Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Shorten all lines of source code in btree.c to at most 80 characters. No logical changes. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
5dd41cdbfebdd088ebd9a90a394ee296 |
User & Date: | drh 2014-09-24 01:23:00.817 |
Context
2014-09-24
| ||
02:05 | Have the clearCell() routine return the cell size to the caller, rather than have the caller make a separate call to cellSizePtr(). (check-in: f21d217583 user: drh tags: trunk) | |
01:23 | Shorten all lines of source code in btree.c to at most 80 characters. No logical changes. (check-in: 5dd41cdbfe user: drh tags: trunk) | |
00:59 | Add the MemPage.noPayload boolean and use it to help cellSizePtr() and btreeParseCellPtr() run faster. (check-in: 8e3375313e user: drh tags: trunk) | |
Changes
Changes to src/btree.c.
︙ | ︙ | |||
483 484 485 486 487 488 489 | i64 iRow, /* The rowid that might be changing */ int isClearTable /* True if all rows are being deleted */ ){ BtCursor *p; BtShared *pBt = pBtree->pBt; assert( sqlite3BtreeHoldsMutex(pBtree) ); for(p=pBt->pCursor; p; p=p->pNext){ | | > > | 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | i64 iRow, /* The rowid that might be changing */ int isClearTable /* True if all rows are being deleted */ ){ BtCursor *p; BtShared *pBt = pBtree->pBt; assert( sqlite3BtreeHoldsMutex(pBtree) ); for(p=pBt->pCursor; p; p=p->pNext){ if( (p->curFlags & BTCF_Incrblob)!=0 && (isClearTable || p->info.nKey==iRow) ){ p->eState = CURSOR_INVALID; } } } #else /* Stub function when INCRBLOB is omitted */ |
︙ | ︙ | |||
656 657 658 659 660 661 662 | /* This helper routine to saveAllCursors does the actual work of saving ** the cursors if and when a cursor is found that actually requires saving. ** The common case is that no cursors need to be saved, so this routine is ** broken out from its caller to avoid unnecessary stack pointer movement. */ static int SQLITE_NOINLINE saveCursorsOnList( | | | | | 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 | /* This helper routine to saveAllCursors does the actual work of saving ** the cursors if and when a cursor is found that actually requires saving. ** The common case is that no cursors need to be saved, so this routine is ** broken out from its caller to avoid unnecessary stack pointer movement. */ static int SQLITE_NOINLINE saveCursorsOnList( BtCursor *p, /* The first cursor that needs saving */ Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ BtCursor *pExcept /* Do not save this cursor */ ){ do{ if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ if( p->eState==CURSOR_VALID ){ int rc = saveCursorPosition(p); if( SQLITE_OK!=rc ){ return rc; |
︙ | ︙ | |||
1047 1048 1049 1050 1051 1052 1053 | /* ** Compute the total number of bytes that a Cell needs in the cell ** data area of the btree-page. The return number includes the cell ** data header and the local payload, but not any overflow page or ** the space used by the cell pointer. */ static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ | | | | | 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 | /* ** Compute the total number of bytes that a Cell needs in the cell ** data area of the btree-page. The return number includes the cell ** data header and the local payload, but not any overflow page or ** the space used by the cell pointer. */ static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ u8 *pEnd; /* End mark for a varint */ u32 nSize; /* Size value to return */ #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; |
︙ | ︙ | |||
1332 1333 1334 1335 1336 1337 1338 | ** Note that even though the freeblock list was checked by btreeInitPage(), ** that routine will not detect overlap between cells or freeblocks. Nor ** does it detect cells or freeblocks that encrouch into the reserved bytes ** at the end of the page. So do additional corruption checks inside this ** routine and return SQLITE_CORRUPT if any problems are found. */ static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ | | | 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 | ** Note that even though the freeblock list was checked by btreeInitPage(), ** that routine will not detect overlap between cells or freeblocks. Nor ** does it detect cells or freeblocks that encrouch into the reserved bytes ** at the end of the page. So do additional corruption checks inside this ** routine and return SQLITE_CORRUPT if any problems are found. */ static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ u16 iPtr; /* Address of ptr to next freeblock */ u16 iFreeBlk; /* Address of the next freeblock */ u8 hdr; /* Page header size. 0 or 100 */ u8 nFrag = 0; /* Reduction in fragmentation */ u16 iOrigSize = iSize; /* Original value of iSize */ u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */ u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ unsigned char *data = pPage->aData; /* Page content */ |
︙ | ︙ | |||
1384 1385 1386 1387 1388 1389 1390 | nFrag = iFreeBlk - iEnd; if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT; iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); iSize = iEnd - iStart; iFreeBlk = get2byte(&data[iFreeBlk]); } | | | | | 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 | nFrag = iFreeBlk - iEnd; if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT; iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); iSize = iEnd - iStart; iFreeBlk = get2byte(&data[iFreeBlk]); } /* If iPtr is another freeblock (that is, if iPtr is not the freelist ** pointer in the page header) then check to see if iStart should be ** coalesced onto the end of iPtr. */ if( iPtr>hdr+1 ){ int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); if( iPtrEnd+3>=iStart ){ if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT; nFrag += iStart - iPtrEnd; iSize = iEnd - iPtr; |
︙ | ︙ | |||
4012 4013 4014 4015 4016 4017 4018 | ){ unsigned char *aPayload; int rc = SQLITE_OK; int iIdx = 0; MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ #ifdef SQLITE_DIRECT_OVERFLOW_READ | | | | 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 | ){ unsigned char *aPayload; int rc = SQLITE_OK; int iIdx = 0; MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ #ifdef SQLITE_DIRECT_OVERFLOW_READ int bEnd; /* True if reading to end of data */ #endif assert( pPage ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); assert( cursorHoldsMutex(pCur) ); assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */ getCellInfo(pCur); aPayload = pCur->info.pPayload; #ifdef SQLITE_DIRECT_OVERFLOW_READ bEnd = offset+amt==pCur->info.nPayload; #endif assert( offset+amt <= pCur->info.nPayload ); |
︙ | ︙ | |||
4084 4085 4086 4087 4088 4089 4090 | } } /* If the overflow page-list cache has been allocated and the ** entry for the first required overflow page is valid, skip ** directly to it. */ | | > > | 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 | } } /* If the overflow page-list cache has been allocated and the ** entry for the first required overflow page is valid, skip ** directly to it. */ if( (pCur->curFlags & BTCF_ValidOvfl)!=0 && pCur->aOverflow[offset/ovflSize] ){ iIdx = (offset/ovflSize); nextPage = pCur->aOverflow[iIdx]; offset = (offset%ovflSize); } for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ |
︙ | ︙ | |||
4949 4950 4951 4952 4953 4954 4955 | ** Step the cursor to the back to the previous entry in the database. If ** successful then set *pRes=0. If the cursor ** was already pointing to the first entry in the database before ** this routine was called, then set *pRes=1. ** ** The main entry point is sqlite3BtreePrevious(). That routine is optimized ** for the common case of merely decrementing the cell counter BtCursor.aiIdx | | | | | 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 | ** Step the cursor to the back to the previous entry in the database. If ** successful then set *pRes=0. If the cursor ** was already pointing to the first entry in the database before ** this routine was called, then set *pRes=1. ** ** The main entry point is sqlite3BtreePrevious(). That routine is optimized ** for the common case of merely decrementing the cell counter BtCursor.aiIdx ** to the previous cell on the current page. The (slower) btreePrevious() ** helper routine is called when it is necessary to move to a different page ** or to restore the cursor. ** ** The calling function will set *pRes to 0 or 1. The initial *pRes value ** will be 1 if the cursor being stepped corresponds to an SQL index and ** if this routine could have been skipped if that SQL index had been ** a unique index. Otherwise the caller will have set *pRes to zero. ** Zero is the common case. The btree implementation is free to use the ** initial *pRes value as a hint to improve performance, but the current |
︙ | ︙ | |||
5279 5280 5281 5282 5283 5284 5285 | *pPgno, closest+1, k, pTrunk->pgno, n-1)); rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc ) goto end_allocate_page; if( closest<k-1 ){ memcpy(&aData[8+closest*4], &aData[4+k*4], 4); } put4byte(&aData[4], k-1); | | | 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 | *pPgno, closest+1, k, pTrunk->pgno, n-1)); rc = sqlite3PagerWrite(pTrunk->pDbPage); if( rc ) goto end_allocate_page; if( closest<k-1 ){ memcpy(&aData[8+closest*4], &aData[4+k*4], 4); } put4byte(&aData[4], k-1); noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; rc = btreeGetPage(pBt, *pPgno, ppPage, noContent); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite((*ppPage)->pDbPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); } } |
︙ | ︙ | |||
5312 5313 5314 5315 5316 5317 5318 | ** ** Note that the pager will not actually attempt to load or journal ** content for any page that really does lie past the end of the database ** file on disk. So the effects of disabling the no-content optimization ** here are confined to those pages that lie between the end of the ** database image and the end of the database file. */ | | | 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 | ** ** Note that the pager will not actually attempt to load or journal ** content for any page that really does lie past the end of the database ** file on disk. So the effects of disabling the no-content optimization ** here are confined to those pages that lie between the end of the ** database image and the end of the database file. */ int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); if( rc ) return rc; pBt->nPage++; if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; #ifndef SQLITE_OMIT_AUTOVACUUM |
︙ | ︙ | |||
7085 7086 7087 7088 7089 7090 7091 | if( pCur->eState==CURSOR_FAULT ){ assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } assert( cursorHoldsMutex(pCur) ); | | > | 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 | if( pCur->eState==CURSOR_FAULT ){ assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } assert( cursorHoldsMutex(pCur) ); assert( (pCur->curFlags & BTCF_WriteFlag)!=0 && pBt->inTransaction==TRANS_WRITE && (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); /* Assert that the caller has been consistent. If this cursor was opened ** expecting an index b-tree, then the caller should be inserting blob ** keys with no associated data. If the cursor was opened expecting an ** intkey table, the caller should be inserting integer keys with a |
︙ | ︙ | |||
7118 7119 7120 7121 7122 7123 7124 | /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ invalidateIncrblobCursors(p, nKey, 0); /* If the cursor is currently on the last row and we are appending a ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto() ** call */ | | > | 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 | /* If this is an insert into a table b-tree, invalidate any incrblob ** cursors open on the row being replaced */ invalidateIncrblobCursors(p, nKey, 0); /* If the cursor is currently on the last row and we are appending a ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto() ** call */ if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 && pCur->info.nKey==nKey-1 ){ loc = -1; } } if( !loc ){ rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); if( rc ) return rc; |
︙ | ︙ | |||
8140 8141 8142 8143 8144 8145 8146 | if( !pPage->leaf ){ pgno = get4byte(pCell); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); } #endif | | | | 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 | if( !pPage->leaf ){ pgno = get4byte(pCell); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); } #endif d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0?NULL:&nMaxKey); if( i>0 && d2!=depth ){ checkAppendMsg(pCheck, zContext, "Child page depth differs"); } depth = d2; } } if( !pPage->leaf ){ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); sqlite3_snprintf(sizeof(zContext), zContext, "On page %d at right child: ", iPage); #ifndef SQLITE_OMIT_AUTOVACUUM if( pBt->autoVacuum ){ checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); } #endif checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell?NULL:&nMaxKey); } /* For intKey leaf pages, check that the min/max keys are in order ** with any left/parent/right pages. */ if( pPage->leaf && pPage->intKey ){ /* if we are a left child page */ |
︙ | ︙ | |||
8550 8551 8552 8553 8554 8555 8556 | return SQLITE_ABORT; } /* Save the positions of all other cursors open on this table. This is ** required in case any of them are holding references to an xFetch ** version of the b-tree page modified by the accessPayload call below. ** | | | 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 | return SQLITE_ABORT; } /* Save the positions of all other cursors open on this table. This is ** required in case any of them are holding references to an xFetch ** version of the b-tree page modified by the accessPayload call below. ** ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence ** saveAllCursors can only return SQLITE_OK. */ VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); assert( rc==SQLITE_OK ); /* Check some assumptions: |
︙ | ︙ |