SQLite

Check-in [7108b699cc]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:incremental update (CVS 223)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 7108b699cc03d5d4dfb222ceab0196a85dbffd50
User & Date: drh 2001-06-08 00:21:52.000
Context
2001-06-08
00:25
documentation update (CVS 224) (check-in: d1e211fad9 user: drh tags: trunk)
00:21
incremental update (CVS 223) (check-in: 7108b699cc user: drh tags: trunk)
2001-06-02
02:40
continued work on btree (CVS 222) (check-in: d07e0e80a0 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
17
18
19
20
21
22
23
24






































25
26
27
28
29
30
31
** Boston, MA  02111-1307, USA.
**
** Author contact information:
**   drh@hwaci.com
**   http://www.hwaci.com/drh/
**
*************************************************************************
** $Id: btree.c,v 1.10 2001/06/02 02:40:57 drh Exp $






































*/
#include "sqliteInt.h"
#include "pager.h"
#include "btree.h"
#include <assert.h>









|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
** Boston, MA  02111-1307, USA.
**
** Author contact information:
**   drh@hwaci.com
**   http://www.hwaci.com/drh/
**
*************************************************************************
** $Id: btree.c,v 1.11 2001/06/08 00:21:52 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.
**
** The basic idea is that each page of the file contains N database
** entries and N+1 pointers to subpages.
**
**   ----------------------------------------------------------------
**   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
**   ----------------------------------------------------------------
**
** All of the keys on the page that Ptr(0) points to have values less
** than Key(0).  All of the keys on page Ptr(1) and its subpages have
** values greater than Key(0) and less than Key(1).  All of the keys
** on Ptr(N+1) and its subpages have values greater than Key(N).  And
** so forth.
**
** Finding a particular key requires reading O(log(M)) pages from the file
** where M is the number of entries in the tree.
**
** In this implementation, a single file can hold one or more separate 
** BTrees.  Each BTree is identified by the index of its root page.  The
** key and data for any entry are combined to form the "payload".  Up to
** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
** database page.  If the payload is larger than MX_LOCAL_PAYLOAD bytes
** then surplus bytes are stored on overflow pages.  The payload for an
** entry and the preceding pointer are combined to form a "Cell".  Each 
** page has a smaller header which contains the Ptr(N+1) pointer.
**
** The first page of the file contains a magic string used to verify that
** the file really is a valid BTree database, a pointer to a list of unused
** pages in the file, and some meta information.  The root of the first
** BTree begins on page 2 of the file.  (Pages are numbered beginning with
** 1, not 0.)  Thus a minimum database contains 2 pages.
*/
#include "sqliteInt.h"
#include "pager.h"
#include "btree.h"
#include <assert.h>


65
66
67
68
69
70
71
72




73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95





96
97
98
99
100
101
102
   "** This file contains an SQLite 2.0 database **"
#define MAGIC_SIZE (sizeof(zMagicHeader))

/*
** The first page of the database file contains a magic header string
** to identify the file as an SQLite database file.  It also contains
** a pointer to the first free page of the file.  Page 2 contains the
** root of the BTree.




**
** Remember that pages are numbered beginning with 1.  (See pager.c
** for additional information.)  Page 0 does not exist and a page
** number of 0 is used to mean "no such page".
*/
struct PageOne {
  char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
  Pgno firstList;          /* First free page in a list of all free pages */

};

/*
** Each database page has a header that is an instance of this
** structure.
**
** MemPage.pHdr always points to the rightmost_pgno.  First_free is
** 0 if there is no free space on this page.  Otherwise, first_free is
** the index in MemPage.aDisk[] of a FreeBlk structure that describes
** the first block of free space.  All free space is defined by a linked
** list of FreeBlk structures.
**
** Data is stored in a linked list of Cell structures.  First_cell is
** the index into MemPage.aDisk[] of the first cell on the page.  The
** Cells are kept in sorted order.





*/
struct PageHdr {
  Pgno rightChild;  /* Child page that comes after all cells on this page */
  u16 firstCell;    /* Index in MemPage.aDisk[] of the first cell */
  u16 firstFree;    /* Index in MemPage.aDisk[] of the first free block */
};








|
>
>
>
>








>






<
|
|
|
|

|
|

>
>
>
>
>







103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
   "** This file contains an SQLite 2.0 database **"
#define MAGIC_SIZE (sizeof(zMagicHeader))

/*
** The first page of the database file contains a magic header string
** to identify the file as an SQLite database file.  It also contains
** a pointer to the first free page of the file.  Page 2 contains the
** root of the principle BTree.  The file might contain other BTrees
** rooted on pages above 2.
**
** The first page also contains SQLITE_N_BTREE_META integers that
** can be used by higher-level routines.
**
** Remember that pages are numbered beginning with 1.  (See pager.c
** for additional information.)  Page 0 does not exist and a page
** number of 0 is used to mean "no such page".
*/
struct PageOne {
  char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
  Pgno firstList;          /* First free page in a list of all free pages */
  int aMeta[SQLITE_N_BTREE_META];  /* User defined integers */
};

/*
** Each database page has a header that is an instance of this
** structure.
**

** PageHdr.firstFree is 0 if there is no free space on this page.
** Otherwise, PageHdr.firstFree is the index in MemPage.aDisk[] of a 
** FreeBlk structure that describes the first block of free space.  
** All free space is defined by a linked list of FreeBlk structures.
**
** Data is stored in a linked list of Cell structures.  PageHdr.firstCell
** is the index into MemPage.aDisk[] of the first cell on the page.  The
** Cells are kept in sorted order.
**
** A Cell contains all information about a database entry and a pointer
** to a child page that contains other entries less than itself.  In
** other words, the i-th Cell contains both Ptr(i) and Key(i).  The
** right-most pointer of the page is contained in PageHdr.rightChild.
*/
struct PageHdr {
  Pgno rightChild;  /* Child page that comes after all cells on this page */
  u16 firstCell;    /* Index in MemPage.aDisk[] of the first cell */
  u16 firstFree;    /* Index in MemPage.aDisk[] of the first free block */
};

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
  Pgno ovfl;                        /* The first overflow page */
};

/*
** Free space on a page is remembered using a linked list of the FreeBlk
** structures.  Space on a database page is allocated in increments of
** at least 4 bytes and is always aligned to a 4-byte boundry.  The
** linked list of freeblocks is always kept in order by address.
*/
struct FreeBlk {
  u16 iSize;      /* Number of bytes in this block of free space */
  u16 iNext;      /* Index in MemPage.aDisk[] of the next free block */
};

/*
** Number of bytes on a single overflow page.
*/
#define OVERFLOW_SIZE (SQLITE_PAGE_SIZE-sizeof(Pgno))

/*
** When the key and data for a single entry in the BTree will not fit in
** the MX_LOACAL_PAYLOAD bytes of space available on the database page,
** then all extra data is written to a linked list of overflow pages.
** Each overflow page is an instance of the following structure.
**
** Unused pages in the database are also represented by instances of
** the OverflowPage structure.  The PageOne.freeList field is the
** page number of the first page in a linked list of unused database
** pages.
*/







|














|







206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
  Pgno ovfl;                        /* The first overflow page */
};

/*
** Free space on a page is remembered using a linked list of the FreeBlk
** structures.  Space on a database page is allocated in increments of
** at least 4 bytes and is always aligned to a 4-byte boundry.  The
** linked list of FreeBlks is always kept in order by address.
*/
struct FreeBlk {
  u16 iSize;      /* Number of bytes in this block of free space */
  u16 iNext;      /* Index in MemPage.aDisk[] of the next free block */
};

/*
** Number of bytes on a single overflow page.
*/
#define OVERFLOW_SIZE (SQLITE_PAGE_SIZE-sizeof(Pgno))

/*
** When the key and data for a single entry in the BTree will not fit in
** the MX_LOACAL_PAYLOAD bytes of space available on the database page,
** then all extra bytes are written to a linked list of overflow pages.
** Each overflow page is an instance of the following structure.
**
** Unused pages in the database are also represented by instances of
** the OverflowPage structure.  The PageOne.freeList field is the
** page number of the first page in a linked list of unused database
** pages.
*/
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
*/
struct MemPage {
  char aDisk[SQLITE_PAGE_SIZE];  /* Page data stored on disk */
  int isInit;                    /* True if auxiliary data is initialized */
  MemPage *pParent;              /* The parent of this page.  NULL for root */
  int nFree;                     /* Number of free bytes in aDisk[] */
  int nCell;                     /* Number of entries on this page */
  Cell *apCell[MX_CELL];         /* All data entires in sorted order */
}

/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/







|







258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
*/
struct MemPage {
  char aDisk[SQLITE_PAGE_SIZE];  /* Page data stored on disk */
  int isInit;                    /* True if auxiliary data is initialized */
  MemPage *pParent;              /* The parent of this page.  NULL for root */
  int nFree;                     /* Number of free bytes in aDisk[] */
  int nCell;                     /* Number of entries on this page */
  Cell *apCell[MX_CELL+1];       /* All data entires in sorted order */
}

/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/
240
241
242
243
244
245
246

247
248
249
250
251
252
253
** A cursor is a pointer to a particular entry in the BTree.
** The entry is identified by its MemPage and the index in
** MemPage.apCell[] of the entry.
*/
struct BtCursor {
  Btree *pBt;               /* The Btree to which this cursor belongs */
  BtCursor *pPrev, *pNext;  /* List of all cursors */

  MemPage *pPage;           /* Page that contains the entry */
  u16 idx;                  /* Index of the entry in pPage->apCell[] */
  u8 bSkipNext;             /* sqliteBtreeNext() is no-op if true */
  u8 iMatch;                /* compare result from last sqliteBtreeMoveto() */
};

/*







>







287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
** A cursor is a pointer to a particular entry in the BTree.
** The entry is identified by its MemPage and the index in
** MemPage.apCell[] of the entry.
*/
struct BtCursor {
  Btree *pBt;               /* The Btree to which this cursor belongs */
  BtCursor *pPrev, *pNext;  /* List of all cursors */
  Pgno pgnoRoot;            /* The root page of this tree */
  MemPage *pPage;           /* Page that contains the entry */
  u16 idx;                  /* Index of the entry in pPage->apCell[] */
  u8 bSkipNext;             /* sqliteBtreeNext() is no-op if true */
  u8 iMatch;                /* compare result from last sqliteBtreeMoveto() */
};

/*
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
  pFBlk->iSize = SQLITE_PAGE_SIZE - pc;
  pFBlk->iNext = 0;
  ((PageHdr*)pPage)->firstFree = pc;
  memset(&pFBlk[1], 0, SQLITE_PAGE_SIZE - pc - sizeof(FreeBlk));
}

/*
** Allocate space on a page.  The space needs to be at least
** nByte bytes in size.  nByte must be a multiple of 4.
**
** Return the index into pPage->aDisk[] of the first byte of
** the new allocation. Or return 0 if there is not enough free
** space on the page to satisfy the allocation request.
**
** If the page contains nBytes of free space but does not contain
** nBytes of contiguous free space, then defragementPage() is
** called to consolidate all free space before allocating the
** new chunk.
*/
static int allocateSpace(MemPage *pPage, int nByte){
  FreeBlk *p;
  u16 *pIdx;
  int start;

  assert( nByte==ROUNDUP(nByte) );







|
|






|
|
|







344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
  pFBlk->iSize = SQLITE_PAGE_SIZE - pc;
  pFBlk->iNext = 0;
  ((PageHdr*)pPage)->firstFree = pc;
  memset(&pFBlk[1], 0, SQLITE_PAGE_SIZE - pc - sizeof(FreeBlk));
}

/*
** Allocate nByte bytes of space on a page.  nByte must be a 
** multiple of 4.
**
** Return the index into pPage->aDisk[] of the first byte of
** the new allocation. Or return 0 if there is not enough free
** space on the page to satisfy the allocation request.
**
** If the page contains nBytes of free space but does not contain
** nBytes of contiguous free space, then this routine automatically
** calls defragementPage() to consolidate all free space before 
** allocating the new chunk.
*/
static int allocateSpace(MemPage *pPage, int nByte){
  FreeBlk *p;
  u16 *pIdx;
  int start;

  assert( nByte==ROUNDUP(nByte) );
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
  pPage->nFree -= nByte;
  return start;
}

/*
** Return a section of the MemPage.aDisk[] to the freelist.
** The first byte of the new free block is pPage->aDisk[start]
** and the size of the block is "size".
**
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
static void freeSpace(MemPage *pPage, int start, int size){
  int end = start + size;
  u16 *pIdx, idx;







|







391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  pPage->nFree -= nByte;
  return start;
}

/*
** Return a section of the MemPage.aDisk[] to the freelist.
** The first byte of the new free block is pPage->aDisk[start]
** and the size of the block is "size" bytes.
**
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
static void freeSpace(MemPage *pPage, int start, int size){
  int end = start + size;
  u16 *pIdx, idx;
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
}

/*
** Initialize the auxiliary information for a disk block.
**
** The pParent parameter must be a pointer to the MemPage which
** is the parent of the page being initialized.  The root of the
** BTree (page 2) has no parent and so for that page, pParent==NULL.

**
** Return SQLITE_OK on success.  If we see that the page does
** not contained a well-formed database page, then return 
** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed.  It only shows that
** we failed to detect any corruption.
*/







|
>







440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
}

/*
** Initialize the auxiliary information for a disk block.
**
** The pParent parameter must be a pointer to the MemPage which
** is the parent of the page being initialized.  The root of the
** BTree (usually page 2) has no parent and so for that page, 
** pParent==NULL.
**
** Return SQLITE_OK on success.  If we see that the page does
** not contained a well-formed database page, then return 
** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed.  It only shows that
** we failed to detect any corruption.
*/
439
440
441
442
443
444
445





446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
  while( idx!=0 ){
    if( idx>SQLITE_PAGE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
    if( idx<sizeof(PageHdr) ) goto page_format_error;
    pFBlk = (FreeBlk*)&pPage->aDisk[idx];
    pPage->nFree += pFBlk->iSize;
    if( pFBlk->iNext <= idx ) goto page_format_error;
    idx = pFBlk->iNext;





  }
  if( pPage->nFree!=freeSpace ) goto page_format_error;
  return SQLITE_OK;

page_format_error:
  return SQLITE_CORRUPT;
}

/*
** Recompute the MemPage.apCell[], MemPage.nCell, and MemPage.nFree parameters
** for a cell after the content has be changed significantly.
**
** The computation here is similar to initPage() except that in this case
** the MemPage.aDisk[] field has been set up internally (instead of 
** having been read from disk) so we do not need to do as much error
** checking.
*/
static void reinitPage(MemPage *pPage){







>
>
>
>
>










|







488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
  while( idx!=0 ){
    if( idx>SQLITE_PAGE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
    if( idx<sizeof(PageHdr) ) goto page_format_error;
    pFBlk = (FreeBlk*)&pPage->aDisk[idx];
    pPage->nFree += pFBlk->iSize;
    if( pFBlk->iNext <= idx ) goto page_format_error;
    idx = pFBlk->iNext;
  }
  if( pPage->nCell==0 && pPage->nFree==0 ){
    /* As a special case, an uninitialized root page appears to be
    ** an empty database */
    return SQLITE_OK;
  }
  if( pPage->nFree!=freeSpace ) goto page_format_error;
  return SQLITE_OK;

page_format_error:
  return SQLITE_CORRUPT;
}

/*
** Recompute the MemPage.apCell[], MemPage.nCell, and MemPage.nFree parameters
** for a cell after the MemPage.aDisk[] content has be changed significantly.
**
** The computation here is similar to initPage() except that in this case
** the MemPage.aDisk[] field has been set up internally (instead of 
** having been read from disk) so we do not need to do as much error
** checking.
*/
static void reinitPage(MemPage *pPage){
478
479
480
481
482
483
484

485
486
487
488
489
490
491
492
    pPage->nFree += pFBlk->iSize;
    idx = pFBlk->iNext;
  }
  return SQLITE_OK;
}

/*

** Initialize a database page so that it holds no entries at all.
*/
static void zeroPage(MemPage *pPage){
  PageHdr *pHdr;
  FreeBlk *pFBlk;
  memset(pPage, 0, SQLITE_PAGE_SIZE);
  pHdr = (PageHdr*)pPage;
  pHdr->firstCell = 0;







>
|







532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    pPage->nFree += pFBlk->iSize;
    idx = pFBlk->iNext;
  }
  return SQLITE_OK;
}

/*
** Set up a raw page so that it looks like a database page holding
** no entries.
*/
static void zeroPage(MemPage *pPage){
  PageHdr *pHdr;
  FreeBlk *pFBlk;
  memset(pPage, 0, SQLITE_PAGE_SIZE);
  pHdr = (PageHdr*)pPage;
  pHdr->firstCell = 0;
580
581
582
583
584
585
586
587
588























589











590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
  return rc;

page1_init_failed:
  sqlitepager_unref(pBt->page1);
  pBt->page1 = 0;
  return rc;
}

/*























** Attempt to start a new transaction.











*/
int sqliteBtreeBeginTrans(Btree *pBt){
  int rc;
  Page1Header *pP1;
  if( pBt->inTrans ) return SQLITE_ERROR;
  if( pBt->page1==0 ){
    rc = lockBtree(pBt);
    if( rc!=SQLITE_OK ) return rc;
  }
  rc = sqlitepager_write(pBt->page1);
  if( rc==SQLITE_OK ){
    pBt->inTrans = 1;
  }
  pP1 = (Page1Header*)pBt->page1;
  if( pP1->magic1==0 ){
    pP1->magic1 = MAGIC_1;
    pP1->magic2 = MAGIC_2;
  }
  return rc;
}

/*
** Remove the last reference to the database file.  This will
** remove the read lock.
*/
static void unlockBtree(Btree *pBt){









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>



|









<
<
<
<
<
|







635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691





692
693
694
695
696
697
698
699
  return rc;

page1_init_failed:
  sqlitepager_unref(pBt->page1);
  pBt->page1 = 0;
  return rc;
}

/*
** Create a new database by initializing the first two pages.
*/
static int newDatabase(Btree *pBt){
  MemPage *pRoot;
  PageOne *pP1;
  if( sqlitepager_pagecount(pBt->pPager)>0 ) return SQLITE_OK;
  pP1 = pBt->page1;
  rc = sqlitepager_write(pBt->page1);
  if( rc ) return rc;
  rc = sqlitepager_get(pBt->pPager, 2, &pRoot);
  if( rc ) return rc;
  rc = sqlitepager_write(pRoot);
  if( rc ){
    sqlitepager_unref(pRoot);
    return rc;
  }
  strcpy(pP1->zMagic, zMagicHeader);
  zeroPage(pRoot);
  sqlitepager_unref(pRoot);
  return SQLITE_OK;
}

/*
** Attempt to start a new transaction.
**
** A transaction must be started before attempting any changes
** to the database.  None of the following routines will work
** unless a transaction is started first:
**
**      sqliteBtreeCreateTable()
**      sqliteBtreeClearTable()
**      sqliteBtreeDropTable()
**      sqliteBtreeInsert()
**      sqliteBtreeDelete()
**      sqliteBtreeUpdateMeta()
*/
int sqliteBtreeBeginTrans(Btree *pBt){
  int rc;
  PageOne *pP1;
  if( pBt->inTrans ) return SQLITE_ERROR;
  if( pBt->page1==0 ){
    rc = lockBtree(pBt);
    if( rc!=SQLITE_OK ) return rc;
  }
  rc = sqlitepager_write(pBt->page1);
  if( rc==SQLITE_OK ){
    pBt->inTrans = 1;
  }





  return newDatabase(pBt);
}

/*
** Remove the last reference to the database file.  This will
** remove the read lock.
*/
static void unlockBtree(Btree *pBt){
641
642
643
644
645
646
647

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

666
667
668
669
670
671
672
673
674
675
676
677
  if( pBt->pCursor!=0 ) return SQLITE_ERROR;
  rc = sqlitepager_rollback(pBt->pPager);
  unlockBtree(pBt);
  return rc;
}

/*

** Create a new cursor.  The act of acquiring a cursor
** gets a read lock on the database file.
*/
int sqliteBtreeCursor(Btree *pBt, BtCursor **ppCur){
  int rc;
  BtCursor *pCur;
  if( pBt->page1==0 ){
    rc = lockBtree(pBt);
    if( rc!=SQLITE_OK ){
      *ppCur = 0;
      return rc;
    }
  }
  pCur = sqliteMalloc( sizeof(*pCur) );
  if( pCur==0 ){
    rc = SQLITE_NOMEM;
    goto create_cursor_exception;
  }

  rc = sqlitepager_get(pBt->pPager, 2, &pCur->pPage);
  if( rc!=SQLITE_OK ){
    goto create_cursor_exception;
  }
  rc = initPage(pCur->pPage, 2, 0);
  if( rc!=SQLITE_OK ){
    goto create_cursor_exception;
  }
  pCur->pPrev = 0;
  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur;







>
|
|

|














>
|



|







725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
  if( pBt->pCursor!=0 ) return SQLITE_ERROR;
  rc = sqlitepager_rollback(pBt->pPager);
  unlockBtree(pBt);
  return rc;
}

/*
** Create a new cursor for the BTree whose root is on the page
** iTable.  The act of acquiring a cursor gets a read lock on 
** the database file.
*/
int sqliteBtreeCursor(Btree *pBt, int iTable, BtCursor **ppCur){
  int rc;
  BtCursor *pCur;
  if( pBt->page1==0 ){
    rc = lockBtree(pBt);
    if( rc!=SQLITE_OK ){
      *ppCur = 0;
      return rc;
    }
  }
  pCur = sqliteMalloc( sizeof(*pCur) );
  if( pCur==0 ){
    rc = SQLITE_NOMEM;
    goto create_cursor_exception;
  }
  pCur->pgnoRoot = (Pgno)iTable;
  rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, &pCur->pPage);
  if( rc!=SQLITE_OK ){
    goto create_cursor_exception;
  }
  rc = initPage(pCur->pPage, pCur->pgnoRoot, 0);
  if( rc!=SQLITE_OK ){
    goto create_cursor_exception;
  }
  pCur->pPrev = 0;
  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur;
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
/*
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pNew;
  int rc;

  rc = sqlitepager_get(pCur->pBt->pPager, 2, &pNew);
  if( rc ) return rc;
  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pNew;
  pCur->idx = 0;
  return SQLITE_OK;
}








|







1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
/*
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pNew;
  int rc;

  rc = sqlitepager_get(pCur->pBt->pPager, pCur->pgnoRoot, &pNew);
  if( rc ) return rc;
  sqlitepager_unref(pCur->pPage);
  pCur->pPage = pNew;
  pCur->idx = 0;
  return SQLITE_OK;
}

1045
1046
1047
1048
1049
1050
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
  int rc;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  for(;;){
    int lwr, upr;
    Pgno chldPg;
    MemPage *pPage = pCur->pPage;

    lwr = 0;
    upr = pPage->nCell-1;
    while( lwr<=upr ){
      int c;
      pCur->idx = (lwr+upr)/2;
      rc = compareKey(pCur, pKey, nKey, &c);
      if( rc ) return rc;
      if( c==0 ){
        pCur->iMatch = c;
        if( pRes ) *pRes = 0;
        return SQLITE_OK;







>



<







1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

1142
1143
1144
1145
1146
1147
1148
  int rc;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  for(;;){
    int lwr, upr;
    Pgno chldPg;
    MemPage *pPage = pCur->pPage;
    int c = -1;
    lwr = 0;
    upr = pPage->nCell-1;
    while( lwr<=upr ){

      pCur->idx = (lwr+upr)/2;
      rc = compareKey(pCur, pKey, nKey, &c);
      if( rc ) return rc;
      if( c==0 ){
        pCur->iMatch = c;
        if( pRes ) *pRes = 0;
        return SQLITE_OK;
1169
1170
1171
1172
1173
1174
1175

1176
1177
1178
1179
1180
1181
1182
** needs to do that.
*/
static int freePage(Btree *pBt, void *pPage, Pgno pgno){
  PageOne *pPage1 = pBt->page1;
  OverflowPage *pOvfl = (OverflowPage*)pPage;
  int rc;
  int needOvflUnref = 0;

  if( pgno==0 ){
    assert( pOvfl!=0 );
    pgno = sqlitepager_pagenumber(pOvfl);
  }
  rc = sqlitepager_write(pPage1);
  if( rc ){
    return rc;







>







1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
** needs to do that.
*/
static int freePage(Btree *pBt, void *pPage, Pgno pgno){
  PageOne *pPage1 = pBt->page1;
  OverflowPage *pOvfl = (OverflowPage*)pPage;
  int rc;
  int needOvflUnref = 0;

  if( pgno==0 ){
    assert( pOvfl!=0 );
    pgno = sqlitepager_pagenumber(pOvfl);
  }
  rc = sqlitepager_write(pPage1);
  if( rc ){
    return rc;
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
    pSpace += n;
  }
  return SQLITE_OK;
}

/*
** Change the MemPage.pParent pointer on the page whose number is
** given in the second argument sot that MemPage.pParent holds the
** pointer in the third argument.
*/
static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent){
  MemPage *pThis;

  assert( pPager!=0 && pgno!=0 );
  pThis = sqlitepager_lookup(pPager, pgno);







|







1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
    pSpace += n;
  }
  return SQLITE_OK;
}

/*
** Change the MemPage.pParent pointer on the page whose number is
** given in the second argument so that MemPage.pParent holds the
** pointer in the third argument.
*/
static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent){
  MemPage *pThis;

  assert( pPager!=0 && pgno!=0 );
  pThis = sqlitepager_lookup(pPager, pgno);
1314
1315
1316
1317
1318
1319
1320






























































































































































































































1321
1322
1323
1324
1325
1326
1327
static void reparentChildPages(Pager *pPager, Page *pPage){
  int i;
  for(i=0; i<pPage->nCell; i++){
    reparentPage(pPager, pPage->apCell[i]->leftChild, pPage);
  }
  reparentPage(pPager, ((PageHdr*)pPage)->rightChild, pPage);
}































































































































































































































/*
** Attempt to move N or more bytes out of the page that the cursor
** points to into the left sibling page.  (The left sibling page
** contains cells that are less than the cells on this page.)  The
** entry that the cursor is pointing to cannot be moved.  Return
** TRUE if successful and FALSE if not.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
static void reparentChildPages(Pager *pPager, Page *pPage){
  int i;
  for(i=0; i<pPage->nCell; i++){
    reparentPage(pPager, pPage->apCell[i]->leftChild, pPage);
  }
  reparentPage(pPager, ((PageHdr*)pPage)->rightChild, pPage);
}

/*
** This routine redistributes Cells on pPage and up to two siblings
** of pPage so that all pages have about the same amount of free space.
** Usually one siblings on either side of pPage are used in the repack,
** though both siblings might come from one side if pPage is the first
** or last child of its parent.  If pPage has fewer than two siblings
** (something which can only happen if pPage is the root page or a 
** child of root) then all siblings participate in the repack.
**
** The number of siblings of pPage might be increased or decreased by
** one in order to keep all pages between 2/3 and completely full.  If
** pPage is the root page, then the depth of the tree might be increased
** or decreased by one, as necessary, to keep the root page from being
** overfull or empty.
**
** Note that when this routine is called, some of the Cells on pPage
** might not actually be stored in pPage->aDisk[].  This can happen
** if the page is overfull.  Part of the job of this routine is to
** make sure all Cells for pPage once again fit in pPage->aDisk[].
*/
static int repack(Btree *pBt, MemPage *pPage){
  MemPage *pParent;            /* The parent of pPage */
  MemPage *apOld[3];           /* pPage and up to two siblings before repack */
  Pgno pgnoOld[3];             /* Page numbers for each page in apOld[] */
  MemPage *apNew[4];           /* pPage and up to 3 siblings after repack */
  int idxDiv[3];               /* Indices of divider cells in pParent */
  Cell *apDiv[3];              /* Divider cells in pParent */
  int nCell;                   /* Number of cells in apCell[] */
  int nOld;                    /* Number of pages in apOld[] */
  int nNew;                    /* Number of pages in apNew[] */
  int perPage;                 /* Approximate number of bytes per page */
  int nDiv;                    /* Number of cells in apDiv[] */
  Cell *apCell[MX_CELL*3+5];   /* All cells from pages being repacked */
  int unrefPage = 0;           /* If true, then unref pPage when done */

  /*
  ** Early out if no repacking is needed.
  */
  if( pPage->nFree>=0 && pPage->nFree<SQLITE_PAGE_SIZE/2 ){
    return SQLITE_OK;
  }

  /*
  ** Find the parent of the page to be repacked.
  */
  pParent = pPage->pParent;

  /*
  ** If there is no parent, it means the page is the root page.
  ** special rules apply.
  */
  if( pParent==0 ){
    Pgno pgnoChild;
    Page *pChild;
    if( pPage->nCell==0 ){
      if( ((PageHdr*)pPage)->rightChild ){
        /* The root page is under full.  Copy the one child page
        ** into the root page and return.  This reduces the depth
        ** of the BTree by one.
        */
        pgnoChild = ((PageHdr*)pPage->rightChild;
        rc = sqlitepager_get(pBt, pgnoChild, &pChild);
        if( rc ) return rc;
        memcpy(pPage, pChild, SQLITE_PAGE_SIZE);
        pPage->isInit = 0;
        initPage(pPage, sqlitepager_pagenumber(pPage), 0);
        reparentChildPages(pBt->pPager, pPage);
        freePage(pBt, pChild, pgnoChild);
        sqlitepager_unref(pChild);
      }
      return SQLITE_OK;
    }
    if( pPage->nFree>=0 ){
      /* It is OK for the root page to be less than half full.
      */
      return SQLITE_OK;
    }
    /* If we get to here, it means the root page is over full.
    ** When this happens, Create a new child page and copy the
    ** contents of the root into the child.  Then make the root
    ** page and empty page with rightChild pointing to the new
    ** child.  Then fall thru to the code below which will cause
    ** the overfull child page to be split.
    */
    rc = allocatePage(pBt, &pChild, &pgnoChild);
    if( rc ) return rc;
    memcpy(pChild, pPage, SQLITE_PAGE_SIZE);
    for(i=0; i<pPage->nCell; i++){
      if( pPage->apCell[i]>(Cell*)pPage && pPage->apCell[i]<(Cell*)&pPage[1] ){
        int offset = (int)pPage->apCell[i] - (int)pPage;
        pChild->apCell[i] = (Cell*)((int)pChild + offset);
      }else{
        pChild->apCell[i] = pPage->apCell[i];
      }
    }
    pChild->isInit = 1;
    pChild->nCell = pPage->nCell;
    pChild->nFree = pPage->nFree;
    /* reparentChildPages(pBt->pPager, pChild); */
    zeroPage(pPage);
    ((PageHdr*)pPage)->rightChild = pgnoChild;
    pParent = pPage;
    pPage = pChild;
    unrefPage = 1;
  }

  /*
  ** Find the Cell in the parent page that refers to the page
  ** to be repacked.
  */
  idx = -1;
  pgno = sqlitepager_pagenumber(pPage);
  for(i=0; i<pParent->nCell; i++){
    if( pParent->apCell[i]->h.leftChild==pgno ){
      idx = i;
      break;
    }
  }
  if( idx<0 && ((PageHdr*)pPage)->rightChild==pgno ){
    idx = pPage->nCell;
  }
  if( idx<0 ){
    rc = SQLITE_CORRUPT;
    goto end_of_repack;
  }

  /*
  ** Get sibling pages and their dividers
  */
  if( idx==pPage->nCell ){
    idx -= 2;
  }else{
    idx--;
  }
  if( idx<0 ) idx = 0;
  nDiv = 0;
  nOld = 0;
  for(i=0; i<3; i++){
    if( i+idx<pParent->nCell ){
      idxDiv[i] = i+idx;
      apDiv[i] = pParent->apCell[i+idx];
      nDiv++;
      pgnoOld[i] = apDiv[i]->h.leftChild;
      rc = sqlitepager_get(pBt, pgnoOld[i], &apOld[i]);
      if( rc ) goto end_of_repack;
      nOld++;
    }
    if( i+idx==pParent->nCell ){
      pgnoOld[i] = pParent->rightChild;
      rc = sqlitepager_get(pBt, pgnoOld[i], &apOld[i]);
      if( rc ) goto end_of_repack;
      nOld++;
    }
  }

  /*
  ** Get all cells
  */
  nCell = 0;
  for(i=0; i<nOld; i++){
    MemPage *pOld = apOld[i];
    for(j=0; j<pOld->nCell; j++){
      apCell[nCell++] = pOld->apCell[j];
    }
    if( i<nOld-1 ){
      apCell[nCell++] = apDiv[i];
    }
  }

  /*
  ** Estimate the number of pages needed
  */
  totalSize = 0;
  for(i=0; i<nCell; i++){
    totalSize += cellSize(apCell[i]);
  }
  nNew = (totalSize + (SQLITE_PAGE_SIZE - sizeof(PageHdr) - 1)) /
            (SQLITE_PAGE_SIZE - sizeof(PageHdr));
  perPage = totalSize/nNew;
  

  /*
  ** Allocate new pages
  */
  for(i=0; i<nNew; i++){
    rc = allocatePage(pBt, &apNew[i], &pgnoNew[i]);
    if( rc ) goto end_of_repack;
    zeroPage(apNew[i]);
  }

  /*
  ** Copy data into the new pages
  */
  for(i=0; i<nNew; i++){
  }

  /*
  ** Reparent children of all cells
  */

  /*
  ** Release the old pages
  */
  for(i=0; i<nOld; i++){
    releasePage(pBt, apOld[i], 0);
  }

  /*
  ** Repack the parent page, if necessary
  */
  if( needToRepackParent ){
    return repack(pParent);
  }
  rc = SQLITE_OK;

end_of_repack:
  if( unrefPage ){
    sqlitepager_unref(pPage);
  }
  return rc;
}

/*
** Attempt to move N or more bytes out of the page that the cursor
** points to into the left sibling page.  (The left sibling page
** contains cells that are less than the cells on this page.)  The
** entry that the cursor is pointing to cannot be moved.  Return
** TRUE if successful and FALSE if not.
1670
1671
1672
1673
1674
1675
1676



1677
1678
1679
1680
1681
1682
1683
){
  Cell newCell;
  int rc;
  int loc;
  MemPage *pPage;
  Btree *pBt = pCur->pBt;




  rc = sqliteBtreeMoveTo(pCur, pKey, nKey, &loc);
  if( rc ) return rc;
  rc = sqlitepager_write(pCur->pPage);
  if( rc ) return rc;
  rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
  if( rc ) return rc;
  if( loc==0 ){







>
>
>







1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
){
  Cell newCell;
  int rc;
  int loc;
  MemPage *pPage;
  Btree *pBt = pCur->pBt;

  if( !pCur->pBt->inTrans ){
    return SQLITE_ERROR;  /* Must start a transaction first */
  }
  rc = sqliteBtreeMoveTo(pCur, pKey, nKey, &loc);
  if( rc ) return rc;
  rc = sqlitepager_write(pCur->pPage);
  if( rc ) return rc;
  rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
  if( rc ) return rc;
  if( loc==0 ){
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
    /* The page being refilled is the root of the BTree and it has
    ** no entries of its own.  If there is a child page, then make the
    ** child become the new root.
    */
    MemPage *pChild;
    Pgno pgnoChild;
    assert( pPage->pParent==0 );
    assert( sqlitepager_pagenumber(pPage)==2 );
    pgnoChild = ((PageHdr*)pPage)->rightChild;
    if( pgnoChild==0 ){
      return SQLITE_OK;
    }
    rc = sqlitepager_get(pPager, pgno, &pChild);
    if( rc ) return rc;
    memcpy(pPage, pChild, SQLITE_PAGE_SIZE);
    memset(&pPage->aDisk[SQLITE_PAGE_SIZE], 0, EXTRA_SIZE);
    freePage(pCur->pBt, pChild, pgnoChild);
    sqlitepager_unref(pChild);
    rc = initPage(pPage, 2, 0);
    reparentChildPages(pPager, pPage);
    return SQLITE_OK;
  }

  /** merge with siblings **/

  /** borrow from siblings **/







|










|







2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
    /* The page being refilled is the root of the BTree and it has
    ** no entries of its own.  If there is a child page, then make the
    ** child become the new root.
    */
    MemPage *pChild;
    Pgno pgnoChild;
    assert( pPage->pParent==0 );
    assert( sqlitepager_pagenumber(pPage)==pCur->pgnoRoot );
    pgnoChild = ((PageHdr*)pPage)->rightChild;
    if( pgnoChild==0 ){
      return SQLITE_OK;
    }
    rc = sqlitepager_get(pPager, pgno, &pChild);
    if( rc ) return rc;
    memcpy(pPage, pChild, SQLITE_PAGE_SIZE);
    memset(&pPage->aDisk[SQLITE_PAGE_SIZE], 0, EXTRA_SIZE);
    freePage(pCur->pBt, pChild, pgnoChild);
    sqlitepager_unref(pChild);
    rc = initPage(pPage, pCur->pgnoRoot, 0);
    reparentChildPages(pPager, pPage);
    return SQLITE_OK;
  }

  /** merge with siblings **/

  /** borrow from siblings **/
1771
1772
1773
1774
1775
1776
1777




1778
1779
1780
1781
1782
1783
1784
** sqliteBtreeNext() after a delete and the cursor will be left
** pointing to the first entry after the deleted entry.
*/
int sqliteBtreeDelete(BtCursor *pCur){
  MemPage *pPage = pCur->pPage;
  Cell *pCell;
  int rc;




  if( pCur->idx >= pPage->nCell ){
    return SQLITE_ERROR;  /* The cursor is not pointing to anything */
  }
  rc = sqlitepager_write(pPage);
  if( rc ) return rc;
  pCell = pPage->apCell[pCur->idx];
  if( pPage->pHdr->rightChild ){







>
>
>
>







2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
** sqliteBtreeNext() after a delete and the cursor will be left
** pointing to the first entry after the deleted entry.
*/
int sqliteBtreeDelete(BtCursor *pCur){
  MemPage *pPage = pCur->pPage;
  Cell *pCell;
  int rc;

  if( !pCur->pBt->inTrans ){
    return SQLITE_ERROR;  /* Must start a transaction first */
  }
  if( pCur->idx >= pPage->nCell ){
    return SQLITE_ERROR;  /* The cursor is not pointing to anything */
  }
  rc = sqlitepager_write(pPage);
  if( rc ) return rc;
  pCell = pPage->apCell[pCur->idx];
  if( pPage->pHdr->rightChild ){
1807
1808
1809
1810
1811
1812
1813


















































































































    pCur->bSkipNext = 1;
  }else{
    pCur->idx--;
  }
  rc = refillPage(pCur);
  return rc;
}

























































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
    pCur->bSkipNext = 1;
  }else{
    pCur->idx--;
  }
  rc = refillPage(pCur);
  return rc;
}

/*
** Create a new BTree in the same file.  Write into *piTable the index
** of the root page of the new table.
*/
int sqliteBtreeCreateTable(Btree *pBt, int *piTable){
  MemPage *pRoot;
  Pgno pgnoRoot;
  int rc;
  if( !pBt->inTrans ){
    return SQLITE_ERROR;  /* Must start a transaction first */
  }
  rc = allocatePage(pBt, &pRoot, &pgnoRoot);
  if( rc ) return rc;
  sqlitepager_write(pRoot);
  zeroPage(pRoot);
  sqlitepager_unref(pRoot);
  *piTable = (int)pgnoRoot;
  return SQLITE_OK;
}

/*
** Erase the given database page and all its children.  Return
** the page to the freelist.
*/
static int clearDatabasePage(Btree *pBt, Pgno pgno){
  MemPage *pPage;
  int rc;
  int i;
  Cell *pCell;
  int idx;

  rc = sqlitepager_get(pBt->pPager, pgno, &pPage);
  if( rc ) return rc;
  idx = ((PageHdr*)pPage)->firstCell;
  while( idx>0 ){
    pCell = (Cell*)&pPage->aDisk[idx];
    idx = pCell->h.iNext;
    if( pCell->h.leftChild ){
      rc = clearDatabasePage(pBt, pCell->h.leftChild);
      if( rc ) return rc;
    }
    rc = clearCell(pCell);
    if( rc ) return rc;
  }
  return freePage(pBt, pPage, pgno);
}

/*
** Delete all information from a single table in the database.
*/
int sqliteBtreeClearTable(Btree *pBt, int iTable){
  int rc;
  if( !pBt->inTrans ){
    return SQLITE_ERROR;  /* Must start a transaction first */
  }
  rc = clearDatabasePage(pBt, (Pgno)iTable);
  if( rc ){
    sqliteBtreeRollback(pBt);
    return rc;
  }
}

/*
** Erase all information in a table and add the root of the table to
** the freelist.  Except, the root of the principle table (the one on
** page 2) is never added to the freelist.
*/
int sqliteBtreeDropTable(Btree *pBt, int iTable){
  int rc;
  MemPage *pPage;
  if( !pBt->inTrans ){
    return SQLITE_ERROR;  /* Must start a transaction first */
  }
  rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, &pPage);
  if( rc==SQLITE_OK ){
    rc = sqliteBtreeClearTable(pBt, iTable);
  }
  if( rc==SQLITE_OK && iTable!=2 ){
    rc = freePage(pBt, pPage, (Pgno)iTable);
  }
  sqlitepager_unref(pPage);
  return rc;  
}

/*
** Read the meta-information out of a database file.
*/
int sqliteBtreeGetMeta(Btree *pBt, int *aMeta){
  PageOne *pP1;
  int rc;

  rc = sqlitepager_get(pBt->pPager, 1, &pP1);
  if( rc ) return rc;
  memcpy(aMeta, pP1->aMeta, sizeof(pP1->aMeta));
  sqlitepager_unref(pP1);
  return SQLITE_OK;
}

/*
** Write meta-information back into the database.
*/
int sqliteBtreeUpdateMeta(Btree *pBt, int *aMeta){
  PageOne *pP1;
  int rc;
  if( !pBt->inTrans ){
    return SQLITE_ERROR;  /* Must start a transaction first */
  }
  pP1 = pBt->page1;
  rc = sqlitepager_write(pP1);
  if( rc ) return rc;
  memcpy(pP1->aMeta, aMeta, sizeof(pP1->aMeta));
  return SQLITE_OK;
}
Changes to src/btree.h.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52




**   drh@hwaci.com
**   http://www.hwaci.com/drh/
**
*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem.
**
** @(#) $Id: btree.h,v 1.3 2001/06/02 02:40:57 drh Exp $
*/

typedef struct Btree Btree;
typedef struct BtCursor BtCursor;

int sqliteBtreeOpen(const char *zFilename, int mode, Btree **ppBtree);
int sqliteBtreeClose(Btree*);

int sqliteBtreeBeginTrans(Btree*);
int sqliteBtreeCommit(Btree*);
int sqliteBtreeRollback(Btree*);

int sqliteBtreeCreateTable(Btree*, int*);
int sqliteBtreeDropTable(Btree*, int);


int sqliteBtreeCursor(Btree*, int iTable, BtCursor **ppCur);
int sqliteBtreeMoveto(BtCursor*, void *pKey, int nKey, *pRes);
int sqliteBtreeDelete(BtCursor*);
int sqliteBtreeInsert(BtCursor*, void *pKey, int nKey, void *pData, int nData);
int sqliteBtreeNext(BtCursor*, int *pRes);
int sqliteBtreeKeySize(BtCursor*, int *pSize);
int sqliteBtreeKey(BtCursor*, int offset, int amt, char *zBuf);
int sqliteBtreeDataSize(BtCursor*, int *pSize);
int sqliteBtreeData(BtCursor*, int offset, int amt, char *zBuf);
int sqliteBtreeCloseCursor(BtCursor*);











|














>











>
>
>
>
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
**   drh@hwaci.com
**   http://www.hwaci.com/drh/
**
*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem.
**
** @(#) $Id: btree.h,v 1.4 2001/06/08 00:21:53 drh Exp $
*/

typedef struct Btree Btree;
typedef struct BtCursor BtCursor;

int sqliteBtreeOpen(const char *zFilename, int mode, Btree **ppBtree);
int sqliteBtreeClose(Btree*);

int sqliteBtreeBeginTrans(Btree*);
int sqliteBtreeCommit(Btree*);
int sqliteBtreeRollback(Btree*);

int sqliteBtreeCreateTable(Btree*, int*);
int sqliteBtreeDropTable(Btree*, int);
int sqliteBtreeClearTable(Btree*, int);

int sqliteBtreeCursor(Btree*, int iTable, BtCursor **ppCur);
int sqliteBtreeMoveto(BtCursor*, void *pKey, int nKey, *pRes);
int sqliteBtreeDelete(BtCursor*);
int sqliteBtreeInsert(BtCursor*, void *pKey, int nKey, void *pData, int nData);
int sqliteBtreeNext(BtCursor*, int *pRes);
int sqliteBtreeKeySize(BtCursor*, int *pSize);
int sqliteBtreeKey(BtCursor*, int offset, int amt, char *zBuf);
int sqliteBtreeDataSize(BtCursor*, int *pSize);
int sqliteBtreeData(BtCursor*, int offset, int amt, char *zBuf);
int sqliteBtreeCloseCursor(BtCursor*);

#define SQLITE_N_BTREE_META 3
int sqliteBtreeGetMeta(Btree*, int*);
int sqliteBtreeUpdateMeta(Btree*, int*);