Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | The code is in place to replace GDBM with BTree. But I have not yet attempted to compile it. I am sure the code contains bugs. (CVS 238) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
6ecc8b20d4f402f45f03d46d8d4fa40d |
User & Date: | drh 2001-09-13 13:46:56.000 |
Context
2001-09-13
| ||
14:46 | The BTree changes are now integrated and the whole thing compiles and links. I have not yet tried to run it, though. (CVS 239) (check-in: a0a1e701ab user: drh tags: trunk) | |
13:46 | The code is in place to replace GDBM with BTree. But I have not yet attempted to compile it. I am sure the code contains bugs. (CVS 238) (check-in: 6ecc8b20d4 user: drh tags: trunk) | |
2001-08-20
| ||
00:33 | Restore btree to the main line. (CVS 237) (check-in: 2e6aff9802 user: drh tags: trunk) | |
Changes
Changes to src/btree.c.
︙ | ︙ | |||
17 18 19 20 21 22 23 | ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* | | | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** $Id: btree.c,v 1.22 2001/09/13 13:46:56 drh Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** All of the keys on the page that Ptr(0) points to have values less ** than Key(0). All of the keys on page Ptr(1) and its subpages have ** values greater than Key(0) and less than Key(1). All of the keys ** on Ptr(N+1) and its subpages have values greater than Key(N). And ** so forth. ** | | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | ** ** All of the keys on the page that Ptr(0) points to have values less ** than Key(0). All of the keys on page Ptr(1) and its subpages have ** values greater than Key(0) and less than Key(1). All of the keys ** on Ptr(N+1) and its subpages have values greater than Key(N). And ** so forth. ** ** Finding a particular key requires reading O(log(M)) pages from the ** disk where M is the number of entries in the tree. ** ** In this implementation, a single file can hold one or more separate ** BTrees. Each BTree is identified by the index of its root page. The ** key and data for any entry are combined to form the "payload". Up to ** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the ** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes ** then surplus bytes are stored on overflow pages. The payload for an |
︙ | ︙ | |||
108 109 110 111 112 113 114 | ** SQLite database in order to identify the file as a real database. */ static const char zMagicHeader[] = "** This file contains an SQLite 2.0 database **"; #define MAGIC_SIZE (sizeof(zMagicHeader)) /* | | | 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | ** SQLite database in order to identify the file as a real database. */ static const char zMagicHeader[] = "** This file contains an SQLite 2.0 database **"; #define MAGIC_SIZE (sizeof(zMagicHeader)) /* ** This is a magic integer also used to test the integrity of the database ** file. This integer is used in addition to the string above so that ** if the file is written on a little-endian architecture and read ** on a big-endian architectures (or vice versa) we can detect the ** problem. ** ** The number used was obtained at random and has no special ** significance. |
︙ | ︙ | |||
722 723 724 725 726 727 728 | if( pBt->inTrans ) return SQLITE_ERROR; if( pBt->page1==0 ){ rc = lockBtree(pBt); if( rc!=SQLITE_OK ){ return rc; } } | > | | | | < | > > > > | | > > > > | > > > | > > > | | 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 | if( pBt->inTrans ) return SQLITE_ERROR; if( pBt->page1==0 ){ rc = lockBtree(pBt); if( rc!=SQLITE_OK ){ return rc; } } if( !sqlitepager_isreadonly(pBt) ){ rc = sqlitepager_write(pBt->page1); if( rc!=SQLITE_OK ){ return rc; } rc = newDatabase(pBt); } pBt->inTrans = 1; return rc; } /* ** If there are no outstanding cursors and we are not in the middle ** of a transaction but there is a read lock on the database, then ** this routine unrefs the first page of the database file which ** has the effect of releasing the read lock. ** ** If there are any outstanding cursors, this routine is a no-op. ** ** If there is a transaction in progress, this routine is a no-op. */ static void unlockBtreeIfUnused(Btree *pBt){ if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){ sqlitepager_unref(pBt->page1); pBt->page1 = 0; pBt->inTrans = 0; } } /* ** Commit the transaction currently in progress. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ int sqliteBtreeCommit(Btree *pBt){ int rc; if( pBt->inTrans==0 ) return SQLITE_ERROR; rc = sqlitepager_commit(pBt->pPager); pBt->inTrans = 0; unlockBtreeIfUnused(pBt); return rc; } /* ** Rollback the transaction in progress. All cursors must be ** closed before this routine is called. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ int sqliteBtreeRollback(Btree *pBt){ int rc; if( pBt->pCursor!=0 ) return SQLITE_ERROR; if( pBt->inTrans==0 ) return SQLITE_OK; pBt->inTrans = 0; rc = sqlitepager_rollback(pBt->pPager); unlockBtreeIfUnused(pBt); return rc; } /* ** Create a new cursor for the BTree whose root is on the page ** iTable. The act of acquiring a cursor gets a read lock on ** the database file. |
︙ | ︙ | |||
815 816 817 818 819 820 821 | create_cursor_exception: *ppCur = 0; if( pCur ){ if( pCur->pPage ) sqlitepager_unref(pCur->pPage); sqliteFree(pCur); } | | | | | 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 | create_cursor_exception: *ppCur = 0; if( pCur ){ if( pCur->pPage ) sqlitepager_unref(pCur->pPage); sqliteFree(pCur); } unlockBtreeIfUnused(pBt); return rc; } /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ int sqliteBtreeCloseCursor(BtCursor *pCur){ Btree *pBt = pCur->pBt; if( pCur->pPrev ){ pCur->pPrev->pNext = pCur->pNext; }else{ pBt->pCursor = pCur->pNext; } if( pCur->pNext ){ pCur->pNext->pPrev = pCur->pPrev; } sqlitepager_unref(pCur->pPage); unlockBtreeIfUnused(pBt); sqliteFree(pCur); return SQLITE_OK; } /* ** Make a temporary cursor by filling in the fields of pTempCur. ** The temporary cursor is not on the cursor list for the Btree. |
︙ | ︙ | |||
938 939 940 941 942 943 944 | } sqlitepager_unref(pOvfl); } return amt==0 ? SQLITE_OK : SQLITE_CORRUPT; } /* | | | > > | < | | | | > > | | > | > | 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 | } sqlitepager_unref(pOvfl); } return amt==0 ? SQLITE_OK : SQLITE_CORRUPT; } /* ** Read part of the key associated with cursor pCur. A maximum ** of "amt" bytes will be transfered into zBuf[]. The transfer ** begins at "offset". The number of bytes actually read is ** returned. The amount returned will be smaller than the ** amount requested if there are not enough bytes in the key ** to satisfy the request. */ int sqliteBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){ Cell *pCell; MemPage *pPage; if( amt<0 ) return 0; if( offset<0 ) return 0; if( amt==0 ) return 0; pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ return 0; } pCell = pPage->apCell[pCur->idx]; if( amt+offset > pCell->h.nKey ){ amt = pCell->h.nKey - offset; if( amt<=0 ){ return 0; } } getPayload(pCur, offset, amt, zBuf); return amt; } /* ** Set *pSize to the number of bytes of data in the entry the ** cursor currently points to. Always return SQLITE_OK. ** Failure is not possible. If the cursor is not currently ** pointing to an entry (which can happen, for example, if |
︙ | ︙ | |||
986 987 988 989 990 991 992 | pCell = pPage->apCell[pCur->idx]; *pSize = pCell->h.nData; } return SQLITE_OK; } /* | | | > > | < | | | | > > | | > | > | 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 | pCell = pPage->apCell[pCur->idx]; *pSize = pCell->h.nData; } return SQLITE_OK; } /* ** Read part of the data associated with cursor pCur. A maximum ** of "amt" bytes will be transfered into zBuf[]. The transfer ** begins at "offset". The number of bytes actually read is ** returned. The amount returned will be smaller than the ** amount requested if there are not enough bytes in the data ** to satisfy the request. */ int sqliteBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){ Cell *pCell; MemPage *pPage; if( amt<0 ) return 0; if( offset<0 ) return 0; if( amt==0 ) return 0; pPage = pCur->pPage; assert( pPage!=0 ); if( pCur->idx >= pPage->nCell ){ return 0; } pCell = pPage->apCell[pCur->idx]; if( amt+offset > pCell->h.nData ){ amt = pCell->h.nData - offset; if( amt<=0 ){ return 0; } } getPayload(pCur, offset + pCell->h.nKey, amt, zBuf); return amt; } /* ** Compare the key for the entry that pCur points to against the ** given key (pKey,nKeyOrig). Put the comparison result in *pResult. ** The result is negative if pCur<pKey, zero if they are equal and ** positive if pCur>pKey. |
︙ | ︙ | |||
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 | while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){ rc = moveToChild(pCur, pgno); if( rc ) return rc; } return SQLITE_OK; } /* Move the cursor so that it points to an entry near pKey. ** Return a success code. ** ** If an exact match is not found, then the cursor is always ** left pointing at a leaf page which would hold the entry if it ** were present. The cursor might point to an entry that comes | > > > > > > > > > > > > > > > > | 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 | while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){ rc = moveToChild(pCur, pgno); if( rc ) return rc; } return SQLITE_OK; } /* Move the cursor to the first entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty and there is no first element. */ int sqliteBtreeFirst(BtCursor *pCur, int *pRes){ int rc; rc = moveToRoot(pCur); if( rc ) return rc; if( pCur->pPage->nCell==0 ){ *pRes = 1; return SQLITE_OK; } *pRes = 0; rc = moveToLeftmost(pCur); return rc; } /* Move the cursor so that it points to an entry near pKey. ** Return a success code. ** ** If an exact match is not found, then the cursor is always ** left pointing at a leaf page which would hold the entry if it ** were present. The cursor might point to an entry that comes |
︙ | ︙ | |||
1467 1468 1469 1470 1471 1472 1473 | sqlitepager_unref(pThis); } } /* ** Reparent all children of the given page to be the given page. ** In other words, for every child of pPage, invoke reparentPage() | | | 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 | sqlitepager_unref(pThis); } } /* ** Reparent all children of the given page to be the given page. ** In other words, for every child of pPage, invoke reparentPage() ** to make sure that each child knows that pPage is its parent. ** ** This routine gets called after you memcpy() one page into ** another. */ static void reparentChildPages(Pager *pPager, MemPage *pPage){ int i; for(i=0; i<pPage->nCell; i++){ |
︙ | ︙ | |||
1559 1560 1561 1562 1563 1564 1565 | pIdx = &pPage->apCell[i]->h.iNext; } *pIdx = 0; } /* ** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[] | | | 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 | pIdx = &pPage->apCell[i]->h.iNext; } *pIdx = 0; } /* ** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[] ** pointers that point into pFrom->u.aDisk[] must be adjusted to point ** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might ** not point to pFrom->u.aDisk[]. Those are unchanged. */ static void copyPage(MemPage *pTo, MemPage *pFrom){ uptr from, to; int i; memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_PAGE_SIZE); |
︙ | ︙ | |||
1620 1621 1622 1623 1624 1625 1626 | ** if the page is overfull. Part of the job of this routine is to ** make sure all Cells for pPage once again fit in pPage->u.aDisk[]. ** ** In the course of balancing the siblings of pPage, the parent of pPage ** might become overfull or underfull. If that happens, then this routine ** is called recursively on the parent. ** | | > | | 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 | ** if the page is overfull. Part of the job of this routine is to ** make sure all Cells for pPage once again fit in pPage->u.aDisk[]. ** ** In the course of balancing the siblings of pPage, the parent of pPage ** might become overfull or underfull. If that happens, then this routine ** is called recursively on the parent. ** ** If this routine fails for any reason, it might leave the database ** in a corrupted state. So if this routine fails, the database should ** be rolled back. */ static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){ MemPage *pParent; /* The parent of pPage */ MemPage *apOld[3]; /* pPage and up to two siblings */ Pgno pgnoOld[3]; /* Page numbers for each page in apOld[] */ MemPage *apNew[4]; /* pPage and up to 3 siblings after balancing */ Pgno pgnoNew[4]; /* Page numbers for each page in apNew[] */ |
︙ | ︙ | |||
2033 2034 2035 2036 2037 2038 2039 | rc = sqlitepager_write(pPage); if( rc ) return rc; pCell = pPage->apCell[pCur->idx]; pgnoChild = pCell->h.leftChild; clearCell(pCur->pBt, pCell); if( pgnoChild ){ /* | | | 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 | rc = sqlitepager_write(pPage); if( rc ) return rc; pCell = pPage->apCell[pCur->idx]; pgnoChild = pCell->h.leftChild; clearCell(pCur->pBt, pCell); if( pgnoChild ){ /* ** The entry we are about to delete is not a leaf so if we do not ** do something we will leave a hole on an internal page. ** We have to fill the hole by moving in a cell from a leaf. The ** next Cell after the one to be deleted is guaranteed to exist and ** to be a leaf so we can use it. */ BtCursor leafCur; Cell *pNext; |
︙ | ︙ | |||
2599 2600 2601 2602 2603 2604 2605 | sprintf(zBuf, "Page %d is never used", i); checkAppendMsg(&sCheck, zBuf, 0); } } /* Make sure this analysis did not leave any unref() pages */ | | | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 | sprintf(zBuf, "Page %d is never used", i); checkAppendMsg(&sCheck, zBuf, 0); } } /* Make sure this analysis did not leave any unref() pages */ unlockBtreeIfUnused(pBt); if( nRef != *sqlitepager_stats(pBt->pPager) ){ char zBuf[100]; sprintf(zBuf, "Outstanding page count goes from %d to %d during this analysis", nRef, *sqlitepager_stats(pBt->pPager) ); checkAppendMsg(&sCheck, zBuf, 0); |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. ** ** @(#) $Id: btree.h,v 1.11 2001/09/13 13:46:56 drh Exp $ */ typedef struct Btree Btree; typedef struct BtCursor BtCursor; int sqliteBtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree); int sqliteBtreeClose(Btree*); |
︙ | ︙ | |||
42 43 44 45 46 47 48 49 50 51 52 53 54 55 | int sqliteBtreeClearTable(Btree*, int); int sqliteBtreeCursor(Btree*, int iTable, BtCursor **ppCur); int sqliteBtreeMoveto(BtCursor*, const void *pKey, int nKey, int *pRes); int sqliteBtreeDelete(BtCursor*); int sqliteBtreeInsert(BtCursor*, const void *pKey, int nKey, const void *pData, int nData); int sqliteBtreeNext(BtCursor*, int *pRes); int sqliteBtreeKeySize(BtCursor*, int *pSize); int sqliteBtreeKey(BtCursor*, int offset, int amt, char *zBuf); int sqliteBtreeDataSize(BtCursor*, int *pSize); int sqliteBtreeData(BtCursor*, int offset, int amt, char *zBuf); int sqliteBtreeCloseCursor(BtCursor*); | > | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | int sqliteBtreeClearTable(Btree*, int); int sqliteBtreeCursor(Btree*, int iTable, BtCursor **ppCur); int sqliteBtreeMoveto(BtCursor*, const void *pKey, int nKey, int *pRes); int sqliteBtreeDelete(BtCursor*); int sqliteBtreeInsert(BtCursor*, const void *pKey, int nKey, const void *pData, int nData); int sqliteBtreeFirst(BtCursor*, int *pRes); int sqliteBtreeNext(BtCursor*, int *pRes); int sqliteBtreeKeySize(BtCursor*, int *pSize); int sqliteBtreeKey(BtCursor*, int offset, int amt, char *zBuf); int sqliteBtreeDataSize(BtCursor*, int *pSize); int sqliteBtreeData(BtCursor*, int offset, int amt, char *zBuf); int sqliteBtreeCloseCursor(BtCursor*); |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
29 30 31 32 33 34 35 | ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating expressions and ID lists ** COPY ** VACUUM ** | | | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating expressions and ID lists ** COPY ** VACUUM ** ** $Id: build.c,v 1.29 2001/09/13 13:46:56 drh Exp $ */ #include "sqliteInt.h" /* ** This routine is called after a single SQL statement has been ** parsed and we want to execute the VDBE code to implement ** that statement. Prior action routines should have already |
︙ | ︙ | |||
186 187 188 189 190 191 192 193 194 195 196 197 198 199 | if( p && p->pHash==pIndex ){ p->pHash = pIndex->pHash; } } } sqliteFree(pIndex); } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. But it does destroy | > > > > > > > > > > > > > > > > > > | 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | if( p && p->pHash==pIndex ){ p->pHash = pIndex->pHash; } } } sqliteFree(pIndex); } /* ** Unlink the given index from its table, then remove ** the index from the index hash table, and free its memory ** structures. */ static void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){ if( pIndex->pTable->pIndex==pIndex ){ pIndex->pTable->pIndex = pIndex->pNext; }else{ Index *p; for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} if( p && p->pNext==pIndex ){ p->pNext = pIndex->pNext; } } sqliteDeleteIndex(db, pIndex); } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. But it does destroy |
︙ | ︙ | |||
216 217 218 219 220 221 222 223 224 225 226 227 228 229 | pNext = pIndex->pNext; sqliteDeleteIndex(db, pIndex); } sqliteFree(pTable->zName); sqliteFree(pTable->aCol); sqliteFree(pTable); } /* ** Construct the name of a user table or index from a token. ** ** Space to hold the name is obtained from sqliteMalloc() and must ** be freed by the calling function. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | pNext = pIndex->pNext; sqliteDeleteIndex(db, pIndex); } sqliteFree(pTable->zName); sqliteFree(pTable->aCol); sqliteFree(pTable); } /* ** Check all Tables and Indexes in the internal hash table and commit ** any additions or deletions to those hash tables. ** ** When executing CREATE TABLE and CREATE INDEX statements, the Table ** and Index structures are created and added to the hash tables, but ** the "isCommit" field is not set. This routine sets those fields. ** When executing DROP TABLE and DROP INDEX, the "isDelete" fields of ** Table and Index structures is set but the structures are not unlinked ** from the hash tables nor deallocated. This routine handles that ** deallocation. ** ** See also: sqliteRollbackInternalChanges() */ void sqliteCommitInternalChanges(sqlite *db){ int i; if( (db->flags & SQLITE_InternChanges)==0 ) return; for(i=0; i<N_HASH; i++){ Table *pTable, *pNext; for(pTable = apTblHash[i]; pTable; pTable=pNext){ pNext = pTable->pHash; if( pTable->isDelete ){ sqliteDeleteTable(db, pTable); }else if( pTable->isCommit==0 ){ pTable->isCommit = 1; } } } for(i=0; i<N_HASH; i++){ Index *pIndex, *pNext; for(pIndex = apIdxHash[i]; pIndex; pIndex=pNext){ pNext = pIndex->pHash; if( pIndex->isDelete ){ sqliteUnlinkAndDeleteIndex(db, pIndex); }else if( pIndex->isCommit==0 ){ pIndex->isCommit = 1; } } } db->flags &= ~SQLITE_InternChanges; } /* ** This routine runs when one or more CREATE TABLE, CREATE INDEX, ** DROP TABLE, or DROP INDEX statements get rolled back. The ** additions or deletions of Table and Index structures in the ** internal hash tables are undone. ** ** See also: sqliteCommitInternalChanges() */ void sqliteRollbackInternalChanges(sqlite *db){ int i; if( (db->flags & SQLITE_InternChanges)==0 ) return; for(i=0; i<N_HASH; i++){ Table *pTable, *pNext; for(pTable = apTblHash[i]; pTable; pTable=pNext){ pNext = pTable->pHash; if( !pTable->isCommit ){ sqliteDeleteTable(db, pTable); }else if( pTable->isDelete ){ pTable->isDelete = 0; } } } for(i=0; i<N_HASH; i++){ Index *pIndex, *pNext; for(pIndex = apIdxHash[i]; pIndex; pIndex=pNext){ pNext = pIndex->pHash; if( !pIndex->isCommit ){ sqliteUnlinkAndDeleteIndex(db, pIndex); }else if( pIndex->isDelete ){ pIndex->isDelete = 0; } } } db->flags &= ~SQLITE_InternChanges; } /* ** Construct the name of a user table or index from a token. ** ** Space to hold the name is obtained from sqliteMalloc() and must ** be freed by the calling function. */ |
︙ | ︙ | |||
271 272 273 274 275 276 277 278 279 280 281 282 283 284 | pTable->zName = zName; pTable->pHash = 0; pTable->nCol = 0; pTable->aCol = 0; pTable->pIndex = 0; if( pParse->pNewTable ) sqliteDeleteTable(pParse->db, pParse->pNewTable); pParse->pNewTable = pTable; } /* ** Add a new column to the table currently being constructed. ** ** The parser calls this routine once for each column declaration ** in a CREATE TABLE statement. sqliteStartTable() gets called | > > > > > > | 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 | pTable->zName = zName; pTable->pHash = 0; pTable->nCol = 0; pTable->aCol = 0; pTable->pIndex = 0; if( pParse->pNewTable ) sqliteDeleteTable(pParse->db, pParse->pNewTable); pParse->pNewTable = pTable; if( !pParse->initFlag && (pParse->db->flags & SQLITE_InTrans)==0 ){ Vdbe *v = sqliteGetVdbe(pParse); if( v ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); } } } /* ** Add a new column to the table currently being constructed. ** ** The parser calls this routine once for each column declaration ** in a CREATE TABLE statement. sqliteStartTable() gets called |
︙ | ︙ | |||
336 337 338 339 340 341 342 | ** the master table because we just connected to the database, so ** the entry for this table already exists in the master table. ** We do not want to create it again. */ void sqliteEndTable(Parse *pParse, Token *pEnd){ Table *p; int h; | < < > | | | < < < < < | < < < > | | > | | < | 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 | ** the master table because we just connected to the database, so ** the entry for this table already exists in the master table. ** We do not want to create it again. */ void sqliteEndTable(Parse *pParse, Token *pEnd){ Table *p; int h; if( pEnd==0 || pParse->nErr || sqlite_malloc_failed ) return; p = pParse->pNewTable; if( p==0 ) return; /* Add the table to the in-memory representation of the database */ if( pParse->explain==0 ){ h = sqliteHashNoCase(p->zName, 0) % N_HASH; p->pHash = pParse->db->apTblHash[h]; pParse->db->apTblHash[h] = p; pParse->pNewTable = 0; pParse->db->nTable++; db->flags |= SQLITE_InternChanges; } /* If not initializing, then create the table on disk. */ if( !pParse->initFlag ){ static VdbeOp addTable[] = { { OP_Open, 0, 2, 0}, { OP_NewRecno, 0, 0, 0}, { OP_String, 0, 0, "table" }, { OP_String, 0, 0, 0}, /* 3 */ { OP_CreateTable, 0, 0, 0}, { OP_String, 0, 0, 0}, /* 5 */ { OP_String, 0, 0, 0}, /* 6 */ { OP_MakeRecord, 4, 0, 0}, { OP_Put, 0, 0, 0}, }; int n, base; Vdbe *v; v = sqliteGetVdbe(pParse); if( v==0 ) return; n = (int)pEnd->z - (int)pParse->sFirstToken.z + 1; base = sqliteVdbeAddOpList(v, ArraySize(addTable), addTable); sqliteVdbeChangeP3(v, base+3, p->zName, 0); sqliteVdbeTableRootAddr(v, &p->tnum); sqliteVdbeChangeP3(v, base+5, p->zName, 0); sqliteVdbeChangeP3(v, base+6, pParse->sFirstToken.z, n); sqliteVdbeAddOp(v, OP_Close, 0, 0, 0, 0); if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } } } /* ** Given a token, look up a table with that name. If not found, leave ** an error for the parser to find and return NULL. */ |
︙ | ︙ | |||
437 438 439 440 441 442 443 | /* Generate code to remove the table from the master table ** on disk. */ v = sqliteGetVdbe(pParse); if( v ){ static VdbeOp dropTable[] = { | < | | | | | | < < < < | | > > > | < | > > > | > | < < < < < < < | < < | < | 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | /* Generate code to remove the table from the master table ** on disk. */ v = sqliteGetVdbe(pParse); if( v ){ static VdbeOp dropTable[] = { { OP_Open, 0, 2, 0}, { OP_String, 0, 0, 0}, /* 1 */ { OP_Next, 0, ADDR(9), 0}, /* 2 */ { OP_Dup, 0, 0, 0}, { OP_Column, 0, 3, 0}, { OP_Ne, 0, ADDR(2), 0}, { OP_Recno, 0, 0, 0}, { OP_Delete, 0, 0, 0}, { OP_Goto, 0, ADDR(2), 0}, { OP_Destroy, 0, 0, 0}, /* 9 */ { OP_Close, 0, 0, 0}, }; Index *pIdx; if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); } base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable); sqliteVdbeChangeP1(v, base+9, pTable->tnum); for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){ sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, 0, 0, 0); } if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } } /* Mark the in-memory Table structure as being deleted. The actually ** deletion occurs inside of sqliteCommitInternalChanges(). ** ** Exception: if the SQL statement began with the EXPLAIN keyword, ** then no changes should be made. */ if( !pParse->explain ){ pTable->isDelete = 1; db->flags |= SQLITE_InternChanges; } } /* ** Create a new index for an SQL table. pIndex is the name of the index ** and pTable is the name of the table that is to be indexed. Both will ** be NULL for a primary key. In that case, use pParse->pNewTable as the |
︙ | ︙ | |||
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 | */ if( pParse->explain==0 ){ h = sqliteHashNoCase(pIndex->zName, 0) % N_HASH; pIndex->pHash = pParse->db->apIdxHash[h]; pParse->db->apIdxHash[h] = pIndex; pIndex->pNext = pTab->pIndex; pTab->pIndex = pIndex; } /* If the initFlag is 0 then create the index on disk. This ** involves writing the index into the master table and filling in the ** index with the current table contents. ** ** The initFlag is 0 when the user first enters a CREATE INDEX ** command. The initFlag is 1 when a database is opened and ** CREATE INDEX statements are read out of the master table. In ** the latter case the index already exists on disk, which is why ** we don't want to recreate it. */ if( pParse->initFlag==0 ){ static VdbeOp addTable[] = { | > | | > | | | > > > | | > | | | | | > > > | 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 | */ if( pParse->explain==0 ){ h = sqliteHashNoCase(pIndex->zName, 0) % N_HASH; pIndex->pHash = pParse->db->apIdxHash[h]; pParse->db->apIdxHash[h] = pIndex; pIndex->pNext = pTab->pIndex; pTab->pIndex = pIndex; db->flags |= SQLITE_InternChanges; } /* If the initFlag is 0 then create the index on disk. This ** involves writing the index into the master table and filling in the ** index with the current table contents. ** ** The initFlag is 0 when the user first enters a CREATE INDEX ** command. The initFlag is 1 when a database is opened and ** CREATE INDEX statements are read out of the master table. In ** the latter case the index already exists on disk, which is why ** we don't want to recreate it. */ if( pParse->initFlag==0 ){ static VdbeOp addTable[] = { { OP_Open, 2, 2, 0}, { OP_NewRecno, 2, 0, 0}, { OP_String, 0, 0, "index"}, { OP_String, 0, 0, 0}, /* 3 */ { OP_CreateIndex, 0, 0, 0}, { OP_String, 0, 0, 0}, /* 5 */ { OP_String, 0, 0, 0}, /* 6 */ { OP_MakeRecord, 5, 0, 0}, { OP_Put, 2, 0, 0}, { OP_Close, 2, 0, 0}, }; int n; Vdbe *v = pParse->pVdbe; int lbl1, lbl2; int i; v = sqliteGetVdbe(pParse); if( v==0 ) goto exit_create_index; if( pTable!=0 && (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); } sqliteVdbeAddOp(v, OP_Open, 0, pTab->tnum, pTab->zName, 0); sqliteVdbeAddOp(v, OP_Open, 1, pIndex->tnum, pIndex->zName, 0); if( pStart && pEnd ){ int base; n = (int)pEnd->z - (int)pStart->z + 1; base = sqliteVdbeAddOpList(v, ArraySize(addTable), addTable); sqliteVdbeChangeP3(v, base+3, pIndex->zName, 0); sqliteVdbeIndexRootAddr(v, &pIndex->tnum); sqliteVdbeChangeP3(v, base+5, pTab->zName, 0); sqliteVdbeChangeP3(v, base+6, pStart->z, n); } lbl1 = sqliteVdbeMakeLabel(v); lbl2 = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Next, 0, lbl2, 0, lbl1); sqliteVdbeAddOp(v, OP_GetRecno, 0, 0, 0, 0); for(i=0; i<pIndex->nColumn; i++){ sqliteVdbeAddOp(v, OP_Column, 0, pIndex->aiColumn[i], 0, 0); } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, 1, 0, 0, 0); sqliteVdbeAddOp(v, OP_Goto, 0, lbl1, 0, 0); sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, lbl2); sqliteVdbeAddOp(v, OP_Close, 1, 0, 0, 0); sqliteVdbeAddOp(v, OP_Close, 0, 0, 0, 0); if( pTable!=0 && (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } } /* Reclaim memory on an EXPLAIN call. */ if( pParse->explain ){ sqliteFree(pIndex); } |
︙ | ︙ | |||
692 693 694 695 696 697 698 | return; } /* Generate code to remove the index and from the master table */ v = sqliteGetVdbe(pParse); if( v ){ static VdbeOp dropIndex[] = { | < | | | | | | > > > | > | | | | > | < < < | < < | < < < | 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 | return; } /* Generate code to remove the index and from the master table */ v = sqliteGetVdbe(pParse); if( v ){ static VdbeOp dropIndex[] = { { OP_Open, 0, 2, 0}, { OP_String, 0, 0, 0}, /* 1 */ { OP_Next, 0, ADDR(8), 0}, /* 2 */ { OP_Dup, 0, 0, 0}, { OP_Column, 0, 1, 0}, { OP_Ne, 0, ADDR(2), 0}, { OP_Key, 0, 0, 0}, { OP_Delete, 0, 0, 0}, { OP_Destroy, 0, 0, 0}, /* 8 */ { OP_Close, 0, 0, 0}, }; int base; if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); } base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex); sqliteVdbeChangeP1(v, base+8, pIndex->tnum); if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } } /* Mark the internal Index structure for deletion by the ** sqliteCommitInternalChanges routine. */ if( !pParse->explain ){ pIndex->isDelete = 1; db->flags |= SQLITE_InternChanges; } } /* ** Add a new element to the end of an expression list. If pList is ** initially NULL, then create a new expression list. */ |
︙ | ︙ | |||
877 878 879 880 881 882 883 884 885 886 | sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " may not be modified", 0); pParse->nErr++; goto copy_cleanup; } v = sqliteGetVdbe(pParse); if( v ){ addr = sqliteVdbeAddOp(v, OP_FileOpen, 0, 0, 0, 0); sqliteVdbeChangeP3(v, addr, pFilename->z, pFilename->n); sqliteVdbeDequoteP3(v, addr); | > > > | | | | | | > > > | 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 | sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " may not be modified", 0); pParse->nErr++; goto copy_cleanup; } v = sqliteGetVdbe(pParse); if( v ){ if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); } addr = sqliteVdbeAddOp(v, OP_FileOpen, 0, 0, 0, 0); sqliteVdbeChangeP3(v, addr, pFilename->z, pFilename->n); sqliteVdbeDequoteP3(v, addr); sqliteVdbeAddOp(v, OP_Open, 0, pTab->tnum, pTab->zName, 0); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ sqliteVdbeAddOp(v, OP_Open, i, pIdx->tnum, pIdx->zName, 0); } end = sqliteVdbeMakeLabel(v); addr = sqliteVdbeAddOp(v, OP_FileRead, pTab->nCol, end, 0, 0); if( pDelimiter ){ sqliteVdbeChangeP3(v, addr, pDelimiter->z, pDelimiter->n); sqliteVdbeDequoteP3(v, addr); }else{ sqliteVdbeChangeP3(v, addr, "\t", 1); } sqliteVdbeAddOp(v, OP_NewRecno, 0, 0, 0, 0); if( pTab->pIndex ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } for(i=0; i<pTab->nCol; i++){ sqliteVdbeAddOp(v, OP_FileColumn, i, 0, 0, 0); } sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0, 0, 0); sqliteVdbeAddOp(v, OP_Put, 0, 0, 0, 0); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( pIdx->pNext ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } for(j=0; j<pIdx->nColumn; j++){ sqliteVdbeAddOp(v, OP_FileColumn, pIdx->aiColumn[j], 0, 0, 0); } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, i, 0, 0, 0); } sqliteVdbeAddOp(v, OP_Goto, 0, addr, 0, 0); sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, end); if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } } copy_cleanup: return; } /* |
︙ | ︙ | |||
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | && sqliteFindTable(pParse->db, zName)==0 ){ sqliteSetString(&pParse->zErrMsg, "no such table or index: ", zName, 0); pParse->nErr++; goto vacuum_cleanup; } v = sqliteGetVdbe(pParse); if( v==0 ) goto vacuum_cleanup; if( zName ){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, zName, 0); }else{ int h; Table *pTab; Index *pIdx; for(h=0; h<N_HASH; h++){ for(pTab=pParse->db->apTblHash[h]; pTab; pTab=pTab->pHash){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, pTab->zName, 0); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, pIdx->zName, 0); } } } } vacuum_cleanup: sqliteFree(zName); return; } /* ** Begin a transaction */ void sqliteBeginTransaction(Parse *pParse){ int rc; | > > > > > > < > > | | | < < < | < < > > | | | < < < | < < > > | | | < < < | | < | 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 | && sqliteFindTable(pParse->db, zName)==0 ){ sqliteSetString(&pParse->zErrMsg, "no such table or index: ", zName, 0); pParse->nErr++; goto vacuum_cleanup; } v = sqliteGetVdbe(pParse); if( v==0 ) goto vacuum_cleanup; if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); } if( zName ){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, zName, 0); }else{ int h; Table *pTab; Index *pIdx; for(h=0; h<N_HASH; h++){ for(pTab=pParse->db->apTblHash[h]; pTab; pTab=pTab->pHash){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, pTab->zName, 0); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqliteVdbeAddOp(v, OP_Reorganize, 0, 0, pIdx->zName, 0); } } } } if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } vacuum_cleanup: sqliteFree(zName); return; } /* ** Begin a transaction */ void sqliteBeginTransaction(Parse *pParse){ int rc; sqlite *db; Vdbe *v; if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return; if( pParse->nErr || sqlite_malloc_failed ) return; if( db->flags & SQLITE_InTrans ) return; v = sqliteGetVdbe(pParse); if( v ){ sqliteVdbeAddOp(v, OP_Transaction, 1, 0, 0, 0); } db->flags |= SQLITE_InTrans; } /* ** Commit a transaction */ void sqliteCommitTransaction(Parse *pParse){ int rc; sqlite *db; Vdbe *v; if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return; if( pParse->nErr || sqlite_malloc_failed ) return; if( (db->flags & SQLITE_InTrans)==0 ) return; v = sqliteGetVdbe(pParse); if( v ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } db->flags &= ~SQLITE_InTrans; } /* ** Rollback a transaction */ void sqliteRollbackTransaction(Parse *pParse){ int rc; sqlite *db; Vdbe *v; if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return; if( pParse->nErr || sqlite_malloc_failed ) return; if( (db->flags & SQLITE_InTrans)==0 ) return; v = sqliteGetVdbe(pParse); if( v ){ sqliteVdbeAddOp(v, OP_Rollback, 0, 0, 0, 0); } db->flags &= ~SQLITE_InTrans; } |
Added src/dbbebtree.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 | /* ** Copyright (c) 2001 D. Richard Hipp ** ** This program is free software; you can redistribute it and/or ** modify it under the terms of the GNU General Public ** License as published by the Free Software Foundation; either ** version 2 of the License, or (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ** General Public License for more details. ** ** You should have received a copy of the GNU General Public ** License along with this library; if not, write to the ** Free Software Foundation, Inc., 59 Temple Place - Suite 330, ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains code to implement the database backend (DBBE) ** for sqlite. The database backend is the interface between ** sqlite and the code that does the actually reading and writing ** of information to the disk. ** ** This file uses a custom B-Tree implementation as the database backend. ** ** $Id: dbbebtree.c,v 1.1 2001/09/13 13:46:56 drh Exp $ */ #include "sqliteInt.h" #include "btree.h" /* ** The following structure contains all information used by B-Tree ** database driver. This is a subclass of the Dbbe structure. */ typedef struct Dbbex Dbbex; struct Dbbex { Dbbe dbbe; /* The base class */ int write; /* True for write permission */ int inTrans; /* Currently in a transaction */ char *zFile; /* File containing the database */ Btree *pBt; /* Pointer to the open database */ BtCursor *pCur; /* Cursor for the main database table */ DbbeCursor *pDCur; /* List of all Dbbe cursors */ }; /* ** An cursor into a database table is an instance of the following ** structure. */ struct DbbeCursor { DbbeCursor *pNext; /* Next on list of all cursors */ DbbeCursor *pPrev; /* Previous on list of all cursors */ Dbbex *pBe; /* The database of which this record is a part */ BtCursor *pCur; /* The cursor */ char *zTempFile; /* Name of file if referring to a temporary table */ Btree *pTempBt; /* Database handle, if this is a temporary table */ char *zKey; /* Most recent key. Memory obtained from sqliteMalloc() */ int nKey; /* Size of the key */ char *zKeyBuf; /* Space used during NextIndex() processing */ char *zData; /* Most recent data. Memory from sqliteMalloc() */ int needRewind; /* Next call to Next() returns first entry in table */ int skipNext; /* Do not advance cursor for next NextIndex() call */ }; /* ** Forward declaration */ static void sqliteBtbeCloseCursor(DbbeCursor *pCursr); /* ** Completely shutdown the given database. Close all files. Free all memory. */ static void sqliteBtbeClose(Dbbe *pDbbe){ Dbbex *pBe = (Dbbex*)pDbbe; assert( pBe->pDCur==0 ); if( pBe->pCur ){ sqliteBtreeCloseCursor(pBe->pCur); } sqliteBtreeClose(pBe->pBt); sqliteFree(pBe->zFile); sqliteFree(pBe); } /* ** Translate a database table name into the table number for the database. ** The pBe->pCur cursor points to table number 2 of the database and that ** table maps all other database names into database number. Return the ** database number of the table, or return 0 if not found. */ static int mapTableNameToNumber(Dbbex *pBe, char *zName){ int nName = strlen(zName); int rc; int res; if( pBe->pCur==0 ){ rc = sqliteBtreeCursor(pBe, 2, &pBe->pCur); if( rc!=SQLITE_OK ) return 0; } rc = sqliteBtreeMoveto(pBe->pCur, zName, nName, &res); if( rc!=SQLITE_OK || res!=0 ) return 0; rc = sqliteBtreeData(pBe->pCur, 0, sizeof(res), &res); if( rc!=SQLITE_OK ) return 0; return res; } /* ** Locate a directory where we can potentially create a temporary ** file. */ static const char *findTempDir(void){ static const char *azDirs[] = { "/var/tmp", "/usr/tmp", "/tmp", "/temp", ".", "./temp", }; int i; struct stat buf; for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){ if( stat(azDirs[i], &buf)==0 && S_ISDIR(buf.st_mode) && S_IWUSR(buf.st_mode) ){ return azDirs[i]; } } return 0; } /* ** Open a new table cursor. Write a pointer to the corresponding ** DbbeCursor structure into *ppCursr. Return an integer success ** code: ** ** SQLITE_OK It worked! ** ** SQLITE_NOMEM sqliteMalloc() failed ** ** SQLITE_PERM Attempt to access a file for which file ** access permission is denied ** ** SQLITE_BUSY Another thread or process is already using ** the corresponding file and has that file locked. ** ** SQLITE_READONLY The current thread already has this file open ** readonly but you are trying to open for writing. ** (This can happen if a SELECT callback tries to ** do an UPDATE or DELETE.) ** ** If the table does not previously exist and writeable is TRUE then ** a new table is created. If zTable is 0 or "", then a temporary ** database table is created and a cursor to that temporary file is ** opened. The temporary file will be deleted when it is closed. */ static int sqliteBtbeOpenCursor( Dbbe *pDbbe, /* The database the table belongs to */ const char *zTable, /* The SQL name of the file to be opened */ int writeable, /* True to open for writing */ int intKeyOnly, /* True if only integer keys are used */ DbbeCursor **ppCursr /* Write the resulting table pointer here */ ){ char *zFile; /* Name of the table file */ DbbeCursor *pCursr; /* The new table cursor */ int rc = SQLITE_OK; /* Return value */ int rw_mask; /* Permissions mask for opening a table */ int mode; /* Mode for opening a table */ Dbbex *pBe = (Dbbex*)pDbbe; *ppCursr = 0; if( pBe->pCur==0 ){ rc = sqliteBtreeCursor(pBe->pBt, 2, &pBe->pCur); if( rc!=SQLITE_OK ) return rc; } pCursr = sqliteMalloc( sizeof(*pCursr) ); if( pCursr==0 ) return SQLITE_NOMEM; if( zTable ){ char *zTab; int tabId, i; if( writeable && pBe->inTrans==0 ){ rc = sqliteBeginTrans(pBe->pBt); if( rc!=SQLITE_OK ){ sqliteFree(pCursr); return rc; } pBe->inTrans = 1; } zTab = sqliteStrDup(zTable); for(i=0; zTab[i]; i++){ if( isupper(zTab[i]) ) zTab[i] = tolower(zTab[i]); } tabId = mapTableNameToNumber(pBe, zTab); if( tabId==0 ){ if( writeable==0 ){ pCursr->pCur = 0; }else{ rc = sqliteBtreeCreateTable(pBe->pBt, &tabId); if( rc!=SQLITE_OK ){ sqliteFree(pCursr); sqliteFree(zTab); return rc; } sqliteBtreeInsert(pBe->pCur, zTab, strlen(zTab), tabId, sizeof(tabId)); } } sqliteFree(zTab); rc = sqliteBtreeCursor(pBe->pBt, tabId, &pCursr->pCur); if( rc!=SQLITE_OK ){ sqliteFree(pCursr); return rc; } pCursr->zTempFile = 0; pCursr->pTempBt = 0; }else{ int nTry = 5; char zFileName[200]; while( nTry>0 ){ nTry--; sprintf(zFileName,"%s/_sqlite_temp_file_%d", findTempDir(), sqliteRandomInteger()); rc = sqliteBtreeOpen(zFileName, 0, 100, &pCursr->pTempBt); if( rc!=SQLITE_OK ) continue; rc = sqliteBtreeCursor(pCursr->pTempBt, 2, &pCursr->pCur***** pFile = 0; zFile = 0; } pCursr->pNext = pBe->pDCur; if( pBe->pDCur ){ pBe->pDCur->pPrev = pCursr; } pCursr->pPrev = 0; pCursr->pBe = pBe; pCursr->skipNext = 0; pCursr->needRewind = 1; return SQLITE_OK; } /* ** Drop a table from the database. */ static void sqliteBtbeDropTable(Dbbe *pDbbe, const char *zTable){ int iTable; Dbbex *pBe = (Dbbex*)pDbbe; iTable = mapTableNameToNumber(zTable); if( iTable>0 ){ sqliteBtreeDelete(pBe->pCur); sqliteBtreeDropTable(pBe->pBt, iTable); } } /* ** Clear the remembered key and data from the cursor. */ static void clearCursorCache(DbbeCursor *pCursr){ if( pCursr->zKey ){ sqliteFree(pCursr->zKey); pCursr->zKey = 0; pCursr->nKey = 0; pCursr->zKeyBuf = 0; } if( pCursr->zData ){ sqliteFree(pCursr->zData); pCursr->zData = 0; } } /* ** Close a cursor previously opened by sqliteBtbeOpenCursor(). */ static void sqliteBtbeCloseCursor(DbbeCursor *pCursr){ Dbbex *pBe; if( pCursr==0 ) return; if( pCursr->pCur ){ sqliteBtreeCloseCursor(pCursr->pCur); } if( pCursr->pTemp ){ sqliteBtreeClose(pCursr->pTemp); } if( pCursr->zTempFile ){ unlink(pCursr->zTempFile); sqliteFree(pCursr->zTempFile); } clearCursorCache(pCursr); pBe = pCursr->pBe; if( pCursr->pPrev ){ pCursr->pPrev->pNext = pCursr->pNext; }else{ pBe->pDCur = pCur->pNext; } if( pCursr->pNext ){ pCursr->pNext->pPrev = pCursr->pPrev; } if( pBe->pDCur==0 && pBe->inTrans==0 && pBe->pCur!=0 ){ sqliteBtreeCloseCursor(pBe->pCur); pBe->pCur = 0; } memset(pCursr, 0, sizeof(*pCursr)); sqliteFree(pCursr); } /* ** Reorganize a table to reduce search times and disk usage. */ static int sqliteBtbeReorganizeTable(Dbbe *pBe, const char *zTable){ return SQLITE_OK; } /* ** Move the cursor so that it points to the entry with a key that ** matches the argument. Return 1 on success and 0 if no keys match ** the argument. */ static int sqliteBtbeFetch(DbbeCursor *pCursr, int nKey, char *pKey){ int rc, res; clearCursorCache(pCursr); if( pCursr->pCur==0 ) return 0; rc = sqliteBtreeMoveto(pCursr->pCur, pKey, nKey, &res); return rc==SQLITE_OK && res==0; } /* ** Copy bytes from the current key or data into a buffer supplied by ** the calling function. Return the number of bytes copied. */ static int sqliteBtbeCopyKey(DbbeCursor *pCursr, int offset, int size, char *zBuf){ if( pCursr->pCur==0 ) return 0; int rc = sqliteBtreeKey(pCursr->pCur, offset, amt, zBuf); if( rc!=SQLITE_OK ) amt = 0; return amt; } static int sqliteBtbeCopyData(DbbeCursor *pCursr, int offset, int size, char *zBuf){ if( pCursr->pCur==0 ) return 0; int rc = sqliteBtreeData(pCursr->pCur, offset, amt, zBuf); if( rc!=SQLITE_OK ) amt = 0; return amt; } /* ** Return a pointer to bytes from the key or data. The data returned ** is ephemeral. */ static char *sqliteBtbeReadKey(DbbeCursor *pCursr, int offset){ if( pCursr->zKey==0 && pCursr->pCur!=0 ){ sqliteBtreeKeySize(pCursr->pCur, &pCursr->nKey); pCursr->zKey = sqliteMalloc( pCursr->nKey + 1 ); if( pCursr->zKey==0 ) return 0; sqliteBtreeKey(pCursr->pCur, 0, pCursr->nKey, pCursr->zKey); pCursr->zKey[pCursor->nKey] = 0; } return pCursr->zKey; } static char *sqliteBtbeReadData(DbbeCursor *pCursr, int offset){ if( pCursr->zData==0 && pCursr->pCur!=0 ){ int nData; sqliteBtreeDataSize(pCursr->pCur, &nData); pCursr->zData = sqliteMalloc( nData + 1 ); if( pCursr->zData==0 ) return 0; sqliteBtreeData(pCursr->pCur, 0, nData, pCursr->zData); pCursr->zData[nData] = 0; } return pCursr->zData; } /* ** Return the total number of bytes in either data or key. */ static int sqliteBtbeKeyLength(DbbeCursor *pCursr){ int n; if( pCursr->pCur==0 ) return 0; sqliteBtreeKeySize(pCursr->pCur, &n); return n; } static int sqliteBtbeDataLength(DbbeCursor *pCursr){ int n; if( pCursr->pCur==0 ) return 0; sqliteBtreeDataSize(pCursr->pCur, &n); return n; } /* ** Make is so that the next call to sqliteNextKey() finds the first ** key of the table. */ static int sqliteBtbeRewind(DbbeCursor *pCursr){ pCursr->needRewind = 1; return SQLITE_OK; } /* ** Move the cursor so that it points to the next key in the table. ** Return 1 on success. Return 0 if there are no more keys in this ** table. ** ** If the pCursr->needRewind flag is set, then move the cursor so ** that it points to the first key of the table. */ static int sqliteBtbeNextKey(DbbeCursor *pCursr){ int rc, res; static char zNullKey[1] = { '\000' }; assert( pCursr!=0 ); clearCursorCache(pCursr); if( pCursr->pCur==0 ) return 0; if( pCursr->needRewind ){ rc = sqliteBtreeFirst(pCursr->pCur, &res); return rc==SQLITE_OK && res==0; } rc = sqliteBtreeNext(pCursr->pCur); return rc==SQLITE_OK && res==0; } /* ** Get a new integer key. */ static int sqliteBtbeNew(DbbeCursor *pCursr){ int rc; int res = 0; assert( pCursr->pCur!=0 ); while( res==0 ){ iKey = sqliteRandomInteger() & 0x7fffffff; if( iKey==0 ) continue; rc = sqliteBtreeMoveto(pCursr->pCur, &iKey, sizeof(iKey), &res); assert( rc==SQLITE_OK ); } clearCursorCache(pCursr); return iKey; } /* ** Write an entry into the table. Overwrite any prior entry with the ** same key. */ static int sqliteBtbePut( DbbeCursor *pCursr, /* Write to the database associated with this cursor */ int nKey, /* Number of bytes in the key */ char *pKey, /* The data for the key */ int nData, /* Number of bytes of data */ char *pData /* The data */ ){ clearCursorCache(pCursr); assert( pCursr->pCur!=0 ); return sqliteBtreeInsert(pCursr->pCur, pKey, nKey, pData, nData); } /* ** Remove an entry from a table, if the entry exists. */ static int sqliteBtbeDelete(DbbeCursor *pCursr, int nKey, char *pKey){ int rc; int res; clearCursorCache(pCursr); assert( pCursr->pCur!=0 ); rc = sqliteBtreeMoveto(pCursr->pCur, pKey, nKey, &res); if( rc==SQLITE_OK && res==0 ){ rc = sqliteBtreeDelete(pCursr->pCur); } return rc; } /* ** Begin a transaction. */ static int sqliteBtbeBeginTrans(Dbbe *pDbbe){ Dbbex *pBe = (Dbbex*)pDbbe; if( pBe->inTrans ) return SQLITE_OK; sqliteBtreeBeginTrans(pBe->pBt); pBe->inTrans = 1; return SQLITE_OK; } /* ** Commit a transaction. */ static int sqliteBtbeCommit(Dbbe *pDbbe){ Dbbex *pBe = (Dbbex*)pDbbe; if( !pBe->inTrans ) return SQLITE_OK; pBe->inTrans = 0; return sqliteBtreeCommit(pBe->pBt); } /* ** Rollback a transaction. */ static int sqliteBtbeRollback(Dbbe *pDbbe){ Dbbex *pBe = (Dbbex*)pDbbe; if( !pBe->inTrans ) return SQLITE_OK; if( pBt->pDCur!=0 ) return SQLITE_INTERNAL; pBe->inTrans = 0; if( pBe->pCur ){ sqliteBtreeCloseCursor(pBe->pCur); pBe->pCur = 0; } return sqliteBtreeRollback(pBe->pBt); } /* ** Begin scanning an index for the given key. Return 1 on success and ** 0 on failure. (Vdbe ignores the return value.) */ static int sqliteBtbeBeginIndex(DbbeCursor *pCursr, int nKey, char *pKey){ int rc; int res; clearCursorCache(pCursr); if( pCursr->pCur==0 ) return 0; pCursr->nKey = nKey; pCursr->zKey = sqliteMalloc( 2*(nKey + 1) ); if( pCursr->zKey==0 ) return 0; pCursr->zKeyBuf = &pCursr->zKey[nKey+1]; memcpy(pCursr->zKey, zKey, nKey); pCursr->zKey[nKey] = 0; rc = sqliteBtreeMoveTo(pCursr->pCur, pKey, nKey, res); pCursr->skipNext = res<0; return rc==SQLITE_OK; } /* ** Return an integer key which is the next record number in the index search ** that was started by a prior call to BeginIndex. Return 0 if all records ** have already been searched. */ static int sqliteBtbeNextIndex(DbbeCursor *pCursr){ int rc, res; int iRecno; BtCursor *pCur = pCursr->pCur; if( pCur==0 ) return 0; if( pCursr->zKey==0 || pCursr->zKeyBuf==0 ) return 0; if( !pCursr->skipNext ){ rc = sqliteBtreeNext(pCur, &res); pCursr->skipNext = 0; if( res ) return 0; } if( sqliteBtreeKeySize(pCur)!=pCursr->nKey+4 ){ return 0; } rc = sqliteBtreeKey(pCur, 0, pCursr->nKey, pCursr->zKeyBuf); if( rc!=SQLITE_OK || memcmp(pCursr->zKey, pCursr->zKeyBuf, pCursr->nKey)!=0 ){ return 0; } sqliteBtreeKey(pCur, pCursr->nKey, 4, &iRecno); return iRecno; } /* ** Write a new record number and key into an index table. Return a status ** code. */ static int sqliteBtbePutIndex(DbbeCursor *pCursr, int nKey, char *pKey, int N){ char *zBuf; int rc; char zStaticSpace[200]; assert( pCursr->pCur!=0 ); if( nKey+4>sizeof(zStaticSpace){ zBuf = sqliteMalloc( nKey + 4 ); if( zBuf==0 ) return SQLITE_NOMEM; }else{ zBuf = zStaticSpace; } memcpy(zBuf, pKey, nKey); memcpy(&zBuf[nKey], N, 4); rc = sqliteBtreeInsert(pCursr->pCur, zBuf, nKey+4, "", 0); if( zBuf!=zStaticSpace ){ sqliteFree(zBuf); } } /* ** Delete an index entry. Return a status code. */ static int sqliteBtbeDeleteIndex(DbbeCursor *pCursr, int nKey, char *pKey, int N){ char *zBuf; int rc; char zStaticSpace[200]; assert( pCursr->pCur!=0 ); if( nKey+4>sizeof(zStaticSpace){ zBuf = sqliteMalloc( nKey + 4 ); if( zBuf==0 ) return SQLITE_NOMEM; }else{ zBuf = zStaticSpace; } memcpy(zBuf, pKey, nKey); memcpy(&zBuf[nKey], N, 4); rc = sqliteBtreeMoveto(pCursr->pCur, zBuf, nKey+4, &res); if( rc==SQLITE_OK && res==0 ){ sqliteBtreeDelete(pCursr->pCur); } if( zBuf!=zStaticSpace ){ sqliteFree(zBuf); } return SQLITE_OK; } /* ** This variable contains pointers to all of the access methods ** used to implement the GDBM backend. */ static struct DbbeMethods btbeMethods = { /* Close */ sqliteBtbeClose, /* OpenCursor */ sqliteBtbeOpenCursor, /* DropTable */ sqliteBtbeDropTable, /* ReorganizeTable */ sqliteBtbeReorganizeTable, /* CloseCursor */ sqliteBtbeCloseCursor, /* Fetch */ sqliteBtbeFetch, /* Test */ sqliteBtbeFetch, /* CopyKey */ sqliteBtbeCopyKey, /* CopyData */ sqliteBtbeCopyData, /* ReadKey */ sqliteBtbeReadKey, /* ReadData */ sqliteBtbeReadData, /* KeyLength */ sqliteBtbeKeyLength, /* DataLength */ sqliteBtbeDataLength, /* NextKey */ sqliteBtbeNextKey, /* Rewind */ sqliteBtbeRewind, /* New */ sqliteBtbeNew, /* Put */ sqliteBtbePut, /* Delete */ sqliteBtbeDelete, /* BeginTrans */ sqliteBtbeBeginTrans, /* Commit */ sqliteBtbeCommit, /* Rollback */ sqliteBtbeRollback, /* BeginIndex */ sqliteBtbeBeginIndex, /* NextIndex */ sqliteBtbeNextIndex, /* PutIndex */ sqliteBtbePutIndex, /* DeleteIndex */ sqliteBtbeDeleteIndex, }; /* ** This routine opens a new database. For the BTree driver ** implemented here, the database name is the name of a single ** file that contains all tables of the database. ** ** If successful, a pointer to the Dbbe structure is returned. ** If there are errors, an appropriate error message is left ** in *pzErrMsg and NULL is returned. */ Dbbe *sqliteBtbeOpen( const char *zName, /* The name of the database */ int writeFlag, /* True if we will be writing to the database */ int createFlag, /* True to create database if it doesn't exist */ char **pzErrMsg /* Write error messages (if any) here */ ){ Dbbex *pNew; char *zTemp; Btree *pBt; int rc; rc = sqliteBtreeOpen(zName, 0, 100, &pBt); if( rc!=SQLITE_OK ){ sqliteSetString(pzErrMsg, "unable to open database file \"", zName, "\"",0); return 0; } pNew = sqliteMalloc(sizeof(Dbbex) + strlen(zName) + 1); if( pNew==0 ){ sqliteBtreeCloseCursor(pCur); sqliteBtreeClose(pBt); sqliteSetString(pzErrMsg, "out of memory", 0); return 0; } pNew->dbbe.x = &btbeMethods; pNew->write = writeFlag; pNew->inTrans = 0; pNew->zFile = (char*)&pNew[1]; strcpy(pNew->zFile, zName); pNew->pBt = pBt; pNew->pCur = 0; return &pNew->dbbe; } #endif /* DISABLE_GDBM */ |
Changes to src/delete.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle DELETE FROM statements. ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle DELETE FROM statements. ** ** $Id: delete.c,v 1.10 2001/09/13 13:46:56 drh Exp $ */ #include "sqliteInt.h" /* ** Process a DELETE FROM statement. */ void sqliteDeleteFrom( |
︙ | ︙ | |||
86 87 88 89 90 91 92 93 94 95 96 97 | } } /* Begin generating code. */ v = sqliteGetVdbe(pParse); if( v==0 ) goto delete_from_cleanup; /* Special case: A DELETE without a WHERE clause deletes everything. ** It is easier just to deleted the database files directly. */ if( pWhere==0 ){ | > > > > | | | 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | } } /* Begin generating code. */ v = sqliteGetVdbe(pParse); if( v==0 ) goto delete_from_cleanup; if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); } /* Special case: A DELETE without a WHERE clause deletes everything. ** It is easier just to deleted the database files directly. */ if( pWhere==0 ){ sqliteVdbeAddOp(v, OP_Destroy, pTab->tnum, 0, 0, 0); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, 0, 0, 0); } } /* The usual case: There is a WHERE clause so we have to scan through ** the table an pick which records to delete. */ else{ |
︙ | ︙ | |||
121 122 123 124 125 126 127 | /* Delete every item whose key was written to the list during the ** database scan. We have to delete items after the scan is complete ** because deleting an item can change the scan order. */ base = pParse->nTab; sqliteVdbeAddOp(v, OP_ListRewind, 0, 0, 0, 0); | | | | > > > > | 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | /* Delete every item whose key was written to the list during the ** database scan. We have to delete items after the scan is complete ** because deleting an item can change the scan order. */ base = pParse->nTab; sqliteVdbeAddOp(v, OP_ListRewind, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_Open, base, pTab->tnum, 0, 0); for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ sqliteVdbeAddOp(v, OP_Open, base+i, pIdx->tnum, 0, 0); } end = sqliteVdbeMakeLabel(v); addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end, 0, 0); if( pTab->pIndex ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_Fetch, base, 0, 0, 0); for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ int j; sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); for(j=0; j<pIdx->nColumn; j++){ sqliteVdbeAddOp(v, OP_Field, base, pIdx->aiColumn[j], 0, 0); } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_DeleteIdx, base+i, 0, 0, 0); } } sqliteVdbeAddOp(v, OP_Delete, base, 0, 0, 0); sqliteVdbeAddOp(v, OP_Goto, 0, addr, 0, 0); sqliteVdbeAddOp(v, OP_ListClose, 0, 0, 0, end); } if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } delete_from_cleanup: sqliteIdListDelete(pTabList); sqliteExprDelete(pWhere); return; } |
Changes to src/insert.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements. ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements. ** ** $Id: insert.c,v 1.14 2001/09/13 13:46:56 drh Exp $ */ #include "sqliteInt.h" /* ** This routine is call to handle SQL of the following forms: ** ** insert into TABLE (IDLIST) values(EXPRLIST) |
︙ | ︙ | |||
81 82 83 84 85 86 87 88 89 90 91 92 93 94 | goto insert_cleanup; } /* Allocate a VDBE */ v = sqliteGetVdbe(pParse); if( v==0 ) goto insert_cleanup; /* Figure out how many columns of data are supplied. If the data ** is comming from a SELECT statement, then this step has to generate ** all the code to implement the SELECT statement and leave the data ** in a temporary table. If data is coming from an expression list, ** then we just have to count the number of expressions. */ | > > > | 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | goto insert_cleanup; } /* Allocate a VDBE */ v = sqliteGetVdbe(pParse); if( v==0 ) goto insert_cleanup; if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); } /* Figure out how many columns of data are supplied. If the data ** is comming from a SELECT statement, then this step has to generate ** all the code to implement the SELECT statement and leave the data ** in a temporary table. If data is coming from an expression list, ** then we just have to count the number of expressions. */ |
︙ | ︙ | |||
231 232 233 234 235 236 237 | } }else if( srcTab>=0 ){ sqliteVdbeAddOp(v, OP_Field, srcTab, idx, 0, 0); }else{ sqliteExprCode(pParse, pList->a[j].pExpr); } } | | > > > > | 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | } }else if( srcTab>=0 ){ sqliteVdbeAddOp(v, OP_Field, srcTab, idx, 0, 0); }else{ sqliteExprCode(pParse, pList->a[j].pExpr); } } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, idx+base, 0, 0, 0); } /* The bottom of the loop, if the data source is a SELECT statement */ if( srcTab>=0 ){ sqliteVdbeAddOp(v, OP_Goto, 0, iCont, 0, 0); sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, iBreak); } if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } insert_cleanup: if( pList ) sqliteExprListDelete(pList); if( pSelect ) sqliteSelectDelete(pSelect); sqliteIdListDelete(pColumn); } |
Changes to src/main.c.
︙ | ︙ | |||
22 23 24 25 26 27 28 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** | | | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: main.c,v 1.30 2001/09/13 13:46:56 drh Exp $ */ #include "sqliteInt.h" #if defined(HAVE_USLEEP) && HAVE_USLEEP #include <unistd.h> #endif /* |
︙ | ︙ | |||
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | /* ** The master database table has a structure like this */ static char master_schema[] = "CREATE TABLE " MASTER_NAME " (\n" " type text,\n" " name text,\n" " tbl_name text,\n" " sql text\n" ")" ; /* The following program is used to initialize the internal ** structure holding the tables and indexes of the database. ** The database contains a special table named "sqlite_master" ** defined as follows: ** ** CREATE TABLE sqlite_master ( ** type text, -- Either "table" or "index" or "meta" ** name text, -- Name of table or index ** tbl_name text, -- Associated table ** sql text -- The CREATE statement for this object ** ); ** ** The sqlite_master table contains a single entry for each table ** and each index. The "type" column tells whether the entry is ** a table or index. The "name" column is the name of the object. | > > | 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | /* ** The master database table has a structure like this */ static char master_schema[] = "CREATE TABLE " MASTER_NAME " (\n" " type text,\n" " name text,\n" " tnum integer,\n" " tbl_name text,\n" " sql text\n" ")" ; /* The following program is used to initialize the internal ** structure holding the tables and indexes of the database. ** The database contains a special table named "sqlite_master" ** defined as follows: ** ** CREATE TABLE sqlite_master ( ** type text, -- Either "table" or "index" or "meta" ** name text, -- Name of table or index ** tnum integer, -- The integer page number of root page ** tbl_name text, -- Associated table ** sql text -- The CREATE statement for this object ** ); ** ** The sqlite_master table contains a single entry for each table ** and each index. The "type" column tells whether the entry is ** a table or index. The "name" column is the name of the object. |
︙ | ︙ | |||
122 123 124 125 126 127 128 | ** The following program invokes its callback on the SQL for each ** table then goes back and invokes the callback on the ** SQL for each index. The callback will invoke the ** parser to build the internal representation of the ** database scheme. */ static VdbeOp initProg[] = { | | | | | | | | | > | | 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | ** The following program invokes its callback on the SQL for each ** table then goes back and invokes the callback on the ** SQL for each index. The callback will invoke the ** parser to build the internal representation of the ** database scheme. */ static VdbeOp initProg[] = { { OP_Open, 0, 2, 0}, { OP_Next, 0, 9, 0}, /* 1 */ { OP_Column, 0, 0, 0}, { OP_String, 0, 0, "meta"}, { OP_Ne, 0, 1, 0}, { OP_Column, 0, 0, 0}, { OP_Column, 0, 4, 0}, { OP_Callback, 2, 0, 0}, { OP_Goto, 0, 1, 0}, { OP_Rewind, 0, 0, 0}, /* 9 */ { OP_Next, 0, 17, 0}, /* 10 */ { OP_Column, 0, 0, 0}, { OP_String, 0, 0, "table"}, { OP_Ne, 0, 10, 0}, { OP_Column, 0, 4, 0}, { OP_Callback, 1, 0, 0}, { OP_Goto, 0, 10, 0}, { OP_Rewind, 0, 0, 0}, /* 17 */ { OP_Next, 0, 25, 0}, /* 18 */ { OP_Column, 0, 0, 0}, { OP_String, 0, 0, "index"}, { OP_Ne, 0, 18, 0}, { OP_Column, 0, 4, 0}, { OP_Callback, 1, 0, 0}, { OP_Goto, 0, 18, 0}, { OP_Close, 2, 0, 0}, /* 25 */ { OP_Halt, 0, 0, 0}, }; /* Create a virtual machine to run the initialization program. Run ** the program. The delete the virtual machine. */ vdbe = sqliteVdbeCreate(db); if( vdbe==0 ){ |
︙ | ︙ | |||
177 178 179 180 181 182 183 184 185 186 187 188 189 190 | azArg[1] = 0; sqliteOpenCb(db, 1, azArg, 0); pTab = sqliteFindTable(db, MASTER_NAME); if( pTab ){ pTab->readOnly = 1; } db->flags |= SQLITE_Initialized; } return rc; } /* ** The version of the library */ | > | 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | azArg[1] = 0; sqliteOpenCb(db, 1, azArg, 0); pTab = sqliteFindTable(db, MASTER_NAME); if( pTab ){ pTab->readOnly = 1; } db->flags |= SQLITE_Initialized; sqliteCommitInternalChanges(db); } return rc; } /* ** The version of the library */ |
︙ | ︙ | |||
215 216 217 218 219 220 221 | /* Allocate the sqlite data structure */ db = sqliteMalloc( sizeof(sqlite) ); if( pzErrMsg ) *pzErrMsg = 0; if( db==0 ) goto no_mem_on_open; /* Open the backend database driver */ | | > > > | > > > > < | | 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | /* Allocate the sqlite data structure */ db = sqliteMalloc( sizeof(sqlite) ); if( pzErrMsg ) *pzErrMsg = 0; if( db==0 ) goto no_mem_on_open; /* Open the backend database driver */ rc = sqliteBtreeOpen(zFilename, mode, 100, &db->pBe); if( rc!=SQLITE_OK ){ switch( rc ){ default: { if( pzErrMsg ){ sqliteSetString(pzErrMsg, "unable to open database: ", zFilename, 0); } } } sqliteFree(db); return rc; } /* Assume file format 1 unless the database says otherwise */ db->file_format = 1; /* Attempt to read the schema */ rc = sqliteInit(db, pzErrMsg); |
︙ | ︙ | |||
249 250 251 252 253 254 255 | } /* ** Close an existing SQLite database */ void sqlite_close(sqlite *db){ int i; | | | 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | } /* ** Close an existing SQLite database */ void sqlite_close(sqlite *db){ int i; sqliteBtreeClose(db->pBe); for(i=0; i<N_HASH; i++){ Table *pNext, *pList = db->apTblHash[i]; db->apTblHash[i] = 0; while( pList ){ pNext = pList->pHash; pList->pHash = 0; sqliteDeleteTable(db, pList); |
︙ | ︙ | |||
342 343 344 345 346 347 348 349 350 351 352 353 354 355 | if( rc!=SQLITE_OK ){ sqliteStrRealloc(pzErrMsg); return rc; } } memset(&sParse, 0, sizeof(sParse)); sParse.db = db; sParse.xCallback = xCallback; sParse.pArg = pArg; sqliteRunParser(&sParse, zSql, pzErrMsg); if( sqlite_malloc_failed ){ sqliteSetString(pzErrMsg, "out of memory", 0); sParse.rc = SQLITE_NOMEM; } | > | 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | if( rc!=SQLITE_OK ){ sqliteStrRealloc(pzErrMsg); return rc; } } memset(&sParse, 0, sizeof(sParse)); sParse.db = db; sParse.pBe = db->pBe; sParse.xCallback = xCallback; sParse.pArg = pArg; sqliteRunParser(&sParse, zSql, pzErrMsg); if( sqlite_malloc_failed ){ sqliteSetString(pzErrMsg, "out of memory", 0); sParse.rc = SQLITE_NOMEM; } |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
21 22 23 24 25 26 27 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This is the implementation of the page cache subsystem. ** ** The page cache is used to access a database file. The pager journals ** all writes in order to support rollback. Locking is used to limit | | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This is the implementation of the page cache subsystem. ** ** The page cache is used to access a database file. The pager journals ** all writes in order to support rollback. Locking is used to limit ** access to one or more reader or to one writer. ** ** @(#) $Id: pager.c,v 1.14 2001/09/13 13:46:57 drh Exp $ */ #include "sqliteInt.h" #include "pager.h" #include <fcntl.h> #include <sys/stat.h> #include <unistd.h> #include <assert.h> |
︙ | ︙ | |||
118 119 120 121 122 123 124 125 126 127 128 129 130 131 | void (*xDestructor)(void*); /* Call this routine when freeing pages */ int nPage; /* Total number of in-memory pages */ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ int mxPage; /* Maximum number of pages to hold in cache */ int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */ unsigned char state; /* SQLITE_UNLOCK, _READLOCK or _WRITELOCK */ unsigned char errMask; /* One of several kinds of errors */ unsigned char *aInJournal; /* One bit for each page in the database file */ PgHdr *pFirst, *pLast; /* List of free pages */ PgHdr *pAll; /* List of all pages */ PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number of PgHdr */ }; /* | > > | 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | void (*xDestructor)(void*); /* Call this routine when freeing pages */ int nPage; /* Total number of in-memory pages */ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ int mxPage; /* Maximum number of pages to hold in cache */ int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */ unsigned char state; /* SQLITE_UNLOCK, _READLOCK or _WRITELOCK */ unsigned char errMask; /* One of several kinds of errors */ unsigned char tempFile; /* zFilename is a temporary file */ unsigned char readOnly; /* True for a read-only database */ unsigned char *aInJournal; /* One bit for each page in the database file */ PgHdr *pFirst, *pLast; /* List of free pages */ PgHdr *pAll; /* List of all pages */ PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number of PgHdr */ }; /* |
︙ | ︙ | |||
143 144 145 146 147 148 149 | typedef struct PageRecord PageRecord; struct PageRecord { Pgno pgno; /* The page number */ char aData[SQLITE_PAGE_SIZE]; /* Original data for page pgno */ }; /* | | | | | 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | typedef struct PageRecord PageRecord; struct PageRecord { Pgno pgno; /* The page number */ char aData[SQLITE_PAGE_SIZE]; /* Original data for page pgno */ }; /* ** Journal files begin with the following magic string. The data ** was obtained from /dev/random. It is used only as a sanity check. */ static const unsigned char aJournalMagic[] = { 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd4, }; /* ** Hash a page number */ #define pager_hash(PN) ((PN)%N_PG_HASH) /* ** Enable reference count tracking here: */ #if SQLITE_TEST int pager_refinfo_enable = 0; static void pager_refinfo(PgHdr *p){ static int cnt = 0; if( !pager_refinfo_enable ) return; printf( "REFCNT: %4d addr=0x%08x nRef=%d\n", p->pgno, (int)PGHDR_TO_DATA(p), p->nRef ); |
︙ | ︙ | |||
452 453 454 455 456 457 458 459 460 461 | pPager->errMask |= PAGER_ERR_CORRUPT; rc = SQLITE_CORRUPT; }else{ rc = pager_unwritelock(pPager); } return rc; } /* ** Create a new page cache and put a pointer to the page cache in *ppPager. | > > > > > > > > > > > > > > > > > > > > > > > > | > > > > | > > > > > > > > > > > > > > > > > | 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 | pPager->errMask |= PAGER_ERR_CORRUPT; rc = SQLITE_CORRUPT; }else{ rc = pager_unwritelock(pPager); } return rc; } /* ** Locate a directory where we can potentially create a temporary ** file. */ static const char *findTempDir(void){ static const char *azDirs[] = { ".", "/var/tmp", "/usr/tmp", "/tmp", "/temp", "./temp", }; int i; struct stat buf; for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){ if( stat(azDirs[i], &buf)==0 && S_ISDIR(buf.st_mode) && S_IWUSR(buf.st_mode) ){ return azDirs[i]; } } return 0; } /* ** Create a new page cache and put a pointer to the page cache in *ppPager. ** The file to be cached need not exist. The file is not locked until ** the first call to sqlitepager_get() and is only held open until the ** last page is released using sqlitepager_unref(). */ int sqlitepager_open( Pager **ppPager, /* Return the Pager structure here */ const char *zFilename, /* Name of the database file to open */ int mxPage, /* Max number of in-memory cache pages */ int nExtra /* Extra bytes append to each in-memory page */ ){ Pager *pPager; int nameLen; int fd; int tempFile; int readOnly = 0; char zTemp[300]; *ppPager = 0; if( sqlite_malloc_failed ){ return SQLITE_NOMEM; } if( zFilename ){ fd = open(zFilename, O_RDWR|O_CREAT, 0644); if( fd<0 ){ fd = open(zFilename, O_RDONLY, 0); readOnly = 1; } tempFile = 0; }else{ int cnt = 8; char *zDir = findTempDir(); if( zDir==0 ) return SQLITE_CANTOPEN; do{ cnt--; sprintf(zTemp,"%s/_sqlite_%u",(unsigned)sqliteRandomInteger()); fd = open(zTemp, O_RDWR|O_CREAT|O_EXCL, 0600); }while( cnt>0 && fd<0 ); zFilename = zTemp; tempFile = 1; } if( fd<0 ){ return SQLITE_CANTOPEN; } nameLen = strlen(zFilename); pPager = sqliteMalloc( sizeof(*pPager) + nameLen*2 + 30 ); if( pPager==0 ){ close(fd); |
︙ | ︙ | |||
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 | pPager->jfd = -1; pPager->nRef = 0; pPager->dbSize = -1; pPager->nPage = 0; pPager->mxPage = mxPage>5 ? mxPage : 10; pPager->state = SQLITE_UNLOCK; pPager->errMask = 0; pPager->pFirst = 0; pPager->pLast = 0; pPager->nExtra = nExtra; memset(pPager->aHash, 0, sizeof(pPager->aHash)); *ppPager = pPager; return SQLITE_OK; } /* ** Set the destructor for this pager. If not NULL, the destructor is called | > > | > | > | 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 | pPager->jfd = -1; pPager->nRef = 0; pPager->dbSize = -1; pPager->nPage = 0; pPager->mxPage = mxPage>5 ? mxPage : 10; pPager->state = SQLITE_UNLOCK; pPager->errMask = 0; pPager->tempFile = tempFile; pPager->readOnly = readOnly; pPager->pFirst = 0; pPager->pLast = 0; pPager->nExtra = nExtra; memset(pPager->aHash, 0, sizeof(pPager->aHash)); *ppPager = pPager; return SQLITE_OK; } /* ** Set the destructor for this pager. If not NULL, the destructor is called ** when the reference count on each page reaches zero. The destructor can ** be used to clean up information in the extra segment appended to each page. ** ** The destructor is not called as a result sqlitepager_close(). ** Destructors are only called by sqlitepager_unref(). */ void sqlitepager_set_destructor(Pager *pPager, void (*xDesc)(void*)){ pPager->xDestructor = xDesc; } /* ** Return the total number of pages in the disk file associated with ** pPager. */ int sqlitepager_pagecount(Pager *pPager){ int n; struct stat statbuf; assert( pPager!=0 ); if( pPager->dbSize>=0 ){ return pPager->dbSize; |
︙ | ︙ | |||
568 569 570 571 572 573 574 575 576 577 578 579 | } for(pPg=pPager->pAll; pPg; pPg=pNext){ pNext = pPg->pNextAll; sqliteFree(pPg); } if( pPager->fd>=0 ) close(pPager->fd); assert( pPager->jfd<0 ); sqliteFree(pPager); return SQLITE_OK; } /* | > > > | | 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 | } for(pPg=pPager->pAll; pPg; pPg=pNext){ pNext = pPg->pNextAll; sqliteFree(pPg); } if( pPager->fd>=0 ) close(pPager->fd); assert( pPager->jfd<0 ); if( pPager->tempFile ){ unlink(pPager->zFilename); } sqliteFree(pPager); return SQLITE_OK; } /* ** Return the page number for the given page data. */ Pgno sqlitepager_pagenumber(void *pData){ PgHdr *p = DATA_TO_PGHDR(pData); return p->pgno; } /* |
︙ | ︙ | |||
617 618 619 620 621 622 623 | page_ref(pPg); return SQLITE_OK; } /* ** Acquire a page. ** | | | | | 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 | page_ref(pPg); return SQLITE_OK; } /* ** Acquire a page. ** ** A read lock on the disk file is obtained when the first page acquired. ** This read lock is dropped when the last page is released. ** ** A _get works for any page number greater than 0. If the database ** file is smaller than the requested page, then no actual disk ** read occurs and the memory image of the page is initialized to ** all zeros. The extra data appended to a page is always initialized ** to zeros the first time a page is loaded into memory. ** ** The acquisition might fail for several reasons. In all cases, ** an appropriate error code is returned and *ppPage is set to NULL. ** ** See also sqlitepager_lookup(). Both this routine and _lookup() attempt ** to find a page in the in-memory cache first. If the page is not already ** in memory, this routine goes to disk to read it in whereas _lookup() ** just returns 0. This routine acquires a read-lock the first time it ** has to go to disk, and could also playback an old journal if necessary. ** Since _lookup() never goes to disk, it never has to deal with locks ** or journal files. */ int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage){ PgHdr *pPg; |
︙ | ︙ | |||
825 826 827 828 829 830 831 | ** Acquire a page if it is already in the in-memory cache. Do ** not read the page from disk. Return a pointer to the page, ** or 0 if the page is not in cache. ** ** See also sqlitepager_get(). The difference between this routine ** and sqlitepager_get() is that _get() will go to the disk and read ** in the page if the page is not already in cache. This routine | | | | 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 | ** Acquire a page if it is already in the in-memory cache. Do ** not read the page from disk. Return a pointer to the page, ** or 0 if the page is not in cache. ** ** See also sqlitepager_get(). The difference between this routine ** and sqlitepager_get() is that _get() will go to the disk and read ** in the page if the page is not already in cache. This routine ** returns NULL if the page is not in cache or if a disk I/O error ** has ever happened. */ void *sqlitepager_lookup(Pager *pPager, Pgno pgno){ PgHdr *pPg; /* Make sure we have not hit any critical errors. */ if( pPager==0 || pgno==0 ){ |
︙ | ︙ | |||
920 921 922 923 924 925 926 927 928 929 930 931 932 933 | int sqlitepager_write(void *pData){ PgHdr *pPg = DATA_TO_PGHDR(pData); Pager *pPager = pPg->pPager; int rc = SQLITE_OK; if( pPager->errMask ){ return pager_errcode(pPager); } pPg->dirty = 1; if( pPg->inJournal ){ return SQLITE_OK; } assert( pPager->state!=SQLITE_UNLOCK ); if( pPager->state==SQLITE_READLOCK ){ assert( pPager->aInJournal==0 ); pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 ); | > > > | 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 | int sqlitepager_write(void *pData){ PgHdr *pPg = DATA_TO_PGHDR(pData); Pager *pPager = pPg->pPager; int rc = SQLITE_OK; if( pPager->errMask ){ return pager_errcode(pPager); } if( pPager->readOnly ){ return SQLITE_PERM; } pPg->dirty = 1; if( pPg->inJournal ){ return SQLITE_OK; } assert( pPager->state!=SQLITE_UNLOCK ); if( pPager->state==SQLITE_READLOCK ){ assert( pPager->aInJournal==0 ); pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 ); |
︙ | ︙ | |||
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 | if( rc!=SQLITE_OK ){ rc = SQLITE_CORRUPT; pPager->errMask |= PAGER_ERR_CORRUPT; } pPager->dbSize = -1; return rc; }; /* ** This routine is used for testing and analysis only. */ int *sqlitepager_stats(Pager *pPager){ static int a[9]; a[0] = pPager->nRef; | > > > > > > > > | 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 | if( rc!=SQLITE_OK ){ rc = SQLITE_CORRUPT; pPager->errMask |= PAGER_ERR_CORRUPT; } pPager->dbSize = -1; return rc; }; /* ** Return TRUE if the database file is opened read-only. Return FALSE ** if the database is (in theory) writable. */ int sqlitepager_isreadonly(Pager *pPager){ return pPager->readonly; } /* ** This routine is used for testing and analysis only. */ int *sqlitepager_stats(Pager *pPager){ static int a[9]; a[0] = pPager->nRef; |
︙ | ︙ |
Changes to src/pager.h.
︙ | ︙ | |||
21 22 23 24 25 26 27 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. ** | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. ** ** @(#) $Id: pager.h,v 1.8 2001/09/13 13:46:57 drh Exp $ */ /* ** The size of one page */ #define SQLITE_PAGE_SIZE 1024 |
︙ | ︙ | |||
53 54 55 56 57 58 59 60 61 62 63 64 65 | int sqlitepager_unref(void*); Pgno sqlitepager_pagenumber(void*); int sqlitepager_write(void*); int sqlitepager_iswriteable(void*); int sqlitepager_pagecount(Pager*); int sqlitepager_commit(Pager*); int sqlitepager_rollback(Pager*); int *sqlitepager_stats(Pager*); #ifdef SQLITE_TEST void sqlitepager_refdump(Pager*); int pager_refinfo_enable; #endif | > | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | int sqlitepager_unref(void*); Pgno sqlitepager_pagenumber(void*); int sqlitepager_write(void*); int sqlitepager_iswriteable(void*); int sqlitepager_pagecount(Pager*); int sqlitepager_commit(Pager*); int sqlitepager_rollback(Pager*); int sqlitepager_isreadonly(Pager*); int *sqlitepager_stats(Pager*); #ifdef SQLITE_TEST void sqlitepager_refdump(Pager*); int pager_refinfo_enable; #endif |
Changes to src/select.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements. ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements. ** ** $Id: select.c,v 1.32 2001/09/13 13:46:57 drh Exp $ */ #include "sqliteInt.h" /* ** Allocate a new Select structure and return a pointer to that ** structure. */ |
︙ | ︙ | |||
511 512 513 514 515 516 517 | */ unionTab = pParse->nTab++; if( p->pOrderBy && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){ return 1; } if( p->op!=TK_ALL ){ | | | | 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | */ unionTab = pParse->nTab++; if( p->pOrderBy && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){ return 1; } if( p->op!=TK_ALL ){ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0, 0, 0); sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1, 0, 0); }else{ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0, 0, 0); } } /* Code the SELECT statements to our left */ rc = sqliteSelect(pParse, pPrior, priorOp, unionTab); if( rc ) return rc; |
︙ | ︙ | |||
572 573 574 575 576 577 578 | ** by allocating the tables we will need. */ tab1 = pParse->nTab++; tab2 = pParse->nTab++; if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){ return 1; } | | | | 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 | ** by allocating the tables we will need. */ tab1 = pParse->nTab++; tab2 = pParse->nTab++; if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){ return 1; } sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 0, 0, 0); sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1, 0, 0); /* Code the SELECTs to our left into temporary table "tab1". */ rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1); if( rc ) return rc; /* Code the current SELECT into temporary table "tab2" */ sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 0, 0, 0); sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1, 0, 0); p->pPrior = 0; rc = sqliteSelect(pParse, p, SRT_Union, tab2); p->pPrior = pPrior; if( rc ) return rc; /* Generate code to take the intersection of the two temporary |
︙ | ︙ | |||
873 874 875 876 877 878 879 | sqliteVdbeAddOp(v, OP_Null, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_MemStore, iParm, 0, 0, 0); } /* Begin the database scan */ if( isDistinct ){ | | | 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 | sqliteVdbeAddOp(v, OP_Null, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_MemStore, iParm, 0, 0, 0); } /* Begin the database scan */ if( isDistinct ){ sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 0, 0, 0); } pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0); if( pWInfo==0 ) return 1; /* Use the standard inner loop if we are not dealing with ** aggregates */ |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains code to implement the "sqlite" command line ** utility for accessing SQLite databases. ** | | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains code to implement the "sqlite" command line ** utility for accessing SQLite databases. ** ** $Id: shell.c,v 1.32 2001/09/13 13:46:57 drh Exp $ */ #include <stdlib.h> #include <string.h> #include <stdio.h> #include "sqlite.h" #include <unistd.h> #include <ctype.h> #ifdef OS_UNIX # include <signal.h> #endif #if defined(HAVE_READLINE) && HAVE_READLINE==1 # include <readline/readline.h> # include <readline/history.h> #else # define readline(p) getline(p,stdin) # define add_history(X) #endif /* ** The following is the open SQLite database. We make a pointer ** to this database a static variable so that it can be accessed ** by the SIGINT handler to interrupt database processing. |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite library ** presents to client programs. ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite library ** presents to client programs. ** ** @(#) $Id: sqlite.h.in,v 1.14 2001/09/13 13:46:57 drh Exp $ */ #ifndef _SQLITE_H_ #define _SQLITE_H_ #include <stdarg.h> /* Needed for the definition of va_list */ /* ** The version of the SQLite library. |
︙ | ︙ | |||
155 156 157 158 159 160 161 162 163 164 165 166 167 168 | #define SQLITE_INTERRUPT 8 /* Operation terminated by sqlite_interrupt() */ #define SQLITE_IOERR 9 /* Disk full or other I/O error */ #define SQLITE_CORRUPT 10 /* The database disk image is malformed */ #define SQLITE_NOTFOUND 11 /* Table or record not found */ #define SQLITE_FULL 12 /* Insertion failed because database is full */ #define SQLITE_CANTOPEN 13 /* Unable to open the database file */ #define SQLITE_PROTOCOL 14 /* Database lock protocol error */ /* This function causes any pending database operation to abort and ** return at its earliest opportunity. This routine is typically ** called in response to a user action such as pressing "Cancel" ** or Ctrl-C where the user wants a long query operation to halt ** immediately. */ | > | 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | #define SQLITE_INTERRUPT 8 /* Operation terminated by sqlite_interrupt() */ #define SQLITE_IOERR 9 /* Disk full or other I/O error */ #define SQLITE_CORRUPT 10 /* The database disk image is malformed */ #define SQLITE_NOTFOUND 11 /* Table or record not found */ #define SQLITE_FULL 12 /* Insertion failed because database is full */ #define SQLITE_CANTOPEN 13 /* Unable to open the database file */ #define SQLITE_PROTOCOL 14 /* Database lock protocol error */ #define SQLITE_EMPTY 15 /* Database table is empty */ /* This function causes any pending database operation to abort and ** return at its earliest opportunity. This routine is typically ** called in response to a user action such as pressing "Cancel" ** or Ctrl-C where the user wants a long query operation to halt ** immediately. */ |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
19 20 21 22 23 24 25 | ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | < | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.43 2001/09/13 13:46:57 drh Exp $ */ #include "sqlite.h" #include "vdbe.h" #include "parse.h" #ifndef DISABLE_GDBM #include <gdbm.h> #endif #include <stdio.h> #include <stdlib.h> |
︙ | ︙ | |||
132 133 134 135 136 137 138 | typedef struct Select Select; typedef struct AggExpr AggExpr; /* ** Each database is an instance of the following structure */ struct sqlite { | | | | | | | | | | | | > | 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | typedef struct Select Select; typedef struct AggExpr AggExpr; /* ** Each database is an instance of the following structure */ struct sqlite { Btree *pBe; /* The B*Tree backend */ int flags; /* Miscellanous flags. See below */ int file_format; /* What file format version is this database? */ int nTable; /* Number of tables in the database */ void *pBusyArg; /* 1st Argument to the busy callback */ int (*xBusyCallback)(void *,const char*,int); /* The busy callback */ Table *apTblHash[N_HASH]; /* All tables of the database */ Index *apIdxHash[N_HASH]; /* All indices of the database */ }; /* ** Possible values for the sqlite.flags. */ #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ #define SQLITE_Initialized 0x00000002 /* True after initialization */ #define SQLITE_Interrupt 0x00000004 /* Cancel current operation */ #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ /* ** Current file format version */ #define SQLITE_FileFormat 2 /* |
︙ | ︙ | |||
174 175 176 177 178 179 180 181 | ** an instance of the following structure. */ struct Table { char *zName; /* Name of the table */ Table *pHash; /* Next table with same hash on zName */ int nCol; /* Number of columns in this table */ Column *aCol; /* Information about each column */ int readOnly; /* True if this table should not be written by the user */ | > > | > | 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | ** an instance of the following structure. */ struct Table { char *zName; /* Name of the table */ Table *pHash; /* Next table with same hash on zName */ int nCol; /* Number of columns in this table */ Column *aCol; /* Information about each column */ Index *pIndex; /* List of SQL indexes on this table. */ int tnum; /* Page containing root for this table */ int readOnly; /* True if this table should not be written by the user */ int isCommit; /* True if creation of this table has been committed */ int isDelete; /* True if deletion of this table has not been comitted */ }; /* ** Each SQL index is represented in memory by an ** instance of the following structure. ** ** The columns of the table that are to be indexed are described |
︙ | ︙ | |||
204 205 206 207 208 209 210 211 212 213 214 215 216 217 | struct Index { char *zName; /* Name of this index */ Index *pHash; /* Next index with the same hash on zName */ int nColumn; /* Number of columns in the table used by this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ Table *pTable; /* The SQL table being indexed */ int isUnique; /* True if keys must all be unique */ Index *pNext; /* The next index associated with the same table */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. */ | > > | 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | struct Index { char *zName; /* Name of this index */ Index *pHash; /* Next index with the same hash on zName */ int nColumn; /* Number of columns in the table used by this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ Table *pTable; /* The SQL table being indexed */ int isUnique; /* True if keys must all be unique */ int isCommit; /* True if creation of this index has been committed */ int isDelete; /* True if deletion of this index has not been comitted */ Index *pNext; /* The next index associated with the same table */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. */ |
︙ | ︙ | |||
338 339 340 341 342 343 344 345 346 347 348 349 350 351 | }; /* ** An SQL parser context */ struct Parse { sqlite *db; /* The main database structure */ int rc; /* Return code from execution */ sqlite_callback xCallback; /* The callback function */ void *pArg; /* First argument to the callback function */ char *zErrMsg; /* An error message */ Token sErrToken; /* The token at which the error occurred */ Token sFirstToken; /* The first token parsed */ Token sLastToken; /* The last token parsed */ | > | 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | }; /* ** An SQL parser context */ struct Parse { sqlite *db; /* The main database structure */ Btree *pBe; /* The database backend */ int rc; /* Return code from execution */ sqlite_callback xCallback; /* The callback function */ void *pArg; /* First argument to the callback function */ char *zErrMsg; /* An error message */ Token sErrToken; /* The token at which the error occurred */ Token sFirstToken; /* The first token parsed */ Token sLastToken; /* The last token parsed */ |
︙ | ︙ | |||
394 395 396 397 398 399 400 401 402 403 404 405 406 407 | void sqliteExec(Parse*); Expr *sqliteExpr(int, Expr*, Expr*, Token*); void sqliteExprSpan(Expr*,Token*,Token*); Expr *sqliteExprFunction(ExprList*, Token*); void sqliteExprDelete(Expr*); ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*); void sqliteExprListDelete(ExprList*); void sqliteStartTable(Parse*,Token*,Token*); void sqliteAddColumn(Parse*,Token*); void sqliteAddDefaultValue(Parse*,Token*,int); void sqliteEndTable(Parse*,Token*); void sqliteDropTable(Parse*, Token*); void sqliteDeleteTable(sqlite*, Table*); void sqliteInsert(Parse*, Token*, ExprList*, Select*, IdList*); | > > | 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | void sqliteExec(Parse*); Expr *sqliteExpr(int, Expr*, Expr*, Token*); void sqliteExprSpan(Expr*,Token*,Token*); Expr *sqliteExprFunction(ExprList*, Token*); void sqliteExprDelete(Expr*); ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*); void sqliteExprListDelete(ExprList*); void sqliteCommitInternalChanges(sqlite*); void sqliteRollbackInternalChanges(sqlite*); void sqliteStartTable(Parse*,Token*,Token*); void sqliteAddColumn(Parse*,Token*); void sqliteAddDefaultValue(Parse*,Token*,int); void sqliteEndTable(Parse*,Token*); void sqliteDropTable(Parse*, Token*); void sqliteDeleteTable(sqlite*, Table*); void sqliteInsert(Parse*, Token*, ExprList*, Select*, IdList*); |
︙ | ︙ | |||
438 439 440 441 442 443 444 | int sqliteRandomInteger(void); void sqliteRandomName(char*,char*); char *sqliteDbbeNameToFile(const char*,const char*,const char*); void sqliteBeginTransaction(Parse*); void sqliteCommitTransaction(Parse*); void sqliteRollbackTransaction(Parse*); char *sqlite_mprintf(const char *, ...); | > | 446 447 448 449 450 451 452 453 | int sqliteRandomInteger(void); void sqliteRandomName(char*,char*); char *sqliteDbbeNameToFile(const char*,const char*,const char*); void sqliteBeginTransaction(Parse*); void sqliteCommitTransaction(Parse*); void sqliteRollbackTransaction(Parse*); char *sqlite_mprintf(const char *, ...); const char *sqliteErrStr(int); |
Changes to src/update.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** ** $Id: update.c,v 1.12 2001/09/13 13:46:57 drh Exp $ */ #include "sqliteInt.h" /* ** Process an UPDATE statement. */ void sqliteUpdate( |
︙ | ︙ | |||
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | if( i<pIdx->nColumn ) apIdx[nIdx++] = pIdx; } /* Begin generating code. */ v = sqliteGetVdbe(pParse); if( v==0 ) goto update_cleanup; /* Begin the database scan */ sqliteVdbeAddOp(v, OP_ListOpen, 0, 0, 0, 0); pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1); if( pWInfo==0 ) goto update_cleanup; /* Remember the index of every item to be updated. */ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0, 0, 0); /* End the database scan loop. */ sqliteWhereEnd(pWInfo); /* Rewind the list of records that need to be updated and ** open every index that needs updating. */ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0, 0, 0); base = pParse->nTab; | > > > | | | | | | | > > > | 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | if( i<pIdx->nColumn ) apIdx[nIdx++] = pIdx; } /* Begin generating code. */ v = sqliteGetVdbe(pParse); if( v==0 ) goto update_cleanup; if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Transaction, 0, 0, 0, 0); } /* Begin the database scan */ sqliteVdbeAddOp(v, OP_ListOpen, 0, 0, 0, 0); pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1); if( pWInfo==0 ) goto update_cleanup; /* Remember the index of every item to be updated. */ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0, 0, 0); /* End the database scan loop. */ sqliteWhereEnd(pWInfo); /* Rewind the list of records that need to be updated and ** open every index that needs updating. */ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0, 0, 0); base = pParse->nTab; sqliteVdbeAddOp(v, OP_Open, base, pTab->tnum, 0, 0); for(i=0; i<nIdx; i++){ sqliteVdbeAddOp(v, OP_Open, base+i+1, apIdx[i]->tnum, 0, 0); } /* Loop over every record that needs updating. We have to load ** the old data for each record to be updated because some columns ** might not change and we will need to copy the old value. ** Also, the old data is needed to delete the old index entires. */ end = sqliteVdbeMakeLabel(v); addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end, 0, 0); sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_MoveTo, base, 0, 0, 0); /* Delete the old indices for the current record. */ for(i=0; i<nIdx; i++){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); pIdx = apIdx[i]; for(j=0; j<pIdx->nColumn; j++){ sqliteVdbeAddOp(v, OP_Column, base, pIdx->aiColumn[j], 0, 0); } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_DeleteIdx, base+i+1, 0, 0, 0); } /* Compute a completely new data for this record. */ for(i=0; i<pTab->nCol; i++){ j = aXRef[i]; if( j<0 ){ sqliteVdbeAddOp(v, OP_Column, base, i, 0, 0); }else{ sqliteExprCode(pParse, pChanges->a[j].pExpr); } } /* Insert new index entries that correspond to the new data */ for(i=0; i<nIdx; i++){ sqliteVdbeAddOp(v, OP_Dup, pTab->nCol, 0, 0, 0); /* The KEY */ pIdx = apIdx[i]; for(j=0; j<pIdx->nColumn; j++){ sqliteVdbeAddOp(v, OP_Dup, j+pTab->nCol-pIdx->aiColumn[j], 0, 0, 0); } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, base+i+1, 0, 0, 0); } /* Write the new data back into the database. */ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0, 0, 0); sqliteVdbeAddOp(v, OP_Put, base, 0, 0, 0); /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ sqliteVdbeAddOp(v, OP_Goto, 0, addr, 0, 0); sqliteVdbeAddOp(v, OP_ListClose, 0, 0, 0, end); if( (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_Commit, 0, 0, 0, 0); } update_cleanup: sqliteFree(apIdx); sqliteFree(aXRef); sqliteIdListDelete(pTabList); sqliteExprListDelete(pChanges); sqliteExprDelete(pWhere); return; } |
Changes to src/util.c.
︙ | ︙ | |||
22 23 24 25 26 27 28 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** | | | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** ** $Id: util.c,v 1.22 2001/09/13 13:46:57 drh Exp $ */ #include "sqliteInt.h" #include <stdarg.h> #include <ctype.h> /* ** If malloc() ever fails, this global variable gets set to 1. |
︙ | ︙ | |||
968 969 970 971 972 973 974 | zString++; break; } } } return *zString==0; } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 | zString++; break; } } } return *zString==0; } /* ** Return a static string that describes the kind of error specified in the ** argument. */ const char *sqliteErrStr(int rc){ char *z = 0; switch( rc ){ case SQLITE_OK: z = "not an error"; break; case SQLITE_ERROR: z = "SQL logic error or missing database"; break; case SQLITE_INTERNAL: z = "internal SQLite implementation flaw"; break; case SQLITE_PERM: z = "access permission denied"; break; case SQLITE_ABORT: z = "callback requested query abort"; break; case SQLITE_BUSY: z = "database in use by another process"; break; case SQLITE_NOMEM: z = "out of memory"; break; case SQLITE_READONLY: z = "attempt to write a readonly database"; break; case SQLITE_INTERRUPT: z = "interrupted"; break; case SQLITE_IOERR: z = "disk I/O error"; break; case SQLITE_CORRUPT: z = "database disk image is malformed"; break; case SQLITE_NOTFOUND: z = "table or record not found"; break; case SQLITE_FULL: z = "database is full"; break; case SQLITE_CANTOPEN: z = "unable to open database file"; break; case SQLITE_PROTOCOL: z = "database locking protocol failure"; break; case SQLITE_EMPTY: z = "table contains no data"; default: } return z; } |
Changes to src/vdbe.c.
︙ | ︙ | |||
37 38 39 40 41 42 43 | ** inplicit conversion from one type to the other occurs as necessary. ** ** Most of the code in this file is taken up by the sqliteVdbeExec() ** function which does the work of interpreting a VDBE program. ** But other routines are also provided to help in building up ** a program instruction by instruction. ** | | > > > > > | < | | | > > > > > | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | ** inplicit conversion from one type to the other occurs as necessary. ** ** Most of the code in this file is taken up by the sqliteVdbeExec() ** function which does the work of interpreting a VDBE program. ** But other routines are also provided to help in building up ** a program instruction by instruction. ** ** $Id: vdbe.c,v 1.60 2001/09/13 13:46:57 drh Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** SQL is translated into a sequence of instructions to be ** executed by a virtual machine. Each instruction is an instance ** of the following structure. */ typedef struct VdbeOp Op; /* ** Boolean values */ typedef unsigned char Bool; /* ** A cursor is a pointer into a database file. The database file ** can represent either an SQL table or an SQL index. Each file is ** a bag of key/data pairs. The cursor can loop over all key/data ** pairs (in an arbitrary order) or it can retrieve a particular ** key/data pair given a copy of the key. ** ** Every cursor that the virtual machine has open is represented by an ** instance of the following structure. */ struct Cursor { BtCursor *pCursor; /* The cursor structure of the backend */ int lastRecno; /* Last recno from a Next or NextIdx operation */ Bool recnoIsValid; /* True if lastRecno is valid */ Bool keyAsData; /* The OP_Column command works on key instead of data */ Bool atFirst; /* True if pointing to first entry */ Btree *pBt; /* Separate file holding temporary table */ char *zKey; /* Key used in BeginIdx and NextIdx operators */ int nKey; /* Number of bytes in zKey[] */ char *zBuf; /* Buffer space used to hold a copy of zKey[] */ }; typedef struct Cursor Cursor; /* ** A sorter builds a list of elements to be sorted. Each element of ** the list is an instance of the following structure. */ |
︙ | ︙ | |||
210 211 212 213 214 215 216 217 218 219 220 221 222 223 | char *zLine; /* A single line from the input file */ int nLineAlloc; /* Number of spaces allocated for zLine */ int nMem; /* Number of memory locations currently allocated */ Mem *aMem; /* The memory locations */ Agg agg; /* Aggregate information */ int nSet; /* Number of sets allocated */ Set *aSet; /* An array of sets */ int nFetch; /* Number of OP_Fetch instructions executed */ }; /* ** Create a new virtual database engine. */ Vdbe *sqliteVdbeCreate(sqlite *db){ | > > | 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | char *zLine; /* A single line from the input file */ int nLineAlloc; /* Number of spaces allocated for zLine */ int nMem; /* Number of memory locations currently allocated */ Mem *aMem; /* The memory locations */ Agg agg; /* Aggregate information */ int nSet; /* Number of sets allocated */ Set *aSet; /* An array of sets */ int *pTableRoot; /* Write root page no. for new tables to this addr */ int *pIndexRoot; /* Write root page no. for new indices to this addr */ int nFetch; /* Number of OP_Fetch instructions executed */ }; /* ** Create a new virtual database engine. */ Vdbe *sqliteVdbeCreate(sqlite *db){ |
︙ | ︙ | |||
231 232 233 234 235 236 237 238 239 240 241 242 243 244 | /* ** Turn tracing on or off */ void sqliteVdbeTrace(Vdbe *p, FILE *trace){ p->trace = trace; } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** | > > > > > > > > > > > > > > > > > > | 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | /* ** Turn tracing on or off */ void sqliteVdbeTrace(Vdbe *p, FILE *trace){ p->trace = trace; } /* ** Cause the next OP_CreateTable or OP_CreateIndex instruction that executes ** to write the page number of the root page for the new table or index it ** creates into the memory location *pAddr. ** ** The pointer to the place to write the page number is cleared after ** the OP_Create* statement. If OP_Create* is executed and the pointer ** is NULL, an error results. Hence the address can only be used once. ** If the root address fields are set but OP_Create* operations never ** execute, that too is an error. */ void sqliteVdbeTableRootAddr(Vdbe *p, int *pAddr){ p->pTableRoot = pAddr; } void sqliteVdbeIndexRootAddr(Vdbe *p, int *pAddr){ p->pIndexRoot = pAddr; } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** |
︙ | ︙ | |||
337 338 339 340 341 342 343 344 345 346 347 348 349 350 | int p2 = aOp[i].p2; if( p2<0 ) p2 = addr + ADDR(p2); sqliteVdbeAddOp(p, aOp[i].opcode, aOp[i].p1, p2, aOp[i].p3, 0); } } return addr; } /* ** Change the value of the P3 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqliteVdbeAddOpList but we want to make a ** few minor changes to the program. */ | > > > > > > > > > > > > | 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 | int p2 = aOp[i].p2; if( p2<0 ) p2 = addr + ADDR(p2); sqliteVdbeAddOp(p, aOp[i].opcode, aOp[i].p1, p2, aOp[i].p3, 0); } } return addr; } /* ** Change the value of the P1 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqliteVdbeAddOpList but we want to make a ** few minor changes to the program. */ void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){ if( p && addr>=0 && p->nOp>addr ){ p->aOp[addr].p1 = val; } } /* ** Change the value of the P3 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqliteVdbeAddOpList but we want to make a ** few minor changes to the program. */ |
︙ | ︙ | |||
716 717 718 719 720 721 722 | p = pNext; } } /* ** Clean up the VM after execution. ** | | | > | | > > > > > > > > | 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 | p = pNext; } } /* ** Clean up the VM after execution. ** ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. */ static void Cleanup(Vdbe *p){ int i; PopStack(p, p->tos+1); sqliteFree(p->azColName); p->azColName = 0; for(i=0; i<p->nCursor; i++){ Cursor *pCx = &p->aCsr[i]; if( pCx->pCursor ){ sqliteBtreeCloseCursor(pCx->pCursor); pCx->pCursor = 0; } if( pCx->zKey ){ sqliteFree(pCx->zKey); pCx->zKey = 0; } if( pCx->pBt ){ sqliteBtreeClose(pCx->pBt); pCx->pBt = 0; } } sqliteFree(p->aCsr); p->aCsr = 0; p->nCursor = 0; for(i=0; i<p->nMem; i++){ if( p->aMem[i].s.flags & STK_Dyn ){ |
︙ | ︙ | |||
781 782 783 784 785 786 787 788 789 790 791 792 793 794 | AggReset(&p->agg); for(i=0; i<p->nSet; i++){ SetClear(&p->aSet[i]); } sqliteFree(p->aSet); p->aSet = 0; p->nSet = 0; } /* ** Delete an entire VDBE. */ void sqliteVdbeDelete(Vdbe *p){ int i; | > > | 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 | AggReset(&p->agg); for(i=0; i<p->nSet; i++){ SetClear(&p->aSet[i]); } sqliteFree(p->aSet); p->aSet = 0; p->nSet = 0; p->pTableRoot = 0; p->pIndexRoot = 0; } /* ** Delete an entire VDBE. */ void sqliteVdbeDelete(Vdbe *p){ int i; |
︙ | ︙ | |||
814 815 816 817 818 819 820 | ** ** If any of the numeric OP_ values for opcodes defined in sqliteVdbe.h ** change, be sure to change this array to match. You can use the ** "opNames.awk" awk script which is part of the source tree to regenerate ** this array, then copy and paste it into this file, if you want. */ static char *zOpName[] = { 0, | > | | | | | | | | | | | | | | | | | | | | | | | > | 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 | ** ** If any of the numeric OP_ values for opcodes defined in sqliteVdbe.h ** change, be sure to change this array to match. You can use the ** "opNames.awk" awk script which is part of the source tree to regenerate ** this array, then copy and paste it into this file, if you want. */ static char *zOpName[] = { 0, "Transaction", "Commit", "Rollback", "Open", "OpenTemp", "Close", "MoveTo", "Fcnt", "NewRecno", "Put", "Distinct", "Found", "NotFound", "Delete", "Column", "KeyAsData", "Recno", "FullKey", "Rewind", "Next", "Destroy", "CreateIndex", "CreateTable", "Reorganize", "BeginIdx", "NextIdx", "PutIdx", "DeleteIdx", "MemLoad", "MemStore", "ListOpen", "ListWrite", "ListRewind", "ListRead", "ListClose", "SortOpen", "SortPut", "SortMakeRec", "SortMakeKey", "Sort", "SortNext", "SortKey", "SortCallback", "SortClose", "FileOpen", "FileRead", "FileField", "FileClose", "AggReset", "AggFocus", "AggIncr", "AggNext", "AggSet", "AggGet", "SetInsert", "SetFound", "SetNotFound", "SetClear", "MakeRecord", "MakeKey", "Goto", "If", "Halt", "ColumnCount", "ColumnName", "Callback", "Integer", "String", "Null", "Pop", "Dup", "Pull", "Add", "AddImm", "Subtract", "Multiply", "Divide", "Min", "Max", "Like", "Glob", "Eq", "Ne", "Lt", "Le", "Gt", "Ge", "IsNull", "NotNull", "Negative", "And", "Or", "Not", "Concat", "Noop", "Strlen", "Substr", }; /* ** Given the name of an opcode, return its number. Return 0 if ** there is no match. ** ** This routine is used for testing and debugging. |
︙ | ︙ | |||
981 982 983 984 985 986 987 | void *pBusyArg, /* 1st argument to the busy callback */ int (*xBusy)(void*,const char*,int) /* Called when a file is busy */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc; /* Value to return */ Dbbe *pBe = p->pBe; /* The backend driver */ | < > | | | | 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 | void *pBusyArg, /* 1st argument to the busy callback */ int (*xBusy)(void*,const char*,int) /* Called when a file is busy */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc; /* Value to return */ Dbbe *pBe = p->pBe; /* The backend driver */ sqlite *db = p->db; /* The database */ int rollbackOnError = 0; /* If TRUE, rollback if the script fails. char **zStack; /* Text stack */ Stack *aStack; /* Additional stack information */ char zBuf[100]; /* Space to sprintf() an integer */ /* No instruction ever pushes more than a single element onto the ** stack. And the stack never grows on successive executions of the ** same loop. So the total number of instructions is an upper bound ** on the maximum stack depth required. ** |
︙ | ︙ | |||
1031 1032 1033 1034 1035 1036 1037 | fprintf(p->trace,"%4d %-12s %4d %4d %s\n", pc, zOpName[pOp->opcode], pOp->p1, pOp->p2, pOp->p3 ? pOp->p3 : ""); } #endif switch( pOp->opcode ){ | > > > > > > > > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | < < < < | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > | < | > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > | > | > | > | > > > | > | | < < > > > | > > > > > > > > | > | > > > > | > > > > > > | | | < | > | > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | > > | < > | < | | | > | | | | | | | | | | < < | < < < < | < < < < | < < < | | < < | < < < | | < | < < < < | | | | | | | | | | > | | > > > | > > > > > | | | | | | > | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | > | | | | | | | | | | | | | > | | > | | | | | | | > > > > | > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < < < | | | > | > | | | | | | | > > > > > > | > > > > > > | > > > > > > > > | | < > | < | > | > > > | > | < | | | > > | | > > > | < < < < | > | > | > > > > > > > | | < | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | > > > > > > > > | | | | | | | | | | | | | > > | > > | | | | | | | | | | | > > | | > > > | | | | | | > > | | | | | | > | | > > > > > > > | | | | > > | | | > > > > > > | > | | | | | | | | | | | | | | | | | > > | | | > > > > > > > > | > > | > | | | < < < | | | | | | | | < | < | | | | < | | | < < | | < | | | | | | | < < | | | | < | | | | < | > > | > | < | > | < | | < < > | | | | | | | | | > | | < > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > | 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 | fprintf(p->trace,"%4d %-12s %4d %4d %s\n", pc, zOpName[pOp->opcode], pOp->p1, pOp->p2, pOp->p3 ? pOp->p3 : ""); } #endif switch( pOp->opcode ){ /***************************************************************************** ** What follows is a massive switch statement where each case implements a ** separate instruction in the virtual machine. If we follow the usual ** indentation conventions, each case should be indented by 6 spaces. But ** that is a lot of wasted space on the left margin. So the code within ** the switch statement will break with convention and be flush-left. Another ** big comment (similar to this one) will mark the point in the code where ** we transition back to normal indentation. *****************************************************************************/ /* Opcode: Goto P2 * * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. */ case OP_Goto: { pc = pOp->p2 - 1; break; } /* Opcode: Halt * * * ** ** Exit immediately. All open DBs, Lists, Sorts, etc are closed ** automatically. */ case OP_Halt: { pc = p->nOp-1; break; } /* Opcode: Integer P1 * * ** ** The integer value P1 is pushed onto the stack. */ case OP_Integer: { int i = ++p->tos; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) aStack[i].i = pOp->p1; aStack[i].flags = STK_Int; break; } /* Opcode: String * * P3 ** ** The string value P3 is pushed onto the stack. */ case OP_String: { int i = ++p->tos; char *z; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) z = pOp->p3; if( z==0 ) z = ""; zStack[i] = z; aStack[i].n = strlen(z) + 1; aStack[i].flags = STK_Str; break; } /* Opcode: Null * * * ** ** Push a NULL value onto the stack. */ case OP_Null: { int i = ++p->tos; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) zStack[i] = 0; aStack[i].flags = STK_Null; break; } /* Opcode: Pop P1 * * ** ** P1 elements are popped off of the top of stack and discarded. */ case OP_Pop: { PopStack(p, pOp->p1); break; } /* Opcode: Dup P1 * * ** ** A copy of the P1-th element of the stack ** is made and pushed onto the top of the stack. ** The top of the stack is element 0. So the ** instruction "Dup 0 0 0" will make a copy of the ** top of the stack. */ case OP_Dup: { int i = p->tos - pOp->p1; int j = ++p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) aStack[j] = aStack[i]; if( aStack[i].flags & STK_Dyn ){ zStack[j] = sqliteMalloc( aStack[j].n ); if( zStack[j]==0 ) goto no_mem; memcpy(zStack[j], zStack[i], aStack[j].n); }else{ zStack[j] = zStack[i]; } break; } /* Opcode: Pull P1 * * ** ** The P1-th element is removed from its current location on ** the stack and pushed back on top of the stack. The ** top of the stack is element 0, so "Pull 0 0 0" is ** a no-op. */ case OP_Pull: { int from = p->tos - pOp->p1; int to = p->tos; int i; Stack ts; char *tz; VERIFY( if( from<0 ) goto not_enough_stack; ) ts = aStack[from]; tz = zStack[from]; for(i=from; i<to; i++){ aStack[i] = aStack[i+1]; zStack[i] = zStack[i+1]; } aStack[to] = ts; zStack[to] = tz; break; } /* Opcode: ColumnCount P1 * * ** ** Specify the number of column values that will appear in the ** array passed as the 4th parameter to the callback. No checking ** is done. If this value is wrong, a coredump can result. */ case OP_ColumnCount: { p->azColName = sqliteRealloc(p->azColName, (pOp->p1+1)*sizeof(char*)); if( p->azColName==0 ) goto no_mem; p->azColName[pOp->p1] = 0; break; } /* Opcode: ColumnName P1 * P3 ** ** P3 becomes the P1-th column name (first is 0). An array of pointers ** to all column names is passed as the 4th parameter to the callback. ** The ColumnCount opcode must be executed first to allocate space to ** hold the column names. Failure to do this will likely result in ** a coredump. */ case OP_ColumnName: { p->azColName[pOp->p1] = pOp->p3 ? pOp->p3 : ""; break; } /* Opcode: Callback P1 * * ** ** Pop P1 values off the stack and form them into an array. Then ** invoke the callback function using the newly formed array as the ** 3rd parameter. */ case OP_Callback: { int i = p->tos - pOp->p1 + 1; int j; VERIFY( if( i<0 ) goto not_enough_stack; ) VERIFY( if( NeedStack(p, p->tos+2) ) goto no_mem; ) for(j=i; j<=p->tos; j++){ if( (aStack[j].flags & STK_Null)==0 ){ if( Stringify(p, j) ) goto no_mem; } } zStack[p->tos+1] = 0; if( xCallback!=0 ){ if( xCallback(pArg, pOp->p1, &zStack[i], p->azColName)!=0 ){ rc = SQLITE_ABORT; } } PopStack(p, pOp->p1); break; } /* Opcode: Concat P1 P2 P3 ** ** Look at the first P1 elements of the stack. Append them all ** together with the lowest element first. Use P3 as a separator. ** Put the result on the top of the stack. The original P1 elements ** are popped from the stack if P2==0 and retained if P2==1. ** ** If P3 is NULL, then use no separator. When P1==1, this routine ** makes a copy of the top stack element into memory obtained ** from sqliteMalloc(). */ case OP_Concat: { char *zNew; int nByte; int nField; int i, j; char *zSep; int nSep; nField = pOp->p1; zSep = pOp->p3; if( zSep==0 ) zSep = ""; nSep = strlen(zSep); VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 1 - nSep; for(i=p->tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ nByte += nSep; }else{ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n - 1 + nSep; } } zNew = sqliteMalloc( nByte ); if( zNew==0 ) goto no_mem; j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNew[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; } if( nSep>0 && i<p->tos ){ memcpy(&zNew[j], zSep, nSep); j += nSep; } } zNew[j] = 0; if( pOp->p2==0 ) PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNew; break; } /* Opcode: Add * * * ** ** Pop the top two elements from the stack, add them together, ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the addition. */ /* Opcode: Multiply * * * ** ** Pop the top two elements from the stack, multiply them together, ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the multiplication. */ /* Opcode: Subtract * * * ** ** Pop the top two elements from the stack, subtract the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the subtraction. */ /* Opcode: Divide * * * ** ** Pop the top two elements from the stack, divide the ** first (what was on top of the stack) from the second (the ** next on stack) ** and push the result back onto the stack. If either element ** is a string then it is converted to a double using the atof() ** function before the division. Division by zero returns NULL. */ case OP_Add: case OP_Subtract: case OP_Multiply: case OP_Divide: { int tos = p->tos; int nos = tos - 1; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( (aStack[tos].flags & aStack[nos].flags & STK_Int)==STK_Int ){ int a, b; a = aStack[tos].i; b = aStack[nos].i; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; default: { if( a==0 ) goto divide_by_zero; b /= a; break; } } POPSTACK; Release(p, nos); aStack[nos].i = b; aStack[nos].flags = STK_Int; }else{ double a, b; Realify(p, tos); Realify(p, nos); a = aStack[tos].r; b = aStack[nos].r; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; default: { if( a==0.0 ) goto divide_by_zero; b /= a; break; } } POPSTACK; Release(p, nos); aStack[nos].r = b; aStack[nos].flags = STK_Real; } break; divide_by_zero: PopStack(p, 2); p->tos = nos; aStack[nos].flags = STK_Null; break; } /* Opcode: Max * * * ** ** Pop the top two elements from the stack then push back the ** largest of the two. */ case OP_Max: { int tos = p->tos; int nos = tos - 1; int ft, fn; int copy = 0; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; if( fn & STK_Null ){ copy = 1; }else if( (ft & fn & STK_Int)==STK_Int ){ copy = aStack[nos].i<aStack[tos].i; }else if( ( (ft|fn) & (STK_Int|STK_Real) ) !=0 ){ Realify(p, tos); Realify(p, nos); copy = aStack[tos].r>aStack[nos].r; }else{ if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; copy = sqliteCompare(zStack[tos],zStack[nos])>0; } if( copy ){ Release(p, nos); aStack[nos] = aStack[tos]; zStack[nos] = zStack[tos]; zStack[tos] = 0; aStack[tos].flags = 0; }else{ Release(p, tos); } p->tos = nos; break; } /* Opcode: Min * * * ** ** Pop the top two elements from the stack then push back the ** smaller of the two. */ case OP_Min: { int tos = p->tos; int nos = tos - 1; int ft, fn; int copy = 0; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; if( fn & STK_Null ){ copy = 1; }else if( ft & STK_Null ){ copy = 0; }else if( (ft & fn & STK_Int)==STK_Int ){ copy = aStack[nos].i>aStack[tos].i; }else if( ( (ft|fn) & (STK_Int|STK_Real) ) !=0 ){ Realify(p, tos); Realify(p, nos); copy = aStack[tos].r<aStack[nos].r; }else{ if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; copy = sqliteCompare(zStack[tos],zStack[nos])<0; } if( copy ){ Release(p, nos); aStack[nos] = aStack[tos]; zStack[nos] = zStack[tos]; zStack[tos] = 0; aStack[tos].flags = 0; }else{ Release(p, tos); } p->tos = nos; break; } /* Opcode: AddImm P1 * * ** ** Add the value P1 to whatever is on top of the stack. */ case OP_AddImm: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) Integerify(p, tos); aStack[tos].i += pOp->p1; break; } /* Opcode: Eq * P2 * ** ** Pop the top two elements from the stack. If they are equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. */ /* Opcode: Ne * P2 * ** ** Pop the top two elements from the stack. If they are not equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. */ /* Opcode: Lt * P2 * ** ** Pop the top two elements from the stack. If second element (the ** next on stack) is less than the first (the top of stack), then ** jump to instruction P2. Otherwise, continue to the next instruction. ** In other words, jump if NOS<TOS. */ /* Opcode: Le * P2 * ** ** Pop the top two elements from the stack. If second element (the ** next on stack) is less than or equal to the first (the top of stack), ** then jump to instruction P2. In other words, jump if NOS<=TOS. */ /* Opcode: Gt * P2 * ** ** Pop the top two elements from the stack. If second element (the ** next on stack) is greater than the first (the top of stack), ** then jump to instruction P2. In other words, jump if NOS>TOS. */ /* Opcode: Ge * P2 * ** ** Pop the top two elements from the stack. If second element (the next ** on stack) is greater than or equal to the first (the top of stack), ** then jump to instruction P2. In other words, jump if NOS>=TOS. */ case OP_Eq: case OP_Ne: case OP_Lt: case OP_Le: case OP_Gt: case OP_Ge: { int tos = p->tos; int nos = tos - 1; int c; int ft, fn; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; if( (ft & fn)==STK_Int ){ c = aStack[nos].i - aStack[tos].i; }else{ if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; c = sqliteCompare(zStack[nos], zStack[tos]); } switch( pOp->opcode ){ case OP_Eq: c = c==0; break; case OP_Ne: c = c!=0; break; case OP_Lt: c = c<0; break; case OP_Le: c = c<=0; break; case OP_Gt: c = c>0; break; default: c = c>=0; break; } POPSTACK; POPSTACK; if( c ) pc = pOp->p2-1; break; } /* Opcode: Like P1 P2 * ** ** Pop the top two elements from the stack. The top-most is a ** "like" pattern -- the right operand of the SQL "LIKE" operator. ** The lower element is the string to compare against the like ** pattern. Jump to P2 if the two compare, and fall through without ** jumping if they do not. The '%' in the top-most element matches ** any sequence of zero or more characters in the lower element. The ** '_' character in the topmost matches any single character of the ** lower element. Case is ignored for this comparison. ** ** If P1 is not zero, the sense of the test is inverted and we ** have a "NOT LIKE" operator. The jump is made if the two values ** are different. */ case OP_Like: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; c = sqliteLikeCompare(zStack[tos], zStack[nos]); POPSTACK; POPSTACK; if( pOp->p1 ) c = !c; if( c ) pc = pOp->p2-1; break; } /* Opcode: Glob P1 P2 * ** ** Pop the top two elements from the stack. The top-most is a ** "glob" pattern. The lower element is the string to compare ** against the glob pattern. ** ** Jump to P2 if the two compare, and fall through without ** jumping if they do not. The '*' in the top-most element matches ** any sequence of zero or more characters in the lower element. The ** '?' character in the topmost matches any single character of the ** lower element. [...] matches a range of characters. [^...] ** matches any character not in the range. Case is significant ** for globs. ** ** If P1 is not zero, the sense of the test is inverted and we ** have a "NOT GLOB" operator. The jump is made if the two values ** are different. */ case OP_Glob: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; c = sqliteGlobCompare(zStack[tos], zStack[nos]); POPSTACK; POPSTACK; if( pOp->p1 ) c = !c; if( c ) pc = pOp->p2-1; break; } /* Opcode: And * * * ** ** Pop two values off the stack. Take the logical AND of the ** two values and push the resulting boolean value back onto the ** stack. */ /* Opcode: Or * * * ** ** Pop two values off the stack. Take the logical OR of the ** two values and push the resulting boolean value back onto the ** stack. */ case OP_And: case OP_Or: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) Integerify(p, tos); Integerify(p, nos); if( pOp->opcode==OP_And ){ c = aStack[tos].i && aStack[nos].i; }else{ c = aStack[tos].i || aStack[nos].i; } POPSTACK; Release(p, nos); aStack[nos].i = c; aStack[nos].flags = STK_Int; break; } /* Opcode: Negative * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its additive inverse. */ case OP_Negative: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & STK_Real ){ Release(p, tos); aStack[tos].r = -aStack[tos].r; aStack[tos].flags = STK_Real; }else if( aStack[tos].flags & STK_Int ){ Release(p, tos); aStack[tos].i = -aStack[tos].i; aStack[tos].flags = STK_Int; }else{ Realify(p, tos); Release(p, tos); aStack[tos].r = -aStack[tos].r; aStack[tos].flags = STK_Real; } break; } /* Opcode: Not * * * ** ** Interpret the top of the stack as a boolean value. Replace it ** with its complement. */ case OP_Not: { int tos = p->tos; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, tos); Release(p, tos); aStack[tos].i = !aStack[tos].i; aStack[tos].flags = STK_Int; break; } /* Opcode: Noop * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. */ case OP_Noop: { break; } /* Opcode: If * P2 * ** ** Pop a single boolean from the stack. If the boolean popped is ** true, then jump to p2. Otherwise continue to the next instruction. ** An integer is false if zero and true otherwise. A string is ** false if it has zero length and true otherwise. */ case OP_If: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); c = aStack[p->tos].i; POPSTACK; if( c ) pc = pOp->p2-1; break; } /* Opcode: IsNull * P2 * ** ** Pop a single value from the stack. If the value popped is NULL ** then jump to p2. Otherwise continue to the next ** instruction. */ case OP_IsNull: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) c = (aStack[p->tos].flags & STK_Null)!=0; POPSTACK; if( c ) pc = pOp->p2-1; break; } /* Opcode: NotNull * P2 * ** ** Pop a single value from the stack. If the value popped is not an ** empty string, then jump to p2. Otherwise continue to the next ** instruction. */ case OP_NotNull: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) c = (aStack[p->tos].flags & STK_Null)==0; POPSTACK; if( c ) pc = pOp->p2-1; break; } /* Opcode: MakeRecord P1 * * ** ** Convert the top P1 entries of the stack into a single entry ** suitable for use as a data record in a database table. To do this ** all entries (except NULLs) are converted to strings and ** concatenated. The null-terminators are preserved by the concatation ** and serve as a boundry marker between columns. The lowest entry ** on the stack is the first in the concatenation and the top of ** the stack is the last. After all columns are concatenated, an ** index header is added. The index header consists of P1 integers ** which hold the offset of the beginning of each column data from the ** beginning of the completed record including the header. Header ** entries for NULL fields point to where the first byte of the column ** would have been stored if the column had held any bytes. */ case OP_MakeRecord: { char *zNewRecord; int nByte; int nField; int i, j; int addr; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n; } } nByte += sizeof(int)*nField; zNewRecord = sqliteMalloc( nByte ); if( zNewRecord==0 ) goto no_mem; j = 0; addr = sizeof(int)*nField; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ addr += aStack[i].n; } memcpy(&zNewRecord[j], (char*)&addr, sizeof(int)); j += sizeof(int); } for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNewRecord[j], zStack[i], aStack[i].n); j += aStack[i].n; } } PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str | STK_Dyn; zStack[p->tos] = zNewRecord; break; } /* Opcode: MakeKey P1 P2 * ** ** Convert the top P1 entries of the stack into a single entry suitable ** for use as the key in an index or a sort. The top P1 records are ** concatenated with a tab character (ASCII 0x09) used as a record ** separator. The entire concatenation is null-terminated. The ** lowest entry in the stack is the first field and the top of the ** stack becomes the last. ** ** If P2 is not zero, then the original entries remain on the stack ** and the new key is pushed on top. If P2 is zero, the original ** data is popped off the stack first then the new key is pushed ** back in its place. ** ** See also: MakeIdxKey, SortMakeKey */ case OP_MakeKey: { char *zNewKey; int nByte; int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ nByte++; }else{ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n; } } zNewKey = sqliteMalloc( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNewKey[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; } if( i<p->tos ) zNewKey[j++] = '\t'; } zNewKey[j] = 0; if( pOp->p2==0 ) PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNewKey; break; } /* Opcode: MakeIdxKey P1 * * ** ** Convert the top P1 entries of the stack into a single entry suitable ** for use as the key in an index. In addition, take one additional integer ** off of the stack, treat that integer as a four-byte record number, and ** append the four bytes to the key. Thus a total of P1+1 entries are ** popped from the stack for this instruction and a single entry is pushed ** back. The first P1 entries that are popped are strings and the last ** entry (the lowest on the stack) is an integer record number. ** ** The converstion of the first P1 string entries occurs just like in ** MakeKey. Each entry is separated from the others by a tab (ASCII 0x09). ** The entire concatenation is null-terminated. The lowest entry ** in the stack is the first field and the top of the stack becomes the ** last. ** ** See also: MakeKey, SortMakeKey */ case OP_MakeIdxKey: { char *zNewKey; int nByte; int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = sizeof(int); for(i=p->tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ nByte++; }else{ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n; } } zNewKey = sqliteMalloc( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNewKey[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; } if( i<p->tos ) zNewKey[j++] = '\t'; } zNewKey[j++] = 0; Integerify(p, p->tos-nField); memcpy(&zNewKey[j], aStack[p->tos-nField].i, sizeof(int)); PopStack(p, nField+1); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNewKey; break; } /* Opcode: Transaction * * * ** ** Begin a transaction. The transaction ends when a Commit or Rollback ** opcode is encountered or whenever there is an execution error that causes ** a script to abort. ** ** A transaction must be started before any changes can be made to the ** database. */ case OP_Transaction: { rc = sqliteBtreeBeginTrans(pBe); break; } /* Opcode: Commit * * * ** ** Cause all modifications to the database that have been made since the ** last Transaction to actually take effect. No additional modifications ** are allowed until another transaction is started. */ case OP_Commit: { rc = sqliteBtreeCommit(pBe); if( rc==SQLITE_OK ){ sqliteCommitInternalChanges(db); }else{ sqliteRollbackInternalChanges(db); } break; } /* Opcode: Rollback * * * ** ** Cause all modifications to the database that have been made since the ** last Transaction to be undone. The database is restored to its state ** before the Transaction opcode was executed. No additional modifications ** are allowed until another transaction is started. */ case OP_Rollback: { rc = sqliteBtreeRollback(pBe); sqliteRollbackInternalChanges(db); break; } /* Opcode: Open P1 P2 P3 ** ** Open a new cursor for the database table whose root page is ** P2 in the main database file. Give the new cursor an identifier ** of P1. The P1 values need not be contiguous but all P1 values ** should be small integers. It is an error for P1 to be negative. ** ** The P3 value is the name of the table or index being opened. ** The P3 value is not actually used by this opcode and may be ** omitted. But the code generator usually inserts the index or ** table name into P3 to make the code easier to read. */ case OP_Open: { int busy = 0; int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) if( i>=p->nCursor ){ int j; p->aCsr = sqliteRealloc( p->aCsr, (i+1)*sizeof(Cursor) ); if( p->aCsr==0 ){ p->nCursor = 0; goto no_mem; } for(j=p->nCursor; j<=i; j++) p->aCsr[j].pCursor = 0; p->nCursor = i+1; }else if( p->aCsr[i].pCursor ){ sqliteBtreeCloseCursor(p->aCsr[i].pCursor); } memset(&p->aCsr[i], 0, sizeof(Cursor)); do { rc = sqliteBtreeOpenCursor(pBe, pOp->p2, &p->aCsr[i].pCursor); switch( rc ){ case SQLITE_BUSY: { if( xBusy==0 || (*xBusy)(pBusyArg, pOp->p3, ++busy)==0 ){ sqliteSetString(pzErrMsg, sqliteErrStr(rc), 0); busy = 0; } break; } case SQLITE_OK: { busy = 0; break; } default: { goto abort_due_to_error; } } }while( busy ); break; } /* Opcode: OpenTemp P1 * * ** ** Open a new cursor that points to a table in a temporary database ** file. The temporary file is opened read/write event if the main ** database is read-only. The temporary file is deleted when the ** cursor is closed. */ case OP_OpenTemp: { int busy = 0; int i = pOp->p1; Cursor *pCx; VERIFY( if( i<0 ) goto bad_instruction; ) if( i>=p->nCursor ){ int j; p->aCsr = sqliteRealloc( p->aCsr, (i+1)*sizeof(Cursor) ); if( p->aCsr==0 ){ p->nCursor = 0; goto no_mem; } for(j=p->nCursor; j<=i; j++) p->aCsr[j].pCursor = 0; p->nCursor = i+1; }else if( p->aCsr[i].pCursor ){ sqliteBtreeCloseCursor(p->aCsr[i].pCursor); } pCx = &p->aCsr[i]; memset(pCx, 0, sizeof(*pCx)); rc = sqliteBtreeOpen(0, 0, 100, &pCx->pBt); if( rc==SQLITE_OK ){ rc = sqliteBtreeOpenCursor(pCx->pBt, 2, &pCx->pCursor); } if( rc==SQLITE_OK ){ rc = sqliteBtreeBeginTrans(pCx->pBt); } break; } /* Opcode: Close P1 * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. */ case OP_Close: { int i = pOp->p1; if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor ){ Cursor *pCx = &p->aCsr[i]; sqliteBtreeCloseCursor(pCx->pCursor); pCx->pCursor = 0; if( pCx->zKey ){ sqliteFree(pCx->zKey); pCx->zKey = 0; } if( pCx->pBt ){ sqliteBtreeClose(pCx->pBt); pCx->pBt = 0; } } break; } /* Opcode: MoveTo P1 * * ** ** Pop the top of the stack and use its value as a key. Reposition ** cursor P1 so that it points to an entry with a matching key. If ** the table contains no record with a matching key, then the cursor ** is left pointing at a nearby record. */ case OP_MoveTo: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor ){ int res; if( aStack[tos].flags & STK_Int ){ sqliteBtreeMoveTo(p->aCsr[i].pCursor, sizeof(int), (char*)&aStack[tos].i, &res); p->aCsr[i].lastRecno = aStack[tos].i; p->aCsr[i].recnoIsValid = 1; }else{ if( Stringify(p, tos) ) goto no_mem; pBex->Fetch(p->aCsr[i].pCursor, aStack[tos].n, zStack[tos], &res); p->aCsr[i].recnoIsValid = 0; } p->nFetch++; } POPSTACK; break; } /* Opcode: Fcnt * * * ** ** Push an integer onto the stack which is the total number of ** OP_Fetch opcodes that have been executed by this virtual machine. ** ** This instruction is used to implement the special fcnt() function ** in the SQL dialect that SQLite understands. fcnt() is used for ** testing purposes. */ case OP_Fcnt: { int i = ++p->tos; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) aStack[i].i = p->nFetch; aStack[i].flags = STK_Int; break; } /* Opcode: Distinct P1 P2 * ** ** Use the top of the stack as a key. If a record with that key ** does not exist in file P1, then jump to P2. If the record ** does already exist, then fall thru. The record is not retrieved. ** The key is not popped from the stack. ** ** This operation is similar to NotFound except that this operation ** does not pop the key from the stack. */ /* Opcode: Found P1 P2 * ** ** Use the top of the stack as a key. If a record with that key ** does exist in file P1, then jump to P2. If the record ** does not exist, then fall thru. The record is not retrieved. ** The key is popped from the stack. */ /* Opcode: NotFound P1 P2 * ** ** Use the top of the stack as a key. If a record with that key ** does not exist in file P1, then jump to P2. If the record ** does exist, then fall thru. The record is not retrieved. ** The key is popped from the stack. ** ** The difference between this operation and Distinct is that ** Distinct does not pop the key from the stack. */ case OP_Distinct: case OP_NotFound: case OP_Found: { int i = pOp->p1; int tos = p->tos; int alreadyExists = 0; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor ){ int res, rx; if( aStack[tos].flags & STK_Int ){ rx = sqliteBtreeMoveTo(p->aCsr[i].pCursor, sizeof(int), (char*)&aStack[tos].i, &res); }else{ if( Stringify(p, tos) ) goto no_mem; rx = sqliteBtreeMoveTo(p->aCsr[i].pCursor,aStack[tos].n, zStack[tos], &res); } alreadyExists = rx==SQLITE_OK && res==0; } if( pOp->opcode==OP_Found ){ if( alreadyExists ) pc = pOp->p2 - 1; }else{ if( !alreadyExists ) pc = pOp->p2 - 1; } if( pOp->opcode!=OP_Distinct ){ POPSTACK; } break; } /* Opcode: NewRecno P1 * * ** ** Get a new integer record number used as the key to a table. ** The record number is not previous used by the database file ** associated with cursor P1. The new record number pushed ** onto the stack. */ case OP_NewRecno: { int i = pOp->p1; int v; if( VERIFY( i<0 || i>=p->nCursor || ) p->aCsr[i].pCursor==0 ){ v = 0; }else{ int res, rx, cnt; cnt = 0; do{ v = sqliteRandomInteger(); rx = sqliteBtreeMoveTo(p->aCsr[i].pCursor, sizeof(v), &v, &res); cnt++; }while( cnt<10 && rx==SQLITE_OK && res==0 ); } VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].i = v; aStack[p->tos].flags = STK_Int; break; } /* Opcode: Put P1 * * ** ** Write an entry into the database file P1. A new entry is ** created if it doesn't already exist, or the data for an existing ** entry is overwritten. The data is the value on the top of the ** stack. The key is the next value down on the stack. The stack ** is popped twice by this instruction. */ case OP_Put: { int tos = p->tos; int nos = p->tos-1; int i = pOp->p1; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor!=0 ){ char *zKey; int nKey; if( (aStack[nos].flags & STK_Int)==0 ){ if( Stringify(p, nos) ) goto no_mem; nKey = aStack[nos].n; zKey = zStack[nos]; }else{ nKey = sizeof(int); zKey = (char*)&aStack[nos].i; } rc = sqliteBtreeInsert(p->aCsr[i].pCursor, nKey, zKey, aStack[tos].n, zStack[tos]); if( rc!=SQLITE_OK ) goto abort_due_to_error; } POPSTACK; POPSTACK; break; } /* Opcode: Delete P1 * * ** ** The top of the stack is a key. Remove this key and its data ** from database file P1. Then pop the stack to discard the key. */ case OP_Delete: { int tos = p->tos; int i = pOp->p1; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor!=0 ){ char *zKey; int nKey; if( aStack[tos].flags & STK_Int ){ nKey = sizeof(int); zKey = (char*)&aStack[tos].i; }else{ if( Stringify(p, tos) ) goto no_mem; nKey = aStack[tos].n; zKey = zStack[tos]; } rc = sqliteBtreeDelete(p->aCsr[i].pCursor, nKey, zKey); if( rc!=SQLITE_OK ) goto abort_due_to_error; } POPSTACK; break; } /* Opcode: KeyAsData P1 P2 * ** ** Turn the key-as-data mode for cursor P1 either on (if P2==1) or ** off (if P2==0). In key-as-data mode, the OP_Field opcode pulls ** data off of the key rather than the data. This is useful for ** processing compound selects. */ case OP_KeyAsData: { int i = pOp->p1; if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor!=0 ){ p->aCsr[i].keyAsData = pOp->p2; } break; } /* Opcode: Column P1 P2 * ** ** Interpret the data in the most recent fetch from cursor P1 ** is a structure built using the MakeRecord instruction. ** Push onto the stack the value of the P2-th field of that ** structure. ** ** The value pushed is a pointer to the data stored in the cursor. ** The value will go away the next time the cursor is modified in ** any way. Make a copy of the string (using ** "Concat 1 0 0") if it needs to persist longer than that. ** ** If the KeyAsData opcode has previously executed on this cursor, ** then the field might be extracted from the key rather than the ** data. */ case OP_Column: { int *pAddr; int amt, offset, nCol, payloadSize; int aHdr[10]; const int mxHdr = sizeof(aHdr)/sizeof(aHdr[0]); int i = pOp->p1; int p2 = pOp->p2; int tos = ++p->tos; BtCursor *pCrsr; char *z; VERIFY( if( NeedStack(p, tos) ) goto no_mem; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int (*xSize)(BtCursor*, int*); int (*xRead)(BtCursor*, int, int, void*); /* Use different access functions depending on whether the information ** is coming from the key or the data of the record. */ if( p->aCsr[i].keyAsData ){ xSize = sqliteBtreeKeySize; xRead = sqliteBtreeKey; }else{ xSize = sqliteBtreeDataSize; xRead = sqliteBtreeData; } /* ** The code is complicated by efforts to minimize the number ** of invocations of xRead() since that call can be expensive. ** For the common case where P2 is small, xRead() is invoked ** twice. For larger values of P2, it has to be called ** three times. */ (*xSize)(pCrsr, &payloadSize); if( payloadSize < sizeof(int)*(p2+1) ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } if( p2+1<mxHdr ){ (*xRead)(pCrsr, 0, sizeof(aHdr[0])*(p2+2), aHdr); nCol = aHdr[0]; offset = aHdr[p2]; if( p2 == nCol-1 ){ amt = payloadSize - offset; }else{ amt = aHdr[p2+1] - offset; } }else{ sqliteBtreeData(pCrsr, 0, sizeof(int), &nCol); nCol /= sizeof(int); if( p2 == nCol-1 ){ (*xRead)(pCrsr, sizeof(int)*p2, sizeof(int), &offset); amt = payloadSize - offset; }else{ (*xRead)(pCrsr, sizeof(int)*p2, sizeof(int)*2, aHdr); offset = aHdr[0]; amt = aHdr[1] - offset; } } if( payloadSize < nCol || amt<0 || offset<0 ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } if( amt==0 ){ aStack[tos].flags = STK_Null; }else{ z = sqliteMalloc( amt ); if( z==0 ) goto no_mem; (*xRead)(pCrsr, offset, amt, z); aStack[tos].flags = STK_Str | STK_Dyn; zStack[tos] = z; aStack[tos].n = amt; } } break; } /* Opcode: Recno P1 * * ** ** Push onto the stack an integer which is the first 4 bytes of the ** the key to the current entry in a sequential scan of the database ** file P1. The sequential scan should have been started using the ** Next opcode. */ case OP_Recno: { int i = pOp->p1; int tos = ++p->tos; BtCursor *pCrsr; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int v; if( p->aCsr[i].recnoIsValid ){ v = p->aCsr[i].lastRecno; }else{ sqliteBtreeKey(pCrsr, 0, sizeof(int), &v); } aStack[tos].i = v; aStack[tos].flags = STK_Int; } break; } /* Opcode: FullKey P1 * * ** ** Push a string onto the stack which is the full text key associated ** with the last Next operation on file P1. Compare this with the ** Key operator which pushs an integer key. */ case OP_FullKey: { int i = pOp->p1; int tos = ++p->tos; BtCursor *pCrsr; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) VERIFY( if( !p->aCsr[i].keyAsData ) goto bad_instruction; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int amt; char *z; sqliteBtreeKeySize(pCrsr, &amt); if( amt<=0 ){ rc = SQLITE_CORRUPT; goto abort_due_to_error; } z = sqliteMalloc( amt ); sqliteBtreeKey(pCrsr, 0, amt, z); zStack[tos] = z; aStack[tos].flags = STK_Str | STK_Dyn; aStack[tos].n = amt; } break; } /* Opcode: Rewind P1 * * ** ** The next use of the Recno or Column or Next instruction for P1 ** will refer to the first entry in the database file. */ case OP_Rewind: { int i = pOp->p1; BtCursor *pCrsr; if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int res; sqliteBtreeFirst(pCrsr, &res); p->aCsr[i].atFirst = res==0; } break; } /* Opcode: Next P1 P2 * ** ** Advance cursor P1 so that it points to the next key/data pair in its ** table. Or, if there are no more key/data pairs, jump to location P2. */ case OP_Next: { int i = pOp->p1; BtCursor *pCrsr; if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ if( !p->aCsr[i].atFirst ){ int res; sqliteBtreeNext(pCrsr, &res); if( res ){ pc = pOp->p2 - 1; }else{ p->nFetch++; } } p->aCsr[i].atFirst = 0; p->aCsr[i].recnoIsValid = 0; } break; } /* Opcode: BeginIdx P1 * * ** ** Begin searching an index for records with the key found on the ** top of the stack. The key on the top of the stack should be built ** using the MakeKey opcode. Subsequent calls to NextIdx will push ** record numbers onto the stack until all records with the same key ** have been returned. ** ** Note that the key for this opcode should be built using MakeKey ** but the key used for PutIdx and DeleteIdx should be built using ** MakeIdxKey. The difference is that MakeIdxKey adds a 4-bytes ** record number to the end of the key in order to specify a particular ** entry in the index. MakeKey specifies zero or more entries in the ** index that all have common values. */ case OP_BeginIdx: { int i = pOp->p1; int tos = p->tos; int res, rx; Cursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( i>=0 && i<p->nCursor && (pCrsr = &p->aCsr[i])->pCursor!=0 ){ if( Stringify(p, tos) ) goto no_mem; pCrsr->nKey = aStack[tos].n; pCrsr->zKey = sqliteMalloc( 2*(pCrsr->nKey + 1) ); if( pCrsr->zKey==0 ) goto no_mem; pCrsr->zBuf = &pCrsr->zKey[pCrsr->nKey+1]; strncpy(pCrsr->zKey, zStack[tos], aStack[tos].n); pCrsr->zKey[aStack[tos].n] = 0; rx = sqliteBtreeMoveTo(pCrsr->pCursor, aStack[tos].n, zStack[tos], &res); pCrsr->atFirst = rx==SQLITE_OK && res>0; pCrsr->recnoIsValid = 0; } POPSTACK; break; } /* Opcode: NextIdx P1 P2 * ** ** The P1 cursor points to an SQL index for which a BeginIdx operation ** has been issued. This operation retrieves the next record number and ** pushes that record number onto the stack. Or, if there are no more ** record numbers for the given key, this opcode pushes nothing onto the ** stack but instead jumps to instruction P2. */ case OP_NextIdx: { int i = pOp->p1; int tos = ++p->tos; Cursor *pCrsr; BtCursr *pCur; int rx, res, size; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) zStack[tos] = 0; if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = &p->aCsr[i])->pCursor)!=0 ){ pCur = pCrsr->pCursor; rx = sqliteBtreeNext(pCur, &res); if( rx!=SQLITE_OK ) goto abort_due_to_error; sqliteBtreeKeySzie(pCur, &size); if( res>0 || size!=pCrsr->nKey+sizeof(int) || sqliteBtreeKey(pCur, 0, pCrsr->nKey, pCrsr->zBuf)!=pCrsr->nKey || strncmp(pCrsr->zKey, pCrsr->zBuf, pCrsr->nKey)!=0 ){ pc = pOp->p2 - 1; POPSTACK; }else{ int recno; sqliteBtreeKey(pCur, pCrsr->nKey, sizeof(int), &recno); p->aCsr[i].lastRecno = aStack[tos].i = recno; p->aCsr[i].recnoIsValid = 1; aStack[tos].flags = STK_Int; } } break; } /* Opcode: PutIdx P1 * * ** ** The top of the stack hold an SQL index key made using the ** MakeIdxKey instruction. This opcode writes that key into the ** index P1. Data for the entry is nil. */ case OP_PutIdx: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ sqliteBtreePut(pCrsr, aStack[tos].n, zStack[tos], 0, ""); } POPSTACK; break; } /* Opcode: DeleteIdx P1 * * ** ** The top of the stack is an index key built using the MakeIdxKey opcode. ** This opcode removes that entry from the index. */ case OP_DeleteIdx: { int i = pOp->p1; int tos = p->tos; BtCursor *pCrsr; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int rx, res; rx = sqliteBtreeMoveTo(pCrsr, aStack[tos].n, zStack[tos], &res); if( rx==SQLITE_OK && res==0 ){ sqliteBtreeDelete(pCrsr); } } POPSTACK; break; } /* Opcode: Destroy P1 * * ** ** Delete an entire database table or index whose root page in the database ** file is given by P1. */ case OP_Destroy: { sqliteBtreeDropTable(pBe, pOp->p1); break; } /* Opcode: Reorganize P1 * * ** ** Compress, optimize, and tidy up table or index whose root page in the ** database file is P1. */ case OP_Reorganize: { /* This is currently a no-op */ break; } /* Opcode: ListOpen P1 * * ** ** Open a "List" structure used for temporary storage of integer ** table keys. P1 ** will server as a handle to this list for future ** interactions. If another list with the P1 handle is ** already opened, the prior list is closed and a new one opened ** in its place. */ case OP_ListOpen: { int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) if( i>=p->nList ){ int j; p->apList = sqliteRealloc( p->apList, (i+1)*sizeof(Keylist*) ); if( p->apList==0 ){ p->nList = 0; goto no_mem; } for(j=p->nList; j<=i; j++) p->apList[j] = 0; p->nList = i+1; }else if( p->apList[i] ){ KeylistFree(p->apList[i]); p->apList[i] = 0; } break; } /* Opcode: ListWrite P1 * * ** ** Write the integer on the top of the stack ** into the temporary storage list P1. */ case OP_ListWrite: { int i = pOp->p1; Keylist *pKeylist; VERIFY( if( i<0 || i>=p->nList ) goto bad_instruction; ) VERIFY( if( p->tos<0 ) goto not_enough_stack; ) pKeylist = p->apList[i]; if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ pKeylist = sqliteMalloc( sizeof(Keylist)+999*sizeof(int) ); if( pKeylist==0 ) goto no_mem; pKeylist->nKey = 1000; pKeylist->nRead = 0; pKeylist->nUsed = 0; pKeylist->pNext = p->apList[i]; p->apList[i] = pKeylist; } Integerify(p, p->tos); pKeylist->aKey[pKeylist->nUsed++] = aStack[p->tos].i; POPSTACK; break; } /* Opcode: ListRewind P1 * * ** ** Rewind the temporary buffer P1 back to the beginning. */ case OP_ListRewind: { int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) /* This is now a no-op */ break; } /* Opcode: ListRead P1 P2 * ** ** Attempt to read an integer from temporary storage buffer P1 ** and push it onto the stack. If the storage buffer is empty, ** push nothing but instead jump to P2. */ case OP_ListRead: { int i = pOp->p1; Keylist *pKeylist; VERIFY(if( i<0 || i>=p->nList ) goto bad_instruction;) pKeylist = p->apList[i]; if( pKeylist!=0 ){ VERIFY( if( pKeylist->nRead<0 || pKeylist->nRead>=pKeylist->nUsed || pKeylist->nRead>=pKeylist->nKey ) goto bad_instruction; ) p->tos++; if( NeedStack(p, p->tos) ) goto no_mem; aStack[p->tos].i = pKeylist->aKey[pKeylist->nRead++]; aStack[p->tos].flags = STK_Int; zStack[p->tos] = 0; if( pKeylist->nRead>=pKeylist->nUsed ){ p->apList[i] = pKeylist->pNext; sqliteFree(pKeylist); } }else{ pc = pOp->p2 - 1; } break; } /* Opcode: ListClose P1 * * ** ** Close the temporary storage buffer and discard its contents. */ case OP_ListClose: { int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) VERIFY( if( i>=p->nList ) goto bad_instruction; ) KeylistFree(p->apList[i]); p->apList[i] = 0; break; } /* Opcode: SortOpen P1 * * ** ** Create a new sorter with index P1 */ case OP_SortOpen: { int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) if( i>=p->nSort ){ int j; p->apSort = sqliteRealloc( p->apSort, (i+1)*sizeof(Sorter*) ); if( p->apSort==0 ){ p->nSort = 0; goto no_mem; } for(j=p->nSort; j<=i; j++) p->apSort[j] = 0; p->nSort = i+1; } break; } /* Opcode: SortPut P1 * * ** ** The TOS is the key and the NOS is the data. Pop both from the stack ** and put them on the sorter. */ case OP_SortPut: { int i = pOp->p1; int tos = p->tos; int nos = tos - 1; Sorter *pSorter; VERIFY( if( i<0 || i>=p->nSort ) goto bad_instruction; ) VERIFY( if( tos<1 ) goto not_enough_stack; ) if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; pSorter = sqliteMalloc( sizeof(Sorter) ); if( pSorter==0 ) goto no_mem; pSorter->pNext = p->apSort[i]; p->apSort[i] = pSorter; pSorter->nKey = aStack[tos].n; pSorter->zKey = zStack[tos]; pSorter->nData = aStack[nos].n; pSorter->pData = zStack[nos]; aStack[tos].flags = 0; aStack[nos].flags = 0; zStack[tos] = 0; zStack[nos] = 0; p->tos -= 2; break; } /* Opcode: SortMakeRec P1 * * ** ** The top P1 elements are the arguments to a callback. Form these ** elements into a single data entry that can be stored on a sorter ** using SortPut and later fed to a callback using SortCallback. */ case OP_SortMakeRec: { char *z; char **azArg; int nByte; int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n; } } nByte += sizeof(char*)*(nField+1); azArg = sqliteMalloc( nByte ); if( azArg==0 ) goto no_mem; z = (char*)&azArg[nField+1]; for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){ if( aStack[i].flags & STK_Null ){ azArg[j] = 0; }else{ azArg[j] = z; strcpy(z, zStack[i]); z += aStack[i].n; } } PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; zStack[p->tos] = (char*)azArg; aStack[p->tos].flags = STK_Str|STK_Dyn; break; } /* Opcode: SortMakeKey P1 * P3 ** ** Convert the top few entries of the stack into a sort key. The ** number of stack entries consumed is the number of characters in ** the string P3. One character from P3 is prepended to each entry. ** The first character of P3 is prepended to the element lowest in ** the stack and the last character of P3 is appended to the top of ** the stack. All stack entries are separated by a \000 character ** in the result. The whole key is terminated by two \000 characters ** in a row. ** ** See also the MakeKey opcode. */ case OP_SortMakeKey: { char *zNewKey; int nByte; int nField; int i, j, k; nField = strlen(pOp->p3); VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 1; for(i=p->tos-nField+1; i<=p->tos; i++){ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n+2; } zNewKey = sqliteMalloc( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; k = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ zNewKey[j++] = pOp->p3[k++]; memcpy(&zNewKey[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; zNewKey[j++] = 0; } zNewKey[j] = 0; PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNewKey; break; } /* Opcode: Sort P1 * * ** ** Sort all elements on the given sorter. The algorithm is a ** mergesort. */ case OP_Sort: { int j; j = pOp->p1; VERIFY( if( j<0 ) goto bad_instruction; ) if( j<p->nSort ){ int i; Sorter *pElem; Sorter *apSorter[NSORT]; for(i=0; i<NSORT; i++){ apSorter[i] = 0; } while( p->apSort[j] ){ pElem = p->apSort[j]; p->apSort[j] = pElem->pNext; pElem->pNext = 0; for(i=0; i<NSORT-1; i++){ if( apSorter[i]==0 ){ apSorter[i] = pElem; break; }else{ pElem = Merge(apSorter[i], pElem); apSorter[i] = 0; } } if( i>=NSORT-1 ){ apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem); } } pElem = 0; for(i=0; i<NSORT; i++){ pElem = Merge(apSorter[i], pElem); } p->apSort[j] = pElem; } break; } /* Opcode: SortNext P1 P2 * ** ** Push the data for the topmost element in the given sorter onto the ** stack, then remove the element from the sorter. */ case OP_SortNext: { int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) if( VERIFY( i<p->nSort && ) p->apSort[i]!=0 ){ Sorter *pSorter = p->apSort[i]; p->apSort[i] = pSorter->pNext; p->tos++; VERIFY( NeedStack(p, p->tos); ) zStack[p->tos] = pSorter->pData; aStack[p->tos].n = pSorter->nData; aStack[p->tos].flags = STK_Str|STK_Dyn; sqliteFree(pSorter->zKey); sqliteFree(pSorter); }else{ pc = pOp->p2 - 1; } break; } /* Opcode: SortKey P1 * * ** ** Push the key for the topmost element of the sorter onto the stack. ** But don't change the sorter an any other way. */ case OP_SortKey: { int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) if( i<p->nSort && p->apSort[i]!=0 ){ Sorter *pSorter = p->apSort[i]; p->tos++; VERIFY( NeedStack(p, p->tos); ) sqliteSetString(&zStack[p->tos], pSorter->zKey, 0); aStack[p->tos].n = pSorter->nKey; aStack[p->tos].flags = STK_Str|STK_Dyn; } break; } /* Opcode: SortCallback P1 P2 * ** ** The top of the stack contains a callback record built using ** the SortMakeRec operation with the same P1 value as this ** instruction. Pop this record from the stack and invoke the ** callback on it. */ case OP_SortCallback: { int i = p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) if( xCallback!=0 ){ if( xCallback(pArg, pOp->p1, (char**)zStack[i], p->azColName) ){ rc = SQLITE_ABORT; } } POPSTACK; break; } /* Opcode: SortClose P1 * * ** ** Close the given sorter and remove all its elements. */ case OP_SortClose: { Sorter *pSorter; int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) if( i<p->nSort ){ while( (pSorter = p->apSort[i])!=0 ){ p->apSort[i] = pSorter->pNext; sqliteFree(pSorter->zKey); sqliteFree(pSorter->pData); sqliteFree(pSorter); } } break; } /* Opcode: FileOpen * * P3 ** ** Open the file named by P3 for reading using the FileRead opcode. ** If P3 is "stdin" then open standard input for reading. */ case OP_FileOpen: { VERIFY( if( pOp->p3==0 ) goto bad_instruction; ) if( p->pFile ){ if( p->pFile!=stdin ) fclose(p->pFile); p->pFile = 0; } if( sqliteStrICmp(pOp->p3,"stdin")==0 ){ p->pFile = stdin; }else{ p->pFile = fopen(pOp->p3, "r"); } if( p->pFile==0 ){ sqliteSetString(pzErrMsg,"unable to open file: ", pOp->p3, 0); rc = SQLITE_ERROR; goto cleanup; } break; } /* Opcode: FileClose * * * ** ** Close a file previously opened using FileOpen. This is a no-op ** if there is no prior FileOpen call. */ case OP_FileClose: { if( p->pFile ){ if( p->pFile!=stdin ) fclose(p->pFile); p->pFile = 0; } if( p->azField ){ sqliteFree(p->azField); p->azField = 0; } p->nField = 0; if( p->zLine ){ sqliteFree(p->zLine); p->zLine = 0; } p->nLineAlloc = 0; break; } /* Opcode: FileRead P1 P2 P3 ** ** Read a single line of input from the open file (the file opened using ** FileOpen). If we reach end-of-file, jump immediately to P2. If ** we are able to get another line, split the line apart using P3 as ** a delimiter. There should be P1 fields. If the input line contains ** more than P1 fields, ignore the excess. If the input line contains ** fewer than P1 fields, assume the remaining fields contain an ** empty string. */ case OP_FileRead: { int n, eol, nField, i, c, nDelim; char *zDelim, *z; if( p->pFile==0 ) goto fileread_jump; nField = pOp->p1; if( nField<=0 ) goto fileread_jump; if( nField!=p->nField || p->azField==0 ){ p->azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1); if( p->azField==0 ){ p->nField = 0; goto fileread_jump; } p->nField = nField; } n = 0; eol = 0; while( eol==0 ){ if( p->zLine==0 || n+200>p->nLineAlloc ){ p->nLineAlloc = p->nLineAlloc*2 + 300; p->zLine = sqliteRealloc(p->zLine, p->nLineAlloc); if( p->zLine==0 ){ p->nLineAlloc = 0; goto fileread_jump; } } if( fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){ eol = 1; p->zLine[n] = 0; }else{ while( p->zLine[n] ){ n++; } if( n>0 && p->zLine[n-1]=='\n' ){ n--; p->zLine[n] = 0; eol = 1; } } } if( n==0 ) goto fileread_jump; z = p->zLine; if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){ goto fileread_jump; } zDelim = pOp->p3; if( zDelim==0 ) zDelim = "\t"; c = zDelim[0]; nDelim = strlen(zDelim); p->azField[0] = z; for(i=1; *z!=0 && i<=nField; i++){ int from, to; from = to = 0; while( z[from] ){ if( z[from]=='\\' && z[from+1]!=0 ){ z[to++] = z[from+1]; from += 2; continue; } if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break; z[to++] = z[from++]; } if( z[from] ){ z[to] = 0; z += from + nDelim; if( i<nField ) p->azField[i] = z; }else{ z[to] = 0; z = ""; } } while( i<nField ){ p->azField[i++] = ""; } break; /* If we reach end-of-file, or if anything goes wrong, jump here. ** This code will cause a jump to P2 */ fileread_jump: pc = pOp->p2 - 1; break; } /* Opcode: FileField P1 * * ** ** Push onto the stack the P1-th field of the most recently read line ** from the input file. */ case OP_FileField: { int i = pOp->p1; char *z; VERIFY( if( NeedStack(p, p->tos+1) ) goto no_mem; ) if( VERIFY( i>=0 && i<p->nField && ) p->azField ){ z = p->azField[i]; }else{ z = 0; } if( z==0 ) z = ""; p->tos++; aStack[p->tos].n = strlen(z) + 1; zStack[p->tos] = z; aStack[p->tos].flags = STK_Str; break; } /* Opcode: MemStore P1 * * ** ** Pop a single value of the stack and store that value into memory ** location P1. P1 should be a small integer since space is allocated ** for all memory locations between 0 and P1 inclusive. */ case OP_MemStore: { int i = pOp->p1; int tos = p->tos; Mem *pMem; char *zOld; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( i>=p->nMem ){ int nOld = p->nMem; p->nMem = i + 5; p->aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); if( p->aMem==0 ) goto no_mem; if( nOld<p->nMem ){ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld)); } } pMem = &p->aMem[i]; if( pMem->s.flags & STK_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } pMem->s = aStack[tos]; if( pMem->s.flags & STK_Str ){ pMem->z = sqliteStrNDup(zStack[tos], pMem->s.n); pMem->s.flags |= STK_Dyn; } if( zOld ) sqliteFree(zOld); POPSTACK; break; } /* Opcode: MemLoad P1 * * ** ** Push a copy of the value in memory location P1 onto the stack. */ case OP_MemLoad: { int tos = ++p->tos; int i = pOp->p1; VERIFY( if( NeedStack(p, tos) ) goto no_mem; ) if( i<0 || i>=p->nMem ){ aStack[tos].flags = STK_Null; zStack[tos] = 0; }else{ aStack[tos] = p->aMem[i].s; if( aStack[tos].flags & STK_Str ){ char *z = sqliteMalloc(aStack[tos].n); if( z==0 ) goto no_mem; memcpy(z, p->aMem[i].z, aStack[tos].n); zStack[tos] = z; aStack[tos].flags |= STK_Dyn; } } break; } /* Opcode: AggReset * P2 * ** ** Reset the aggregator so that it no longer contains any data. ** Future aggregator elements will contain P2 values each. */ case OP_AggReset: { AggReset(&p->agg); p->agg.nMem = pOp->p2; break; } /* Opcode: AggFocus * P2 * ** ** Pop the top of the stack and use that as an aggregator key. If ** an aggregator with that same key already exists, then make the ** aggregator the current aggregator and jump to P2. If no aggregator ** with the given key exists, create one and make it current but ** do not jump. ** ** The order of aggregator opcodes is important. The order is: ** AggReset AggFocus AggNext. In other words, you must execute ** AggReset first, then zero or more AggFocus operations, then ** zero or more AggNext operations. You must not execute an AggFocus ** in between an AggNext and an AggReset. */ case OP_AggFocus: { int tos = p->tos; AggElem *pElem; char *zKey; int nKey; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) ) goto no_mem; zKey = zStack[tos]; nKey = aStack[tos].n; if( p->agg.nHash<=0 ){ pElem = 0; }else{ int h = sqliteHashNoCase(zKey, nKey-1) % p->agg.nHash; for(pElem=p->agg.apHash[h]; pElem; pElem=pElem->pHash){ if( strcmp(pElem->zKey, zKey)==0 ) break; } } if( pElem ){ p->agg.pCurrent = pElem; pc = pOp->p2 - 1; }else{ AggInsert(&p->agg, zKey); if( sqlite_malloc_failed ) goto no_mem; } POPSTACK; break; } /* Opcode: AggIncr P1 P2 * ** ** Increase the integer value in the P2-th field of the aggregate ** element current in focus by an amount P1. */ case OP_AggIncr: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; if( pFocus==0 ) goto no_mem; if( i>=0 && i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; if( pMem->s.flags!=STK_Int ){ if( pMem->s.flags & STK_Int ){ /* Do nothing */ }else if( pMem->s.flags & STK_Real ){ pMem->s.i = pMem->s.r; }else if( pMem->s.flags & STK_Str ){ pMem->s.i = atoi(pMem->z); }else{ pMem->s.i = 0; } if( pMem->s.flags & STK_Dyn ) sqliteFree(pMem->z); pMem->z = 0; pMem->s.flags = STK_Int; } pMem->s.i += pOp->p1; } break; } /* Opcode: AggSet * P2 * ** ** Move the top of the stack into the P2-th field of the current ** aggregate. String values are duplicated into new memory. */ case OP_AggSet: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; char *zOld; if( pMem->s.flags & STK_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } pMem->s = aStack[tos]; if( pMem->s.flags & STK_Str ){ pMem->z = sqliteMalloc( aStack[tos].n ); if( pMem->z==0 ) goto no_mem; memcpy(pMem->z, zStack[tos], pMem->s.n); pMem->s.flags |= STK_Str|STK_Dyn; } if( zOld ) sqliteFree(zOld); } POPSTACK; break; } /* Opcode: AggGet * P2 * ** ** Push a new entry onto the stack which is a copy of the P2-th field ** of the current aggregate. Strings are not duplicated so ** string values will be ephemeral. */ case OP_AggGet: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; int tos = ++p->tos; VERIFY( if( NeedStack(p, tos) ) goto no_mem; ) if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; aStack[tos] = pMem->s; zStack[tos] = pMem->z; aStack[tos].flags &= ~STK_Dyn; } break; } /* Opcode: AggNext * P2 * ** ** Make the next aggregate value the current aggregate. The prior ** aggregate is deleted. If all aggregate values have been consumed, ** jump to P2. ** ** The order of aggregator opcodes is important. The order is: ** AggReset AggFocus AggNext. In other words, you must execute ** AggReset first, then zero or more AggFocus operations, then ** zero or more AggNext operations. You must not execute an AggFocus ** in between an AggNext and an AggReset. */ case OP_AggNext: { if( p->agg.nHash ){ p->agg.nHash = 0; sqliteFree(p->agg.apHash); p->agg.apHash = 0; p->agg.pCurrent = p->agg.pFirst; }else if( p->agg.pCurrent==p->agg.pFirst && p->agg.pCurrent!=0 ){ int i; AggElem *pElem = p->agg.pCurrent; for(i=0; i<p->agg.nMem; i++){ if( pElem->aMem[i].s.flags & STK_Dyn ){ sqliteFree(pElem->aMem[i].z); } } p->agg.pCurrent = p->agg.pFirst = pElem->pNext; sqliteFree(pElem); p->agg.nElem--; } if( p->agg.pCurrent==0 ){ pc = pOp->p2-1; } break; } /* Opcode: SetClear P1 * * ** ** Remove all elements from the P1-th Set. */ case OP_SetClear: { int i = pOp->p1; if( i>=0 && i<p->nSet ){ SetClear(&p->aSet[i]); } break; } /* Opcode: SetInsert P1 * P3 ** ** If Set P1 does not exist then create it. Then insert value ** P3 into that set. If P3 is NULL, then insert the top of the ** stack into the set. */ case OP_SetInsert: { int i = pOp->p1; if( p->nSet<=i ){ p->aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) ); if( p->aSet==0 ) goto no_mem; memset(&p->aSet[p->nSet], 0, sizeof(p->aSet[0])*(i+1 - p->nSet)); p->nSet = i+1; } if( pOp->p3 ){ SetInsert(&p->aSet[i], pOp->p3); }else{ int tos = p->tos; if( tos<0 ) goto not_enough_stack; if( Stringify(p, tos) ) goto no_mem; SetInsert(&p->aSet[i], zStack[tos]); POPSTACK; } if( sqlite_malloc_failed ) goto no_mem; break; } /* Opcode: SetFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped exists in set P1, ** then jump to P2. Otherwise fall through. */ case OP_SetFound: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) ) goto no_mem; if( VERIFY( i>=0 && i<p->nSet &&) SetTest(&p->aSet[i], zStack[tos])){ pc = pOp->p2 - 1; } POPSTACK; break; } /* Opcode: SetNotFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped does not exists in ** set P1, then jump to P2. Otherwise fall through. */ case OP_SetNotFound: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) ) goto no_mem; if(VERIFY( i>=0 && i<p->nSet &&) !SetTest(&p->aSet[i], zStack[tos])){ pc = pOp->p2 - 1; } POPSTACK; break; } /* Opcode: Strlen * * * ** ** Interpret the top of the stack as a string. Replace the top of ** stack with an integer which is the length of the string. */ case OP_Strlen: { int tos = p->tos; int len; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( Stringify(p, tos) ) goto no_mem; #ifdef SQLITE_UTF8 { char *z = zStack[tos]; for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; } } #else len = aStack[tos].n-1; #endif POPSTACK; p->tos++; aStack[tos].i = len; aStack[tos].flags = STK_Int; break; } /* Opcode: Substr P1 P2 * ** ** This operation pops between 1 and 3 elements from the stack and ** pushes back a single element. The bottom-most element popped from ** the stack is a string and the element pushed back is also a string. ** The other two elements popped are integers. The integers are taken ** from the stack only if P1 and/or P2 are 0. When P1 or P2 are ** not zero, the value of the operand is used rather than the integer ** from the stack. In the sequel, we will use P1 and P2 to describe ** the two integers, even if those integers are really taken from the ** stack. ** ** The string pushed back onto the stack is a substring of the string ** that was popped. There are P2 characters in the substring. The ** first character of the substring is the P1-th character of the ** original string where the left-most character is 1 (not 0). If P1 ** is negative, then counting begins at the right instead of at the ** left. */ case OP_Substr: { int cnt; int start; int n; char *z; if( pOp->p2==0 ){ VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); cnt = aStack[p->tos].i; POPSTACK; }else{ cnt = pOp->p2; } if( pOp->p1==0 ){ VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); start = aStack[p->tos].i - 1; POPSTACK; }else{ start = pOp->p1 - 1; } VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( Stringify(p, p->tos) ) goto no_mem; /* "n" will be the number of characters in the input string. ** For iso8859, the number of characters is the number of bytes. ** Buf for UTF-8, some characters can use multiple bytes and the ** situation is more complex. */ #ifdef SQLITE_UTF8 z = zStack[p->tos]; for(n=0; *z; z++){ if( (0xc0&*z)!=0x80 ) n++; } #else n = aStack[p->tos].n - 1; #endif if( start<0 ){ start += n + 1; if( start<0 ){ cnt += start; start = 0; } } if( start>n ){ start = n; } if( cnt<0 ) cnt = 0; if( cnt > n ){ cnt = n; } /* At this point, "start" is the index of the first character to ** extract and "cnt" is the number of characters to extract. We ** need to convert units on these variable from characters into ** bytes. For iso8859, the conversion is a no-op, but for UTF-8 ** we have to do a little work. */ #ifdef SQLITE_UTF8 { int c_start = start; int c_cnt = cnt; int i; z = zStack[p->tos]; for(start=i=0; i<c_start; i++){ while( (0xc0&z[++start])==0x80 ){} } for(cnt=i=0; i<c_cnt; i++){ while( (0xc0&z[(++cnt)+start])==0x80 ){} } } #endif z = sqliteMalloc( cnt+1 ); if( z==0 ) goto no_mem; strncpy(z, &zStack[p->tos][start], cnt); z[cnt] = 0; POPSTACK; p->tos++; zStack[p->tos] = z; aStack[p->tos].n = cnt + 1; aStack[p->tos].flags = STK_Str|STK_Dyn; break; } /* An other opcode is illegal... */ default: { sprintf(zBuf,"%d",pOp->opcode); sqliteSetString(pzErrMsg, "unknown opcode ", zBuf, 0); rc = SQLITE_INTERNAL; break; } /***************************************************************************** ** The cases of the switch statement above this line should all be indented ** by 6 spaces. But the left-most 6 spaces have been removed to improve the ** readability. From this point on down, the normal indentation rules are ** restored. *****************************************************************************/ } /* The following code adds nothing to the actual functionality ** of the program. It is only here for testing and debugging. ** On the other hand, it does burn CPU cycles every time through ** the evaluator loop. So we can leave it out when NDEBUG is defined. */ |
︙ | ︙ | |||
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 | fprintf(p->trace,"\n"); } #endif } cleanup: Cleanup(p); return rc; /* Jump to here if a malloc() fails. It's hard to get a malloc() ** to fail on a modern VM computer, so this code is untested. */ no_mem: | > > > > > < > > | > > > > > > | 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 | fprintf(p->trace,"\n"); } #endif } cleanup: Cleanup(p); if( rc!=SQLITE_OK && (db->flags & SQLITE_InTrans)!=0 ){ sqliteBtreeRollback(pBe); sqliteRollbackInternalChanges(db); db->flags &= ~SQLITE_InTrans; } return rc; /* Jump to here if a malloc() fails. It's hard to get a malloc() ** to fail on a modern VM computer, so this code is untested. */ no_mem: sqliteSetString(pzErrMsg, "out or memory", 0); rc = SQLITE_NOMEM; goto cleanup; /* Jump to here for any other kind of fatal error. The "rc" variable ** should hold the error number. */ abort_due_to_err: sqliteSetString(pzErrMsg, sqliteErrStr(rc), 0); goto cleanup; /* Jump to here if a operator is encountered that requires more stack ** operands than are currently available on the stack. */ not_enough_stack: sprintf(zBuf,"%d",pc); sqliteSetString(pzErrMsg, "too few operands on stack at ", zBuf, 0); |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
23 24 25 26 27 28 29 | ************************************************************************* ** Header file for the Virtual DataBase Engine (VDBE) ** ** This header defines the interface to the virtual database engine ** or VDBE. The VDBE implements an abstract machine that runs a ** simple program to access and modify the underlying database. ** | | | 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ************************************************************************* ** Header file for the Virtual DataBase Engine (VDBE) ** ** This header defines the interface to the virtual database engine ** or VDBE. The VDBE implements an abstract machine that runs a ** simple program to access and modify the underlying database. ** ** $Id: vdbe.h,v 1.19 2001/09/13 13:46:57 drh Exp $ */ #ifndef _SQLITE_VDBE_H_ #define _SQLITE_VDBE_H_ #include <stdio.h> /* ** A single VDBE is an opaque structure named "Vdbe". Only routines |
︙ | ︙ | |||
67 68 69 70 71 72 73 | ** If any of the values changes or if opcodes are added or removed, ** be sure to also update the zOpName[] array in sqliteVdbe.c to ** mirror the change. ** ** The source tree contains an AWK script named renumberOps.awk that ** can be used to renumber these opcodes when new opcodes are inserted. */ | > > > > | | | | | | | | | | | | | | | | | | > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > | 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | ** If any of the values changes or if opcodes are added or removed, ** be sure to also update the zOpName[] array in sqliteVdbe.c to ** mirror the change. ** ** The source tree contains an AWK script named renumberOps.awk that ** can be used to renumber these opcodes when new opcodes are inserted. */ #define OP_Transaction 1 #define OP_Commit 2 #define OP_Rollback 3 #define OP_Open 4 #define OP_OpenTemp 5 #define OP_Close 6 #define OP_MoveTo 7 #define OP_Fcnt 8 #define OP_NewRecno 9 #define OP_Put 10 #define OP_Distinct 11 #define OP_Found 12 #define OP_NotFound 13 #define OP_Delete 14 #define OP_Column 15 #define OP_KeyAsData 16 #define OP_Recno 17 #define OP_FullKey 18 #define OP_Rewind 19 #define OP_Next 20 #define OP_Destroy 21 #define OP_CreateIndex 22 #define OP_CreateTable 23 #define OP_Reorganize 24 #define OP_BeginIdx 25 #define OP_NextIdx 26 #define OP_PutIdx 27 #define OP_DeleteIdx 28 #define OP_MemLoad 29 #define OP_MemStore 30 #define OP_ListOpen 31 #define OP_ListWrite 32 #define OP_ListRewind 33 #define OP_ListRead 34 #define OP_ListClose 35 #define OP_SortOpen 36 #define OP_SortPut 37 #define OP_SortMakeRec 38 #define OP_SortMakeKey 39 #define OP_Sort 40 #define OP_SortNext 41 #define OP_SortKey 42 #define OP_SortCallback 43 #define OP_SortClose 44 #define OP_FileOpen 45 #define OP_FileRead 46 #define OP_FileField 47 #define OP_FileClose 48 #define OP_AggReset 49 #define OP_AggFocus 50 #define OP_AggIncr 51 #define OP_AggNext 52 #define OP_AggSet 53 #define OP_AggGet 54 #define OP_SetInsert 55 #define OP_SetFound 56 #define OP_SetNotFound 57 #define OP_SetClear 58 #define OP_MakeRecord 59 #define OP_MakeKey 60 #define OP_MakeIdxKey 61 #define OP_Goto 62 #define OP_If 63 #define OP_Halt 64 #define OP_ColumnCount 65 #define OP_ColumnName 66 #define OP_Callback 67 #define OP_Integer 68 #define OP_String 69 #define OP_Null 70 #define OP_Pop 71 #define OP_Dup 72 #define OP_Pull 73 #define OP_Add 74 #define OP_AddImm 75 #define OP_Subtract 76 #define OP_Multiply 77 #define OP_Divide 78 #define OP_Min 79 #define OP_Max 80 #define OP_Like 81 #define OP_Glob 82 #define OP_Eq 83 #define OP_Ne 84 #define OP_Lt 85 #define OP_Le 86 #define OP_Gt 87 #define OP_Ge 88 #define OP_IsNull 89 #define OP_NotNull 90 #define OP_Negative 91 #define OP_And 92 #define OP_Or 93 #define OP_Not 94 #define OP_Concat 95 #define OP_Noop 96 #define OP_Strlen 97 #define OP_Substr 98 #define OP_MAX 98 /* ** Prototypes for the VDBE interface. See comments on the implementation ** for a description of what each of these routines does. */ Vdbe *sqliteVdbeCreate(sqlite*); void sqliteVdbeCreateCallback(Vdbe*, int*); void sqliteVdbeTableRootAddr(Vdbe*, int*); void sqliteVdbeIndexRootAddr(Vdbe*, int*); int sqliteVdbeAddOp(Vdbe*,int,int,int,const char*,int); int sqliteVdbeAddOpList(Vdbe*, int nOp, VdbeOp const *aOp); void sqliteVdbeChangeP1(Vdbe*, int addr, int P1); void sqliteVdbeChangeP3(Vdbe*, int addr, const char *zP1, int N); void sqliteVdbeDequoteP3(Vdbe*, int addr); int sqliteVdbeMakeLabel(Vdbe*); void sqliteVdbeDelete(Vdbe*); int sqliteVdbeOpcode(const char *zName); int sqliteVdbeExec(Vdbe*,sqlite_callback,void*,char**,void*, int(*)(void*,const char*,int)); |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
21 22 23 24 25 26 27 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. Also found here are subroutines ** to generate VDBE code to evaluate expressions. ** | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. Also found here are subroutines ** to generate VDBE code to evaluate expressions. ** ** $Id: where.c,v 1.16 2001/09/13 13:46:57 drh Exp $ */ #include "sqliteInt.h" /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by an AND operator. |
︙ | ︙ | |||
293 294 295 296 297 298 299 | aIdx[i] = pBestIdx; loopMask |= 1<<idx; } /* Open all tables in the pTabList and all indices in aIdx[]. */ for(i=0; i<pTabList->nId; i++){ | > | | > | 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | aIdx[i] = pBestIdx; loopMask |= 1<<idx; } /* Open all tables in the pTabList and all indices in aIdx[]. */ for(i=0; i<pTabList->nId; i++){ sqliteVdbeAddOp(v, OP_Open, base+i, pTabList->a[i].pTab->tnum, pTabList->a[i].pTab->zName, 0); if( i<ARRAYSIZE(aIdx) && aIdx[i]!=0 ){ sqliteVdbeAddOp(v, OP_Open, base+pTabList->nId+i, aIdx[i]->tnum aIdx[i]->zName, 0); } } memcpy(pWInfo->aIdx, aIdx, sizeof(aIdx)); /* Generate the code to do the search */ pWInfo->iBreak = brk = sqliteVdbeMakeLabel(v); |
︙ | ︙ |