( dbMem==db || dbMem==0 );
          if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){
            int eType = sqlite3_column_type(pStmt, 2);

            if( pIdx->aSample==0 ){
              static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES;
              pIdx->aSample = (IndexSample *)sqlite3DbMallocZero(dbMem, sz);
              if( pIdx->aSample==0 ){
                db->mallocFailed = 1;
                break;
              }
            }

            if( pIdx->aSample ){
              IndexSample *pSample = &pIdx->aSample[iSample];
              pSample->eType = eType;
              if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
                pSample->u.r = sqlite3_column_double(pStmt, 2);
              }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
                const char *z = (const char *)(
                    (eType==SQLITE_BLOB) ?
                    sqlite3_column_blob(pStmt, 2):
                    sqlite3_column_text(pStmt, 2)
                );
                int n = sqlite3_column_bytes(pStmt, 2);
                if( n>24 ){
                  n = 24;
                }
                pSample->nByte = n;
                pSample->u.z = sqlite3DbMallocRaw(dbMem, n);
                if( pSample->u.z ){
                  memcpy(pSample->u.z, z, n);
                }else{
                  db->mallocFailed = 1;
                  break;
                }
              }
            }
          }
        }
      }
      rc = sqlite3_finalize(pStmt);
      (void)sqlite3SafetyOn(db);
    }
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */

Changes to src/build.c.

339
340
341
342
343
344
345

346
347
348
349
350
351
352

/*
** Reclaim the memory used by an index
*/
static void freeIndex(Index *p){
  sqlite3 *db = p->pTable->dbMem;
  /* testcase( db==0 ); */

  sqlite3DbFree(db, p->zColAff);
  sqlite3DbFree(db, p);
}

/*
** Remove the given index from the index hash table, and free
** its memory structures.







>







339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

/*
** Reclaim the memory used by an index
*/
static void freeIndex(Index *p){
  sqlite3 *db = p->pTable->dbMem;
  /* testcase( db==0 ); */
  sqlite3DeleteIndexSamples(p);
  sqlite3DbFree(db, p->zColAff);
  sqlite3DbFree(db, p);
}

/*
** Remove the given index from the index hash table, and free
** its memory structures.

Changes to src/expr.c.

2832
2833
2834
2835
2836
2837
2838

2839
2840
2841
2842
2843
2844
2845
    }
  }
  if( isAppropriateForFactoring(pExpr) ){
    int r1 = ++pParse->nMem;
    int r2;
    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
    if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);

    pExpr->op = TK_REGISTER;
    pExpr->iTable = r2;
    return WRC_Prune;
  }
  return WRC_Continue;
}








>







2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
    }
  }
  if( isAppropriateForFactoring(pExpr) ){
    int r1 = ++pParse->nMem;
    int r2;
    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
    if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
    pExpr->iColumn = pExpr->op;
    pExpr->op = TK_REGISTER;
    pExpr->iTable = r2;
    return WRC_Prune;
  }
  return WRC_Continue;
}

Changes to src/sqliteInt.h.

72
73
74
75
76
77
78


79
80
81
82
83
84
85
...
590
591
592
593
594
595
596

597
598
599
600
601
602
603
....
1405
1406
1407
1408
1409
1410
1411














1412
1413
1414
1415
1416
1417
1418
....
1556
1557
1558
1559
1560
1561
1562
1563

1564
1565
1566
1567
1568
1569
1570
....
2778
2779
2780
2781
2782
2783
2784



2785
2786
2787
2788
2789
2790
2791
....
2809
2810
2811
2812
2813
2814
2815

2816
2817
2818
2819
2820
2821
2822
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif



/*
** This macro is used to "hide" some ugliness in casting an int
** value to a ptr value under the MSVC 64-bit compiler.   Casting
** non 64-bit values to ptr types results in a "hard" error with 
** the MSVC 64-bit compiler which this attempts to avoid.  
**
** A simple compiler pragma or casting sequence could not be found
................................................................................
typedef struct ExprList ExprList;
typedef struct ExprSpan ExprSpan;
typedef struct FKey FKey;
typedef struct FuncDef FuncDef;
typedef struct FuncDefHash FuncDefHash;
typedef struct IdList IdList;
typedef struct Index Index;

typedef struct KeyClass KeyClass;
typedef struct KeyInfo KeyInfo;
typedef struct Lookaside Lookaside;
typedef struct LookasideSlot LookasideSlot;
typedef struct Module Module;
typedef struct NameContext NameContext;
typedef struct Parse Parse;
................................................................................
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */
  Schema *pSchema; /* Schema containing this index */
  u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
  char **azColl;   /* Array of collation sequence names for index */














};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
................................................................................
  /* If the EP_Reduced flag is set in the Expr.flags mask, then no
  ** space is allocated for the fields below this point. An attempt to
  ** access them will result in a segfault or malfunction.
  *********************************************************************/

  int iTable;            /* TK_COLUMN: cursor number of table holding column
                         ** TK_REGISTER: register number */
  i16 iColumn;           /* TK_COLUMN: column index.  -1 for rowid */

  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u16 flags2;            /* Second set of flags.  EP2_... */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  Table *pTab;           /* Table for TK_COLUMN expressions. */
#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
................................................................................
const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int);



int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
extern const unsigned char sqlite3UpperToLower[];
extern const unsigned char sqlite3CtypeMap[];
extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
................................................................................
CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char*);
char sqlite3AffinityType(const char*);
void sqlite3Analyze(Parse*, Token*, Token*);
int sqlite3InvokeBusyHandler(BusyHandler*);
int sqlite3FindDb(sqlite3*, Token*);
int sqlite3FindDbName(sqlite3 *, const char *);
int sqlite3AnalysisLoad(sqlite3*,int iDB);

void sqlite3DefaultRowEst(Index*);
void sqlite3RegisterLikeFunctions(sqlite3*, int);
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
void sqlite3MinimumFileFormat(Parse*, int, int);
void sqlite3SchemaFree(void *);
Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
int sqlite3SchemaToIndex(sqlite3 *db, Schema *);







>
>







 







>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
>







 







>
>
>







 







>







72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
...
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
....
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
....
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
....
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
....
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif

#define SQLITE_INDEX_SAMPLES 10

/*
** This macro is used to "hide" some ugliness in casting an int
** value to a ptr value under the MSVC 64-bit compiler.   Casting
** non 64-bit values to ptr types results in a "hard" error with 
** the MSVC 64-bit compiler which this attempts to avoid.  
**
** A simple compiler pragma or casting sequence could not be found
................................................................................
typedef struct ExprList ExprList;
typedef struct ExprSpan ExprSpan;
typedef struct FKey FKey;
typedef struct FuncDef FuncDef;
typedef struct FuncDefHash FuncDefHash;
typedef struct IdList IdList;
typedef struct Index Index;
typedef struct IndexSample IndexSample;
typedef struct KeyClass KeyClass;
typedef struct KeyInfo KeyInfo;
typedef struct Lookaside Lookaside;
typedef struct LookasideSlot LookasideSlot;
typedef struct Module Module;
typedef struct NameContext NameContext;
typedef struct Parse Parse;
................................................................................
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */
  Schema *pSchema; /* Schema containing this index */
  u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
  char **azColl;   /* Array of collation sequence names for index */
  IndexSample *aSample;    /* Array of SQLITE_INDEX_SAMPLES samples */
};

/*
** Each sample stored in the sqlite_stat2 table is represented in memory 
** using a structure of this type.
*/
struct IndexSample {
  union {
    char *z;        /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
    double r;       /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */
  } u;
  u8 eType;         /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
  u8 nByte;         /* Size in byte of text or blob. */
};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
................................................................................
  /* If the EP_Reduced flag is set in the Expr.flags mask, then no
  ** space is allocated for the fields below this point. An attempt to
  ** access them will result in a segfault or malfunction.
  *********************************************************************/

  int iTable;            /* TK_COLUMN: cursor number of table holding column
                         ** TK_REGISTER: register number */
  i16 iColumn;           /* TK_COLUMN: column index.  -1 for rowid
                         ** TK_REGISTER: original value of Expr.op */
  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u16 flags2;            /* Second set of flags.  EP2_... */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  Table *pTab;           /* Table for TK_COLUMN expressions. */
#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
................................................................................
const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
                        void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int);
#ifdef SQLITE_ENABLE_STAT2
char *sqlite3Utf8to16(sqlite3 *, int, char *, int, int *);
#endif
int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
extern const unsigned char sqlite3UpperToLower[];
extern const unsigned char sqlite3CtypeMap[];
extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
................................................................................
CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char*);
char sqlite3AffinityType(const char*);
void sqlite3Analyze(Parse*, Token*, Token*);
int sqlite3InvokeBusyHandler(BusyHandler*);
int sqlite3FindDb(sqlite3*, Token*);
int sqlite3FindDbName(sqlite3 *, const char *);
int sqlite3AnalysisLoad(sqlite3*,int iDB);
void sqlite3DeleteIndexSamples(Index*);
void sqlite3DefaultRowEst(Index*);
void sqlite3RegisterLikeFunctions(sqlite3*, int);
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
void sqlite3MinimumFileFormat(Parse*, int, int);
void sqlite3SchemaFree(void *);
Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
int sqlite3SchemaToIndex(sqlite3 *db, Schema *);

Changes to src/test1.c.

2305
2306
2307
2308
2309
2310
2311

2312

2313
2314
2315
2316
2317
2318
2319
2320
2321


2322
2323
2324
2325
2326
2327
2328
    case SQLITE_UTF16BE:
      Tcl_ListObjAppendElement(i,pX,Tcl_NewStringObj("UTF-16BE",-1));
      break;
    default:
      assert(0);
  }


  pVal = sqlite3ValueNew(0);

  sqlite3ValueSetStr(pVal, nA, zA, encin, SQLITE_STATIC);
  n = sqlite3_value_bytes(pVal);
  Tcl_ListObjAppendElement(i,pX,
      Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n));
  sqlite3ValueSetStr(pVal, nB, zB, encin, SQLITE_STATIC);
  n = sqlite3_value_bytes(pVal);
  Tcl_ListObjAppendElement(i,pX,
      Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n));
  sqlite3ValueFree(pVal);



  Tcl_EvalObjEx(i, pX, 0);
  Tcl_DecrRefCount(pX);
  Tcl_GetIntFromObj(i, Tcl_GetObjResult(i), &res);
  return res;
}
static int test_collate(







>

>
|
|
|
|
|
|
|
|
|
>
>







2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
    case SQLITE_UTF16BE:
      Tcl_ListObjAppendElement(i,pX,Tcl_NewStringObj("UTF-16BE",-1));
      break;
    default:
      assert(0);
  }

  sqlite3BeginBenignMalloc();
  pVal = sqlite3ValueNew(0);
  if( pVal ){
    sqlite3ValueSetStr(pVal, nA, zA, encin, SQLITE_STATIC);
    n = sqlite3_value_bytes(pVal);
    Tcl_ListObjAppendElement(i,pX,
        Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n));
    sqlite3ValueSetStr(pVal, nB, zB, encin, SQLITE_STATIC);
    n = sqlite3_value_bytes(pVal);
    Tcl_ListObjAppendElement(i,pX,
        Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n));
    sqlite3ValueFree(pVal);
  }
  sqlite3EndBenignMalloc();

  Tcl_EvalObjEx(i, pX, 0);
  Tcl_DecrRefCount(pX);
  Tcl_GetIntFromObj(i, Tcl_GetObjResult(i), &res);
  return res;
}
static int test_collate(

Changes to src/test_config.c.

391
392
393
394
395
396
397






398
399
400
401
402
403
404
#endif

#ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "1", TCL_GLOBAL_ONLY);
#endif







#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif







>
>
>
>
>
>







391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#endif

#ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "schema_version", "1", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_ENABLE_STAT2
  Tcl_SetVar2(interp, "sqlite_options", "stat2", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "stat2", "0", TCL_GLOBAL_ONLY);
#endif

#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif

Changes to src/utf.c.

450
451
452
453
454
455
456


























457
458
459
460
461
462
463
    m.z = 0;
  }
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
}



























/*
** pZ is a UTF-16 encoded unicode string at least nChar characters long.
** Return the number of bytes in the first nChar unicode characters
** in pZ.  nChar must be non-negative.
*/
int sqlite3Utf16ByteLen(const void *zIn, int nChar){
  int c;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    m.z = 0;
  }
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
  return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
}

/*
** Convert a UTF-8 string to the UTF-16 encoding specified by parameter
** enc. A pointer to the new string is returned, and the value of *pnOut
** is set to the length of the returned string in bytes. The call should
** arrange to call sqlite3DbFree() on the returned pointer when it is
** no longer required.
** 
** If a malloc failure occurs, NULL is returned and the db.mallocFailed
** flag set.
*/
#ifdef SQLITE_ENABLE_STAT2
char *sqlite3Utf8to16(sqlite3 *db, int enc, char *z, int n, int *pnOut){
  Mem m;
  memset(&m, 0, sizeof(m));
  m.db = db;
  sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC);
  if( sqlite3VdbeMemTranslate(&m, enc) ){
    assert( db->mallocFailed );
    return 0;
  }
  assert( m.z==m.zMalloc );
  *pnOut = m.n;
  return m.z;
}
#endif

/*
** pZ is a UTF-16 encoded unicode string at least nChar characters long.
** Return the number of bytes in the first nChar unicode characters
** in pZ.  nChar must be non-negative.
*/
int sqlite3Utf16ByteLen(const void *zIn, int nChar){
  int c;

Changes to src/vdbe.c.

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3.  If the value in register P2
** is zero, then the result is NULL.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
**
** Compute the remainder after integer division of the value in
** register P1 by the value in register P2 and store the result in P3. 
** If the value in register P2 is zero the result is NULL.
** If either operand is NULL, the result is NULL.







|
|
|







1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3 (P3=P2/P1). If the value in 
** register P1 is zero, then the result is NULL. If either input is 
** NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
**
** Compute the remainder after integer division of the value in
** register P1 by the value in register P2 and store the result in P3. 
** If the value in register P2 is zero the result is NULL.
** If either operand is NULL, the result is NULL.

Changes to src/vdbemem.c.

995
996
997
998
999
1000
1001



1002
1003
1004
1005
1006
1007
1008
  sqlite3_value *pVal = 0;

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;




  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue);
    }else{







>
>
>







995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
  sqlite3_value *pVal = 0;

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;
  if( op==TK_REGISTER ){
    op = pExpr->iColumn;
  }

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue);
    }else{

Changes to src/where.c.

1885
1886
1887
1888
1889
1890
1891















































































































































































1892
1893
1894
1895
1896
1897
1898
....
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
....
2071
2072
2073
2074
2075
2076
2077

2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
....
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163

  /* Try to find a more efficient access pattern by using multiple indexes
  ** to optimize an OR expression within the WHERE clause. 
  */
  bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
















































































































































































/*
** Find the query plan for accessing a particular table.  Write the
** best query plan and its cost into the WhereCost object supplied as the
** last parameter.
**
** The lowest cost plan wins.  The cost is an estimate of the amount of
................................................................................
    **
    **             SELECT a, b    FROM tbl WHERE a = 1;
    **             SELECT a, b, c FROM tbl WHERE a = 1;
    */
    int nEq;
    int bInEst = 0;
    int nInMul = 1;
    int nBound = 1;
    int bSort = 0;
    int bLookup = 0;

    /* Determine the values of nEq and nInMul */
    for(nEq=0; nEq<pProbe->nColumn; nEq++){
      WhereTerm *pTerm;           /* A single term of the WHERE clause */
      int j = pProbe->aiColumn[nEq];
................................................................................

    /* Determine the value of nBound. */
    if( nEq<pProbe->nColumn ){
      int j = pProbe->aiColumn[nEq];
      if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
        WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
        WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);

        if( pTop ){
          wsFlags |= WHERE_TOP_LIMIT;
          nBound *= 3;
          used |= pTop->prereqRight;
        }
        if( pBtm ){
          wsFlags |= WHERE_BTM_LIMIT;
          nBound *= 3;
          used |= pBtm->prereqRight;
        }
        wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
      }
    }else if( pProbe->onError!=OE_None ){
      testcase( wsFlags & WHERE_COLUMN_IN );
      testcase( wsFlags & WHERE_COLUMN_NULL );
................................................................................
    ** works well in practice and causes the test suite to pass.  */
    nRow = (double)(aiRowEst[nEq] * nInMul);
    if( bInEst && nRow*2>aiRowEst[0] ){
      nRow = aiRowEst[0]/2;
      nInMul = nRow / aiRowEst[nEq];
    }
    cost = nRow + nInMul*estLog(aiRowEst[0]);
    nRow /= nBound;
    cost /= nBound;
    if( bSort ){
      cost += cost*estLog(cost);
    }
    if( pIdx && bLookup==0 ){
      cost /= 2;
    }
#endif







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







>


<




<







 







|
|







1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
....
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
....
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255

2256
2257
2258
2259

2260
2261
2262
2263
2264
2265
2266
....
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337

  /* Try to find a more efficient access pattern by using multiple indexes
  ** to optimize an OR expression within the WHERE clause. 
  */
  bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** Argument pIdx is a pointer to an index structure that has an array of
** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
** stored in Index.aSample. The domain of values stored in said column
** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions.
** Region 0 contains all values smaller than the first sample value. Region
** 1 contains values larger than or equal to the value of the first sample,
** but smaller than the value of the second. And so on.
**
** If successful, this function determines which of the regions value 
** pVal lies in, sets *piRegion to the region index and returns SQLITE_OK.
** Or, if an OOM occurs while converting text values between encodings,
** SQLITE_NOMEM is returned.
*/
#ifdef SQLITE_ENABLE_STAT2
static int whereRangeRegion(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  sqlite3_value *pVal,        /* Value to consider */
  int *piRegion               /* OUT: Region of domain in which value lies */
){
  if( pVal ){
    IndexSample *aSample = pIdx->aSample;
    int i = 0;
    int eType = sqlite3_value_type(pVal);

    if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
      double r = sqlite3_value_double(pVal);
      for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
        if( aSample[i].eType==SQLITE_NULL ) continue;
        if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break;
      }
    }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
      sqlite3 *db = pParse->db;
      CollSeq *pColl;
      const u8 *z;
      int n;
      if( eType==SQLITE_BLOB ){
        z = (const u8 *)sqlite3_value_blob(pVal);
        pColl = db->pDfltColl;
        assert( pColl->enc==SQLITE_UTF8 );
      }else{
        pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, *pIdx->azColl, 0);
        if( sqlite3CheckCollSeq(pParse, pColl) ){
          return SQLITE_ERROR;
        }
        z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
        if( !z ){
          return SQLITE_NOMEM;
        }
        assert( z && pColl && pColl->xCmp );
      }
      n = sqlite3ValueBytes(pVal, pColl->enc);

      for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
        int r;
        int eSampletype = aSample[i].eType;
        if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
        if( (eSampletype!=eType) ) break;
        if( pColl->enc==SQLITE_UTF8 ){
          r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
        }else{
          int nSample;
          char *zSample = sqlite3Utf8to16(
              db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
          );
          if( !zSample ){
            assert( db->mallocFailed );
            return SQLITE_NOMEM;
          }
          r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
          sqlite3DbFree(db, zSample);
        }
        if( r>0 ) break;
      }
    }

    *piRegion = i;
  }
  return SQLITE_OK;
}
#endif   /* #ifdef SQLITE_ENABLE_STAT2 */

/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**                    |_____|   |_____|
**                       |         |
**                     pLower    pUpper
**
** If the upper or lower bound is not present, then NULL should be passed in
** place of a WhereTerm.
**
** The nEq parameter is passed the index of the index column subject to the
** range constraint. Or, equivalently, the number of equality constraints
** optimized by the proposed index scan. For example, assuming index p is
** on t1(a, b), and the SQL query is:
**
**   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq should be passed the value 1 (as the range restricted column,
** b, is the second left-most column of the index). Or, if the query is:
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq should be passed 0.
**
** The returned value is an integer between 1 and 9, inclusive. A return
** value of 1 indicates that the proposed range scan is expected to visit
** approximately 1/9 (11%) of the rows selected by the nEq equality constraints
** (if any). A return value of 9 indicates that it is expected that the
** range scan will visit 9/9 (100%) of the rows selected by the equality
** constraints.
*/
static int whereRangeScanEst(
  Parse *pParse,
  Index *p, 
  int nEq, 
  WhereTerm *pLower, 
  WhereTerm *pUpper,
  int *piEst                      /* OUT: Return value */
){
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_STAT2
  sqlite3 *db = pParse->db;
  sqlite3_value *pLowerVal = 0;
  sqlite3_value *pUpperVal = 0;

  if( nEq==0 && p->aSample ){
    int iEst;
    int iUpper = SQLITE_INDEX_SAMPLES;
    int iLower = 0;
    u8 aff = p->pTable->aCol[0].affinity;
    if( pLower ){
      Expr *pExpr = pLower->pExpr->pRight;
      rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pLowerVal);
      if( !pLowerVal ) goto fallback;
    }
    if( pUpper ){
      Expr *pExpr = pUpper->pExpr->pRight;
      rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pUpperVal);
      if( !pUpperVal ){
        sqlite3ValueFree(pLowerVal);
        goto fallback;
      }
    }

    rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
    if( rc==SQLITE_OK ){
      rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
    }

    iEst = iUpper - iLower;
    if( iEst>=SQLITE_INDEX_SAMPLES ) iEst = SQLITE_INDEX_SAMPLES-1;
    else if( iEst<1 ) iEst = 1;

    sqlite3ValueFree(pLowerVal);
    sqlite3ValueFree(pUpperVal);
    *piEst = iEst;
    return rc;
  }
fallback:
#endif
  assert( pLower || pUpper );
  *piEst = (SQLITE_INDEX_SAMPLES-1) / ((pLower&&pUpper)?9:3);
  return rc;
}


/*
** Find the query plan for accessing a particular table.  Write the
** best query plan and its cost into the WhereCost object supplied as the
** last parameter.
**
** The lowest cost plan wins.  The cost is an estimate of the amount of
................................................................................
    **
    **             SELECT a, b    FROM tbl WHERE a = 1;
    **             SELECT a, b, c FROM tbl WHERE a = 1;
    */
    int nEq;
    int bInEst = 0;
    int nInMul = 1;
    int nBound = 9;
    int bSort = 0;
    int bLookup = 0;

    /* Determine the values of nEq and nInMul */
    for(nEq=0; nEq<pProbe->nColumn; nEq++){
      WhereTerm *pTerm;           /* A single term of the WHERE clause */
      int j = pProbe->aiColumn[nEq];
................................................................................

    /* Determine the value of nBound. */
    if( nEq<pProbe->nColumn ){
      int j = pProbe->aiColumn[nEq];
      if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
        WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
        WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
        whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound);
        if( pTop ){
          wsFlags |= WHERE_TOP_LIMIT;

          used |= pTop->prereqRight;
        }
        if( pBtm ){
          wsFlags |= WHERE_BTM_LIMIT;

          used |= pBtm->prereqRight;
        }
        wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
      }
    }else if( pProbe->onError!=OE_None ){
      testcase( wsFlags & WHERE_COLUMN_IN );
      testcase( wsFlags & WHERE_COLUMN_NULL );
................................................................................
    ** works well in practice and causes the test suite to pass.  */
    nRow = (double)(aiRowEst[nEq] * nInMul);
    if( bInEst && nRow*2>aiRowEst[0] ){
      nRow = aiRowEst[0]/2;
      nInMul = nRow / aiRowEst[nEq];
    }
    cost = nRow + nInMul*estLog(aiRowEst[0]);
    nRow = nRow * (double)nBound / 9.0;
    cost = cost * (double)nBound / 9.0;
    if( bSort ){
      cost += cost*estLog(cost);
    }
    if( pIdx && bLookup==0 ){
      cost /= 2;
    }
#endif

Added test/analyze2.test.















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# 2009 August 06
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements regression tests for SQLite library. This file 
# implements tests for the extra functionality provided by the ANALYZE 
# command when the library is compiled with SQLITE_ENABLE_STAT2 defined.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !stat2 {
  finish_test
  return
}

#--------------------------------------------------------------------
# Test organization:
#
# analyze2-1.*: Tests to verify that ANALYZE creates and populates the
#               sqlite_stat2 table as expected.
#
# analyze2-2.*: Test that when a table has two indexes on it and either
#               index may be used for the scan, the index suggested by
#               the contents of sqlite_stat2 table is prefered.
# 
# analyze2-3.*: Similar to the previous block of tests, but using tables
#               that contain a mixture of NULL, numeric, text and blob
#               values.
#
# analyze2-4.*: Check that when an indexed column uses a collation other
#               than BINARY, the collation is taken into account when
#               using the contents of sqlite_stat2 to estimate the cost
#               of a range scan.
#
# analyze2-5.*: Check that collation sequences are used as described above
#               even when the only available version of the collation 
#               function require UTF-16 encoded arguments.
#
# analyze2-6.*: Check that the library behaves correctly when one of the
#               sqlite_stat2 or sqlite_stat1 tables are missing.
#
# analyze2-7.*: Check that in a shared-schema situation, nothing goes
#               wrong if sqlite_stat2 data is read by one connection,
#               and freed by another.
# 

proc eqp {sql {db db}} {
  uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db
}

do_test analyze2-1.1 {
  execsql { CREATE TABLE t1(x PRIMARY KEY) }
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t1 VALUES($i) }
  }
  execsql { 
    ANALYZE;
    SELECT * FROM sqlite_stat2;
  }
} [list t1 sqlite_autoindex_t1_1 0 0   \
        t1 sqlite_autoindex_t1_1 1 111 \
        t1 sqlite_autoindex_t1_1 2 222 \
        t1 sqlite_autoindex_t1_1 3 333 \
        t1 sqlite_autoindex_t1_1 4 444 \
        t1 sqlite_autoindex_t1_1 5 555 \
        t1 sqlite_autoindex_t1_1 6 666 \
        t1 sqlite_autoindex_t1_1 7 777 \
        t1 sqlite_autoindex_t1_1 8 888 \
        t1 sqlite_autoindex_t1_1 9 999 \
]
do_test analyze2-1.2 {
  execsql {
    DELETE FROM t1 WHERe x>9;
    ANALYZE;
    SELECT tbl, idx, group_concat(sample, ' ') FROM sqlite_stat2;
  }
} {t1 sqlite_autoindex_t1_1 {0 1 2 3 4 5 6 7 8 9}}
do_test analyze2-1.3 {
  execsql {
    DELETE FROM t1 WHERE x>5;
    ANALYZE;
    SELECT * FROM sqlite_stat2;
  }
} {}
do_test analyze2-1.4 {
  execsql {
    DELETE FROM t1;
    ANALYZE;
    SELECT * FROM sqlite_stat2;
  }
} {}


do_test analyze2-2.1 {
  execsql { 
    BEGIN;
    DROP TABLE t1;
    CREATE TABLE t1(x, y);
    CREATE INDEX t1_x ON t1(x);
    CREATE INDEX t1_y ON t1(y);
  }
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t1 VALUES($i, $i) }
  }
  execsql COMMIT
  execsql ANALYZE
} {}
do_test analyze2-2.2 {
  eqp "SELECT * FROM t1 WHERE x>500 AND y>700"
} {0 0 {TABLE t1 WITH INDEX t1_y}}
do_test analyze2-2.3 {
  eqp "SELECT * FROM t1 WHERE x>700 AND y>500"
} {0 0 {TABLE t1 WITH INDEX t1_x}}
do_test analyze2-2.3 {
  eqp "SELECT * FROM t1 WHERE y>700 AND x>500"
} {0 0 {TABLE t1 WITH INDEX t1_y}}
do_test analyze2-2.4 {
  eqp "SELECT * FROM t1 WHERE y>500 AND x>700"
} {0 0 {TABLE t1 WITH INDEX t1_x}}
do_test analyze2-2.5 {
  eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 200 AND y BETWEEN 400 AND 700"
} {0 0 {TABLE t1 WITH INDEX t1_x}}
do_test analyze2-2.6 {
  eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 500 AND y BETWEEN 400 AND 700"
} {0 0 {TABLE t1 WITH INDEX t1_y}}
do_test analyze2-2.7 {
  eqp "SELECT * FROM t1 WHERE x BETWEEN -400 AND -300 AND y BETWEEN 100 AND 300"
} {0 0 {TABLE t1 WITH INDEX t1_x}}
do_test analyze2-2.8 {
  eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 300 AND y BETWEEN -400 AND -300"
} {0 0 {TABLE t1 WITH INDEX t1_y}}
do_test analyze2-2.9 {
  eqp "SELECT * FROM t1 WHERE x BETWEEN 500 AND 100 AND y BETWEEN 100 AND 300"
} {0 0 {TABLE t1 WITH INDEX t1_x}}
do_test analyze2-2.10 {
  eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 300 AND y BETWEEN 500 AND 100"
} {0 0 {TABLE t1 WITH INDEX t1_y}}

do_test analyze2-3.1 {
  set alphabet [list a b c d e f g h i j]
  execsql BEGIN
  for {set i 0} {$i < 1000} {incr i} {
    set str    [lindex $alphabet [expr ($i/100)%10]] 
    append str [lindex $alphabet [expr ($i/ 10)%10]]
    append str [lindex $alphabet [expr ($i/  1)%10]]
    execsql { INSERT INTO t1 VALUES($str, $str) }
  }
  execsql COMMIT
  execsql ANALYZE
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat2 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x {0 222 444 666 888 bba ddc ffe hhg jjj}}
do_test analyze2-3.2 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat2 
    WHERE idx = 't1_y' 
    GROUP BY tbl,idx
  }
} {t1 t1_y {0 222 444 666 888 bba ddc ffe hhg jjj}}

do_test analyze2-3.3 {
  eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 500 AND y BETWEEN 'a' AND 'b'"
} {0 0 {TABLE t1 WITH INDEX t1_y}}
do_test analyze2-3.4 {
  eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 400 AND y BETWEEN 'a' AND 'h'"
} {0 0 {TABLE t1 WITH INDEX t1_x}}
do_test analyze2-3.5 {
  eqp "SELECT * FROM t1 WHERE x<'a' AND y>'h'"
} {0 0 {TABLE t1 WITH INDEX t1_y}}
do_test analyze2-3.6 {
  eqp "SELECT * FROM t1 WHERE x<444 AND y>'h'"
} {0 0 {TABLE t1 WITH INDEX t1_y}}
do_test analyze2-3.7 {
  eqp "SELECT * FROM t1 WHERE x<221 AND y>'h'"
} {0 0 {TABLE t1 WITH INDEX t1_x}}

do_test analyze2-4.1 {
  execsql { CREATE TABLE t3(a COLLATE nocase, b) }
  execsql { CREATE INDEX t3a ON t3(a) }
  execsql { CREATE INDEX t3b ON t3(b) }
  set alphabet [list A b C d E f G h I j]
  execsql BEGIN
  for {set i 0} {$i < 1000} {incr i} {
    set str    [lindex $alphabet [expr ($i/100)%10]] 
    append str [lindex $alphabet [expr ($i/ 10)%10]]
    append str [lindex $alphabet [expr ($i/  1)%10]]
    execsql { INSERT INTO t3 VALUES($str, $str) }
  }
  execsql COMMIT
  execsql ANALYZE
} {}
do_test analyze2-4.2 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat2 
    WHERE idx = 't3a' 
    GROUP BY tbl,idx
  }
} {t3 t3a {AAA bbb CCC ddd EEE fff GGG hhh III jjj}}
do_test analyze2-4.3 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat2 
    WHERE idx = 't3b' 
    GROUP BY tbl,idx
  }
} {t3 t3b {AAA CCC EEE GGG III bbb ddd fff hhh jjj}}

do_test analyze2-4.4 {
  eqp "SELECT * FROM t3 WHERE a > 'A' AND a < 'C' AND b > 'A' AND b < 'C'"
} {0 0 {TABLE t3 WITH INDEX t3b}}
do_test analyze2-4.5 {
  eqp "SELECT * FROM t3 WHERE a > 'A' AND a < 'c' AND b > 'A' AND b < 'c'"
} {0 0 {TABLE t3 WITH INDEX t3a}}

proc test_collate {enc lhs rhs} {
  # puts $enc
  return [string compare $lhs $rhs]
}
do_test analyze2-5.1 {
  add_test_collate db 0 0 1
  execsql { CREATE TABLE t4(x COLLATE test_collate) }
  execsql { CREATE INDEX t4x ON t4(x) }
  set alphabet [list a b c d e f g h i j]
  execsql BEGIN
  for {set i 0} {$i < 1000} {incr i} {
    set str    [lindex $alphabet [expr ($i/100)%10]] 
    append str [lindex $alphabet [expr ($i/ 10)%10]]
    append str [lindex $alphabet [expr ($i/  1)%10]]
    execsql { INSERT INTO t4 VALUES($str) }
  }
  execsql COMMIT
  execsql ANALYZE
} {}
do_test analyze2-5.2 {
  execsql { 
    SELECT tbl,idx,group_concat(sample,' ') 
    FROM sqlite_stat2 
    WHERE tbl = 't4' 
    GROUP BY tbl,idx
  }
} {t4 t4x {aaa bbb ccc ddd eee fff ggg hhh iii jjj}}
do_test analyze2-5.3 {
  eqp "SELECT * FROM t4 WHERE x>'ccc'"
} {0 0 {TABLE t4 WITH INDEX t4x}}
do_test analyze2-5.4 {
  eqp "SELECT * FROM t4 AS t41, t4 AS t42 WHERE t41.x>'ccc' AND t42.x>'ggg'"
} {0 1 {TABLE t4 AS t42 WITH INDEX t4x} 1 0 {TABLE t4 AS t41 WITH INDEX t4x}}
do_test analyze2-5.5 {
  eqp "SELECT * FROM t4 AS t41, t4 AS t42 WHERE t41.x>'ddd' AND t42.x>'ccc'"
} {0 0 {TABLE t4 AS t41 WITH INDEX t4x} 1 1 {TABLE t4 AS t42 WITH INDEX t4x}}

#--------------------------------------------------------------------
# These tests, analyze2-6.*, verify that the library behaves correctly
# when one of the sqlite_stat1 and sqlite_stat2 tables is missing.
#
# If the sqlite_stat1 table is not present, then the sqlite_stat2
# table is not read. However, if it is the sqlite_stat2 table that
# is missing, the data in the sqlite_stat1 table is still used.
#
# Tests analyze2-6.1.* test the libary when the sqlite_stat2 table
# is missing. Tests analyze2-6.2.* test the library when sqlite_stat1
# is not present.
#
do_test analyze2-6.0 {
  execsql {
    DROP TABLE t4;
    CREATE TABLE t5(a, b); CREATE INDEX t5i ON t5(a, b);
    CREATE TABLE t6(a, b); CREATE INDEX t6i ON t6(a, b);
  }
  for {set ii 0} {$ii < 20} {incr ii} {
    execsql {
      INSERT INTO t5 VALUES($ii, $ii);
      INSERT INTO t6 VALUES($ii/10, $ii/10);
    }
  }
  execsql { 
    CREATE TABLE master AS 
    SELECT * FROM sqlite_master WHERE name LIKE 'sqlite_stat%' 
  }
} {}

do_test analyze2-6.1.1 {
  eqp {SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
       t5.a = 1 AND
       t6.a = 1 AND t6.b = 1
  }
} {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}}
do_test analyze2-6.1.2 {
  db cache flush
  execsql ANALYZE
  eqp {SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
       t5.a = 1 AND
       t6.a = 1 AND t6.b = 1
  }
} {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}}
do_test analyze2-6.1.3 {
  sqlite3 db test.db
  eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
       t5.a = 1 AND
       t6.a = 1 AND t6.b = 1
  }
} {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}}
do_test analyze2-6.1.4 {
  execsql { 
    PRAGMA writable_schema = 1;
    DELETE FROM sqlite_master WHERE tbl_name = 'sqlite_stat2';
  }
  sqlite3 db test.db
  eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
       t5.a = 1 AND
       t6.a = 1 AND t6.b = 1
  }
} {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}}
do_test analyze2-6.1.5 {
  execsql { 
    PRAGMA writable_schema = 1;
    DELETE FROM sqlite_master WHERE tbl_name = 'sqlite_stat1';
  }
  sqlite3 db test.db
  eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
       t5.a = 1 AND
       t6.a = 1 AND t6.b = 1
  }
} {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}}
do_test analyze2-6.1.6 {
  execsql { 
    PRAGMA writable_schema = 1;
    INSERT INTO sqlite_master SELECT * FROM master;
  }
  sqlite3 db test.db
  eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
       t5.a = 1 AND
       t6.a = 1 AND t6.b = 1
  }
} {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}}

do_test analyze2-6.2.1 {
  execsql { 
    DELETE FROM sqlite_stat1;
    DELETE FROM sqlite_stat2;
  }
  sqlite3 db test.db
  eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
        t5.a>1 AND t5.a<15 AND
        t6.a>1
  }
} {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}}
do_test analyze2-6.2.2 {
  db cache flush
  execsql ANALYZE
  eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
        t5.a>1 AND t5.a<15 AND
        t6.a>1
  }
} {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}}
do_test analyze2-6.2.3 {
  sqlite3 db test.db
  eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
        t5.a>1 AND t5.a<15 AND
        t6.a>1
  }
} {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}}
do_test analyze2-6.2.4 {
  execsql { 
    PRAGMA writable_schema = 1;
    DELETE FROM sqlite_master WHERE tbl_name = 'sqlite_stat1';
  }
  sqlite3 db test.db
  eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
        t5.a>1 AND t5.a<15 AND
        t6.a>1
  }
} {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}}
do_test analyze2-6.2.5 {
  execsql { 
    PRAGMA writable_schema = 1;
    DELETE FROM sqlite_master WHERE tbl_name = 'sqlite_stat2';
  }
  sqlite3 db test.db
  eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
        t5.a>1 AND t5.a<15 AND
        t6.a>1
  }
} {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}}
do_test analyze2-6.2.6 {
  execsql { 
    PRAGMA writable_schema = 1;
    INSERT INTO sqlite_master SELECT * FROM master;
  }
  sqlite3 db test.db
  execsql ANALYZE
  eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
        t5.a>1 AND t5.a<15 AND
        t6.a>1
  }
} {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}}

#--------------------------------------------------------------------
# These tests, analyze2-7.*, test that the sqlite_stat2 functionality
# works in shared-cache mode. Note that these tests reuse the database
# created for the analyze2-6.* tests.
#
ifcapable shared_cache {
  db close
  set ::enable_shared_cache [sqlite3_enable_shared_cache 1]

  proc incr_schema_cookie {zDb} {
    foreach iOffset {24 40} {
      set cookie [hexio_get_int [hexio_read $zDb $iOffset 4]]
      incr cookie
      hexio_write $zDb $iOffset [hexio_render_int32 $cookie]
    }
  }

  do_test analyze2-7.1 {
    sqlite3 db1 test.db
    sqlite3 db2 test.db
    db1 cache size 0
    db2 cache size 0
    execsql { SELECT count(*) FROM t5 } db1
  } {20}
  do_test analyze2-7.2 {
    incr_schema_cookie test.db
    execsql { SELECT count(*) FROM t5 } db2
  } {20}
  do_test analyze2-7.3 {
    incr_schema_cookie test.db
    execsql { SELECT count(*) FROM t5 } db1
  } {20}
  do_test analyze2-7.4 {
    incr_schema_cookie test.db
    execsql { SELECT count(*) FROM t5 } db2
  } {20}

  do_test analyze2-7.5 {
    eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
          t5.a>1 AND t5.a<15 AND
          t6.a>1
    } db1
  } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}}
  do_test analyze2-7.6 {
    incr_schema_cookie test.db
    execsql { SELECT * FROM sqlite_master } db2
    eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
          t5.a>1 AND t5.a<15 AND
          t6.a>1
    } db2
  } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}}
  do_test analyze2-7.7 {
    incr_schema_cookie test.db
    execsql { SELECT * FROM sqlite_master } db1
    eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
          t5.a>1 AND t5.a<15 AND
          t6.a>1
    } db1
  } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}}

  do_test analyze2-7.8 {
    execsql { DELETE FROM sqlite_stat2 } db2
    execsql { SELECT * FROM sqlite_master } db1
    eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
          t5.a>1 AND t5.a<15 AND
          t6.a>1
    } db1
  } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}}
  do_test analyze2-7.9 {
    execsql { SELECT * FROM sqlite_master } db2
    eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
          t5.a>1 AND t5.a<15 AND
          t6.a>1
    } db2
  } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}}

  do_test analyze2-7.10 {
    incr_schema_cookie test.db
    execsql { SELECT * FROM sqlite_master } db1
    eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND 
          t5.a>1 AND t5.a<15 AND
          t6.a>1
    } db1
  } {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}}

  db1 close
  db2 close
  sqlite3_enable_shared_cache $::enable_shared_cache
}

finish_test

Changes to test/auth.test.

2304
2305
2306
2307
2308
2309
2310





2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
      DROP TABLE tx;
    }
    ifcapable view {
      execsql {
        DROP TABLE v1chng;
      }
    }





  }
  do_test auth-5.2 {
    execsql {
      SELECT name FROM (
        SELECT * FROM sqlite_master UNION ALL SELECT * FROM sqlite_temp_master)
      WHERE type='table'
      ORDER BY name
    }
  } {sqlite_stat1 t1 t2 t3 t4}
}

# Ticket #3944
#
ifcapable trigger {
  do_test auth-5.3.1 {
    execsql {







>
>
>
>
>








|







2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
      DROP TABLE tx;
    }
    ifcapable view {
      execsql {
        DROP TABLE v1chng;
      }
    }
  }
  ifcapable stat2 {
    set stat2 "sqlite_stat2 "
  } else {
    set stat2 ""
  }
  do_test auth-5.2 {
    execsql {
      SELECT name FROM (
        SELECT * FROM sqlite_master UNION ALL SELECT * FROM sqlite_temp_master)
      WHERE type='table'
      ORDER BY name
    }
  } "sqlite_stat1 ${stat2}t1 t2 t3 t4"
}

# Ticket #3944
#
ifcapable trigger {
  do_test auth-5.3.1 {
    execsql {

Changes to test/malloc.test.

861
862
863
864
865
866
867



























868
869
870
871
872
873
874
875
876
    do_test malloc-36.$zRepeat.${::n}.unlocked {
      execsql {INSERT INTO t1 VALUES(3, 4)} db2
    } {}
    db2 close
  }
  catch { db2 close }
}




























# Ensure that no file descriptors were leaked.
do_test malloc-99.X {
  catch {db close}
  set sqlite_open_file_count
} {0}

puts open-file-count=$sqlite_open_file_count
finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
    do_test malloc-36.$zRepeat.${::n}.unlocked {
      execsql {INSERT INTO t1 VALUES(3, 4)} db2
    } {}
    db2 close
  }
  catch { db2 close }
}

ifcapable stat2 {
  do_malloc_test 38 -tclprep {
    add_test_collate db 0 0 1
    execsql {
      ANALYZE;
      CREATE TABLE t4(x COLLATE test_collate);
      CREATE INDEX t4x ON t4(x);
      INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 0, 'aaa');
      INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 1, 'aaa');
      INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 2, 'aaa');
      INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 3, 'aaa');
      INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 4, 'aaa');
      INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 5, 'aaa');
      INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 6, 'aaa');
      INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 7, 'aaa');
      INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 8, 'aaa');
      INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 9, 'aaa');
    }
    db close
    sqlite3 db test.db
    sqlite3_db_config_lookaside db 0 0 0
    add_test_collate db 0 0 1
  } -sqlbody {
    SELECT * FROM t4 AS t41, t4 AS t42 WHERE t41.x>'ddd' AND t42.x>'ccc'
  }
}

# Ensure that no file descriptors were leaked.
do_test malloc-99.X {
  catch {db close}
  set sqlite_open_file_count
} {0}

puts open-file-count=$sqlite_open_file_count
finish_test