/ Check-in [716e7e74]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge latest changes from trunk. Including fts5_expr.c fixes.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | fts5-incompatible
Files: files | file ages | folders
SHA1: 716e7e747714d6af502f6a87ca8d789bb7ce162a
User & Date: dan 2015-09-10 15:52:42
Context
2015-09-10
16:19
Fix a segfault in fts5 that could occur if the database contents were corrupt. check-in: 4931e37d user: dan tags: fts5-incompatible
15:52
Merge latest changes from trunk. Including fts5_expr.c fixes. check-in: 716e7e74 user: dan tags: fts5-incompatible
15:49
Update description of on-disk format in fts5_index.c. check-in: 85aac7b8 user: dan tags: fts5-incompatible
15:24
Make the sqlite3ext.h header file responsive to -DSQLITE_OMIT_LOAD_EXTENSION. check-in: 47a46a9f user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ext/fts5/fts5_expr.c.

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
...
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
...
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
....
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
*/
static int fts5ExprSynonymPoslist(
  Fts5ExprTerm *pTerm, 
  i64 iRowid,
  int *pbDel,                     /* OUT: Caller should sqlite3_free(*pa) */
  u8 **pa, int *pn
){
  Fts5PoslistWriter writer = {0};
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int nIter = 0;
  int nAlloc = 4;
  int rc = SQLITE_OK;
  Fts5ExprTerm *p;

................................................................................
static int fts5ExprNearAdvanceFirst(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode,            /* FTS5_STRING or FTS5_TERM node */
  int bFromValid,
  i64 iFrom 
){
  Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
  int rc;

  if( pTerm->pSynonym ){
    int bEof = 1;
    Fts5ExprTerm *p;

    /* Find the firstest rowid any synonym points to. */
    i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);
................................................................................
  do {
    bMatch = 1;
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      for(j=0; j<pPhrase->nTerm; j++){
        Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
        if( pTerm->pSynonym ){
          Fts5ExprTerm *p;
          int bEof = 1;
          i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
          if( iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
            pNode->bEof = 1;
            return rc;
................................................................................
  Fts5Config *pConfig,
  Fts5Expr *pExpr, 
  int iPhrase, 
  Fts5Expr **ppNew
){
  int rc = SQLITE_OK;             /* Return code */
  Fts5ExprPhrase *pOrig;          /* The phrase extracted from pExpr */
  Fts5ExprPhrase *pCopy;          /* Copy of pOrig */
  int i;                          /* Used to iterate through phrase terms */

  Fts5Expr *pNew = 0;             /* Expression to return via *ppNew */
  Fts5ExprPhrase **apPhrase;      /* pNew->apPhrase */
  Fts5ExprNode *pNode;            /* pNew->pRoot */
  Fts5ExprNearset *pNear;         /* pNew->pRoot->pNear */

  TokenCtx sCtx = {0,0};          /* Context object for fts5ParseTokenize */


  pOrig = pExpr->apExprPhrase[iPhrase];

  pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));







<







 







|







 







<







 







<



<
<
<







314
315
316
317
318
319
320

321
322
323
324
325
326
327
...
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
...
943
944
945
946
947
948
949

950
951
952
953
954
955
956
....
1651
1652
1653
1654
1655
1656
1657

1658
1659
1660



1661
1662
1663
1664
1665
1666
1667
*/
static int fts5ExprSynonymPoslist(
  Fts5ExprTerm *pTerm, 
  i64 iRowid,
  int *pbDel,                     /* OUT: Caller should sqlite3_free(*pa) */
  u8 **pa, int *pn
){

  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int nIter = 0;
  int nAlloc = 4;
  int rc = SQLITE_OK;
  Fts5ExprTerm *p;

................................................................................
static int fts5ExprNearAdvanceFirst(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode,            /* FTS5_STRING or FTS5_TERM node */
  int bFromValid,
  i64 iFrom 
){
  Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
  int rc = SQLITE_OK;

  if( pTerm->pSynonym ){
    int bEof = 1;
    Fts5ExprTerm *p;

    /* Find the firstest rowid any synonym points to. */
    i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);
................................................................................
  do {
    bMatch = 1;
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      for(j=0; j<pPhrase->nTerm; j++){
        Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
        if( pTerm->pSynonym ){

          int bEof = 1;
          i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
          if( iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
            pNode->bEof = 1;
            return rc;
................................................................................
  Fts5Config *pConfig,
  Fts5Expr *pExpr, 
  int iPhrase, 
  Fts5Expr **ppNew
){
  int rc = SQLITE_OK;             /* Return code */
  Fts5ExprPhrase *pOrig;          /* The phrase extracted from pExpr */

  int i;                          /* Used to iterate through phrase terms */

  Fts5Expr *pNew = 0;             /* Expression to return via *ppNew */




  TokenCtx sCtx = {0,0};          /* Context object for fts5ParseTokenize */


  pOrig = pExpr->apExprPhrase[iPhrase];

  pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));

Changes to ext/misc/json1.c.

79
80
81
82
83
84
85

86
87
88
89
90
91
92
...
579
580
581
582
583
584
585

586
587
588
589
590
591
592
...
593
594
595
596
597
598
599
600


601
602
603
604
605
606
607
....
1032
1033
1034
1035
1036
1037
1038







1039
1040
1041
1042
1043
1044
1045

1046
1047
1048
1049
1050
1051
1052
....
1423
1424
1425
1426
1427
1428
1429

1430
1431
1432
1433
1434
1435
1436
....
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
....
1593
1594
1595
1596
1597
1598
1599
1600
1601

1602
1603
1604
1605
1606
1607
1608
....
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
....
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
....
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819






1820
1821
1822
1823
1824
1825
1826
*/
#define JNODE_RAW     0x01         /* Content is raw, not JSON encoded */
#define JNODE_ESCAPE  0x02         /* Content is text with \ escapes */
#define JNODE_REMOVE  0x04         /* Do not output */
#define JNODE_REPLACE 0x08         /* Replace with JsonNode.iVal */
#define JNODE_APPEND  0x10         /* More ARRAY/OBJECT entries at u.iAppend */
#define JNODE_JSON    0x20         /* Treat REPLACE as JSON text */



/* A single node of parsed JSON
*/
struct JsonNode {
  u8 eType;              /* One of the JSON_ type values */
  u8 jnFlags;            /* JNODE flags */
................................................................................
** non-whitespace character is ']'.
*/
static int jsonParseValue(JsonParse *pParse, u32 i){
  char c;
  u32 j;
  int iThis;
  int x;

  while( isspace(pParse->zJson[i]) ){ i++; }
  if( (c = pParse->zJson[i])==0 ) return 0;
  if( c=='{' ){
    /* Parse object */
    iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
................................................................................
      while( isspace(pParse->zJson[j]) ){ j++; }
      x = jsonParseValue(pParse, j);
      if( x<0 ){
        if( x==(-2) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      if( pParse->oom ) return -1;
      if( pParse->aNode[pParse->nNode-1].eType!=JSON_STRING ) return -1;


      j = x;
      while( isspace(pParse->zJson[j]) ){ j++; }
      if( pParse->zJson[j]!=':' ) return -1;
      j++;
      x = jsonParseValue(pParse, j);
      if( x<0 ) return -1;
      j = x;
................................................................................
  u32 i;

  assert( argc==1 );
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  jsonParseFindParents(&x);
  jsonInit(&s, ctx);
  for(i=0; i<x.nNode; i++){







    jsonPrintf(100, &s,"node %3u: %7s n=%-4d up=%d\n",
               i, jsonType[x.aNode[i].eType], x.aNode[i].n, x.aUp[i]);
    if( x.aNode[i].u.zJContent!=0 ){
      jsonAppendRaw(&s, "    text: ", 10);
      jsonAppendRaw(&s, x.aNode[i].u.zJContent, x.aNode[i].n);
      jsonAppendRaw(&s, "\n", 1);
    }

  }
  jsonParseReset(&x);
  jsonResult(&s);
}

/*
** The json_test1(JSON) function parses and rebuilds the JSON string.
................................................................................
/****************************************************************************
** The json_each virtual table
****************************************************************************/
typedef struct JsonEachCursor JsonEachCursor;
struct JsonEachCursor {
  sqlite3_vtab_cursor base;  /* Base class - must be first */
  u32 iRowid;                /* The rowid */

  u32 i;                     /* Index in sParse.aNode[] of current row */
  u32 iEnd;                  /* EOF when i equals or exceeds this value */
  u8 eType;                  /* Type of top-level element */
  u8 bRecursive;             /* True for json_tree().  False for json_each() */
  char *zJson;               /* Input JSON */
  char *zPath;               /* Path by which to filter zJson */
  JsonParse sParse;          /* Parse of the input JSON */
................................................................................
  return p->i >= p->iEnd;
}

/* Advance the cursor to the next element for json_tree() */
static int jsonEachNext(sqlite3_vtab_cursor *cur){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  if( p->bRecursive ){
    if( p->i==0 ){
      p->i = 1;
    }else{
      u32 iUp = p->sParse.aUp[p->i];
      JsonNode *pUp = &p->sParse.aNode[iUp];
      p->i++;
      if( pUp->eType==JSON_OBJECT && (pUp->n + iUp >= p->i) ) p->i++;
    }
    p->iRowid++;
    if( p->i<p->sParse.nNode ){
      u32 iUp = p->sParse.aUp[p->i];
      JsonNode *pUp = &p->sParse.aNode[iUp];
      p->eType = pUp->eType;
      if( pUp->eType==JSON_ARRAY ){
        if( iUp==p->i-1 ){
          pUp->u.iKey = 0;
        }else{
................................................................................
  jsonEachComputePath(p, pStr, iUp);
  pNode = &p->sParse.aNode[i];
  pUp = &p->sParse.aNode[iUp];
  if( pUp->eType==JSON_ARRAY ){
    jsonPrintf(30, pStr, "[%d]", pUp->u.iKey);
  }else{
    assert( pUp->eType==JSON_OBJECT );
    if( pNode->eType>=JSON_ARRAY ) pNode--;
    assert( pNode->eType==JSON_STRING );

    jsonPrintf(pNode->n+1, pStr, ".%.*s", pNode->n-2, pNode->u.zJContent+1);
  }
}

/* Return the value of a column */
static int jsonEachColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */
................................................................................
          iKey = p->iRowid;
        }
        sqlite3_result_int64(ctx, (sqlite3_int64)iKey);
      }
      break;
    }
    case JEACH_VALUE: {
      if( p->eType==JSON_OBJECT && p->i>0 ) pThis++;
      jsonReturn(pThis, ctx, 0);
      break;
    }
    case JEACH_TYPE: {
      if( p->eType==JSON_OBJECT && p->i>0 ) pThis++;
      sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC);
      break;
    }
    case JEACH_ATOM: {
      if( p->eType==JSON_OBJECT && p->i>0 ) pThis++;
      if( pThis->eType>=JSON_ARRAY ) break;
      jsonReturn(pThis, ctx, 0);
      break;
    }
    case JEACH_ID: {
      sqlite3_result_int64(ctx, (sqlite3_int64)p->i + (p->eType==JSON_OBJECT));

      break;
    }
    case JEACH_PARENT: {
      if( p->i>0 && p->bRecursive ){
        sqlite3_result_int64(ctx, (sqlite3_int64)p->sParse.aUp[p->i]);
      }
      break;
    }
    case JEACH_FULLKEY: {
      JsonString x;
      jsonInit(&x, ctx);
................................................................................
  }else if( p->bRecursive && jsonParseFindParents(&p->sParse) ){
    jsonEachCursorReset(p);
    return SQLITE_NOMEM;
  }else{
    JsonNode *pNode;
    if( idxNum==3 ){
      const char *zErr = 0;
      p->bRecursive = 0;
      n = sqlite3_value_bytes(argv[1]);
      p->zPath = sqlite3_malloc64( n+1 );
      if( p->zPath==0 ) return SQLITE_NOMEM;
      memcpy(p->zPath, zPath, (size_t)n+1);
      pNode = jsonLookupStep(&p->sParse, 0, p->zPath+1, 0, &zErr);
      if( p->sParse.nErr ){
        sqlite3_free(cur->pVtab->zErrMsg);
................................................................................
        return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
      }else if( pNode==0 ){
        return SQLITE_OK;
      }
    }else{
      pNode = p->sParse.aNode;
    }
    p->i = (int)(pNode - p->sParse.aNode);
    p->eType = pNode->eType;
    if( p->eType>=JSON_ARRAY ){
      pNode->u.iKey = 0;
      p->iEnd = p->i + pNode->n + 1;
      if( !p->bRecursive ) p->i++;






    }else{
      p->iEnd = p->i+1;
    }
  }
  return p->sParse.oom ? SQLITE_NOMEM : SQLITE_OK;
}








>







 







>







 







|
>
>







 







>
>
>
>
>
>
>
|
|

|

<

>







 







>







 







|
<
<
<
<
|
<
<

|







 







|

>







 







|




|




|





|
>



|







 







<







 







|




|
>
>
>
>
>
>







79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
...
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
...
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
....
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

1055
1056
1057
1058
1059
1060
1061
1062
1063
....
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
....
1542
1543
1544
1545
1546
1547
1548
1549




1550


1551
1552
1553
1554
1555
1556
1557
1558
1559
....
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
....
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
....
1798
1799
1800
1801
1802
1803
1804

1805
1806
1807
1808
1809
1810
1811
....
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
*/
#define JNODE_RAW     0x01         /* Content is raw, not JSON encoded */
#define JNODE_ESCAPE  0x02         /* Content is text with \ escapes */
#define JNODE_REMOVE  0x04         /* Do not output */
#define JNODE_REPLACE 0x08         /* Replace with JsonNode.iVal */
#define JNODE_APPEND  0x10         /* More ARRAY/OBJECT entries at u.iAppend */
#define JNODE_JSON    0x20         /* Treat REPLACE as JSON text */
#define JNODE_LABEL   0x40         /* Is a label of an object */


/* A single node of parsed JSON
*/
struct JsonNode {
  u8 eType;              /* One of the JSON_ type values */
  u8 jnFlags;            /* JNODE flags */
................................................................................
** non-whitespace character is ']'.
*/
static int jsonParseValue(JsonParse *pParse, u32 i){
  char c;
  u32 j;
  int iThis;
  int x;
  JsonNode *pNode;
  while( isspace(pParse->zJson[i]) ){ i++; }
  if( (c = pParse->zJson[i])==0 ) return 0;
  if( c=='{' ){
    /* Parse object */
    iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
................................................................................
      while( isspace(pParse->zJson[j]) ){ j++; }
      x = jsonParseValue(pParse, j);
      if( x<0 ){
        if( x==(-2) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      if( pParse->oom ) return -1;
      pNode = &pParse->aNode[pParse->nNode-1];
      if( pNode->eType!=JSON_STRING ) return -1;
      pNode->jnFlags |= JNODE_LABEL;
      j = x;
      while( isspace(pParse->zJson[j]) ){ j++; }
      if( pParse->zJson[j]!=':' ) return -1;
      j++;
      x = jsonParseValue(pParse, j);
      if( x<0 ) return -1;
      j = x;
................................................................................
  u32 i;

  assert( argc==1 );
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  jsonParseFindParents(&x);
  jsonInit(&s, ctx);
  for(i=0; i<x.nNode; i++){
    const char *zType;
    if( x.aNode[i].jnFlags & JNODE_LABEL ){
      assert( x.aNode[i].eType==JSON_STRING );
      zType = "label";
    }else{
      zType = jsonType[x.aNode[i].eType];
    }
    jsonPrintf(100, &s,"node %3u: %7s n=%-4d up=%-4d",
               i, zType, x.aNode[i].n, x.aUp[i]);
    if( x.aNode[i].u.zJContent!=0 ){
      jsonAppendRaw(&s, " ", 1);
      jsonAppendRaw(&s, x.aNode[i].u.zJContent, x.aNode[i].n);

    }
    jsonAppendRaw(&s, "\n", 1);
  }
  jsonParseReset(&x);
  jsonResult(&s);
}

/*
** The json_test1(JSON) function parses and rebuilds the JSON string.
................................................................................
/****************************************************************************
** The json_each virtual table
****************************************************************************/
typedef struct JsonEachCursor JsonEachCursor;
struct JsonEachCursor {
  sqlite3_vtab_cursor base;  /* Base class - must be first */
  u32 iRowid;                /* The rowid */
  u32 iBegin;                /* The first node of the scan */
  u32 i;                     /* Index in sParse.aNode[] of current row */
  u32 iEnd;                  /* EOF when i equals or exceeds this value */
  u8 eType;                  /* Type of top-level element */
  u8 bRecursive;             /* True for json_tree().  False for json_each() */
  char *zJson;               /* Input JSON */
  char *zPath;               /* Path by which to filter zJson */
  JsonParse sParse;          /* Parse of the input JSON */
................................................................................
  return p->i >= p->iEnd;
}

/* Advance the cursor to the next element for json_tree() */
static int jsonEachNext(sqlite3_vtab_cursor *cur){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  if( p->bRecursive ){
    if( p->sParse.aNode[p->i].jnFlags & JNODE_LABEL ) p->i++;




    p->i++;


    p->iRowid++;
    if( p->i<p->iEnd ){
      u32 iUp = p->sParse.aUp[p->i];
      JsonNode *pUp = &p->sParse.aNode[iUp];
      p->eType = pUp->eType;
      if( pUp->eType==JSON_ARRAY ){
        if( iUp==p->i-1 ){
          pUp->u.iKey = 0;
        }else{
................................................................................
  jsonEachComputePath(p, pStr, iUp);
  pNode = &p->sParse.aNode[i];
  pUp = &p->sParse.aNode[iUp];
  if( pUp->eType==JSON_ARRAY ){
    jsonPrintf(30, pStr, "[%d]", pUp->u.iKey);
  }else{
    assert( pUp->eType==JSON_OBJECT );
    if( (pNode->jnFlags & JNODE_LABEL)==0 ) pNode--;
    assert( pNode->eType==JSON_STRING );
    assert( pNode->jnFlags & JNODE_LABEL );
    jsonPrintf(pNode->n+1, pStr, ".%.*s", pNode->n-2, pNode->u.zJContent+1);
  }
}

/* Return the value of a column */
static int jsonEachColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */
................................................................................
          iKey = p->iRowid;
        }
        sqlite3_result_int64(ctx, (sqlite3_int64)iKey);
      }
      break;
    }
    case JEACH_VALUE: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      jsonReturn(pThis, ctx, 0);
      break;
    }
    case JEACH_TYPE: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC);
      break;
    }
    case JEACH_ATOM: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      if( pThis->eType>=JSON_ARRAY ) break;
      jsonReturn(pThis, ctx, 0);
      break;
    }
    case JEACH_ID: {
      sqlite3_result_int64(ctx, 
         (sqlite3_int64)p->i + ((pThis->jnFlags & JNODE_LABEL)!=0));
      break;
    }
    case JEACH_PARENT: {
      if( p->i>p->iBegin && p->bRecursive ){
        sqlite3_result_int64(ctx, (sqlite3_int64)p->sParse.aUp[p->i]);
      }
      break;
    }
    case JEACH_FULLKEY: {
      JsonString x;
      jsonInit(&x, ctx);
................................................................................
  }else if( p->bRecursive && jsonParseFindParents(&p->sParse) ){
    jsonEachCursorReset(p);
    return SQLITE_NOMEM;
  }else{
    JsonNode *pNode;
    if( idxNum==3 ){
      const char *zErr = 0;

      n = sqlite3_value_bytes(argv[1]);
      p->zPath = sqlite3_malloc64( n+1 );
      if( p->zPath==0 ) return SQLITE_NOMEM;
      memcpy(p->zPath, zPath, (size_t)n+1);
      pNode = jsonLookupStep(&p->sParse, 0, p->zPath+1, 0, &zErr);
      if( p->sParse.nErr ){
        sqlite3_free(cur->pVtab->zErrMsg);
................................................................................
        return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
      }else if( pNode==0 ){
        return SQLITE_OK;
      }
    }else{
      pNode = p->sParse.aNode;
    }
    p->iBegin = p->i = (int)(pNode - p->sParse.aNode);
    p->eType = pNode->eType;
    if( p->eType>=JSON_ARRAY ){
      pNode->u.iKey = 0;
      p->iEnd = p->i + pNode->n + 1;
      if( p->bRecursive ){
        if( p->i>0 && (p->sParse.aNode[p->i-1].jnFlags & JNODE_LABEL)!=0 ){
          p->i--;
        }
      }else{
        p->i++;
      }
    }else{
      p->iEnd = p->i+1;
    }
  }
  return p->sParse.oom ? SQLITE_NOMEM : SQLITE_OK;
}

Changes to main.mk.

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# Rules to build parse.c and parse.h - the outputs of lemon.
#
parse.h:	parse.c

parse.c:	$(TOP)/src/parse.y lemon $(TOP)/addopcodes.awk
	cp $(TOP)/src/parse.y .
	rm -f parse.h
	./lemon $(OPTS) parse.y
	mv parse.h parse.h.temp
	$(NAWK) -f $(TOP)/addopcodes.awk parse.h.temp >parse.h

sqlite3.h:	$(TOP)/src/sqlite.h.in $(TOP)/manifest.uuid $(TOP)/VERSION $(TOP)/ext/rtree/sqlite3rtree.h
	tclsh $(TOP)/tool/mksqlite3h.tcl $(TOP) >sqlite3.h

keywordhash.h:	$(TOP)/tool/mkkeywordhash.c







|







582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# Rules to build parse.c and parse.h - the outputs of lemon.
#
parse.h:	parse.c

parse.c:	$(TOP)/src/parse.y lemon $(TOP)/addopcodes.awk
	cp $(TOP)/src/parse.y .
	rm -f parse.h
	./lemon -s $(OPTS) parse.y
	mv parse.h parse.h.temp
	$(NAWK) -f $(TOP)/addopcodes.awk parse.h.temp >parse.h

sqlite3.h:	$(TOP)/src/sqlite.h.in $(TOP)/manifest.uuid $(TOP)/VERSION $(TOP)/ext/rtree/sqlite3rtree.h
	tclsh $(TOP)/tool/mksqlite3h.tcl $(TOP) >sqlite3.h

keywordhash.h:	$(TOP)/tool/mkkeywordhash.c

Changes to src/build.c.

353
354
355
356
357
358
359

360
361
362
363
364
365

366
367
368
369
370
371
372
...
980
981
982
983
984
985
986


987
988
989
990
991
992
993
....
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
    return 0;
  }

  p = sqlite3FindTable(pParse->db, zName, zDbase);
  if( p==0 ){
    const char *zMsg = isView ? "no such view" : "no such table";
#ifndef SQLITE_OMIT_VIRTUALTABLE

    /* If zName is the not the name of a table in the schema created using
    ** CREATE, then check to see if it is the name of an virtual table that
    ** can be an eponymous virtual table. */
    Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
    if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
      return pMod->pEpoTab;

    }
#endif
    if( zDbase ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
    }
................................................................................
  ** indices.  Hence, the record number for the table must be allocated
  ** now.
  */
  if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
    int j1;
    int fileFormat;
    int reg1, reg2, reg3;


    sqlite3BeginWriteOperation(pParse, 1, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( isVirtual ){
      sqlite3VdbeAddOp0(v, OP_VBegin);
    }
#endif
................................................................................
    }else
#endif
    {
      pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
    }
    sqlite3OpenMasterTable(pParse, iDb);
    sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
    sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
    sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeAddOp0(v, OP_Close);
  }

  /* Normal (non-error) return. */
  return;







>
|
|
|
|
|
|
>







 







>
>







 







|







353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
...
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
....
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
    return 0;
  }

  p = sqlite3FindTable(pParse->db, zName, zDbase);
  if( p==0 ){
    const char *zMsg = isView ? "no such view" : "no such table";
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
      /* If zName is the not the name of a table in the schema created using
      ** CREATE, then check to see if it is the name of an virtual table that
      ** can be an eponymous virtual table. */
      Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
      if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
        return pMod->pEpoTab;
      }
    }
#endif
    if( zDbase ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
    }
................................................................................
  ** indices.  Hence, the record number for the table must be allocated
  ** now.
  */
  if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
    int j1;
    int fileFormat;
    int reg1, reg2, reg3;
    /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
    static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
    sqlite3BeginWriteOperation(pParse, 1, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( isVirtual ){
      sqlite3VdbeAddOp0(v, OP_VBegin);
    }
#endif
................................................................................
    }else
#endif
    {
      pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
    }
    sqlite3OpenMasterTable(pParse, iDb);
    sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
    sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
    sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeAddOp0(v, OP_Close);
  }

  /* Normal (non-error) return. */
  return;

Changes to src/dbstat.c.

12
13
14
15
16
17
18



19
20
21
22
23
24
25
..
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
..
98
99
100
101
102
103
104

105
106
107
108
109
110
111
...
175
176
177
178
179
180
181
182



183
184




















185
186
187
188
189
190
191
...
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
...
261
262
263
264
265
266
267

268
269
270
271
272
273
274
...
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
...
561
562
563
564
565
566
567




568











569

















570


571
572
573
574
575
576
577
...
600
601
602
603
604
605
606
607
608
609
610






611
612
613
614
615
616
617
**
** This file contains an implementation of the "dbstat" virtual table.
**
** The dbstat virtual table is used to extract low-level formatting
** information from an SQLite database in order to implement the
** "sqlite3_analyzer" utility.  See the ../tool/spaceanal.tcl script
** for an example implementation.



*/

#include "sqliteInt.h"   /* Requires access to internal data structures */
#if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \
    && !defined(SQLITE_OMIT_VIRTUALTABLE)

/*
................................................................................
  "  pageno     INTEGER,          /* Page number */"                        \
  "  pagetype   STRING,           /* 'internal', 'leaf' or 'overflow' */"   \
  "  ncell      INTEGER,          /* Cells on page (0 for overflow) */"     \
  "  payload    INTEGER,          /* Bytes of payload on this page */"      \
  "  unused     INTEGER,          /* Bytes of unused space on this page */" \
  "  mx_payload INTEGER,          /* Largest payload size of all cells */"  \
  "  pgoffset   INTEGER,          /* Offset of page in file */"             \
  "  pgsize     INTEGER           /* Size of the page */"                   \

  ");"


typedef struct StatTable StatTable;
typedef struct StatCursor StatCursor;
typedef struct StatPage StatPage;
typedef struct StatCell StatCell;
................................................................................
  int nMxPayload;                 /* Largest payload of any cell on this page */
};

struct StatCursor {
  sqlite3_vtab_cursor base;
  sqlite3_stmt *pStmt;            /* Iterates through set of root pages */
  int isEof;                      /* After pStmt has returned SQLITE_DONE */


  StatPage aPage[32];
  int iPage;                      /* Current entry in aPage[] */

  /* Values to return. */
  char *zName;                    /* Value of 'name' column */
  char *zPath;                    /* Value of 'path' column */
................................................................................
static int statDisconnect(sqlite3_vtab *pVtab){
  sqlite3_free(pVtab);
  return SQLITE_OK;
}

/*
** There is no "best-index". This virtual table always does a linear
** scan of the binary VFS log file.



*/
static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){





















  /* Records are always returned in ascending order of (name, path). 
  ** If this will satisfy the client, set the orderByConsumed flag so that 
  ** SQLite does not do an external sort.
  */
  if( ( pIdxInfo->nOrderBy==1
     && pIdxInfo->aOrderBy[0].iColumn==0
................................................................................
     && pIdxInfo->aOrderBy[1].iColumn==1
     && pIdxInfo->aOrderBy[1].desc==0
     )
  ){
    pIdxInfo->orderByConsumed = 1;
  }

  pIdxInfo->estimatedCost = 10.0;
  return SQLITE_OK;
}

/*
** Open a new statvfs cursor.
*/
static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  StatTable *pTab = (StatTable *)pVTab;
  StatCursor *pCsr;
  int rc;

  pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor));
  if( pCsr==0 ){
    rc = SQLITE_NOMEM;
  }else{
    char *zSql;
    memset(pCsr, 0, sizeof(StatCursor));
    pCsr->base.pVtab = pVTab;

    zSql = sqlite3_mprintf(
        "SELECT 'sqlite_master' AS name, 1 AS rootpage, 'table' AS type"
        "  UNION ALL  "
        "SELECT name, rootpage, type"
        "  FROM \"%w\".sqlite_master WHERE rootpage!=0"
        "  ORDER BY name", pTab->db->aDb[pTab->iDb].zName);
    if( zSql==0 ){
      rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
      sqlite3_free(zSql);
    }
    if( rc!=SQLITE_OK ){
      sqlite3_free(pCsr);
      pCsr = 0;
    }

  }

  *ppCursor = (sqlite3_vtab_cursor *)pCsr;
  return rc;
}

static void statClearPage(StatPage *p){
  int i;
  if( p->aCell ){
    for(i=0; i<p->nCell; i++){
      sqlite3_free(p->aCell[i].aOvfl);
................................................................................
  sqlite3_reset(pCsr->pStmt);
  for(i=0; i<ArraySize(pCsr->aPage); i++){
    statClearPage(&pCsr->aPage[i]);
  }
  pCsr->iPage = 0;
  sqlite3_free(pCsr->zPath);
  pCsr->zPath = 0;

}

/*
** Close a statvfs cursor.
*/
static int statClose(sqlite3_vtab_cursor *pCursor){
  StatCursor *pCsr = (StatCursor *)pCursor;
................................................................................
*/
static int statNext(sqlite3_vtab_cursor *pCursor){
  int rc;
  int nPayload;
  char *z;
  StatCursor *pCsr = (StatCursor *)pCursor;
  StatTable *pTab = (StatTable *)pCursor->pVtab;
  Btree *pBt = pTab->db->aDb[pTab->iDb].pBt;
  Pager *pPager = sqlite3BtreePager(pBt);

  sqlite3_free(pCsr->zPath);
  pCsr->zPath = 0;

statNextRestart:
  if( pCsr->aPage[0].pPg==0 ){
................................................................................

static int statFilter(
  sqlite3_vtab_cursor *pCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  StatCursor *pCsr = (StatCursor *)pCursor;
















  statResetCsr(pCsr);

















  return statNext(pCursor);


}

static int statColumn(
  sqlite3_vtab_cursor *pCursor, 
  sqlite3_context *ctx, 
  int i
){
................................................................................
      break;
    case 7:            /* mx_payload */
      sqlite3_result_int(ctx, pCsr->nMxPayload);
      break;
    case 8:            /* pgoffset */
      sqlite3_result_int64(ctx, pCsr->iOffset);
      break;
    default:           /* pgsize */
      assert( i==9 );
      sqlite3_result_int(ctx, pCsr->szPage);
      break;






  }
  return SQLITE_OK;
}

static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  StatCursor *pCsr = (StatCursor *)pCursor;
  *pRowid = pCsr->iPageno;







>
>
>







 







|
>







 







>







 







|
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







<









<



|

<


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
>



|







 







>







 







|







 







>
>
>
>

>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>







 







|
<


>
>
>
>
>
>







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
..
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
...
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
...
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
...
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240

241
242
243
244
245

246
247

















248
249
250
251
252
253
254
255
256
257
258
259
...
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
...
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
...
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
...
644
645
646
647
648
649
650
651

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
**
** This file contains an implementation of the "dbstat" virtual table.
**
** The dbstat virtual table is used to extract low-level formatting
** information from an SQLite database in order to implement the
** "sqlite3_analyzer" utility.  See the ../tool/spaceanal.tcl script
** for an example implementation.
**
** Additional information is available on the "dbstat.html" page of the
** official SQLite documentation.
*/

#include "sqliteInt.h"   /* Requires access to internal data structures */
#if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \
    && !defined(SQLITE_OMIT_VIRTUALTABLE)

/*
................................................................................
  "  pageno     INTEGER,          /* Page number */"                        \
  "  pagetype   STRING,           /* 'internal', 'leaf' or 'overflow' */"   \
  "  ncell      INTEGER,          /* Cells on page (0 for overflow) */"     \
  "  payload    INTEGER,          /* Bytes of payload on this page */"      \
  "  unused     INTEGER,          /* Bytes of unused space on this page */" \
  "  mx_payload INTEGER,          /* Largest payload size of all cells */"  \
  "  pgoffset   INTEGER,          /* Offset of page in file */"             \
  "  pgsize     INTEGER,          /* Size of the page */"                   \
  "  schema     TEXT HIDDEN       /* Database schema being analyzed */"     \
  ");"


typedef struct StatTable StatTable;
typedef struct StatCursor StatCursor;
typedef struct StatPage StatPage;
typedef struct StatCell StatCell;
................................................................................
  int nMxPayload;                 /* Largest payload of any cell on this page */
};

struct StatCursor {
  sqlite3_vtab_cursor base;
  sqlite3_stmt *pStmt;            /* Iterates through set of root pages */
  int isEof;                      /* After pStmt has returned SQLITE_DONE */
  int iDb;                        /* Schema used for this query */

  StatPage aPage[32];
  int iPage;                      /* Current entry in aPage[] */

  /* Values to return. */
  char *zName;                    /* Value of 'name' column */
  char *zPath;                    /* Value of 'path' column */
................................................................................
static int statDisconnect(sqlite3_vtab *pVtab){
  sqlite3_free(pVtab);
  return SQLITE_OK;
}

/*
** There is no "best-index". This virtual table always does a linear
** scan.  However, a schema=? constraint should cause this table to
** operate on a different database schema, so check for it.
**
** idxNum is normally 0, but will be 1 if a schema=? constraint exists.
*/
static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int i;

  pIdxInfo->estimatedCost = 1.0e6;  /* Initial cost estimate */

  /* Look for a valid schema=? constraint.  If found, change the idxNum to
  ** 1 and request the value of that constraint be sent to xFilter.  And
  ** lower the cost estimate to encourage the constrained version to be
  ** used.
  */
  for(i=0; i<pIdxInfo->nConstraint; i++){
    if( pIdxInfo->aConstraint[i].usable==0 ) continue;
    if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    if( pIdxInfo->aConstraint[i].iColumn!=10 ) continue;
    pIdxInfo->idxNum = 1;
    pIdxInfo->estimatedCost = 1.0;
    pIdxInfo->aConstraintUsage[i].argvIndex = 1;
    pIdxInfo->aConstraintUsage[i].omit = 1;
    break;
  }


  /* Records are always returned in ascending order of (name, path). 
  ** If this will satisfy the client, set the orderByConsumed flag so that 
  ** SQLite does not do an external sort.
  */
  if( ( pIdxInfo->nOrderBy==1
     && pIdxInfo->aOrderBy[0].iColumn==0
................................................................................
     && pIdxInfo->aOrderBy[1].iColumn==1
     && pIdxInfo->aOrderBy[1].desc==0
     )
  ){
    pIdxInfo->orderByConsumed = 1;
  }


  return SQLITE_OK;
}

/*
** Open a new statvfs cursor.
*/
static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  StatTable *pTab = (StatTable *)pVTab;
  StatCursor *pCsr;


  pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor));
  if( pCsr==0 ){
    return SQLITE_NOMEM;
  }else{

    memset(pCsr, 0, sizeof(StatCursor));
    pCsr->base.pVtab = pVTab;

















    pCsr->iDb = pTab->iDb;
  }

  *ppCursor = (sqlite3_vtab_cursor *)pCsr;
  return SQLITE_OK;
}

static void statClearPage(StatPage *p){
  int i;
  if( p->aCell ){
    for(i=0; i<p->nCell; i++){
      sqlite3_free(p->aCell[i].aOvfl);
................................................................................
  sqlite3_reset(pCsr->pStmt);
  for(i=0; i<ArraySize(pCsr->aPage); i++){
    statClearPage(&pCsr->aPage[i]);
  }
  pCsr->iPage = 0;
  sqlite3_free(pCsr->zPath);
  pCsr->zPath = 0;
  pCsr->isEof = 0;
}

/*
** Close a statvfs cursor.
*/
static int statClose(sqlite3_vtab_cursor *pCursor){
  StatCursor *pCsr = (StatCursor *)pCursor;
................................................................................
*/
static int statNext(sqlite3_vtab_cursor *pCursor){
  int rc;
  int nPayload;
  char *z;
  StatCursor *pCsr = (StatCursor *)pCursor;
  StatTable *pTab = (StatTable *)pCursor->pVtab;
  Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt;
  Pager *pPager = sqlite3BtreePager(pBt);

  sqlite3_free(pCsr->zPath);
  pCsr->zPath = 0;

statNextRestart:
  if( pCsr->aPage[0].pPg==0 ){
................................................................................

static int statFilter(
  sqlite3_vtab_cursor *pCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  StatCursor *pCsr = (StatCursor *)pCursor;
  StatTable *pTab = (StatTable*)(pCursor->pVtab);
  char *zSql;
  int rc = SQLITE_OK;
  char *zMaster;

  if( idxNum==1 ){
    const char *zDbase = (const char*)sqlite3_value_text(argv[0]);
    pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase);
    if( pCsr->iDb<0 ){
      sqlite3_free(pCursor->pVtab->zErrMsg);
      pCursor->pVtab->zErrMsg = sqlite3_mprintf("no such schema: %s", zDbase);
      return pCursor->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
    }
  }else{
    pCsr->iDb = pTab->iDb;
  }
  statResetCsr(pCsr);
  sqlite3_finalize(pCsr->pStmt);
  pCsr->pStmt = 0;
  zMaster = pCsr->iDb==1 ? "sqlite_temp_master" : "sqlite_master";
  zSql = sqlite3_mprintf(
      "SELECT 'sqlite_master' AS name, 1 AS rootpage, 'table' AS type"
      "  UNION ALL  "
      "SELECT name, rootpage, type"
      "  FROM \"%w\".%s WHERE rootpage!=0"
      "  ORDER BY name", pTab->db->aDb[pCsr->iDb].zName, zMaster);
  if( zSql==0 ){
    return SQLITE_NOMEM;
  }else{
    rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
    sqlite3_free(zSql);
  }

  if( rc==SQLITE_OK ){
    rc = statNext(pCursor);
  }
  return rc;
}

static int statColumn(
  sqlite3_vtab_cursor *pCursor, 
  sqlite3_context *ctx, 
  int i
){
................................................................................
      break;
    case 7:            /* mx_payload */
      sqlite3_result_int(ctx, pCsr->nMxPayload);
      break;
    case 8:            /* pgoffset */
      sqlite3_result_int64(ctx, pCsr->iOffset);
      break;
    case 9:            /* pgsize */

      sqlite3_result_int(ctx, pCsr->szPage);
      break;
    default: {          /* schema */
      sqlite3 *db = sqlite3_context_db_handle(ctx);
      int iDb = pCsr->iDb;
      sqlite3_result_text(ctx, db->aDb[iDb].zName, -1, SQLITE_STATIC);
      break;
    }
  }
  return SQLITE_OK;
}

static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  StatCursor *pCsr = (StatCursor *)pCursor;
  *pRowid = pCsr->iPageno;

Changes to src/expr.c.

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
....
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
  assert( zC!=0 );
  s.z = zC;
  s.n = sqlite3Strlen30(s.z);
  return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
}

/*
** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
** or likelihood() function at the root of an expression.
*/
Expr *sqlite3ExprSkipCollate(Expr *pExpr){
  while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
    if( ExprHasProperty(pExpr, EP_Unlikely) ){
      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      assert( pExpr->x.pList->nExpr>0 );
      assert( pExpr->op==TK_FUNCTION );
      pExpr = pExpr->x.pList->a[0].pExpr;
    }else{
      assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
      pExpr = pExpr->pLeft;
    }
  }   
  return pExpr;
}

/*
................................................................................
      }
      break;
    }
    case TK_REGISTER: {
      inReg = pExpr->iTable;
      break;
    }
    case TK_AS: {
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
      break;
    }
#ifndef SQLITE_OMIT_CAST
    case TK_CAST: {
      /* Expressions of the form:   CAST(pLeft AS token) */
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
      if( inReg!=target ){
        sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
        inReg = target;







|










|







 







<
<
<
<







87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
....
2697
2698
2699
2700
2701
2702
2703




2704
2705
2706
2707
2708
2709
2710
  assert( zC!=0 );
  s.z = zC;
  s.n = sqlite3Strlen30(s.z);
  return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
}

/*
** Skip over any TK_COLLATE operators and any unlikely()
** or likelihood() function at the root of an expression.
*/
Expr *sqlite3ExprSkipCollate(Expr *pExpr){
  while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
    if( ExprHasProperty(pExpr, EP_Unlikely) ){
      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      assert( pExpr->x.pList->nExpr>0 );
      assert( pExpr->op==TK_FUNCTION );
      pExpr = pExpr->x.pList->a[0].pExpr;
    }else{
      assert( pExpr->op==TK_COLLATE );
      pExpr = pExpr->pLeft;
    }
  }   
  return pExpr;
}

/*
................................................................................
      }
      break;
    }
    case TK_REGISTER: {
      inReg = pExpr->iTable;
      break;
    }




#ifndef SQLITE_OMIT_CAST
    case TK_CAST: {
      /* Expressions of the form:   CAST(pLeft AS token) */
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
      if( inReg!=target ){
        sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
        inReg = target;

Changes to src/lempar.c.

52
53
54
55
56
57
58
59
60
61
62









63
64
65
66
67
68
69
70
71
72
73
74
..
87
88
89
90
91
92
93
94
95
96
97

98



99
100
101
102
103
104
105
106
107
108
109
110
...
155
156
157
158
159
160
161




162
163
164
165
166
167
168
169
170
171
...
391
392
393
394
395
396
397

398
399
400
401
402
403
404
405
406
407
408
...
495
496
497
498
499
500
501






















502
503
504
505
506
507
508
509
...
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
...
570
571
572
573
574
575
576

577
578
579
580
581
582
583
584
585
...
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627

628
629
630
631
632
633
634
635
636
637
638
639
640
641
...
751
752
753
754
755
756
757
758

759
760
761
762
763
764
765
766
767
768
769
770
...
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
...
856
857
858
859
860
861
862





863
864
**                       for base tokens is called "yy0".
**    YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
**                       zero the stack is dynamically sized using realloc()
**    ParseARG_SDECL     A static variable declaration for the %extra_argument
**    ParseARG_PDECL     A parameter declaration for the %extra_argument
**    ParseARG_STORE     Code to store %extra_argument into yypParser
**    ParseARG_FETCH     Code to extract %extra_argument from yypParser
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.









*/
%%
#define YY_NO_ACTION      (YYNSTATE+YYNRULE+2)
#define YY_ACCEPT_ACTION  (YYNSTATE+YYNRULE+1)
#define YY_ERROR_ACTION   (YYNSTATE+YYNRULE)

/* The yyzerominor constant is used to initialize instances of
** YYMINORTYPE objects to zero. */
static const YYMINORTYPE yyzerominor = { 0 };

/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.
................................................................................
** current state and lookahead token.  These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.  
**
** Suppose the action integer is N.  Then the action is determined as
** follows
**
**   0 <= N < YYNSTATE                  Shift N.  That is, push the lookahead
**                                      token onto the stack and goto state N.
**
**   YYNSTATE <= N < YYNSTATE+YYNRULE   Reduce by rule N-YYNSTATE.

**



**   N == YYNSTATE+YYNRULE              A syntax error has occurred.
**
**   N == YYNSTATE+YYNRULE+1            The parser accepts its input.
**
**   N == YYNSTATE+YYNRULE+2            No such action.  Denotes unused
**                                      slots in the yy_action[] table.
**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as
**
**      yy_action[ yy_shift_ofst[S] + X ]
**
................................................................................
**
**   +  The value of the token stored at this level of the stack.
**      (In other words, the "major" token.)
**
**   +  The semantic value stored at this level of the stack.  This is
**      the information used by the action routines in the grammar.
**      It is sometimes called the "minor" token.




*/
struct yyStackEntry {
  YYACTIONTYPE stateno;  /* The state-number */
  YYCODETYPE major;      /* The major token value.  This is the code
                         ** number for the token at this stack level */
  YYMINORTYPE minor;     /* The user-supplied minor token value.  This
                         ** is the value of the token  */
};
typedef struct yyStackEntry yyStackEntry;

................................................................................
static int yy_find_shift_action(
  yyParser *pParser,        /* The parser */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
  int stateno = pParser->yystack[pParser->yyidx].stateno;
 

  if( stateno>YY_SHIFT_COUNT
   || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
    return yy_default[stateno];
  }
  assert( iLookAhead!=YYNOCODE );
  i += iLookAhead;
  if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
    if( iLookAhead>0 ){
#ifdef YYFALLBACK
      YYCODETYPE iFallback;            /* Fallback token */
      if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
................................................................................
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
%%
   ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*






















** Perform a shift action.
*/
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */
  int yyNewState,               /* The new state to shift in */
  int yyMajor,                  /* The major token to shift in */
  YYMINORTYPE *yypMinor         /* Pointer to the minor token to shift in */
){
................................................................................
    }
  }
#endif
  yytos = &yypParser->yystack[yypParser->yyidx];
  yytos->stateno = (YYACTIONTYPE)yyNewState;
  yytos->major = (YYCODETYPE)yyMajor;
  yytos->minor = *yypMinor;
#ifndef NDEBUG
  if( yyTraceFILE && yypParser->yyidx>0 ){
    int i;
    fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
    fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
    for(i=1; i<=yypParser->yyidx; i++)
      fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
    fprintf(yyTraceFILE,"\n");
  }
#endif
}

/* The following table contains information about every rule that
** is used during the reduce.
*/
static const struct {
  YYCODETYPE lhs;         /* Symbol on the left-hand side of the rule */
................................................................................
  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  ParseARG_FETCH;
  yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno>=0 
        && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){

    fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
      yyRuleName[yyruleno]);
  }
#endif /* NDEBUG */

  /* Silence complaints from purify about yygotominor being uninitialized
  ** in some cases when it is copied into the stack after the following
  ** switch.  yygotominor is uninitialized when a rule reduces that does
  ** not set the value of its left-hand side nonterminal.  Leaving the
................................................................................
%%
  };
  assert( yyruleno>=0 && yyruleno<sizeof(yyRuleInfo)/sizeof(yyRuleInfo[0]) );
  yygoto = yyRuleInfo[yyruleno].lhs;
  yysize = yyRuleInfo[yyruleno].nrhs;
  yypParser->yyidx -= yysize;
  yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
  if( yyact < YYNSTATE ){
#ifdef NDEBUG
    /* If we are not debugging and the reduce action popped at least
    ** one element off the stack, then we can push the new element back
    ** onto the stack here, and skip the stack overflow test in yy_shift().
    ** That gives a significant speed improvement. */
    if( yysize ){
      yypParser->yyidx++;
      yymsp -= yysize-1;
      yymsp->stateno = (YYACTIONTYPE)yyact;
      yymsp->major = (YYCODETYPE)yygoto;
      yymsp->minor = yygotominor;

    }else
#endif
    {
      yy_shift(yypParser,yyact,yygoto,&yygotominor);
    }
  }else{
    assert( yyact == YYNSTATE + YYNRULE + 1 );
    yy_accept(yypParser);
  }
}

/*
** The following code executes when the parse fails
*/
................................................................................
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
  }
#endif

  do{
    yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
    if( yyact<YYNSTATE ){

      yy_shift(yypParser,yyact,yymajor,&yyminorunion);
      yypParser->yyerrcnt--;
      yymajor = YYNOCODE;
    }else if( yyact < YYNSTATE + YYNRULE ){
      yy_reduce(yypParser,yyact-YYNSTATE);
    }else{
      assert( yyact == YY_ERROR_ACTION );
#ifdef YYERRORSYMBOL
      int yymx;
#endif
#ifndef NDEBUG
      if( yyTraceFILE ){
................................................................................
        yymajor = YYNOCODE;
      }else{
         while(
          yypParser->yyidx >= 0 &&
          yymx != YYERRORSYMBOL &&
          (yyact = yy_find_reduce_action(
                        yypParser->yystack[yypParser->yyidx].stateno,
                        YYERRORSYMBOL)) >= YYNSTATE
        ){
          yy_pop_parser_stack(yypParser);
        }
        if( yypParser->yyidx < 0 || yymajor==0 ){
          yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
          yy_parse_failed(yypParser);
          yymajor = YYNOCODE;
................................................................................
      if( yyendofinput ){
        yy_parse_failed(yypParser);
      }
      yymajor = YYNOCODE;
#endif
    }
  }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );





  return;
}







<
<


>
>
>
>
>
>
>
>
>


<
<
<







 







|


|
>

>
>
>
|

|

|







 







>
>
>
>


|







 







>
|
|
|
<







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







 







|
<
<
<
<
<
<
<
<
<







 







>
|
|







 







|
|
|









>
|
<
<



|







 







|
>



|
|







 







|







 







>
>
>
>
>


52
53
54
55
56
57
58


59
60
61
62
63
64
65
66
67
68
69
70
71



72
73
74
75
76
77
78
..
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
...
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
...
403
404
405
406
407
408
409
410
411
412
413

414
415
416
417
418
419
420
...
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
...
562
563
564
565
566
567
568
569









570
571
572
573
574
575
576
...
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
...
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655


656
657
658
659
660
661
662
663
664
665
666
...
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
...
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
...
882
883
884
885
886
887
888
889
890
891
892
893
894
895
**                       for base tokens is called "yy0".
**    YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
**                       zero the stack is dynamically sized using realloc()
**    ParseARG_SDECL     A static variable declaration for the %extra_argument
**    ParseARG_PDECL     A parameter declaration for the %extra_argument
**    ParseARG_STORE     Code to store %extra_argument into yypParser
**    ParseARG_FETCH     Code to extract %extra_argument from yypParser


**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YY_MAX_SHIFT       Maximum value for shift actions
**    YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    YY_MIN_REDUCE      Maximum value for reduce actions
**    YY_ERROR_ACTION    The yy_action[] code for syntax error
**    YY_ACCEPT_ACTION   The yy_action[] code for accept
**    YY_NO_ACTION       The yy_action[] code for no-op
*/
%%




/* The yyzerominor constant is used to initialize instances of
** YYMINORTYPE objects to zero. */
static const YYMINORTYPE yyzerominor = { 0 };

/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.
................................................................................
** current state and lookahead token.  These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.  
**
** Suppose the action integer is N.  Then the action is determined as
** follows
**
**   0 <= N <= YY_MAX_SHIFT             Shift N.  That is, push the lookahead
**                                      token onto the stack and goto state N.
**
**   N between YY_MIN_SHIFTREDUCE       Shift to an arbitrary state then
**     and YY_MAX_SHIFTREDUCE           reduce by rule N-YY_MIN_SHIFTREDUCE.
**
**   N between YY_MIN_REDUCE            Reduce by rule N-YY_MIN_REDUCE
**     and YY_MAX_REDUCE

**   N == YY_ERROR_ACTION               A syntax error has occurred.
**
**   N == YY_ACCEPT_ACTION              The parser accepts its input.
**
**   N == YY_NO_ACTION                  No such action.  Denotes unused
**                                      slots in the yy_action[] table.
**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as
**
**      yy_action[ yy_shift_ofst[S] + X ]
**
................................................................................
**
**   +  The value of the token stored at this level of the stack.
**      (In other words, the "major" token.)
**
**   +  The semantic value stored at this level of the stack.  This is
**      the information used by the action routines in the grammar.
**      It is sometimes called the "minor" token.
**
** After the "shift" half of a SHIFTREDUCE action, the stateno field
** actually contains the reduce action for the second half of the
** SHIFTREDUCE.
*/
struct yyStackEntry {
  YYACTIONTYPE stateno;  /* The state-number, or reduce action in SHIFTREDUCE */
  YYCODETYPE major;      /* The major token value.  This is the code
                         ** number for the token at this stack level */
  YYMINORTYPE minor;     /* The user-supplied minor token value.  This
                         ** is the value of the token  */
};
typedef struct yyStackEntry yyStackEntry;

................................................................................
static int yy_find_shift_action(
  yyParser *pParser,        /* The parser */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
  int stateno = pParser->yystack[pParser->yyidx].stateno;
 
  if( stateno>=YY_MIN_REDUCE ) return stateno;
  assert( stateno <= YY_SHIFT_COUNT );
  i = yy_shift_ofst[stateno];
  if( i==YY_SHIFT_USE_DFLT ) return yy_default[stateno];

  assert( iLookAhead!=YYNOCODE );
  i += iLookAhead;
  if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
    if( iLookAhead>0 ){
#ifdef YYFALLBACK
      YYCODETYPE iFallback;            /* Fallback token */
      if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
................................................................................
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
%%
   ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void yyTraceShift(yyParser *yypParser, int yyNewState){
  if( yyTraceFILE ){
    int i;
    if( yyNewState<YYNSTATE ){
      fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
      fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
      for(i=1; i<=yypParser->yyidx; i++)
        fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
      fprintf(yyTraceFILE,"\n");
    }else{
      fprintf(yyTraceFILE,"%sShift *\n",yyTracePrompt);
    }
  }
}
#else
# define yyTraceShift(X,Y)
#endif

/*
** Perform a shift action.  Return the number of errors.
*/
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */
  int yyNewState,               /* The new state to shift in */
  int yyMajor,                  /* The major token to shift in */
  YYMINORTYPE *yypMinor         /* Pointer to the minor token to shift in */
){
................................................................................
    }
  }
#endif
  yytos = &yypParser->yystack[yypParser->yyidx];
  yytos->stateno = (YYACTIONTYPE)yyNewState;
  yytos->major = (YYCODETYPE)yyMajor;
  yytos->minor = *yypMinor;
  yyTraceShift(yypParser, yyNewState);









}

/* The following table contains information about every rule that
** is used during the reduce.
*/
static const struct {
  YYCODETYPE lhs;         /* Symbol on the left-hand side of the rule */
................................................................................
  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  ParseARG_FETCH;
  yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno>=0 
        && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
    yysize = yyRuleInfo[yyruleno].nrhs;
    fprintf(yyTraceFILE, "%sReduce [%s] -> state %d.\n", yyTracePrompt,
      yyRuleName[yyruleno], yymsp[-yysize].stateno);
  }
#endif /* NDEBUG */

  /* Silence complaints from purify about yygotominor being uninitialized
  ** in some cases when it is copied into the stack after the following
  ** switch.  yygotominor is uninitialized when a rule reduces that does
  ** not set the value of its left-hand side nonterminal.  Leaving the
................................................................................
%%
  };
  assert( yyruleno>=0 && yyruleno<sizeof(yyRuleInfo)/sizeof(yyRuleInfo[0]) );
  yygoto = yyRuleInfo[yyruleno].lhs;
  yysize = yyRuleInfo[yyruleno].nrhs;
  yypParser->yyidx -= yysize;
  yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
  if( yyact <= YY_MAX_SHIFTREDUCE ){
    if( yyact>YY_MAX_SHIFT ) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
    /* If the reduce action popped at least
    ** one element off the stack, then we can push the new element back
    ** onto the stack here, and skip the stack overflow test in yy_shift().
    ** That gives a significant speed improvement. */
    if( yysize ){
      yypParser->yyidx++;
      yymsp -= yysize-1;
      yymsp->stateno = (YYACTIONTYPE)yyact;
      yymsp->major = (YYCODETYPE)yygoto;
      yymsp->minor = yygotominor;
      yyTraceShift(yypParser, yyact);
    }else{


      yy_shift(yypParser,yyact,yygoto,&yygotominor);
    }
  }else{
    assert( yyact == YY_ACCEPT_ACTION );
    yy_accept(yypParser);
  }
}

/*
** The following code executes when the parse fails
*/
................................................................................
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
  }
#endif

  do{
    yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
    if( yyact <= YY_MAX_SHIFTREDUCE ){
      if( yyact > YY_MAX_SHIFT ) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
      yy_shift(yypParser,yyact,yymajor,&yyminorunion);
      yypParser->yyerrcnt--;
      yymajor = YYNOCODE;
    }else if( yyact <= YY_MAX_REDUCE ){
      yy_reduce(yypParser,yyact-YY_MIN_REDUCE);
    }else{
      assert( yyact == YY_ERROR_ACTION );
#ifdef YYERRORSYMBOL
      int yymx;
#endif
#ifndef NDEBUG
      if( yyTraceFILE ){
................................................................................
        yymajor = YYNOCODE;
      }else{
         while(
          yypParser->yyidx >= 0 &&
          yymx != YYERRORSYMBOL &&
          (yyact = yy_find_reduce_action(
                        yypParser->yystack[yypParser->yyidx].stateno,
                        YYERRORSYMBOL)) >= YY_MIN_REDUCE
        ){
          yy_pop_parser_stack(yypParser);
        }
        if( yypParser->yyidx < 0 || yymajor==0 ){
          yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
          yy_parse_failed(yypParser);
          yymajor = YYNOCODE;
................................................................................
      if( yyendofinput ){
        yy_parse_failed(yypParser);
      }
      yymajor = YYNOCODE;
#endif
    }
  }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sReturn\n",yyTracePrompt);
  }
#endif
  return;
}

Changes to src/malloc.c.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
..
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122


123
124
125
126
127
128



129
130
131
132
133
134
135
136
137
138


139
140
141
142
143
144
145
146
147
148

149

150
151
152


153
154
155
156
157
158
159
...
235
236
237
238
239
240
241










242
243
244
245
246
247
248
249
250
251
252
253








254
255
256
257

258
259
260
261
262
263
264
...
533
534
535
536
537
538
539
540



541
542
543
544
545
546
547
548
549
550
551
552
553
554
} ScratchFreeslot;

/*
** State information local to the memory allocation subsystem.
*/
static SQLITE_WSD struct Mem0Global {
  sqlite3_mutex *mutex;         /* Mutex to serialize access */
  sqlite3_int64 alarmThreshold;  /* The soft heap limit */

  /*
  ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
  ** (so that a range test can be used to determine if an allocation
  ** being freed came from pScratch) and a pointer to the list of
  ** unused scratch allocations.
  */
................................................................................
/*
** Return the memory allocator mutex. sqlite3_status() needs it.
*/
sqlite3_mutex *sqlite3MallocMutex(void){
  return mem0.mutex;
}

/*
** Return the amount of memory currently in use.
*/
static sqlite3_int64 memInUse(void){
  assert( sqlite3_mutex_held(mem0.mutex) );
  return sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
}

/*
** Called when the soft heap limit is exceeded for an allocation
** of nBytes.
*/
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
static void sqlite3HeapLimitExceeded(int nByte){
  sqlite3_int64 excess = memInUse() + nByte - mem0.alarmThreshold;
  sqlite3_mutex_leave(mem0.mutex);
  sqlite3_release_memory((int)(excess & 0x7fffffff));
  sqlite3_mutex_enter(mem0.mutex);
}
#else
# define sqlite3HeapLimitExceeded(X)  /* no-op */
#endif

/*
** Check to see if increasing the total memory usage by nNew bytes
** will exceed the soft heap limit.  
**
** If the soft heap limit is exceeded, set the mem0.nearlyFull flag
** and invoke sqlite3HeapLimitExceeded() to try to free up some
** memory.
*/
static void sqlite3CheckSoftHeapLimit(int nNew){
  assert( sqlite3_mutex_held(mem0.mutex) );
  if( mem0.alarmThreshold>0 ){
    if( mem0.alarmThreshold-nNew >= memInUse() ){
      mem0.nearlyFull = 1;
      sqlite3HeapLimitExceeded(nNew);
    }else{
      mem0.nearlyFull = 0;
    }
  }
}

#ifndef SQLITE_OMIT_DEPRECATED
/*
** Deprecated external interface.  First deprecated 2007-11-05.  Changed
** into a no-op on 2015-09-02.


*/
int sqlite3_memory_alarm(
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
  void *pArg,
  sqlite3_int64 iThreshold
){



  return SQLITE_OK;
}
#endif

/*
** Set the soft heap-size limit for the library. Passing a zero or 
** negative value indicates no limit.
*/
sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
  sqlite3_int64 priorLimit;


#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return -1;
#endif
  sqlite3_mutex_enter(mem0.mutex);
  priorLimit = mem0.alarmThreshold;
  if( n>0 ){
    mem0.alarmThreshold = n;
    sqlite3CheckSoftHeapLimit(0);
  }else if( n==0 ){

    mem0.alarmThreshold = 0;

    mem0.nearlyFull = 0;
  }
  sqlite3_mutex_leave(mem0.mutex);


  return priorLimit;
}
void sqlite3_soft_heap_limit(int n){
  if( n<0 ) n = 0;
  sqlite3_soft_heap_limit64(n);
}

................................................................................
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
  sqlite3_int64 res, mx;
  sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
  return mx;
}











/*
** Do a memory allocation with statistics and alarms.  Assume the
** lock is already held.
*/
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;
  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
  sqlite3CheckSoftHeapLimit(nFull);








  p = sqlite3GlobalConfig.m.xMalloc(nFull);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  if( p==0 && mem0.alarmThreshold ){
    sqlite3HeapLimitExceeded(nFull);

    p = sqlite3GlobalConfig.m.xMalloc(nFull);
  }
#endif
  if( p ){
    nFull = sqlite3MallocSize(p);
    sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
................................................................................
  nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    sqlite3CheckSoftHeapLimit(nDiff);



    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
    if( pNew==0 && mem0.alarmThreshold ){
      sqlite3HeapLimitExceeded((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
#endif
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);







|







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


|
<
>
>






>
>
>










>
>






|
|
|
<
>
|
>
|
<

>
>







 







>
>
>
>
>
>
>
>
>
>











|
>
>
>
>
>
>
>
>


|
<
>







 







|
>
>
>

<
|
|


<







41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
..
69
70
71
72
73
74
75











































76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114

115
116
117
118
119
120
121
122
123
124
...
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
...
516
517
518
519
520
521
522
523
524
525
526
527

528
529
530
531

532
533
534
535
536
537
538
} ScratchFreeslot;

/*
** State information local to the memory allocation subsystem.
*/
static SQLITE_WSD struct Mem0Global {
  sqlite3_mutex *mutex;         /* Mutex to serialize access */
  sqlite3_int64 alarmThreshold; /* The soft heap limit */

  /*
  ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
  ** (so that a range test can be used to determine if an allocation
  ** being freed came from pScratch) and a pointer to the list of
  ** unused scratch allocations.
  */
................................................................................
/*
** Return the memory allocator mutex. sqlite3_status() needs it.
*/
sqlite3_mutex *sqlite3MallocMutex(void){
  return mem0.mutex;
}












































#ifndef SQLITE_OMIT_DEPRECATED
/*
** Deprecated external interface.  It used to set an alarm callback

** that was invoked when memory usage grew too large.  Now it is a
** no-op.
*/
int sqlite3_memory_alarm(
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
  void *pArg,
  sqlite3_int64 iThreshold
){
  (void)xCallback;
  (void)pArg;
  (void)iThreshold;
  return SQLITE_OK;
}
#endif

/*
** Set the soft heap-size limit for the library. Passing a zero or 
** negative value indicates no limit.
*/
sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
  sqlite3_int64 priorLimit;
  sqlite3_int64 excess;
  sqlite3_int64 nUsed;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return -1;
#endif
  sqlite3_mutex_enter(mem0.mutex);
  priorLimit = mem0.alarmThreshold;
  if( n<0 ){
    sqlite3_mutex_leave(mem0.mutex);
    return priorLimit;

  }
  mem0.alarmThreshold = n;
  nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
  mem0.nearlyFull = (n>0 && n<=nUsed);

  sqlite3_mutex_leave(mem0.mutex);
  excess = sqlite3_memory_used() - n;
  if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
  return priorLimit;
}
void sqlite3_soft_heap_limit(int n){
  if( n<0 ) n = 0;
  sqlite3_soft_heap_limit64(n);
}

................................................................................
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
  sqlite3_int64 res, mx;
  sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
  return mx;
}

/*
** Trigger the alarm 
*/
static void sqlite3MallocAlarm(int nByte){
  if( mem0.alarmThreshold<=0 ) return;
  sqlite3_mutex_leave(mem0.mutex);
  sqlite3_release_memory(nByte);
  sqlite3_mutex_enter(mem0.mutex);
}

/*
** Do a memory allocation with statistics and alarms.  Assume the
** lock is already held.
*/
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;
  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmThreshold>0 ){
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;
      sqlite3MallocAlarm(nFull);
    }else{
      mem0.nearlyFull = 0;
    }
  }
  p = sqlite3GlobalConfig.m.xMalloc(nFull);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  if( p==0 && mem0.alarmThreshold>0 ){

    sqlite3MallocAlarm(nFull);
    p = sqlite3GlobalConfig.m.xMalloc(nFull);
  }
#endif
  if( p ){
    nFull = sqlite3MallocSize(p);
    sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
................................................................................
  nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
    }
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);

    if( pNew==0 && mem0.alarmThreshold>0 ){
      sqlite3MallocAlarm((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }

    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);

Changes to src/mutex.c.

49
50
51
52
53
54
55

56
57
58
59
60
61
62
    pTo->xMutexEnd = pFrom->xMutexEnd;
    pTo->xMutexFree = pFrom->xMutexFree;
    pTo->xMutexEnter = pFrom->xMutexEnter;
    pTo->xMutexTry = pFrom->xMutexTry;
    pTo->xMutexLeave = pFrom->xMutexLeave;
    pTo->xMutexHeld = pFrom->xMutexHeld;
    pTo->xMutexNotheld = pFrom->xMutexNotheld;

    pTo->xMutexAlloc = pFrom->xMutexAlloc;
  }
  rc = sqlite3GlobalConfig.mutex.xMutexInit();

#ifdef SQLITE_DEBUG
  GLOBAL(int, mutexIsInit) = 1;
#endif







>







49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    pTo->xMutexEnd = pFrom->xMutexEnd;
    pTo->xMutexFree = pFrom->xMutexFree;
    pTo->xMutexEnter = pFrom->xMutexEnter;
    pTo->xMutexTry = pFrom->xMutexTry;
    pTo->xMutexLeave = pFrom->xMutexLeave;
    pTo->xMutexHeld = pFrom->xMutexHeld;
    pTo->xMutexNotheld = pFrom->xMutexNotheld;
    sqlite3MemoryBarrier();
    pTo->xMutexAlloc = pFrom->xMutexAlloc;
  }
  rc = sqlite3GlobalConfig.mutex.xMutexInit();

#ifdef SQLITE_DEBUG
  GLOBAL(int, mutexIsInit) = 1;
#endif

Changes to src/mutex_unix.c.

75
76
77
78
79
80
81











82
83
84
85
86
87
88
static int pthreadMutexHeld(sqlite3_mutex *p){
  return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
}
static int pthreadMutexNotheld(sqlite3_mutex *p){
  return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
}
#endif












/*
** Initialize and deinitialize the mutex subsystem.
*/
static int pthreadMutexInit(void){ return SQLITE_OK; }
static int pthreadMutexEnd(void){ return SQLITE_OK; }








>
>
>
>
>
>
>
>
>
>
>







75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
static int pthreadMutexHeld(sqlite3_mutex *p){
  return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
}
static int pthreadMutexNotheld(sqlite3_mutex *p){
  return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
}
#endif

/*
** Try to provide a memory barrier operation, needed for initialization only.
*/
void sqlite3MemoryBarrier(void){
#if defined(SQLITE_MEMORY_BARRIER)
  SQLITE_MEMORY_BARRIER;
#elif defined(__GNUC__)
  __sync_synchronize();
#endif
}

/*
** Initialize and deinitialize the mutex subsystem.
*/
static int pthreadMutexInit(void){ return SQLITE_OK; }
static int pthreadMutexEnd(void){ return SQLITE_OK; }

Changes to src/mutex_w32.c.

72
73
74
75
76
77
78













79
80
81
82
83
84
85
}

static int winMutexNotheld(sqlite3_mutex *p){
  DWORD tid = GetCurrentThreadId();
  return winMutexNotheld2(p, tid);
}
#endif














/*
** Initialize and deinitialize the mutex subsystem.
*/
static sqlite3_mutex winMutex_staticMutexes[] = {
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,







>
>
>
>
>
>
>
>
>
>
>
>
>







72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
}

static int winMutexNotheld(sqlite3_mutex *p){
  DWORD tid = GetCurrentThreadId();
  return winMutexNotheld2(p, tid);
}
#endif

/*
** Try to provide a memory barrier operation, needed for initialization only.
*/
void sqlite3MemoryBarrier(void){
#if defined(SQLITE_MEMORY_BARRIER)
  SQLITE_MEMORY_BARRIER;
#elif defined(__GNUC__)
  __sync_synchronize();
#else
  MemoryBarrier();
#endif
}

/*
** Initialize and deinitialize the mutex subsystem.
*/
static sqlite3_mutex winMutex_staticMutexes[] = {
  SQLITE3_MUTEX_INITIALIZER,
  SQLITE3_MUTEX_INITIALIZER,

Changes to src/pcache1.c.

1189
1190
1191
1192
1193
1194
1195
1196

1197
1198
1199
1200
1201
1202
1203
  int nFree = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  assert( sqlite3_mutex_notheld(pcache1.mutex) );
  if( sqlite3GlobalConfig.nPage==0 ){
    PgHdr1 *p;
    pcache1EnterMutex(&pcache1.grp);
    while( (nReq<0 || nFree<nReq)
       &&  (p=pcache1.grp.lru.pLruPrev)->isAnchor==0

    ){
      nFree += pcache1MemSize(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
      nFree += sqlite3MemSize(p);
#endif
      assert( p->isPinned==0 );
      pcache1PinPage(p);







|
>







1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
  int nFree = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  assert( sqlite3_mutex_notheld(pcache1.mutex) );
  if( sqlite3GlobalConfig.nPage==0 ){
    PgHdr1 *p;
    pcache1EnterMutex(&pcache1.grp);
    while( (nReq<0 || nFree<nReq)
       &&  (p=pcache1.grp.lru.pLruPrev)!=0
       &&  p->isAnchor==0
    ){
      nFree += pcache1MemSize(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
      nFree += sqlite3MemSize(p);
#endif
      assert( p->isPinned==0 );
      pcache1PinPage(p);

Changes to src/resolve.c.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
..
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
...
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
  }
}

/*
** Turn the pExpr expression into an alias for the iCol-th column of the
** result set in pEList.
**
** If the result set column is a simple column reference, then this routine
** makes an exact copy.  But for any other kind of expression, this
** routine make a copy of the result set column as the argument to the
** TK_AS operator.  The TK_AS operator causes the expression to be
** evaluated just once and then reused for each alias.
**
** The reason for suppressing the TK_AS term when the expression is a simple
** column reference is so that the column reference will be recognized as
** usable by indices within the WHERE clause processing logic. 
**
** The TK_AS operator is inhibited if zType[0]=='G'.  This means
** that in a GROUP BY clause, the expression is evaluated twice.  Hence:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY x
**
** Is equivalent to:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5
**
** The result of random()%5 in the GROUP BY clause is probably different
** from the result in the result-set.  On the other hand Standard SQL does
** not allow the GROUP BY clause to contain references to result-set columns.
** So this should never come up in well-formed queries.
**
** If the reference is followed by a COLLATE operator, then make sure
** the COLLATE operator is preserved.  For example:
**
**     SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase;
**
** Should be transformed into:
**
................................................................................

  assert( iCol>=0 && iCol<pEList->nExpr );
  pOrig = pEList->a[iCol].pExpr;
  assert( pOrig!=0 );
  db = pParse->db;
  pDup = sqlite3ExprDup(db, pOrig, 0);
  if( pDup==0 ) return;
  if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){
    incrAggFunctionDepth(pDup, nSubquery);
    pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0);
    if( pDup==0 ) return;
    ExprSetProperty(pDup, EP_Skip);
    if( pEList->a[iCol].u.x.iAlias==0 ){
      pEList->a[iCol].u.x.iAlias = (u16)(++pParse->nAlias);
    }
    pDup->iTable = pEList->a[iCol].u.x.iAlias;
  }
  if( pExpr->op==TK_COLLATE ){
    pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken);
  }


  /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This 
  ** prevents ExprDelete() from deleting the Expr structure itself,
  ** allowing it to be repopulated by the memcpy() on the following line.
  ** The pExpr->u.zToken might point into memory that will be freed by the
  ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to
  ** make a copy of the token before doing the sqlite3DbFree().
................................................................................
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);
lookupname_end:
  if( cnt==1 ){
    assert( pNC!=0 );
    if( pExpr->op!=TK_AS ){
      sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    }
    /* Increment the nRef value on all name contexts from TopNC up to
    ** the point where the name matched. */
    for(;;){
      assert( pTopNC!=0 );
      pTopNC->nRef++;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







<
|
<
<
<
<
<
<
<
<



>







 







|







41
42
43
44
45
46
47
























48
49
50
51
52
53
54
..
74
75
76
77
78
79
80

81








82
83
84
85
86
87
88
89
90
91
92
...
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
  }
}

/*
** Turn the pExpr expression into an alias for the iCol-th column of the
** result set in pEList.
**
























** If the reference is followed by a COLLATE operator, then make sure
** the COLLATE operator is preserved.  For example:
**
**     SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase;
**
** Should be transformed into:
**
................................................................................

  assert( iCol>=0 && iCol<pEList->nExpr );
  pOrig = pEList->a[iCol].pExpr;
  assert( pOrig!=0 );
  db = pParse->db;
  pDup = sqlite3ExprDup(db, pOrig, 0);
  if( pDup==0 ) return;

  if( zType[0]!='G' ) incrAggFunctionDepth(pDup, nSubquery);








  if( pExpr->op==TK_COLLATE ){
    pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken);
  }
  ExprSetProperty(pDup, EP_Alias);

  /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This 
  ** prevents ExprDelete() from deleting the Expr structure itself,
  ** allowing it to be repopulated by the memcpy() on the following line.
  ** The pExpr->u.zToken might point into memory that will be freed by the
  ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to
  ** make a copy of the token before doing the sqlite3DbFree().
................................................................................
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);
lookupname_end:
  if( cnt==1 ){
    assert( pNC!=0 );
    if( !ExprHasProperty(pExpr, EP_Alias) ){
      sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    }
    /* Increment the nRef value on all name contexts from TopNC up to
    ** the point where the name matched. */
    for(;;){
      assert( pTopNC!=0 );
      pTopNC->nRef++;

Changes to src/sqlite3ext.h.

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
...
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
** This header file is also used by the loadext.c source file
** (part of the main SQLite library - not an extension) so that
** it can get access to the sqlite3_api_routines structure
** definition.  But the main library does not want to redefine
** the API.  So the redefinition macros are only valid if the
** SQLITE_CORE macros is undefined.
*/
#ifndef SQLITE_CORE
#define sqlite3_aggregate_context      sqlite3_api->aggregate_context
#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite3_aggregate_count        sqlite3_api->aggregate_count
#endif
#define sqlite3_bind_blob              sqlite3_api->bind_blob
#define sqlite3_bind_double            sqlite3_api->bind_double
#define sqlite3_bind_int               sqlite3_api->bind_int
................................................................................
#define sqlite3_result_text64          sqlite3_api->result_text64
#define sqlite3_strglob                sqlite3_api->strglob
/* Version 3.8.11 and later */
#define sqlite3_value_dup              sqlite3_api->value_dup
#define sqlite3_value_free             sqlite3_api->value_free
#define sqlite3_result_zeroblob64      sqlite3_api->result_zeroblob64
#define sqlite3_bind_zeroblob64        sqlite3_api->bind_zeroblob64
#endif /* SQLITE_CORE */

#ifndef SQLITE_CORE
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;
# define SQLITE_EXTENSION_INIT3     \
    extern const sqlite3_api_routines *sqlite3_api;
#else







|







 







|

|







281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
...
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
** This header file is also used by the loadext.c source file
** (part of the main SQLite library - not an extension) so that
** it can get access to the sqlite3_api_routines structure
** definition.  But the main library does not want to redefine
** the API.  So the redefinition macros are only valid if the
** SQLITE_CORE macros is undefined.
*/
#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
#define sqlite3_aggregate_context      sqlite3_api->aggregate_context
#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite3_aggregate_count        sqlite3_api->aggregate_count
#endif
#define sqlite3_bind_blob              sqlite3_api->bind_blob
#define sqlite3_bind_double            sqlite3_api->bind_double
#define sqlite3_bind_int               sqlite3_api->bind_int
................................................................................
#define sqlite3_result_text64          sqlite3_api->result_text64
#define sqlite3_strglob                sqlite3_api->strglob
/* Version 3.8.11 and later */
#define sqlite3_value_dup              sqlite3_api->value_dup
#define sqlite3_value_free             sqlite3_api->value_free
#define sqlite3_result_zeroblob64      sqlite3_api->result_zeroblob64
#define sqlite3_bind_zeroblob64        sqlite3_api->bind_zeroblob64
#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */

#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;
# define SQLITE_EXTENSION_INIT3     \
    extern const sqlite3_api_routines *sqlite3_api;
#else

Changes to src/sqliteInt.h.

2131
2132
2133
2134
2135
2136
2137

2138
2139
2140
2141
2142
2143
2144
....
3186
3187
3188
3189
3190
3191
3192





3193
3194
3195
3196
3197
3198
3199
#define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
#define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
#define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
#define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
#define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */
#define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
#define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */


/*
** Combinations of two or more EP_* flags
*/
#define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */

/*
................................................................................

#ifndef SQLITE_MUTEX_OMIT
  sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
  sqlite3_mutex_methods const *sqlite3NoopMutex(void);
  sqlite3_mutex *sqlite3MutexAlloc(int);
  int sqlite3MutexInit(void);
  int sqlite3MutexEnd(void);





#endif

sqlite3_int64 sqlite3StatusValue(int);
void sqlite3StatusUp(int, int);
void sqlite3StatusDown(int, int);
void sqlite3StatusSet(int, int);








>







 







>
>
>
>
>







2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
....
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
#define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
#define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
#define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
#define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
#define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */
#define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
#define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */
#define EP_Alias     0x400000 /* Is an alias for a result set column */

/*
** Combinations of two or more EP_* flags
*/
#define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */

/*
................................................................................

#ifndef SQLITE_MUTEX_OMIT
  sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
  sqlite3_mutex_methods const *sqlite3NoopMutex(void);
  sqlite3_mutex *sqlite3MutexAlloc(int);
  int sqlite3MutexInit(void);
  int sqlite3MutexEnd(void);
#endif
#if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP)
  void sqlite3MemoryBarrier(void);
#else
# define sqlite3MemoryBarrier();
#endif

sqlite3_int64 sqlite3StatusValue(int);
void sqlite3StatusUp(int, int);
void sqlite3StatusDown(int, int);
void sqlite3StatusSet(int, int);

Changes to src/tokenize.c.

399
400
401
402
403
404
405

406
407
408
409
410
411
412
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
  assert( pzErrMsg!=0 );

  pEngine = sqlite3ParserAlloc(sqlite3Malloc);
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );







>







399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
  assert( pzErrMsg!=0 );
  /* sqlite3ParserTrace(stdout, "parser: "); */
  pEngine = sqlite3ParserAlloc(sqlite3Malloc);
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );

Changes to src/treeview.c.

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
                          pExpr->u.zToken, pExpr->iColumn);
      break;
    }
    case TK_REGISTER: {
      sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
      break;
    }
    case TK_AS: {
      sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }
    case TK_ID: {
      sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken);
      break;
    }
#ifndef SQLITE_OMIT_CAST
    case TK_CAST: {
      /* Expressions of the form:   CAST(pLeft AS token) */







<
<
<
<
<







249
250
251
252
253
254
255





256
257
258
259
260
261
262
                          pExpr->u.zToken, pExpr->iColumn);
      break;
    }
    case TK_REGISTER: {
      sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
      break;
    }





    case TK_ID: {
      sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken);
      break;
    }
#ifndef SQLITE_OMIT_CAST
    case TK_CAST: {
      /* Expressions of the form:   CAST(pLeft AS token) */

Changes to src/vdbeapi.c.

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
** returns a copy of the pointer to the database connection (the 1st
** parameter) of the sqlite3_create_function() and
** sqlite3_create_function16() routines that originally registered the
** application defined function.
*/
sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
  assert( p && p->pFunc );
  return p->pOut->db;
}

/*
** Return the current time for a statement.  If the current time
** is requested more than once within the same run of a single prepared
** statement, the exact same time is returned for each invocation regardless







|







692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
** returns a copy of the pointer to the database connection (the 1st
** parameter) of the sqlite3_create_function() and
** sqlite3_create_function16() routines that originally registered the
** application defined function.
*/
sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
  assert( p && p->pOut );
  return p->pOut->db;
}

/*
** Return the current time for a statement.  If the current time
** is requested more than once within the same run of a single prepared
** statement, the exact same time is returned for each invocation regardless

Changes to src/wal.c.

2458
2459
2460
2461
2462
2463
2464

2465
2466
2467
2468
2469
2470
2471
2472
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* If expensive assert() statements are available, do a linear search
  ** of the wal-index file content. Make sure the results agree with the
  ** result obtained using the hash indexes above.  */
  {
    u32 iRead2 = 0;
    u32 iTest;

    for(iTest=iLast; iTest>0; iTest--){
      if( walFramePgno(pWal, iTest)==pgno ){
        iRead2 = iTest;
        break;
      }
    }
    assert( iRead==iRead2 );
  }







>
|







2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* If expensive assert() statements are available, do a linear search
  ** of the wal-index file content. Make sure the results agree with the
  ** result obtained using the hash indexes above.  */
  {
    u32 iRead2 = 0;
    u32 iTest;
    assert( pWal->minFrame>0 );
    for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
      if( walFramePgno(pWal, iTest)==pgno ){
        iRead2 = iTest;
        break;
      }
    }
    assert( iRead==iRead2 );
  }

Changes to src/where.c.

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
  WhereScan *pScan,       /* The WhereScan object being initialized */
  WhereClause *pWC,       /* The WHERE clause to be scanned */
  int iCur,               /* Cursor to scan for */
  int iColumn,            /* Column to scan for */
  u32 opMask,             /* Operator(s) to scan for */
  Index *pIdx             /* Must be compatible with this index */
){
  int j;

  /* memset(pScan, 0, sizeof(*pScan)); */
  pScan->pOrigWC = pWC;
  pScan->pWC = pWC;
  pScan->pIdxExpr = 0;
  if( pIdx ){
    j = iColumn;







|







267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
  WhereScan *pScan,       /* The WhereScan object being initialized */
  WhereClause *pWC,       /* The WHERE clause to be scanned */
  int iCur,               /* Cursor to scan for */
  int iColumn,            /* Column to scan for */
  u32 opMask,             /* Operator(s) to scan for */
  Index *pIdx             /* Must be compatible with this index */
){
  int j = 0;

  /* memset(pScan, 0, sizeof(*pScan)); */
  pScan->pOrigWC = pWC;
  pScan->pWC = pWC;
  pScan->pIdxExpr = 0;
  if( pIdx ){
    j = iColumn;

Changes to test/indexexpr1.test.

193
194
195
196
197
198
199
200





















201
    SELECT x, printf('ab%04xyz',x), random() FROM c;
  CREATE UNIQUE INDEX t3abc ON t3(CAST(a AS text), b, substr(c,1,3));
  SELECT a FROM t3 WHERE CAST(a AS text)<='10' ORDER BY +a;
} {1 10}
do_catchsql_test indexexpr1-410 {
  INSERT INTO t3 SELECT * FROM t3 WHERE rowid=10;
} {1 {UNIQUE constraint failed: index 't3abc'}}






















finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    SELECT x, printf('ab%04xyz',x), random() FROM c;
  CREATE UNIQUE INDEX t3abc ON t3(CAST(a AS text), b, substr(c,1,3));
  SELECT a FROM t3 WHERE CAST(a AS text)<='10' ORDER BY +a;
} {1 10}
do_catchsql_test indexexpr1-410 {
  INSERT INTO t3 SELECT * FROM t3 WHERE rowid=10;
} {1 {UNIQUE constraint failed: index 't3abc'}}

do_execsql_test indexexpr1-500 {
  CREATE TABLE t5(a);
  CREATE TABLE cnt(x);
  WITH RECURSIVE
    c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<5)
  INSERT INTO cnt(x) SELECT x FROM c;
  INSERT INTO t5(a) SELECT printf('abc%03dxyz',x) FROM cnt;
  CREATE INDEX t5ax ON t5( substr(a,4,3) );
} {}
do_execsql_test indexexpr1-510 {
  -- The use of the "k" alias in the WHERE clause is technically
  -- illegal, but SQLite allows it for historical reasons.  In this
  -- test and the next, verify that "k" can be used by the t5ax index
  SELECT substr(a,4,3) AS k FROM cnt, t5 WHERE k=printf('%03d',x);
} {001 002 003 004 005}
do_execsql_test indexexpr1-510eqp {
  EXPLAIN QUERY PLAN
  SELECT substr(a,4,3) AS k FROM cnt, t5 WHERE k=printf('%03d',x);
} {/USING INDEX t5ax/}


finish_test

Added test/json102.test.































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# 2015-08-12
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements tests for JSON SQL functions extension to the
# SQLite library.
#
# This file contains tests automatically generated from the json1
# documentation.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

load_static_extension db json
do_execsql_test json102-100 {
  SELECT json_array(1,2,'3',4);
} {{[1,2,"3",4]}}
do_execsql_test json102-110 {
  SELECT json_array('[1,2]');
} {{["[1,2]"]}}
do_execsql_test json102-120 {
  SELECT json_array(1,null,'3','[4,5]','{"six":7.7}');
} {{[1,null,"3","[4,5]","{\"six\":7.7}"]}}
do_execsql_test json102-130 {
  SELECT json_array_length('[1,2,3,4]');
} {{4}}
do_execsql_test json102-140 {
  SELECT json_array_length('{"one":[1,2,3]}');
} {{0}}
do_execsql_test json102-150 {
  SELECT json_array_length('{"one":[1,2,3]}', '$.one');
} {{3}}
do_execsql_test json102-160 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$');
} {{{"a":2,"c":[4,5,{"f":7}]}}}
do_execsql_test json102-170 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.c');
} {{[4,5,{"f":7}]}}
do_execsql_test json102-180 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.c[2]');
} {{{"f":7}}}
do_execsql_test json102-190 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.c[2].f');
} {{7}}
do_execsql_test json102-200 {
  SELECT json_extract('{"a":2,"c":[4,5],"f":7}','$.c','$.a');
} {{[[4,5],2]}}
do_execsql_test json102-210 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.x');
} {{}}
do_execsql_test json102-220 {
  SELECT json_insert('{"a":2,"c":4}', '$.a', 99);
} {{{"a":2,"c":4}}}
do_execsql_test json102-230 {
  SELECT json_insert('{"a":2,"c":4}', '$.e', 99);
} {{{"a":2,"c":4,"e":99}}}
do_execsql_test json102-240 {
  SELECT json_replace('{"a":2,"c":4}', '$.a', 99);
} {{{"a":99,"c":4}}}
do_execsql_test json102-250 {
  SELECT json_replace('{"a":2,"c":4}', '$.e', 99);
} {{{"a":2,"c":4}}}
do_execsql_test json102-260 {
  SELECT json_set('{"a":2,"c":4}', '$.a', 99);
} {{{"a":99,"c":4}}}
do_execsql_test json102-270 {
  SELECT json_set('{"a":2,"c":4}', '$.e', 99);
} {{{"a":2,"c":4,"e":99}}}
do_execsql_test json102-280 {
  SELECT json_object('a',2,'c',4);
} {{{"a":2,"c":4}}}
do_execsql_test json102-290 {
  SELECT json_object('a',2,'c','{e:5}');
} {{{"a":2,"c":"{e:5}"}}}
do_execsql_test json102-300 {
  SELECT json_remove('[0,1,2,3,4]','$[2]');
} {{[0,1,3,4]}}
do_execsql_test json102-310 {
  SELECT json_remove('[0,1,2,3,4]','$[2]','$[0]');
} {{[1,3,4]}}
do_execsql_test json102-320 {
  SELECT json_remove('[0,1,2,3,4]','$[0]','$[2]');
} {{[1,2,4]}}
do_execsql_test json102-330 {
  SELECT json_remove('{"x":25,"y":42}');
} {{{"x":25,"y":42}}}
do_execsql_test json102-340 {
  SELECT json_remove('{"x":25,"y":42}','$.z');
} {{{"x":25,"y":42}}}
do_execsql_test json102-350 {
  SELECT json_remove('{"x":25,"y":42}','$.y');
} {{{"x":25}}}
do_execsql_test json102-360 {
  SELECT json_remove('{"x":25,"y":42}','$');
} {{}}
do_execsql_test json102-370 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}');
} {{object}}
do_execsql_test json102-380 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$');
} {{object}}
do_execsql_test json102-390 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a');
} {{array}}
do_execsql_test json102-400 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[0]');
} {{integer}}
do_execsql_test json102-410 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[1]');
} {{real}}
do_execsql_test json102-420 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[2]');
} {{true}}
do_execsql_test json102-430 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[3]');
} {{false}}
do_execsql_test json102-440 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[4]');
} {{null}}
do_execsql_test json102-450 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[5]');
} {{text}}
do_execsql_test json102-460 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[6]');
} {{}}
do_execsql_test json102-470 {
  SELECT json_valid('{"x":35}');
} {{1}}
do_execsql_test json102-480 {
  SELECT json_valid('{"x":35'); -- }
} {{0}}

ifcapable vtab {
do_execsql_test json102-500 {
  CREATE TABLE user(name,phone);
  INSERT INTO user(name,phone) VALUES
     ('Alice','["919-555-2345","804-555-3621"]'),
     ('Bob','["201-555-8872"]'),
     ('Cindy','["704-555-9983"]'),
     ('Dave','["336-555-8421","704-555-4321","803-911-4421"]');
  SELECT DISTINCT user.name
    FROM user, json_each(user.phone)
   WHERE json_each.value LIKE '704-%'
   ORDER BY 1;
} {Cindy Dave}

do_execsql_test json102-510 {
  UPDATE user
     SET phone=json_extract(phone,'$[0]')
   WHERE json_array_length(phone)<2;
  SELECT name, substr(phone,1,5) FROM user ORDER BY name;
} {Alice {["919} Bob 201-5 Cindy 704-5 Dave {["336}}
do_execsql_test json102-511 {
  SELECT name FROM user WHERE phone LIKE '704-%'
  UNION
  SELECT user.name
    FROM user, json_each(user.phone)
   WHERE json_valid(user.phone)
     AND json_each.value LIKE '704-%';
} {Cindy Dave}

do_execsql_test json102-600 {
  CREATE TABLE big(json JSON);
  INSERT INTO big(json) VALUES('{
    "id":123,
    "stuff":[1,2,3,4],
    "partlist":[
       {"uuid":"bb108722-572e-11e5-9320-7f3b63a4ca74"},
       {"uuid":"c690dc14-572e-11e5-95f9-dfc8861fd535"},
       {"subassembly":[
          {"uuid":"6fa5181e-5721-11e5-a04e-57f3d7b32808"}
       ]}
    ]
  }');
  INSERT INTO big(json) VALUES('{
    "id":456,
    "stuff":["hello","world","xyzzy"],
    "partlist":[
       {"uuid":false},
       {"uuid":"c690dc14-572e-11e5-95f9-dfc8861fd535"}
    ]
  }');
} {}
set correct_answer [list \
    1 {$.id} 123 \
    1 {$.stuff[0]} 1 \
    1 {$.stuff[1]} 2 \
    1 {$.stuff[2]} 3 \
    1 {$.stuff[3]} 4 \
    1 {$.partlist[0].uuid} bb108722-572e-11e5-9320-7f3b63a4ca74 \
    1 {$.partlist[1].uuid} c690dc14-572e-11e5-95f9-dfc8861fd535 \
    1 {$.partlist[2].subassembly[0].uuid} 6fa5181e-5721-11e5-a04e-57f3d7b32808 \
    2 {$.id} 456 \
    2 {$.stuff[0]} hello \
    2 {$.stuff[1]} world \
    2 {$.stuff[2]} xyzzy \
    2 {$.partlist[0].uuid} 0 \
    2 {$.partlist[1].uuid} c690dc14-572e-11e5-95f9-dfc8861fd535]
do_execsql_test json102-610 {
  SELECT big.rowid, fullkey, value
    FROM big, json_tree(big.json)
   WHERE json_tree.type NOT IN ('object','array')
   ORDER BY +big.rowid, +json_tree.id
} $correct_answer
do_execsql_test json102-620 {
  SELECT big.rowid, fullkey, atom
    FROM big, json_tree(big.json)
   WHERE atom IS NOT NULL
   ORDER BY +big.rowid, +json_tree.id
} $correct_answer

do_execsql_test json102-630 {
  SELECT DISTINCT json_extract(big.json,'$.id')
    FROM big, json_tree(big.json,'$.partlist')
   WHERE json_tree.key='uuid'
     AND json_tree.value='6fa5181e-5721-11e5-a04e-57f3d7b32808';
} {123}
do_execsql_test json102-631 {
  SELECT DISTINCT json_extract(big.json,'$.id')
    FROM big, json_tree(big.json,'$')
   WHERE json_tree.key='uuid'
     AND json_tree.value='6fa5181e-5721-11e5-a04e-57f3d7b32808';
} {123}
do_execsql_test json102-632 {
  SELECT DISTINCT json_extract(big.json,'$.id')
    FROM big, json_tree(big.json)
   WHERE json_tree.key='uuid'
     AND json_tree.value='6fa5181e-5721-11e5-a04e-57f3d7b32808';
} {123}
} ;# end ifcapable vtab

finish_test

Changes to test/releasetest.tcl.

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
...
706
707
708
709
710
711
712

713
714
715
716
717
718
719

# Output log
#
set LOG [open releasetest-out.txt w]
proc PUTS {args} {
  if {[llength $args]==2} {
    puts [lindex $args 0] [lindex $args 1]
    puts [lindex $args 0] $::LOG [lindex $args 1]
  } else {
    puts [lindex $args 0]
    puts $::LOG [lindex $args 0]
  }
}
puts $LOG "$argv0 $argv"
set tm0 [clock format [clock seconds] -format {%Y-%m-%d %H:%M:%S} -gmt 1]
................................................................................

  set elapsetime [expr {[clock seconds]-$STARTTIME}]
  set hr [expr {$elapsetime/3600}]
  set min [expr {($elapsetime/60)%60}]
  set sec [expr {$elapsetime%60}]
  set etime [format (%02d:%02d:%02d) $hr $min $sec]
  PUTS [string repeat * 79]

  PUTS "$::NERRCASE failures out of $::NTESTCASE tests in $etime"
  if {$::SQLITE_VERSION ne ""} {
    PUTS "SQLite $::SQLITE_VERSION"
  }
}

main $argv







|







 







>







288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
...
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

# Output log
#
set LOG [open releasetest-out.txt w]
proc PUTS {args} {
  if {[llength $args]==2} {
    puts [lindex $args 0] [lindex $args 1]
    puts $::LOG [lindex $args 1]
  } else {
    puts [lindex $args 0]
    puts $::LOG [lindex $args 0]
  }
}
puts $LOG "$argv0 $argv"
set tm0 [clock format [clock seconds] -format {%Y-%m-%d %H:%M:%S} -gmt 1]
................................................................................

  set elapsetime [expr {[clock seconds]-$STARTTIME}]
  set hr [expr {$elapsetime/3600}]
  set min [expr {($elapsetime/60)%60}]
  set sec [expr {$elapsetime%60}]
  set etime [format (%02d:%02d:%02d) $hr $min $sec]
  PUTS [string repeat * 79]
  incr ::NERRCASE $::NERR
  PUTS "$::NERRCASE failures out of $::NTESTCASE tests in $etime"
  if {$::SQLITE_VERSION ne ""} {
    PUTS "SQLite $::SQLITE_VERSION"
  }
}

main $argv

Changes to test/tabfunc01.test.

65
66
67
68
69
70
71

72












73
  SELECT * FROM generate_series() LIMIT 5;
} {0 1 2 3 4}

do_execsql_test tabfunc01-3.1 {
  SELECT DISTINCT value FROM generate_series(1,x), t1 ORDER BY 1;
} {1 2 3}















finish_test







>
|
>
>
>
>
>
>
>
>
>
>
>
>

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
  SELECT * FROM generate_series() LIMIT 5;
} {0 1 2 3 4}

do_execsql_test tabfunc01-3.1 {
  SELECT DISTINCT value FROM generate_series(1,x), t1 ORDER BY 1;
} {1 2 3}

# Eponymous virtual table exists in the "main" schema only
#
do_execsql_test tabfunc01-4.1 {
  SELECT * FROM main.generate_series(1,4)
} {1 2 3 4}
do_catchsql_test tabfunc01-4.2 {
  SELECT * FROM temp.generate_series(1,4)
} {1 {no such table: temp.generate_series}}
do_catchsql_test tabfunc01-4.3 {
  ATTACH ':memory:' AS aux1;
  CREATE TABLE aux1.t1(a,b,c);
  SELECT * FROM aux1.generate_series(1,4)
} {1 {no such table: aux1.generate_series}}

finish_test

Changes to test/table.test.

818
819
820
821
822
823
824












825
826
827
  BEGIN;
  CREATE TABLE t1 AS SELECT zeroblob(2e20);
} {1 {string or blob too big}}
do_execsql_test table-18.2 {
  COMMIT;
  PRAGMA integrity_check;
} {ok}














finish_test







>
>
>
>
>
>
>
>
>
>
>
>



818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
  BEGIN;
  CREATE TABLE t1 AS SELECT zeroblob(2e20);
} {1 {string or blob too big}}
do_execsql_test table-18.2 {
  COMMIT;
  PRAGMA integrity_check;
} {ok}

# 2015-09-09
# Ticket [https://www.sqlite.org/src/info/acd12990885d9276]
# "CREATE TABLE ... AS SELECT ... FROM sqlite_master" fails because the row
# in the sqlite_master table for the next table is initially populated
# with a NULL instead of a record created by OP_Record.
#
do_execsql_test table-19.1 {
  CREATE TABLE t19 AS SELECT * FROM sqlite_master;
  SELECT name FROM t19 ORDER BY name;
} {{} savepoint t10 t11 t12 t13 t16 t2 t3 t3\"xyz t4\"abc t7 t8 t9 tablet8 test1 weird}



finish_test

Changes to tool/lemon.c.

312
313
314
315
316
317
318
319

320
321
322
323
324
325
326
...
336
337
338
339
340
341
342
343


344
345
346
347
348
349
350
...
356
357
358
359
360
361
362

363
364
365
366
367
368
369
...
381
382
383
384
385
386
387

388
389
390
391
392
393
394
395
...
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
....
1477
1478
1479
1480
1481
1482
1483












1484
1485
1486
1487
1488
1489
1490
....
1609
1610
1611
1612
1613
1614
1615
1616

1617
1618
1619


1620


1621
1622
1623
1624
1625
1626
1627
....
2939
2940
2941
2942
2943
2944
2945
2946
2947

2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966






2967
2968
2969
2970
2971
2972
2973
....
3000
3001
3002
3003
3004
3005
3006
3007




3008
3009
3010
3011


3012

3013
3014



3015







3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
....
3166
3167
3168
3169
3170
3171
3172
3173

3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
....
3657
3658
3659
3660
3661
3662
3663
3664

3665
3666


3667
3668
3669

3670
3671

3672
3673

3674
3675
3676

3677
3678
3679
3680

3681


3682
3683
3684
3685
3686
3687
3688
....
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
....
3738
3739
3740
3741
3742
3743
3744
3745


3746
3747
3748
3749
3750
3751
3752
....
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
....
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835

3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866

3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
....
3892
3893
3894
3895
3896
3897
3898




3899






3900
3901




























3902
3903

3904
3905
3906
3907
3908
3909
3910
....
3914
3915
3916
3917
3918
3919
3920

3921
3922
3923
3924
3925
3926
3927
....
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944

3945
3946
3947
3948
3949
3950
3951
....
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969

3970
3971
3972
3973
3974
3975
3976
....
3981
3982
3983
3984
3985
3986
3987
3988

3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
....
4001
4002
4003
4004
4005
4006
4007

4008
4009
4010
4011
4012
4013
4014
....
4265
4266
4267
4268
4269
4270
4271


























4272
4273
4274
4275
4276
4277
4278
....
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316

4317
4318
4319
4320
4321
4322

4323
4324
4325
4326
4327
4328
4329
4330




4331
4332
4333
4334
4335
4336
4337
  REDUCE,
  ERROR,
  SSCONFLICT,              /* A shift/shift conflict */
  SRCONFLICT,              /* Was a reduce, but part of a conflict */
  RRCONFLICT,              /* Was a reduce, but part of a conflict */
  SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
  RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
  NOT_USED                 /* Deleted by compression */

};

/* Every shift or reduce operation is stored as one of the following */
struct action {
  struct symbol *sp;       /* The look-ahead symbol */
  enum e_action type;
  union {
................................................................................
struct state {
  struct config *bp;       /* The basis configurations for this state */
  struct config *cfp;      /* All configurations in this set */
  int statenum;            /* Sequential number for this state */
  struct action *ap;       /* Array of actions for this state */
  int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
  int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
  int iDflt;               /* Default action */


};
#define NO_OFFSET (-2147483647)

/* A followset propagation link indicates that the contents of one
** configuration followset should be propagated to another whenever
** the first changes. */
struct plink {
................................................................................
** follows.  (LEMON uses no global variables and makes little use of
** static variables.  Fields in the following structure can be thought
** of as begin global variables in the program.) */
struct lemon {
  struct state **sorted;   /* Table of states sorted by state number */
  struct rule *rule;       /* List of all rules */
  int nstate;              /* Number of states */

  int nrule;               /* Number of rules */
  int nsymbol;             /* Number of terminal and nonterminal symbols */
  int nterminal;           /* Number of terminal symbols */
  struct symbol **symbols; /* Sorted array of pointers to symbols */
  int errorcnt;            /* Number of errors */
  struct symbol *errsym;   /* The error symbol */
  struct symbol *wildcard; /* Token that matches anything */
................................................................................
  char *extracode;         /* Code appended to the generated file */
  char *tokendest;         /* Code to execute to destroy token data */
  char *vardest;           /* Code for the default non-terminal destructor */
  char *filename;          /* Name of the input file */
  char *outname;           /* Name of the current output file */
  char *tokenprefix;       /* A prefix added to token names in the .h file */
  int nconflict;           /* Number of parsing conflicts */

  int tablesize;           /* Size of the parse tables */
  int basisflag;           /* Print only basis configurations */
  int has_fallback;        /* True if any %fallback is seen in the grammar */
  int nolinenosflag;       /* True if #line statements should not be printed */
  char *argv0;             /* Name of the program */
};

#define MemoryCheck(X) if((X)==0){ \
................................................................................
  struct action *ap2
){
  int rc;
  rc = ap1->sp->index - ap2->sp->index;
  if( rc==0 ){
    rc = (int)ap1->type - (int)ap2->type;
  }
  if( rc==0 && ap1->type==REDUCE ){
    rc = ap1->x.rp->index - ap2->x.rp->index;
  }
  if( rc==0 ){
    rc = (int) (ap2 - ap1);
  }
  return rc;
}
................................................................................
static void handle_T_option(char *z){
  user_templatename = (char *) malloc( lemonStrlen(z)+1 );
  if( user_templatename==0 ){
    memory_error();
  }
  lemon_strcpy(user_templatename, z);
}













/* The main program.  Parse the command line and do it... */
int main(int argc, char **argv)
{
  static int version = 0;
  static int rpflag = 0;
  static int basisflag = 0;
................................................................................

    /* Produce a header file for use by the scanner.  (This step is
    ** omitted if the "-m" option is used because makeheaders will
    ** generate the file for us.) */
    if( !mhflag ) ReportHeader(&lem);
  }
  if( statistics ){
    printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",

      lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
    printf("                   %d states, %d parser table entries,"
                                                        " %d conflicts\n",


      lem.nstate, lem.tablesize, lem.nconflict);


  }
  if( lem.nconflict > 0 ){
    fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
  }

  /* return 0 on success, 1 on failure. */
  exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
................................................................................
    printf(".");
    if( rp->precsym ) printf(" [%s]",rp->precsym->name);
    /* if( rp->code ) printf("\n    %s",rp->code); */
    printf("\n");
  }
}

void ConfigPrint(FILE *fp, struct config *cfp)
{

  struct rule *rp;
  struct symbol *sp;
  int i, j;
  rp = cfp->rp;
  fprintf(fp,"%s ::=",rp->lhs->name);
  for(i=0; i<=rp->nrhs; i++){
    if( i==cfp->dot ) fprintf(fp," *");
    if( i==rp->nrhs ) break;
    sp = rp->rhs[i];
    if( sp->type==MULTITERMINAL ){
      fprintf(fp," %s", sp->subsym[0]->name);
      for(j=1; j<sp->nsubsym; j++){
        fprintf(fp,"|%s",sp->subsym[j]->name);
      }
    }else{
      fprintf(fp," %s", sp->name);
    }
  }
}







/* #define TEST */
#if 0
/* Print a set */
PRIVATE void SetPrint(out,set,lemp)
FILE *out;
char *set;
................................................................................
  }
}
#endif

/* Print an action to the given file descriptor.  Return FALSE if
** nothing was actually printed.
*/
int PrintAction(struct action *ap, FILE *fp, int indent){




  int result = 1;
  switch( ap->type ){
    case SHIFT:
      fprintf(fp,"%*s shift  %d",indent,ap->sp->name,ap->x.stp->statenum);


      break;

    case REDUCE:
      fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);



      break;







    case ACCEPT:
      fprintf(fp,"%*s accept",indent,ap->sp->name);
      break;
    case ERROR:
      fprintf(fp,"%*s error",indent,ap->sp->name);
      break;
    case SRCONFLICT:
    case RRCONFLICT:
      fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
        indent,ap->sp->name,ap->x.rp->index);
      break;
    case SSCONFLICT:
      fprintf(fp,"%*s shift  %-3d ** Parsing conflict **", 
        indent,ap->sp->name,ap->x.stp->statenum);
      break;
    case SH_RESOLVED:
      if( showPrecedenceConflict ){
        fprintf(fp,"%*s shift  %-3d -- dropped by precedence",
                indent,ap->sp->name,ap->x.stp->statenum);
      }else{
        result = 0;
      }
      break;
    case RD_RESOLVED:
      if( showPrecedenceConflict ){
        fprintf(fp,"%*s reduce %-3d -- dropped by precedence",
                indent,ap->sp->name,ap->x.rp->index);
      }else{
        result = 0;
      }
      break;
    case NOT_USED:
      result = 0;
      break;
  }
  return result;
}

/* Generate the "y.output" log file */
void ReportOutput(struct lemon *lemp)
{
  int i;
  struct state *stp;
  struct config *cfp;
  struct action *ap;
  FILE *fp;

  fp = file_open(lemp,".out","wb");
  if( fp==0 ) return;
  for(i=0; i<lemp->nstate; i++){
    stp = lemp->sorted[i];
    fprintf(fp,"State %d:\n",stp->statenum);
    if( lemp->basisflag ) cfp=stp->bp;
    else                  cfp=stp->cfp;
    while( cfp ){
      char buf[20];
      if( cfp->dot==cfp->rp->nrhs ){
................................................................................
** which is to be put in the action table of the generated machine.
** Return negative if no action should be generated.
*/
PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
{
  int act;
  switch( ap->type ){
    case SHIFT:  act = ap->x.stp->statenum;            break;

    case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
    case ERROR:  act = lemp->nstate + lemp->nrule;     break;
    case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
    default:     act = -1; break;
  }
  return act;
}

#define LINESIZE 1000
/* The next cluster of routines are for reading the template file
................................................................................
  free(types);
  fprintf(out,"} YYMINORTYPE;\n"); lineno++;
  *plineno = lineno;
}

/*
** Return the name of a C datatype able to represent values between
** lwr and upr, inclusive.

*/
static const char *minimum_size_type(int lwr, int upr){


  if( lwr>=0 ){
    if( upr<=255 ){
      return "unsigned char";

    }else if( upr<65535 ){
      return "unsigned short int";

    }else{
      return "unsigned int";

    }
  }else if( lwr>=-127 && upr<=127 ){
    return "signed char";

  }else if( lwr>=-32767 && upr<32767 ){
    return "short";
  }else{
    return "int";

  }


}

/*
** Each state contains a set of token transaction and a set of
** nonterminal transactions.  Each of these sets makes an instance
** of the following structure.  An array of these structures is used
** to order the creation of entries in the yy_action[] table.
................................................................................
*/
static int axset_compare(const void *a, const void *b){
  struct axset *p1 = (struct axset*)a;
  struct axset *p2 = (struct axset*)b;
  int c;
  c = p2->nAction - p1->nAction;
  if( c==0 ){
    c = p2->iOrder - p1->iOrder;
  }
  assert( c!=0 || p1==p2 );
  return c;
}

/*
** Write text on "out" that describes the rule "rp".
................................................................................
  FILE *out, *in;
  char line[LINESIZE];
  int  lineno;
  struct state *stp;
  struct action *ap;
  struct rule *rp;
  struct acttab *pActtab;
  int i, j, n;


  const char *name;
  int mnTknOfst, mxTknOfst;
  int mnNtOfst, mxNtOfst;
  struct axset *ax;

  in = tplt_open(lemp);
  if( in==0 ) return;
................................................................................
    }
    fprintf(out,"#endif\n"); lineno++;
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the defines */
  fprintf(out,"#define YYCODETYPE %s\n",
    minimum_size_type(0, lemp->nsymbol+1)); lineno++;
  fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
  fprintf(out,"#define YYACTIONTYPE %s\n",
    minimum_size_type(0, lemp->nstate+lemp->nrule+5));  lineno++;
  if( lemp->wildcard ){
    fprintf(out,"#define YYWILDCARD %d\n",
       lemp->wildcard->index); lineno++;
  }
  print_stack_union(out,lemp,&lineno,mhflag);
  fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
  if( lemp->stacksize ){
................................................................................
    fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;
    fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
    fprintf(out,"#define %sARG_STORE\n",name); lineno++;
  }
  if( mhflag ){
    fprintf(out,"#endif\n"); lineno++;
  }
  fprintf(out,"#define YYNSTATE %d\n",lemp->nstate);  lineno++;
  fprintf(out,"#define YYNRULE %d\n",lemp->nrule);  lineno++;
  if( lemp->errsym->useCnt ){
    fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index);  lineno++;
    fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum);  lineno++;
  }
  if( lemp->has_fallback ){
    fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
  }
  tplt_xfer(lemp->name,in,out,&lineno);


  /* Generate the action table and its associates:
  **
  **  yy_action[]        A single table containing all actions.
  **  yy_lookahead[]     A table containing the lookahead for each entry in
  **                     yy_action.  Used to detect hash collisions.
  **  yy_shift_ofst[]    For each state, the offset into yy_action for
  **                     shifting terminals.
  **  yy_reduce_ofst[]   For each state, the offset into yy_action for
  **                     shifting non-terminals after a reduce.
  **  yy_default[]       Default action for each state.
  */

  /* Compute the actions on all states and count them up */
  ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0]));
  if( ax==0 ){
    fprintf(stderr,"malloc failed\n");
    exit(1);
  }
  for(i=0; i<lemp->nstate; i++){
    stp = lemp->sorted[i];
    ax[i*2].stp = stp;
    ax[i*2].isTkn = 1;
    ax[i*2].nAction = stp->nTknAct;
    ax[i*2+1].stp = stp;
    ax[i*2+1].isTkn = 0;
    ax[i*2+1].nAction = stp->nNtAct;
  }
  mxTknOfst = mnTknOfst = 0;
  mxNtOfst = mnNtOfst = 0;

  /* Compute the action table.  In order to try to keep the size of the

  ** action table to a minimum, the heuristic of placing the largest action
  ** sets first is used.
  */
  for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i;
  qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
  pActtab = acttab_alloc();
  for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
    stp = ax[i].stp;
    if( ax[i].isTkn ){
      for(ap=stp->ap; ap; ap=ap->next){
        int action;
        if( ap->sp->index>=lemp->nterminal ) continue;
        action = compute_action(lemp, ap);
        if( action<0 ) continue;
................................................................................
        if( action<0 ) continue;
        acttab_action(pActtab, ap->sp->index, action);
      }
      stp->iNtOfst = acttab_insert(pActtab);
      if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
      if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
    }




  }






  free(ax);





























  /* Output the yy_action table */
  n = acttab_size(pActtab);

  fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
  fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
  for(i=j=0; i<n; i++){
    int action = acttab_yyaction(pActtab, i);
    if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", action);
................................................................................
    }else{
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_lookahead table */

  fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
  for(i=j=0; i<n; i++){
    int la = acttab_yylookahead(pActtab, i);
    if( la<0 ) la = lemp->nsymbol;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", la);
    if( j==9 || i==n-1 ){
................................................................................
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_shift_ofst[] table */
  fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
  n = lemp->nstate;
  while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_SHIFT_MIN   (%d)\n", mnTknOfst); lineno++;
  fprintf(out, "#define YY_SHIFT_MAX   (%d)\n", mxTknOfst); lineno++;
  fprintf(out, "static const %s yy_shift_ofst[] = {\n", 
          minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;

  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iTknOfst;
    if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", ofst);
................................................................................
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_reduce_ofst[] table */
  fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
  n = lemp->nstate;
  while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
  fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
  fprintf(out, "static const %s yy_reduce_ofst[] = {\n", 
          minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;

  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iNtOfst;
    if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", ofst);
................................................................................
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the default action table */
  fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
  n = lemp->nstate;

  for(i=j=0; i<n; i++){
    stp = lemp->sorted[i];
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", stp->iDflt);
    if( j==9 || i==n-1 ){
      fprintf(out, "\n"); lineno++;
      j = 0;
    }else{
      j++;
    }
  }
................................................................................
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the table of fallback tokens.
  */
  if( lemp->has_fallback ){
    int mx = lemp->nterminal - 1;
    while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }

    for(i=0; i<=mx; i++){
      struct symbol *p = lemp->symbols[i];
      if( p->fallback==0 ){
        fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
      }else{
        fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
          p->name, p->fallback->name);
................................................................................
    }
    assert( ap );
    ap->sp = Symbol_new("{default}");
    for(ap=ap->next; ap; ap=ap->next){
      if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
    }
    stp->ap = Action_sort(stp->ap);


























  }
}


/*
** Compare two states for sorting purposes.  The smaller state is the
** one with the most non-terminal actions.  If they have the same number
................................................................................
  int i;
  struct state *stp;
  struct action *ap;

  for(i=0; i<lemp->nstate; i++){
    stp = lemp->sorted[i];
    stp->nTknAct = stp->nNtAct = 0;
    stp->iDflt = lemp->nstate + lemp->nrule;
    stp->iTknOfst = NO_OFFSET;
    stp->iNtOfst = NO_OFFSET;
    for(ap=stp->ap; ap; ap=ap->next){
      if( compute_action(lemp,ap)>=0 ){

        if( ap->sp->index<lemp->nterminal ){
          stp->nTknAct++;
        }else if( ap->sp->index<lemp->nsymbol ){
          stp->nNtAct++;
        }else{
          stp->iDflt = compute_action(lemp, ap);

        }
      }
    }
  }
  qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
        stateResortCompare);
  for(i=0; i<lemp->nstate; i++){
    lemp->sorted[i]->statenum = i;




  }
}


/***************** From the file "set.c" ************************************/
/*
** Set manipulation routines for the LEMON parser generator.







|
>







 







|
>
>







 







>







 







>
|







 







|







 







>
>
>
>
>
>
>
>
>
>
>
>







 







|
>
|
<
|
>
>
|
>
>







 







|
<
>
|


<


|












>
>
>
>
>
>







 







|
>
>
>
>


|
<
>
>

>
|
<
>
>
>

>
>
>
>
>
>
>








|



|




|







|












|










|







 







|
>
|
|
|







 







|
>

|
>
>


|
>

|
>

|
>


|
>

|
<
<
>

>
>







 







|







 







|
>
>







 







|


|







 







<
<

|
|




<

>
|
|
<
<
<
<
<
<
<
<

<
<
|




|










<
<
>
|
<
<
|
|

|







 







>
>
>
>
|
>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
>







 







>







 







|





|
>







 







|





|
>







 







|
>



|







 







>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|



|
>





|
>








>
>
>
>







312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
...
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
...
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
...
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
...
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
....
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
....
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635

1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
....
2960
2961
2962
2963
2964
2965
2966
2967

2968
2969
2970
2971

2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
....
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040

3041
3042
3043
3044
3045

3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
....
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
....
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727


3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
....
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
....
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
....
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
....
3870
3871
3872
3873
3874
3875
3876


3877
3878
3879
3880
3881
3882
3883

3884
3885
3886
3887








3888


3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904


3905
3906


3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
....
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
....
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
....
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
....
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
....
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
....
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
....
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
....
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
  REDUCE,
  ERROR,
  SSCONFLICT,              /* A shift/shift conflict */
  SRCONFLICT,              /* Was a reduce, but part of a conflict */
  RRCONFLICT,              /* Was a reduce, but part of a conflict */
  SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
  RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
  NOT_USED,                /* Deleted by compression */
  SHIFTREDUCE              /* Shift first, then reduce */
};

/* Every shift or reduce operation is stored as one of the following */
struct action {
  struct symbol *sp;       /* The look-ahead symbol */
  enum e_action type;
  union {
................................................................................
struct state {
  struct config *bp;       /* The basis configurations for this state */
  struct config *cfp;      /* All configurations in this set */
  int statenum;            /* Sequential number for this state */
  struct action *ap;       /* Array of actions for this state */
  int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
  int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
  int iDfltReduce;         /* Default action is to REDUCE by this rule */
  struct rule *pDfltReduce;/* The default REDUCE rule. */
  int autoReduce;          /* True if this is an auto-reduce state */
};
#define NO_OFFSET (-2147483647)

/* A followset propagation link indicates that the contents of one
** configuration followset should be propagated to another whenever
** the first changes. */
struct plink {
................................................................................
** follows.  (LEMON uses no global variables and makes little use of
** static variables.  Fields in the following structure can be thought
** of as begin global variables in the program.) */
struct lemon {
  struct state **sorted;   /* Table of states sorted by state number */
  struct rule *rule;       /* List of all rules */
  int nstate;              /* Number of states */
  int nxstate;             /* nstate with tail degenerate states removed */
  int nrule;               /* Number of rules */
  int nsymbol;             /* Number of terminal and nonterminal symbols */
  int nterminal;           /* Number of terminal symbols */
  struct symbol **symbols; /* Sorted array of pointers to symbols */
  int errorcnt;            /* Number of errors */
  struct symbol *errsym;   /* The error symbol */
  struct symbol *wildcard; /* Token that matches anything */
................................................................................
  char *extracode;         /* Code appended to the generated file */
  char *tokendest;         /* Code to execute to destroy token data */
  char *vardest;           /* Code for the default non-terminal destructor */
  char *filename;          /* Name of the input file */
  char *outname;           /* Name of the current output file */
  char *tokenprefix;       /* A prefix added to token names in the .h file */
  int nconflict;           /* Number of parsing conflicts */
  int nactiontab;          /* Number of entries in the yy_action[] table */
  int tablesize;           /* Total table size of all tables in bytes */
  int basisflag;           /* Print only basis configurations */
  int has_fallback;        /* True if any %fallback is seen in the grammar */
  int nolinenosflag;       /* True if #line statements should not be printed */
  char *argv0;             /* Name of the program */
};

#define MemoryCheck(X) if((X)==0){ \
................................................................................
  struct action *ap2
){
  int rc;
  rc = ap1->sp->index - ap2->sp->index;
  if( rc==0 ){
    rc = (int)ap1->type - (int)ap2->type;
  }
  if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){
    rc = ap1->x.rp->index - ap2->x.rp->index;
  }
  if( rc==0 ){
    rc = (int) (ap2 - ap1);
  }
  return rc;
}
................................................................................
static void handle_T_option(char *z){
  user_templatename = (char *) malloc( lemonStrlen(z)+1 );
  if( user_templatename==0 ){
    memory_error();
  }
  lemon_strcpy(user_templatename, z);
}

/* forward reference */
static const char *minimum_size_type(int lwr, int upr, int *pnByte);

/* Print a single line of the "Parser Stats" output
*/
static void stats_line(const char *zLabel, int iValue){
  int nLabel = lemonStrlen(zLabel);
  printf("  %s%.*s %5d\n", zLabel,
         35-nLabel, "................................",
         iValue);
}

/* The main program.  Parse the command line and do it... */
int main(int argc, char **argv)
{
  static int version = 0;
  static int rpflag = 0;
  static int basisflag = 0;
................................................................................

    /* Produce a header file for use by the scanner.  (This step is
    ** omitted if the "-m" option is used because makeheaders will
    ** generate the file for us.) */
    if( !mhflag ) ReportHeader(&lem);
  }
  if( statistics ){
    printf("Parser statistics:\n");
    stats_line("terminal symbols", lem.nterminal);
    stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);

    stats_line("total symbols", lem.nsymbol);
    stats_line("rules", lem.nrule);
    stats_line("states", lem.nxstate);
    stats_line("conflicts", lem.nconflict);
    stats_line("action table entries", lem.nactiontab);
    stats_line("total table size (bytes)", lem.tablesize);
  }
  if( lem.nconflict > 0 ){
    fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
  }

  /* return 0 on success, 1 on failure. */
  exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
................................................................................
    printf(".");
    if( rp->precsym ) printf(" [%s]",rp->precsym->name);
    /* if( rp->code ) printf("\n    %s",rp->code); */
    printf("\n");
  }
}

/* Print a single rule.

*/
void RulePrint(FILE *fp, struct rule *rp, int iCursor){
  struct symbol *sp;
  int i, j;

  fprintf(fp,"%s ::=",rp->lhs->name);
  for(i=0; i<=rp->nrhs; i++){
    if( i==iCursor ) fprintf(fp," *");
    if( i==rp->nrhs ) break;
    sp = rp->rhs[i];
    if( sp->type==MULTITERMINAL ){
      fprintf(fp," %s", sp->subsym[0]->name);
      for(j=1; j<sp->nsubsym; j++){
        fprintf(fp,"|%s",sp->subsym[j]->name);
      }
    }else{
      fprintf(fp," %s", sp->name);
    }
  }
}

/* Print the rule for a configuration.
*/
void ConfigPrint(FILE *fp, struct config *cfp){
  RulePrint(fp, cfp->rp, cfp->dot);
}

/* #define TEST */
#if 0
/* Print a set */
PRIVATE void SetPrint(out,set,lemp)
FILE *out;
char *set;
................................................................................
  }
}
#endif

/* Print an action to the given file descriptor.  Return FALSE if
** nothing was actually printed.
*/
int PrintAction(
  struct action *ap,          /* The action to print */
  FILE *fp,                   /* Print the action here */
  int indent                  /* Indent by this amount */
){
  int result = 1;
  switch( ap->type ){
    case SHIFT: {

      struct state *stp = ap->x.stp;
      fprintf(fp,"%*s shift        %-7d",indent,ap->sp->name,stp->statenum);
      break;
    }
    case REDUCE: {

      struct rule *rp = ap->x.rp;
      fprintf(fp,"%*s reduce       %-7d",indent,ap->sp->name,rp->index);
      RulePrint(fp, rp, -1);
      break;
    }
    case SHIFTREDUCE: {
      struct rule *rp = ap->x.rp;
      fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->index);
      RulePrint(fp, rp, -1);
      break;
    }
    case ACCEPT:
      fprintf(fp,"%*s accept",indent,ap->sp->name);
      break;
    case ERROR:
      fprintf(fp,"%*s error",indent,ap->sp->name);
      break;
    case SRCONFLICT:
    case RRCONFLICT:
      fprintf(fp,"%*s reduce       %-7d ** Parsing conflict **",
        indent,ap->sp->name,ap->x.rp->index);
      break;
    case SSCONFLICT:
      fprintf(fp,"%*s shift        %-7d ** Parsing conflict **", 
        indent,ap->sp->name,ap->x.stp->statenum);
      break;
    case SH_RESOLVED:
      if( showPrecedenceConflict ){
        fprintf(fp,"%*s shift        %-7d -- dropped by precedence",
                indent,ap->sp->name,ap->x.stp->statenum);
      }else{
        result = 0;
      }
      break;
    case RD_RESOLVED:
      if( showPrecedenceConflict ){
        fprintf(fp,"%*s reduce %-7d -- dropped by precedence",
                indent,ap->sp->name,ap->x.rp->index);
      }else{
        result = 0;
      }
      break;
    case NOT_USED:
      result = 0;
      break;
  }
  return result;
}

/* Generate the "*.out" log file */
void ReportOutput(struct lemon *lemp)
{
  int i;
  struct state *stp;
  struct config *cfp;
  struct action *ap;
  FILE *fp;

  fp = file_open(lemp,".out","wb");
  if( fp==0 ) return;
  for(i=0; i<lemp->nxstate; i++){
    stp = lemp->sorted[i];
    fprintf(fp,"State %d:\n",stp->statenum);
    if( lemp->basisflag ) cfp=stp->bp;
    else                  cfp=stp->cfp;
    while( cfp ){
      char buf[20];
      if( cfp->dot==cfp->rp->nrhs ){
................................................................................
** which is to be put in the action table of the generated machine.
** Return negative if no action should be generated.
*/
PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
{
  int act;
  switch( ap->type ){
    case SHIFT:  act = ap->x.stp->statenum;                        break;
    case SHIFTREDUCE: act = ap->x.rp->index + lemp->nstate;        break;
    case REDUCE: act = ap->x.rp->index + lemp->nstate+lemp->nrule; break;
    case ERROR:  act = lemp->nstate + lemp->nrule*2;               break;
    case ACCEPT: act = lemp->nstate + lemp->nrule*2 + 1;           break;
    default:     act = -1; break;
  }
  return act;
}

#define LINESIZE 1000
/* The next cluster of routines are for reading the template file
................................................................................
  free(types);
  fprintf(out,"} YYMINORTYPE;\n"); lineno++;
  *plineno = lineno;
}

/*
** Return the name of a C datatype able to represent values between
** lwr and upr, inclusive.  If pnByte!=NULL then also write the sizeof
** for that type (1, 2, or 4) into *pnByte.
*/
static const char *minimum_size_type(int lwr, int upr, int *pnByte){
  const char *zType = "int";
  int nByte = 4;
  if( lwr>=0 ){
    if( upr<=255 ){
      zType = "unsigned char";
      nByte = 1;
    }else if( upr<65535 ){
      zType = "unsigned short int";
      nByte = 2;
    }else{
      zType = "unsigned int";
      nByte = 4;
    }
  }else if( lwr>=-127 && upr<=127 ){
    zType = "signed char";
    nByte = 1;
  }else if( lwr>=-32767 && upr<32767 ){
    zType = "short";


    nByte = 2;
  }
  if( pnByte ) *pnByte = nByte;
  return zType;
}

/*
** Each state contains a set of token transaction and a set of
** nonterminal transactions.  Each of these sets makes an instance
** of the following structure.  An array of these structures is used
** to order the creation of entries in the yy_action[] table.
................................................................................
*/
static int axset_compare(const void *a, const void *b){
  struct axset *p1 = (struct axset*)a;
  struct axset *p2 = (struct axset*)b;
  int c;
  c = p2->nAction - p1->nAction;
  if( c==0 ){
    c = p1->iOrder - p2->iOrder;
  }
  assert( c!=0 || p1==p2 );
  return c;
}

/*
** Write text on "out" that describes the rule "rp".
................................................................................
  FILE *out, *in;
  char line[LINESIZE];
  int  lineno;
  struct state *stp;
  struct action *ap;
  struct rule *rp;
  struct acttab *pActtab;
  int i, j, n, sz;
  int szActionType;     /* sizeof(YYACTIONTYPE) */
  int szCodeType;       /* sizeof(YYCODETYPE)   */
  const char *name;
  int mnTknOfst, mxTknOfst;
  int mnNtOfst, mxNtOfst;
  struct axset *ax;

  in = tplt_open(lemp);
  if( in==0 ) return;
................................................................................
    }
    fprintf(out,"#endif\n"); lineno++;
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the defines */
  fprintf(out,"#define YYCODETYPE %s\n",
    minimum_size_type(0, lemp->nsymbol+1, &szCodeType)); lineno++;
  fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
  fprintf(out,"#define YYACTIONTYPE %s\n",
    minimum_size_type(0,lemp->nstate+lemp->nrule*2+5,&szActionType)); lineno++;
  if( lemp->wildcard ){
    fprintf(out,"#define YYWILDCARD %d\n",
       lemp->wildcard->index); lineno++;
  }
  print_stack_union(out,lemp,&lineno,mhflag);
  fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
  if( lemp->stacksize ){
................................................................................
    fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;
    fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
    fprintf(out,"#define %sARG_STORE\n",name); lineno++;
  }
  if( mhflag ){
    fprintf(out,"#endif\n"); lineno++;
  }


  if( lemp->errsym->useCnt ){
    fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
    fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
  }
  if( lemp->has_fallback ){
    fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
  }


  /* Compute the action table, but do not output it yet.  The action
  ** table must be computed before generating the YYNSTATE macro because
  ** we need to know how many states can be eliminated.








  */


  ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0]));
  if( ax==0 ){
    fprintf(stderr,"malloc failed\n");
    exit(1);
  }
  for(i=0; i<lemp->nxstate; i++){
    stp = lemp->sorted[i];
    ax[i*2].stp = stp;
    ax[i*2].isTkn = 1;
    ax[i*2].nAction = stp->nTknAct;
    ax[i*2+1].stp = stp;
    ax[i*2+1].isTkn = 0;
    ax[i*2+1].nAction = stp->nNtAct;
  }
  mxTknOfst = mnTknOfst = 0;
  mxNtOfst = mnNtOfst = 0;


  /* In an effort to minimize the action table size, use the heuristic
  ** of placing the largest action sets first */


  for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
  qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
  pActtab = acttab_alloc();
  for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
    stp = ax[i].stp;
    if( ax[i].isTkn ){
      for(ap=stp->ap; ap; ap=ap->next){
        int action;
        if( ap->sp->index>=lemp->nterminal ) continue;
        action = compute_action(lemp, ap);
        if( action<0 ) continue;
................................................................................
        if( action<0 ) continue;
        acttab_action(pActtab, ap->sp->index, action);
      }
      stp->iNtOfst = acttab_insert(pActtab);
      if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
      if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
    }
#if 0  /* Uncomment for a trace of how the yy_action[] table fills out */
    { int jj, nn;
      for(jj=nn=0; jj<pActtab->nAction; jj++){
        if( pActtab->aAction[jj].action<0 ) nn++;
      }
      printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
             i, stp->statenum, ax[i].isTkn ? "Token" : "Var  ",
             ax[i].nAction, pActtab->nAction, nn);
    }
#endif
  }
  free(ax);

  /* Finish rendering the constants now that the action table has
  ** been computed */
  fprintf(out,"#define YYNSTATE             %d\n",lemp->nxstate);  lineno++;
  fprintf(out,"#define YYNRULE              %d\n",lemp->nrule);  lineno++;
  fprintf(out,"#define YY_MAX_SHIFT         %d\n",lemp->nxstate-1); lineno++;
  fprintf(out,"#define YY_MIN_SHIFTREDUCE   %d\n",lemp->nstate); lineno++;
  i = lemp->nstate + lemp->nrule;
  fprintf(out,"#define YY_MAX_SHIFTREDUCE   %d\n", i-1); lineno++;
  fprintf(out,"#define YY_MIN_REDUCE        %d\n", i); lineno++;
  i = lemp->nstate + lemp->nrule*2;
  fprintf(out,"#define YY_MAX_REDUCE        %d\n", i-1); lineno++;
  fprintf(out,"#define YY_ERROR_ACTION      %d\n", i); lineno++;
  fprintf(out,"#define YY_ACCEPT_ACTION     %d\n", i+1); lineno++;
  fprintf(out,"#define YY_NO_ACTION         %d\n", i+2); lineno++;
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Now output the action table and its associates:
  **
  **  yy_action[]        A single table containing all actions.
  **  yy_lookahead[]     A table containing the lookahead for each entry in
  **                     yy_action.  Used to detect hash collisions.
  **  yy_shift_ofst[]    For each state, the offset into yy_action for
  **                     shifting terminals.
  **  yy_reduce_ofst[]   For each state, the offset into yy_action for
  **                     shifting non-terminals after a reduce.
  **  yy_default[]       Default action for each state.
  */

  /* Output the yy_action table */
  lemp->nactiontab = n = acttab_size(pActtab);
  lemp->tablesize += n*szActionType;
  fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
  fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
  for(i=j=0; i<n; i++){
    int action = acttab_yyaction(pActtab, i);
    if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", action);
................................................................................
    }else{
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_lookahead table */
  lemp->tablesize += n*szCodeType;
  fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
  for(i=j=0; i<n; i++){
    int la = acttab_yylookahead(pActtab, i);
    if( la<0 ) la = lemp->nsymbol;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", la);
    if( j==9 || i==n-1 ){
................................................................................
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_shift_ofst[] table */
  fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_SHIFT_MIN   (%d)\n", mnTknOfst); lineno++;
  fprintf(out, "#define YY_SHIFT_MAX   (%d)\n", mxTknOfst); lineno++;
  fprintf(out, "static const %s yy_shift_ofst[] = {\n", 
          minimum_size_type(mnTknOfst-1, mxTknOfst, &sz)); lineno++;
  lemp->tablesize += n*sz;
  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iTknOfst;
    if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", ofst);
................................................................................
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_reduce_ofst[] table */
  fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
  fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
  fprintf(out, "static const %s yy_reduce_ofst[] = {\n", 
          minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
  lemp->tablesize += n*sz;
  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iNtOfst;
    if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", ofst);
................................................................................
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the default action table */
  fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
  n = lemp->nxstate;
  lemp->tablesize += n*szActionType;
  for(i=j=0; i<n; i++){
    stp = lemp->sorted[i];
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", stp->iDfltReduce+lemp->nstate+lemp->nrule);
    if( j==9 || i==n-1 ){
      fprintf(out, "\n"); lineno++;
      j = 0;
    }else{
      j++;
    }
  }
................................................................................
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the table of fallback tokens.
  */
  if( lemp->has_fallback ){
    int mx = lemp->nterminal - 1;
    while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
    lemp->tablesize += (mx+1)*szCodeType;
    for(i=0; i<=mx; i++){
      struct symbol *p = lemp->symbols[i];
      if( p->fallback==0 ){
        fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
      }else{
        fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
          p->name, p->fallback->name);
................................................................................
    }
    assert( ap );
    ap->sp = Symbol_new("{default}");
    for(ap=ap->next; ap; ap=ap->next){
      if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
    }
    stp->ap = Action_sort(stp->ap);

    for(ap=stp->ap; ap; ap=ap->next){
      if( ap->type==SHIFT ) break;
      if( ap->type==REDUCE && ap->x.rp!=rbest ) break;
    }
    if( ap==0 ){
      stp->autoReduce = 1;
      stp->pDfltReduce = rbest;
    }
  }

  /* Make a second pass over all states and actions.  Convert
  ** every action that is a SHIFT to an autoReduce state into
  ** a SHIFTREDUCE action.
  */
  for(i=0; i<lemp->nstate; i++){
    stp = lemp->sorted[i];
    for(ap=stp->ap; ap; ap=ap->next){
      struct state *pNextState;
      if( ap->type!=SHIFT ) continue;
      pNextState = ap->x.stp;
      if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){
        ap->type = SHIFTREDUCE;
        ap->x.rp = pNextState->pDfltReduce;
      }
    }
  }
}


/*
** Compare two states for sorting purposes.  The smaller state is the
** one with the most non-terminal actions.  If they have the same number
................................................................................
  int i;
  struct state *stp;
  struct action *ap;

  for(i=0; i<lemp->nstate; i++){
    stp = lemp->sorted[i];
    stp->nTknAct = stp->nNtAct = 0;
    stp->iDfltReduce = lemp->nrule;  /* Init dflt action to "syntax error" */
    stp->iTknOfst = NO_OFFSET;
    stp->iNtOfst = NO_OFFSET;
    for(ap=stp->ap; ap; ap=ap->next){
      int iAction = compute_action(lemp,ap);
      if( iAction>=0 ){
        if( ap->sp->index<lemp->nterminal ){
          stp->nTknAct++;
        }else if( ap->sp->index<lemp->nsymbol ){
          stp->nNtAct++;
        }else{
          assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
          stp->iDfltReduce = iAction - lemp->nstate - lemp->nrule;
        }
      }
    }
  }
  qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
        stateResortCompare);
  for(i=0; i<lemp->nstate; i++){
    lemp->sorted[i]->statenum = i;
  }
  lemp->nxstate = lemp->nstate;
  while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){
    lemp->nxstate--;
  }
}


/***************** From the file "set.c" ************************************/
/*
** Set manipulation routines for the LEMON parser generator.

Changes to tool/lempar.c.

46
47
48
49
50
51
52
53
54
55
56









57
58
59
60
61
62
63
64
65
66
67
68
..
81
82
83
84
85
86
87
88
89
90
91

92



93
94
95
96
97
98
99
100
101
102
103
104
...
149
150
151
152
153
154
155




156
157
158
159
160
161
162
163
164
165
...
380
381
382
383
384
385
386
387

388
389
390
391
392
393
394
395
396
397
398
...
485
486
487
488
489
490
491






















492
493
494
495
496
497
498
499
...
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
...
560
561
562
563
564
565
566

567
568
569
570
571
572
573
574
575
...
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

617
618
619
620
621
622
623
624
625
626
627
628
629
630
...
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
...
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
...
842
843
844
845
846
847
848





849
850
**                       for base tokens is called "yy0".
**    YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
**                       zero the stack is dynamically sized using realloc()
**    ParseARG_SDECL     A static variable declaration for the %extra_argument
**    ParseARG_PDECL     A parameter declaration for the %extra_argument
**    ParseARG_STORE     Code to store %extra_argument into yypParser
**    ParseARG_FETCH     Code to extract %extra_argument from yypParser
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.









*/
%%
#define YY_NO_ACTION      (YYNSTATE+YYNRULE+2)
#define YY_ACCEPT_ACTION  (YYNSTATE+YYNRULE+1)
#define YY_ERROR_ACTION   (YYNSTATE+YYNRULE)

/* The yyzerominor constant is used to initialize instances of
** YYMINORTYPE objects to zero. */
static const YYMINORTYPE yyzerominor = { 0 };

/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.
................................................................................
** current state and lookahead token.  These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.  
**
** Suppose the action integer is N.  Then the action is determined as
** follows
**
**   0 <= N < YYNSTATE                  Shift N.  That is, push the lookahead
**                                      token onto the stack and goto state N.
**
**   YYNSTATE <= N < YYNSTATE+YYNRULE   Reduce by rule N-YYNSTATE.

**



**   N == YYNSTATE+YYNRULE              A syntax error has occurred.
**
**   N == YYNSTATE+YYNRULE+1            The parser accepts its input.
**
**   N == YYNSTATE+YYNRULE+2            No such action.  Denotes unused
**                                      slots in the yy_action[] table.
**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as
**
**      yy_action[ yy_shift_ofst[S] + X ]
**
................................................................................
**
**   +  The value of the token stored at this level of the stack.
**      (In other words, the "major" token.)
**
**   +  The semantic value stored at this level of the stack.  This is
**      the information used by the action routines in the grammar.
**      It is sometimes called the "minor" token.




*/
struct yyStackEntry {
  YYACTIONTYPE stateno;  /* The state-number */
  YYCODETYPE major;      /* The major token value.  This is the code
                         ** number for the token at this stack level */
  YYMINORTYPE minor;     /* The user-supplied minor token value.  This
                         ** is the value of the token  */
};
typedef struct yyStackEntry yyStackEntry;

................................................................................
*/
static int yy_find_shift_action(
  yyParser *pParser,        /* The parser */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
  int stateno = pParser->yystack[pParser->yyidx].stateno;
 

  if( stateno>YY_SHIFT_COUNT
   || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
    return yy_default[stateno];
  }
  assert( iLookAhead!=YYNOCODE );
  i += iLookAhead;
  if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
    if( iLookAhead>0 ){
#ifdef YYFALLBACK
      YYCODETYPE iFallback;            /* Fallback token */
      if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
................................................................................
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
%%
   ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*






















** Perform a shift action.
*/
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */
  int yyNewState,               /* The new state to shift in */
  int yyMajor,                  /* The major token to shift in */
  YYMINORTYPE *yypMinor         /* Pointer to the minor token to shift in */
){
................................................................................
    }
  }
#endif
  yytos = &yypParser->yystack[yypParser->yyidx];
  yytos->stateno = (YYACTIONTYPE)yyNewState;
  yytos->major = (YYCODETYPE)yyMajor;
  yytos->minor = *yypMinor;
#ifndef NDEBUG
  if( yyTraceFILE && yypParser->yyidx>0 ){
    int i;
    fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
    fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
    for(i=1; i<=yypParser->yyidx; i++)
      fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
    fprintf(yyTraceFILE,"\n");
  }
#endif
}

/* The following table contains information about every rule that
** is used during the reduce.
*/
static const struct {
  YYCODETYPE lhs;         /* Symbol on the left-hand side of the rule */
................................................................................
  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  ParseARG_FETCH;
  yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno>=0 
        && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){

    fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
      yyRuleName[yyruleno]);
  }
#endif /* NDEBUG */

  /* Silence complaints from purify about yygotominor being uninitialized
  ** in some cases when it is copied into the stack after the following
  ** switch.  yygotominor is uninitialized when a rule reduces that does
  ** not set the value of its left-hand side nonterminal.  Leaving the
................................................................................
  */
%%
  };
  yygoto = yyRuleInfo[yyruleno].lhs;
  yysize = yyRuleInfo[yyruleno].nrhs;
  yypParser->yyidx -= yysize;
  yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
  if( yyact < YYNSTATE ){
#ifdef NDEBUG
    /* If we are not debugging and the reduce action popped at least
    ** one element off the stack, then we can push the new element back
    ** onto the stack here, and skip the stack overflow test in yy_shift().
    ** That gives a significant speed improvement. */
    if( yysize ){
      yypParser->yyidx++;
      yymsp -= yysize-1;
      yymsp->stateno = (YYACTIONTYPE)yyact;
      yymsp->major = (YYCODETYPE)yygoto;
      yymsp->minor = yygotominor;

    }else
#endif
    {
      yy_shift(yypParser,yyact,yygoto,&yygotominor);
    }
  }else{
    assert( yyact == YYNSTATE + YYNRULE + 1 );
    yy_accept(yypParser);
  }
}

/*
** The following code executes when the parse fails
*/
................................................................................
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
  }
#endif

  do{
    yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
    if( yyact<YYNSTATE ){
      assert( !yyendofinput );  /* Impossible to shift the $ token */
      yy_shift(yypParser,yyact,yymajor,&yyminorunion);
      yypParser->yyerrcnt--;
      yymajor = YYNOCODE;
    }else if( yyact < YYNSTATE + YYNRULE ){
      yy_reduce(yypParser,yyact-YYNSTATE);
    }else{
      assert( yyact == YY_ERROR_ACTION );
#ifdef YYERRORSYMBOL
      int yymx;
#endif
#ifndef NDEBUG
      if( yyTraceFILE ){
................................................................................
        yymajor = YYNOCODE;
      }else{
         while(
          yypParser->yyidx >= 0 &&
          yymx != YYERRORSYMBOL &&
          (yyact = yy_find_reduce_action(
                        yypParser->yystack[yypParser->yyidx].stateno,
                        YYERRORSYMBOL)) >= YYNSTATE
        ){
          yy_pop_parser_stack(yypParser);
        }
        if( yypParser->yyidx < 0 || yymajor==0 ){
          yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
          yy_parse_failed(yypParser);
          yymajor = YYNOCODE;
................................................................................
      if( yyendofinput ){
        yy_parse_failed(yypParser);
      }
      yymajor = YYNOCODE;
#endif
    }
  }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );





  return;
}







<
<


>
>
>
>
>
>
>
>
>


<
<
<







 







|


|
>

>
>
>
|

|

|







 







>
>
>
>


|







 







|
>
|
|
|
<







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







 







|
<
<
<
<
<
<
<
<
<







 







>
|
|







 







|
|
|









>
|
<
<



|







 







|
|



|
|







 







|







 







>
>
>
>
>


46
47
48
49
50
51
52


53
54
55
56
57
58
59
60
61
62
63
64
65



66
67
68
69
70
71
72
..
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
...
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
...
392
393
394
395
396
397
398
399
400
401
402
403

404
405
406
407
408
409
410
...
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
...
552
553
554
555
556
557
558
559









560
561
562
563
564
565
566
...
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
...
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644


645
646
647
648
649
650
651
652
653
654
655
...
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
...
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
...
867
868
869
870
871
872
873
874
875
876
877
878
879
880
**                       for base tokens is called "yy0".
**    YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
**                       zero the stack is dynamically sized using realloc()
**    ParseARG_SDECL     A static variable declaration for the %extra_argument
**    ParseARG_PDECL     A parameter declaration for the %extra_argument
**    ParseARG_STORE     Code to store %extra_argument into yypParser
**    ParseARG_FETCH     Code to extract %extra_argument from yypParser


**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YY_MAX_SHIFT       Maximum value for shift actions
**    YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    YY_MIN_REDUCE      Maximum value for reduce actions
**    YY_ERROR_ACTION    The yy_action[] code for syntax error
**    YY_ACCEPT_ACTION   The yy_action[] code for accept
**    YY_NO_ACTION       The yy_action[] code for no-op
*/
%%




/* The yyzerominor constant is used to initialize instances of
** YYMINORTYPE objects to zero. */
static const YYMINORTYPE yyzerominor = { 0 };

/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.
................................................................................
** current state and lookahead token.  These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.  
**
** Suppose the action integer is N.  Then the action is determined as
** follows
**
**   0 <= N <= YY_MAX_SHIFT             Shift N.  That is, push the lookahead
**                                      token onto the stack and goto state N.
**
**   N between YY_MIN_SHIFTREDUCE       Shift to an arbitrary state then
**     and YY_MAX_SHIFTREDUCE           reduce by rule N-YY_MIN_SHIFTREDUCE.
**
**   N between YY_MIN_REDUCE            Reduce by rule N-YY_MIN_REDUCE
**     and YY_MAX_REDUCE

**   N == YY_ERROR_ACTION               A syntax error has occurred.
**
**   N == YY_ACCEPT_ACTION              The parser accepts its input.
**
**   N == YY_NO_ACTION                  No such action.  Denotes unused
**                                      slots in the yy_action[] table.
**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as
**
**      yy_action[ yy_shift_ofst[S] + X ]
**
................................................................................
**
**   +  The value of the token stored at this level of the stack.
**      (In other words, the "major" token.)
**
**   +  The semantic value stored at this level of the stack.  This is
**      the information used by the action routines in the grammar.
**      It is sometimes called the "minor" token.
**
** After the "shift" half of a SHIFTREDUCE action, the stateno field
** actually contains the reduce action for the second half of the
** SHIFTREDUCE.
*/
struct yyStackEntry {
  YYACTIONTYPE stateno;  /* The state-number, or reduce action in SHIFTREDUCE */
  YYCODETYPE major;      /* The major token value.  This is the code
                         ** number for the token at this stack level */
  YYMINORTYPE minor;     /* The user-supplied minor token value.  This
                         ** is the value of the token  */
};
typedef struct yyStackEntry yyStackEntry;

................................................................................
*/
static int yy_find_shift_action(
  yyParser *pParser,        /* The parser */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
  int stateno = pParser->yystack[pParser->yyidx].stateno;

  if( stateno>=YY_MIN_REDUCE ) return stateno; 
  assert( stateno <= YY_SHIFT_COUNT );
  i = yy_shift_ofst[stateno];
  if( i==YY_SHIFT_USE_DFLT ) return yy_default[stateno];

  assert( iLookAhead!=YYNOCODE );
  i += iLookAhead;
  if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
    if( iLookAhead>0 ){
#ifdef YYFALLBACK
      YYCODETYPE iFallback;            /* Fallback token */
      if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
................................................................................
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
%%
   ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void yyTraceShift(yyParser *yypParser, int yyNewState){
  if( yyTraceFILE ){
    int i;
    if( yyNewState<YYNSTATE ){
      fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
      fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
      for(i=1; i<=yypParser->yyidx; i++)
        fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
      fprintf(yyTraceFILE,"\n");
    }else{
      fprintf(yyTraceFILE,"%sShift *\n",yyTracePrompt);
    }
  }
}
#else
# define yyTraceShift(X,Y)
#endif

/*
** Perform a shift action.  Return the number of errors.
*/
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */
  int yyNewState,               /* The new state to shift in */
  int yyMajor,                  /* The major token to shift in */
  YYMINORTYPE *yypMinor         /* Pointer to the minor token to shift in */
){
................................................................................
    }
  }
#endif
  yytos = &yypParser->yystack[yypParser->yyidx];
  yytos->stateno = (YYACTIONTYPE)yyNewState;
  yytos->major = (YYCODETYPE)yyMajor;
  yytos->minor = *yypMinor;
  yyTraceShift(yypParser, yyNewState);









}

/* The following table contains information about every rule that
** is used during the reduce.
*/
static const struct {
  YYCODETYPE lhs;         /* Symbol on the left-hand side of the rule */
................................................................................
  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  ParseARG_FETCH;
  yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno>=0 
        && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
    yysize = yyRuleInfo[yyruleno].nrhs;
    fprintf(yyTraceFILE, "%sReduce [%s] -> state %d.\n", yyTracePrompt,
      yyRuleName[yyruleno], yymsp[-yysize].stateno);
  }
#endif /* NDEBUG */

  /* Silence complaints from purify about yygotominor being uninitialized
  ** in some cases when it is copied into the stack after the following
  ** switch.  yygotominor is uninitialized when a rule reduces that does
  ** not set the value of its left-hand side nonterminal.  Leaving the
................................................................................
  */
%%
  };
  yygoto = yyRuleInfo[yyruleno].lhs;
  yysize = yyRuleInfo[yyruleno].nrhs;
  yypParser->yyidx -= yysize;
  yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
  if( yyact <= YY_MAX_SHIFTREDUCE ){
    if( yyact>YY_MAX_SHIFT ) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
    /* If the reduce action popped at least
    ** one element off the stack, then we can push the new element back
    ** onto the stack here, and skip the stack overflow test in yy_shift().
    ** That gives a significant speed improvement. */
    if( yysize ){
      yypParser->yyidx++;
      yymsp -= yysize-1;
      yymsp->stateno = (YYACTIONTYPE)yyact;
      yymsp->major = (YYCODETYPE)yygoto;
      yymsp->minor = yygotominor;
      yyTraceShift(yypParser, yyact);
    }else{


      yy_shift(yypParser,yyact,yygoto,&yygotominor);
    }
  }else{
    assert( yyact == YY_ACCEPT_ACTION );
    yy_accept(yypParser);
  }
}

/*
** The following code executes when the parse fails
*/
................................................................................
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
  }
#endif

  do{
    yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
    if( yyact <= YY_MAX_SHIFTREDUCE ){
      if( yyact > YY_MAX_SHIFT ) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
      yy_shift(yypParser,yyact,yymajor,&yyminorunion);
      yypParser->yyerrcnt--;
      yymajor = YYNOCODE;
    }else if( yyact <= YY_MAX_REDUCE ){
      yy_reduce(yypParser,yyact-YY_MIN_REDUCE);
    }else{
      assert( yyact == YY_ERROR_ACTION );
#ifdef YYERRORSYMBOL
      int yymx;
#endif
#ifndef NDEBUG
      if( yyTraceFILE ){
................................................................................
        yymajor = YYNOCODE;
      }else{
         while(
          yypParser->yyidx >= 0 &&
          yymx != YYERRORSYMBOL &&
          (yyact = yy_find_reduce_action(
                        yypParser->yystack[yypParser->yyidx].stateno,
                        YYERRORSYMBOL)) >= YY_MIN_REDUCE
        ){
          yy_pop_parser_stack(yypParser);
        }
        if( yypParser->yyidx < 0 || yymajor==0 ){
          yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
          yy_parse_failed(yypParser);
          yymajor = YYNOCODE;
................................................................................
      if( yyendofinput ){
        yy_parse_failed(yypParser);
      }
      yymajor = YYNOCODE;
#endif
    }
  }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sReturn\n",yyTracePrompt);
  }
#endif
  return;
}

Changes to tool/spaceanal.tcl.

22
23
24
25
26
27
28
29












30
31
32
33
34
35
36
  return 0
}

# Get the name of the database to analyze
#
proc usage {} {
  set argv0 [file rootname [file tail [info nameofexecutable]]]
  puts stderr "Usage: $argv0 \[--pageinfo] \[--stats] database-name"












  exit 1
}
set file_to_analyze {}
set flags(-pageinfo) 0
set flags(-stats) 0
append argv {}
foreach arg $argv {







|
>
>
>
>
>
>
>
>
>
>
>
>







22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
  return 0
}

# Get the name of the database to analyze
#
proc usage {} {
  set argv0 [file rootname [file tail [info nameofexecutable]]]
  puts stderr "Usage: $argv0 ?--pageinfo? ?--stats? database-filename"
  puts stderr {
Analyze the SQLite3 database file specified by the "database-filename"
argument and output a report detailing size and storage efficiency
information for the database and its constituent tables and indexes.

Options:

   --stats        Output SQL text that creates a new database containing
                  statistics about the database that was analyzed

   --pageinfo     Show how each page of the database-file is used
}
  exit 1
}
set file_to_analyze {}
set flags(-pageinfo) 0
set flags(-stats) 0
append argv {}
foreach arg $argv {