SQLite

Check-in [6251e438f2]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge recent enhancements from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | location-function
Files: files | file ages | folders
SHA3-256: 6251e438f2a76170fd1e95aa512a46086ed88ab93b9b97a1dba97c4558689305
User & Date: drh 2017-12-29 13:35:09.867
Context
2017-12-29
14:33
Enhance location(X) so that it works with indexes and WITHOUT ROWID tables. The function might return an offset to the main table or to an index, depending on whether the column X would be loaded from the main table or from the index. (check-in: dd94d6a880 user: drh tags: location-function)
13:35
Merge recent enhancements from trunk. (check-in: 6251e438f2 user: drh tags: location-function)
12:50
Add test cases for the undocumented behavior of duplicate columns on an INSERT or UPDATE. (check-in: f4349c0c26 user: drh tags: trunk)
2017-12-16
20:20
Add an experimental location(X) SQL function that attempt to return the location of the payload within the database for the record that contains column X. location(X) returns NULL if X is not an ordinary table column or if SQLite cannot figure out the location because it is using a covering index. (check-in: 51be955816 user: drh tags: location-function)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/expert/expert1.test.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#
if {![info exists testdir]} {
  set testdir [file join [file dirname [info script]] .. .. test]
}
source $testdir/tester.tcl
set testprefix expert1

if {$tcl_platform(platform)=="windows"} {
  set CMD "sqlite3_expert.exe"
} else {
  set CMD ".././sqlite3_expert"
}

proc squish {txt} {
  regsub -all {[[:space:]]+} $txt { }
}

proc do_setup_rec_test {tn setup sql res} {
  reset_db







<
|
<
|
<







19
20
21
22
23
24
25

26

27

28
29
30
31
32
33
34
#
if {![info exists testdir]} {
  set testdir [file join [file dirname [info script]] .. .. test]
}
source $testdir/tester.tcl
set testprefix expert1


set CLI [test_binary_name sqlite3]

set CMD [test_binary_name sqlite3_expert]


proc squish {txt} {
  regsub -all {[[:space:]]+} $txt { }
}

proc do_setup_rec_test {tn setup sql res} {
  reset_db
68
69
70
71
72
73
74











75
76
77
78
79
80
81
      }

      $expert destroy

      set tst [subst -nocommands {set {} [squish [join {$result}]]}]
      uplevel [list do_test $tn $tst [string trim [squish $res]]]
    }











  }
} {

  eval $setup


do_setup_rec_test $tn.1 { CREATE TABLE t1(a, b, c) } {







>
>
>
>
>
>
>
>
>
>
>







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
      }

      $expert destroy

      set tst [subst -nocommands {set {} [squish [join {$result}]]}]
      uplevel [list do_test $tn $tst [string trim [squish $res]]]
    }
  }
  3 {
    if {![file executable $CLI]} { continue }

    proc do_rec_test {tn sql res} {
      set res [squish [string trim $res]]
      set tst [subst -nocommands { 
        squish [string trim [exec $::CLI test.db ".expert" {$sql;}]]
      }]
      uplevel [list do_test $tn $tst $res]
    }
  }
} {

  eval $setup


do_setup_rec_test $tn.1 { CREATE TABLE t1(a, b, c) } {
287
288
289
290
291
292
293









294
295
296
297
298
299
300
} {
  SELECT * FROM t2, t1 WHERE b=? AND d=? AND t2.rowid=t1.rowid
} {
  CREATE INDEX t2_idx_00000064 ON t2(d);
  0|0|0|SEARCH TABLE t2 USING INDEX t2_idx_00000064 (d=?) 
  0|1|1|SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
}










}

proc do_candidates_test {tn sql res} {
  set res [squish [string trim $res]]

  set expert [sqlite3_expert_new db]







>
>
>
>
>
>
>
>
>







295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
} {
  SELECT * FROM t2, t1 WHERE b=? AND d=? AND t2.rowid=t1.rowid
} {
  CREATE INDEX t2_idx_00000064 ON t2(d);
  0|0|0|SEARCH TABLE t2 USING INDEX t2_idx_00000064 (d=?) 
  0|1|1|SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)
}

do_setup_rec_test $tn.16 {
  CREATE TABLE t1(a, b);
} {
  SELECT * FROM t1 WHERE b IS NOT NULL;
} {
  (no new indexes)
  0|0|0|SCAN TABLE t1
}

}

proc do_candidates_test {tn sql res} {
  set res [squish [string trim $res]]

  set expert [sqlite3_expert_new db]
Changes to ext/expert/sqlite3expert.c.
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
  ExpertVtab *p = (ExpertVtab*)pVtab;
  sqlite3_free(p);
  return SQLITE_OK;
}

static int expertBestIndex(sqlite3_vtab *pVtab, sqlite3_index_info *pIdxInfo){
  ExpertVtab *p = (ExpertVtab*)pVtab;
  sqlite3 *dbv = p->pExpert->dbv;
  int rc = SQLITE_OK;
  int n = 0;
  IdxScan *pScan;
  const int opmask = 
    SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_GT |
    SQLITE_INDEX_CONSTRAINT_LT | SQLITE_INDEX_CONSTRAINT_GE |
    SQLITE_INDEX_CONSTRAINT_LE;







<







430
431
432
433
434
435
436

437
438
439
440
441
442
443
  ExpertVtab *p = (ExpertVtab*)pVtab;
  sqlite3_free(p);
  return SQLITE_OK;
}

static int expertBestIndex(sqlite3_vtab *pVtab, sqlite3_index_info *pIdxInfo){
  ExpertVtab *p = (ExpertVtab*)pVtab;

  int rc = SQLITE_OK;
  int n = 0;
  IdxScan *pScan;
  const int opmask = 
    SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_GT |
    SQLITE_INDEX_CONSTRAINT_LT | SQLITE_INDEX_CONSTRAINT_GE |
    SQLITE_INDEX_CONSTRAINT_LE;
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
      struct sqlite3_index_constraint *pCons = &pIdxInfo->aConstraint[i];
      if( pCons->usable 
       && pCons->iColumn>=0 
       && p->pTab->aCol[pCons->iColumn].iPk==0
       && (pCons->op & opmask) 
      ){
        IdxConstraint *pNew;
        const char *zColl = sqlite3_vtab_collation(dbv, i);
        pNew = idxNewConstraint(&rc, zColl);
        if( pNew ){
          pNew->iCol = pCons->iColumn;
          if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){
            pNew->pNext = pScan->pEq;
            pScan->pEq = pNew;
          }else{







|







456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
      struct sqlite3_index_constraint *pCons = &pIdxInfo->aConstraint[i];
      if( pCons->usable 
       && pCons->iColumn>=0 
       && p->pTab->aCol[pCons->iColumn].iPk==0
       && (pCons->op & opmask) 
      ){
        IdxConstraint *pNew;
        const char *zColl = sqlite3_vtab_collation(pIdxInfo, i);
        pNew = idxNewConstraint(&rc, zColl);
        if( pNew ){
          pNew->iCol = pCons->iColumn;
          if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){
            pNew->pNext = pScan->pEq;
            pScan->pEq = pNew;
          }else{
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
    pNew->db = db;
    pNew->iSample = 100;
    rc = sqlite3_open(":memory:", &pNew->dbv);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3_open(":memory:", &pNew->dbm);
    if( rc==SQLITE_OK ){
      sqlite3_db_config(pNew->dbm, SQLITE_DBCONFIG_FULL_EQP, 1, (int*)0);
    }
  }
  

  /* Copy the entire schema of database [db] into [dbm]. */
  if( rc==SQLITE_OK ){
    sqlite3_stmt *pSql;







|







1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
    pNew->db = db;
    pNew->iSample = 100;
    rc = sqlite3_open(":memory:", &pNew->dbv);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3_open(":memory:", &pNew->dbm);
    if( rc==SQLITE_OK ){
      sqlite3_db_config(pNew->dbm, SQLITE_DBCONFIG_TRIGGER_EQP, 1, (int*)0);
    }
  }
  

  /* Copy the entire schema of database [db] into [dbm]. */
  if( rc==SQLITE_OK ){
    sqlite3_stmt *pSql;
Changes to ext/fts5/fts5_aux.c.
353
354
355
356
357
358
359










360
361
362
363
364
365
366
    if( (iAdj+nToken)>nDocsize ) iAdj = nDocsize - nToken;
    if( iAdj<0 ) iAdj = 0;
    *piPos = iAdj;
  }

  return rc;
}











/*
** Implementation of snippet() function.
*/
static void fts5SnippetFunction(
  const Fts5ExtensionApi *pApi,   /* API offered by current FTS version */
  Fts5Context *pFts,              /* First arg to pass to pApi functions */







>
>
>
>
>
>
>
>
>
>







353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    if( (iAdj+nToken)>nDocsize ) iAdj = nDocsize - nToken;
    if( iAdj<0 ) iAdj = 0;
    *piPos = iAdj;
  }

  return rc;
}

/*
** Return the value in pVal interpreted as utf-8 text. Except, if pVal 
** contains a NULL value, return a pointer to a static string zero
** bytes in length instead of a NULL pointer.
*/
static const char *fts5ValueToText(sqlite3_value *pVal){
  const char *zRet = (const char*)sqlite3_value_text(pVal);
  return zRet ? zRet : "";
}

/*
** Implementation of snippet() function.
*/
static void fts5SnippetFunction(
  const Fts5ExtensionApi *pApi,   /* API offered by current FTS version */
  Fts5Context *pFts,              /* First arg to pass to pApi functions */
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    sqlite3_result_error(pCtx, zErr, -1);
    return;
  }

  nCol = pApi->xColumnCount(pFts);
  memset(&ctx, 0, sizeof(HighlightContext));
  iCol = sqlite3_value_int(apVal[0]);
  ctx.zOpen = (const char*)sqlite3_value_text(apVal[1]);
  ctx.zClose = (const char*)sqlite3_value_text(apVal[2]);
  zEllips = (const char*)sqlite3_value_text(apVal[3]);
  nToken = sqlite3_value_int(apVal[4]);

  iBestCol = (iCol>=0 ? iCol : 0);
  nPhrase = pApi->xPhraseCount(pFts);
  aSeen = sqlite3_malloc(nPhrase);
  if( aSeen==0 ){
    rc = SQLITE_NOMEM;







|
|
|







399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    sqlite3_result_error(pCtx, zErr, -1);
    return;
  }

  nCol = pApi->xColumnCount(pFts);
  memset(&ctx, 0, sizeof(HighlightContext));
  iCol = sqlite3_value_int(apVal[0]);
  ctx.zOpen = fts5ValueToText(apVal[1]);
  ctx.zClose = fts5ValueToText(apVal[2]);
  zEllips = fts5ValueToText(apVal[3]);
  nToken = sqlite3_value_int(apVal[4]);

  iBestCol = (iCol>=0 ? iCol : 0);
  nPhrase = pApi->xPhraseCount(pFts);
  aSeen = sqlite3_malloc(nPhrase);
  if( aSeen==0 ){
    rc = SQLITE_NOMEM;
Changes to ext/fts5/test/fts5af.test.
170
171
172
173
174
175
176










177
178
179
180
    'x a a a a a a a a a a',
    'a a a a a a a a a a a a a a a a a a a x'
  );
}
do_execsql_test 5.1 {
  SELECT snippet(p1, 0, '[', ']', '...', 6) FROM p1('x');
} {{[x] a a a a a...}}











} ;# foreach_detail_mode 

finish_test







>
>
>
>
>
>
>
>
>
>




170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    'x a a a a a a a a a a',
    'a a a a a a a a a a a a a a a a a a a x'
  );
}
do_execsql_test 5.1 {
  SELECT snippet(p1, 0, '[', ']', '...', 6) FROM p1('x');
} {{[x] a a a a a...}}

do_execsql_test 5.2 {
  SELECT snippet(p1, 0, '[', ']', NULL, 6) FROM p1('x');
} {{[x] a a a a a}}
do_execsql_test 5.3 {
  SELECT snippet(p1, 0, NULL, ']', '...', 6) FROM p1('x');
} {{x] a a a a a...}}
do_execsql_test 5.4 {
  SELECT snippet(p1, 0, '[', NULL, '...', 6) FROM p1('x');
} {{[x a a a a a...}}

} ;# foreach_detail_mode 

finish_test
Changes to ext/misc/shathree.c.
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
};

/*
** A single step of the Keccak mixing function for a 1600-bit state
*/
static void KeccakF1600Step(SHA3Context *p){
  int i;
  u64 B0, B1, B2, B3, B4;
  u64 C0, C1, C2, C3, C4;
  u64 D0, D1, D2, D3, D4;
  static const u64 RC[] = {
    0x0000000000000001ULL,  0x0000000000008082ULL,
    0x800000000000808aULL,  0x8000000080008000ULL,
    0x000000000000808bULL,  0x0000000080000001ULL,
    0x8000000080008081ULL,  0x8000000000008009ULL,
    0x000000000000008aULL,  0x0000000000000088ULL,
    0x0000000080008009ULL,  0x000000008000000aULL,
    0x000000008000808bULL,  0x800000000000008bULL,
    0x8000000000008089ULL,  0x8000000000008003ULL,
    0x8000000000008002ULL,  0x8000000000000080ULL,
    0x000000000000800aULL,  0x800000008000000aULL,
    0x8000000080008081ULL,  0x8000000000008080ULL,
    0x0000000080000001ULL,  0x8000000080008008ULL
  };
# define A00 (p->u.s[0])
# define A01 (p->u.s[1])
# define A02 (p->u.s[2])
# define A03 (p->u.s[3])
# define A04 (p->u.s[4])
# define A10 (p->u.s[5])
# define A11 (p->u.s[6])
# define A12 (p->u.s[7])
# define A13 (p->u.s[8])
# define A14 (p->u.s[9])
# define A20 (p->u.s[10])
# define A21 (p->u.s[11])
# define A22 (p->u.s[12])
# define A23 (p->u.s[13])
# define A24 (p->u.s[14])
# define A30 (p->u.s[15])
# define A31 (p->u.s[16])
# define A32 (p->u.s[17])
# define A33 (p->u.s[18])
# define A34 (p->u.s[19])
# define A40 (p->u.s[20])
# define A41 (p->u.s[21])
# define A42 (p->u.s[22])
# define A43 (p->u.s[23])
# define A44 (p->u.s[24])
# define ROL64(a,x) ((a<<x)|(a>>(64-x)))

  for(i=0; i<24; i+=4){
    C0 = A00^A10^A20^A30^A40;
    C1 = A01^A11^A21^A31^A41;
    C2 = A02^A12^A22^A32^A42;
    C3 = A03^A13^A23^A33^A43;
    C4 = A04^A14^A24^A34^A44;
    D0 = C4^ROL64(C1, 1);
    D1 = C0^ROL64(C2, 1);
    D2 = C1^ROL64(C3, 1);
    D3 = C2^ROL64(C4, 1);
    D4 = C3^ROL64(C0, 1);

    B0 = (A00^D0);
    B1 = ROL64((A11^D1), 44);
    B2 = ROL64((A22^D2), 43);
    B3 = ROL64((A33^D3), 21);
    B4 = ROL64((A44^D4), 14);
    A00 =   B0 ^((~B1)&  B2 );
    A00 ^= RC[i];
    A11 =   B1 ^((~B2)&  B3 );
    A22 =   B2 ^((~B3)&  B4 );
    A33 =   B3 ^((~B4)&  B0 );
    A44 =   B4 ^((~B0)&  B1 );

    B2 = ROL64((A20^D0), 3);
    B3 = ROL64((A31^D1), 45);
    B4 = ROL64((A42^D2), 61);
    B0 = ROL64((A03^D3), 28);
    B1 = ROL64((A14^D4), 20);
    A20 =   B0 ^((~B1)&  B2 );
    A31 =   B1 ^((~B2)&  B3 );
    A42 =   B2 ^((~B3)&  B4 );
    A03 =   B3 ^((~B4)&  B0 );
    A14 =   B4 ^((~B0)&  B1 );

    B4 = ROL64((A40^D0), 18);
    B0 = ROL64((A01^D1), 1);
    B1 = ROL64((A12^D2), 6);
    B2 = ROL64((A23^D3), 25);
    B3 = ROL64((A34^D4), 8);
    A40 =   B0 ^((~B1)&  B2 );
    A01 =   B1 ^((~B2)&  B3 );
    A12 =   B2 ^((~B3)&  B4 );
    A23 =   B3 ^((~B4)&  B0 );
    A34 =   B4 ^((~B0)&  B1 );

    B1 = ROL64((A10^D0), 36);
    B2 = ROL64((A21^D1), 10);
    B3 = ROL64((A32^D2), 15);
    B4 = ROL64((A43^D3), 56);
    B0 = ROL64((A04^D4), 27);
    A10 =   B0 ^((~B1)&  B2 );
    A21 =   B1 ^((~B2)&  B3 );
    A32 =   B2 ^((~B3)&  B4 );
    A43 =   B3 ^((~B4)&  B0 );
    A04 =   B4 ^((~B0)&  B1 );

    B3 = ROL64((A30^D0), 41);
    B4 = ROL64((A41^D1), 2);
    B0 = ROL64((A02^D2), 62);
    B1 = ROL64((A13^D3), 55);
    B2 = ROL64((A24^D4), 39);
    A30 =   B0 ^((~B1)&  B2 );
    A41 =   B1 ^((~B2)&  B3 );
    A02 =   B2 ^((~B3)&  B4 );
    A13 =   B3 ^((~B4)&  B0 );
    A24 =   B4 ^((~B0)&  B1 );

    C0 = A00^A20^A40^A10^A30;
    C1 = A11^A31^A01^A21^A41;
    C2 = A22^A42^A12^A32^A02;
    C3 = A33^A03^A23^A43^A13;
    C4 = A44^A14^A34^A04^A24;
    D0 = C4^ROL64(C1, 1);
    D1 = C0^ROL64(C2, 1);
    D2 = C1^ROL64(C3, 1);
    D3 = C2^ROL64(C4, 1);
    D4 = C3^ROL64(C0, 1);

    B0 = (A00^D0);
    B1 = ROL64((A31^D1), 44);
    B2 = ROL64((A12^D2), 43);
    B3 = ROL64((A43^D3), 21);
    B4 = ROL64((A24^D4), 14);
    A00 =   B0 ^((~B1)&  B2 );
    A00 ^= RC[i+1];
    A31 =   B1 ^((~B2)&  B3 );
    A12 =   B2 ^((~B3)&  B4 );
    A43 =   B3 ^((~B4)&  B0 );
    A24 =   B4 ^((~B0)&  B1 );

    B2 = ROL64((A40^D0), 3);
    B3 = ROL64((A21^D1), 45);
    B4 = ROL64((A02^D2), 61);
    B0 = ROL64((A33^D3), 28);
    B1 = ROL64((A14^D4), 20);
    A40 =   B0 ^((~B1)&  B2 );
    A21 =   B1 ^((~B2)&  B3 );
    A02 =   B2 ^((~B3)&  B4 );
    A33 =   B3 ^((~B4)&  B0 );
    A14 =   B4 ^((~B0)&  B1 );


    B4 = ROL64((A30^D0), 18);
    B0 = ROL64((A11^D1), 1);
    B1 = ROL64((A42^D2), 6);
    B2 = ROL64((A23^D3), 25);
    B3 = ROL64((A04^D4), 8);
    A30 =   B0 ^((~B1)&  B2 );
    A11 =   B1 ^((~B2)&  B3 );
    A42 =   B2 ^((~B3)&  B4 );
    A23 =   B3 ^((~B4)&  B0 );
    A04 =   B4 ^((~B0)&  B1 );

    B1 = ROL64((A20^D0), 36);
    B2 = ROL64((A01^D1), 10);
    B3 = ROL64((A32^D2), 15);
    B4 = ROL64((A13^D3), 56);
    B0 = ROL64((A44^D4), 27);
    A20 =   B0 ^((~B1)&  B2 );
    A01 =   B1 ^((~B2)&  B3 );
    A32 =   B2 ^((~B3)&  B4 );
    A13 =   B3 ^((~B4)&  B0 );
    A44 =   B4 ^((~B0)&  B1 );

    B3 = ROL64((A10^D0), 41);
    B4 = ROL64((A41^D1), 2);
    B0 = ROL64((A22^D2), 62);
    B1 = ROL64((A03^D3), 55);
    B2 = ROL64((A34^D4), 39);
    A10 =   B0 ^((~B1)&  B2 );
    A41 =   B1 ^((~B2)&  B3 );
    A22 =   B2 ^((~B3)&  B4 );
    A03 =   B3 ^((~B4)&  B0 );
    A34 =   B4 ^((~B0)&  B1 );

    C0 = A00^A40^A30^A20^A10;
    C1 = A31^A21^A11^A01^A41;
    C2 = A12^A02^A42^A32^A22;
    C3 = A43^A33^A23^A13^A03;
    C4 = A24^A14^A04^A44^A34;
    D0 = C4^ROL64(C1, 1);
    D1 = C0^ROL64(C2, 1);
    D2 = C1^ROL64(C3, 1);
    D3 = C2^ROL64(C4, 1);
    D4 = C3^ROL64(C0, 1);

    B0 = (A00^D0);
    B1 = ROL64((A21^D1), 44);
    B2 = ROL64((A42^D2), 43);
    B3 = ROL64((A13^D3), 21);
    B4 = ROL64((A34^D4), 14);
    A00 =   B0 ^((~B1)&  B2 );
    A00 ^= RC[i+2];
    A21 =   B1 ^((~B2)&  B3 );
    A42 =   B2 ^((~B3)&  B4 );
    A13 =   B3 ^((~B4)&  B0 );
    A34 =   B4 ^((~B0)&  B1 );

    B2 = ROL64((A30^D0), 3);
    B3 = ROL64((A01^D1), 45);
    B4 = ROL64((A22^D2), 61);
    B0 = ROL64((A43^D3), 28);
    B1 = ROL64((A14^D4), 20);
    A30 =   B0 ^((~B1)&  B2 );
    A01 =   B1 ^((~B2)&  B3 );
    A22 =   B2 ^((~B3)&  B4 );
    A43 =   B3 ^((~B4)&  B0 );
    A14 =   B4 ^((~B0)&  B1 );


    B4 = ROL64((A10^D0), 18);
    B0 = ROL64((A31^D1), 1);
    B1 = ROL64((A02^D2), 6);
    B2 = ROL64((A23^D3), 25);
    B3 = ROL64((A44^D4), 8);
    A10 =   B0 ^((~B1)&  B2 );
    A31 =   B1 ^((~B2)&  B3 );
    A02 =   B2 ^((~B3)&  B4 );
    A23 =   B3 ^((~B4)&  B0 );
    A44 =   B4 ^((~B0)&  B1 );

    B1 = ROL64((A40^D0), 36);
    B2 = ROL64((A11^D1), 10);
    B3 = ROL64((A32^D2), 15);
    B4 = ROL64((A03^D3), 56);
    B0 = ROL64((A24^D4), 27);
    A40 =   B0 ^((~B1)&  B2 );
    A11 =   B1 ^((~B2)&  B3 );
    A32 =   B2 ^((~B3)&  B4 );
    A03 =   B3 ^((~B4)&  B0 );
    A24 =   B4 ^((~B0)&  B1 );

    B3 = ROL64((A20^D0), 41);
    B4 = ROL64((A41^D1), 2);
    B0 = ROL64((A12^D2), 62);
    B1 = ROL64((A33^D3), 55);
    B2 = ROL64((A04^D4), 39);
    A20 =   B0 ^((~B1)&  B2 );
    A41 =   B1 ^((~B2)&  B3 );
    A12 =   B2 ^((~B3)&  B4 );
    A33 =   B3 ^((~B4)&  B0 );
    A04 =   B4 ^((~B0)&  B1 );

    C0 = A00^A30^A10^A40^A20;
    C1 = A21^A01^A31^A11^A41;
    C2 = A42^A22^A02^A32^A12;
    C3 = A13^A43^A23^A03^A33;
    C4 = A34^A14^A44^A24^A04;
    D0 = C4^ROL64(C1, 1);
    D1 = C0^ROL64(C2, 1);
    D2 = C1^ROL64(C3, 1);
    D3 = C2^ROL64(C4, 1);
    D4 = C3^ROL64(C0, 1);

    B0 = (A00^D0);
    B1 = ROL64((A01^D1), 44);
    B2 = ROL64((A02^D2), 43);
    B3 = ROL64((A03^D3), 21);
    B4 = ROL64((A04^D4), 14);
    A00 =   B0 ^((~B1)&  B2 );
    A00 ^= RC[i+3];
    A01 =   B1 ^((~B2)&  B3 );
    A02 =   B2 ^((~B3)&  B4 );
    A03 =   B3 ^((~B4)&  B0 );
    A04 =   B4 ^((~B0)&  B1 );

    B2 = ROL64((A10^D0), 3);
    B3 = ROL64((A11^D1), 45);
    B4 = ROL64((A12^D2), 61);
    B0 = ROL64((A13^D3), 28);
    B1 = ROL64((A14^D4), 20);
    A10 =   B0 ^((~B1)&  B2 );
    A11 =   B1 ^((~B2)&  B3 );
    A12 =   B2 ^((~B3)&  B4 );
    A13 =   B3 ^((~B4)&  B0 );
    A14 =   B4 ^((~B0)&  B1 );


    B4 = ROL64((A20^D0), 18);
    B0 = ROL64((A21^D1), 1);
    B1 = ROL64((A22^D2), 6);
    B2 = ROL64((A23^D3), 25);
    B3 = ROL64((A24^D4), 8);
    A20 =   B0 ^((~B1)&  B2 );
    A21 =   B1 ^((~B2)&  B3 );
    A22 =   B2 ^((~B3)&  B4 );
    A23 =   B3 ^((~B4)&  B0 );
    A24 =   B4 ^((~B0)&  B1 );

    B1 = ROL64((A30^D0), 36);
    B2 = ROL64((A31^D1), 10);
    B3 = ROL64((A32^D2), 15);
    B4 = ROL64((A33^D3), 56);
    B0 = ROL64((A34^D4), 27);
    A30 =   B0 ^((~B1)&  B2 );
    A31 =   B1 ^((~B2)&  B3 );
    A32 =   B2 ^((~B3)&  B4 );
    A33 =   B3 ^((~B4)&  B0 );
    A34 =   B4 ^((~B0)&  B1 );

    B3 = ROL64((A40^D0), 41);
    B4 = ROL64((A41^D1), 2);
    B0 = ROL64((A42^D2), 62);
    B1 = ROL64((A43^D3), 55);
    B2 = ROL64((A44^D4), 39);
    A40 =   B0 ^((~B1)&  B2 );
    A41 =   B1 ^((~B2)&  B3 );
    A42 =   B2 ^((~B3)&  B4 );
    A43 =   B3 ^((~B4)&  B0 );
    A44 =   B4 ^((~B0)&  B1 );
  }
}

/*
** Initialize a new hash.  iSize determines the size of the hash
** in bits and should be one of 224, 256, 384, or 512.  Or iSize
** can be zero to use the default hash size of 256 bits.







|
|
|














|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|



|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
<
>

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
<
>

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
<
>

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|







74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
};

/*
** A single step of the Keccak mixing function for a 1600-bit state
*/
static void KeccakF1600Step(SHA3Context *p){
  int i;
  u64 b0, b1, b2, b3, b4;
  u64 c0, c1, c2, c3, c4;
  u64 d0, d1, d2, d3, d4;
  static const u64 RC[] = {
    0x0000000000000001ULL,  0x0000000000008082ULL,
    0x800000000000808aULL,  0x8000000080008000ULL,
    0x000000000000808bULL,  0x0000000080000001ULL,
    0x8000000080008081ULL,  0x8000000000008009ULL,
    0x000000000000008aULL,  0x0000000000000088ULL,
    0x0000000080008009ULL,  0x000000008000000aULL,
    0x000000008000808bULL,  0x800000000000008bULL,
    0x8000000000008089ULL,  0x8000000000008003ULL,
    0x8000000000008002ULL,  0x8000000000000080ULL,
    0x000000000000800aULL,  0x800000008000000aULL,
    0x8000000080008081ULL,  0x8000000000008080ULL,
    0x0000000080000001ULL,  0x8000000080008008ULL
  };
# define a00 (p->u.s[0])
# define a01 (p->u.s[1])
# define a02 (p->u.s[2])
# define a03 (p->u.s[3])
# define a04 (p->u.s[4])
# define a10 (p->u.s[5])
# define a11 (p->u.s[6])
# define a12 (p->u.s[7])
# define a13 (p->u.s[8])
# define a14 (p->u.s[9])
# define a20 (p->u.s[10])
# define a21 (p->u.s[11])
# define a22 (p->u.s[12])
# define a23 (p->u.s[13])
# define a24 (p->u.s[14])
# define a30 (p->u.s[15])
# define a31 (p->u.s[16])
# define a32 (p->u.s[17])
# define a33 (p->u.s[18])
# define a34 (p->u.s[19])
# define a40 (p->u.s[20])
# define a41 (p->u.s[21])
# define a42 (p->u.s[22])
# define a43 (p->u.s[23])
# define a44 (p->u.s[24])
# define ROL64(a,x) ((a<<x)|(a>>(64-x)))

  for(i=0; i<24; i+=4){
    c0 = a00^a10^a20^a30^a40;
    c1 = a01^a11^a21^a31^a41;
    c2 = a02^a12^a22^a32^a42;
    c3 = a03^a13^a23^a33^a43;
    c4 = a04^a14^a24^a34^a44;
    d0 = c4^ROL64(c1, 1);
    d1 = c0^ROL64(c2, 1);
    d2 = c1^ROL64(c3, 1);
    d3 = c2^ROL64(c4, 1);
    d4 = c3^ROL64(c0, 1);

    b0 = (a00^d0);
    b1 = ROL64((a11^d1), 44);
    b2 = ROL64((a22^d2), 43);
    b3 = ROL64((a33^d3), 21);
    b4 = ROL64((a44^d4), 14);
    a00 =   b0 ^((~b1)&  b2 );
    a00 ^= RC[i];
    a11 =   b1 ^((~b2)&  b3 );
    a22 =   b2 ^((~b3)&  b4 );
    a33 =   b3 ^((~b4)&  b0 );
    a44 =   b4 ^((~b0)&  b1 );

    b2 = ROL64((a20^d0), 3);
    b3 = ROL64((a31^d1), 45);
    b4 = ROL64((a42^d2), 61);
    b0 = ROL64((a03^d3), 28);
    b1 = ROL64((a14^d4), 20);
    a20 =   b0 ^((~b1)&  b2 );
    a31 =   b1 ^((~b2)&  b3 );
    a42 =   b2 ^((~b3)&  b4 );
    a03 =   b3 ^((~b4)&  b0 );
    a14 =   b4 ^((~b0)&  b1 );

    b4 = ROL64((a40^d0), 18);
    b0 = ROL64((a01^d1), 1);
    b1 = ROL64((a12^d2), 6);
    b2 = ROL64((a23^d3), 25);
    b3 = ROL64((a34^d4), 8);
    a40 =   b0 ^((~b1)&  b2 );
    a01 =   b1 ^((~b2)&  b3 );
    a12 =   b2 ^((~b3)&  b4 );
    a23 =   b3 ^((~b4)&  b0 );
    a34 =   b4 ^((~b0)&  b1 );

    b1 = ROL64((a10^d0), 36);
    b2 = ROL64((a21^d1), 10);
    b3 = ROL64((a32^d2), 15);
    b4 = ROL64((a43^d3), 56);
    b0 = ROL64((a04^d4), 27);
    a10 =   b0 ^((~b1)&  b2 );
    a21 =   b1 ^((~b2)&  b3 );
    a32 =   b2 ^((~b3)&  b4 );
    a43 =   b3 ^((~b4)&  b0 );
    a04 =   b4 ^((~b0)&  b1 );

    b3 = ROL64((a30^d0), 41);
    b4 = ROL64((a41^d1), 2);
    b0 = ROL64((a02^d2), 62);
    b1 = ROL64((a13^d3), 55);
    b2 = ROL64((a24^d4), 39);
    a30 =   b0 ^((~b1)&  b2 );
    a41 =   b1 ^((~b2)&  b3 );
    a02 =   b2 ^((~b3)&  b4 );
    a13 =   b3 ^((~b4)&  b0 );
    a24 =   b4 ^((~b0)&  b1 );

    c0 = a00^a20^a40^a10^a30;
    c1 = a11^a31^a01^a21^a41;
    c2 = a22^a42^a12^a32^a02;
    c3 = a33^a03^a23^a43^a13;
    c4 = a44^a14^a34^a04^a24;
    d0 = c4^ROL64(c1, 1);
    d1 = c0^ROL64(c2, 1);
    d2 = c1^ROL64(c3, 1);
    d3 = c2^ROL64(c4, 1);
    d4 = c3^ROL64(c0, 1);

    b0 = (a00^d0);
    b1 = ROL64((a31^d1), 44);
    b2 = ROL64((a12^d2), 43);
    b3 = ROL64((a43^d3), 21);
    b4 = ROL64((a24^d4), 14);
    a00 =   b0 ^((~b1)&  b2 );
    a00 ^= RC[i+1];
    a31 =   b1 ^((~b2)&  b3 );
    a12 =   b2 ^((~b3)&  b4 );
    a43 =   b3 ^((~b4)&  b0 );
    a24 =   b4 ^((~b0)&  b1 );

    b2 = ROL64((a40^d0), 3);
    b3 = ROL64((a21^d1), 45);
    b4 = ROL64((a02^d2), 61);
    b0 = ROL64((a33^d3), 28);
    b1 = ROL64((a14^d4), 20);
    a40 =   b0 ^((~b1)&  b2 );
    a21 =   b1 ^((~b2)&  b3 );
    a02 =   b2 ^((~b3)&  b4 );
    a33 =   b3 ^((~b4)&  b0 );

    a14 =   b4 ^((~b0)&  b1 );

    b4 = ROL64((a30^d0), 18);
    b0 = ROL64((a11^d1), 1);
    b1 = ROL64((a42^d2), 6);
    b2 = ROL64((a23^d3), 25);
    b3 = ROL64((a04^d4), 8);
    a30 =   b0 ^((~b1)&  b2 );
    a11 =   b1 ^((~b2)&  b3 );
    a42 =   b2 ^((~b3)&  b4 );
    a23 =   b3 ^((~b4)&  b0 );
    a04 =   b4 ^((~b0)&  b1 );

    b1 = ROL64((a20^d0), 36);
    b2 = ROL64((a01^d1), 10);
    b3 = ROL64((a32^d2), 15);
    b4 = ROL64((a13^d3), 56);
    b0 = ROL64((a44^d4), 27);
    a20 =   b0 ^((~b1)&  b2 );
    a01 =   b1 ^((~b2)&  b3 );
    a32 =   b2 ^((~b3)&  b4 );
    a13 =   b3 ^((~b4)&  b0 );
    a44 =   b4 ^((~b0)&  b1 );

    b3 = ROL64((a10^d0), 41);
    b4 = ROL64((a41^d1), 2);
    b0 = ROL64((a22^d2), 62);
    b1 = ROL64((a03^d3), 55);
    b2 = ROL64((a34^d4), 39);
    a10 =   b0 ^((~b1)&  b2 );
    a41 =   b1 ^((~b2)&  b3 );
    a22 =   b2 ^((~b3)&  b4 );
    a03 =   b3 ^((~b4)&  b0 );
    a34 =   b4 ^((~b0)&  b1 );

    c0 = a00^a40^a30^a20^a10;
    c1 = a31^a21^a11^a01^a41;
    c2 = a12^a02^a42^a32^a22;
    c3 = a43^a33^a23^a13^a03;
    c4 = a24^a14^a04^a44^a34;
    d0 = c4^ROL64(c1, 1);
    d1 = c0^ROL64(c2, 1);
    d2 = c1^ROL64(c3, 1);
    d3 = c2^ROL64(c4, 1);
    d4 = c3^ROL64(c0, 1);

    b0 = (a00^d0);
    b1 = ROL64((a21^d1), 44);
    b2 = ROL64((a42^d2), 43);
    b3 = ROL64((a13^d3), 21);
    b4 = ROL64((a34^d4), 14);
    a00 =   b0 ^((~b1)&  b2 );
    a00 ^= RC[i+2];
    a21 =   b1 ^((~b2)&  b3 );
    a42 =   b2 ^((~b3)&  b4 );
    a13 =   b3 ^((~b4)&  b0 );
    a34 =   b4 ^((~b0)&  b1 );

    b2 = ROL64((a30^d0), 3);
    b3 = ROL64((a01^d1), 45);
    b4 = ROL64((a22^d2), 61);
    b0 = ROL64((a43^d3), 28);
    b1 = ROL64((a14^d4), 20);
    a30 =   b0 ^((~b1)&  b2 );
    a01 =   b1 ^((~b2)&  b3 );
    a22 =   b2 ^((~b3)&  b4 );
    a43 =   b3 ^((~b4)&  b0 );

    a14 =   b4 ^((~b0)&  b1 );

    b4 = ROL64((a10^d0), 18);
    b0 = ROL64((a31^d1), 1);
    b1 = ROL64((a02^d2), 6);
    b2 = ROL64((a23^d3), 25);
    b3 = ROL64((a44^d4), 8);
    a10 =   b0 ^((~b1)&  b2 );
    a31 =   b1 ^((~b2)&  b3 );
    a02 =   b2 ^((~b3)&  b4 );
    a23 =   b3 ^((~b4)&  b0 );
    a44 =   b4 ^((~b0)&  b1 );

    b1 = ROL64((a40^d0), 36);
    b2 = ROL64((a11^d1), 10);
    b3 = ROL64((a32^d2), 15);
    b4 = ROL64((a03^d3), 56);
    b0 = ROL64((a24^d4), 27);
    a40 =   b0 ^((~b1)&  b2 );
    a11 =   b1 ^((~b2)&  b3 );
    a32 =   b2 ^((~b3)&  b4 );
    a03 =   b3 ^((~b4)&  b0 );
    a24 =   b4 ^((~b0)&  b1 );

    b3 = ROL64((a20^d0), 41);
    b4 = ROL64((a41^d1), 2);
    b0 = ROL64((a12^d2), 62);
    b1 = ROL64((a33^d3), 55);
    b2 = ROL64((a04^d4), 39);
    a20 =   b0 ^((~b1)&  b2 );
    a41 =   b1 ^((~b2)&  b3 );
    a12 =   b2 ^((~b3)&  b4 );
    a33 =   b3 ^((~b4)&  b0 );
    a04 =   b4 ^((~b0)&  b1 );

    c0 = a00^a30^a10^a40^a20;
    c1 = a21^a01^a31^a11^a41;
    c2 = a42^a22^a02^a32^a12;
    c3 = a13^a43^a23^a03^a33;
    c4 = a34^a14^a44^a24^a04;
    d0 = c4^ROL64(c1, 1);
    d1 = c0^ROL64(c2, 1);
    d2 = c1^ROL64(c3, 1);
    d3 = c2^ROL64(c4, 1);
    d4 = c3^ROL64(c0, 1);

    b0 = (a00^d0);
    b1 = ROL64((a01^d1), 44);
    b2 = ROL64((a02^d2), 43);
    b3 = ROL64((a03^d3), 21);
    b4 = ROL64((a04^d4), 14);
    a00 =   b0 ^((~b1)&  b2 );
    a00 ^= RC[i+3];
    a01 =   b1 ^((~b2)&  b3 );
    a02 =   b2 ^((~b3)&  b4 );
    a03 =   b3 ^((~b4)&  b0 );
    a04 =   b4 ^((~b0)&  b1 );

    b2 = ROL64((a10^d0), 3);
    b3 = ROL64((a11^d1), 45);
    b4 = ROL64((a12^d2), 61);
    b0 = ROL64((a13^d3), 28);
    b1 = ROL64((a14^d4), 20);
    a10 =   b0 ^((~b1)&  b2 );
    a11 =   b1 ^((~b2)&  b3 );
    a12 =   b2 ^((~b3)&  b4 );
    a13 =   b3 ^((~b4)&  b0 );

    a14 =   b4 ^((~b0)&  b1 );

    b4 = ROL64((a20^d0), 18);
    b0 = ROL64((a21^d1), 1);
    b1 = ROL64((a22^d2), 6);
    b2 = ROL64((a23^d3), 25);
    b3 = ROL64((a24^d4), 8);
    a20 =   b0 ^((~b1)&  b2 );
    a21 =   b1 ^((~b2)&  b3 );
    a22 =   b2 ^((~b3)&  b4 );
    a23 =   b3 ^((~b4)&  b0 );
    a24 =   b4 ^((~b0)&  b1 );

    b1 = ROL64((a30^d0), 36);
    b2 = ROL64((a31^d1), 10);
    b3 = ROL64((a32^d2), 15);
    b4 = ROL64((a33^d3), 56);
    b0 = ROL64((a34^d4), 27);
    a30 =   b0 ^((~b1)&  b2 );
    a31 =   b1 ^((~b2)&  b3 );
    a32 =   b2 ^((~b3)&  b4 );
    a33 =   b3 ^((~b4)&  b0 );
    a34 =   b4 ^((~b0)&  b1 );

    b3 = ROL64((a40^d0), 41);
    b4 = ROL64((a41^d1), 2);
    b0 = ROL64((a42^d2), 62);
    b1 = ROL64((a43^d3), 55);
    b2 = ROL64((a44^d4), 39);
    a40 =   b0 ^((~b1)&  b2 );
    a41 =   b1 ^((~b2)&  b3 );
    a42 =   b2 ^((~b3)&  b4 );
    a43 =   b3 ^((~b4)&  b0 );
    a44 =   b4 ^((~b0)&  b1 );
  }
}

/*
** Initialize a new hash.  iSize determines the size of the hash
** in bits and should be one of 224, 256, 384, or 512.  Or iSize
** can be zero to use the default hash size of 256 bits.
Changes to main.mk.
688
689
690
691
692
693
694
695


696
697
698
699
700
701
702
	./mkkeywordhash >keywordhash.h

# Source files that go into making shell.c
SHELL_SRC = \
	$(TOP)/src/shell.c.in \
	$(TOP)/ext/misc/shathree.c \
	$(TOP)/ext/misc/fileio.c \
	$(TOP)/ext/misc/completion.c



shell.c:	$(SHELL_SRC) $(TOP)/tool/mkshellc.tcl
	tclsh $(TOP)/tool/mkshellc.tcl >shell.c



# Rules to build the extension objects.







|
>
>







688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
	./mkkeywordhash >keywordhash.h

# Source files that go into making shell.c
SHELL_SRC = \
	$(TOP)/src/shell.c.in \
	$(TOP)/ext/misc/shathree.c \
	$(TOP)/ext/misc/fileio.c \
	$(TOP)/ext/misc/completion.c \
	$(TOP)/ext/expert/sqlite3expert.c \
	$(TOP)/ext/expert/sqlite3expert.h

shell.c:	$(SHELL_SRC) $(TOP)/tool/mkshellc.tcl
	tclsh $(TOP)/tool/mkshellc.tcl >shell.c



# Rules to build the extension objects.
Changes to src/build.c.
1217
1218
1219
1220
1221
1222
1223
1224





1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
**
** Default value expressions must be constant.  Raise an exception if this
** is not the case.
**
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.
*/
void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){





  Table *p;
  Column *pCol;
  sqlite3 *db = pParse->db;
  p = pParse->pNewTable;
  if( p!=0 ){
    pCol = &(p->aCol[p->nCol-1]);
    if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
      sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
          pCol->zName);
    }else{
      /* A copy of pExpr is used instead of the original, as pExpr contains
      ** tokens that point to volatile memory. The 'span' of the expression
      ** is required by pragma table_info.
      */
      Expr x;
      sqlite3ExprDelete(db, pCol->pDflt);
      memset(&x, 0, sizeof(x));
      x.op = TK_SPAN;
      x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
                                    (int)(pSpan->zEnd - pSpan->zStart));
      x.pLeft = pSpan->pExpr;
      x.flags = EP_Skip;
      pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
      sqlite3DbFree(db, x.u.zToken);
    }
  }
  sqlite3ExprDelete(db, pSpan->pExpr);
}

/*
** Backwards Compatibility Hack:
** 
** Historical versions of SQLite accepted strings as column names in
** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:







|
>
>
>
>
>






|




|
<





|
<
|





|







1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247

1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
**
** Default value expressions must be constant.  Raise an exception if this
** is not the case.
**
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.
*/
void sqlite3AddDefaultValue(
  Parse *pParse,           /* Parsing context */
  Expr *pExpr,             /* The parsed expression of the default value */
  const char *zStart,      /* Start of the default value text */
  const char *zEnd         /* First character past end of defaut value text */
){
  Table *p;
  Column *pCol;
  sqlite3 *db = pParse->db;
  p = pParse->pNewTable;
  if( p!=0 ){
    pCol = &(p->aCol[p->nCol-1]);
    if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){
      sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
          pCol->zName);
    }else{
      /* A copy of pExpr is used instead of the original, as pExpr contains
      ** tokens that point to volatile memory.	

      */
      Expr x;
      sqlite3ExprDelete(db, pCol->pDflt);
      memset(&x, 0, sizeof(x));
      x.op = TK_SPAN;
      x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);

      x.pLeft = pExpr;
      x.flags = EP_Skip;
      pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
      sqlite3DbFree(db, x.u.zToken);
    }
  }
  sqlite3ExprDelete(db, pExpr);
}

/*
** Backwards Compatibility Hack:
** 
** Historical versions of SQLite accepted strings as column names in
** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980





1981
1982
1983
1984
1985
1986
1987
      assert(pParse->nTab==1);
      sqlite3MayAbort(pParse);
      sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
      sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
      pParse->nTab = 2;
      addrTop = sqlite3VdbeCurrentAddr(v) + 1;
      sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
      sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
      sqlite3Select(pParse, pSelect, &dest);
      sqlite3VdbeEndCoroutine(v, regYield);
      sqlite3VdbeJumpHere(v, addrTop - 1);
      if( pParse->nErr ) return;
      pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
      if( pSelTab==0 ) return;
      assert( p->aCol==0 );
      p->nCol = pSelTab->nCol;
      p->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;
      pSelTab->aCol = 0;
      sqlite3DeleteTable(db, pSelTab);





      addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
      VdbeCoverage(v);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
      sqlite3TableAffinity(v, p, 0);
      sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
      sqlite3VdbeGoto(v, addrInsLoop);







<
<
<
<









>
>
>
>
>







1964
1965
1966
1967
1968
1969
1970




1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
      assert(pParse->nTab==1);
      sqlite3MayAbort(pParse);
      sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
      sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
      pParse->nTab = 2;
      addrTop = sqlite3VdbeCurrentAddr(v) + 1;
      sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);




      if( pParse->nErr ) return;
      pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
      if( pSelTab==0 ) return;
      assert( p->aCol==0 );
      p->nCol = pSelTab->nCol;
      p->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;
      pSelTab->aCol = 0;
      sqlite3DeleteTable(db, pSelTab);
      sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
      sqlite3Select(pParse, pSelect, &dest);
      if( pParse->nErr ) return;
      sqlite3VdbeEndCoroutine(v, regYield);
      sqlite3VdbeJumpHere(v, addrTop - 1);
      addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
      VdbeCoverage(v);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
      sqlite3TableAffinity(v, p, 0);
      sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
      sqlite3VdbeGoto(v, addrInsLoop);
Changes to src/expr.c.
1650
1651
1652
1653
1654
1655
1656

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
** pList might be NULL following an OOM error.  But pSpan should never be
** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
** is set.
*/
void sqlite3ExprListSetSpan(
  Parse *pParse,          /* Parsing context */
  ExprList *pList,        /* List to which to add the span. */

  ExprSpan *pSpan         /* The span to be added */
){
  sqlite3 *db = pParse->db;
  assert( pList!=0 || db->mallocFailed!=0 );
  if( pList ){
    struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
    assert( pList->nExpr>0 );
    assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
    sqlite3DbFree(db, pItem->zSpan);
    pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
                                    (int)(pSpan->zEnd - pSpan->zStart));
  }
}

/*
** If the expression list pEList contains more than iLimit elements,
** leave an error message in pParse.
*/







>
|






<

|
<







1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664

1665
1666

1667
1668
1669
1670
1671
1672
1673
** pList might be NULL following an OOM error.  But pSpan should never be
** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
** is set.
*/
void sqlite3ExprListSetSpan(
  Parse *pParse,          /* Parsing context */
  ExprList *pList,        /* List to which to add the span. */
  const char *zStart,     /* Start of the span */
  const char *zEnd        /* End of the span */
){
  sqlite3 *db = pParse->db;
  assert( pList!=0 || db->mallocFailed!=0 );
  if( pList ){
    struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
    assert( pList->nExpr>0 );

    sqlite3DbFree(db, pItem->zSpan);
    pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);

  }
}

/*
** If the expression list pEList contains more than iLimit elements,
** leave an error message in pParse.
*/
Changes to src/loadext.c.
492
493
494
495
496
497
498

499

500
501
502
503
504
505
506
507

  zEntry = zProc ? zProc : "sqlite3_extension_init";

  handle = sqlite3OsDlOpen(pVfs, zFile);
#if SQLITE_OS_UNIX || SQLITE_OS_WIN
  for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){
    char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]);

    if( zAltFile==0 ) return SQLITE_NOMEM_BKPT;

    handle = sqlite3OsDlOpen(pVfs, zAltFile);
    sqlite3_free(zAltFile);
  }
#endif
  if( handle==0 ){
    if( pzErrMsg ){
      *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg);
      if( zErrmsg ){







>

>
|







492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

  zEntry = zProc ? zProc : "sqlite3_extension_init";

  handle = sqlite3OsDlOpen(pVfs, zFile);
#if SQLITE_OS_UNIX || SQLITE_OS_WIN
  for(ii=0; ii<ArraySize(azEndings) && handle==0; ii++){
    char *zAltFile = sqlite3_mprintf("%s.%s", zFile, azEndings[ii]);
    int bExists = 0;
    if( zAltFile==0 ) return SQLITE_NOMEM_BKPT;
    sqlite3OsAccess(pVfs, zAltFile, SQLITE_ACCESS_EXISTS, &bExists);
    if( bExists )  handle = sqlite3OsDlOpen(pVfs, zAltFile);
    sqlite3_free(zAltFile);
  }
#endif
  if( handle==0 ){
    if( pzErrMsg ){
      *pzErrMsg = zErrmsg = sqlite3_malloc64(nMsg);
      if( zErrmsg ){
Changes to src/main.c.
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

835
836
837
838
839
840
841
    case SQLITE_DBCONFIG_LOOKASIDE: {
      void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
      int sz = va_arg(ap, int);       /* IMP: R-47871-25994 */
      int cnt = va_arg(ap, int);      /* IMP: R-04460-53386 */
      rc = setupLookaside(db, pBuf, sz, cnt);
      break;
    }
    case SQLITE_DBCONFIG_FULL_EQP: {
      int onoff = va_arg(ap, int);
      int *pRes = va_arg(ap, int*);
      if( onoff>0 ){
        db->bFullEQP = 1;
      }else if( onoff==0 ){
        db->bFullEQP = 0;
      }
      sqlite3ExpirePreparedStatements(db);
      if( pRes ){
        *pRes = db->bFullEQP;
      }
      rc = SQLITE_OK;
      break;
    }
    default: {
      static const struct {
        int op;      /* The opcode */
        u32 mask;    /* Mask of the bit in sqlite3.flags to set/clear */
      } aFlagOp[] = {
        { SQLITE_DBCONFIG_ENABLE_FKEY,           SQLITE_ForeignKeys    },
        { SQLITE_DBCONFIG_ENABLE_TRIGGER,        SQLITE_EnableTrigger  },
        { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer  },
        { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension  },
        { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE,      SQLITE_NoCkptOnClose  },
        { SQLITE_DBCONFIG_ENABLE_QPSG,           SQLITE_EnableQPSG     },

      };
      unsigned int i;
      rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
      for(i=0; i<ArraySize(aFlagOp); i++){
        if( aFlagOp[i].op==op ){
          int onoff = va_arg(ap, int);
          int *pRes = va_arg(ap, int*);







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<











>







802
803
804
805
806
807
808















809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
    case SQLITE_DBCONFIG_LOOKASIDE: {
      void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
      int sz = va_arg(ap, int);       /* IMP: R-47871-25994 */
      int cnt = va_arg(ap, int);      /* IMP: R-04460-53386 */
      rc = setupLookaside(db, pBuf, sz, cnt);
      break;
    }















    default: {
      static const struct {
        int op;      /* The opcode */
        u32 mask;    /* Mask of the bit in sqlite3.flags to set/clear */
      } aFlagOp[] = {
        { SQLITE_DBCONFIG_ENABLE_FKEY,           SQLITE_ForeignKeys    },
        { SQLITE_DBCONFIG_ENABLE_TRIGGER,        SQLITE_EnableTrigger  },
        { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer  },
        { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension  },
        { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE,      SQLITE_NoCkptOnClose  },
        { SQLITE_DBCONFIG_ENABLE_QPSG,           SQLITE_EnableQPSG     },
        { SQLITE_DBCONFIG_TRIGGER_EQP,           SQLITE_TriggerEQP     },
      };
      unsigned int i;
      rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
      for(i=0; i<ArraySize(aFlagOp); i++){
        if( aFlagOp[i].op==op ){
          int onoff = va_arg(ap, int);
          int *pRes = va_arg(ap, int*);
3921
3922
3923
3924
3925
3926
3927
















3928
3929
3930
3931
3932
3933
3934
      db->init.newTnum = va_arg(ap,int);
      if( db->init.busy==0 && db->init.newTnum>0 ){
        sqlite3ResetAllSchemasOfConnection(db);
      }
      sqlite3_mutex_leave(db->mutex);
      break;
    }
















  }
  va_end(ap);
#endif /* SQLITE_UNTESTABLE */
  return rc;
}

/*







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
      db->init.newTnum = va_arg(ap,int);
      if( db->init.busy==0 && db->init.newTnum>0 ){
        sqlite3ResetAllSchemasOfConnection(db);
      }
      sqlite3_mutex_leave(db->mutex);
      break;
    }

#if defined(YYCOVERAGE)
    /*  sqlite3_test_control(SQLITE_TESTCTRL_PARSER_COVERAGE, FILE *out)
    **
    ** This test control (only available when SQLite is compiled with
    ** -DYYCOVERAGE) writes a report onto "out" that shows all
    ** state/lookahead combinations in the parser state machine
    ** which are never exercised.  If any state is missed, make the
    ** return code SQLITE_ERROR.
    */
    case SQLITE_TESTCTRL_PARSER_COVERAGE: {
      FILE *out = va_arg(ap, FILE*);
      if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR;
      break;
    }
#endif /* defined(YYCOVERAGE) */
  }
  va_end(ap);
#endif /* SQLITE_UNTESTABLE */
  return rc;
}

/*
Changes to src/malloc.c.
622
623
624
625
626
627
628













629
630
631
632
633
634
635
  zNew = sqlite3DbMallocRawNN(db, n+1);
  if( zNew ){
    memcpy(zNew, z, (size_t)n);
    zNew[n] = 0;
  }
  return zNew;
}














/*
** Free any prior content in *pz and replace it with a copy of zNew.
*/
void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
  sqlite3DbFree(db, *pz);
  *pz = sqlite3DbStrDup(db, zNew);







>
>
>
>
>
>
>
>
>
>
>
>
>







622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
  zNew = sqlite3DbMallocRawNN(db, n+1);
  if( zNew ){
    memcpy(zNew, z, (size_t)n);
    zNew[n] = 0;
  }
  return zNew;
}

/*
** The text between zStart and zEnd represents a phrase within a larger
** SQL statement.  Make a copy of this phrase in space obtained form
** sqlite3DbMalloc().  Omit leading and trailing whitespace.
*/
char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
  int n;
  while( sqlite3Isspace(zStart[0]) ) zStart++;
  n = (int)(zEnd - zStart);
  while( n>0 && sqlite3Isspace(zStart[n-1]) ) n--;
  return sqlite3DbStrNDup(db, zStart, n);
}

/*
** Free any prior content in *pz and replace it with a copy of zNew.
*/
void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
  sqlite3DbFree(db, *pz);
  *pz = sqlite3DbStrDup(db, zNew);
Changes to src/parse.y.
268
269
270
271
272
273
274



















275
276
277
278
279
280
281

282
283


284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
  A.n = (int)(&Y.z[Y.n] - A.z);
}
%type typename {Token}
typename(A) ::= ids(A).
typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
signed ::= plus_num.
signed ::= minus_num.




















// "carglist" is a list of additional constraints that come after the
// column name and column type in a CREATE TABLE statement.
//
carglist ::= carglist ccons.
carglist ::= .
ccons ::= CONSTRAINT nm(X).           {pParse->constraintName = X;}

ccons ::= DEFAULT term(X).            {sqlite3AddDefaultValue(pParse,&X);}
ccons ::= DEFAULT LP expr(X) RP.      {sqlite3AddDefaultValue(pParse,&X);}


ccons ::= DEFAULT PLUS term(X).       {sqlite3AddDefaultValue(pParse,&X);}
ccons ::= DEFAULT MINUS(A) term(X).      {
  ExprSpan v;
  v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0);
  v.zStart = A.z;
  v.zEnd = X.zEnd;
  sqlite3AddDefaultValue(pParse,&v);
}
ccons ::= DEFAULT id(X).              {
  ExprSpan v;
  spanExpr(&v, pParse, TK_STRING, X);
  sqlite3AddDefaultValue(pParse,&v);
}

// In addition to the type name, we also care about the primary key and
// UNIQUE constraints.
//
ccons ::= NULL onconf.
ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
                                 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0,
                                   SQLITE_IDXTYPE_UNIQUE);}
ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X.pExpr);}
ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
                                 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}

// The optional AUTOINCREMENT keyword
%type autoinc {int}







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







>
|
|
>
>
|
|
<
|
<
<
|

|
<
|
|











|







268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

308


309
310
311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
  A.n = (int)(&Y.z[Y.n] - A.z);
}
%type typename {Token}
typename(A) ::= ids(A).
typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
signed ::= plus_num.
signed ::= minus_num.

// The scanpt non-terminal takes a value which is a pointer to the
// input text just past the last token that has been shifted into
// the parser.  By surrounding some phrase in the grammar with two
// scanpt non-terminals, we can capture the input text for that phrase.
// For example:
//
//      something ::= .... scanpt(A) phrase scanpt(Z).
//
// The text that is parsed as "phrase" is a string starting at A
// and containing (int)(Z-A) characters.  There might be some extra
// whitespace on either end of the text, but that can be removed in
// post-processing, if needed.
//
%type scanpt {const char*}
scanpt(A) ::= . {
  assert( yyLookahead!=YYNOCODE );
  A = yyLookaheadToken.z;
}

// "carglist" is a list of additional constraints that come after the
// column name and column type in a CREATE TABLE statement.
//
carglist ::= carglist ccons.
carglist ::= .
ccons ::= CONSTRAINT nm(X).           {pParse->constraintName = X;}
ccons ::= DEFAULT scanpt(A) term(X) scanpt(Z).
                            {sqlite3AddDefaultValue(pParse,X,A,Z);}
ccons ::= DEFAULT LP(A) expr(X) RP(Z).
                            {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);}
ccons ::= DEFAULT PLUS(A) term(X) scanpt(Z).
                            {sqlite3AddDefaultValue(pParse,X,A.z,Z);}
ccons ::= DEFAULT MINUS(A) term(X) scanpt(Z).      {

  Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0);


  sqlite3AddDefaultValue(pParse,p,A.z,Z);
}
ccons ::= DEFAULT scanpt id(X).       {

  Expr *p = tokenExpr(pParse, TK_STRING, X);
  sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n);
}

// In addition to the type name, we also care about the primary key and
// UNIQUE constraints.
//
ccons ::= NULL onconf.
ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
                                 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0,
                                   SQLITE_IDXTYPE_UNIQUE);}
ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X);}
ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
                                 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}

// The optional AUTOINCREMENT keyword
%type autoinc {int}
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
                                 {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
                                 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0,
                                       SQLITE_IDXTYPE_UNIQUE);}
tcons ::= CHECK LP expr(E) RP onconf.
                                 {sqlite3AddCheckConstraint(pParse,E.pExpr);}
tcons ::= FOREIGN KEY LP eidlist(FA) RP
          REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
    sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
    sqlite3DeferForeignKey(pParse, D);
}
%type defer_subclause_opt {int}
defer_subclause_opt(A) ::= .                    {A = 0;}







|







369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
                                 {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
                                 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0,
                                       SQLITE_IDXTYPE_UNIQUE);}
tcons ::= CHECK LP expr(E) RP onconf.
                                 {sqlite3AddCheckConstraint(pParse,E);}
tcons ::= FOREIGN KEY LP eidlist(FA) RP
          REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
    sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
    sqlite3DeferForeignKey(pParse, D);
}
%type defer_subclause_opt {int}
defer_subclause_opt(A) ::= .                    {A = 0;}
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
//
%type selcollist {ExprList*}
%destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
%type sclp {ExprList*}
%destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
sclp(A) ::= selcollist(A) COMMA.
sclp(A) ::= .                                {A = 0;}
selcollist(A) ::= sclp(A) expr(X) as(Y).     {
   A = sqlite3ExprListAppend(pParse, A, X.pExpr);
   if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
   sqlite3ExprListSetSpan(pParse,A,&X);
}
selcollist(A) ::= sclp(A) STAR. {
  Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
  A = sqlite3ExprListAppend(pParse, A, p);
}
selcollist(A) ::= sclp(A) nm(X) DOT STAR. {
  Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
  Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
  Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
  A = sqlite3ExprListAppend(pParse,A, pDot);
}

// An option "AS <id>" phrase that can follow one of the expressions that







|
|

|

|



|







563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
//
%type selcollist {ExprList*}
%destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
%type sclp {ExprList*}
%destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
sclp(A) ::= selcollist(A) COMMA.
sclp(A) ::= .                                {A = 0;}
selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y).     {
   A = sqlite3ExprListAppend(pParse, A, X);
   if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
   sqlite3ExprListSetSpan(pParse,A,B,Z);
}
selcollist(A) ::= sclp(A) scanpt STAR. {
  Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
  A = sqlite3ExprListAppend(pParse, A, p);
}
selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. {
  Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
  Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
  Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
  A = sqlite3ExprListAppend(pParse,A, pDot);
}

// An option "AS <id>" phrase that can follow one of the expressions that
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
                  {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
                  {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}

%type on_opt {Expr*}
%destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
on_opt(N) ::= ON expr(E).   {N = E.pExpr;}
on_opt(N) ::= .             {N = 0;}

// Note that this block abuses the Token type just a little. If there is
// no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
// there is an INDEXED BY clause, then the token is populated as per normal,
// with z pointing to the token data and n containing the number of bytes
// in the token.







|







670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
                  {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
                  {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}

%type on_opt {Expr*}
%destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
on_opt(N) ::= ON expr(E).   {N = E;}
on_opt(N) ::= .             {N = 0;}

// Note that this block abuses the Token type just a little. If there is
// no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
// there is an INDEXED BY clause, then the token is populated as per normal,
// with z pointing to the token data and n containing the number of bytes
// in the token.
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
//
%type sortlist {ExprList*}
%destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}

orderby_opt(A) ::= .                          {A = 0;}
orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). {
  A = sqlite3ExprListAppend(pParse,A,Y.pExpr);
  sqlite3ExprListSetSortOrder(A,Z);
}
sortlist(A) ::= expr(Y) sortorder(Z). {
  A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/
  sqlite3ExprListSetSortOrder(A,Z);
}

%type sortorder {int}

sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
sortorder(A) ::= .              {A = SQLITE_SO_UNDEFINED;}

%type groupby_opt {ExprList*}
%destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
groupby_opt(A) ::= .                      {A = 0;}
groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}

%type having_opt {Expr*}
%destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
having_opt(A) ::= .                {A = 0;}
having_opt(A) ::= HAVING expr(X).  {A = X.pExpr;}

%type limit_opt {Expr*}

// The destructor for limit_opt will never fire in the current grammar.
// The limit_opt non-terminal only occurs at the end of a single production
// rule for SELECT statements.  As soon as the rule that create the 
// limit_opt non-terminal reduces, the SELECT statement rule will also
// reduce.  So there is never a limit_opt non-terminal on the stack 
// except as a transient.  So there is never anything to destroy.
//
//%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);}
limit_opt(A) ::= .       {A = 0;}
limit_opt(A) ::= LIMIT expr(X).
                         {A = sqlite3PExpr(pParse,TK_LIMIT,X.pExpr,0);}
limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 
                         {A = sqlite3PExpr(pParse,TK_LIMIT,X.pExpr,Y.pExpr);}
limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 
                         {A = sqlite3PExpr(pParse,TK_LIMIT,Y.pExpr,X.pExpr);}

/////////////////////////// The DELETE statement /////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 
        orderby_opt(O) limit_opt(L). {
  sqlite3WithPush(pParse, C, 1);







|



|

















|













|

|

|







707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
//
%type sortlist {ExprList*}
%destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}

orderby_opt(A) ::= .                          {A = 0;}
orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). {
  A = sqlite3ExprListAppend(pParse,A,Y);
  sqlite3ExprListSetSortOrder(A,Z);
}
sortlist(A) ::= expr(Y) sortorder(Z). {
  A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/
  sqlite3ExprListSetSortOrder(A,Z);
}

%type sortorder {int}

sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
sortorder(A) ::= .              {A = SQLITE_SO_UNDEFINED;}

%type groupby_opt {ExprList*}
%destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
groupby_opt(A) ::= .                      {A = 0;}
groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}

%type having_opt {Expr*}
%destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
having_opt(A) ::= .                {A = 0;}
having_opt(A) ::= HAVING expr(X).  {A = X;}

%type limit_opt {Expr*}

// The destructor for limit_opt will never fire in the current grammar.
// The limit_opt non-terminal only occurs at the end of a single production
// rule for SELECT statements.  As soon as the rule that create the 
// limit_opt non-terminal reduces, the SELECT statement rule will also
// reduce.  So there is never a limit_opt non-terminal on the stack 
// except as a transient.  So there is never anything to destroy.
//
//%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);}
limit_opt(A) ::= .       {A = 0;}
limit_opt(A) ::= LIMIT expr(X).
                         {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);}
limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 
                         {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);}
limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 
                         {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);}

/////////////////////////// The DELETE statement /////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 
        orderby_opt(O) limit_opt(L). {
  sqlite3WithPush(pParse, C, 1);
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
}
%endif

%type where_opt {Expr*}
%destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}

where_opt(A) ::= .                    {A = 0;}
where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}

////////////////////////// The UPDATE command ////////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
        where_opt(W) orderby_opt(O) limit_opt(L).  {
  sqlite3WithPush(pParse, C, 1);







|







771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
}
%endif

%type where_opt {Expr*}
%destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}

where_opt(A) ::= .                    {A = 0;}
where_opt(A) ::= WHERE expr(X).       {A = X;}

////////////////////////// The UPDATE command ////////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
        where_opt(W) orderby_opt(O) limit_opt(L).  {
  sqlite3WithPush(pParse, C, 1);
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
}
%endif

%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}

setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, A, Y.pExpr);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
  A = sqlite3ExprListAppendVector(pParse, A, X, Y.pExpr);
}
setlist(A) ::= nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
  A = sqlite3ExprListAppendVector(pParse, 0, X, Y.pExpr);
}

////////////////////////// The INSERT command /////////////////////////////////
//
cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). {
  sqlite3WithPush(pParse, W, 1);
  sqlite3Insert(pParse, X, S, F, R);







|



|


|



|







798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
}
%endif

%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}

setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, A, Y);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
  A = sqlite3ExprListAppendVector(pParse, A, X, Y);
}
setlist(A) ::= nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, 0, Y);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
  A = sqlite3ExprListAppendVector(pParse, 0, X, Y);
}

////////////////////////// The INSERT command /////////////////////////////////
//
cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). {
  sqlite3WithPush(pParse, W, 1);
  sqlite3Insert(pParse, X, S, F, R);
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    {A = sqlite3IdListAppend(pParse->db,A,&Y);}
idlist(A) ::= nm(Y).
    {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/}

/////////////////////////// Expression Processing /////////////////////////////
//

%type expr {ExprSpan}
%destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
%type term {ExprSpan}
%destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}

%include {
  /* This is a utility routine used to set the ExprSpan.zStart and
  ** ExprSpan.zEnd values of pOut so that the span covers the complete
  ** range of text beginning with pStart and going to the end of pEnd.
  */
  static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
    pOut->zStart = pStart->z;
    pOut->zEnd = &pEnd->z[pEnd->n];
  }

  /* Construct a new Expr object from a single identifier.  Use the
  ** new Expr to populate pOut.  Set the span of pOut to be the identifier
  ** that created the expression.
  */
  static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token t){
    Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
    if( p ){
      memset(p, 0, sizeof(Expr));
      p->op = (u8)op;
      p->flags = EP_Leaf;
      p->iAgg = -1;
      p->u.zToken = (char*)&p[1];
      memcpy(p->u.zToken, t.z, t.n);
      p->u.zToken[t.n] = 0;
      if( sqlite3Isquote(p->u.zToken[0]) ){
        if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted;
        sqlite3Dequote(p->u.zToken);
      }
#if SQLITE_MAX_EXPR_DEPTH>0
      p->nHeight = 1;
#endif  
    }
    pOut->pExpr = p;
    pOut->zStart = t.z;
    pOut->zEnd = &t.z[t.n];
  }
}

expr(A) ::= term(A).
expr(A) ::= LP(B) expr(X) RP(E).
            {spanSet(&A,&B,&E); /*A-overwrites-B*/  A.pExpr = X.pExpr;}
expr(A) ::= id(X).          {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/}
expr(A) ::= JOIN_KW(X).     {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/}
expr(A) ::= nm(X) DOT nm(Y). {
  Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
  Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
  spanSet(&A,&X,&Y); /*A-overwrites-X*/
  A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
}
expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
  Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
  Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
  Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1);
  Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
  spanSet(&A,&X,&Z); /*A-overwrites-X*/
  A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
}
term(A) ::= NULL|FLOAT|BLOB(X). {spanExpr(&A,pParse,@X,X); /*A-overwrites-X*/}
term(A) ::= STRING(X).          {spanExpr(&A,pParse,@X,X); /*A-overwrites-X*/}
term(A) ::= INTEGER(X). {
  A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1);
  A.zStart = X.z;
  A.zEnd = X.z + X.n;
}
expr(A) ::= VARIABLE(X).     {
  if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
    u32 n = X.n;
    spanExpr(&A, pParse, TK_VARIABLE, X);
    sqlite3ExprAssignVarNumber(pParse, A.pExpr, n);
  }else{
    /* When doing a nested parse, one can include terms in an expression
    ** that look like this:   #1 #2 ...  These terms refer to registers
    ** in the virtual machine.  #N is the N-th register. */
    Token t = X; /*A-overwrites-X*/
    assert( t.n>=2 );
    spanSet(&A, &t, &t);
    if( pParse->nested==0 ){
      sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
      A.pExpr = 0;
    }else{
      A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
      if( A.pExpr ) sqlite3GetInt32(&t.z[1], &A.pExpr->iTable);
    }
  }
}
expr(A) ::= expr(A) COLLATE ids(C). {
  A.pExpr = sqlite3ExprAddCollateToken(pParse, A.pExpr, &C, 1);
  A.zEnd = &C.z[C.n];
}
%ifndef SQLITE_OMIT_CAST
expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
  spanSet(&A,&X,&Y); /*A-overwrites-X*/
  A.pExpr = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1);
  sqlite3ExprAttachSubtrees(pParse->db, A.pExpr, E.pExpr, 0);
}
%endif  SQLITE_OMIT_CAST
expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). {
  if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
    sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
  }
  A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
  spanSet(&A,&X,&E);
  if( D==SF_Distinct && A.pExpr ){
    A.pExpr->flags |= EP_Distinct;
  }
}
expr(A) ::= id(X) LP STAR RP(E). {
  A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
  spanSet(&A,&X,&E);
}
term(A) ::= CTIME_KW(OP). {
  A.pExpr = sqlite3ExprFunction(pParse, 0, &OP);
  spanSet(&A, &OP, &OP);
}

%include {
  /* This routine constructs a binary expression node out of two ExprSpan
  ** objects and uses the result to populate a new ExprSpan object.
  */
  static void spanBinaryExpr(
    Parse *pParse,      /* The parsing context.  Errors accumulate here */
    int op,             /* The binary operation */
    ExprSpan *pLeft,    /* The left operand, and output */
    ExprSpan *pRight    /* The right operand */
  ){
    pLeft->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr);
    pLeft->zEnd = pRight->zEnd;
  }

  /* If doNot is true, then add a TK_NOT Expr-node wrapper around the
  ** outside of *ppExpr.
  */
  static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){
    if( doNot ){
      pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0);
    }
  }
}

expr(A) ::= LP(L) nexprlist(X) COMMA expr(Y) RP(R). {
  ExprList *pList = sqlite3ExprListAppend(pParse, X, Y.pExpr);
  A.pExpr = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
  if( A.pExpr ){
    A.pExpr->x.pList = pList;
    spanSet(&A, &L, &R);
  }else{
    sqlite3ExprListDelete(pParse->db, pList);
  }
}

expr(A) ::= expr(A) AND(OP) expr(Y).    {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) OR(OP) expr(Y).     {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
                                        {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
                                        {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y).
                                        {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y).
                                        {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) CONCAT(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);}
%type likeop {Token}
likeop(A) ::= LIKE_KW|MATCH(A).
likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/}
expr(A) ::= expr(A) likeop(OP) expr(Y).  [LIKE_KW]  {
  ExprList *pList;
  int bNot = OP.n & 0x80000000;
  OP.n &= 0x7fffffff;
  pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, A.pExpr);
  A.pExpr = sqlite3ExprFunction(pParse, pList, &OP);
  exprNot(pParse, bNot, &A);
  A.zEnd = Y.zEnd;
  if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
}
expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
  ExprList *pList;
  int bNot = OP.n & 0x80000000;
  OP.n &= 0x7fffffff;
  pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, A.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
  A.pExpr = sqlite3ExprFunction(pParse, pList, &OP);
  exprNot(pParse, bNot, &A);
  A.zEnd = E.zEnd;
  if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
}

%include {
  /* Construct an expression node for a unary postfix operator
  */
  static void spanUnaryPostfix(
    Parse *pParse,         /* Parsing context to record errors */
    int op,                /* The operator */
    ExprSpan *pOperand,    /* The operand, and output */
    Token *pPostOp         /* The operand token for setting the span */
  ){
    pOperand->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0);
    pOperand->zEnd = &pPostOp->z[pPostOp->n];
  }                           
}

expr(A) ::= expr(A) ISNULL|NOTNULL(E).   {spanUnaryPostfix(pParse,@E,&A,&E);}
expr(A) ::= expr(A) NOT NULL(E). {spanUnaryPostfix(pParse,TK_NOTNULL,&A,&E);}

%include {
  /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
  ** unary TK_ISNULL or TK_NOTNULL expression. */
  static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
    sqlite3 *db = pParse->db;
    if( pA && pY && pY->op==TK_NULL ){







|
|
|
|


<
<
<
<
<
<
<
<





|

















|
<
<




|
<
|
|



<
|






<
|

|
|

|
<
<




|
|






<


|

|
|




|
<


|
<
|
|


|



|
<
|
|


|
|
<


|
<


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
|
|
<





|
|

|
|

|

|

|
|







|
|
|
|
<
|





|
|
|
|
|
<
|


<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|







843
844
845
846
847
848
849
850
851
852
853
854
855








856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879


880
881
882
883
884

885
886
887
888
889

890
891
892
893
894
895
896

897
898
899
900
901
902


903
904
905
906
907
908
909
910
911
912
913
914

915
916
917
918
919
920
921
922
923
924
925

926
927
928

929
930
931
932
933
934
935
936
937

938
939
940
941
942
943

944
945
946

947
948
























949
950
951
952
953

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

982
983
984
985
986
987
988
989
990
991
992

993
994
995














996
997
998
999
1000
1001
1002
1003
1004
    {A = sqlite3IdListAppend(pParse->db,A,&Y);}
idlist(A) ::= nm(Y).
    {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/}

/////////////////////////// Expression Processing /////////////////////////////
//

%type expr {Expr*}
%destructor expr {sqlite3ExprDelete(pParse->db, $$);}
%type term {Expr*}
%destructor term {sqlite3ExprDelete(pParse->db, $$);}

%include {









  /* Construct a new Expr object from a single identifier.  Use the
  ** new Expr to populate pOut.  Set the span of pOut to be the identifier
  ** that created the expression.
  */
  static Expr *tokenExpr(Parse *pParse, int op, Token t){
    Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
    if( p ){
      memset(p, 0, sizeof(Expr));
      p->op = (u8)op;
      p->flags = EP_Leaf;
      p->iAgg = -1;
      p->u.zToken = (char*)&p[1];
      memcpy(p->u.zToken, t.z, t.n);
      p->u.zToken[t.n] = 0;
      if( sqlite3Isquote(p->u.zToken[0]) ){
        if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted;
        sqlite3Dequote(p->u.zToken);
      }
#if SQLITE_MAX_EXPR_DEPTH>0
      p->nHeight = 1;
#endif  
    }
    return p;


  }
}

expr(A) ::= term(A).
expr(A) ::= LP expr(X) RP. {A = X;}

expr(A) ::= id(X).          {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
expr(A) ::= JOIN_KW(X).     {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
expr(A) ::= nm(X) DOT nm(Y). {
  Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
  Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);

  A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
}
expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
  Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
  Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
  Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1);
  Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);

  A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
}
term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
term(A) ::= STRING(X).          {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
term(A) ::= INTEGER(X). {
  A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1);


}
expr(A) ::= VARIABLE(X).     {
  if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
    u32 n = X.n;
    A = tokenExpr(pParse, TK_VARIABLE, X);
    sqlite3ExprAssignVarNumber(pParse, A, n);
  }else{
    /* When doing a nested parse, one can include terms in an expression
    ** that look like this:   #1 #2 ...  These terms refer to registers
    ** in the virtual machine.  #N is the N-th register. */
    Token t = X; /*A-overwrites-X*/
    assert( t.n>=2 );

    if( pParse->nested==0 ){
      sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
      A = 0;
    }else{
      A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
      if( A ) sqlite3GetInt32(&t.z[1], &A->iTable);
    }
  }
}
expr(A) ::= expr(A) COLLATE ids(C). {
  A = sqlite3ExprAddCollateToken(pParse, A, &C, 1);

}
%ifndef SQLITE_OMIT_CAST
expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. {

  A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1);
  sqlite3ExprAttachSubtrees(pParse->db, A, E, 0);
}
%endif  SQLITE_OMIT_CAST
expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. {
  if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
    sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
  }
  A = sqlite3ExprFunction(pParse, Y, &X);

  if( D==SF_Distinct && A ){
    A->flags |= EP_Distinct;
  }
}
expr(A) ::= id(X) LP STAR RP. {
  A = sqlite3ExprFunction(pParse, 0, &X);

}
term(A) ::= CTIME_KW(OP). {
  A = sqlite3ExprFunction(pParse, 0, &OP);

}

























expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. {
  ExprList *pList = sqlite3ExprListAppend(pParse, X, Y);
  A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
  if( A ){
    A->x.pList = pList;

  }else{
    sqlite3ExprListDelete(pParse->db, pList);
  }
}

expr(A) ::= expr(A) AND(OP) expr(Y).    {A=sqlite3PExpr(pParse,@OP,A,Y);}
expr(A) ::= expr(A) OR(OP) expr(Y).     {A=sqlite3PExpr(pParse,@OP,A,Y);}
expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
                                        {A=sqlite3PExpr(pParse,@OP,A,Y);}
expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {A=sqlite3PExpr(pParse,@OP,A,Y);}
expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
                                        {A=sqlite3PExpr(pParse,@OP,A,Y);}
expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y).
                                        {A=sqlite3PExpr(pParse,@OP,A,Y);}
expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y).
                                        {A=sqlite3PExpr(pParse,@OP,A,Y);}
expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);}
%type likeop {Token}
likeop(A) ::= LIKE_KW|MATCH(A).
likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/}
expr(A) ::= expr(A) likeop(OP) expr(Y).  [LIKE_KW]  {
  ExprList *pList;
  int bNot = OP.n & 0x80000000;
  OP.n &= 0x7fffffff;
  pList = sqlite3ExprListAppend(pParse,0, Y);
  pList = sqlite3ExprListAppend(pParse,pList, A);
  A = sqlite3ExprFunction(pParse, pList, &OP);
  if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);

  if( A ) A->flags |= EP_InfixFunc;
}
expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
  ExprList *pList;
  int bNot = OP.n & 0x80000000;
  OP.n &= 0x7fffffff;
  pList = sqlite3ExprListAppend(pParse,0, Y);
  pList = sqlite3ExprListAppend(pParse,pList, A);
  pList = sqlite3ExprListAppend(pParse,pList, E);
  A = sqlite3ExprFunction(pParse, pList, &OP);
  if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);

  if( A ) A->flags |= EP_InfixFunc;
}















expr(A) ::= expr(A) ISNULL|NOTNULL(E).   {A = sqlite3PExpr(pParse,@E,A,0);}
expr(A) ::= expr(A) NOT NULL.    {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);}

%include {
  /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
  ** unary TK_ISNULL or TK_NOTNULL expression. */
  static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
    sqlite3 *db = pParse->db;
    if( pA && pY && pY->op==TK_NULL ){
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
//    expr1 IS expr2
//    expr1 IS NOT expr2
//
// If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
// is any other expression, code as TK_IS or TK_ISNOT.
// 
expr(A) ::= expr(A) IS expr(Y).     {
  spanBinaryExpr(pParse,TK_IS,&A,&Y);
  binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
}
expr(A) ::= expr(A) IS NOT expr(Y). {
  spanBinaryExpr(pParse,TK_ISNOT,&A,&Y);
  binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
}

%include {
  /* Construct an expression node for a unary prefix operator
  */
  static void spanUnaryPrefix(
    ExprSpan *pOut,        /* Write the new expression node here */
    Parse *pParse,         /* Parsing context to record errors */
    int op,                /* The operator */
    ExprSpan *pOperand,    /* The operand */
    Token *pPreOp         /* The operand token for setting the span */
  ){
    pOut->zStart = pPreOp->z;
    pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0);
    pOut->zEnd = pOperand->zEnd;
  }
}



expr(A) ::= NOT(B) expr(X).  
              {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/}
expr(A) ::= BITNOT(B) expr(X).
              {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/}
expr(A) ::= MINUS(B) expr(X). [BITNOT]
              {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);/*A-overwrites-B*/}
expr(A) ::= PLUS(B) expr(X). [BITNOT]
              {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);/*A-overwrites-B*/}

%type between_op {int}
between_op(A) ::= BETWEEN.     {A = 0;}
between_op(A) ::= NOT BETWEEN. {A = 1;}
expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
  ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
  A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, A.pExpr, 0);
  if( A.pExpr ){
    A.pExpr->x.pList = pList;
  }else{
    sqlite3ExprListDelete(pParse->db, pList);
  } 
  exprNot(pParse, N, &A);
  A.zEnd = Y.zEnd;
}
%ifndef SQLITE_OMIT_SUBQUERY
  %type in_op {int}
  in_op(A) ::= IN.      {A = 0;}
  in_op(A) ::= NOT IN.  {A = 1;}
  expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP(E). [IN] {
    if( Y==0 ){
      /* Expressions of the form
      **
      **      expr1 IN ()
      **      expr1 NOT IN ()
      **
      ** simplify to constants 0 (false) and 1 (true), respectively,
      ** regardless of the value of expr1.
      */
      sqlite3ExprDelete(pParse->db, A.pExpr);
      A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1);
    }else if( Y->nExpr==1 ){
      /* Expressions of the form:
      **
      **      expr1 IN (?1)
      **      expr1 NOT IN (?2)
      **
      ** with exactly one value on the RHS can be simplified to something







|
|


|
|


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

|

|
|
|
|
|





|
|
|
|
|



|
<





|









|
|







1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026


















1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
//    expr1 IS expr2
//    expr1 IS NOT expr2
//
// If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
// is any other expression, code as TK_IS or TK_ISNOT.
// 
expr(A) ::= expr(A) IS expr(Y).     {
  A = sqlite3PExpr(pParse,TK_IS,A,Y);
  binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL);
}
expr(A) ::= expr(A) IS NOT expr(Y). {
  A = sqlite3PExpr(pParse,TK_ISNOT,A,Y);
  binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL);
}



















expr(A) ::= NOT(B) expr(X).  
              {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/}
expr(A) ::= BITNOT(B) expr(X).
              {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/}
expr(A) ::= MINUS expr(X). [BITNOT]
              {A = sqlite3PExpr(pParse, TK_UMINUS, X, 0);}
expr(A) ::= PLUS expr(X). [BITNOT]
              {A = sqlite3PExpr(pParse, TK_UPLUS, X, 0);}

%type between_op {int}
between_op(A) ::= BETWEEN.     {A = 0;}
between_op(A) ::= NOT BETWEEN. {A = 1;}
expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
  ExprList *pList = sqlite3ExprListAppend(pParse,0, X);
  pList = sqlite3ExprListAppend(pParse,pList, Y);
  A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0);
  if( A ){
    A->x.pList = pList;
  }else{
    sqlite3ExprListDelete(pParse->db, pList);
  } 
  if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);

}
%ifndef SQLITE_OMIT_SUBQUERY
  %type in_op {int}
  in_op(A) ::= IN.      {A = 0;}
  in_op(A) ::= NOT IN.  {A = 1;}
  expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] {
    if( Y==0 ){
      /* Expressions of the form
      **
      **      expr1 IN ()
      **      expr1 NOT IN ()
      **
      ** simplify to constants 0 (false) and 1 (true), respectively,
      ** regardless of the value of expr1.
      */
      sqlite3ExprDelete(pParse->db, A);
      A = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1);
    }else if( Y->nExpr==1 ){
      /* Expressions of the form:
      **
      **      expr1 IN (?1)
      **      expr1 NOT IN (?2)
      **
      ** with exactly one value on the RHS can be simplified to something
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
      sqlite3ExprListDelete(pParse->db, Y);
      /* pRHS cannot be NULL because a malloc error would have been detected
      ** before now and control would have never reached this point */
      if( ALWAYS(pRHS) ){
        pRHS->flags &= ~EP_Collate;
        pRHS->flags |= EP_Generic;
      }
      A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A.pExpr, pRHS);
    }else{
      A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
      if( A.pExpr ){
        A.pExpr->x.pList = Y;
        sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
      }else{
        sqlite3ExprListDelete(pParse->db, Y);
      }
      exprNot(pParse, N, &A);
    }
    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= LP(B) select(X) RP(E). {
    spanSet(&A,&B,&E); /*A-overwrites-B*/
    A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
    sqlite3PExprAddSelect(pParse, A.pExpr, X);
  }
  expr(A) ::= expr(A) in_op(N) LP select(Y) RP(E).  [IN] {
    A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
    sqlite3PExprAddSelect(pParse, A.pExpr, Y);
    exprNot(pParse, N, &A);
    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] {
    SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
    Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0);
    if( E )  sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E);
    A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
    sqlite3PExprAddSelect(pParse, A.pExpr, pSelect);
    exprNot(pParse, N, &A);
    A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
  }
  expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
    Expr *p;
    spanSet(&A,&B,&E); /*A-overwrites-B*/
    p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
    sqlite3PExprAddSelect(pParse, p, Y);
  }
%endif SQLITE_OMIT_SUBQUERY

/* CASE expressions */
expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
  spanSet(&A,&C,&E);  /*A-overwrites-C*/
  A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0);
  if( A.pExpr ){
    A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
    sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
  }else{
    sqlite3ExprListDelete(pParse->db, Y);
    sqlite3ExprDelete(pParse->db, Z);
  }
}
%type case_exprlist {ExprList*}
%destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). {
  A = sqlite3ExprListAppend(pParse,A, Y.pExpr);
  A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
}
case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
  A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
  A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
}
%type case_else {Expr*}
%destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
case_else(A) ::=  .                     {A = 0;} 
%type case_operand {Expr*}
%destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
case_operand(A) ::= expr(X).            {A = X.pExpr; /*A-overwrites-X*/} 
case_operand(A) ::= .                   {A = 0;} 

%type exprlist {ExprList*}
%destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
%type nexprlist {ExprList*}
%destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}

exprlist(A) ::= nexprlist(A).
exprlist(A) ::= .                            {A = 0;}
nexprlist(A) ::= nexprlist(A) COMMA expr(Y).
    {A = sqlite3ExprListAppend(pParse,A,Y.pExpr);}
nexprlist(A) ::= expr(Y).
    {A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/}

%ifndef SQLITE_OMIT_SUBQUERY
/* A paren_exprlist is an optional expression list contained inside
** of parenthesis */
%type paren_exprlist {ExprList*}
%destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
paren_exprlist(A) ::= .   {A = 0;}







|

|
|
|
|



|

<

|
<
|
|

|
|
|
|
<





|
|
|
<

|

<
|





|
<
|
|
|
|








|
|


|
|



|



|










|

|







1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

1103
1104

1105
1106
1107
1108
1109
1110
1111

1112
1113
1114
1115
1116
1117
1118
1119

1120
1121
1122

1123
1124
1125
1126
1127
1128
1129

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
      sqlite3ExprListDelete(pParse->db, Y);
      /* pRHS cannot be NULL because a malloc error would have been detected
      ** before now and control would have never reached this point */
      if( ALWAYS(pRHS) ){
        pRHS->flags &= ~EP_Collate;
        pRHS->flags |= EP_Generic;
      }
      A = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A, pRHS);
    }else{
      A = sqlite3PExpr(pParse, TK_IN, A, 0);
      if( A ){
        A->x.pList = Y;
        sqlite3ExprSetHeightAndFlags(pParse, A);
      }else{
        sqlite3ExprListDelete(pParse->db, Y);
      }
      if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
    }

  }
  expr(A) ::= LP select(X) RP. {

    A = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
    sqlite3PExprAddSelect(pParse, A, X);
  }
  expr(A) ::= expr(A) in_op(N) LP select(Y) RP.  [IN] {
    A = sqlite3PExpr(pParse, TK_IN, A, 0);
    sqlite3PExprAddSelect(pParse, A, Y);
    if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);

  }
  expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] {
    SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
    Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0);
    if( E )  sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E);
    A = sqlite3PExpr(pParse, TK_IN, A, 0);
    sqlite3PExprAddSelect(pParse, A, pSelect);
    if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);

  }
  expr(A) ::= EXISTS LP select(Y) RP. {
    Expr *p;

    p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
    sqlite3PExprAddSelect(pParse, p, Y);
  }
%endif SQLITE_OMIT_SUBQUERY

/* CASE expressions */
expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. {

  A = sqlite3PExpr(pParse, TK_CASE, X, 0);
  if( A ){
    A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
    sqlite3ExprSetHeightAndFlags(pParse, A);
  }else{
    sqlite3ExprListDelete(pParse->db, Y);
    sqlite3ExprDelete(pParse->db, Z);
  }
}
%type case_exprlist {ExprList*}
%destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). {
  A = sqlite3ExprListAppend(pParse,A, Y);
  A = sqlite3ExprListAppend(pParse,A, Z);
}
case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
  A = sqlite3ExprListAppend(pParse,0, Y);
  A = sqlite3ExprListAppend(pParse,A, Z);
}
%type case_else {Expr*}
%destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
case_else(A) ::=  ELSE expr(X).         {A = X;}
case_else(A) ::=  .                     {A = 0;} 
%type case_operand {Expr*}
%destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
case_operand(A) ::= expr(X).            {A = X; /*A-overwrites-X*/} 
case_operand(A) ::= .                   {A = 0;} 

%type exprlist {ExprList*}
%destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
%type nexprlist {ExprList*}
%destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}

exprlist(A) ::= nexprlist(A).
exprlist(A) ::= .                            {A = 0;}
nexprlist(A) ::= nexprlist(A) COMMA expr(Y).
    {A = sqlite3ExprListAppend(pParse,A,Y);}
nexprlist(A) ::= expr(Y).
    {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/}

%ifndef SQLITE_OMIT_SUBQUERY
/* A paren_exprlist is an optional expression list contained inside
** of parenthesis */
%type paren_exprlist {ExprList*}
%destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
paren_exprlist(A) ::= .   {A = 0;}
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398

foreach_clause ::= .
foreach_clause ::= FOR EACH ROW.

%type when_clause {Expr*}
%destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
when_clause(A) ::= .             { A = 0; }
when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }

%type trigger_cmd_list {TriggerStep*}
%destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. {
  assert( A!=0 );
  A->pLast->pNext = X;
  A->pLast = X;







|







1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

foreach_clause ::= .
foreach_clause ::= FOR EACH ROW.

%type when_clause {Expr*}
%destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
when_clause(A) ::= .             { A = 0; }
when_clause(A) ::= WHEN expr(X). { A = X; }

%type trigger_cmd_list {TriggerStep*}
%destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. {
  assert( A!=0 );
  A->pLast->pNext = X;
  A->pLast = X;
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504



%type trigger_cmd {TriggerStep*}
%destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
// UPDATE 
trigger_cmd(A) ::=
   UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).  
   {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R);}

// INSERT

trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S).
   {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);/*A-overwrites-R*/}

// DELETE
trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
   {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}

// SELECT
trigger_cmd(A) ::= select(X).
   {A = sqlite3TriggerSelectStep(pParse->db, X); /*A-overwrites-X*/}

// The special RAISE expression that may occur in trigger programs
expr(A) ::= RAISE(X) LP IGNORE RP(Y).  {
  spanSet(&A,&X,&Y);  /*A-overwrites-X*/
  A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 
  if( A.pExpr ){
    A.pExpr->affinity = OE_Ignore;
  }
}
expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y).  {
  spanSet(&A,&X,&Y);  /*A-overwrites-X*/
  A.pExpr = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 
  if( A.pExpr ) {
    A.pExpr->affinity = (char)T;
  }
}
%endif  !SQLITE_OMIT_TRIGGER

%type raisetype {int}
raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
raisetype(A) ::= ABORT.     {A = OE_Abort;}
raisetype(A) ::= FAIL.      {A = OE_Fail;}


////////////////////////  DROP TRIGGER statement //////////////////////////////
%ifndef SQLITE_OMIT_TRIGGER
cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
  sqlite3DropTrigger(pParse,X,NOERR);
}
%endif  !SQLITE_OMIT_TRIGGER

//////////////////////// ATTACH DATABASE file AS name /////////////////////////
%ifndef SQLITE_OMIT_ATTACH
cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
  sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
}
cmd ::= DETACH database_kw_opt expr(D). {
  sqlite3Detach(pParse, D.pExpr);
}

%type key_opt {Expr*}
%destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
key_opt(A) ::= .                     { A = 0; }
key_opt(A) ::= KEY expr(X).          { A = X.pExpr; }

database_kw_opt ::= DATABASE.
database_kw_opt ::= .
%endif SQLITE_OMIT_ATTACH

////////////////////////// REINDEX collation //////////////////////////////////
%ifndef SQLITE_OMIT_REINDEX







|
|


>
|
|


|
|


|
|


|
<
|
|
|


|
<
|
|
|




















|


|





|







1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388

1389
1390
1391
1392
1393
1394

1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434



%type trigger_cmd {TriggerStep*}
%destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
// UPDATE 
trigger_cmd(A) ::=
   UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E).  
   {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R, B.z, E);}

// INSERT
trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO
                      trnm(X) idlist_opt(F) select(S) scanpt(Z).
   {A = sqlite3TriggerInsertStep(pParse->db,&X,F,S,R,B,Z);/*A-overwrites-R*/}

// DELETE
trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E).
   {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y, B.z, E);}

// SELECT
trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E).
   {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/}

// The special RAISE expression that may occur in trigger programs
expr(A) ::= RAISE LP IGNORE RP.  {

  A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 
  if( A ){
    A->affinity = OE_Ignore;
  }
}
expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP.  {

  A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 
  if( A ) {
    A->affinity = (char)T;
  }
}
%endif  !SQLITE_OMIT_TRIGGER

%type raisetype {int}
raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
raisetype(A) ::= ABORT.     {A = OE_Abort;}
raisetype(A) ::= FAIL.      {A = OE_Fail;}


////////////////////////  DROP TRIGGER statement //////////////////////////////
%ifndef SQLITE_OMIT_TRIGGER
cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
  sqlite3DropTrigger(pParse,X,NOERR);
}
%endif  !SQLITE_OMIT_TRIGGER

//////////////////////// ATTACH DATABASE file AS name /////////////////////////
%ifndef SQLITE_OMIT_ATTACH
cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
  sqlite3Attach(pParse, F, D, K);
}
cmd ::= DETACH database_kw_opt expr(D). {
  sqlite3Detach(pParse, D);
}

%type key_opt {Expr*}
%destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
key_opt(A) ::= .                     { A = 0; }
key_opt(A) ::= KEY expr(X).          { A = X; }

database_kw_opt ::= DATABASE.
database_kw_opt ::= .
%endif SQLITE_OMIT_ATTACH

////////////////////////// REINDEX collation //////////////////////////////////
%ifndef SQLITE_OMIT_REINDEX
Changes to src/select.c.
1377
1378
1379
1380
1381
1382
1383


1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
  char const *zOrigDb = 0;
  char const *zOrigTab = 0;
  char const *zOrigCol = 0;
#endif

  assert( pExpr!=0 );
  assert( pNC->pSrcList!=0 );


  switch( pExpr->op ){
    case TK_AGG_COLUMN:
    case TK_COLUMN: {
      /* The expression is a column. Locate the table the column is being
      ** extracted from in NameContext.pSrcList. This table may be real
      ** database table or a subquery.
      */
      Table *pTab = 0;            /* Table structure column is extracted from */
      Select *pS = 0;             /* Select the column is extracted from */
      int iCol = pExpr->iColumn;  /* Index of column in pTab */
      testcase( pExpr->op==TK_AGG_COLUMN );
      testcase( pExpr->op==TK_COLUMN );
      while( pNC && !pTab ){
        SrcList *pTabList = pNC->pSrcList;
        for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
        if( j<pTabList->nSrc ){
          pTab = pTabList->a[j].pTab;
          pS = pTabList->a[j].pSelect;
        }else{







>
>

<








<
<







1377
1378
1379
1380
1381
1382
1383
1384
1385
1386

1387
1388
1389
1390
1391
1392
1393
1394


1395
1396
1397
1398
1399
1400
1401
  char const *zOrigDb = 0;
  char const *zOrigTab = 0;
  char const *zOrigCol = 0;
#endif

  assert( pExpr!=0 );
  assert( pNC->pSrcList!=0 );
  assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
                                       ** are processed */
  switch( pExpr->op ){

    case TK_COLUMN: {
      /* The expression is a column. Locate the table the column is being
      ** extracted from in NameContext.pSrcList. This table may be real
      ** database table or a subquery.
      */
      Table *pTab = 0;            /* Table structure column is extracted from */
      Select *pS = 0;             /* Select the column is extracted from */
      int iCol = pExpr->iColumn;  /* Index of column in pTab */


      while( pNC && !pTab ){
        SrcList *pTabList = pNC->pSrcList;
        for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
        if( j<pTabList->nSrc ){
          pTab = pTabList->a[j].pTab;
          pS = pTabList->a[j].pSelect;
        }else{
1592
1593
1594
1595
1596
1597
1598

1599
1600
1601
1602
1603
1604
1605
    return;
  }
#endif

  if( pParse->colNamesSet || db->mallocFailed ) return;
  /* Column names are determined by the left-most term of a compound select */
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;

  pTabList = pSelect->pSrc;
  pEList = pSelect->pEList;
  assert( v!=0 );
  assert( pTabList!=0 );
  pParse->colNamesSet = 1;
  fullName = (db->flags & SQLITE_FullColNames)!=0;
  srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;







>







1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
    return;
  }
#endif

  if( pParse->colNamesSet || db->mallocFailed ) return;
  /* Column names are determined by the left-most term of a compound select */
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
  pTabList = pSelect->pSrc;
  pEList = pSelect->pEList;
  assert( v!=0 );
  assert( pTabList!=0 );
  pParse->colNamesSet = 1;
  fullName = (db->flags & SQLITE_FullColNames)!=0;
  srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712

1713
1714
1715
1716
1717
1718
1719
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
    }else{
      Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
      while( pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      if( (pColExpr->op==TK_COLUMN || pColExpr->op==TK_AGG_COLUMN)
       && pColExpr->pTab!=0 
      ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        Table *pTab = pColExpr->pTab;

        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );
        zName = pColExpr->u.zToken;
      }else{
        /* Use the original text of the column expression as its name */







|
|
<



>







1700
1701
1702
1703
1704
1705
1706
1707
1708

1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
    }else{
      Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
      while( pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      assert( pColExpr->op!=TK_AGG_COLUMN );
      if( pColExpr->op==TK_COLUMN ){

        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        Table *pTab = pColExpr->pTab;
        assert( pTab!=0 );
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );
        zName = pColExpr->u.zToken;
      }else{
        /* Use the original text of the column expression as its name */
Changes to src/shell.c.in.
792
793
794
795
796
797
798


799
800
801
802
803
804
805
*/
#define SQLITE_EXTENSION_INIT1
#define SQLITE_EXTENSION_INIT2(X) (void)(X)

INCLUDE ../ext/misc/shathree.c
INCLUDE ../ext/misc/fileio.c
INCLUDE ../ext/misc/completion.c



#if defined(SQLITE_ENABLE_SESSION)
/*
** State information for a single open session
*/
typedef struct OpenSession OpenSession;
struct OpenSession {







>
>







792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
*/
#define SQLITE_EXTENSION_INIT1
#define SQLITE_EXTENSION_INIT2(X) (void)(X)

INCLUDE ../ext/misc/shathree.c
INCLUDE ../ext/misc/fileio.c
INCLUDE ../ext/misc/completion.c
INCLUDE ../ext/expert/sqlite3expert.h
INCLUDE ../ext/expert/sqlite3expert.c

#if defined(SQLITE_ENABLE_SESSION)
/*
** State information for a single open session
*/
typedef struct OpenSession OpenSession;
struct OpenSession {
817
818
819
820
821
822
823






824
825
826
827
828
829
830
typedef struct SavedModeInfo SavedModeInfo;
struct SavedModeInfo {
  int valid;          /* Is there legit data in here? */
  int mode;           /* Mode prior to ".explain on" */
  int showHeader;     /* The ".header" setting prior to ".explain on" */
  int colWidth[100];  /* Column widths prior to ".explain on" */
};







/*
** State information about the database connection is contained in an
** instance of the following structure.
*/
typedef struct ShellState ShellState;
struct ShellState {







>
>
>
>
>
>







819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
typedef struct SavedModeInfo SavedModeInfo;
struct SavedModeInfo {
  int valid;          /* Is there legit data in here? */
  int mode;           /* Mode prior to ".explain on" */
  int showHeader;     /* The ".header" setting prior to ".explain on" */
  int colWidth[100];  /* Column widths prior to ".explain on" */
};

typedef struct ExpertInfo ExpertInfo;
struct ExpertInfo {
  sqlite3expert *pExpert;
  int bVerbose;
};

/*
** State information about the database connection is contained in an
** instance of the following structure.
*/
typedef struct ShellState ShellState;
struct ShellState {
862
863
864
865
866
867
868

869







870
871
872
873
874
875
876
  int *aiIndent;         /* Array of indents used in MODE_Explain */
  int nIndent;           /* Size of array aiIndent[] */
  int iIndent;           /* Index of current op in aiIndent[] */
#if defined(SQLITE_ENABLE_SESSION)
  int nSession;             /* Number of active sessions */
  OpenSession aSession[4];  /* Array of sessions.  [0] is in focus. */
#endif

};








/*
** These are the allowed shellFlgs values
*/
#define SHFLG_Pagecache      0x00000001 /* The --pagecache option is used */
#define SHFLG_Lookaside      0x00000002 /* Lookaside memory is used */
#define SHFLG_Backslash      0x00000004 /* The --backslash option is used */







>

>
>
>
>
>
>
>







870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
  int *aiIndent;         /* Array of indents used in MODE_Explain */
  int nIndent;           /* Size of array aiIndent[] */
  int iIndent;           /* Index of current op in aiIndent[] */
#if defined(SQLITE_ENABLE_SESSION)
  int nSession;             /* Number of active sessions */
  OpenSession aSession[4];  /* Array of sessions.  [0] is in focus. */
#endif
  ExpertInfo expert;        /* Valid if previous command was ".expert OPT..." */
};

/* Allowed values for ShellState.autoEQP
*/
#define AUTOEQP_off      0
#define AUTOEQP_on       1
#define AUTOEQP_trigger  2
#define AUTOEQP_full     3

/*
** These are the allowed shellFlgs values
*/
#define SHFLG_Pagecache      0x00000001 /* The --pagecache option is used */
#define SHFLG_Lookaside      0x00000002 /* Lookaside memory is used */
#define SHFLG_Backslash      0x00000004 /* The --backslash option is used */
2244
2245
2246
2247
2248
2249
2250









































































2251
2252
2253
2254
2255
2256
2257
    }else{
      do{
        rc = sqlite3_step(pStmt);
      } while( rc == SQLITE_ROW );
    }
  }
}










































































/*
** Execute a statement or set of statements.  Print
** any result rows/columns depending on the current mode
** set via the supplied callback.
**
** This is very similar to SQLite's built-in sqlite3_exec()







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
    }else{
      do{
        rc = sqlite3_step(pStmt);
      } while( rc == SQLITE_ROW );
    }
  }
}

/*
** This function is called to process SQL if the previous shell command
** was ".expert". It passes the SQL in the second argument directly to
** the sqlite3expert object.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error
** code. In this case, (*pzErr) may be set to point to a buffer containing
** an English language error message. It is the responsibility of the
** caller to eventually free this buffer using sqlite3_free().
*/
static int expertHandleSQL(
  ShellState *pState, 
  const char *zSql, 
  char **pzErr
){
  assert( pState->expert.pExpert );
  assert( pzErr==0 || *pzErr==0 );
  return sqlite3_expert_sql(pState->expert.pExpert, zSql, pzErr);
}

/*
** This function is called either to silently clean up the object
** created by the ".expert" command (if bCancel==1), or to generate a 
** report from it and then clean it up (if bCancel==0).
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error
** code. In this case, (*pzErr) may be set to point to a buffer containing
** an English language error message. It is the responsibility of the
** caller to eventually free this buffer using sqlite3_free().
*/
static int expertFinish(
  ShellState *pState,
  int bCancel,
  char **pzErr
){
  int rc = SQLITE_OK;
  sqlite3expert *p = pState->expert.pExpert;
  assert( p );
  assert( bCancel || pzErr==0 || *pzErr==0 );
  if( bCancel==0 ){
    FILE *out = pState->out;
    int bVerbose = pState->expert.bVerbose;

    rc = sqlite3_expert_analyze(p, pzErr);
    if( rc==SQLITE_OK ){
      int nQuery = sqlite3_expert_count(p);
      int i;

      if( bVerbose ){
        const char *zCand = sqlite3_expert_report(p,0,EXPERT_REPORT_CANDIDATES);
        raw_printf(out, "-- Candidates -----------------------------\n");
        raw_printf(out, "%s\n", zCand);
      }
      for(i=0; i<nQuery; i++){
        const char *zSql = sqlite3_expert_report(p, i, EXPERT_REPORT_SQL);
        const char *zIdx = sqlite3_expert_report(p, i, EXPERT_REPORT_INDEXES);
        const char *zEQP = sqlite3_expert_report(p, i, EXPERT_REPORT_PLAN);
        if( zIdx==0 ) zIdx = "(no new indexes)\n";
        if( bVerbose ){
          raw_printf(out, "-- Query %d --------------------------------\n",i+1);
          raw_printf(out, "%s\n\n", zSql);
        }
        raw_printf(out, "%s\n", zIdx);
        raw_printf(out, "%s\n", zEQP);
      }
    }
  }
  sqlite3_expert_destroy(p);
  pState->expert.pExpert = 0;
  return rc;
}


/*
** Execute a statement or set of statements.  Print
** any result rows/columns depending on the current mode
** set via the supplied callback.
**
** This is very similar to SQLite's built-in sqlite3_exec()
2270
2271
2272
2273
2274
2275
2276





2277
2278
2279
2280
2281
2282
2283
  int rc = SQLITE_OK;             /* Return Code */
  int rc2;
  const char *zLeftover;          /* Tail of unprocessed SQL */

  if( pzErrMsg ){
    *pzErrMsg = NULL;
  }






  while( zSql[0] && (SQLITE_OK == rc) ){
    static const char *zStmtSql;
    rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover);
    if( SQLITE_OK != rc ){
      if( pzErrMsg ){
        *pzErrMsg = save_err_msg(db);







>
>
>
>
>







2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
  int rc = SQLITE_OK;             /* Return Code */
  int rc2;
  const char *zLeftover;          /* Tail of unprocessed SQL */

  if( pzErrMsg ){
    *pzErrMsg = NULL;
  }

  if( pArg->expert.pExpert ){
    rc = expertHandleSQL(pArg, zSql, pzErrMsg);
    return expertFinish(pArg, (rc!=SQLITE_OK), pzErrMsg);
  }

  while( zSql[0] && (SQLITE_OK == rc) ){
    static const char *zStmtSql;
    rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover);
    if( SQLITE_OK != rc ){
      if( pzErrMsg ){
        *pzErrMsg = save_err_msg(db);
2304
2305
2306
2307
2308
2309
2310

2311




2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336

2337
2338
2339
2340
2341
2342
2343
        utf8_printf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql);
      }

      /* Show the EXPLAIN QUERY PLAN if .eqp is on */
      if( pArg && pArg->autoEQP && sqlite3_strlike("EXPLAIN%",zStmtSql,0)!=0 ){
        sqlite3_stmt *pExplain;
        char *zEQP;

        disable_debug_trace_modes();




        zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", zStmtSql);
        rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
        if( rc==SQLITE_OK ){
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            raw_printf(pArg->out,"--EQP-- %d,",sqlite3_column_int(pExplain, 0));
            raw_printf(pArg->out,"%d,", sqlite3_column_int(pExplain, 1));
            raw_printf(pArg->out,"%d,", sqlite3_column_int(pExplain, 2));
            utf8_printf(pArg->out,"%s\n", sqlite3_column_text(pExplain, 3));
          }
        }
        sqlite3_finalize(pExplain);
        sqlite3_free(zEQP);
        if( pArg->autoEQP>=2 ){
          /* Also do an EXPLAIN for ".eqp full" mode */
          zEQP = sqlite3_mprintf("EXPLAIN %s", zStmtSql);
          rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
          if( rc==SQLITE_OK ){
            pArg->cMode = MODE_Explain;
            explain_data_prepare(pArg, pExplain);
            exec_prepared_stmt(pArg, pExplain, xCallback);
            explain_data_delete(pArg);
          }
          sqlite3_finalize(pExplain);
          sqlite3_free(zEQP);
        }

        restore_debug_trace_modes();
      }

      if( pArg ){
        pArg->cMode = pArg->mode;
        if( pArg->autoExplain
         && sqlite3_column_count(pStmt)==8







>

>
>
>
>












|












>







2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
        utf8_printf(pArg->out, "%s\n", zStmtSql ? zStmtSql : zSql);
      }

      /* Show the EXPLAIN QUERY PLAN if .eqp is on */
      if( pArg && pArg->autoEQP && sqlite3_strlike("EXPLAIN%",zStmtSql,0)!=0 ){
        sqlite3_stmt *pExplain;
        char *zEQP;
        int triggerEQP = 0;
        disable_debug_trace_modes();
        sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, -1, &triggerEQP);
        if( pArg->autoEQP>=AUTOEQP_trigger ){
          sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, 1, 0);
        }
        zEQP = sqlite3_mprintf("EXPLAIN QUERY PLAN %s", zStmtSql);
        rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
        if( rc==SQLITE_OK ){
          while( sqlite3_step(pExplain)==SQLITE_ROW ){
            raw_printf(pArg->out,"--EQP-- %d,",sqlite3_column_int(pExplain, 0));
            raw_printf(pArg->out,"%d,", sqlite3_column_int(pExplain, 1));
            raw_printf(pArg->out,"%d,", sqlite3_column_int(pExplain, 2));
            utf8_printf(pArg->out,"%s\n", sqlite3_column_text(pExplain, 3));
          }
        }
        sqlite3_finalize(pExplain);
        sqlite3_free(zEQP);
        if( pArg->autoEQP>=AUTOEQP_full ){
          /* Also do an EXPLAIN for ".eqp full" mode */
          zEQP = sqlite3_mprintf("EXPLAIN %s", zStmtSql);
          rc = sqlite3_prepare_v2(db, zEQP, -1, &pExplain, 0);
          if( rc==SQLITE_OK ){
            pArg->cMode = MODE_Explain;
            explain_data_prepare(pArg, pExplain);
            exec_prepared_stmt(pArg, pExplain, xCallback);
            explain_data_delete(pArg);
          }
          sqlite3_finalize(pExplain);
          sqlite3_free(zEQP);
        }
        sqlite3_db_config(db, SQLITE_DBCONFIG_TRIGGER_EQP, triggerEQP, 0);
        restore_debug_trace_modes();
      }

      if( pArg ){
        pArg->cMode = pArg->mode;
        if( pArg->autoExplain
         && sqlite3_column_count(pStmt)==8
2688
2689
2690
2691
2692
2693
2694

2695
2696
2697
2698
2699
2700
2701
  ".dbinfo ?DB?           Show status information about the database\n"
  ".dump ?TABLE? ...      Dump the database in an SQL text format\n"
  "                         If TABLE specified, only dump tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".echo on|off           Turn command echo on or off\n"
  ".eqp on|off|full       Enable or disable automatic EXPLAIN QUERY PLAN\n"
  ".exit                  Exit this program\n"

/* Because explain mode comes on automatically now, the ".explain" mode
** is removed from the help screen.  It is still supported for legacy, however */
/*".explain ?on|off|auto? Turn EXPLAIN output mode on or off or to automatic\n"*/
  ".fullschema ?--indent? Show schema and the content of sqlite_stat tables\n"
  ".headers on|off        Turn display of headers on or off\n"
  ".help                  Show this message\n"
  ".import FILE TABLE     Import data from FILE into TABLE\n"







>







2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
  ".dbinfo ?DB?           Show status information about the database\n"
  ".dump ?TABLE? ...      Dump the database in an SQL text format\n"
  "                         If TABLE specified, only dump tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".echo on|off           Turn command echo on or off\n"
  ".eqp on|off|full       Enable or disable automatic EXPLAIN QUERY PLAN\n"
  ".exit                  Exit this program\n"
  ".expert                EXPERIMENTAL. Suggest indexes for specified queries\n"
/* Because explain mode comes on automatically now, the ".explain" mode
** is removed from the help screen.  It is still supported for legacy, however */
/*".explain ?on|off|auto? Turn EXPLAIN output mode on or off or to automatic\n"*/
  ".fullschema ?--indent? Show schema and the content of sqlite_stat tables\n"
  ".headers on|off        Turn display of headers on or off\n"
  ".help                  Show this message\n"
  ".import FILE TABLE     Import data from FILE into TABLE\n"
4064
4065
4066
4067
4068
4069
4070


























































4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083




4084
4085
4086
4087
4088
4089
4090
 usage:
  raw_printf(stderr, "Usage %s sub-command ?switches...?\n", azArg[0]);
  raw_printf(stderr, "Where sub-commands are:\n");
  raw_printf(stderr, "    fkey-indexes\n");
  return SQLITE_ERROR;
}




























































/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
static int do_meta_command(char *zLine, ShellState *p){
  int h = 1;
  int nArg = 0;
  int n, c;
  int rc = 0;
  char *azArg[50];





  /* Parse the input line into tokens.
  */
  while( zLine[h] && nArg<ArraySize(azArg) ){
    while( IsSpace(zLine[h]) ){ h++; }
    if( zLine[h]==0 ) break;
    if( zLine[h]=='\'' || zLine[h]=='"' ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>













>
>
>
>







4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
 usage:
  raw_printf(stderr, "Usage %s sub-command ?switches...?\n", azArg[0]);
  raw_printf(stderr, "Where sub-commands are:\n");
  raw_printf(stderr, "    fkey-indexes\n");
  return SQLITE_ERROR;
}

/*
** Implementation of ".expert" dot command.
*/
static int expertDotCommand(
  ShellState *pState,             /* Current shell tool state */
  char **azArg,                   /* Array of arguments passed to dot command */
  int nArg                        /* Number of entries in azArg[] */
){
  int rc = SQLITE_OK;
  char *zErr = 0;
  int i;
  int iSample = 0;

  assert( pState->expert.pExpert==0 );
  memset(&pState->expert, 0, sizeof(ExpertInfo));

  for(i=1; rc==SQLITE_OK && i<nArg; i++){
    char *z = azArg[i];
    int n;
    if( z[0]=='-' && z[1]=='-' ) z++;
    n = strlen(z);
    if( n>=2 && 0==strncmp(z, "-verbose", n) ){
      pState->expert.bVerbose = 1;
    }
    else if( n>=2 && 0==strncmp(z, "-sample", n) ){
      if( i==(nArg-1) ){
        raw_printf(stderr, "option requires an argument: %s\n", z);
        rc = SQLITE_ERROR;
      }else{
        iSample = (int)integerValue(azArg[++i]);
        if( iSample<0 || iSample>100 ){
          raw_printf(stderr, "value out of range: %s\n", azArg[i]);
          rc = SQLITE_ERROR;
        }
      }
    }
    else{
      raw_printf(stderr, "unknown option: %s\n", z);
      rc = SQLITE_ERROR;
    }
  }

  if( rc==SQLITE_OK ){
    pState->expert.pExpert = sqlite3_expert_new(pState->db, &zErr);
    if( pState->expert.pExpert==0 ){
      raw_printf(stderr, "sqlite3_expert_new: %s\n", zErr);
      rc = SQLITE_ERROR;
    }else{
      sqlite3_expert_config(
          pState->expert.pExpert, EXPERT_CONFIG_SAMPLE, iSample
      );
    }
  }

  return rc;
}



/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
static int do_meta_command(char *zLine, ShellState *p){
  int h = 1;
  int nArg = 0;
  int n, c;
  int rc = 0;
  char *azArg[50];

  if( p->expert.pExpert ){
    expertFinish(p, 1, 0);
  }

  /* Parse the input line into tokens.
  */
  while( zLine[h] && nArg<ArraySize(azArg) ){
    while( IsSpace(zLine[h]) ){ h++; }
    if( zLine[h]==0 ) break;
    if( zLine[h]=='\'' || zLine[h]=='"' ){
4393
4394
4395
4396
4397
4398
4399
4400


4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
      rc = 1;
    }
  }else

  if( c=='e' && strncmp(azArg[0], "eqp", n)==0 ){
    if( nArg==2 ){
      if( strcmp(azArg[1],"full")==0 ){
        p->autoEQP = 2;


      }else{
        p->autoEQP = booleanValue(azArg[1]);
      }
    }else{
      raw_printf(stderr, "Usage: .eqp on|off|full\n");
      rc = 1;
    }
  }else

  if( c=='e' && strncmp(azArg[0], "exit", n)==0 ){
    if( nArg>1 && (rc = (int)integerValue(azArg[1]))!=0 ) exit(rc);
    rc = 2;







|
>
>




|







4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
      rc = 1;
    }
  }else

  if( c=='e' && strncmp(azArg[0], "eqp", n)==0 ){
    if( nArg==2 ){
      if( strcmp(azArg[1],"full")==0 ){
        p->autoEQP = AUTOEQP_full;
      }else if( strcmp(azArg[1],"trigger")==0 ){
        p->autoEQP = AUTOEQP_trigger;
      }else{
        p->autoEQP = booleanValue(azArg[1]);
      }
    }else{
      raw_printf(stderr, "Usage: .eqp off|on|trigger|full\n");
      rc = 1;
    }
  }else

  if( c=='e' && strncmp(azArg[0], "exit", n)==0 ){
    if( nArg>1 && (rc = (int)integerValue(azArg[1]))!=0 ) exit(rc);
    rc = 2;
4431
4432
4433
4434
4435
4436
4437





4438
4439
4440
4441
4442
4443
4444
      if( p->mode==MODE_Explain ) p->mode = p->normalMode;
      p->autoExplain = 0;
    }else if( val==99 ){
      if( p->mode==MODE_Explain ) p->mode = p->normalMode;
      p->autoExplain = 1;
    }
  }else






  if( c=='f' && strncmp(azArg[0], "fullschema", n)==0 ){
    ShellState data;
    char *zErrMsg = 0;
    int doStats = 0;
    memcpy(&data, p, sizeof(data));
    data.showHeader = 0;







>
>
>
>
>







4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
      if( p->mode==MODE_Explain ) p->mode = p->normalMode;
      p->autoExplain = 0;
    }else if( val==99 ){
      if( p->mode==MODE_Explain ) p->mode = p->normalMode;
      p->autoExplain = 1;
    }
  }else

  if( c=='e' && strncmp(azArg[0], "expert", n)==0 ){
    open_db(p, 0);
    expertDotCommand(p, azArg, nArg);
  }else

  if( c=='f' && strncmp(azArg[0], "fullschema", n)==0 ){
    ShellState data;
    char *zErrMsg = 0;
    int doStats = 0;
    memcpy(&data, p, sizeof(data));
    data.showHeader = 0;
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
    }
    x = system(zCmd);
    sqlite3_free(zCmd);
    if( x ) raw_printf(stderr, "System command returns %d\n", x);
  }else

  if( c=='s' && strncmp(azArg[0], "show", n)==0 ){
    static const char *azBool[] = { "off", "on", "full", "unk" };
    int i;
    if( nArg!=1 ){
      raw_printf(stderr, "Usage: .show\n");
      rc = 1;
      goto meta_command_exit;
    }
    utf8_printf(p->out, "%12.12s: %s\n","echo",







|







5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
    }
    x = system(zCmd);
    sqlite3_free(zCmd);
    if( x ) raw_printf(stderr, "System command returns %d\n", x);
  }else

  if( c=='s' && strncmp(azArg[0], "show", n)==0 ){
    static const char *azBool[] = { "off", "on", "trigger", "full"};
    int i;
    if( nArg!=1 ){
      raw_printf(stderr, "Usage: .show\n");
      rc = 1;
      goto meta_command_exit;
    }
    utf8_printf(p->out, "%12.12s: %s\n","echo",
5934
5935
5936
5937
5938
5939
5940



5941
5942
5943
5944
5945
5946
5947
      { "imposter",           SQLITE_TESTCTRL_IMPOSTER,   "SCHEMA ON/OFF ROOTPAGE"},
#ifdef SQLITE_N_KEYWORD
      { "iskeyword",          SQLITE_TESTCTRL_ISKEYWORD,     "IDENTIFIER"         },
#endif
      { "localtime_fault",    SQLITE_TESTCTRL_LOCALTIME_FAULT,"BOOLEAN"           },
      { "never_corrupt",      SQLITE_TESTCTRL_NEVER_CORRUPT, "BOOLEAN"            },
      { "optimizations",      SQLITE_TESTCTRL_OPTIMIZATIONS, "DISABLE-MASK"       },



      { "pending_byte",       SQLITE_TESTCTRL_PENDING_BYTE,  "OFFSET  "           },
      { "prng_reset",         SQLITE_TESTCTRL_PRNG_RESET,    ""                   },
      { "prng_restore",       SQLITE_TESTCTRL_PRNG_RESTORE,  ""                   },
      { "prng_save",          SQLITE_TESTCTRL_PRNG_SAVE,     ""                   },
      { "reserve",            SQLITE_TESTCTRL_RESERVE,       "BYTES-OF-RESERVE"   },
    };
    int testctrl = -1;







>
>
>







6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
      { "imposter",           SQLITE_TESTCTRL_IMPOSTER,   "SCHEMA ON/OFF ROOTPAGE"},
#ifdef SQLITE_N_KEYWORD
      { "iskeyword",          SQLITE_TESTCTRL_ISKEYWORD,     "IDENTIFIER"         },
#endif
      { "localtime_fault",    SQLITE_TESTCTRL_LOCALTIME_FAULT,"BOOLEAN"           },
      { "never_corrupt",      SQLITE_TESTCTRL_NEVER_CORRUPT, "BOOLEAN"            },
      { "optimizations",      SQLITE_TESTCTRL_OPTIMIZATIONS, "DISABLE-MASK"       },
#ifdef YYCOVERAGE
      { "parser_coverage",    SQLITE_TESTCTRL_PARSER_COVERAGE, ""                 },
#endif
      { "pending_byte",       SQLITE_TESTCTRL_PENDING_BYTE,  "OFFSET  "           },
      { "prng_reset",         SQLITE_TESTCTRL_PRNG_RESET,    ""                   },
      { "prng_restore",       SQLITE_TESTCTRL_PRNG_RESTORE,  ""                   },
      { "prng_save",          SQLITE_TESTCTRL_PRNG_SAVE,     ""                   },
      { "reserve",            SQLITE_TESTCTRL_RESERVE,       "BYTES-OF-RESERVE"   },
    };
    int testctrl = -1;
6059
6060
6061
6062
6063
6064
6065








6066
6067
6068
6069
6070
6071
6072
            rc2 = sqlite3_test_control(testctrl, p->db,
                          azArg[2],
                          integerValue(azArg[3]),
                          integerValue(azArg[4]));
            isOk = 3;
          }
          break;








      }
    }
    if( isOk==0 && iCtrl>=0 ){
      utf8_printf(p->out, "Usage: .testctrl %s %s\n", zCmd, aCtrl[iCtrl].zUsage);
      rc = 1;
    }else if( isOk==1 ){
      raw_printf(p->out, "%d\n", rc2);







>
>
>
>
>
>
>
>







6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
            rc2 = sqlite3_test_control(testctrl, p->db,
                          azArg[2],
                          integerValue(azArg[3]),
                          integerValue(azArg[4]));
            isOk = 3;
          }
          break;

#ifdef YYCOVERAGE
        case SQLITE_TESTCTRL_PARSER_COVERAGE:
          if( nArg==2 ){
            sqlite3_test_control(testctrl, p->out);
            isOk = 3;
          }
#endif
      }
    }
    if( isOk==0 && iCtrl>=0 ){
      utf8_printf(p->out, "Usage: .testctrl %s %s\n", zCmd, aCtrl[iCtrl].zUsage);
      rc = 1;
    }else if( isOk==1 ){
      raw_printf(p->out, "%d\n", rc2);
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
    }else if( strcmp(z,"-header")==0 ){
      data.showHeader = 1;
    }else if( strcmp(z,"-noheader")==0 ){
      data.showHeader = 0;
    }else if( strcmp(z,"-echo")==0 ){
      ShellSetFlag(&data, SHFLG_Echo);
    }else if( strcmp(z,"-eqp")==0 ){
      data.autoEQP = 1;
    }else if( strcmp(z,"-eqpfull")==0 ){
      data.autoEQP = 2;
    }else if( strcmp(z,"-stats")==0 ){
      data.statsOn = 1;
    }else if( strcmp(z,"-scanstats")==0 ){
      data.scanstatsOn = 1;
    }else if( strcmp(z,"-backslash")==0 ){
      /* Undocumented command-line option: -backslash
      ** Causes C-style backslash escapes to be evaluated in SQL statements







|

|







7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
    }else if( strcmp(z,"-header")==0 ){
      data.showHeader = 1;
    }else if( strcmp(z,"-noheader")==0 ){
      data.showHeader = 0;
    }else if( strcmp(z,"-echo")==0 ){
      ShellSetFlag(&data, SHFLG_Echo);
    }else if( strcmp(z,"-eqp")==0 ){
      data.autoEQP = AUTOEQP_on;
    }else if( strcmp(z,"-eqpfull")==0 ){
      data.autoEQP = AUTOEQP_full;
    }else if( strcmp(z,"-stats")==0 ){
      data.statsOn = 1;
    }else if( strcmp(z,"-scanstats")==0 ){
      data.scanstatsOn = 1;
    }else if( strcmp(z,"-backslash")==0 ){
      /* Undocumented command-line option: -backslash
      ** Causes C-style backslash escapes to be evaluated in SQL statements
Changes to src/sqlite.h.in.
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093

2094
2095
2096
2097
2098
2099
2100
** a single SQL query statement will always use the same algorithm regardless
** of values of [bound parameters].)^ The QPSG disables some query optimizations
** that look at the values of bound parameters, which can make some queries
** slower.  But the QPSG has the advantage of more predictable behavior.  With
** the QPSG active, SQLite will always use the same query plan in the field as
** was used during testing in the lab.
** </dd>
** <dt>SQLITE_DBCONFIG_FULL_EQP</dt>
** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not 
** include output for any operations performed by trigger programs. This
** option is used to set or clear (the default) a flag that governs this
** behavior. The first parameter passed to this operation is an integer -
** non-zero to enable output for trigger programs, or zero to disable it.
** The second parameter is a pointer to an integer into which is written 
** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
** it is not disabled, 1 if it is.  
** </dd>
** </dl>
*/
#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
#define SQLITE_DBCONFIG_FULL_EQP              1008 /* int int* */


/*
** CAPI3REF: Enable Or Disable Extended Result Codes
** METHOD: sqlite3
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result







|



















|
>







2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
** a single SQL query statement will always use the same algorithm regardless
** of values of [bound parameters].)^ The QPSG disables some query optimizations
** that look at the values of bound parameters, which can make some queries
** slower.  But the QPSG has the advantage of more predictable behavior.  With
** the QPSG active, SQLite will always use the same query plan in the field as
** was used during testing in the lab.
** </dd>
** <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not 
** include output for any operations performed by trigger programs. This
** option is used to set or clear (the default) a flag that governs this
** behavior. The first parameter passed to this operation is an integer -
** non-zero to enable output for trigger programs, or zero to disable it.
** The second parameter is a pointer to an integer into which is written 
** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
** it is not disabled, 1 if it is.  
** </dd>
** </dl>
*/
#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
#define SQLITE_DBCONFIG_TRIGGER_EQP           1008 /* int int* */
#define SQLITE_DBCONFIG_MAX                   1008 /* Largest DBCONFIG */

/*
** CAPI3REF: Enable Or Disable Extended Result Codes
** METHOD: sqlite3
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
7037
7038
7039
7040
7041
7042
7043

7044
7045
7046
7047
7048
7049
7050
7051
#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD    19
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
#define SQLITE_TESTCTRL_SORTER_MMAP             24
#define SQLITE_TESTCTRL_IMPOSTER                25

#define SQLITE_TESTCTRL_LAST                    25

/*
** CAPI3REF: SQLite Runtime Status
**
** ^These interfaces are used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for







>
|







7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD    19
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
#define SQLITE_TESTCTRL_SORTER_MMAP             24
#define SQLITE_TESTCTRL_IMPOSTER                25
#define SQLITE_TESTCTRL_PARSER_COVERAGE         26
#define SQLITE_TESTCTRL_LAST                    26  /* Largest TESTCTRL */

/*
** CAPI3REF: SQLite Runtime Status
**
** ^These interfaces are used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319

/*
** CAPI3REF: Determine The Collation For a Virtual Table Constraint
**
** This function may only be called from within a call to the [xBestIndex]
** method of a [virtual table implementation]. 
**
** The first argument must be the database handle with which the virtual 
** table is associated (the one passed to the [xConnect] or [xCreate] method 
** to create the sqlite3_vtab object. The second argument must be an index
** into the aConstraint[] array belonging to the sqlite3_index_info structure
** passed to xBestIndex. This function returns a pointer to a buffer 
** containing the name of the collation sequence for the corresponding
** constraint.
*/
SQLITE_EXPERIMENTAL const char *sqlite3_vtab_collation(sqlite3*, int);

/*
** CAPI3REF: Conflict resolution modes
** KEYWORDS: {conflict resolution mode}
**
** These constants are returned by [sqlite3_vtab_on_conflict()] to
** inform a [virtual table] implementation what the [ON CONFLICT] mode







|
<
|
|
|



|







8299
8300
8301
8302
8303
8304
8305
8306

8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320

/*
** CAPI3REF: Determine The Collation For a Virtual Table Constraint
**
** This function may only be called from within a call to the [xBestIndex]
** method of a [virtual table implementation]. 
**
** The first argument must be the sqlite3_index_info object that is the

** first parameter to the xBestIndex() method. The second argument must be
** an index into the aConstraint[] array belonging to the sqlite3_index_info
** structure passed to xBestIndex. This function returns a pointer to a buffer 
** containing the name of the collation sequence for the corresponding
** constraint.
*/
SQLITE_EXPERIMENTAL const char *sqlite3_vtab_collation(sqlite3_index_info*,int);

/*
** CAPI3REF: Conflict resolution modes
** KEYWORDS: {conflict resolution mode}
**
** These constants are returned by [sqlite3_vtab_on_conflict()] to
** inform a [virtual table] implementation what the [ON CONFLICT] mode
Changes to src/sqliteInt.h.
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
typedef struct Bitvec Bitvec;
typedef struct CollSeq CollSeq;
typedef struct Column Column;
typedef struct Db Db;
typedef struct Schema Schema;
typedef struct Expr Expr;
typedef struct ExprList ExprList;
typedef struct ExprSpan ExprSpan;
typedef struct FKey FKey;
typedef struct FuncDestructor FuncDestructor;
typedef struct FuncDef FuncDef;
typedef struct FuncDefHash FuncDefHash;
typedef struct IdList IdList;
typedef struct Index Index;
typedef struct IndexSample IndexSample;







<







1059
1060
1061
1062
1063
1064
1065

1066
1067
1068
1069
1070
1071
1072
typedef struct Bitvec Bitvec;
typedef struct CollSeq CollSeq;
typedef struct Column Column;
typedef struct Db Db;
typedef struct Schema Schema;
typedef struct Expr Expr;
typedef struct ExprList ExprList;

typedef struct FKey FKey;
typedef struct FuncDestructor FuncDestructor;
typedef struct FuncDef FuncDef;
typedef struct FuncDefHash FuncDefHash;
typedef struct IdList IdList;
typedef struct Index Index;
typedef struct IndexSample IndexSample;
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
  u8 suppressErr;               /* Do not issue error messages if true */
  u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
  u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
  u8 mTrace;                    /* zero or more SQLITE_TRACE flags */
  u8 skipBtreeMutex;            /* True if no shared-cache backends */
  u8 nSqlExec;                  /* Number of pending OP_SqlExec opcodes */
  u8 bFullEQP;                  /* Include triggers in EQP output */
  int nextPagesize;             /* Pagesize after VACUUM if >0 */
  u32 magic;                    /* Magic number for detect library misuse */
  int nChange;                  /* Value returned by sqlite3_changes() */
  int nTotalChange;             /* Value returned by sqlite3_total_changes() */
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
  struct sqlite3InitInfo {      /* Information used during initialization */







<







1351
1352
1353
1354
1355
1356
1357

1358
1359
1360
1361
1362
1363
1364
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
  u8 suppressErr;               /* Do not issue error messages if true */
  u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
  u8 isTransactionSavepoint;    /* True if the outermost savepoint is a TS */
  u8 mTrace;                    /* zero or more SQLITE_TRACE flags */
  u8 skipBtreeMutex;            /* True if no shared-cache backends */
  u8 nSqlExec;                  /* Number of pending OP_SqlExec opcodes */

  int nextPagesize;             /* Pagesize after VACUUM if >0 */
  u32 magic;                    /* Magic number for detect library misuse */
  int nChange;                  /* Value returned by sqlite3_changes() */
  int nTotalChange;             /* Value returned by sqlite3_total_changes() */
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
  struct sqlite3InitInfo {      /* Information used during initialization */
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
  unsigned nProgressOps;        /* Number of opcodes for progress callback */
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
  int nVTrans;                  /* Allocated size of aVTrans */
  Hash aModule;                 /* populated by sqlite3_create_module() */
  VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
  VTable **aVTrans;             /* Virtual tables with open transactions */
  VTable *pDisconnect;    /* Disconnect these in next sqlite3_prepare() */
  void *pBestIndexCtx;          /* For sqlite3_vtab_collation() */
#endif
  Hash aFunc;                   /* Hash table of connection functions */
  Hash aCollSeq;                /* All collating sequences */
  BusyHandler busyHandler;      /* Busy callback */
  Db aDbStatic[2];              /* Static space for the 2 default backends */
  Savepoint *pSavepoint;        /* List of active savepoints */
  int busyTimeout;              /* Busy handler timeout, in msec */







|
<







1415
1416
1417
1418
1419
1420
1421
1422

1423
1424
1425
1426
1427
1428
1429
  unsigned nProgressOps;        /* Number of opcodes for progress callback */
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
  int nVTrans;                  /* Allocated size of aVTrans */
  Hash aModule;                 /* populated by sqlite3_create_module() */
  VtabCtx *pVtabCtx;            /* Context for active vtab connect/create */
  VTable **aVTrans;             /* Virtual tables with open transactions */
  VTable *pDisconnect;          /* Disconnect these in next sqlite3_prepare() */

#endif
  Hash aFunc;                   /* Hash table of connection functions */
  Hash aCollSeq;                /* All collating sequences */
  BusyHandler busyHandler;      /* Busy callback */
  Db aDbStatic[2];              /* Static space for the 2 default backends */
  Savepoint *pSavepoint;        /* List of active savepoints */
  int busyTimeout;              /* Busy handler timeout, in msec */
1493
1494
1495
1496
1497
1498
1499
1500


1501
1502
1503
1504
1505
1506
1507
#define SQLITE_LoadExtension  0x00010000  /* Enable load_extension */
#define SQLITE_LoadExtFunc    0x00020000  /* Enable load_extension() SQL func */
#define SQLITE_EnableTrigger  0x00040000  /* True to enable triggers */
#define SQLITE_DeferFKs       0x00080000  /* Defer all FK constraints */
#define SQLITE_QueryOnly      0x00100000  /* Disable database changes */
#define SQLITE_CellSizeCk     0x00200000  /* Check btree cell sizes on load */
#define SQLITE_Fts3Tokenizer  0x00400000  /* Enable fts3_tokenizer(2) */
#define SQLITE_EnableQPSG     0x00800000  /* Query Planner Stability Guarantee */


/* Flags used only if debugging */
#ifdef SQLITE_DEBUG
#define SQLITE_SqlTrace       0x08000000  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x10000000  /* Debug listings of VDBE programs */
#define SQLITE_VdbeTrace      0x20000000  /* True to trace VDBE execution */
#define SQLITE_VdbeAddopTrace 0x40000000  /* Trace sqlite3VdbeAddOp() calls */
#define SQLITE_VdbeEQP        0x80000000  /* Debug EXPLAIN QUERY PLAN */







|
>
>







1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
#define SQLITE_LoadExtension  0x00010000  /* Enable load_extension */
#define SQLITE_LoadExtFunc    0x00020000  /* Enable load_extension() SQL func */
#define SQLITE_EnableTrigger  0x00040000  /* True to enable triggers */
#define SQLITE_DeferFKs       0x00080000  /* Defer all FK constraints */
#define SQLITE_QueryOnly      0x00100000  /* Disable database changes */
#define SQLITE_CellSizeCk     0x00200000  /* Check btree cell sizes on load */
#define SQLITE_Fts3Tokenizer  0x00400000  /* Enable fts3_tokenizer(2) */
#define SQLITE_EnableQPSG     0x00800000  /* Query Planner Stability Guarantee*/
#define SQLITE_TriggerEQP     0x01000000  /* Show trigger EXPLAIN QUERY PLAN */

/* Flags used only if debugging */
#ifdef SQLITE_DEBUG
#define SQLITE_SqlTrace       0x08000000  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x10000000  /* Debug listings of VDBE programs */
#define SQLITE_VdbeTrace      0x20000000  /* True to trace VDBE execution */
#define SQLITE_VdbeAddopTrace 0x40000000  /* Trace sqlite3VdbeAddOp() calls */
#define SQLITE_VdbeEQP        0x80000000  /* Debug EXPLAIN QUERY PLAN */
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
        u16 iAlias;           /* Index into Parse.aAlias[] for zName */
      } x;
      int iConstExprReg;      /* Register in which Expr value is cached */
    } u;
  } a[1];                  /* One slot for each expression in the list */
};

/*
** An instance of this structure is used by the parser to record both
** the parse tree for an expression and the span of input text for an
** expression.
*/
struct ExprSpan {
  Expr *pExpr;          /* The expression parse tree */
  const char *zStart;   /* First character of input text */
  const char *zEnd;     /* One character past the end of input text */
};

/*
** An instance of this structure can hold a simple list of identifiers,
** such as the list "a,b,c" in the following statements:
**
**      INSERT INTO t(a,b,c) VALUES ...;
**      CREATE INDEX idx ON t(a,b,c);
**      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;







<
<
<
<
<
<
<
<
<
<
<







2500
2501
2502
2503
2504
2505
2506











2507
2508
2509
2510
2511
2512
2513
        u16 iAlias;           /* Index into Parse.aAlias[] for zName */
      } x;
      int iConstExprReg;      /* Register in which Expr value is cached */
    } u;
  } a[1];                  /* One slot for each expression in the list */
};












/*
** An instance of this structure can hold a simple list of identifiers,
** such as the list "a,b,c" in the following statements:
**
**      INSERT INTO t(a,b,c) VALUES ...;
**      CREATE INDEX idx ON t(a,b,c);
**      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
3212
3213
3214
3215
3216
3217
3218

3219
3220
3221
3222
3223
3224
3225
  u8 orconf;           /* OE_Rollback etc. */
  Trigger *pTrig;      /* The trigger that this step is a part of */
  Select *pSelect;     /* SELECT statement or RHS of INSERT INTO SELECT ... */
  char *zTarget;       /* Target table for DELETE, UPDATE, INSERT */
  Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
  ExprList *pExprList; /* SET clause for UPDATE. */
  IdList *pIdList;     /* Column names for INSERT */

  TriggerStep *pNext;  /* Next in the link-list */
  TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
};

/*
** The following structure contains information used by the sqliteFix...
** routines as they walk the parse tree to make database references







>







3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
  u8 orconf;           /* OE_Rollback etc. */
  Trigger *pTrig;      /* The trigger that this step is a part of */
  Select *pSelect;     /* SELECT statement or RHS of INSERT INTO SELECT ... */
  char *zTarget;       /* Target table for DELETE, UPDATE, INSERT */
  Expr *pWhere;        /* The WHERE clause for DELETE or UPDATE steps */
  ExprList *pExprList; /* SET clause for UPDATE. */
  IdList *pIdList;     /* Column names for INSERT */
  char *zSpan;         /* Original SQL text of this command */
  TriggerStep *pNext;  /* Next in the link-list */
  TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
};

/*
** The following structure contains information used by the sqliteFix...
** routines as they walk the parse tree to make database references
3522
3523
3524
3525
3526
3527
3528

3529
3530
3531
3532
3533
3534
3535
void *sqlite3Malloc(u64);
void *sqlite3MallocZero(u64);
void *sqlite3DbMallocZero(sqlite3*, u64);
void *sqlite3DbMallocRaw(sqlite3*, u64);
void *sqlite3DbMallocRawNN(sqlite3*, u64);
char *sqlite3DbStrDup(sqlite3*,const char*);
char *sqlite3DbStrNDup(sqlite3*,const char*, u64);

void *sqlite3Realloc(void*, u64);
void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
void *sqlite3DbRealloc(sqlite3 *, void *, u64);
void sqlite3DbFree(sqlite3*, void*);
void sqlite3DbFreeNN(sqlite3*, void*);
int sqlite3MallocSize(void*);
int sqlite3DbMallocSize(sqlite3*, void*);







>







3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
void *sqlite3Malloc(u64);
void *sqlite3MallocZero(u64);
void *sqlite3DbMallocZero(sqlite3*, u64);
void *sqlite3DbMallocRaw(sqlite3*, u64);
void *sqlite3DbMallocRawNN(sqlite3*, u64);
char *sqlite3DbStrDup(sqlite3*,const char*);
char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
char *sqlite3DbSpanDup(sqlite3*,const char*,const char*);
void *sqlite3Realloc(void*, u64);
void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
void *sqlite3DbRealloc(sqlite3 *, void *, u64);
void sqlite3DbFree(sqlite3*, void*);
void sqlite3DbFreeNN(sqlite3*, void*);
int sqlite3MallocSize(void*);
int sqlite3DbMallocSize(sqlite3*, void*);
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32);
void sqlite3ExprDelete(sqlite3*, Expr*);
ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*);
void sqlite3ExprListSetSortOrder(ExprList*,int);
void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
void sqlite3ExprListDelete(sqlite3*, ExprList*);
u32 sqlite3ExprListFlags(const ExprList*);
int sqlite3Init(sqlite3*, char**);
int sqlite3InitCallback(void*, int, char**, char**);
void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
#ifndef SQLITE_OMIT_VIRTUALTABLE
Module *sqlite3PragmaVtabRegister(sqlite3*,const char *zName);







|







3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
void sqlite3ExprAssignVarNumber(Parse*, Expr*, u32);
void sqlite3ExprDelete(sqlite3*, Expr*);
ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
ExprList *sqlite3ExprListAppendVector(Parse*,ExprList*,IdList*,Expr*);
void sqlite3ExprListSetSortOrder(ExprList*,int);
void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
void sqlite3ExprListSetSpan(Parse*,ExprList*,const char*,const char*);
void sqlite3ExprListDelete(sqlite3*, ExprList*);
u32 sqlite3ExprListFlags(const ExprList*);
int sqlite3Init(sqlite3*, char**);
int sqlite3InitCallback(void*, int, char**, char**);
void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
#ifndef SQLITE_OMIT_VIRTUALTABLE
Module *sqlite3PragmaVtabRegister(sqlite3*,const char *zName);
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
#else
# define sqlite3ColumnPropertiesFromName(T,C) /* no-op */
#endif
void sqlite3AddColumn(Parse*,Token*,Token*);
void sqlite3AddNotNull(Parse*, int);
void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
void sqlite3AddCheckConstraint(Parse*, Expr*);
void sqlite3AddDefaultValue(Parse*,ExprSpan*);
void sqlite3AddCollateType(Parse*, Token*);
void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
int sqlite3ParseUri(const char*,const char*,unsigned int*,
                    sqlite3_vfs**,char**,char **);
Btree *sqlite3DbNameToBtree(sqlite3*,const char*);

#ifdef SQLITE_UNTESTABLE







|







3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
#else
# define sqlite3ColumnPropertiesFromName(T,C) /* no-op */
#endif
void sqlite3AddColumn(Parse*,Token*,Token*);
void sqlite3AddNotNull(Parse*, int);
void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
void sqlite3AddCheckConstraint(Parse*, Expr*);
void sqlite3AddDefaultValue(Parse*,Expr*,const char*,const char*);
void sqlite3AddCollateType(Parse*, Token*);
void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
int sqlite3ParseUri(const char*,const char*,unsigned int*,
                    sqlite3_vfs**,char**,char **);
Btree *sqlite3DbNameToBtree(sqlite3*,const char*);

#ifdef SQLITE_UNTESTABLE
3911
3912
3913
3914
3915
3916
3917
3918

3919
3920
3921

3922

3923
3924
3925
3926
3927
3928
3929
  Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
  Trigger *sqlite3TriggerList(Parse *, Table *);
  void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
                            int, int, int);
  void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
  void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
  void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
  TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);

  TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
                                        Select*,u8);
  TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);

  TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);

  void sqlite3DeleteTrigger(sqlite3*, Trigger*);
  void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
  u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
# define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
# define sqlite3IsToplevel(p) ((p)->pToplevel==0)
#else
# define sqlite3TriggersExist(B,C,D,E,F) 0







|
>

|
|
>
|
>







3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
  Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
  Trigger *sqlite3TriggerList(Parse *, Table *);
  void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
                            int, int, int);
  void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
  void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
  void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
  TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*,
                                        const char*,const char*);
  TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
                                        Select*,u8,const char*,const char*);
  TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8,
                                        const char*,const char*);
  TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*,
                                        const char*,const char*);
  void sqlite3DeleteTrigger(sqlite3*, Trigger*);
  void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
  u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
# define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
# define sqlite3IsToplevel(p) ((p)->pToplevel==0)
#else
# define sqlite3TriggersExist(B,C,D,E,F) 0
4345
4346
4347
4348
4349
4350
4351



4352
4353
4354
4355
4356
4357
4358
  #define sqlite3ConnectionUnlocked(x)
  #define sqlite3ConnectionClosed(x)
#endif

#ifdef SQLITE_DEBUG
  void sqlite3ParserTrace(FILE*, char *);
#endif




/*
** If the SQLITE_ENABLE IOTRACE exists then the global variable
** sqlite3IoTrace is a pointer to a printf-like routine used to
** print I/O tracing messages.
*/
#ifdef SQLITE_ENABLE_IOTRACE







>
>
>







4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
  #define sqlite3ConnectionUnlocked(x)
  #define sqlite3ConnectionClosed(x)
#endif

#ifdef SQLITE_DEBUG
  void sqlite3ParserTrace(FILE*, char *);
#endif
#if defined(YYCOVERAGE)
  int sqlite3ParserCoverage(FILE*);
#endif

/*
** If the SQLITE_ENABLE IOTRACE exists then the global variable
** sqlite3IoTrace is a pointer to a printf-like routine used to
** print I/O tracing messages.
*/
#ifdef SQLITE_ENABLE_IOTRACE
Changes to src/treeview.c.
503
504
505
506
507
508
509

510
511





512
513
514

515

516
517
518
519
520
521
522
  if( pList==0 ){
    sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
  }else{
    int i;
    sqlite3TreeViewLine(pView, "%s", zLabel);
    for(i=0; i<pList->nExpr; i++){
      int j = pList->a[i].u.x.iOrderByCol;

      if( j ){
        sqlite3TreeViewPush(pView, 0);





        sqlite3TreeViewLine(pView, "iOrderByCol=%d", j);
      }
      sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);

      if( j ) sqlite3TreeViewPop(pView);

    }
  }
}
void sqlite3TreeViewExprList(
  TreeView *pView,
  const ExprList *pList,
  u8 moreToFollow,







>
|

>
>
>
>
>



>
|
>







503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
  if( pList==0 ){
    sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
  }else{
    int i;
    sqlite3TreeViewLine(pView, "%s", zLabel);
    for(i=0; i<pList->nExpr; i++){
      int j = pList->a[i].u.x.iOrderByCol;
      char *zName = pList->a[i].zName;
      if( j || zName ){
        sqlite3TreeViewPush(pView, 0);
      }
      if( zName ){
        sqlite3TreeViewLine(pView, "AS %s", zName);
      }
      if( j ){
        sqlite3TreeViewLine(pView, "iOrderByCol=%d", j);
      }
      sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
      if( j || zName ){
        sqlite3TreeViewPop(pView);
      }
    }
  }
}
void sqlite3TreeViewExprList(
  TreeView *pView,
  const ExprList *pList,
  u8 moreToFollow,
Changes to src/trigger.c.
21
22
23
24
25
26
27

28
29
30
31
32
33
34
    TriggerStep * pTmp = pTriggerStep;
    pTriggerStep = pTriggerStep->pNext;

    sqlite3ExprDelete(db, pTmp->pWhere);
    sqlite3ExprListDelete(db, pTmp->pExprList);
    sqlite3SelectDelete(db, pTmp->pSelect);
    sqlite3IdListDelete(db, pTmp->pIdList);


    sqlite3DbFree(db, pTmp);
  }
}

/*
** Given table pTab, return a list of all the triggers attached to 







>







21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    TriggerStep * pTmp = pTriggerStep;
    pTriggerStep = pTriggerStep->pNext;

    sqlite3ExprDelete(db, pTmp->pWhere);
    sqlite3ExprListDelete(db, pTmp->pExprList);
    sqlite3SelectDelete(db, pTmp->pSelect);
    sqlite3IdListDelete(db, pTmp->pIdList);
    sqlite3DbFree(db, pTmp->zSpan);

    sqlite3DbFree(db, pTmp);
  }
}

/*
** Given table pTab, return a list of all the triggers attached to 
335
336
337
338
339
340
341











342
343
344
345
346
347
348
349





350
351
352
353
354
355
356
357

358
359
360
361
362
363
364
365
366
367
368
369
370


371
372
373
374
375
376
377
378
379
380

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397


398
399
400
401
402
403
404
405
406
407
408
409
410

triggerfinish_cleanup:
  sqlite3DeleteTrigger(db, pTrig);
  assert( !pParse->pNewTrigger );
  sqlite3DeleteTriggerStep(db, pStepList);
}












/*
** Turn a SELECT statement (that the pSelect parameter points to) into
** a trigger step.  Return a pointer to a TriggerStep structure.
**
** The parser calls this routine when it finds a SELECT statement in
** body of a TRIGGER.  
*/
TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){





  TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
  if( pTriggerStep==0 ) {
    sqlite3SelectDelete(db, pSelect);
    return 0;
  }
  pTriggerStep->op = TK_SELECT;
  pTriggerStep->pSelect = pSelect;
  pTriggerStep->orconf = OE_Default;

  return pTriggerStep;
}

/*
** Allocate space to hold a new trigger step.  The allocated space
** holds both the TriggerStep object and the TriggerStep.target.z string.
**
** If an OOM error occurs, NULL is returned and db->mallocFailed is set.
*/
static TriggerStep *triggerStepAllocate(
  sqlite3 *db,                /* Database connection */
  u8 op,                      /* Trigger opcode */
  Token *pName                /* The target name */


){
  TriggerStep *pTriggerStep;

  pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n + 1);
  if( pTriggerStep ){
    char *z = (char*)&pTriggerStep[1];
    memcpy(z, pName->z, pName->n);
    sqlite3Dequote(z);
    pTriggerStep->zTarget = z;
    pTriggerStep->op = op;

  }
  return pTriggerStep;
}

/*
** Build a trigger step out of an INSERT statement.  Return a pointer
** to the new trigger step.
**
** The parser calls this routine when it sees an INSERT inside the
** body of a trigger.
*/
TriggerStep *sqlite3TriggerInsertStep(
  sqlite3 *db,        /* The database connection */
  Token *pTableName,  /* Name of the table into which we insert */
  IdList *pColumn,    /* List of columns in pTableName to insert into */
  Select *pSelect,    /* A SELECT statement that supplies values */
  u8 orconf           /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */


){
  TriggerStep *pTriggerStep;

  assert(pSelect != 0 || db->mallocFailed);

  pTriggerStep = triggerStepAllocate(db, TK_INSERT, pTableName);
  if( pTriggerStep ){
    pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
    pTriggerStep->pIdList = pColumn;
    pTriggerStep->orconf = orconf;
  }else{
    sqlite3IdListDelete(db, pColumn);
  }







>
>
>
>
>
>
>
>
>
>
>







|
>
>
>
>
>








>












|
>
>










>
















|
>
>





|







336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

triggerfinish_cleanup:
  sqlite3DeleteTrigger(db, pTrig);
  assert( !pParse->pNewTrigger );
  sqlite3DeleteTriggerStep(db, pStepList);
}

/*
** Duplicate a range of text from an SQL statement, then convert all
** whitespace characters into ordinary space characters.
*/
static char *triggerSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
  char *z = sqlite3DbSpanDup(db, zStart, zEnd);
  int i;
  if( z ) for(i=0; z[i]; i++) if( sqlite3Isspace(z[i]) ) z[i] = ' ';
  return z;
}    

/*
** Turn a SELECT statement (that the pSelect parameter points to) into
** a trigger step.  Return a pointer to a TriggerStep structure.
**
** The parser calls this routine when it finds a SELECT statement in
** body of a TRIGGER.  
*/
TriggerStep *sqlite3TriggerSelectStep(
  sqlite3 *db,                /* Database connection */
  Select *pSelect,            /* The SELECT statement */
  const char *zStart,         /* Start of SQL text */
  const char *zEnd            /* End of SQL text */
){
  TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
  if( pTriggerStep==0 ) {
    sqlite3SelectDelete(db, pSelect);
    return 0;
  }
  pTriggerStep->op = TK_SELECT;
  pTriggerStep->pSelect = pSelect;
  pTriggerStep->orconf = OE_Default;
  pTriggerStep->zSpan = triggerSpanDup(db, zStart, zEnd);
  return pTriggerStep;
}

/*
** Allocate space to hold a new trigger step.  The allocated space
** holds both the TriggerStep object and the TriggerStep.target.z string.
**
** If an OOM error occurs, NULL is returned and db->mallocFailed is set.
*/
static TriggerStep *triggerStepAllocate(
  sqlite3 *db,                /* Database connection */
  u8 op,                      /* Trigger opcode */
  Token *pName,               /* The target name */
  const char *zStart,         /* Start of SQL text */
  const char *zEnd            /* End of SQL text */
){
  TriggerStep *pTriggerStep;

  pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n + 1);
  if( pTriggerStep ){
    char *z = (char*)&pTriggerStep[1];
    memcpy(z, pName->z, pName->n);
    sqlite3Dequote(z);
    pTriggerStep->zTarget = z;
    pTriggerStep->op = op;
    pTriggerStep->zSpan = triggerSpanDup(db, zStart, zEnd);
  }
  return pTriggerStep;
}

/*
** Build a trigger step out of an INSERT statement.  Return a pointer
** to the new trigger step.
**
** The parser calls this routine when it sees an INSERT inside the
** body of a trigger.
*/
TriggerStep *sqlite3TriggerInsertStep(
  sqlite3 *db,        /* The database connection */
  Token *pTableName,  /* Name of the table into which we insert */
  IdList *pColumn,    /* List of columns in pTableName to insert into */
  Select *pSelect,    /* A SELECT statement that supplies values */
  u8 orconf,          /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
  const char *zStart, /* Start of SQL text */
  const char *zEnd    /* End of SQL text */
){
  TriggerStep *pTriggerStep;

  assert(pSelect != 0 || db->mallocFailed);

  pTriggerStep = triggerStepAllocate(db, TK_INSERT, pTableName, zStart, zEnd);
  if( pTriggerStep ){
    pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
    pTriggerStep->pIdList = pColumn;
    pTriggerStep->orconf = orconf;
  }else{
    sqlite3IdListDelete(db, pColumn);
  }
419
420
421
422
423
424
425
426


427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449


450
451
452
453
454
455
456
457
458
459
460
** sees an UPDATE statement inside the body of a CREATE TRIGGER.
*/
TriggerStep *sqlite3TriggerUpdateStep(
  sqlite3 *db,         /* The database connection */
  Token *pTableName,   /* Name of the table to be updated */
  ExprList *pEList,    /* The SET clause: list of column and new values */
  Expr *pWhere,        /* The WHERE clause */
  u8 orconf            /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */


){
  TriggerStep *pTriggerStep;

  pTriggerStep = triggerStepAllocate(db, TK_UPDATE, pTableName);
  if( pTriggerStep ){
    pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE);
    pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
    pTriggerStep->orconf = orconf;
  }
  sqlite3ExprListDelete(db, pEList);
  sqlite3ExprDelete(db, pWhere);
  return pTriggerStep;
}

/*
** Construct a trigger step that implements a DELETE statement and return
** a pointer to that trigger step.  The parser calls this routine when it
** sees a DELETE statement inside the body of a CREATE TRIGGER.
*/
TriggerStep *sqlite3TriggerDeleteStep(
  sqlite3 *db,            /* Database connection */
  Token *pTableName,      /* The table from which rows are deleted */
  Expr *pWhere            /* The WHERE clause */


){
  TriggerStep *pTriggerStep;

  pTriggerStep = triggerStepAllocate(db, TK_DELETE, pTableName);
  if( pTriggerStep ){
    pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
    pTriggerStep->orconf = OE_Default;
  }
  sqlite3ExprDelete(db, pWhere);
  return pTriggerStep;
}







|
>
>



|


















|
>
>



|







442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
** sees an UPDATE statement inside the body of a CREATE TRIGGER.
*/
TriggerStep *sqlite3TriggerUpdateStep(
  sqlite3 *db,         /* The database connection */
  Token *pTableName,   /* Name of the table to be updated */
  ExprList *pEList,    /* The SET clause: list of column and new values */
  Expr *pWhere,        /* The WHERE clause */
  u8 orconf,           /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
  const char *zStart,  /* Start of SQL text */
  const char *zEnd     /* End of SQL text */
){
  TriggerStep *pTriggerStep;

  pTriggerStep = triggerStepAllocate(db, TK_UPDATE, pTableName, zStart, zEnd);
  if( pTriggerStep ){
    pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE);
    pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
    pTriggerStep->orconf = orconf;
  }
  sqlite3ExprListDelete(db, pEList);
  sqlite3ExprDelete(db, pWhere);
  return pTriggerStep;
}

/*
** Construct a trigger step that implements a DELETE statement and return
** a pointer to that trigger step.  The parser calls this routine when it
** sees a DELETE statement inside the body of a CREATE TRIGGER.
*/
TriggerStep *sqlite3TriggerDeleteStep(
  sqlite3 *db,            /* Database connection */
  Token *pTableName,      /* The table from which rows are deleted */
  Expr *pWhere,           /* The WHERE clause */
  const char *zStart,     /* Start of SQL text */
  const char *zEnd        /* End of SQL text */
){
  TriggerStep *pTriggerStep;

  pTriggerStep = triggerStepAllocate(db, TK_DELETE, pTableName, zStart, zEnd);
  if( pTriggerStep ){
    pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
    pTriggerStep->orconf = OE_Default;
  }
  sqlite3ExprDelete(db, pWhere);
  return pTriggerStep;
}
700
701
702
703
704
705
706








707
708
709
710
711
712
713
    **   END;
    **
    **   INSERT INTO t1 ... ;            -- insert into t2 uses REPLACE policy
    **   INSERT OR IGNORE INTO t1 ... ;  -- insert into t2 uses IGNORE policy
    */
    pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf;
    assert( pParse->okConstFactor==0 );









    switch( pStep->op ){
      case TK_UPDATE: {
        sqlite3Update(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3ExprListDup(db, pStep->pExprList, 0), 
          sqlite3ExprDup(db, pStep->pWhere, 0), 







>
>
>
>
>
>
>
>







727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
    **   END;
    **
    **   INSERT INTO t1 ... ;            -- insert into t2 uses REPLACE policy
    **   INSERT OR IGNORE INTO t1 ... ;  -- insert into t2 uses IGNORE policy
    */
    pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf;
    assert( pParse->okConstFactor==0 );

#ifndef SQLITE_OMIT_TRACE
    if( pStep->zSpan ){
      sqlite3VdbeAddOp4(v, OP_Trace, 0x7fffffff, 1, 0,
                        sqlite3MPrintf(db, "-- %s", pStep->zSpan),
                        P4_DYNAMIC);
    }
#endif

    switch( pStep->op ){
      case TK_UPDATE: {
        sqlite3Update(pParse, 
          targetSrcList(pParse, pStep),
          sqlite3ExprListDup(db, pStep->pExprList, 0), 
          sqlite3ExprDup(db, pStep->pWhere, 0), 
841
842
843
844
845
846
847

848
849
850

851
852
853
854
855
856
857
      (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"),
        (pTrigger->op==TK_UPDATE ? "UPDATE" : ""),
        (pTrigger->op==TK_INSERT ? "INSERT" : ""),
        (pTrigger->op==TK_DELETE ? "DELETE" : ""),
      pTab->zName
    ));
#ifndef SQLITE_OMIT_TRACE

    sqlite3VdbeChangeP4(v, -1, 
      sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC
    );

#endif

    /* If one was specified, code the WHEN clause. If it evaluates to false
    ** (or NULL) the sub-vdbe is immediately halted by jumping to the 
    ** OP_Halt inserted at the end of the program.  */
    if( pTrigger->pWhen ){
      pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0);







>
|
|
|
>







876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
      (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"),
        (pTrigger->op==TK_UPDATE ? "UPDATE" : ""),
        (pTrigger->op==TK_INSERT ? "INSERT" : ""),
        (pTrigger->op==TK_DELETE ? "DELETE" : ""),
      pTab->zName
    ));
#ifndef SQLITE_OMIT_TRACE
    if( pTrigger->zName ){
      sqlite3VdbeChangeP4(v, -1, 
        sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC
      );
    }
#endif

    /* If one was specified, code the WHEN clause. If it evaluates to false
    ** (or NULL) the sub-vdbe is immediately halted by jumping to the 
    ** OP_Halt inserted at the end of the program.  */
    if( pTrigger->pWhen ){
      pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0);
Changes to src/util.c.
315
316
317
318
319
320
321


















322
323
324
325
326
327
328
    return 1;
  }
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
}



















/*
** The string z[] is an text representation of a real number.
** Convert this string to a double and write it into *pResult.
**
** The string z[] is length bytes in length (bytes, not characters) and
** uses the encoding enc.  The string is not necessarily zero-terminated.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    return 1;
  }
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
}

/*
** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
** E==2 results in 100.  E==50 results in 1.0e50.
**
** This routine only works for values of E between 1 and 341.
*/
static LONGDOUBLE_TYPE sqlite3Pow10(int E){
  LONGDOUBLE_TYPE x = 10.0;
  LONGDOUBLE_TYPE r = 1.0;
  while(1){
    if( E & 1 ) r *= x;
    E >>= 1;
    if( E==0 ) break;
    x *= x;
  }
  return r; 
}

/*
** The string z[] is an text representation of a real number.
** Convert this string to a double and write it into *pResult.
**
** The string z[] is length bytes in length (bytes, not characters) and
** uses the encoding enc.  The string is not necessarily zero-terminated.
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

    /* adjust the sign of significand */
    s = sign<0 ? -s : s;

    if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
      result = (double)s;
    }else{
      LONGDOUBLE_TYPE scale = 1.0;
      /* attempt to handle extremely small/large numbers better */
      if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
        if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
          while( e%308 ) { scale *= 1.0e+1; e -= 1; }
          if( esign<0 ){
            result = s / scale;
            result /= 1.0e+308;
          }else{
            result = s * scale;
            result *= 1.0e+308;
          }
        }else{ assert( e>=342 );
          if( esign<0 ){
            result = 0.0*s;
          }else{
#ifdef INFINITY
            result = INFINITY*s;
#else
            result = 1e308*1e308*s;  /* Infinity */
#endif
          }
        }
      }else{
        /* 1.0e+22 is the largest power of 10 than can be 
        ** represented exactly. */
        while( e%22 ) { scale *= 1.0e+1; e -= 1; }
        while( e>0 ) { scale *= 1.0e+22; e -= 22; }
        if( esign<0 ){
          result = s / scale;
        }else{
          result = s * scale;
        }
      }
    }







<



|



















<
<
|
<







489
490
491
492
493
494
495

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518


519

520
521
522
523
524
525
526

    /* adjust the sign of significand */
    s = sign<0 ? -s : s;

    if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
      result = (double)s;
    }else{

      /* attempt to handle extremely small/large numbers better */
      if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
        if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
          LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
          if( esign<0 ){
            result = s / scale;
            result /= 1.0e+308;
          }else{
            result = s * scale;
            result *= 1.0e+308;
          }
        }else{ assert( e>=342 );
          if( esign<0 ){
            result = 0.0*s;
          }else{
#ifdef INFINITY
            result = INFINITY*s;
#else
            result = 1e308*1e308*s;  /* Infinity */
#endif
          }
        }
      }else{


        LONGDOUBLE_TYPE scale = sqlite3Pow10(e);

        if( esign<0 ){
          result = s / scale;
        }else{
          result = s * scale;
        }
      }
    }
Changes to src/vdbe.c.
7032
7033
7034
7035
7036
7037
7038
7039






7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057

7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071

7072

7073
7074
7075
7076
7077
7078
7079
  }

  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}








/* Opcode: Init P1 P2 P3 P4 *
** Synopsis: Start at P2
**
** Programs contain a single instance of this opcode as the very first
** opcode.
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
** Or if P4 is blank, use the string returned by sqlite3_sql().
**
** If P2 is not zero, jump to instruction P2.
**
** Increment the value of P1 so that OP_Once opcodes will jump the
** first time they are evaluated for this run.
**
** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
** error is encountered.
*/

case OP_Init: {          /* jump */
  char *zTrace;
  int i;

  /* If the P4 argument is not NULL, then it must be an SQL comment string.
  ** The "--" string is broken up to prevent false-positives with srcck1.c.
  **
  ** This assert() provides evidence for:
  ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
  ** would have been returned by the legacy sqlite3_trace() interface by
  ** using the X argument when X begins with "--" and invoking
  ** sqlite3_expanded_sql(P) otherwise.
  */
  assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );

  assert( pOp==p->aOp );  /* Always instruction 0 */


#ifndef SQLITE_OMIT_TRACE
  if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
   && !p->doingRerun
   && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
  ){
#ifndef SQLITE_OMIT_DEPRECATED







|
>
>
>
>
>
>


















>














>
|
>







7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
  }

  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Trace P1 P2 * P4 *
**
** Write P4 on the statement trace output if statement tracing is
** enabled.
**
** Operand P1 must be 0x7fffffff and P2 must positive.
*/
/* Opcode: Init P1 P2 P3 P4 *
** Synopsis: Start at P2
**
** Programs contain a single instance of this opcode as the very first
** opcode.
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
** Or if P4 is blank, use the string returned by sqlite3_sql().
**
** If P2 is not zero, jump to instruction P2.
**
** Increment the value of P1 so that OP_Once opcodes will jump the
** first time they are evaluated for this run.
**
** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
** error is encountered.
*/
case OP_Trace:
case OP_Init: {          /* jump */
  char *zTrace;
  int i;

  /* If the P4 argument is not NULL, then it must be an SQL comment string.
  ** The "--" string is broken up to prevent false-positives with srcck1.c.
  **
  ** This assert() provides evidence for:
  ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
  ** would have been returned by the legacy sqlite3_trace() interface by
  ** using the X argument when X begins with "--" and invoking
  ** sqlite3_expanded_sql(P) otherwise.
  */
  assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );

  /* OP_Init is always instruction 0 */
  assert( pOp==p->aOp || pOp->opcode==OP_Trace );

#ifndef SQLITE_OMIT_TRACE
  if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
   && !p->doingRerun
   && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
  ){
#ifndef SQLITE_OMIT_DEPRECATED
7108
7109
7110
7111
7112
7113
7114

7115
7116
7117
7118
7119
7120
7121
  ){
    sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
  }
#endif /* SQLITE_DEBUG */
#endif /* SQLITE_OMIT_TRACE */
  assert( pOp->p2>0 );
  if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){

    for(i=1; i<p->nOp; i++){
      if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
    }
    pOp->p1 = 0;
  }
  pOp->p1++;
  p->aCounter[SQLITE_STMTSTATUS_RUN]++;







>







7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
  ){
    sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
  }
#endif /* SQLITE_DEBUG */
#endif /* SQLITE_OMIT_TRACE */
  assert( pOp->p2>0 );
  if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
    if( pOp->opcode==OP_Trace ) break;
    for(i=1; i<p->nOp; i++){
      if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
    }
    pOp->p1 = 0;
  }
  pOp->p1++;
  p->aCounter[SQLITE_STMTSTATUS_RUN]++;
Changes to src/vdbeaux.c.
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
  int nSub = 0;                        /* Number of sub-vdbes seen so far */
  SubProgram **apSub = 0;              /* Array of sub-vdbes */
  Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
  sqlite3 *db = p->db;                 /* The database connection */
  int i;                               /* Loop counter */
  int rc = SQLITE_OK;                  /* Return code */
  Mem *pMem = &p->aMem[1];             /* First Mem of result set */
  int bFull = (p->explain==1 || db->bFullEQP);
  Op *pOp = 0;

  assert( p->explain );
  assert( p->magic==VDBE_MAGIC_RUN );
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );

  /* Even though this opcode does not use dynamic strings for







|







1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
  int nSub = 0;                        /* Number of sub-vdbes seen so far */
  SubProgram **apSub = 0;              /* Array of sub-vdbes */
  Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
  sqlite3 *db = p->db;                 /* The database connection */
  int i;                               /* Loop counter */
  int rc = SQLITE_OK;                  /* Return code */
  Mem *pMem = &p->aMem[1];             /* First Mem of result set */
  int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
  Op *pOp = 0;

  assert( p->explain );
  assert( p->magic==VDBE_MAGIC_RUN );
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );

  /* Even though this opcode does not use dynamic strings for
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
  ** listing has finished and sqlite3_step() should return SQLITE_DONE.
  ** nRow is the sum of the number of rows in the main program, plus
  ** the sum of the number of rows in all trigger subprograms encountered
  ** so far.  The nRow value will increase as new trigger subprograms are
  ** encountered, but p->pc will eventually catch up to nRow.
  */
  nRow = p->nOp;
  if( bFull ){
    /* The first 8 memory cells are used for the result set.  So we will
    ** commandeer the 9th cell to use as storage for an array of pointers
    ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
    ** cells.  */
    assert( p->nMem>9 );
    pSub = &p->aMem[9];
    if( pSub->flags&MEM_Blob ){







|







1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
  ** listing has finished and sqlite3_step() should return SQLITE_DONE.
  ** nRow is the sum of the number of rows in the main program, plus
  ** the sum of the number of rows in all trigger subprograms encountered
  ** so far.  The nRow value will increase as new trigger subprograms are
  ** encountered, but p->pc will eventually catch up to nRow.
  */
  nRow = p->nOp;
  if( bListSubprogs ){
    /* The first 8 memory cells are used for the result set.  So we will
    ** commandeer the 9th cell to use as storage for an array of pointers
    ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
    ** cells.  */
    assert( p->nMem>9 );
    pSub = &p->aMem[9];
    if( pSub->flags&MEM_Blob ){
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
    }

    /* When an OP_Program opcode is encounter (the only opcode that has
    ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
    ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
    ** has not already been seen.
    */
    if( bFull && pOp->p4type==P4_SUBPROGRAM ){
      int nByte = (nSub+1)*sizeof(SubProgram*);
      int j;
      for(j=0; j<nSub; j++){
        if( apSub[j]==pOp->p4.pProgram ) break;
      }
      if( j==nSub ){
        p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);







|







1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
    }

    /* When an OP_Program opcode is encounter (the only opcode that has
    ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
    ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
    ** has not already been seen.
    */
    if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){
      int nByte = (nSub+1)*sizeof(SubProgram*);
      int j;
      for(j=0; j<nSub; j++){
        if( apSub[j]==pOp->p4.pProgram ) break;
      }
      if( j==nSub ){
        p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
Changes to src/where.c.
14
15
16
17
18
19
20















21
22
23
24
25
26
27
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
*/
#include "sqliteInt.h"
#include "whereInt.h"
















/* Forward declaration of methods */
static int whereLoopResize(sqlite3*, WhereLoop*, int);

/* Test variable that can be set to enable WHERE tracing */
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
/***/ int sqlite3WhereTrace = 0;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
*/
#include "sqliteInt.h"
#include "whereInt.h"

/*
** Extra information appended to the end of sqlite3_index_info but not
** visible to the xBestIndex function, at least not directly.  The
** sqlite3_vtab_collation() interface knows how to reach it, however.
**
** This object is not an API and can be changed from one release to the
** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
** agree on the structure, all will be well.
*/
typedef struct HiddenIndexInfo HiddenIndexInfo;
struct HiddenIndexInfo {
  WhereClause *pWC;   /* The Where clause being analyzed */
  Parse *pParse;      /* The parsing context */
};

/* Forward declaration of methods */
static int whereLoopResize(sqlite3*, WhereLoop*, int);

/* Test variable that can be set to enable WHERE tracing */
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
/***/ int sqlite3WhereTrace = 0;
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

856
857
858
859
860
861
862
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Allocate and populate an sqlite3_index_info structure. It is the 
** responsibility of the caller to eventually release the structure
** by passing the pointer returned by this function to sqlite3_free().
*/
static sqlite3_index_info *allocateIndexInfo(
  Parse *pParse,
  WhereClause *pWC,
  Bitmask mUnusable,              /* Ignore terms with these prereqs */
  struct SrcList_item *pSrc,
  ExprList *pOrderBy,
  u16 *pmNoOmit                   /* Mask of terms not to omit */
){
  int i, j;
  int nTerm;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_orderby *pIdxOrderBy;
  struct sqlite3_index_constraint_usage *pUsage;

  WhereTerm *pTerm;
  int nOrderBy;
  sqlite3_index_info *pIdxInfo;
  u16 mNoOmit = 0;

  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */







|
|

|
|







>







852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Allocate and populate an sqlite3_index_info structure. It is the 
** responsibility of the caller to eventually release the structure
** by passing the pointer returned by this function to sqlite3_free().
*/
static sqlite3_index_info *allocateIndexInfo(
  Parse *pParse,                  /* The parsing context */
  WhereClause *pWC,               /* The WHERE clause being analyzed */
  Bitmask mUnusable,              /* Ignore terms with these prereqs */
  struct SrcList_item *pSrc,      /* The FROM clause term that is the vtab */
  ExprList *pOrderBy,             /* The ORDER BY clause */
  u16 *pmNoOmit                   /* Mask of terms not to omit */
){
  int i, j;
  int nTerm;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_orderby *pIdxOrderBy;
  struct sqlite3_index_constraint_usage *pUsage;
  struct HiddenIndexInfo *pHidden;
  WhereTerm *pTerm;
  int nOrderBy;
  sqlite3_index_info *pIdxInfo;
  u16 mNoOmit = 0;

  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

908
909
910
911
912
913
914
915
916
917


918
919
920
921
922
923
924
    }
  }

  /* Allocate the sqlite3_index_info structure
  */
  pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
                           + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
                           + sizeof(*pIdxOrderBy)*nOrderBy );
  if( pIdxInfo==0 ){
    sqlite3ErrorMsg(pParse, "out of memory");
    return 0;
  }

  /* Initialize the structure.  The sqlite3_index_info structure contains
  ** many fields that are declared "const" to prevent xBestIndex from
  ** changing them.  We have to do some funky casting in order to
  ** initialize those fields.
  */

  pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
  pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
  pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
  *(int*)&pIdxInfo->nConstraint = nTerm;
  *(int*)&pIdxInfo->nOrderBy = nOrderBy;
  *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
  *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
  *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
                                                                   pUsage;



  for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    u16 op;
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    if( pTerm->prereqRight & mUnusable ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
    testcase( pTerm->eOperator & WO_IN );
    testcase( pTerm->eOperator & WO_IS );







|










>
|









>
>







906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
    }
  }

  /* Allocate the sqlite3_index_info structure
  */
  pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
                           + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
                           + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
  if( pIdxInfo==0 ){
    sqlite3ErrorMsg(pParse, "out of memory");
    return 0;
  }

  /* Initialize the structure.  The sqlite3_index_info structure contains
  ** many fields that are declared "const" to prevent xBestIndex from
  ** changing them.  We have to do some funky casting in order to
  ** initialize those fields.
  */
  pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
  pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
  pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
  pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
  *(int*)&pIdxInfo->nConstraint = nTerm;
  *(int*)&pIdxInfo->nOrderBy = nOrderBy;
  *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
  *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
  *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
                                                                   pUsage;

  pHidden->pWC = pWC;
  pHidden->pParse = pParse;
  for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    u16 op;
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    if( pTerm->prereqRight & mUnusable ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
    testcase( pTerm->eOperator & WO_IN );
    testcase( pTerm->eOperator & WO_IS );
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162

3163
3164

3165

3166
3167
3168
3169
3170
3171
3172
  WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
                      *pbIn, (sqlite3_uint64)mPrereq,
                      (sqlite3_uint64)(pNew->prereq & ~mPrereq)));

  return rc;
}


/*
** Context object used to pass information from whereLoopAddVirtual()
** to sqlite3_vtab_collation().
*/
struct BestIndexCtx {
  WhereClause *pWC;
  sqlite3_index_info *pIdxInfo;
  Parse *pParse;
};

/*
** If this function is invoked from within an xBestIndex() callback, it
** returns a pointer to a buffer containing the name of the collation
** sequence associated with element iCons of the sqlite3_index_info.aConstraint
** array. Or, if iCons is out of range or there is no active xBestIndex
** call, return NULL.
*/
const char *sqlite3_vtab_collation(sqlite3 *db, int iCons){
  struct BestIndexCtx *p = (struct BestIndexCtx*)db->pBestIndexCtx;
  const char *zRet = 0;
  if( p && iCons>=0 && iCons<p->pIdxInfo->nConstraint ){

    int iTerm = p->pIdxInfo->aConstraint[iCons].iTermOffset;
    Expr *pX = p->pWC->a[iTerm].pExpr;

    CollSeq *pC = sqlite3BinaryCompareCollSeq(p->pParse,pX->pLeft,pX->pRight);

    zRet = (pC ? pC->zName : "BINARY");
  }
  return zRet;
}

/*
** Add all WhereLoop objects for a table of the join identified by







<
<
<
<
<
<
<
<
<
<
<







|
|

|
>
|
|
>
|
>







3153
3154
3155
3156
3157
3158
3159











3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
  WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
                      *pbIn, (sqlite3_uint64)mPrereq,
                      (sqlite3_uint64)(pNew->prereq & ~mPrereq)));

  return rc;
}












/*
** If this function is invoked from within an xBestIndex() callback, it
** returns a pointer to a buffer containing the name of the collation
** sequence associated with element iCons of the sqlite3_index_info.aConstraint
** array. Or, if iCons is out of range or there is no active xBestIndex
** call, return NULL.
*/
const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
  HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
  const char *zRet = 0;
  if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
    CollSeq *pC = 0;
    int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
    Expr *pX = pHidden->pWC->a[iTerm].pExpr;
    if( pX->pLeft ){
      pC = sqlite3BinaryCompareCollSeq(pHidden->pParse, pX->pLeft, pX->pRight);
    }
    zRet = (pC ? pC->zName : "BINARY");
  }
  return zRet;
}

/*
** Add all WhereLoop objects for a table of the join identified by
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
  struct SrcList_item *pSrc;   /* The FROM clause term to search */
  sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
  int nConstraint;             /* Number of constraints in p */
  int bIn;                     /* True if plan uses IN(...) operator */
  WhereLoop *pNew;
  Bitmask mBest;               /* Tables used by best possible plan */
  u16 mNoOmit;
  struct BestIndexCtx bic;
  void *pSaved;

  assert( (mPrereq & mUnusable)==0 );
  pWInfo = pBuilder->pWInfo;
  pParse = pWInfo->pParse;
  pWC = pBuilder->pWC;
  pNew = pBuilder->pNew;
  pSrc = &pWInfo->pTabList->a[pNew->iTab];







<
<







3216
3217
3218
3219
3220
3221
3222


3223
3224
3225
3226
3227
3228
3229
  struct SrcList_item *pSrc;   /* The FROM clause term to search */
  sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
  int nConstraint;             /* Number of constraints in p */
  int bIn;                     /* True if plan uses IN(...) operator */
  WhereLoop *pNew;
  Bitmask mBest;               /* Tables used by best possible plan */
  u16 mNoOmit;



  assert( (mPrereq & mUnusable)==0 );
  pWInfo = pBuilder->pWInfo;
  pParse = pWInfo->pParse;
  pWC = pBuilder->pWC;
  pNew = pBuilder->pNew;
  pSrc = &pWInfo->pTabList->a[pNew->iTab];
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
  pNew->u.vtab.needFree = 0;
  nConstraint = p->nConstraint;
  if( whereLoopResize(pParse->db, pNew, nConstraint) ){
    sqlite3DbFree(pParse->db, p);
    return SQLITE_NOMEM_BKPT;
  }

  bic.pWC = pWC;
  bic.pIdxInfo = p;
  bic.pParse = pParse;
  pSaved = pParse->db->pBestIndexCtx;
  pParse->db->pBestIndexCtx = (void*)&bic;

  /* First call xBestIndex() with all constraints usable. */
  WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
  rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);

  /* If the call to xBestIndex() with all terms enabled produced a plan
  ** that does not require any source tables (IOW: a plan with mBest==0),
  ** then there is no point in making any further calls to xBestIndex() 







<
<
<
<
<
<







3237
3238
3239
3240
3241
3242
3243






3244
3245
3246
3247
3248
3249
3250
  pNew->u.vtab.needFree = 0;
  nConstraint = p->nConstraint;
  if( whereLoopResize(pParse->db, pNew, nConstraint) ){
    sqlite3DbFree(pParse->db, p);
    return SQLITE_NOMEM_BKPT;
  }







  /* First call xBestIndex() with all constraints usable. */
  WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
  rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);

  /* If the call to xBestIndex() with all terms enabled produced a plan
  ** that does not require any source tables (IOW: a plan with mBest==0),
  ** then there is no point in making any further calls to xBestIndex() 
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
      rc = whereLoopAddVirtualOne(
          pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
    }
  }

  if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
  sqlite3DbFreeNN(pParse->db, p);
  pParse->db->pBestIndexCtx = pSaved;
  return rc;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** Add WhereLoop entries to handle OR terms.  This works for either
** btrees or virtual tables.







<







3313
3314
3315
3316
3317
3318
3319

3320
3321
3322
3323
3324
3325
3326
      rc = whereLoopAddVirtualOne(
          pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
    }
  }

  if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
  sqlite3DbFreeNN(pParse->db, p);

  return rc;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** Add WhereLoop entries to handle OR terms.  This works for either
** btrees or virtual tables.
Changes to src/wherecode.c.
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
  int ret = 0;
#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
  if( pParse->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */







|







124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
  int ret = 0;
#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
  if( sqlite3ParseToplevel(pParse)->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */
Changes to test/capi2.test.
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
  set rc [catch {
      sqlite3_prepare $DB {select bogus from sqlite_master;;;x;} -1 TAIL
  } msg]
  lappend rc $msg $TAIL
} {1 {(1) no such column: bogus} {;;x;}}
do_test capi2-3.6 {
  set rc [catch {
      sqlite3_prepare $DB {select 5/0} -1 TAIL
  } VM]
  lappend rc $TAIL
} {0 {}}
do_test capi2-3.7 {
  list [sqlite3_step $VM] \
       [sqlite3_column_count $VM] \
       [get_row_values $VM] \







|







180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
  set rc [catch {
      sqlite3_prepare $DB {select bogus from sqlite_master;;;x;} -1 TAIL
  } msg]
  lappend rc $msg $TAIL
} {1 {(1) no such column: bogus} {;;x;}}
do_test capi2-3.6 {
  set rc [catch {
      sqlite3_prepare $DB {select 5/0;} -1 TAIL
  } VM]
  lappend rc $TAIL
} {0 {}}
do_test capi2-3.7 {
  list [sqlite3_step $VM] \
       [sqlite3_column_count $VM] \
       [get_row_values $VM] \
Changes to test/colname.test.
373
374
375
376
377
378
379








































380
381
382
383
384
385
386
} {a 1 n 3}
do_test colname-9.211 {
  execsql2 {SELECT t1.a AS n, v3.a FROM t1 JOIN v3}
} {n 1 a 3}
do_test colname-9.210 {
  execsql2 {SELECT t1.a, v3.a AS n FROM t1 JOIN v3}
} {a 1 n 3}









































# Make sure the quotation marks get removed from the column names
# when constructing a new table from an aggregate SELECT.
# Email from Juergen Palm on 2017-07-11.
#
do_execsql_test colname-10.100 {
  DROP TABLE IF EXISTS t1;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
} {a 1 n 3}
do_test colname-9.211 {
  execsql2 {SELECT t1.a AS n, v3.a FROM t1 JOIN v3}
} {n 1 a 3}
do_test colname-9.210 {
  execsql2 {SELECT t1.a, v3.a AS n FROM t1 JOIN v3}
} {a 1 n 3}

# 2017-12-23:  Ticket https://www.sqlite.org/src/info/3b4450072511e621
# Inconsistent column names in CREATE TABLE AS
#
# Verify that the names of columns in the created table of a CREATE TABLE AS
# are the same as the names of result columns in the SELECT statement.
#
do_execsql_test colname-9.300 {
  DROP TABLE IF EXISTS t1;
  DROP TABLE IF EXISTS t2;
  CREATE TABLE t1(aaa INT);
  INSERT INTO t1(aaa) VALUES(123);
}
do_test colname-9.310 {
  execsql2 {SELECT BBb FROM (SELECT aaa AS Bbb FROM t1)}
} {Bbb 123}
do_execsql_test colname-9.320 {
  CREATE TABLE t2 AS SELECT BBb FROM (SELECT aaa AS Bbb FROM t1);
  SELECT name FROM pragma_table_info('t2');
} {Bbb}

# Issue detected by OSSFuzz on 2017-12-24 (Christmas Eve)
# caused by check-in https://sqlite.org/src/info/6b2ff26c25
#
# Prior to being fixed, the following CREATE TABLE was dereferencing
# a NULL pointer and segfaulting.
#
do_catchsql_test colname-9.400 {
  CREATE TABLE t4 AS SELECT #0;
} {1 {near "#0": syntax error}}

# Issue detected by OSSFuzz on 2017-12-25 (Christmas Day)
# also caused by check-in https://sqlite.org/src/info/6b2ff26c25
#
# Prior to being fixed, the following CREATE TABLE caused an
# assertion fault.
#
do_catchsql_test colname-9.410 {
  CREATE TABLE t5 AS SELECT RAISE(abort,a);
} {1 {RAISE() may only be used within a trigger-program}}

# Make sure the quotation marks get removed from the column names
# when constructing a new table from an aggregate SELECT.
# Email from Juergen Palm on 2017-07-11.
#
do_execsql_test colname-10.100 {
  DROP TABLE IF EXISTS t1;
Changes to test/fkey1.test.
167
168
169
170
171
172
173














174
175
176
177
178
179
180
# would have been the parent of the new row being inserted. Causing an
# FK violation.
#
do_catchsql_test fkey1-5.2 {
  INSERT OR REPLACE INTO t11 VALUES (2, 3);
} {1 {FOREIGN KEY constraint failed}}















# A similar test to the above.
do_execsql_test fkey1-5.3 {
  CREATE TABLE Foo (
    Id INTEGER PRIMARY KEY, 
    ParentId INTEGER REFERENCES Foo(Id) ON DELETE CASCADE, C1
  );
  INSERT OR REPLACE INTO Foo(Id, ParentId, C1) VALUES (1, null, 'A');







>
>
>
>
>
>
>
>
>
>
>
>
>
>







167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# would have been the parent of the new row being inserted. Causing an
# FK violation.
#
do_catchsql_test fkey1-5.2 {
  INSERT OR REPLACE INTO t11 VALUES (2, 3);
} {1 {FOREIGN KEY constraint failed}}

# Make sure sqlite3_trace() output works with triggers used to implement
# FK constraints
#
proc sqltrace {txt} {
  global traceoutput
  lappend traceoutput $txt
}
do_test fkey1-5.2.1 {
  unset -nocomplain traceoutput
  db trace sqltrace
  catch {db eval {INSERT OR REPLACE INTO t11 VALUES(2,3);}}
  set traceoutput
} {{INSERT OR REPLACE INTO t11 VALUES(2,3);} {INSERT OR REPLACE INTO t11 VALUES(2,3);} {INSERT OR REPLACE INTO t11 VALUES(2,3);}}

# A similar test to the above.
do_execsql_test fkey1-5.3 {
  CREATE TABLE Foo (
    Id INTEGER PRIMARY KEY, 
    ParentId INTEGER REFERENCES Foo(Id) ON DELETE CASCADE, C1
  );
  INSERT OR REPLACE INTO Foo(Id, ParentId, C1) VALUES (1, null, 'A');
Changes to test/misc1.test.
717
718
719
720
721
722
723




















724
725
# was obtained from sqlite3ExprListDup().
#
do_execsql_test misc1-26.0 {
  DROP TABLE IF EXISTS abc;
  CREATE TABLE abc(a, b, c);
  SELECT randomblob(min(max(coalesce(EXISTS (SELECT 1 FROM ( SELECT (SELECT 2147483647) NOT IN (SELECT 2147483649 UNION ALL SELECT DISTINCT -1) IN (SELECT 2147483649), 'fault', (SELECT ALL -1 INTERSECT SELECT 'experiments') IN (SELECT ALL 56.1 ORDER BY 'experiments' DESC) FROM (SELECT DISTINCT 2147483648, 'hardware' UNION ALL SELECT -2147483648, 'experiments' ORDER BY 2147483648 LIMIT 1 OFFSET 123456789.1234567899) GROUP BY (SELECT ALL 0 INTERSECT SELECT 'in') IN (SELECT DISTINCT 'experiments' ORDER BY zeroblob(1000) LIMIT 56.1 OFFSET -456) HAVING EXISTS (SELECT 'fault' EXCEPT    SELECT DISTINCT 56.1) UNION SELECT 'The', 'The', 2147483649 UNION ALL SELECT DISTINCT 'hardware', 'first', 'experiments' ORDER BY 'hardware' LIMIT 123456789.1234567899 OFFSET -2147483647)) NOT IN (SELECT (SELECT DISTINCT (SELECT 'The') FROM abc ORDER BY EXISTS (SELECT -1 INTERSECT SELECT ALL NULL) ASC) IN (SELECT DISTINCT EXISTS (SELECT ALL 123456789.1234567899 ORDER BY 1 ASC, NULL DESC) FROM sqlite_master INTERSECT SELECT 456)), (SELECT ALL 'injection' UNION ALL SELECT ALL (SELECT DISTINCT 'first' UNION     SELECT DISTINCT 'The') FROM (SELECT 456, 'in', 2147483649))),1), 500)), 'first', EXISTS (SELECT DISTINCT 456 FROM abc ORDER BY 'experiments' DESC) FROM abc;
} {}





















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
# was obtained from sqlite3ExprListDup().
#
do_execsql_test misc1-26.0 {
  DROP TABLE IF EXISTS abc;
  CREATE TABLE abc(a, b, c);
  SELECT randomblob(min(max(coalesce(EXISTS (SELECT 1 FROM ( SELECT (SELECT 2147483647) NOT IN (SELECT 2147483649 UNION ALL SELECT DISTINCT -1) IN (SELECT 2147483649), 'fault', (SELECT ALL -1 INTERSECT SELECT 'experiments') IN (SELECT ALL 56.1 ORDER BY 'experiments' DESC) FROM (SELECT DISTINCT 2147483648, 'hardware' UNION ALL SELECT -2147483648, 'experiments' ORDER BY 2147483648 LIMIT 1 OFFSET 123456789.1234567899) GROUP BY (SELECT ALL 0 INTERSECT SELECT 'in') IN (SELECT DISTINCT 'experiments' ORDER BY zeroblob(1000) LIMIT 56.1 OFFSET -456) HAVING EXISTS (SELECT 'fault' EXCEPT    SELECT DISTINCT 56.1) UNION SELECT 'The', 'The', 2147483649 UNION ALL SELECT DISTINCT 'hardware', 'first', 'experiments' ORDER BY 'hardware' LIMIT 123456789.1234567899 OFFSET -2147483647)) NOT IN (SELECT (SELECT DISTINCT (SELECT 'The') FROM abc ORDER BY EXISTS (SELECT -1 INTERSECT SELECT ALL NULL) ASC) IN (SELECT DISTINCT EXISTS (SELECT ALL 123456789.1234567899 ORDER BY 1 ASC, NULL DESC) FROM sqlite_master INTERSECT SELECT 456)), (SELECT ALL 'injection' UNION ALL SELECT ALL (SELECT DISTINCT 'first' UNION     SELECT DISTINCT 'The') FROM (SELECT 456, 'in', 2147483649))),1), 500)), 'first', EXISTS (SELECT DISTINCT 456 FROM abc ORDER BY 'experiments' DESC) FROM abc;
} {}

# 2017-12-29
#
# The following behaviors (duplicate column names on an INSERT or UPDATE)
# are undocumented.  These tests are added to ensure that historical behavior
# does not change accidentally.
#
# For duplication columns on an INSERT, the first value is used.
# For duplication columns on an UPDATE, the last value is used.
#
do_execsql_test misc1-27.0 {
  CREATE TABLE dup1(a,b,c);
  INSERT INTO dup1(a,b,c,a,b,c) VALUES(1,2,3,4,5,6);
  SELECT a,b,c FROM dup1;
} {1 2 3}
do_execsql_test misc1-27.1 {
  UPDATE dup1 SET a=7, b=8, c=9, a=10, b=11, c=12;
  SELECT a,b,c FROM dup1;
} {10 11 12}


finish_test
Changes to test/speedtest1.c.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
  "  --serialized        Set serialized threading mode\n"
  "  --singlethread      Set single-threaded mode - disables all mutexing\n"
  "  --sqlonly           No-op.  Only show the SQL that would have been run.\n"
  "  --shrink-memory     Invoke sqlite3_db_release_memory() frequently.\n"
  "  --size N            Relative test size.  Default=100\n"
  "  --stats             Show statistics at the end\n"
  "  --temp N            N from 0 to 9.  0: no temp table. 9: all temp tables\n"
  "  --testset T         Run test-set T (main, cte, rtree, orm, debug)\n"
  "  --trace             Turn on SQL tracing\n"
  "  --threads N         Use up to N threads for sorting\n"
  "  --utf16be           Set text encoding to UTF-16BE\n"
  "  --utf16le           Set text encoding to UTF-16LE\n"
  "  --verify            Run additional verification steps.\n"
  "  --without-rowid     Use WITHOUT ROWID where appropriate\n"
;







|







28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
  "  --serialized        Set serialized threading mode\n"
  "  --singlethread      Set single-threaded mode - disables all mutexing\n"
  "  --sqlonly           No-op.  Only show the SQL that would have been run.\n"
  "  --shrink-memory     Invoke sqlite3_db_release_memory() frequently.\n"
  "  --size N            Relative test size.  Default=100\n"
  "  --stats             Show statistics at the end\n"
  "  --temp N            N from 0 to 9.  0: no temp table. 9: all temp tables\n"
  "  --testset T         Run test-set T (main, cte, rtree, orm, fp, debug)\n"
  "  --trace             Turn on SQL tracing\n"
  "  --threads N         Use up to N threads for sorting\n"
  "  --utf16be           Set text encoding to UTF-16BE\n"
  "  --utf16le           Set text encoding to UTF-16LE\n"
  "  --verify            Run additional verification steps.\n"
  "  --without-rowid     Use WITHOUT ROWID where appropriate\n"
;
1116
1117
1118
1119
1120
1121
1122
1123






































































1124
1125
1126
1127
1128
1129
1130
    "SELECT count(x), avg(x) FROM (\n"
    "  SELECT x FROM t1 EXCEPT SELECT y FROM t2 ORDER BY 1\n"
    ");",
    nElem, nElem
  );
  speedtest1_run();
  speedtest1_end_test();







































































}

#ifdef SQLITE_ENABLE_RTREE
/* Generate two numbers between 1 and mx.  The first number is less than
** the second.  Usually the numbers are near each other but can sometimes
** be far apart.
*/







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
    "SELECT count(x), avg(x) FROM (\n"
    "  SELECT x FROM t1 EXCEPT SELECT y FROM t2 ORDER BY 1\n"
    ");",
    nElem, nElem
  );
  speedtest1_run();
  speedtest1_end_test();
}

/*
** Compute a pseudo-random floating point ascii number.
*/
void speedtest1_random_ascii_fp(char *zFP){
  int x = speedtest1_random();
  int y = speedtest1_random();
  int z;
  z = y%10;
  if( z<0 ) z = -z;
  y /= 10;
  sqlite3_snprintf(100,zFP,"%d.%de%d",y,z,x%200);
}

/*
** A testset for floating-point numbers.
*/
void testset_fp(void){
  int n;
  int i;
  char zFP1[100];
  char zFP2[100];
  
  n = g.szTest*5000;
  speedtest1_begin_test(100, "Fill a table with %d FP values", n*2);
  speedtest1_exec("BEGIN");
  speedtest1_exec("CREATE%s TABLE t1(a REAL %s, b REAL %s);",
                  isTemp(1), g.zNN, g.zNN);
  speedtest1_prepare("INSERT INTO t1 VALUES(?1,?2); -- %d times", n);
  for(i=1; i<=n; i++){
    speedtest1_random_ascii_fp(zFP1);
    speedtest1_random_ascii_fp(zFP2);
    sqlite3_bind_text(g.pStmt, 1, zFP1, -1, SQLITE_STATIC);
    sqlite3_bind_text(g.pStmt, 2, zFP2, -1, SQLITE_STATIC);
    speedtest1_run();
  }
  speedtest1_exec("COMMIT");
  speedtest1_end_test();

  n = g.szTest/25 + 2;
  speedtest1_begin_test(110, "%d range queries", n);
  speedtest1_prepare("SELECT sum(b) FROM t1 WHERE a BETWEEN ?1 AND ?2");
  for(i=1; i<=n; i++){
    speedtest1_random_ascii_fp(zFP1);
    speedtest1_random_ascii_fp(zFP2);
    sqlite3_bind_text(g.pStmt, 1, zFP1, -1, SQLITE_STATIC);
    sqlite3_bind_text(g.pStmt, 2, zFP2, -1, SQLITE_STATIC);
    speedtest1_run();
  }
  speedtest1_end_test();

  speedtest1_begin_test(120, "CREATE INDEX three times");
  speedtest1_exec("BEGIN;");
  speedtest1_exec("CREATE INDEX t1a ON t1(a);");
  speedtest1_exec("CREATE INDEX t1b ON t1(b);");
  speedtest1_exec("CREATE INDEX t1ab ON t1(a,b);");
  speedtest1_exec("COMMIT;");
  speedtest1_end_test();

  n = g.szTest/3 + 2;
  speedtest1_begin_test(130, "%d indexed range queries", n);
  speedtest1_prepare("SELECT sum(b) FROM t1 WHERE a BETWEEN ?1 AND ?2");
  for(i=1; i<=n; i++){
    speedtest1_random_ascii_fp(zFP1);
    speedtest1_random_ascii_fp(zFP2);
    sqlite3_bind_text(g.pStmt, 1, zFP1, -1, SQLITE_STATIC);
    sqlite3_bind_text(g.pStmt, 2, zFP2, -1, SQLITE_STATIC);
    speedtest1_run();
  }
  speedtest1_end_test();
}

#ifdef SQLITE_ENABLE_RTREE
/* Generate two numbers between 1 and mx.  The first number is less than
** the second.  Usually the numbers are near each other but can sometimes
** be far apart.
*/
1869
1870
1871
1872
1873
1874
1875


1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
    testset_main();
  }else if( strcmp(zTSet,"debug1")==0 ){
    testset_debug1();
  }else if( strcmp(zTSet,"orm")==0 ){
    testset_orm();
  }else if( strcmp(zTSet,"cte")==0 ){
    testset_cte();


  }else if( strcmp(zTSet,"rtree")==0 ){
#ifdef SQLITE_ENABLE_RTREE
    testset_rtree(6, 147);
#else
    fatal_error("compile with -DSQLITE_ENABLE_RTREE to enable "
                "the R-Tree tests\n");
#endif
  }else{
    fatal_error("unknown testset: \"%s\"\nChoices: main debug1 cte rtree\n",
                 zTSet);
  }
  speedtest1_final();

  if( showStats ){
    sqlite3_exec(g.db, "PRAGMA compile_options", xCompileOptions, 0, 0);
  }







>
>








|







1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
    testset_main();
  }else if( strcmp(zTSet,"debug1")==0 ){
    testset_debug1();
  }else if( strcmp(zTSet,"orm")==0 ){
    testset_orm();
  }else if( strcmp(zTSet,"cte")==0 ){
    testset_cte();
  }else if( strcmp(zTSet,"fp")==0 ){
    testset_fp();
  }else if( strcmp(zTSet,"rtree")==0 ){
#ifdef SQLITE_ENABLE_RTREE
    testset_rtree(6, 147);
#else
    fatal_error("compile with -DSQLITE_ENABLE_RTREE to enable "
                "the R-Tree tests\n");
#endif
  }else{
    fatal_error("unknown testset: \"%s\"\nChoices: main debug1 cte rtree fp\n",
                 zTSet);
  }
  speedtest1_final();

  if( showStats ){
    sqlite3_exec(g.db, "PRAGMA compile_options", xCompileOptions, 0, 0);
  }
Changes to test/tester.tcl.
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280




2281
2282
2283
2284
2285
2286
2287
  eval sqlite3_config_pagecache $::old_pagecache_config
  unset ::old_pagecache_config 
  sqlite3_initialize
  autoinstall_test_functions
  sqlite3 db test.db
}

proc test_find_binary {nm} {
  if {$::tcl_platform(platform)=="windows"} {
    set ret "$nm.exe"
  } else {
    set ret $nm
  }
  set ret [file normalize [file join $::cmdlinearg(TESTFIXTURE_HOME) $ret]]




  if {![file executable $ret]} {
    finish_test
    return ""
  }
  return $ret
}








|





|
>
>
>
>







2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
  eval sqlite3_config_pagecache $::old_pagecache_config
  unset ::old_pagecache_config 
  sqlite3_initialize
  autoinstall_test_functions
  sqlite3 db test.db
}

proc test_binary_name {nm} {
  if {$::tcl_platform(platform)=="windows"} {
    set ret "$nm.exe"
  } else {
    set ret $nm
  }
  file normalize [file join $::cmdlinearg(TESTFIXTURE_HOME) $ret]
}

proc test_find_binary {nm} {
  set ret [test_binary_name $nm]
  if {![file executable $ret]} {
    finish_test
    return ""
  }
  return $ret
}

Changes to test/trace.test.
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    proc trace_proc cmd {
      lappend ::TRACE_OUT [string trim $cmd]
    }
    db eval {
      UPDATE t1 SET a=a+1;
    }
    set TRACE_OUT
  } {{UPDATE t1 SET a=a+1;} {-- TRIGGER r1t1} {-- TRIGGER r1t2} {-- TRIGGER r1t1} {-- TRIGGER r1t2} {-- TRIGGER r1t1} {-- TRIGGER r1t2}}
}

# With 3.6.21, we add the ability to expand host parameters in the trace
# output.  Test this feature.
#
do_test trace-6.1 {
  set ::t6int [expr {3+3}]







|







193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    proc trace_proc cmd {
      lappend ::TRACE_OUT [string trim $cmd]
    }
    db eval {
      UPDATE t1 SET a=a+1;
    }
    set TRACE_OUT
  } {{UPDATE t1 SET a=a+1;} {-- TRIGGER r1t1} {-- UPDATE t2 SET a=new.a WHERE rowid=new.rowid} {-- TRIGGER r1t2} {-- SELECT 'hello'} {-- TRIGGER r1t1} {-- UPDATE t2 SET a=new.a WHERE rowid=new.rowid} {-- TRIGGER r1t2} {-- SELECT 'hello'} {-- TRIGGER r1t1} {-- UPDATE t2 SET a=new.a WHERE rowid=new.rowid} {-- TRIGGER r1t2} {-- SELECT 'hello'}}
}

# With 3.6.21, we add the ability to expand host parameters in the trace
# output.  Test this feature.
#
do_test trace-6.1 {
  set ::t6int [expr {3+3}]
Changes to tool/lemon.c.
380
381
382
383
384
385
386






387
388
389
390
391
392
393
  struct rule *rule;       /* List of all rules */
  struct rule *startRule;  /* First rule */
  int nstate;              /* Number of states */
  int nxstate;             /* nstate with tail degenerate states removed */
  int nrule;               /* Number of rules */
  int nsymbol;             /* Number of terminal and nonterminal symbols */
  int nterminal;           /* Number of terminal symbols */






  struct symbol **symbols; /* Sorted array of pointers to symbols */
  int errorcnt;            /* Number of errors */
  struct symbol *errsym;   /* The error symbol */
  struct symbol *wildcard; /* Token that matches anything */
  char *name;              /* Name of the generated parser */
  char *arg;               /* Declaration of the 3th argument to parser */
  char *tokentype;         /* Type of terminal symbols in the parser stack */







>
>
>
>
>
>







380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
  struct rule *rule;       /* List of all rules */
  struct rule *startRule;  /* First rule */
  int nstate;              /* Number of states */
  int nxstate;             /* nstate with tail degenerate states removed */
  int nrule;               /* Number of rules */
  int nsymbol;             /* Number of terminal and nonterminal symbols */
  int nterminal;           /* Number of terminal symbols */
  int minShiftReduce;      /* Minimum shift-reduce action value */
  int errAction;           /* Error action value */
  int accAction;           /* Accept action value */
  int noAction;            /* No-op action value */
  int minReduce;           /* Minimum reduce action */
  int maxAction;           /* Maximum action value of any kind */
  struct symbol **symbols; /* Sorted array of pointers to symbols */
  int errorcnt;            /* Number of errors */
  struct symbol *errsym;   /* The error symbol */
  struct symbol *wildcard; /* Token that matches anything */
  char *name;              /* Name of the generated parser */
  char *arg;               /* Declaration of the 3th argument to parser */
  char *tokentype;         /* Type of terminal symbols in the parser stack */
403
404
405
406
407
408
409

410
411
412
413
414
415
416
  char *tokendest;         /* Code to execute to destroy token data */
  char *vardest;           /* Code for the default non-terminal destructor */
  char *filename;          /* Name of the input file */
  char *outname;           /* Name of the current output file */
  char *tokenprefix;       /* A prefix added to token names in the .h file */
  int nconflict;           /* Number of parsing conflicts */
  int nactiontab;          /* Number of entries in the yy_action[] table */

  int tablesize;           /* Total table size of all tables in bytes */
  int basisflag;           /* Print only basis configurations */
  int has_fallback;        /* True if any %fallback is seen in the grammar */
  int nolinenosflag;       /* True if #line statements should not be printed */
  char *argv0;             /* Name of the program */
};








>







409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
  char *tokendest;         /* Code to execute to destroy token data */
  char *vardest;           /* Code for the default non-terminal destructor */
  char *filename;          /* Name of the input file */
  char *outname;           /* Name of the current output file */
  char *tokenprefix;       /* A prefix added to token names in the .h file */
  int nconflict;           /* Number of parsing conflicts */
  int nactiontab;          /* Number of entries in the yy_action[] table */
  int nlookaheadtab;       /* Number of entries in yy_lookahead[] */
  int tablesize;           /* Total table size of all tables in bytes */
  int basisflag;           /* Print only basis configurations */
  int has_fallback;        /* True if any %fallback is seen in the grammar */
  int nolinenosflag;       /* True if #line statements should not be printed */
  char *argv0;             /* Name of the program */
};

579
580
581
582
583
584
585


586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611


612
613
614
615
616
617
618
    *aAction,                  /* The yy_action[] table under construction */
    *aLookahead;               /* A single new transaction set */
  int mnLookahead;             /* Minimum aLookahead[].lookahead */
  int mnAction;                /* Action associated with mnLookahead */
  int mxLookahead;             /* Maximum aLookahead[].lookahead */
  int nLookahead;              /* Used slots in aLookahead[] */
  int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */


};

/* Return the number of entries in the yy_action table */
#define acttab_size(X) ((X)->nAction)

/* The value for the N-th entry in yy_action */
#define acttab_yyaction(X,N)  ((X)->aAction[N].action)

/* The value for the N-th entry in yy_lookahead */
#define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)

/* Free all memory associated with the given acttab */
void acttab_free(acttab *p){
  free( p->aAction );
  free( p->aLookahead );
  free( p );
}

/* Allocate a new acttab structure */
acttab *acttab_alloc(void){
  acttab *p = (acttab *) calloc( 1, sizeof(*p) );
  if( p==0 ){
    fprintf(stderr,"Unable to allocate memory for a new acttab.");
    exit(1);
  }
  memset(p, 0, sizeof(*p));


  return p;
}

/* Add a new action to the current transaction set.
**
** This routine is called once for each lookahead for a particular
** state.







>
>



|















|






>
>







586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    *aAction,                  /* The yy_action[] table under construction */
    *aLookahead;               /* A single new transaction set */
  int mnLookahead;             /* Minimum aLookahead[].lookahead */
  int mnAction;                /* Action associated with mnLookahead */
  int mxLookahead;             /* Maximum aLookahead[].lookahead */
  int nLookahead;              /* Used slots in aLookahead[] */
  int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
  int nterminal;               /* Number of terminal symbols */
  int nsymbol;                 /* total number of symbols */
};

/* Return the number of entries in the yy_action table */
#define acttab_lookahead_size(X) ((X)->nAction)

/* The value for the N-th entry in yy_action */
#define acttab_yyaction(X,N)  ((X)->aAction[N].action)

/* The value for the N-th entry in yy_lookahead */
#define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)

/* Free all memory associated with the given acttab */
void acttab_free(acttab *p){
  free( p->aAction );
  free( p->aLookahead );
  free( p );
}

/* Allocate a new acttab structure */
acttab *acttab_alloc(int nsymbol, int nterminal){
  acttab *p = (acttab *) calloc( 1, sizeof(*p) );
  if( p==0 ){
    fprintf(stderr,"Unable to allocate memory for a new acttab.");
    exit(1);
  }
  memset(p, 0, sizeof(*p));
  p->nsymbol = nsymbol;
  p->nterminal = nterminal;
  return p;
}

/* Add a new action to the current transaction set.
**
** This routine is called once for each lookahead for a particular
** state.
645
646
647
648
649
650
651








652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

/*
** Add the transaction set built up with prior calls to acttab_action()
** into the current action table.  Then reset the transaction set back
** to an empty set in preparation for a new round of acttab_action() calls.
**
** Return the offset into the action table of the new transaction.








*/
int acttab_insert(acttab *p){
  int i, j, k, n;
  assert( p->nLookahead>0 );

  /* Make sure we have enough space to hold the expanded action table
  ** in the worst case.  The worst case occurs if the transaction set
  ** must be appended to the current action table
  */
  n = p->mxLookahead + 1;
  if( p->nAction + n >= p->nActionAlloc ){
    int oldAlloc = p->nActionAlloc;
    p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
    p->aAction = (struct lookahead_action *) realloc( p->aAction,
                          sizeof(p->aAction[0])*p->nActionAlloc);
    if( p->aAction==0 ){
      fprintf(stderr,"malloc failed\n");







>
>
>
>
>
>
>
>

|
|






|







656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

/*
** Add the transaction set built up with prior calls to acttab_action()
** into the current action table.  Then reset the transaction set back
** to an empty set in preparation for a new round of acttab_action() calls.
**
** Return the offset into the action table of the new transaction.
**
** If the makeItSafe parameter is true, then the offset is chosen so that
** it is impossible to overread the yy_lookaside[] table regardless of
** the lookaside token.  This is done for the terminal symbols, as they
** come from external inputs and can contain syntax errors.  When makeItSafe
** is false, there is more flexibility in selecting offsets, resulting in
** a smaller table.  For non-terminal symbols, which are never syntax errors,
** makeItSafe can be false.
*/
int acttab_insert(acttab *p, int makeItSafe){
  int i, j, k, n, end;
  assert( p->nLookahead>0 );

  /* Make sure we have enough space to hold the expanded action table
  ** in the worst case.  The worst case occurs if the transaction set
  ** must be appended to the current action table
  */
  n = p->nsymbol + 1;
  if( p->nAction + n >= p->nActionAlloc ){
    int oldAlloc = p->nActionAlloc;
    p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
    p->aAction = (struct lookahead_action *) realloc( p->aAction,
                          sizeof(p->aAction[0])*p->nActionAlloc);
    if( p->aAction==0 ){
      fprintf(stderr,"malloc failed\n");
676
677
678
679
680
681
682

683
684
685
686
687
688
689
690

  /* Scan the existing action table looking for an offset that is a
  ** duplicate of the current transaction set.  Fall out of the loop
  ** if and when the duplicate is found.
  **
  ** i is the index in p->aAction[] where p->mnLookahead is inserted.
  */

  for(i=p->nAction-1; i>=0; i--){
    if( p->aAction[i].lookahead==p->mnLookahead ){
      /* All lookaheads and actions in the aLookahead[] transaction
      ** must match against the candidate aAction[i] entry. */
      if( p->aAction[i].action!=p->mnAction ) continue;
      for(j=0; j<p->nLookahead; j++){
        k = p->aLookahead[j].lookahead - p->mnLookahead + i;
        if( k<0 || k>=p->nAction ) break;







>
|







695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

  /* Scan the existing action table looking for an offset that is a
  ** duplicate of the current transaction set.  Fall out of the loop
  ** if and when the duplicate is found.
  **
  ** i is the index in p->aAction[] where p->mnLookahead is inserted.
  */
  end = makeItSafe ? p->mnLookahead : 0;
  for(i=p->nAction-1; i>=end; i--){
    if( p->aAction[i].lookahead==p->mnLookahead ){
      /* All lookaheads and actions in the aLookahead[] transaction
      ** must match against the candidate aAction[i] entry. */
      if( p->aAction[i].action!=p->mnAction ) continue;
      for(j=0; j<p->nLookahead; j++){
        k = p->aLookahead[j].lookahead - p->mnLookahead + i;
        if( k<0 || k>=p->nAction ) break;
706
707
708
709
710
711
712
713
714
715
716
717

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735







736
737
738
739
740

741
742
743
744
745
746










747
748
749
750
751
752
753
    }
  }

  /* If no existing offsets exactly match the current transaction, find an
  ** an empty offset in the aAction[] table in which we can add the
  ** aLookahead[] transaction.
  */
  if( i<0 ){
    /* Look for holes in the aAction[] table that fit the current
    ** aLookahead[] transaction.  Leave i set to the offset of the hole.
    ** If no holes are found, i is left at p->nAction, which means the
    ** transaction will be appended. */

    for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
      if( p->aAction[i].lookahead<0 ){
        for(j=0; j<p->nLookahead; j++){
          k = p->aLookahead[j].lookahead - p->mnLookahead + i;
          if( k<0 ) break;
          if( p->aAction[k].lookahead>=0 ) break;
        }
        if( j<p->nLookahead ) continue;
        for(j=0; j<p->nAction; j++){
          if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
        }
        if( j==p->nAction ){
          break;  /* Fits in empty slots */
        }
      }
    }
  }
  /* Insert transaction set at index i. */







  for(j=0; j<p->nLookahead; j++){
    k = p->aLookahead[j].lookahead - p->mnLookahead + i;
    p->aAction[k] = p->aLookahead[j];
    if( k>=p->nAction ) p->nAction = k+1;
  }

  p->nLookahead = 0;

  /* Return the offset that is added to the lookahead in order to get the
  ** index into yy_action of the action */
  return i - p->mnLookahead;
}











/********************** From the file "build.c" *****************************/
/*
** Routines to construction the finite state machine for the LEMON
** parser generator.
*/








|




>
|

















>
>
>
>
>
>
>





>






>
>
>
>
>
>
>
>
>
>







726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    }
  }

  /* If no existing offsets exactly match the current transaction, find an
  ** an empty offset in the aAction[] table in which we can add the
  ** aLookahead[] transaction.
  */
  if( i<end ){
    /* Look for holes in the aAction[] table that fit the current
    ** aLookahead[] transaction.  Leave i set to the offset of the hole.
    ** If no holes are found, i is left at p->nAction, which means the
    ** transaction will be appended. */
    i = makeItSafe ? p->mnLookahead : 0;
    for(; i<p->nActionAlloc - p->mxLookahead; i++){
      if( p->aAction[i].lookahead<0 ){
        for(j=0; j<p->nLookahead; j++){
          k = p->aLookahead[j].lookahead - p->mnLookahead + i;
          if( k<0 ) break;
          if( p->aAction[k].lookahead>=0 ) break;
        }
        if( j<p->nLookahead ) continue;
        for(j=0; j<p->nAction; j++){
          if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
        }
        if( j==p->nAction ){
          break;  /* Fits in empty slots */
        }
      }
    }
  }
  /* Insert transaction set at index i. */
#if 0
  printf("Acttab:");
  for(j=0; j<p->nLookahead; j++){
    printf(" %d", p->aLookahead[j].lookahead);
  }
  printf(" inserted at %d\n", i);
#endif
  for(j=0; j<p->nLookahead; j++){
    k = p->aLookahead[j].lookahead - p->mnLookahead + i;
    p->aAction[k] = p->aLookahead[j];
    if( k>=p->nAction ) p->nAction = k+1;
  }
  if( makeItSafe && i+p->nterminal>=p->nAction ) p->nAction = i+p->nterminal+1;
  p->nLookahead = 0;

  /* Return the offset that is added to the lookahead in order to get the
  ** index into yy_action of the action */
  return i - p->mnLookahead;
}

/*
** Return the size of the action table without the trailing syntax error
** entries.
*/
int acttab_action_size(acttab *p){
  int n = p->nAction;
  while( n>0 && p->aAction[n-1].lookahead<0 ){ n--; }
  return n;
}

/********************** From the file "build.c" *****************************/
/*
** Routines to construction the finite state machine for the LEMON
** parser generator.
*/

1714
1715
1716
1717
1718
1719
1720

1721
1722
1723
1724
1725
1726
1727
    stats_line("terminal symbols", lem.nterminal);
    stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
    stats_line("total symbols", lem.nsymbol);
    stats_line("rules", lem.nrule);
    stats_line("states", lem.nxstate);
    stats_line("conflicts", lem.nconflict);
    stats_line("action table entries", lem.nactiontab);

    stats_line("total table size (bytes)", lem.tablesize);
  }
  if( lem.nconflict > 0 ){
    fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
  }

  /* return 0 on success, 1 on failure. */







>







1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
    stats_line("terminal symbols", lem.nterminal);
    stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
    stats_line("total symbols", lem.nsymbol);
    stats_line("rules", lem.nrule);
    stats_line("states", lem.nxstate);
    stats_line("conflicts", lem.nconflict);
    stats_line("action table entries", lem.nactiontab);
    stats_line("lookahead table entries", lem.nlookaheadtab);
    stats_line("total table size (bytes)", lem.tablesize);
  }
  if( lem.nconflict > 0 ){
    fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
  }

  /* return 0 on success, 1 on failure. */
3015
3016
3017
3018
3019
3020
3021





















3022
3023
3024
3025
3026
3027
3028
  if( fp==0 && *mode=='w' ){
    fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
    lemp->errorcnt++;
    return 0;
  }
  return fp;
}






















/* Duplicate the input file without comments and without actions
** on rules */
void Reprint(struct lemon *lemp)
{
  struct rule *rp;
  struct symbol *sp;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
  if( fp==0 && *mode=='w' ){
    fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
    lemp->errorcnt++;
    return 0;
  }
  return fp;
}

/* Print the text of a rule
*/
void rule_print(FILE *out, struct rule *rp){
  int i, j;
  fprintf(out, "%s",rp->lhs->name);
  /*    if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */
  fprintf(out," ::=");
  for(i=0; i<rp->nrhs; i++){
    struct symbol *sp = rp->rhs[i];
    if( sp->type==MULTITERMINAL ){
      fprintf(out," %s", sp->subsym[0]->name);
      for(j=1; j<sp->nsubsym; j++){
        fprintf(out,"|%s", sp->subsym[j]->name);
      }
    }else{
      fprintf(out," %s", sp->name);
    }
    /* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */
  }
}

/* Duplicate the input file without comments and without actions
** on rules */
void Reprint(struct lemon *lemp)
{
  struct rule *rp;
  struct symbol *sp;
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
      sp = lemp->symbols[j];
      assert( sp->index==j );
      printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
    }
    printf("\n");
  }
  for(rp=lemp->rule; rp; rp=rp->next){
    printf("%s",rp->lhs->name);
    /*    if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
    printf(" ::=");
    for(i=0; i<rp->nrhs; i++){
      sp = rp->rhs[i];
      if( sp->type==MULTITERMINAL ){
        printf(" %s", sp->subsym[0]->name);
        for(j=1; j<sp->nsubsym; j++){
          printf("|%s", sp->subsym[j]->name);
        }
      }else{
        printf(" %s", sp->name);
      }
      /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
    }
    printf(".");
    if( rp->precsym ) printf(" [%s]",rp->precsym->name);
    /* if( rp->code ) printf("\n    %s",rp->code); */
    printf("\n");
  }
}








<
<
|
<
<
<
<
<
<
<
<
<
<
<
<







3104
3105
3106
3107
3108
3109
3110


3111












3112
3113
3114
3115
3116
3117
3118
      sp = lemp->symbols[j];
      assert( sp->index==j );
      printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
    }
    printf("\n");
  }
  for(rp=lemp->rule; rp; rp=rp->next){


    rule_print(stdout, rp);












    printf(".");
    if( rp->precsym ) printf(" [%s]",rp->precsym->name);
    /* if( rp->code ) printf("\n    %s",rp->code); */
    printf("\n");
  }
}

3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328




3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
*/
PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
{
  int act;
  switch( ap->type ){
    case SHIFT:  act = ap->x.stp->statenum;                        break;
    case SHIFTREDUCE: {
      act = ap->x.rp->iRule + lemp->nstate;
      /* Since a SHIFT is inherient after a prior REDUCE, convert any
      ** SHIFTREDUCE action with a nonterminal on the LHS into a simple
      ** REDUCE action: */
      if( ap->sp->index>=lemp->nterminal ) act += lemp->nrule;




      break;
    }
    case REDUCE: act = ap->x.rp->iRule + lemp->nstate+lemp->nrule; break;
    case ERROR:  act = lemp->nstate + lemp->nrule*2;               break;
    case ACCEPT: act = lemp->nstate + lemp->nrule*2 + 1;           break;
    default:     act = -1; break;
  }
  return act;
}

#define LINESIZE 1000
/* The next cluster of routines are for reading the template file







<



|
>
>
>
>


|
|
|







3364
3365
3366
3367
3368
3369
3370

3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
*/
PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
{
  int act;
  switch( ap->type ){
    case SHIFT:  act = ap->x.stp->statenum;                        break;
    case SHIFTREDUCE: {

      /* Since a SHIFT is inherient after a prior REDUCE, convert any
      ** SHIFTREDUCE action with a nonterminal on the LHS into a simple
      ** REDUCE action: */
      if( ap->sp->index>=lemp->nterminal ){
        act = lemp->minReduce + ap->x.rp->iRule;
      }else{
        act = lemp->minShiftReduce + ap->x.rp->iRule;
      }
      break;
    }
    case REDUCE: act = lemp->minReduce + ap->x.rp->iRule;          break;
    case ERROR:  act = lemp->errAction;                            break;
    case ACCEPT: act = lemp->accAction;                            break;
    default:     act = -1; break;
  }
  return act;
}

#define LINESIZE 1000
/* The next cluster of routines are for reading the template file
4034
4035
4036
4037
4038
4039
4040







4041
4042
4043
4044
4045
4046
4047
  int szActionType;     /* sizeof(YYACTIONTYPE) */
  int szCodeType;       /* sizeof(YYCODETYPE)   */
  const char *name;
  int mnTknOfst, mxTknOfst;
  int mnNtOfst, mxNtOfst;
  struct axset *ax;








  in = tplt_open(lemp);
  if( in==0 ) return;
  out = file_open(lemp,".c","wb");
  if( out==0 ){
    fclose(in);
    return;
  }







>
>
>
>
>
>
>







4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
  int szActionType;     /* sizeof(YYACTIONTYPE) */
  int szCodeType;       /* sizeof(YYCODETYPE)   */
  const char *name;
  int mnTknOfst, mxTknOfst;
  int mnNtOfst, mxNtOfst;
  struct axset *ax;

  lemp->minShiftReduce = lemp->nstate;
  lemp->errAction = lemp->minShiftReduce + lemp->nrule;
  lemp->accAction = lemp->errAction + 1;
  lemp->noAction = lemp->accAction + 1;
  lemp->minReduce = lemp->noAction + 1;
  lemp->maxAction = lemp->minReduce + lemp->nrule;

  in = tplt_open(lemp);
  if( in==0 ) return;
  out = file_open(lemp,".c","wb");
  if( out==0 ){
    fclose(in);
    return;
  }
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the defines */
  fprintf(out,"#define YYCODETYPE %s\n",
    minimum_size_type(0, lemp->nsymbol+1, &szCodeType)); lineno++;
  fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
  fprintf(out,"#define YYACTIONTYPE %s\n",
    minimum_size_type(0,lemp->nstate+lemp->nrule*2+5,&szActionType)); lineno++;
  if( lemp->wildcard ){
    fprintf(out,"#define YYWILDCARD %d\n",
       lemp->wildcard->index); lineno++;
  }
  print_stack_union(out,lemp,&lineno,mhflag);
  fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
  if( lemp->stacksize ){







|







4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the defines */
  fprintf(out,"#define YYCODETYPE %s\n",
    minimum_size_type(0, lemp->nsymbol+1, &szCodeType)); lineno++;
  fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
  fprintf(out,"#define YYACTIONTYPE %s\n",
    minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++;
  if( lemp->wildcard ){
    fprintf(out,"#define YYWILDCARD %d\n",
       lemp->wildcard->index); lineno++;
  }
  print_stack_union(out,lemp,&lineno,mhflag);
  fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
  if( lemp->stacksize ){
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
  }
  mxTknOfst = mnTknOfst = 0;
  mxNtOfst = mnNtOfst = 0;
  /* In an effort to minimize the action table size, use the heuristic
  ** of placing the largest action sets first */
  for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
  qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
  pActtab = acttab_alloc();
  for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
    stp = ax[i].stp;
    if( ax[i].isTkn ){
      for(ap=stp->ap; ap; ap=ap->next){
        int action;
        if( ap->sp->index>=lemp->nterminal ) continue;
        action = compute_action(lemp, ap);
        if( action<0 ) continue;
        acttab_action(pActtab, ap->sp->index, action);
      }
      stp->iTknOfst = acttab_insert(pActtab);
      if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
      if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
    }else{
      for(ap=stp->ap; ap; ap=ap->next){
        int action;
        if( ap->sp->index<lemp->nterminal ) continue;
        if( ap->sp->index==lemp->nsymbol ) continue;
        action = compute_action(lemp, ap);
        if( action<0 ) continue;
        acttab_action(pActtab, ap->sp->index, action);
      }
      stp->iNtOfst = acttab_insert(pActtab);
      if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
      if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
    }
#if 0  /* Uncomment for a trace of how the yy_action[] table fills out */
    { int jj, nn;
      for(jj=nn=0; jj<pActtab->nAction; jj++){
        if( pActtab->aAction[jj].action<0 ) nn++;







|










|











|







4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
  }
  mxTknOfst = mnTknOfst = 0;
  mxNtOfst = mnNtOfst = 0;
  /* In an effort to minimize the action table size, use the heuristic
  ** of placing the largest action sets first */
  for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
  qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
  pActtab = acttab_alloc(lemp->nsymbol, lemp->nterminal);
  for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
    stp = ax[i].stp;
    if( ax[i].isTkn ){
      for(ap=stp->ap; ap; ap=ap->next){
        int action;
        if( ap->sp->index>=lemp->nterminal ) continue;
        action = compute_action(lemp, ap);
        if( action<0 ) continue;
        acttab_action(pActtab, ap->sp->index, action);
      }
      stp->iTknOfst = acttab_insert(pActtab, 1);
      if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
      if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
    }else{
      for(ap=stp->ap; ap; ap=ap->next){
        int action;
        if( ap->sp->index<lemp->nterminal ) continue;
        if( ap->sp->index==lemp->nsymbol ) continue;
        action = compute_action(lemp, ap);
        if( action<0 ) continue;
        acttab_action(pActtab, ap->sp->index, action);
      }
      stp->iNtOfst = acttab_insert(pActtab, 0);
      if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
      if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
    }
#if 0  /* Uncomment for a trace of how the yy_action[] table fills out */
    { int jj, nn;
      for(jj=nn=0; jj<pActtab->nAction; jj++){
        if( pActtab->aAction[jj].action<0 ) nn++;
4196
4197
4198
4199
4200
4201
4202

4203

4204
4205
4206
4207
4208
4209
4210
4211
4212



4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246

4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
    }
  }

  /* Finish rendering the constants now that the action table has
  ** been computed */
  fprintf(out,"#define YYNSTATE             %d\n",lemp->nxstate);  lineno++;
  fprintf(out,"#define YYNRULE              %d\n",lemp->nrule);  lineno++;

  fprintf(out,"#define YY_MAX_SHIFT         %d\n",lemp->nxstate-1); lineno++;

  fprintf(out,"#define YY_MIN_SHIFTREDUCE   %d\n",lemp->nstate); lineno++;
  i = lemp->nstate + lemp->nrule;
  fprintf(out,"#define YY_MAX_SHIFTREDUCE   %d\n", i-1); lineno++;
  fprintf(out,"#define YY_MIN_REDUCE        %d\n", i); lineno++;
  i = lemp->nstate + lemp->nrule*2;
  fprintf(out,"#define YY_MAX_REDUCE        %d\n", i-1); lineno++;
  fprintf(out,"#define YY_ERROR_ACTION      %d\n", i); lineno++;
  fprintf(out,"#define YY_ACCEPT_ACTION     %d\n", i+1); lineno++;
  fprintf(out,"#define YY_NO_ACTION         %d\n", i+2); lineno++;



  tplt_xfer(lemp->name,in,out,&lineno);

  /* Now output the action table and its associates:
  **
  **  yy_action[]        A single table containing all actions.
  **  yy_lookahead[]     A table containing the lookahead for each entry in
  **                     yy_action.  Used to detect hash collisions.
  **  yy_shift_ofst[]    For each state, the offset into yy_action for
  **                     shifting terminals.
  **  yy_reduce_ofst[]   For each state, the offset into yy_action for
  **                     shifting non-terminals after a reduce.
  **  yy_default[]       Default action for each state.
  */

  /* Output the yy_action table */
  lemp->nactiontab = n = acttab_size(pActtab);
  lemp->tablesize += n*szActionType;
  fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
  fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
  for(i=j=0; i<n; i++){
    int action = acttab_yyaction(pActtab, i);
    if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", action);
    if( j==9 || i==n-1 ){
      fprintf(out, "\n"); lineno++;
      j = 0;
    }else{
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_lookahead table */

  lemp->tablesize += n*szCodeType;
  fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
  for(i=j=0; i<n; i++){
    int la = acttab_yylookahead(pActtab, i);
    if( la<0 ) la = lemp->nsymbol;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", la);
    if( j==9 || i==n-1 ){
      fprintf(out, "\n"); lineno++;
      j = 0;
    }else{
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_shift_ofst[] table */
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", lemp->nactiontab); lineno++;
  fprintf(out, "#define YY_SHIFT_COUNT    (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_SHIFT_MIN      (%d)\n", mnTknOfst); lineno++;
  fprintf(out, "#define YY_SHIFT_MAX      (%d)\n", mxTknOfst); lineno++;
  fprintf(out, "static const %s yy_shift_ofst[] = {\n",
       minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
       lineno++;
  lemp->tablesize += n*sz;







>

>
|
|

<
<
<
|
|
|
>
>
>















|





|












>



















<







4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265



4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325

4326
4327
4328
4329
4330
4331
4332
    }
  }

  /* Finish rendering the constants now that the action table has
  ** been computed */
  fprintf(out,"#define YYNSTATE             %d\n",lemp->nxstate);  lineno++;
  fprintf(out,"#define YYNRULE              %d\n",lemp->nrule);  lineno++;
  fprintf(out,"#define YYNTOKEN             %d\n",lemp->nterminal); lineno++;
  fprintf(out,"#define YY_MAX_SHIFT         %d\n",lemp->nxstate-1); lineno++;
  i = lemp->minShiftReduce;
  fprintf(out,"#define YY_MIN_SHIFTREDUCE   %d\n",i); lineno++;
  i += lemp->nrule;
  fprintf(out,"#define YY_MAX_SHIFTREDUCE   %d\n", i-1); lineno++;



  fprintf(out,"#define YY_ERROR_ACTION      %d\n", lemp->errAction); lineno++;
  fprintf(out,"#define YY_ACCEPT_ACTION     %d\n", lemp->accAction); lineno++;
  fprintf(out,"#define YY_NO_ACTION         %d\n", lemp->noAction); lineno++;
  fprintf(out,"#define YY_MIN_REDUCE        %d\n", lemp->minReduce); lineno++;
  i = lemp->minReduce + lemp->nrule;
  fprintf(out,"#define YY_MAX_REDUCE        %d\n", i-1); lineno++;
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Now output the action table and its associates:
  **
  **  yy_action[]        A single table containing all actions.
  **  yy_lookahead[]     A table containing the lookahead for each entry in
  **                     yy_action.  Used to detect hash collisions.
  **  yy_shift_ofst[]    For each state, the offset into yy_action for
  **                     shifting terminals.
  **  yy_reduce_ofst[]   For each state, the offset into yy_action for
  **                     shifting non-terminals after a reduce.
  **  yy_default[]       Default action for each state.
  */

  /* Output the yy_action table */
  lemp->nactiontab = n = acttab_action_size(pActtab);
  lemp->tablesize += n*szActionType;
  fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
  fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
  for(i=j=0; i<n; i++){
    int action = acttab_yyaction(pActtab, i);
    if( action<0 ) action = lemp->noAction;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", action);
    if( j==9 || i==n-1 ){
      fprintf(out, "\n"); lineno++;
      j = 0;
    }else{
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_lookahead table */
  lemp->nlookaheadtab = n = acttab_lookahead_size(pActtab);
  lemp->tablesize += n*szCodeType;
  fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
  for(i=j=0; i<n; i++){
    int la = acttab_yylookahead(pActtab, i);
    if( la<0 ) la = lemp->nsymbol;
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    fprintf(out, " %4d,", la);
    if( j==9 || i==n-1 ){
      fprintf(out, "\n"); lineno++;
      j = 0;
    }else{
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_shift_ofst[] table */
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;

  fprintf(out, "#define YY_SHIFT_COUNT    (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_SHIFT_MIN      (%d)\n", mnTknOfst); lineno++;
  fprintf(out, "#define YY_SHIFT_MAX      (%d)\n", mxTknOfst); lineno++;
  fprintf(out, "static const %s yy_shift_ofst[] = {\n",
       minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
       lineno++;
  lemp->tablesize += n*sz;
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
    }else{
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_reduce_ofst[] table */
  fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
  fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
  fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
          minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;







<







4343
4344
4345
4346
4347
4348
4349

4350
4351
4352
4353
4354
4355
4356
    }else{
      j++;
    }
  }
  fprintf(out, "};\n"); lineno++;

  /* Output the yy_reduce_ofst[] table */

  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
  fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
  fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
          minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
4316
4317
4318
4319
4320
4321
4322



4323

4324
4325
4326
4327
4328
4329
4330
  /* Output the default action table */
  fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
  n = lemp->nxstate;
  lemp->tablesize += n*szActionType;
  for(i=j=0; i<n; i++){
    stp = lemp->sorted[i];
    if( j==0 ) fprintf(out," /* %5d */ ", i);



    fprintf(out, " %4d,", stp->iDfltReduce+lemp->nstate+lemp->nrule);

    if( j==9 || i==n-1 ){
      fprintf(out, "\n"); lineno++;
      j = 0;
    }else{
      j++;
    }
  }







>
>
>
|
>







4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
  /* Output the default action table */
  fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
  n = lemp->nxstate;
  lemp->tablesize += n*szActionType;
  for(i=j=0; i<n; i++){
    stp = lemp->sorted[i];
    if( j==0 ) fprintf(out," /* %5d */ ", i);
    if( stp->iDfltReduce<0 ){
      fprintf(out, " %4d,", lemp->errAction);
    }else{
      fprintf(out, " %4d,", stp->iDfltReduce + lemp->minReduce);
    }
    if( j==9 || i==n-1 ){
      fprintf(out, "\n"); lineno++;
      j = 0;
    }else{
      j++;
    }
  }
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
  }
  tplt_xfer(lemp->name, in, out, &lineno);

  /* Generate a table containing the symbolic name of every symbol
  */
  for(i=0; i<lemp->nsymbol; i++){
    lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name);
    fprintf(out,"  %-15s",line);
    if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
  }
  if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate a table containing a text string that describes every
  ** rule in the rule set of the grammar.  This information is used
  ** when tracing REDUCE actions.
  */
  for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){







|
<

<







4412
4413
4414
4415
4416
4417
4418
4419

4420

4421
4422
4423
4424
4425
4426
4427
  }
  tplt_xfer(lemp->name, in, out, &lineno);

  /* Generate a table containing the symbolic name of every symbol
  */
  for(i=0; i<lemp->nsymbol; i++){
    lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name);
    fprintf(out,"  /* %4d */ \"%s\",\n",i, lemp->symbols[i]->name); lineno++;

  }

  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate a table containing a text string that describes every
  ** rule in the rule set of the grammar.  This information is used
  ** when tracing REDUCE actions.
  */
  for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
    struct symbol *dflt_sp = 0;
    int once = 1;
    for(i=0; i<lemp->nsymbol; i++){
      struct symbol *sp = lemp->symbols[i];
      if( sp==0 || sp->type==TERMINAL ||
          sp->index<=0 || sp->destructor!=0 ) continue;
      if( once ){
        fprintf(out, "      /* Default NON-TERMINAL Destructor */\n"); lineno++;
        once = 0;
      }
      fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
      dflt_sp = sp;
    }
    if( dflt_sp!=0 ){
      emit_destructor_code(out,dflt_sp,lemp,&lineno);







|







4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
    struct symbol *dflt_sp = 0;
    int once = 1;
    for(i=0; i<lemp->nsymbol; i++){
      struct symbol *sp = lemp->symbols[i];
      if( sp==0 || sp->type==TERMINAL ||
          sp->index<=0 || sp->destructor!=0 ) continue;
      if( once ){
        fprintf(out, "      /* Default NON-TERMINAL Destructor */\n");lineno++;
        once = 0;
      }
      fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
      dflt_sp = sp;
    }
    if( dflt_sp!=0 ){
      emit_destructor_code(out,dflt_sp,lemp,&lineno);
4440
4441
4442
4443
4444
4445
4446
4447
4448


4449
4450
4451
4452
4453
4454
4455
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the table of rule information
  **
  ** Note: This code depends on the fact that rules are number
  ** sequentually beginning with 0.
  */
  for(rp=lemp->rule; rp; rp=rp->next){
    fprintf(out,"  { %d, %d },\n",rp->lhs->index,-rp->nrhs); lineno++;


  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate code which execution during each REDUCE action */
  i = 0;
  for(rp=lemp->rule; rp; rp=rp->next){
    i += translate_code(lemp, rp);







|
|
>
>







4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the table of rule information
  **
  ** Note: This code depends on the fact that rules are number
  ** sequentually beginning with 0.
  */
  for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
    fprintf(out,"  { %4d, %4d }, /* (%d) ",rp->lhs->index,-rp->nrhs,i);
    rule_print(out, rp);
    fprintf(out," */\n"); lineno++;
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate code which execution during each REDUCE action */
  i = 0;
  for(rp=lemp->rule; rp; rp=rp->next){
    i += translate_code(lemp, rp);
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
  int i;
  struct state *stp;
  struct action *ap;

  for(i=0; i<lemp->nstate; i++){
    stp = lemp->sorted[i];
    stp->nTknAct = stp->nNtAct = 0;
    stp->iDfltReduce = lemp->nrule;  /* Init dflt action to "syntax error" */
    stp->iTknOfst = NO_OFFSET;
    stp->iNtOfst = NO_OFFSET;
    for(ap=stp->ap; ap; ap=ap->next){
      int iAction = compute_action(lemp,ap);
      if( iAction>=0 ){
        if( ap->sp->index<lemp->nterminal ){
          stp->nTknAct++;
        }else if( ap->sp->index<lemp->nsymbol ){
          stp->nNtAct++;
        }else{
          assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
          stp->iDfltReduce = iAction - lemp->nstate - lemp->nrule;
        }
      }
    }
  }
  qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
        stateResortCompare);
  for(i=0; i<lemp->nstate; i++){







|











|







4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
  int i;
  struct state *stp;
  struct action *ap;

  for(i=0; i<lemp->nstate; i++){
    stp = lemp->sorted[i];
    stp->nTknAct = stp->nNtAct = 0;
    stp->iDfltReduce = -1; /* Init dflt action to "syntax error" */
    stp->iTknOfst = NO_OFFSET;
    stp->iNtOfst = NO_OFFSET;
    for(ap=stp->ap; ap; ap=ap->next){
      int iAction = compute_action(lemp,ap);
      if( iAction>=0 ){
        if( ap->sp->index<lemp->nterminal ){
          stp->nTknAct++;
        }else if( ap->sp->index<lemp->nsymbol ){
          stp->nNtAct++;
        }else{
          assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
          stp->iDfltReduce = iAction;
        }
      }
    }
  }
  qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
        stateResortCompare);
  for(i=0; i<lemp->nstate; i++){
Changes to tool/lempar.c.
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82


83
84
85
86
87
88
89
**    ParseARG_PDECL     A parameter declaration for the %extra_argument
**    ParseARG_STORE     Code to store %extra_argument into yypParser
**    ParseARG_FETCH     Code to extract %extra_argument from yypParser
**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar

**    YY_MAX_SHIFT       Maximum value for shift actions
**    YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    YY_MIN_REDUCE      Minimum value for reduce actions
**    YY_MAX_REDUCE      Maximum value for reduce actions
**    YY_ERROR_ACTION    The yy_action[] code for syntax error
**    YY_ACCEPT_ACTION   The yy_action[] code for accept
**    YY_NO_ACTION       The yy_action[] code for no-op


*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
%%
/************* End control #defines *******************************************/







>



<
<



>
>







68
69
70
71
72
73
74
75
76
77
78


79
80
81
82
83
84
85
86
87
88
89
90
**    ParseARG_PDECL     A parameter declaration for the %extra_argument
**    ParseARG_STORE     Code to store %extra_argument into yypParser
**    ParseARG_FETCH     Code to extract %extra_argument from yypParser
**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YYNTOKEN           Number of terminal symbols
**    YY_MAX_SHIFT       Maximum value for shift actions
**    YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions


**    YY_ERROR_ACTION    The yy_action[] code for syntax error
**    YY_ACCEPT_ACTION   The yy_action[] code for accept
**    YY_NO_ACTION       The yy_action[] code for no-op
**    YY_MIN_REDUCE      Minimum value for reduce actions
**    YY_MAX_REDUCE      Maximum value for reduce actions
*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
%%
/************* End control #defines *******************************************/
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126



127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
**
**   0 <= N <= YY_MAX_SHIFT             Shift N.  That is, push the lookahead
**                                      token onto the stack and goto state N.
**
**   N between YY_MIN_SHIFTREDUCE       Shift to an arbitrary state then
**     and YY_MAX_SHIFTREDUCE           reduce by rule N-YY_MIN_SHIFTREDUCE.
**
**   N between YY_MIN_REDUCE            Reduce by rule N-YY_MIN_REDUCE
**     and YY_MAX_REDUCE
**
**   N == YY_ERROR_ACTION               A syntax error has occurred.
**
**   N == YY_ACCEPT_ACTION              The parser accepts its input.
**
**   N == YY_NO_ACTION                  No such action.  Denotes unused
**                                      slots in the yy_action[] table.



**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as either:
**
**    (A)   N = yy_action[ yy_shift_ofst[S] + X ]
**    (B)   N = yy_default[S]
**
** The (A) formula is preferred.  The B formula is used instead if:
**    (1)  The yy_shift_ofst[S]+X value is out of range, or
**    (2)  yy_lookahead[yy_shift_ofst[S]+X] is not equal to X, or
**    (3)  yy_shift_ofst[S] equal YY_SHIFT_USE_DFLT.
** (Implementation note: YY_SHIFT_USE_DFLT is chosen so that
** YY_SHIFT_USE_DFLT+X will be out of range for all possible lookaheads X.
** Hence only tests (1) and (2) need to be evaluated.)
**
** The formulas above are for computing the action when the lookahead is
** a terminal symbol.  If the lookahead is a non-terminal (as occurs after
** a reduce action) then the yy_reduce_ofst[] array is used in place of
** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
** YY_SHIFT_USE_DFLT.
**
** The following are the tables generated in this section:
**
**  yy_action[]        A single table containing all actions.
**  yy_lookahead[]     A table containing the lookahead for each entry in
**                     yy_action.  Used to detect hash collisions.
**  yy_shift_ofst[]    For each state, the offset into yy_action for







<
<
<






>
>
>







|
<
|
<
<
<
<




|
<







112
113
114
115
116
117
118



119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136




137
138
139
140
141

142
143
144
145
146
147
148
**
**   0 <= N <= YY_MAX_SHIFT             Shift N.  That is, push the lookahead
**                                      token onto the stack and goto state N.
**
**   N between YY_MIN_SHIFTREDUCE       Shift to an arbitrary state then
**     and YY_MAX_SHIFTREDUCE           reduce by rule N-YY_MIN_SHIFTREDUCE.
**



**   N == YY_ERROR_ACTION               A syntax error has occurred.
**
**   N == YY_ACCEPT_ACTION              The parser accepts its input.
**
**   N == YY_NO_ACTION                  No such action.  Denotes unused
**                                      slots in the yy_action[] table.
**
**   N between YY_MIN_REDUCE            Reduce by rule N-YY_MIN_REDUCE
**     and YY_MAX_REDUCE
**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as either:
**
**    (A)   N = yy_action[ yy_shift_ofst[S] + X ]
**    (B)   N = yy_default[S]
**
** The (A) formula is preferred.  The B formula is used instead if

** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X.




**
** The formulas above are for computing the action when the lookahead is
** a terminal symbol.  If the lookahead is a non-terminal (as occurs after
** a reduce action) then the yy_reduce_ofst[] array is used in place of
** the yy_shift_ofst[] array.

**
** The following are the tables generated in this section:
**
**  yy_action[]        A single table containing all actions.
**  yy_lookahead[]     A table containing the lookahead for each entry in
**                     yy_action.  Used to detect hash collisions.
**  yy_shift_ofst[]    For each state, the offset into yy_action for
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
  yyTraceFILE = TraceFILE;
  yyTracePrompt = zTracePrompt;
  if( yyTraceFILE==0 ) yyTracePrompt = 0;
  else if( yyTracePrompt==0 ) yyTraceFILE = 0;
}
#endif /* NDEBUG */

#ifndef NDEBUG
/* For tracing shifts, the names of all terminals and nonterminals
** are required.  The following table supplies these names */
static const char *const yyTokenName[] = { 
%%
};
#endif /* NDEBUG */

#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
static const char *const yyRuleName[] = {
%%
};







|





|







250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  yyTraceFILE = TraceFILE;
  yyTracePrompt = zTracePrompt;
  if( yyTraceFILE==0 ) yyTracePrompt = 0;
  else if( yyTracePrompt==0 ) yyTraceFILE = 0;
}
#endif /* NDEBUG */

#if defined(YYCOVERAGE) || !defined(NDEBUG)
/* For tracing shifts, the names of all terminals and nonterminals
** are required.  The following table supplies these names */
static const char *const yyTokenName[] = { 
%%
};
#endif /* defined(YYCOVERAGE) || !defined(NDEBUG) */

#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
static const char *const yyRuleName[] = {
%%
};
457
458
459
460
461
462
463





































464
465
466
467
468
469
470
471
472
473
474
475
476



477
478

479

480
481
482
483
484
485
486
487
488
#ifdef YYTRACKMAXSTACKDEPTH
int ParseStackPeak(void *p){
  yyParser *pParser = (yyParser*)p;
  return pParser->yyhwm;
}
#endif






































/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
*/
static unsigned int yy_find_shift_action(
  yyParser *pParser,        /* The parser */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
  int stateno = pParser->yytos->stateno;
 
  if( stateno>=YY_MIN_REDUCE ) return stateno;
  assert( stateno <= YY_SHIFT_COUNT );



  do{
    i = yy_shift_ofst[stateno];

    assert( iLookAhead!=YYNOCODE );

    i += iLookAhead;
    if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
#ifdef YYFALLBACK
      YYCODETYPE iFallback;            /* Fallback token */
      if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
             && (iFallback = yyFallback[iLookAhead])!=0 ){
#ifndef NDEBUG
        if( yyTraceFILE ){
          fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











|

>
>
>


>

>

|







452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#ifdef YYTRACKMAXSTACKDEPTH
int ParseStackPeak(void *p){
  yyParser *pParser = (yyParser*)p;
  return pParser->yyhwm;
}
#endif

/* This array of booleans keeps track of the parser statement
** coverage.  The element yycoverage[X][Y] is set when the parser
** is in state X and has a lookahead token Y.  In a well-tested
** systems, every element of this matrix should end up being set.
*/
#if defined(YYCOVERAGE)
static unsigned char yycoverage[YYNSTATE][YYNTOKEN];
#endif

/*
** Write into out a description of every state/lookahead combination that
**
**   (1)  has not been used by the parser, and
**   (2)  is not a syntax error.
**
** Return the number of missed state/lookahead combinations.
*/
#if defined(YYCOVERAGE)
int ParseCoverage(FILE *out){
  int stateno, iLookAhead, i;
  int nMissed = 0;
  for(stateno=0; stateno<YYNSTATE; stateno++){
    i = yy_shift_ofst[stateno];
    for(iLookAhead=0; iLookAhead<YYNTOKEN; iLookAhead++){
      if( yy_lookahead[i+iLookAhead]!=iLookAhead ) continue;
      if( yycoverage[stateno][iLookAhead]==0 ) nMissed++;
      if( out ){
        fprintf(out,"State %d lookahead %s %s\n", stateno,
                yyTokenName[iLookAhead],
                yycoverage[stateno][iLookAhead] ? "ok" : "missed");
      }
    }
  }
  return nMissed;
}
#endif

/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
*/
static unsigned int yy_find_shift_action(
  yyParser *pParser,        /* The parser */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
  int stateno = pParser->yytos->stateno;
 
  if( stateno>YY_MAX_SHIFT ) return stateno;
  assert( stateno <= YY_SHIFT_COUNT );
#if defined(YYCOVERAGE)
  yycoverage[stateno][iLookAhead] = 1;
#endif
  do{
    i = yy_shift_ofst[stateno];
    assert( i>=0 && i+YYNTOKEN<=sizeof(yy_lookahead)/sizeof(yy_lookahead[0]) );
    assert( iLookAhead!=YYNOCODE );
    assert( iLookAhead < YYNTOKEN );
    i += iLookAhead;
    if( yy_lookahead[i]!=iLookAhead ){
#ifdef YYFALLBACK
      YYCODETYPE iFallback;            /* Fallback token */
      if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
             && (iFallback = yyFallback[iLookAhead])!=0 ){
#ifndef NDEBUG
        if( yyTraceFILE ){
          fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
  if( stateno>YY_REDUCE_COUNT ){
    return yy_default[stateno];
  }
#else
  assert( stateno<=YY_REDUCE_COUNT );
#endif
  i = yy_reduce_ofst[stateno];
  assert( i!=YY_REDUCE_USE_DFLT );
  assert( iLookAhead!=YYNOCODE );
  i += iLookAhead;
#ifdef YYERRORSYMBOL
  if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
    return yy_default[stateno];
  }
#else







<







574
575
576
577
578
579
580

581
582
583
584
585
586
587
  if( stateno>YY_REDUCE_COUNT ){
    return yy_default[stateno];
  }
#else
  assert( stateno<=YY_REDUCE_COUNT );
#endif
  i = yy_reduce_ofst[stateno];

  assert( iLookAhead!=YYNOCODE );
  i += iLookAhead;
#ifdef YYERRORSYMBOL
  if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
    return yy_default[stateno];
  }
#else
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

590
591
592
593
594
595
596
597
598
599
600
601
   ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void yyTraceShift(yyParser *yypParser, int yyNewState){
  if( yyTraceFILE ){
    if( yyNewState<YYNSTATE ){
      fprintf(yyTraceFILE,"%sShift '%s', go to state %d\n",
         yyTracePrompt,yyTokenName[yypParser->yytos->major],
         yyNewState);
    }else{
      fprintf(yyTraceFILE,"%sShift '%s'\n",
         yyTracePrompt,yyTokenName[yypParser->yytos->major]);

    }
  }
}
#else
# define yyTraceShift(X,Y)
#endif

/*
** Perform a shift action.
*/
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */







|


|
|


|
|
>




|







610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
   ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void yyTraceShift(yyParser *yypParser, int yyNewState, const char *zTag){
  if( yyTraceFILE ){
    if( yyNewState<YYNSTATE ){
      fprintf(yyTraceFILE,"%s%s '%s', go to state %d\n",
         yyTracePrompt, zTag, yyTokenName[yypParser->yytos->major],
         yyNewState);
    }else{
      fprintf(yyTraceFILE,"%s%s '%s', pending reduce %d\n",
         yyTracePrompt, zTag, yyTokenName[yypParser->yytos->major],
         yyNewState - YY_MIN_REDUCE);
    }
  }
}
#else
# define yyTraceShift(X,Y,Z)
#endif

/*
** Perform a shift action.
*/
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
  if( yyNewState > YY_MAX_SHIFT ){
    yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
  }
  yytos = yypParser->yytos;
  yytos->stateno = (YYACTIONTYPE)yyNewState;
  yytos->major = (YYCODETYPE)yyMajor;
  yytos->minor.yy0 = yyMinor;
  yyTraceShift(yypParser, yyNewState);
}

/* The following table contains information about every rule that
** is used during the reduce.
*/
static const struct {
  YYCODETYPE lhs;       /* Symbol on the left-hand side of the rule */







|







666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
  if( yyNewState > YY_MAX_SHIFT ){
    yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
  }
  yytos = yypParser->yytos;
  yytos->stateno = (YYACTIONTYPE)yyNewState;
  yytos->major = (YYCODETYPE)yyMajor;
  yytos->minor.yy0 = yyMinor;
  yyTraceShift(yypParser, yyNewState, "Shift");
}

/* The following table contains information about every rule that
** is used during the reduce.
*/
static const struct {
  YYCODETYPE lhs;       /* Symbol on the left-hand side of the rule */
669
670
671
672
673
674
675

676

677




678
679
680
681
682
683
684
  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  ParseARG_FETCH;
  yymsp = yypParser->yytos;
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
    yysize = yyRuleInfo[yyruleno].nrhs;

    fprintf(yyTraceFILE, "%sReduce [%s], go to state %d.\n", yyTracePrompt,

      yyRuleName[yyruleno], yymsp[yysize].stateno);




  }
#endif /* NDEBUG */

  /* Check that the stack is large enough to grow by a single entry
  ** if the RHS of the rule is empty.  This ensures that there is room
  ** enough on the stack to push the LHS value */
  if( yyRuleInfo[yyruleno].nrhs==0 ){







>
|
>
|
>
>
>
>







706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  ParseARG_FETCH;
  yymsp = yypParser->yytos;
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
    yysize = yyRuleInfo[yyruleno].nrhs;
    if( yysize ){
      fprintf(yyTraceFILE, "%sReduce %d [%s], go to state %d.\n",
        yyTracePrompt,
        yyruleno, yyRuleName[yyruleno], yymsp[yysize].stateno);
    }else{
      fprintf(yyTraceFILE, "%sReduce %d [%s].\n",
        yyTracePrompt, yyruleno, yyRuleName[yyruleno]);
    }
  }
#endif /* NDEBUG */

  /* Check that the stack is large enough to grow by a single entry
  ** if the RHS of the rule is empty.  This ensures that there is room
  ** enough on the stack to push the LHS value */
  if( yyRuleInfo[yyruleno].nrhs==0 ){
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
  /* There are no SHIFTREDUCE actions on nonterminals because the table
  ** generator has simplified them to pure REDUCE actions. */
  assert( !(yyact>YY_MAX_SHIFT && yyact<=YY_MAX_SHIFTREDUCE) );

  /* It is not possible for a REDUCE to be followed by an error */
  assert( yyact!=YY_ERROR_ACTION );

  if( yyact==YY_ACCEPT_ACTION ){
    yypParser->yytos += yysize;
    yy_accept(yypParser);
  }else{
    yymsp += yysize+1;
    yypParser->yytos = yymsp;
    yymsp->stateno = (YYACTIONTYPE)yyact;
    yymsp->major = (YYCODETYPE)yygoto;
    yyTraceShift(yypParser, yyact);
  }
}

/*
** The following code executes when the parse fails
*/
#ifndef YYNOERRORRECOVERY
static void yy_parse_failed(







<
<
<
<
|
|
|
|
|
<







768
769
770
771
772
773
774




775
776
777
778
779

780
781
782
783
784
785
786
  /* There are no SHIFTREDUCE actions on nonterminals because the table
  ** generator has simplified them to pure REDUCE actions. */
  assert( !(yyact>YY_MAX_SHIFT && yyact<=YY_MAX_SHIFTREDUCE) );

  /* It is not possible for a REDUCE to be followed by an error */
  assert( yyact!=YY_ERROR_ACTION );





  yymsp += yysize+1;
  yypParser->yytos = yymsp;
  yymsp->stateno = (YYACTIONTYPE)yyact;
  yymsp->major = (YYCODETYPE)yygoto;
  yyTraceShift(yypParser, yyact, "... then shift");

}

/*
** The following code executes when the parse fails
*/
#ifndef YYNOERRORRECOVERY
static void yy_parse_failed(
844
845
846
847
848
849
850


851





852
853
854
855
856


857
858
859
860
861
862
863

864

865
866
867
868
869
870
871
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
  yyendofinput = (yymajor==0);
#endif
  ParseARG_STORE;

#ifndef NDEBUG
  if( yyTraceFILE ){


    fprintf(yyTraceFILE,"%sInput '%s'\n",yyTracePrompt,yyTokenName[yymajor]);





  }
#endif

  do{
    yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);


    if( yyact <= YY_MAX_SHIFTREDUCE ){
      yy_shift(yypParser,yyact,yymajor,yyminor);
#ifndef YYNOERRORRECOVERY
      yypParser->yyerrcnt--;
#endif
      yymajor = YYNOCODE;
    }else if( yyact <= YY_MAX_REDUCE ){

      yy_reduce(yypParser,yyact-YY_MIN_REDUCE,yymajor,yyminor);

    }else{
      assert( yyact == YY_ERROR_ACTION );
      yyminorunion.yy0 = yyminor;
#ifdef YYERRORSYMBOL
      int yymx;
#endif
#ifndef NDEBUG







>
>
|
>
>
>
>
>





>
>
|





|
>
|
>







882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
  yyendofinput = (yymajor==0);
#endif
  ParseARG_STORE;

#ifndef NDEBUG
  if( yyTraceFILE ){
    int stateno = yypParser->yytos->stateno;
    if( stateno < YY_MIN_REDUCE ){
      fprintf(yyTraceFILE,"%sInput '%s' in state %d\n",
              yyTracePrompt,yyTokenName[yymajor],stateno);
    }else{
      fprintf(yyTraceFILE,"%sInput '%s' with pending reduce %d\n",
              yyTracePrompt,yyTokenName[yymajor],stateno-YY_MIN_REDUCE);
    }
  }
#endif

  do{
    yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
    if( yyact >= YY_MIN_REDUCE ){
      yy_reduce(yypParser,yyact-YY_MIN_REDUCE,yymajor,yyminor);
    }else if( yyact <= YY_MAX_SHIFTREDUCE ){
      yy_shift(yypParser,yyact,yymajor,yyminor);
#ifndef YYNOERRORRECOVERY
      yypParser->yyerrcnt--;
#endif
      yymajor = YYNOCODE;
    }else if( yyact==YY_ACCEPT_ACTION ){
      yypParser->yytos--;
      yy_accept(yypParser);
      return;
    }else{
      assert( yyact == YY_ERROR_ACTION );
      yyminorunion.yy0 = yyminor;
#ifdef YYERRORSYMBOL
      int yymx;
#endif
#ifndef NDEBUG
Changes to tool/speed-check.sh.
113
114
115
116
117
118
119






120
121
122
123
124
125
126
    --rtree)
        SPEEDTEST_OPTS="$SPEEDTEST_OPTS --testset rtree"
        CC_OPTS="$CC_OPTS -DSQLITE_ENABLE_RTREE"
        ;;
    --orm)
        SPEEDTEST_OPTS="$SPEEDTEST_OPTS --testset orm"
        ;;






    -*)
        CC_OPTS="$CC_OPTS $1"
        ;;
    *)
	BASELINE=$1
        ;;
  esac







>
>
>
>
>
>







113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    --rtree)
        SPEEDTEST_OPTS="$SPEEDTEST_OPTS --testset rtree"
        CC_OPTS="$CC_OPTS -DSQLITE_ENABLE_RTREE"
        ;;
    --orm)
        SPEEDTEST_OPTS="$SPEEDTEST_OPTS --testset orm"
        ;;
    --cte)
        SPEEDTEST_OPTS="$SPEEDTEST_OPTS --testset cte"
        ;;
    --fp)
        SPEEDTEST_OPTS="$SPEEDTEST_OPTS --testset fp"
        ;;
    -*)
        CC_OPTS="$CC_OPTS $1"
        ;;
    *)
	BASELINE=$1
        ;;
  esac