/ Check-in [7190d79b]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge trunk changes, including fixes for compiler warnings in fts5 code, with this branch.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | fts5-btree-index
Files: files | file ages | folders
SHA1: 7190d79ba452ceb1af77ce1375278b097816a8be
User & Date: dan 2015-07-16 20:24:42
Context
2015-07-27
10:46
Merge latest trunk changes with this branch. check-in: 5ec933c2 user: dan tags: fts5-btree-index
2015-07-16
20:24
Merge trunk changes, including fixes for compiler warnings in fts5 code, with this branch. check-in: 7190d79b user: dan tags: fts5-btree-index
20:17
Fix compiler warnings in fts5 code. check-in: e9bf275c user: dan tags: trunk
2015-07-15
19:46
Use a WITHOUT ROWID table to index fts5 btree leaves. This is faster to query and only slightly larger than storing btree nodes within an intkey table. check-in: 862418e3 user: dan tags: fts5-btree-index
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ext/fts5/fts5_expr.c.

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
...
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
** A phrase. One or more terms that must appear in a contiguous sequence
** within a document for it to match.
*/
struct Fts5ExprPhrase {
  Fts5ExprNode *pNode;            /* FTS5_STRING node this phrase is part of */
  Fts5Buffer poslist;             /* Current position list */
  int nTerm;                      /* Number of entries in aTerm[] */
  Fts5ExprTerm aTerm[0];          /* Terms that make up this phrase */
};

/*
** If a NEAR() clump may only match a specific set of columns, then
** Fts5ExprNearset.pColset points to an object of the following type.
** Each entry in the aiCol[] array
*/
................................................................................
** One or more phrases that must appear within a certain token distance of
** each other within each matching document.
*/
struct Fts5ExprNearset {
  int nNear;                      /* NEAR parameter */
  Fts5ExprColset *pColset;        /* Columns to search (NULL -> all columns) */
  int nPhrase;                    /* Number of entries in aPhrase[] array */
  Fts5ExprPhrase *apPhrase[0];    /* Array of phrase pointers */
};


/*
** Parse context.
*/
struct Fts5Parse {







|







 







|







79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
...
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
** A phrase. One or more terms that must appear in a contiguous sequence
** within a document for it to match.
*/
struct Fts5ExprPhrase {
  Fts5ExprNode *pNode;            /* FTS5_STRING node this phrase is part of */
  Fts5Buffer poslist;             /* Current position list */
  int nTerm;                      /* Number of entries in aTerm[] */
  Fts5ExprTerm aTerm[1];          /* Terms that make up this phrase */
};

/*
** If a NEAR() clump may only match a specific set of columns, then
** Fts5ExprNearset.pColset points to an object of the following type.
** Each entry in the aiCol[] array
*/
................................................................................
** One or more phrases that must appear within a certain token distance of
** each other within each matching document.
*/
struct Fts5ExprNearset {
  int nNear;                      /* NEAR parameter */
  Fts5ExprColset *pColset;        /* Columns to search (NULL -> all columns) */
  int nPhrase;                    /* Number of entries in aPhrase[] array */
  Fts5ExprPhrase *apPhrase[1];    /* Array of phrase pointers */
};


/*
** Parse context.
*/
struct Fts5Parse {

Changes to ext/fts5/fts5_hash.c.

62
63
64
65
66
67
68
69
70







71
72
73
74
75
76
77
...
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
...
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
...
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
  int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
  int nData;                      /* Total bytes of data (incl. structure) */
  u8 bDel;                        /* Set delete-flag @ iSzPoslist */

  int iCol;                       /* Column of last value written */
  int iPos;                       /* Position of last value written */
  i64 iRowid;                     /* Rowid of last value written */
  char zKey[0];                   /* Nul-terminated entry key */
};








/*
** Allocate a new hash table.
*/
int sqlite3Fts5HashNew(Fts5Hash **ppNew, int *pnByte){
  int rc = SQLITE_OK;
  Fts5Hash *pNew;
................................................................................
    ){
      break;
    }
  }

  /* If an existing hash entry cannot be found, create a new one. */
  if( p==0 ){
    int nByte = sizeof(Fts5HashEntry) + (nToken+1) + 1 + 64;
    if( nByte<128 ) nByte = 128;

    if( (pHash->nEntry*2)>=pHash->nSlot ){
      int rc = fts5HashResize(pHash);
      if( rc!=SQLITE_OK ) return rc;
      iHash = fts5HashKey2(pHash->nSlot, bByte, pToken, nToken);
    }

    p = (Fts5HashEntry*)sqlite3_malloc(nByte);
    if( !p ) return SQLITE_NOMEM;
    memset(p, 0, sizeof(Fts5HashEntry));
    p->nAlloc = nByte;
    p->zKey[0] = bByte;
    memcpy(&p->zKey[1], pToken, nToken);
    assert( iHash==fts5HashKey(pHash->nSlot, p->zKey, nToken+1) );
    p->zKey[nToken+1] = '\0';
    p->nData = nToken+1 + 1 + sizeof(Fts5HashEntry);
    p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
    p->iSzPoslist = p->nData;
    p->nData += 1;
    p->iRowid = iRowid;
    p->pHashNext = pHash->aSlot[iHash];
    pHash->aSlot[iHash] = p;
    pHash->nEntry++;
................................................................................
  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( memcmp(p->zKey, pTerm, nTerm)==0 && p->zKey[nTerm]==0 ) break;
  }

  if( p ){
    fts5HashAddPoslistSize(p);
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (sizeof(*p) + nTerm + 1);
  }else{
    *ppDoclist = 0;
    *pnDoclist = 0;
  }

  return SQLITE_OK;
}
................................................................................
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    int nTerm = strlen(p->zKey);
    fts5HashAddPoslistSize(p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (sizeof(*p) + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
    *pnDoclist = 0;
  }
}








|

>
>
>
>
>
>
>







 







|










|





|







 







|







 







|







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
...
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
...
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
...
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
  int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
  int nData;                      /* Total bytes of data (incl. structure) */
  u8 bDel;                        /* Set delete-flag @ iSzPoslist */

  int iCol;                       /* Column of last value written */
  int iPos;                       /* Position of last value written */
  i64 iRowid;                     /* Rowid of last value written */
  char zKey[8];                   /* Nul-terminated entry key */
};

/*
** Size of Fts5HashEntry without the zKey[] array.
*/
#define FTS5_HASHENTRYSIZE (sizeof(Fts5HashEntry)-8)



/*
** Allocate a new hash table.
*/
int sqlite3Fts5HashNew(Fts5Hash **ppNew, int *pnByte){
  int rc = SQLITE_OK;
  Fts5Hash *pNew;
................................................................................
    ){
      break;
    }
  }

  /* If an existing hash entry cannot be found, create a new one. */
  if( p==0 ){
    int nByte = FTS5_HASHENTRYSIZE + (nToken+1) + 1 + 64;
    if( nByte<128 ) nByte = 128;

    if( (pHash->nEntry*2)>=pHash->nSlot ){
      int rc = fts5HashResize(pHash);
      if( rc!=SQLITE_OK ) return rc;
      iHash = fts5HashKey2(pHash->nSlot, bByte, pToken, nToken);
    }

    p = (Fts5HashEntry*)sqlite3_malloc(nByte);
    if( !p ) return SQLITE_NOMEM;
    memset(p, 0, FTS5_HASHENTRYSIZE);
    p->nAlloc = nByte;
    p->zKey[0] = bByte;
    memcpy(&p->zKey[1], pToken, nToken);
    assert( iHash==fts5HashKey(pHash->nSlot, p->zKey, nToken+1) );
    p->zKey[nToken+1] = '\0';
    p->nData = nToken+1 + 1 + FTS5_HASHENTRYSIZE;
    p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
    p->iSzPoslist = p->nData;
    p->nData += 1;
    p->iRowid = iRowid;
    p->pHashNext = pHash->aSlot[iHash];
    pHash->aSlot[iHash] = p;
    pHash->nEntry++;
................................................................................
  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( memcmp(p->zKey, pTerm, nTerm)==0 && p->zKey[nTerm]==0 ) break;
  }

  if( p ){
    fts5HashAddPoslistSize(p);
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *ppDoclist = 0;
    *pnDoclist = 0;
  }

  return SQLITE_OK;
}
................................................................................
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    int nTerm = strlen(p->zKey);
    fts5HashAddPoslistSize(p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
    *pnDoclist = 0;
  }
}

Changes to ext/fts5/fts5_index.c.

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
...
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
....
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
  Fts5StructureSegment *aSeg;     /* Array of segments. aSeg[0] is oldest. */
};
struct Fts5Structure {
  int nRef;                       /* Object reference count */
  u64 nWriteCounter;              /* Total leaves written to level 0 */
  int nSegment;                   /* Total segments in this structure */
  int nLevel;                     /* Number of levels in this index */
  Fts5StructureLevel aLevel[0];   /* Array of nLevel level objects */
};

/*
** An object of type Fts5SegWriter is used to write to segments.
*/
struct Fts5PageWriter {
  int pgno;                       /* Page number for this page */
................................................................................

  /* Read the total number of levels and segments from the start of the
  ** structure record.  */
  i += fts5GetVarint32(&pData[i], nLevel);
  i += fts5GetVarint32(&pData[i], nSegment);
  nByte = (
      sizeof(Fts5Structure) +                    /* Main structure */
      sizeof(Fts5StructureLevel) * (nLevel)      /* aLevel[] array */
  );
  pRet = (Fts5Structure*)sqlite3Fts5MallocZero(&rc, nByte);

  if( pRet ){
    pRet->nRef = 1;
    pRet->nLevel = nLevel;
    pRet->nSegment = nSegment;
................................................................................
** any currently existing segment. If a free segment id cannot be found,
** SQLITE_FULL is returned.
**
** If an error has already occurred, this function is a no-op. 0 is 
** returned in this case.
*/
static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){
  u32 iSegid = 0;

  if( p->rc==SQLITE_OK ){
    if( pStruct->nSegment>=FTS5_MAX_SEGMENT ){
      p->rc = SQLITE_FULL;
    }else{
      while( iSegid==0 ){
        int iLvl, iSeg;
        sqlite3_randomness(sizeof(u32), (void*)&iSegid);
        iSegid = (iSegid % ((1 << FTS5_DATA_ID_B) - 2)) + 1;
        assert( iSegid>0 && iSegid<=65535 );
        for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
          for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
            if( iSegid==pStruct->aLevel[iLvl].aSeg[iSeg].iSegid ){
              iSegid = 0;
            }
          }
        }
      }
    }
  }

  return (int)iSegid;
}

/*
** Discard all data currently cached in the hash-tables.
*/
static void fts5IndexDiscardData(Fts5Index *p){
  assert( p->pHash || p->nPendingData==0 );







|







 







|







 







|








|
<











|







366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
...
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
....
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084

3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
  Fts5StructureSegment *aSeg;     /* Array of segments. aSeg[0] is oldest. */
};
struct Fts5Structure {
  int nRef;                       /* Object reference count */
  u64 nWriteCounter;              /* Total leaves written to level 0 */
  int nSegment;                   /* Total segments in this structure */
  int nLevel;                     /* Number of levels in this index */
  Fts5StructureLevel aLevel[1];   /* Array of nLevel level objects */
};

/*
** An object of type Fts5SegWriter is used to write to segments.
*/
struct Fts5PageWriter {
  int pgno;                       /* Page number for this page */
................................................................................

  /* Read the total number of levels and segments from the start of the
  ** structure record.  */
  i += fts5GetVarint32(&pData[i], nLevel);
  i += fts5GetVarint32(&pData[i], nSegment);
  nByte = (
      sizeof(Fts5Structure) +                    /* Main structure */
      sizeof(Fts5StructureLevel) * (nLevel-1)    /* aLevel[] array */
  );
  pRet = (Fts5Structure*)sqlite3Fts5MallocZero(&rc, nByte);

  if( pRet ){
    pRet->nRef = 1;
    pRet->nLevel = nLevel;
    pRet->nSegment = nSegment;
................................................................................
** any currently existing segment. If a free segment id cannot be found,
** SQLITE_FULL is returned.
**
** If an error has already occurred, this function is a no-op. 0 is 
** returned in this case.
*/
static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){
  int iSegid = 0;

  if( p->rc==SQLITE_OK ){
    if( pStruct->nSegment>=FTS5_MAX_SEGMENT ){
      p->rc = SQLITE_FULL;
    }else{
      while( iSegid==0 ){
        int iLvl, iSeg;
        sqlite3_randomness(sizeof(u32), (void*)&iSegid);
        iSegid = iSegid & ((1 << FTS5_DATA_ID_B)-1);

        for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
          for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
            if( iSegid==pStruct->aLevel[iLvl].aSeg[iSeg].iSegid ){
              iSegid = 0;
            }
          }
        }
      }
    }
  }

  return iSegid;
}

/*
** Discard all data currently cached in the hash-tables.
*/
static void fts5IndexDiscardData(Fts5Index *p){
  assert( p->pHash || p->nPendingData==0 );

Changes to ext/fts5/fts5_main.c.

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
...
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
**   byte of the position list for the corresponding phrase.
*/
struct Fts5Sorter {
  sqlite3_stmt *pStmt;
  i64 iRowid;                     /* Current rowid */
  const u8 *aPoslist;             /* Position lists for current row */
  int nIdx;                       /* Number of entries in aIdx[] */
  int aIdx[0];                    /* Offsets into aPoslist for current row */
};


/*
** Virtual-table cursor object.
**
** iSpecial:
................................................................................
  int nByte;
  int rc = SQLITE_OK;
  char *zSql;
  const char *zRank = pCsr->zRank;
  const char *zRankArgs = pCsr->zRankArgs;
  
  nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  nByte = sizeof(Fts5Sorter) + sizeof(int) * nPhrase;
  pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
  if( pSorter==0 ) return SQLITE_NOMEM;
  memset(pSorter, 0, nByte);
  pSorter->nIdx = nPhrase;

  /* TODO: It would be better to have some system for reusing statement
  ** handles here, rather than preparing a new one for each query. But that







|







 







|







141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
...
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
**   byte of the position list for the corresponding phrase.
*/
struct Fts5Sorter {
  sqlite3_stmt *pStmt;
  i64 iRowid;                     /* Current rowid */
  const u8 *aPoslist;             /* Position lists for current row */
  int nIdx;                       /* Number of entries in aIdx[] */
  int aIdx[1];                    /* Offsets into aPoslist for current row */
};


/*
** Virtual-table cursor object.
**
** iSpecial:
................................................................................
  int nByte;
  int rc = SQLITE_OK;
  char *zSql;
  const char *zRank = pCsr->zRank;
  const char *zRankArgs = pCsr->zRankArgs;
  
  nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
  pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
  if( pSorter==0 ) return SQLITE_NOMEM;
  memset(pSorter, 0, nByte);
  pSorter->nIdx = nPhrase;

  /* TODO: It would be better to have some system for reusing statement
  ** handles here, rather than preparing a new one for each query. But that

Changes to src/pcache1.c.

187
188
189
190
191
192
193

194
195
196
197
198
199
200
...
254
255
256
257
258
259
260





































261
262
263
264
265
266
267
...
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
...
559
560
561
562
563
564
565
566

567
568
569
570
571
572
573




574
575
576
577
578
579
580
...
643
644
645
646
647
648
649








650
651
652
653
654
655
656
...
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
...
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
...
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
....
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
  /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
  ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
  ** fixed at sqlite3_initialize() time and do not require mutex protection.
  ** The nFreeSlot and pFree values do require mutex protection.
  */
  int isInit;                    /* True if initialized */
  int separateCache;             /* Use a new PGroup for each PCache */

  int szSlot;                    /* Size of each free slot */
  int nSlot;                     /* The number of pcache slots */
  int nReserve;                  /* Try to keep nFreeSlot above this */
  void *pStart, *pEnd;           /* Bounds of global page cache memory */
  /* Above requires no mutex.  Use mutex below for variable that follow. */
  sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
  PgFreeslot *pFree;             /* Free page blocks */
................................................................................
      p->pNext = pcache1.pFree;
      pcache1.pFree = p;
      pBuf = (void*)&((char*)pBuf)[sz];
    }
    pcache1.pEnd = pBuf;
  }
}






































/*
** Malloc function used within this file to allocate space from the buffer
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 
** such buffer exists or there is no space left in it, this function falls 
** back to sqlite3Malloc().
**
................................................................................
** Allocate a new page object initially associated with cache pCache.
*/
static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
  PgHdr1 *p = 0;
  void *pPg;

  assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
  if( pCache->pFree ){
    p = pCache->pFree;
    pCache->pFree = p->pNext;
    p->pNext = 0;
  }else{
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
    /* The group mutex must be released before pcache1Alloc() is called. This
    ** is because it might call sqlite3_release_memory(), which assumes that 
................................................................................
  if( freeFlag ) pcache1FreePage(pPage);
}

/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PGroup *pGroup){

  assert( sqlite3_mutex_held(pGroup->mutex) );
  while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
    PgHdr1 *p = pGroup->pLruTail;
    assert( p->pCache->pGroup==pGroup );
    assert( p->isPinned==0 );
    pcache1PinPage(p);
    pcache1RemoveFromHash(p, 1);




  }
}

/*
** Discard all pages from cache pCache with a page number (key value) 
** greater than or equal to iLimit. Any pinned pages that meet this 
** criteria are unpinned before they are discarded.
................................................................................

#if SQLITE_THREADSAFE
  if( sqlite3GlobalConfig.bCoreMutex ){
    pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
    pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
  }
#endif








  pcache1.grp.mxPinned = 10;
  pcache1.isInit = 1;
  return SQLITE_OK;
}

/*
** Implementation of the sqlite3_pcache.xShutdown method.
................................................................................
    pcache1ResizeHash(pCache);
    if( bPurgeable ){
      pCache->nMin = 10;
      pGroup->nMinPage += pCache->nMin;
      pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
    }
    pcache1LeaveMutex(pGroup);
    /* Try to initialize the local bulk pagecache line allocation if using
    ** separate caches and if nPage!=0 */
    if( pcache1.separateCache
     && sqlite3GlobalConfig.nPage!=0
     && sqlite3GlobalConfig.pPage==0
    ){
      int szBulk;
      char *zBulk;
      sqlite3BeginBenignMalloc();
      if( sqlite3GlobalConfig.nPage>0 ){
        szBulk = pCache->szAlloc * sqlite3GlobalConfig.nPage;
      }else{
        szBulk = -1024*sqlite3GlobalConfig.nPage;
      }
      zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
      sqlite3EndBenignMalloc();
      if( zBulk ){
        int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
        int i;
        for(i=0; i<nBulk; i++){
          PgHdr1 *pX = (PgHdr1*)&zBulk[szPage];
          pX->page.pBuf = zBulk;
          pX->page.pExtra = &pX[1];
          pX->isBulkLocal = 1;
          pX->pNext = pCache->pFree;
          pCache->pFree = pX;
          zBulk += pCache->szAlloc;
        }
      }
    }
    if( pCache->nHash==0 ){
      pcache1Destroy((sqlite3_pcache*)pCache);
      pCache = 0;
    }
  }
  return (sqlite3_pcache *)pCache;
}
................................................................................
  if( pCache->bPurgeable ){
    PGroup *pGroup = pCache->pGroup;
    pcache1EnterMutex(pGroup);
    pGroup->nMaxPage += (nMax - pCache->nMax);
    pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
    pCache->nMax = nMax;
    pCache->n90pct = pCache->nMax*9/10;
    pcache1EnforceMaxPage(pGroup);
    pcache1LeaveMutex(pGroup);
  }
}

/*
** Implementation of the sqlite3_pcache.xShrink method. 
**
................................................................................
  PCache1 *pCache = (PCache1*)p;
  if( pCache->bPurgeable ){
    PGroup *pGroup = pCache->pGroup;
    int savedMaxPage;
    pcache1EnterMutex(pGroup);
    savedMaxPage = pGroup->nMaxPage;
    pGroup->nMaxPage = 0;
    pcache1EnforceMaxPage(pGroup);
    pGroup->nMaxPage = savedMaxPage;
    pcache1LeaveMutex(pGroup);
  }
}

/*
** Implementation of the sqlite3_pcache.xPagecount method. 
................................................................................
  pcache1EnterMutex(pGroup);
  pcache1TruncateUnsafe(pCache, 0);
  assert( pGroup->nMaxPage >= pCache->nMax );
  pGroup->nMaxPage -= pCache->nMax;
  assert( pGroup->nMinPage >= pCache->nMin );
  pGroup->nMinPage -= pCache->nMin;
  pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
  pcache1EnforceMaxPage(pGroup);
  pcache1LeaveMutex(pGroup);
  sqlite3_free(pCache->pBulk);
  sqlite3_free(pCache->apHash);
  sqlite3_free(pCache);
}

/*







>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







|
>







>
>
>
>







 







>
>
>
>
>
>
>
>







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







|







 







|







 







|







187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
...
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
...
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
...
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
...
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
...
748
749
750
751
752
753
754






























755
756
757
758
759
760
761
...
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
...
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
....
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
  /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
  ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
  ** fixed at sqlite3_initialize() time and do not require mutex protection.
  ** The nFreeSlot and pFree values do require mutex protection.
  */
  int isInit;                    /* True if initialized */
  int separateCache;             /* Use a new PGroup for each PCache */
  int nInitPage;                 /* Initial bulk allocation size */   
  int szSlot;                    /* Size of each free slot */
  int nSlot;                     /* The number of pcache slots */
  int nReserve;                  /* Try to keep nFreeSlot above this */
  void *pStart, *pEnd;           /* Bounds of global page cache memory */
  /* Above requires no mutex.  Use mutex below for variable that follow. */
  sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
  PgFreeslot *pFree;             /* Free page blocks */
................................................................................
      p->pNext = pcache1.pFree;
      pcache1.pFree = p;
      pBuf = (void*)&((char*)pBuf)[sz];
    }
    pcache1.pEnd = pBuf;
  }
}

/*
** Try to initialize the pCache->pFree and pCache->pBulk fields.  Return
** true if pCache->pFree ends up containing one or more free pages.
*/
static int pcache1InitBulk(PCache1 *pCache){
  i64 szBulk;
  char *zBulk;
  if( pcache1.nInitPage==0 ) return 0;
  /* Do not bother with a bulk allocation if the cache size very small */
  if( pCache->nMax<3 ) return 0;
  sqlite3BeginBenignMalloc();
  if( pcache1.nInitPage>0 ){
    szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
  }else{
    szBulk = -1024 * (i64)pcache1.nInitPage;
  }
  if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
    szBulk = pCache->szAlloc*pCache->nMax;
  }
  zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
  sqlite3EndBenignMalloc();
  if( zBulk ){
    int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
    int i;
    for(i=0; i<nBulk; i++){
      PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
      pX->page.pBuf = zBulk;
      pX->page.pExtra = &pX[1];
      pX->isBulkLocal = 1;
      pX->pNext = pCache->pFree;
      pCache->pFree = pX;
      zBulk += pCache->szAlloc;
    }
  }
  return pCache->pFree!=0;
}

/*
** Malloc function used within this file to allocate space from the buffer
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no 
** such buffer exists or there is no space left in it, this function falls 
** back to sqlite3Malloc().
**
................................................................................
** Allocate a new page object initially associated with cache pCache.
*/
static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
  PgHdr1 *p = 0;
  void *pPg;

  assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
  if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
    p = pCache->pFree;
    pCache->pFree = p->pNext;
    p->pNext = 0;
  }else{
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
    /* The group mutex must be released before pcache1Alloc() is called. This
    ** is because it might call sqlite3_release_memory(), which assumes that 
................................................................................
  if( freeFlag ) pcache1FreePage(pPage);
}

/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PCache1 *pCache){
  PGroup *pGroup = pCache->pGroup;
  assert( sqlite3_mutex_held(pGroup->mutex) );
  while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
    PgHdr1 *p = pGroup->pLruTail;
    assert( p->pCache->pGroup==pGroup );
    assert( p->isPinned==0 );
    pcache1PinPage(p);
    pcache1RemoveFromHash(p, 1);
  }
  if( pCache->nPage==0 && pCache->pBulk ){
    sqlite3_free(pCache->pBulk);
    pCache->pBulk = pCache->pFree = 0;
  }
}

/*
** Discard all pages from cache pCache with a page number (key value) 
** greater than or equal to iLimit. Any pinned pages that meet this 
** criteria are unpinned before they are discarded.
................................................................................

#if SQLITE_THREADSAFE
  if( sqlite3GlobalConfig.bCoreMutex ){
    pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
    pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
  }
#endif
  if( pcache1.separateCache
   && sqlite3GlobalConfig.nPage!=0
   && sqlite3GlobalConfig.pPage==0
  ){
    pcache1.nInitPage = sqlite3GlobalConfig.nPage;
  }else{
    pcache1.nInitPage = 0;
  }
  pcache1.grp.mxPinned = 10;
  pcache1.isInit = 1;
  return SQLITE_OK;
}

/*
** Implementation of the sqlite3_pcache.xShutdown method.
................................................................................
    pcache1ResizeHash(pCache);
    if( bPurgeable ){
      pCache->nMin = 10;
      pGroup->nMinPage += pCache->nMin;
      pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
    }
    pcache1LeaveMutex(pGroup);






























    if( pCache->nHash==0 ){
      pcache1Destroy((sqlite3_pcache*)pCache);
      pCache = 0;
    }
  }
  return (sqlite3_pcache *)pCache;
}
................................................................................
  if( pCache->bPurgeable ){
    PGroup *pGroup = pCache->pGroup;
    pcache1EnterMutex(pGroup);
    pGroup->nMaxPage += (nMax - pCache->nMax);
    pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
    pCache->nMax = nMax;
    pCache->n90pct = pCache->nMax*9/10;
    pcache1EnforceMaxPage(pCache);
    pcache1LeaveMutex(pGroup);
  }
}

/*
** Implementation of the sqlite3_pcache.xShrink method. 
**
................................................................................
  PCache1 *pCache = (PCache1*)p;
  if( pCache->bPurgeable ){
    PGroup *pGroup = pCache->pGroup;
    int savedMaxPage;
    pcache1EnterMutex(pGroup);
    savedMaxPage = pGroup->nMaxPage;
    pGroup->nMaxPage = 0;
    pcache1EnforceMaxPage(pCache);
    pGroup->nMaxPage = savedMaxPage;
    pcache1LeaveMutex(pGroup);
  }
}

/*
** Implementation of the sqlite3_pcache.xPagecount method. 
................................................................................
  pcache1EnterMutex(pGroup);
  pcache1TruncateUnsafe(pCache, 0);
  assert( pGroup->nMaxPage >= pCache->nMax );
  pGroup->nMaxPage -= pCache->nMax;
  assert( pGroup->nMinPage >= pCache->nMin );
  pGroup->nMinPage -= pCache->nMin;
  pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
  pcache1EnforceMaxPage(pCache);
  pcache1LeaveMutex(pGroup);
  sqlite3_free(pCache->pBulk);
  sqlite3_free(pCache->apHash);
  sqlite3_free(pCache);
}

/*

Changes to src/pragma.c.

717
718
719
720
721
722
723

724
725
726
727
728
729
730
  ** number of pages in the cache.  If N is negative, then the
  ** number of pages is adjusted so that the cache uses -N kibibytes
  ** of memory.
  */
  case PragTyp_CACHE_SIZE: {
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( !zRight ){

      returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
    }else{
      int size = sqlite3Atoi(zRight);
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
    break;







>







717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
  ** number of pages in the cache.  If N is negative, then the
  ** number of pages is adjusted so that the cache uses -N kibibytes
  ** of memory.
  */
  case PragTyp_CACHE_SIZE: {
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( !zRight ){
      if( sqlite3ReadSchema(pParse) ) goto pragma_out;
      returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
    }else{
      int size = sqlite3Atoi(zRight);
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
    break;

Changes to src/pragma.h.

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
  { /* zName:     */ "busy_timeout",
    /* ePragTyp:  */ PragTyp_BUSY_TIMEOUT,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
  { /* zName:     */ "cache_size",
    /* ePragTyp:  */ PragTyp_CACHE_SIZE,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "cache_spill",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_CacheSpill },







|







82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
  { /* zName:     */ "busy_timeout",
    /* ePragTyp:  */ PragTyp_BUSY_TIMEOUT,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
  { /* zName:     */ "cache_size",
    /* ePragTyp:  */ PragTyp_CACHE_SIZE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "cache_spill",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_CacheSpill },

Changes to src/select.c.

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
....
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
....
2533
2534
2535
2536
2537
2538
2539













2540
2541
2542
2543
2544
2545
2546
      pInfo->aColl[i-iStart] = pColl;
      pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
    }
  }
  return pInfo;
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Name of the connection operator, used for error messages.
*/
static const char *selectOpName(int id){
  char *z;
  switch( id ){
    case TK_ALL:       z = "UNION ALL";   break;
    case TK_INTERSECT: z = "INTERSECT";   break;
    case TK_EXCEPT:    z = "EXCEPT";      break;
    default:           z = "UNION";       break;
  }
  return z;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

#ifndef SQLITE_OMIT_EXPLAIN
/*
** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
** is a no-op. Otherwise, it adds a single row of output to the EQP result,
** where the caption is of the form:
**
................................................................................
/* Forward references */
static int multiSelectOrderBy(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
);

/*
** Error message for when two or more terms of a compound select have different
** size result sets.
*/
void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
  if( p->selFlags & SF_Values ){
    sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
  }else{
    sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
      " do not have the same number of result columns", selectOpName(p->op));
  }
}

/*
** Handle the special case of a compound-select that originates from a
** VALUES clause.  By handling this as a special case, we avoid deep
** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
** on a VALUES clause.
**
** Because the Select object originates from a VALUES clause:
................................................................................
multi_select_end:
  pDest->iSdst = dest.iSdst;
  pDest->nSdst = dest.nSdst;
  sqlite3SelectDelete(db, pDelete);
  return rc;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */














/*
** Code an output subroutine for a coroutine implementation of a
** SELECT statment.
**
** The data to be output is contained in pIn->iSdst.  There are
** pIn->nSdst columns to be output.  pDest is where the output should







<













<







 







<
<
<
<
<
<
<
<
<
<
<
<
<







 







>
>
>
>
>
>
>
>
>
>
>
>
>







1078
1079
1080
1081
1082
1083
1084

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

1098
1099
1100
1101
1102
1103
1104
....
2093
2094
2095
2096
2097
2098
2099













2100
2101
2102
2103
2104
2105
2106
....
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
      pInfo->aColl[i-iStart] = pColl;
      pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
    }
  }
  return pInfo;
}


/*
** Name of the connection operator, used for error messages.
*/
static const char *selectOpName(int id){
  char *z;
  switch( id ){
    case TK_ALL:       z = "UNION ALL";   break;
    case TK_INTERSECT: z = "INTERSECT";   break;
    case TK_EXCEPT:    z = "EXCEPT";      break;
    default:           z = "UNION";       break;
  }
  return z;
}


#ifndef SQLITE_OMIT_EXPLAIN
/*
** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
** is a no-op. Otherwise, it adds a single row of output to the EQP result,
** where the caption is of the form:
**
................................................................................
/* Forward references */
static int multiSelectOrderBy(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
);














/*
** Handle the special case of a compound-select that originates from a
** VALUES clause.  By handling this as a special case, we avoid deep
** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
** on a VALUES clause.
**
** Because the Select object originates from a VALUES clause:
................................................................................
multi_select_end:
  pDest->iSdst = dest.iSdst;
  pDest->nSdst = dest.nSdst;
  sqlite3SelectDelete(db, pDelete);
  return rc;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

/*
** Error message for when two or more terms of a compound select have different
** size result sets.
*/
void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
  if( p->selFlags & SF_Values ){
    sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
  }else{
    sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
      " do not have the same number of result columns", selectOpName(p->op));
  }
}

/*
** Code an output subroutine for a coroutine implementation of a
** SELECT statment.
**
** The data to be output is contained in pIn->iSdst.  There are
** pIn->nSdst columns to be output.  pDest is where the output should

Changes to src/sqliteInt.h.

750
751
752
753
754
755
756
757


758
759
760
761
762
763
764
#   define SQLITE_MAX_MMAP_SIZE 0
# endif
#endif
#ifndef SQLITE_MAX_MMAP_SIZE
# if defined(__linux__) \
  || defined(_WIN32) \
  || (defined(__APPLE__) && defined(__MACH__)) \
  || defined(__sun)


#   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
# else
#   define SQLITE_MAX_MMAP_SIZE 0
# endif
# define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
#endif








|
>
>







750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
#   define SQLITE_MAX_MMAP_SIZE 0
# endif
#endif
#ifndef SQLITE_MAX_MMAP_SIZE
# if defined(__linux__) \
  || defined(_WIN32) \
  || (defined(__APPLE__) && defined(__MACH__)) \
  || defined(__sun) \
  || defined(__FreeBSD__) \
  || defined(__DragonFly__)
#   define SQLITE_MAX_MMAP_SIZE 0x7fff0000  /* 2147418112 */
# else
#   define SQLITE_MAX_MMAP_SIZE 0
# endif
# define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
#endif

Changes to test/malloc5.test.

37
38
39
40
41
42
43

44
45
46
47
48
49
50
..
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
...
227
228
229
230
231
232
233

234
235
236
237
238
239
240
...
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
...
321
322
323
324
325
326
327

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
...
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
ifcapable !memorymanage {
   finish_test
   return
}

sqlite3_soft_heap_limit 0
sqlite3 db test.db


do_test malloc5-1.1 {
  # Simplest possible test. Call sqlite3_release_memory when there is exactly
  # one unused page in a single pager cache. The page cannot be freed, as
  # it is dirty. So sqlite3_release_memory() returns 0.
  #
  execsql {
................................................................................

do_test malloc5-1.2 {
  # Test that the transaction started in the above test is still active.
  # The lock on the database file should not have been upgraded (this was
  # not the case before version 3.6.2).
  #
  sqlite3 db2 test.db
  execsql { SELECT * FROM sqlite_master } db2
} {}
do_test malloc5-1.3 {
  # Call [sqlite3_release_memory] when there is exactly one unused page 
  # in the cache belonging to db2.
  #
  set ::pgalloc [sqlite3_release_memory]
  expr $::pgalloc > 0
} {1}

# The sizes of memory allocations from system malloc() might vary,
# depending on the memory allocator algorithms used.  The following
# routine is designed to support answers that fall within a range
# of values while also supplying easy-to-understand "expected" values
# when errors occur.
#
................................................................................
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
  expr $nMaxBytes > 1000000
} {1}
do_test malloc5-4.2 {

  db cache flush
  sqlite3_release_memory
  sqlite3_soft_heap_limit 100000
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
................................................................................

# This block of test-cases (malloc5-6.1.*) prepares two database files
# for the subsequent tests.
do_test malloc5-6.1.1 {
  sqlite3 db test.db
  execsql {
    PRAGMA page_size=1024;
    PRAGMA default_cache_size=10;
  }
  execsql {
    PRAGMA temp_store = memory;
    BEGIN;
    CREATE TABLE abc(a PRIMARY KEY, b, c);
    INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100));
    INSERT INTO abc 
................................................................................
        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
    INSERT INTO abc 
        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
    COMMIT;
  } 
  forcecopy test.db test2.db
  sqlite3 db2 test2.db

  list \
    [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]
} {1 1}
do_test malloc5-6.1.2 {
  list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]
} {10 10}

do_test malloc5-6.2.1 {
  execsql {SELECT * FROM abc} db2
  execsql {SELECT * FROM abc} db
  expr [nPage db] + [nPage db2]
} {20}

do_test malloc5-6.2.2 {
  # If we now try to reclaim some memory, it should come from the db2 cache.
  sqlite3_release_memory 3000
  expr [nPage db] + [nPage db2]
} {17}
do_test malloc5-6.2.3 {
  # Access the db2 cache again, so that all the db2 pages have been used
  # more recently than all the db pages. Then try to reclaim 3000 bytes.
  # This time, 3 pages should be pulled from the db cache.
  execsql { SELECT * FROM abc } db2
  sqlite3_release_memory 3000
  expr [nPage db] + [nPage db2]
} {17}

do_test malloc5-6.3.1 {
  # Now open a transaction and update 2 pages in the db2 cache. Then
  # do a SELECT on the db cache so that all the db pages are more recently
  # used than the db2 pages. When we try to free memory, SQLite should
  # free the non-dirty db2 pages, then the db pages, then finally use
  # sync() to free up the dirty db2 pages. The only page that cannot be
................................................................................
  execsql {
    BEGIN;
    UPDATE abc SET c = randstr(100,100) 
    WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc);
  } db2
  execsql { SELECT * FROM abc } db
  expr [nPage db] + [nPage db2]
} {20}
do_test malloc5-6.3.2 {
  # Try to release 7700 bytes. This should release all the 
  # non-dirty pages held by db2.
  sqlite3_release_memory [expr 7*1132]
  list [nPage db] [nPage db2]
} {10 3}
do_test malloc5-6.3.3 {
  # Try to release another 1000 bytes. This should come fromt the db
  # cache, since all three pages held by db2 are either in-use or diry.
  sqlite3_release_memory 1000
  list [nPage db] [nPage db2]
} {9 3}
do_test malloc5-6.3.4 {
  # Now release 9900 more (about 9 pages worth). This should expunge
  # the rest of the db cache. But the db2 cache remains intact, because
  # SQLite tries to avoid calling sync().
  if {$::tcl_platform(wordSize)==8} {
    sqlite3_release_memory 10500
  } else {
    sqlite3_release_memory 9900
  }
  list [nPage db] [nPage db2]
} {0 3}
do_test malloc5-6.3.5 {
  # But if we are really insistent, SQLite will consent to call sync()
  # if there is no other option. UPDATE: As of 3.6.2, SQLite will not
  # call sync() in this scenario. So no further memory can be reclaimed.
  sqlite3_release_memory 1000
  list [nPage db] [nPage db2]
} {0 3}
do_test malloc5-6.3.6 {
  # The referenced page (page 1 of the db2 cache) will not be freed no
  # matter how much memory we ask for:
  sqlite3_release_memory 31459
  list [nPage db] [nPage db2]
} {0 3}

db2 close

sqlite3_soft_heap_limit $::soft_limit
finish_test
catch {db close}







>







 







|






<
|







 







>







 







|







 







>





|





|





|







|







 







|





|





|










|






|





|






37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
..
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
...
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
...
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
...
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
...
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
ifcapable !memorymanage {
   finish_test
   return
}

sqlite3_soft_heap_limit 0
sqlite3 db test.db
db eval {PRAGMA cache_size=1}

do_test malloc5-1.1 {
  # Simplest possible test. Call sqlite3_release_memory when there is exactly
  # one unused page in a single pager cache. The page cannot be freed, as
  # it is dirty. So sqlite3_release_memory() returns 0.
  #
  execsql {
................................................................................

do_test malloc5-1.2 {
  # Test that the transaction started in the above test is still active.
  # The lock on the database file should not have been upgraded (this was
  # not the case before version 3.6.2).
  #
  sqlite3 db2 test.db
  execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2
} {}
do_test malloc5-1.3 {
  # Call [sqlite3_release_memory] when there is exactly one unused page 
  # in the cache belonging to db2.
  #
  set ::pgalloc [sqlite3_release_memory]

} {0}

# The sizes of memory allocations from system malloc() might vary,
# depending on the memory allocator algorithms used.  The following
# routine is designed to support answers that fall within a range
# of values while also supplying easy-to-understand "expected" values
# when errors occur.
#
................................................................................
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
  expr $nMaxBytes > 1000000
} {1}
do_test malloc5-4.2 {
  db eval {PRAGMA cache_size=1}
  db cache flush
  sqlite3_release_memory
  sqlite3_soft_heap_limit 100000
  sqlite3_memory_highwater 1
  execsql {SELECT * FROM abc}
  set nMaxBytes [sqlite3_memory_highwater 1]
  puts -nonewline " (Highwater mark: $nMaxBytes) "
................................................................................

# This block of test-cases (malloc5-6.1.*) prepares two database files
# for the subsequent tests.
do_test malloc5-6.1.1 {
  sqlite3 db test.db
  execsql {
    PRAGMA page_size=1024;
    PRAGMA default_cache_size=2;
  }
  execsql {
    PRAGMA temp_store = memory;
    BEGIN;
    CREATE TABLE abc(a PRIMARY KEY, b, c);
    INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100));
    INSERT INTO abc 
................................................................................
        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
    INSERT INTO abc 
        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
    COMMIT;
  } 
  forcecopy test.db test2.db
  sqlite3 db2 test2.db
  db2 eval {PRAGMA cache_size=2}
  list \
    [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]
} {1 1}
do_test malloc5-6.1.2 {
  list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]
} {2 2}

do_test malloc5-6.2.1 {
  execsql {SELECT * FROM abc} db2
  execsql {SELECT * FROM abc} db
  expr [nPage db] + [nPage db2]
} {4}

do_test malloc5-6.2.2 {
  # If we now try to reclaim some memory, it should come from the db2 cache.
  sqlite3_release_memory 3000
  expr [nPage db] + [nPage db2]
} {4}
do_test malloc5-6.2.3 {
  # Access the db2 cache again, so that all the db2 pages have been used
  # more recently than all the db pages. Then try to reclaim 3000 bytes.
  # This time, 3 pages should be pulled from the db cache.
  execsql { SELECT * FROM abc } db2
  sqlite3_release_memory 3000
  expr [nPage db] + [nPage db2]
} {4}

do_test malloc5-6.3.1 {
  # Now open a transaction and update 2 pages in the db2 cache. Then
  # do a SELECT on the db cache so that all the db pages are more recently
  # used than the db2 pages. When we try to free memory, SQLite should
  # free the non-dirty db2 pages, then the db pages, then finally use
  # sync() to free up the dirty db2 pages. The only page that cannot be
................................................................................
  execsql {
    BEGIN;
    UPDATE abc SET c = randstr(100,100) 
    WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc);
  } db2
  execsql { SELECT * FROM abc } db
  expr [nPage db] + [nPage db2]
} {4}
do_test malloc5-6.3.2 {
  # Try to release 7700 bytes. This should release all the 
  # non-dirty pages held by db2.
  sqlite3_release_memory [expr 7*1132]
  list [nPage db] [nPage db2]
} {1 3}
do_test malloc5-6.3.3 {
  # Try to release another 1000 bytes. This should come fromt the db
  # cache, since all three pages held by db2 are either in-use or diry.
  sqlite3_release_memory 1000
  list [nPage db] [nPage db2]
} {1 3}
do_test malloc5-6.3.4 {
  # Now release 9900 more (about 9 pages worth). This should expunge
  # the rest of the db cache. But the db2 cache remains intact, because
  # SQLite tries to avoid calling sync().
  if {$::tcl_platform(wordSize)==8} {
    sqlite3_release_memory 10500
  } else {
    sqlite3_release_memory 9900
  }
  list [nPage db] [nPage db2]
} {1 3}
do_test malloc5-6.3.5 {
  # But if we are really insistent, SQLite will consent to call sync()
  # if there is no other option. UPDATE: As of 3.6.2, SQLite will not
  # call sync() in this scenario. So no further memory can be reclaimed.
  sqlite3_release_memory 1000
  list [nPage db] [nPage db2]
} {1 3}
do_test malloc5-6.3.6 {
  # The referenced page (page 1 of the db2 cache) will not be freed no
  # matter how much memory we ask for:
  sqlite3_release_memory 31459
  list [nPage db] [nPage db2]
} {1 3}

db2 close

sqlite3_soft_heap_limit $::soft_limit
finish_test
catch {db close}

Changes to test/pcache.test.

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    CREATE TABLE t9(a, b, c);
  }
  pcache_stats
} {current 10 max 12 min 10 recyclable 0}

do_test pcache-1.5 {
  sqlite3 db2 test.db
  execsql "PRAGMA cache_size=10" db2
  pcache_stats
} {current 11 max 22 min 20 recyclable 1}

do_test pcache-1.6.1 {
  execsql {
    BEGIN;
    SELECT * FROM sqlite_master;







|







69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    CREATE TABLE t9(a, b, c);
  }
  pcache_stats
} {current 10 max 12 min 10 recyclable 0}

do_test pcache-1.5 {
  sqlite3 db2 test.db
  execsql "PRAGMA cache_size; PRAGMA cache_size=10" db2
  pcache_stats
} {current 11 max 22 min 20 recyclable 1}

do_test pcache-1.6.1 {
  execsql {
    BEGIN;
    SELECT * FROM sqlite_master;

Changes to test/pcache2.test.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
} {0 0 0}

# Open up two database connections to separate files.
#
do_test pcache2-1.2 {
  forcedelete test.db test.db-journal
  sqlite3 db test.db
  db eval {PRAGMA cache_size=10}
  lindex [sqlite3_status SQLITE_STATUS_PAGECACHE_USED 0] 1
} {2}
do_test pcache2-1.3 {
  forcedelete test2.db test2.db-journal
  sqlite3 db2 test2.db
  db2 eval {PRAGMA cache_size=50}
  lindex [sqlite3_status SQLITE_STATUS_PAGECACHE_USED 0] 1
} {4}


# Make lots of changes on the first connection.  Verify that the
# page cache usage does not grow to consume the page space set aside
# for the second connection.







|





|







32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
} {0 0 0}

# Open up two database connections to separate files.
#
do_test pcache2-1.2 {
  forcedelete test.db test.db-journal
  sqlite3 db test.db
  db eval {PRAGMA cache_size=10; SELECT 1 FROM sqlite_master;}
  lindex [sqlite3_status SQLITE_STATUS_PAGECACHE_USED 0] 1
} {2}
do_test pcache2-1.3 {
  forcedelete test2.db test2.db-journal
  sqlite3 db2 test2.db
  db2 eval {PRAGMA cache_size=50; SELECT 1 FROM sqlite_master;}
  lindex [sqlite3_status SQLITE_STATUS_PAGECACHE_USED 0] 1
} {4}


# Make lots of changes on the first connection.  Verify that the
# page cache usage does not grow to consume the page space set aside
# for the second connection.

Changes to tool/mkpragmatab.tcl.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
  FLAG: NeedSchema
  IF:   !defined(SQLITE_OMIT_PAGER_PRAGMAS)

  NAME: journal_size_limit
  IF:   !defined(SQLITE_OMIT_PAGER_PRAGMAS)

  NAME: cache_size
  FLAG: NeedSchema
  IF:   !defined(SQLITE_OMIT_PAGER_PRAGMAS)

  NAME: mmap_size
  IF:   !defined(SQLITE_OMIT_PAGER_PRAGMAS)

  NAME: auto_vacuum
  FLAG: NeedSchema







<







166
167
168
169
170
171
172

173
174
175
176
177
178
179
  FLAG: NeedSchema
  IF:   !defined(SQLITE_OMIT_PAGER_PRAGMAS)

  NAME: journal_size_limit
  IF:   !defined(SQLITE_OMIT_PAGER_PRAGMAS)

  NAME: cache_size

  IF:   !defined(SQLITE_OMIT_PAGER_PRAGMAS)

  NAME: mmap_size
  IF:   !defined(SQLITE_OMIT_PAGER_PRAGMAS)

  NAME: auto_vacuum
  FLAG: NeedSchema

Changes to tool/mksqlite3c-noext.tcl.

176
177
178
179
180
181
182




183
184
185
186
187
188
189
          if {$hdr!="os_common.h" && $hdr!="hwtime.h"} {
            set available_hdr($hdr) 0
          }
          section_comment "Include $hdr in the middle of $tail"
          copy_file tsrc/$hdr
          section_comment "Continuing where we left off in $tail"
          if {$linemacros} {puts $out "#line [expr {$ln+1}] \"$filename\""}




        }
      } elseif {![info exists seen_hdr($hdr)]} {
        if {![regexp {/\*\s+amalgamator:\s+dontcache\s+\*/} $line]} {
          set seen_hdr($hdr) 1
        }
        puts $out $line
      } elseif {[regexp {/\*\s+amalgamator:\s+keep\s+\*/} $line]} {







>
>
>
>







176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
          if {$hdr!="os_common.h" && $hdr!="hwtime.h"} {
            set available_hdr($hdr) 0
          }
          section_comment "Include $hdr in the middle of $tail"
          copy_file tsrc/$hdr
          section_comment "Continuing where we left off in $tail"
          if {$linemacros} {puts $out "#line [expr {$ln+1}] \"$filename\""}
        } else {
          # Comment out the entire line, replacing any nested comment
          # begin/end markers with the harmless substring "**".
          puts $out "/* [string map [list /* ** */ **] $line] */"
        }
      } elseif {![info exists seen_hdr($hdr)]} {
        if {![regexp {/\*\s+amalgamator:\s+dontcache\s+\*/} $line]} {
          set seen_hdr($hdr) 1
        }
        puts $out $line
      } elseif {[regexp {/\*\s+amalgamator:\s+keep\s+\*/} $line]} {

Changes to tool/mksqlite3c.tcl.

184
185
186
187
188
189
190




191
192
193
194
195
196
197
          if {$hdr!="os_common.h" && $hdr!="hwtime.h"} {
            set available_hdr($hdr) 0
          }
          section_comment "Include $hdr in the middle of $tail"
          copy_file tsrc/$hdr
          section_comment "Continuing where we left off in $tail"
          if {$linemacros} {puts $out "#line [expr {$ln+1}] \"$filename\""}




        }
      } elseif {![info exists seen_hdr($hdr)]} {
        if {![regexp {/\*\s+amalgamator:\s+dontcache\s+\*/} $line]} {
          set seen_hdr($hdr) 1
        }
        puts $out $line
      } elseif {[regexp {/\*\s+amalgamator:\s+keep\s+\*/} $line]} {







>
>
>
>







184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
          if {$hdr!="os_common.h" && $hdr!="hwtime.h"} {
            set available_hdr($hdr) 0
          }
          section_comment "Include $hdr in the middle of $tail"
          copy_file tsrc/$hdr
          section_comment "Continuing where we left off in $tail"
          if {$linemacros} {puts $out "#line [expr {$ln+1}] \"$filename\""}
        } else {
          # Comment out the entire line, replacing any nested comment
          # begin/end markers with the harmless substring "**".
          puts $out "/* [string map [list /* ** */ **] $line] */"
        }
      } elseif {![info exists seen_hdr($hdr)]} {
        if {![regexp {/\*\s+amalgamator:\s+dontcache\s+\*/} $line]} {
          set seen_hdr($hdr) 1
        }
        puts $out $line
      } elseif {[regexp {/\*\s+amalgamator:\s+keep\s+\*/} $line]} {