SQLite

Check-in [567dd84359]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge the latest trunk changes into the fts3-prefix-search branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | fts3-prefix-search
Files: files | file ages | folders
SHA1: 567dd84359218245d4e6887547e2a48881f2c8e0
User & Date: drh 2011-06-06 18:14:25.721
Context
2011-06-07
18:35
Have NEAR queries use incremental merging. Fix issues surrounding the deferred token optimization. (check-in: 9d10a6846b user: dan tags: fts3-prefix-search)
2011-06-06
18:14
Merge the latest trunk changes into the fts3-prefix-search branch. (check-in: 567dd84359 user: drh tags: fts3-prefix-search)
14:51
Modify fts3rnd.test to run tests for both "ORDER BY docid ASC" and "ORDER BY docid DESC" with both order=ASC and order=DESC FTS tables. Fixes for some bugs found. (check-in: 89f2f482e0 user: dan tags: fts3-prefix-search)
13:38
Add assert() statements to verify that u16 pointers associated with the enhancement in [897f56a158] are always 2-byte aligned. (check-in: 98ccfa930e user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/fts3/fts3.c.
3045
3046
3047
3048
3049
3050
3051

3052
3053
3054
3055
3056
3057
3058


3059
3060
3061
3062
3063
3064
3065

3066
3067
3068
3069
3070
3071
3072
    p->zDb, p->zName, zName
  );
  return rc;
}

static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts3Table *p = (Fts3Table*)pVtab;

  assert( p->inTransaction );
  assert( p->mxSavepoint < iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint );
  return fts3SyncMethod(pVtab);
}
static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );


  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint-1 );
  return SQLITE_OK;
}
static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts3Table *p = (Fts3Table*)pVtab;

  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint );
  sqlite3Fts3PendingTermsClear(p);
  return SQLITE_OK;
}








>







>
>







>







3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
    p->zDb, p->zName, zName
  );
  return rc;
}

static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts3Table *p = (Fts3Table*)pVtab;
  UNUSED_PARAMETER(iSavepoint);
  assert( p->inTransaction );
  assert( p->mxSavepoint < iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint );
  return fts3SyncMethod(pVtab);
}
static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
  UNUSED_PARAMETER(iSavepoint);
  UNUSED_PARAMETER(pVtab);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint-1 );
  return SQLITE_OK;
}
static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts3Table *p = (Fts3Table*)pVtab;
  UNUSED_PARAMETER(iSavepoint);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint );
  sqlite3Fts3PendingTermsClear(p);
  return SQLITE_OK;
}

Changes to ext/fts3/fts3_aux.c.
339
340
341
342
343
344
345

346
347
348
349
350
351
352
){
  Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
  Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
  int rc;
  int isScan;

  UNUSED_PARAMETER(nVal);


  assert( idxStr==0 );
  assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0
       || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT
       || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT)
  );
  isScan = (idxNum!=FTS4AUX_EQ_CONSTRAINT);







>







339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
){
  Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
  Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
  int rc;
  int isScan;

  UNUSED_PARAMETER(nVal);
  UNUSED_PARAMETER(idxStr);

  assert( idxStr==0 );
  assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0
       || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT
       || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT)
  );
  isScan = (idxNum!=FTS4AUX_EQ_CONSTRAINT);
456
457
458
459
460
461
462
463



464
465
466
467
468
469
470
471
     fts3auxRowidMethod,          /* xRowid        */
     0,                           /* xUpdate       */
     0,                           /* xBegin        */
     0,                           /* xSync         */
     0,                           /* xCommit       */
     0,                           /* xRollback     */
     0,                           /* xFindFunction */
     0                            /* xRename       */



  };
  int rc;                         /* Return code */

  rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0);
  return rc;
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */







|
>
>
>








457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
     fts3auxRowidMethod,          /* xRowid        */
     0,                           /* xUpdate       */
     0,                           /* xBegin        */
     0,                           /* xSync         */
     0,                           /* xCommit       */
     0,                           /* xRollback     */
     0,                           /* xFindFunction */
     0,                           /* xRename       */
     0,                           /* xSavepoint    */
     0,                           /* xRelease      */
     0                            /* xRollbackTo   */
  };
  int rc;                         /* Return code */

  rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0);
  return rc;
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
Changes to ext/rtree/rtree.c.
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871



2872
2873
2874
2875
2876
2877
2878
    rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
    sqlite3_free(zSql);
  }
  return rc;
}

static sqlite3_module rtreeModule = {
  0,                         /* iVersion */
  rtreeCreate,                /* xCreate - create a table */
  rtreeConnect,               /* xConnect - connect to an existing table */
  rtreeBestIndex,             /* xBestIndex - Determine search strategy */
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
  rtreeDestroy,               /* xDestroy - Drop a table */
  rtreeOpen,                  /* xOpen - open a cursor */
  rtreeClose,                 /* xClose - close a cursor */
  rtreeFilter,                /* xFilter - configure scan constraints */
  rtreeNext,                  /* xNext - advance a cursor */
  rtreeEof,                   /* xEof */
  rtreeColumn,                /* xColumn - read data */
  rtreeRowid,                 /* xRowid - read data */
  rtreeUpdate,                /* xUpdate - write data */
  0,                          /* xBegin - begin transaction */
  0,                          /* xSync - sync transaction */
  0,                          /* xCommit - commit transaction */
  0,                          /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename                 /* xRename - rename the table */



};

static int rtreeSqlInit(
  Rtree *pRtree, 
  sqlite3 *db, 
  const char *zDb, 
  const char *zPrefix, 







|


















|
>
>
>







2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
    rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
    sqlite3_free(zSql);
  }
  return rc;
}

static sqlite3_module rtreeModule = {
  0,                          /* iVersion */
  rtreeCreate,                /* xCreate - create a table */
  rtreeConnect,               /* xConnect - connect to an existing table */
  rtreeBestIndex,             /* xBestIndex - Determine search strategy */
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
  rtreeDestroy,               /* xDestroy - Drop a table */
  rtreeOpen,                  /* xOpen - open a cursor */
  rtreeClose,                 /* xClose - close a cursor */
  rtreeFilter,                /* xFilter - configure scan constraints */
  rtreeNext,                  /* xNext - advance a cursor */
  rtreeEof,                   /* xEof */
  rtreeColumn,                /* xColumn - read data */
  rtreeRowid,                 /* xRowid - read data */
  rtreeUpdate,                /* xUpdate - write data */
  0,                          /* xBegin - begin transaction */
  0,                          /* xSync - sync transaction */
  0,                          /* xCommit - commit transaction */
  0,                          /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  0,                          /* xSavepoint */
  0,                          /* xRelease */
  0                           /* xRollbackTo */
};

static int rtreeSqlInit(
  Rtree *pRtree, 
  sqlite3 *db, 
  const char *zDb, 
  const char *zPrefix, 
Changes to src/alter.c.
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

  /* Drop the table and index from the internal schema.  */
  sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);

  /* Reload the table, index and permanent trigger schemas. */
  zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
  if( !zWhere ) return;
  sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);

#ifndef SQLITE_OMIT_TRIGGER
  /* Now, if the table is not stored in the temp database, reload any temp 
  ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. 
  */
  if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
    sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
  }
#endif
}

/*
** Parameter zName is the name of a table that is about to be altered
** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN).







|






|







354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

  /* Drop the table and index from the internal schema.  */
  sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);

  /* Reload the table, index and permanent trigger schemas. */
  zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
  if( !zWhere ) return;
  sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);

#ifndef SQLITE_OMIT_TRIGGER
  /* Now, if the table is not stored in the temp database, reload any temp 
  ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. 
  */
  if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
    sqlite3VdbeAddParseSchemaOp(v, 1, zWhere);
  }
#endif
}

/*
** Parameter zName is the name of a table that is about to be altered
** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN).
Changes to src/btree.c.
853
854
855
856
857
858
859


860
861
862
863
864
865
866
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(P,I) \
  ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))



/*
** This a more complex version of findCell() that works for
** pages that do contain overflow cells.
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
  int i;







>
>







853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(P,I) \
  ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))


/*
** This a more complex version of findCell() that works for
** pages that do contain overflow cells.
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
  int i;
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477

4478
4479
4480
4481
4482
4483
4484
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey || pIdxKey );
  for(;;){
    int lwr, upr;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];
    int c;

    /* pPage->nCell must be greater than zero. If this is the root-page
    ** the cursor would have been INVALID above and this for(;;) loop
    ** not run. If this is not the root-page, then the moveToChild() routine
    ** would have already detected db corruption. Similarly, pPage must
    ** be the right kind (index or table) of b-tree page. Otherwise
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    if( biasRight ){
      pCur->aiIdx[pCur->iPage] = (u16)upr;
    }else{
      pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
    }
    for(;;){
      int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
      u8 *pCell;                          /* Pointer to current cell in pPage */


      pCur->info.nSize = 0;
      pCell = findCell(pPage, idx) + pPage->childPtrSize;
      if( pPage->intKey ){
        i64 nCellKey;
        if( pPage->hasData ){
          u32 dummy;
          pCell += getVarint32(pCell, dummy);







|















|

|


<


>







4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476

4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey || pIdxKey );
  for(;;){
    int lwr, upr, idx;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];
    int c;

    /* pPage->nCell must be greater than zero. If this is the root-page
    ** the cursor would have been INVALID above and this for(;;) loop
    ** not run. If this is not the root-page, then the moveToChild() routine
    ** would have already detected db corruption. Similarly, pPage must
    ** be the right kind (index or table) of b-tree page. Otherwise
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    if( biasRight ){
      pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
    }else{
      pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
    }
    for(;;){

      u8 *pCell;                          /* Pointer to current cell in pPage */

      assert( idx==pCur->aiIdx[pCur->iPage] );
      pCur->info.nSize = 0;
      pCell = findCell(pPage, idx) + pPage->childPtrSize;
      if( pPage->intKey ){
        i64 nCellKey;
        if( pPage->hasData ){
          u32 dummy;
          pCell += getVarint32(pCell, dummy);
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
        lwr = idx+1;
      }else{
        upr = idx-1;
      }
      if( lwr>upr ){
        break;
      }
      pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
    }
    assert( lwr==upr+1 );
    assert( pPage->isInit );
    if( pPage->leaf ){
      chldPg = 0;
    }else if( lwr>=pPage->nCell ){
      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);







|







4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
        lwr = idx+1;
      }else{
        upr = idx-1;
      }
      if( lwr>upr ){
        break;
      }
      pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
    }
    assert( lwr==upr+1 );
    assert( pPage->isInit );
    if( pPage->leaf ){
      chldPg = 0;
    }else if( lwr>=pPage->nCell ){
      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396

5397
5398
5399
5400
5401
5402
5403
** The cell content is not freed or deallocated.  It is assumed that
** the cell content has been copied someplace else.  This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
  int i;          /* Loop counter */
  u32 pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */

  int rc;         /* The return code */
  int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */

  if( *pRC ) return;

  assert( idx>=0 && idx<pPage->nCell );
  assert( sz==cellSize(pPage, idx) );







<



>







5388
5389
5390
5391
5392
5393
5394

5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
** The cell content is not freed or deallocated.  It is assumed that
** the cell content has been copied someplace else.  This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){

  u32 pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */
  u8 *endPtr;     /* End of loop */
  int rc;         /* The return code */
  int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */

  if( *pRC ) return;

  assert( idx>=0 && idx<pPage->nCell );
  assert( sz==cellSize(pPage, idx) );
5414
5415
5416
5417
5418
5419
5420
5421

5422

5423
5424
5425
5426
5427
5428
5429
5430
    return;
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  for(i=idx+1; i<pPage->nCell; i++, ptr+=2){

    ptr[0] = ptr[2];

    ptr[1] = ptr[3];
  }
  pPage->nCell--;
  put2byte(&data[hdr+3], pPage->nCell);
  pPage->nFree += 2;
}

/*







|
>
|
>
|







5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
    return;
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  endPtr = &data[pPage->cellOffset + 2*pPage->nCell - 2];
  assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 );  /* ptr is always 2-byte aligned */
  while( ptr<endPtr ){
    *(u16*)ptr = *(u16*)&ptr[2];
    ptr += 2;
  }
  pPage->nCell--;
  put2byte(&data[hdr+3], pPage->nCell);
  pPage->nFree += 2;
}

/*
5456
5457
5458
5459
5460
5461
5462

5463
5464
5465
5466
5467
5468
5469
  int idx = 0;      /* Where to write new cell content in data[] */
  int j;            /* Loop counter */
  int end;          /* First byte past the last cell pointer in data[] */
  int ins;          /* Index in data[] where new cell pointer is inserted */
  int cellOffset;   /* Address of first cell pointer in data[] */
  u8 *data;         /* The content of the whole page */
  u8 *ptr;          /* Used for moving information around in data[] */


  int nSkip = (iChild ? 4 : 0);

  if( *pRC ) return;

  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );







>







5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
  int idx = 0;      /* Where to write new cell content in data[] */
  int j;            /* Loop counter */
  int end;          /* First byte past the last cell pointer in data[] */
  int ins;          /* Index in data[] where new cell pointer is inserted */
  int cellOffset;   /* Address of first cell pointer in data[] */
  u8 *data;         /* The content of the whole page */
  u8 *ptr;          /* Used for moving information around in data[] */
  u8 *endPtr;       /* End of the loop */

  int nSkip = (iChild ? 4 : 0);

  if( *pRC ) return;

  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
5506
5507
5508
5509
5510
5511
5512
5513


5514

5515
5516
5517
5518
5519
5520
5521
5522
    assert( idx+sz <= (int)pPage->pBt->usableSize );
    pPage->nCell++;
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){


      ptr[0] = ptr[-2];

      ptr[1] = ptr[-1];
    }
    put2byte(&data[ins], idx);
    put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pPage->pBt->autoVacuum ){
      /* The cell may contain a pointer to an overflow page. If so, write
      ** the entry for the overflow page into the pointer map.







|
>
>
|
>
|







5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
    assert( idx+sz <= (int)pPage->pBt->usableSize );
    pPage->nCell++;
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    ptr = &data[end];
    endPtr = &data[ins];
    assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 );  /* ptr is always 2-byte aligned */
    while( ptr>endPtr ){
      *(u16*)ptr = *(u16*)&ptr[-2];
      ptr -= 2;
    }
    put2byte(&data[ins], idx);
    put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pPage->pBt->autoVacuum ){
      /* The cell may contain a pointer to an overflow page. If so, write
      ** the entry for the overflow page into the pointer map.
5553
5554
5555
5556
5557
5558
5559

5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
  /* Check that the page has just been zeroed by zeroPage() */
  assert( pPage->nCell==0 );
  assert( get2byteNotZero(&data[hdr+5])==nUsable );

  pCellptr = &data[pPage->cellOffset + nCell*2];
  cellbody = nUsable;
  for(i=nCell-1; i>=0; i--){

    pCellptr -= 2;
    cellbody -= aSize[i];
    put2byte(pCellptr, cellbody);
    memcpy(&data[cellbody], apCell[i], aSize[i]);
  }
  put2byte(&data[hdr+3], nCell);
  put2byte(&data[hdr+5], cellbody);
  pPage->nFree -= (nCell*2 + nUsable - cellbody);
  pPage->nCell = (u16)nCell;
}








>

|

|







5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
  /* Check that the page has just been zeroed by zeroPage() */
  assert( pPage->nCell==0 );
  assert( get2byteNotZero(&data[hdr+5])==nUsable );

  pCellptr = &data[pPage->cellOffset + nCell*2];
  cellbody = nUsable;
  for(i=nCell-1; i>=0; i--){
    u16 sz = aSize[i];
    pCellptr -= 2;
    cellbody -= sz;
    put2byte(pCellptr, cellbody);
    memcpy(&data[cellbody], apCell[i], sz);
  }
  put2byte(&data[hdr+3], nCell);
  put2byte(&data[hdr+5], cellbody);
  pPage->nFree -= (nCell*2 + nUsable - cellbody);
  pPage->nCell = (u16)nCell;
}

6010
6011
6012
6013
6014
6015
6016

6017
6018
6019
6020
6021
6022











6023
6024
6025
6026
6027
6028
6029
    ** process of being overwritten.  */
    MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
    memcpy(pOld, apOld[i], sizeof(MemPage));
    pOld->aData = (void*)&pOld[1];
    memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);

    limit = pOld->nCell+pOld->nOverflow;

    for(j=0; j<limit; j++){
      assert( nCell<nMaxCells );
      apCell[nCell] = findOverflowCell(pOld, j);
      szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
      nCell++;
    }











    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];
      u8 *pTemp;
      assert( nCell<nMaxCells );
      szCell[nCell] = sz;
      pTemp = &aSpace1[iSpace1];
      iSpace1 += sz;







>
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>







6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
    ** process of being overwritten.  */
    MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
    memcpy(pOld, apOld[i], sizeof(MemPage));
    pOld->aData = (void*)&pOld[1];
    memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);

    limit = pOld->nCell+pOld->nOverflow;
    if( pOld->nOverflow>0 ){
      for(j=0; j<limit; j++){
        assert( nCell<nMaxCells );
        apCell[nCell] = findOverflowCell(pOld, j);
        szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
        nCell++;
      }
    }else{
      u8 *aData = pOld->aData;
      u16 maskPage = pOld->maskPage;
      u16 cellOffset = pOld->cellOffset;
      for(j=0; j<limit; j++){
        assert( nCell<nMaxCells );
        apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
        szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
        nCell++;
      }
    }       
    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];
      u8 *pTemp;
      assert( nCell<nMaxCells );
      szCell[nCell] = sz;
      pTemp = &aSpace1[iSpace1];
      iSpace1 += sz;
Changes to src/build.c.
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    sqlite3VdbeTrace(v, trace);
#endif
    assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
    /* A minimum of one cursor is required if autoincrement is used
    *  See ticket [a696379c1f08866] */
    if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
    sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
                         pParse->nTab, pParse->nMaxArg, pParse->explain,
                         pParse->isMultiWrite && pParse->mayAbort);
    pParse->rc = SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else{
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;







|
<
<







196
197
198
199
200
201
202
203


204
205
206
207
208
209
210
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    sqlite3VdbeTrace(v, trace);
#endif
    assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
    /* A minimum of one cursor is required if autoincrement is used
    *  See ticket [a696379c1f08866] */
    if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
    sqlite3VdbeMakeReady(v, pParse);


    pParse->rc = SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else{
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
          pDb->zName
        );
      }
    }
#endif

    /* Reparse everything to update our internal data structures */
    sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
        sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
  }


  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy ){
    Table *pOld;







|
|







1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
          pDb->zName
        );
      }
    }
#endif

    /* Reparse everything to update our internal data structures */
    sqlite3VdbeAddParseSchemaOp(v, iDb,
               sqlite3MPrintf(db, "tbl_name='%q'", p->zName));
  }


  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy ){
    Table *pOld;
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831

    /* Fill the index with data and reparse the schema. Code an OP_Expire
    ** to invalidate all pre-compiled statements.
    */
    if( pTblName ){
      sqlite3RefillIndex(pParse, pIndex, iMem);
      sqlite3ChangeCookie(pParse, iDb);
      sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
         sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 
         P4_DYNAMIC);
      sqlite3VdbeAddOp1(v, OP_Expire, 0);
    }
  }

  /* When adding an index to the list of indices for a table, make
  ** sure all indices labeled OE_Replace come after all those labeled
  ** OE_Ignore.  This is necessary for the correct constraint check







|
|
<







2813
2814
2815
2816
2817
2818
2819
2820
2821

2822
2823
2824
2825
2826
2827
2828

    /* Fill the index with data and reparse the schema. Code an OP_Expire
    ** to invalidate all pre-compiled statements.
    */
    if( pTblName ){
      sqlite3RefillIndex(pParse, pIndex, iMem);
      sqlite3ChangeCookie(pParse, iDb);
      sqlite3VdbeAddParseSchemaOp(v, iDb,
         sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));

      sqlite3VdbeAddOp1(v, OP_Expire, 0);
    }
  }

  /* When adding an index to the list of indices for a table, make
  ** sure all indices labeled OE_Replace come after all those labeled
  ** OE_Ignore.  This is necessary for the correct constraint check
Changes to src/delete.c.
397
398
399
400
401
402
403

404
405
406
407
408
409
410

    /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVTab, P4_VTAB);

      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default);
    }







>







397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

    /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVTab, P4_VTAB);
      sqlite3VdbeChangeP5(v, OE_Abort);
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default);
    }
Changes to src/expr.c.
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575





















576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

593
594
595

596
597

598

599
600
601
602
603
604
605
606
607
608
609
610
611
  z = pExpr->u.zToken;
  assert( z!=0 );
  assert( z[0]!=0 );
  if( z[1]==0 ){
    /* Wildcard of the form "?".  Assign the next variable number */
    assert( z[0]=='?' );
    pExpr->iColumn = (ynVar)(++pParse->nVar);
  }else if( z[0]=='?' ){
    /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
    ** use it as the variable number */
    i64 i;
    int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
    pExpr->iColumn = (ynVar)i;
    testcase( i==0 );
    testcase( i==1 );
    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
    if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
      sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
          db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
    }
    if( i>pParse->nVar ){
      pParse->nVar = (int)i;
    }
  }else{





















    /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
    ** number as the prior appearance of the same name, or if the name
    ** has never appeared before, reuse the same variable number
    */
    int i;
    u32 n;
    n = sqlite3Strlen30(z);
    for(i=0; i<pParse->nVarExpr; i++){
      Expr *pE = pParse->apVarExpr[i];
      assert( pE!=0 );
      if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
        pExpr->iColumn = pE->iColumn;
        break;
      }
    }
    if( i>=pParse->nVarExpr ){
      pExpr->iColumn = (ynVar)(++pParse->nVar);

      if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
        pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
        pParse->apVarExpr =

            sqlite3DbReallocOrFree(
              db,

              pParse->apVarExpr,

              pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
            );
      }
      if( !db->mallocFailed ){
        assert( pParse->apVarExpr!=0 );
        pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
      }
    }
  } 
  if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
    sqlite3ErrorMsg(pParse, "too many SQL variables");
  }
}







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
<
<
|
|
<
<
|
|
|
|
<
|
>
|
<
|
>
|
<
>
|
>
|
<

|
|
|







551
552
553
554
555
556
557

















558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584


585
586


587
588
589
590

591
592
593

594
595
596

597
598
599
600

601
602
603
604
605
606
607
608
609
610
611
  z = pExpr->u.zToken;
  assert( z!=0 );
  assert( z[0]!=0 );
  if( z[1]==0 ){
    /* Wildcard of the form "?".  Assign the next variable number */
    assert( z[0]=='?' );
    pExpr->iColumn = (ynVar)(++pParse->nVar);

















  }else{
    ynVar x = 0;
    u32 n = sqlite3Strlen30(z);
    if( z[0]=='?' ){
      /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
      ** use it as the variable number */
      i64 i;
      int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
      pExpr->iColumn = x = (ynVar)i;
      testcase( i==0 );
      testcase( i==1 );
      testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
      testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
      if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
        sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
            db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
        x = 0;
      }
      if( i>pParse->nVar ){
        pParse->nVar = (int)i;
      }
    }else{
      /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
      ** number as the prior appearance of the same name, or if the name
      ** has never appeared before, reuse the same variable number
      */
      ynVar i;


      for(i=0; i<pParse->nzVar; i++){
        if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){


          pExpr->iColumn = x = (ynVar)i+1;
          break;
        }
      }

      if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
    }
    if( x>0 ){

      if( x>pParse->nzVar ){
        char **a;
        a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));

        if( a==0 ) return;  /* Error reported through db->mallocFailed */
        pParse->azVar = a;
        memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
        pParse->nzVar = x;

      }
      if( z[0]!='?' || pParse->azVar[x-1]==0 ){
        sqlite3DbFree(db, pParse->azVar[x-1]);
        pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
      }
    }
  } 
  if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
    sqlite3ErrorMsg(pParse, "too many SQL variables");
  }
}
2341
2342
2343
2344
2345
2346
2347


2348
2349
2350
2351
2352
2353
2354
2355
#endif
    case TK_VARIABLE: {
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      assert( pExpr->u.zToken!=0 );
      assert( pExpr->u.zToken[0]!=0 );
      sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
      if( pExpr->u.zToken[1]!=0 ){


        sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
      }
      break;
    }
    case TK_REGISTER: {
      inReg = pExpr->iTable;
      break;
    }







>
>
|







2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
#endif
    case TK_VARIABLE: {
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      assert( pExpr->u.zToken!=0 );
      assert( pExpr->u.zToken[0]!=0 );
      sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
      if( pExpr->u.zToken[1]!=0 ){
        assert( pExpr->u.zToken[0]=='?' 
             || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
        sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
      }
      break;
    }
    case TK_REGISTER: {
      inReg = pExpr->iTable;
      break;
    }
Changes to src/main.c.
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
      if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
        zVfs = zVal;
      }else{
        struct OpenMode {
          const char *z;
          int mode;
        } *aMode = 0;
        char *zModeType;
        int mask;
        int limit;

        if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
          static struct OpenMode aCacheMode[] = {
            { "shared",  SQLITE_OPEN_SHAREDCACHE },
            { "private", SQLITE_OPEN_PRIVATECACHE },
            { 0, 0 }
          };







|
|
|







1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
      if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
        zVfs = zVal;
      }else{
        struct OpenMode {
          const char *z;
          int mode;
        } *aMode = 0;
        char *zModeType = 0;
        int mask = 0;
        int limit = 0;

        if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
          static struct OpenMode aCacheMode[] = {
            { "shared",  SQLITE_OPEN_SHAREDCACHE },
            { "private", SQLITE_OPEN_PRIVATECACHE },
            { 0, 0 }
          };
Changes to src/os_unix.c.
3533
3534
3535
3536
3537
3538
3539
3540

3541
3542
3543
3544
3545
3546
3547
*/
struct unixShmNode {
  unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
  sqlite3_mutex *mutex;      /* Mutex to access this object */
  char *zFilename;           /* Name of the mmapped file */
  int h;                     /* Open file descriptor */
  int szRegion;              /* Size of shared-memory regions */
  int nRegion;               /* Size of array apRegion */

  char **apRegion;           /* Array of mapped shared-memory regions */
  int nRef;                  /* Number of unixShm objects pointing to this */
  unixShm *pFirst;           /* All unixShm objects pointing to this */
#ifdef SQLITE_DEBUG
  u8 exclMask;               /* Mask of exclusive locks held */
  u8 sharedMask;             /* Mask of shared locks held */
  u8 nextShmId;              /* Next available unixShm.id value */







|
>







3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
*/
struct unixShmNode {
  unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
  sqlite3_mutex *mutex;      /* Mutex to access this object */
  char *zFilename;           /* Name of the mmapped file */
  int h;                     /* Open file descriptor */
  int szRegion;              /* Size of shared-memory regions */
  u16 nRegion;               /* Size of array apRegion */
  u8 isReadonly;             /* True if read-only */
  char **apRegion;           /* Array of mapped shared-memory regions */
  int nRef;                  /* Number of unixShm objects pointing to this */
  unixShm *pFirst;           /* All unixShm objects pointing to this */
#ifdef SQLITE_DEBUG
  u8 exclMask;               /* Mask of exclusive locks held */
  u8 sharedMask;             /* Mask of shared locks held */
  u8 nextShmId;              /* Next available unixShm.id value */
3780
3781
3782
3783
3784
3785
3786








3787
3788

3789
3790
3791
3792
3793
3794
3795
      goto shm_open_err;
    }

    if( pInode->bProcessLock==0 ){
      pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT,
                               (sStat.st_mode & 0777));
      if( pShmNode->h<0 ){








        rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
        goto shm_open_err;

      }
  
      /* Check to see if another process is holding the dead-man switch.
      ** If not, truncate the file to zero length. 
      */
      rc = SQLITE_OK;
      if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){







>
>
>
>
>
>
>
>
|
|
>







3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
      goto shm_open_err;
    }

    if( pInode->bProcessLock==0 ){
      pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT,
                               (sStat.st_mode & 0777));
      if( pShmNode->h<0 ){
        const char *zRO;
        zRO = sqlite3_uri_parameter(pDbFd->zPath, "readonly_shm");
        if( zRO && sqlite3GetBoolean(zRO) ){
          pShmNode->h = robust_open(zShmFilename, O_RDONLY,
                                    (sStat.st_mode & 0777));
          pShmNode->isReadonly = 1;
        }
        if( pShmNode->h<0 ){
          rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
          goto shm_open_err;
        }
      }
  
      /* Check to see if another process is holding the dead-man switch.
      ** If not, truncate the file to zero length. 
      */
      rc = SQLITE_OK;
      if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
3920
3921
3922
3923
3924
3925
3926
3927

3928
3929
3930
3931
3932
3933
3934
      rc = SQLITE_IOERR_NOMEM;
      goto shmpage_out;
    }
    pShmNode->apRegion = apNew;
    while(pShmNode->nRegion<=iRegion){
      void *pMem;
      if( pShmNode->h>=0 ){
        pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE, 

            MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
        );
        if( pMem==MAP_FAILED ){
          rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
          goto shmpage_out;
        }
      }else{







|
>







3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
      rc = SQLITE_IOERR_NOMEM;
      goto shmpage_out;
    }
    pShmNode->apRegion = apNew;
    while(pShmNode->nRegion<=iRegion){
      void *pMem;
      if( pShmNode->h>=0 ){
        pMem = mmap(0, szRegion,
            pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, 
            MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
        );
        if( pMem==MAP_FAILED ){
          rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
          goto shmpage_out;
        }
      }else{
3946
3947
3948
3949
3950
3951
3952

3953
3954
3955
3956
3957
3958
3959

shmpage_out:
  if( pShmNode->nRegion>iRegion ){
    *pp = pShmNode->apRegion[iRegion];
  }else{
    *pp = 0;
  }

  sqlite3_mutex_leave(pShmNode->mutex);
  return rc;
}

/*
** Change the lock state for a shared-memory segment.
**







>







3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971

shmpage_out:
  if( pShmNode->nRegion>iRegion ){
    *pp = pShmNode->apRegion[iRegion];
  }else{
    *pp = 0;
  }
  if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
  sqlite3_mutex_leave(pShmNode->mutex);
  return rc;
}

/*
** Change the lock state for a shared-memory segment.
**
Changes to src/pcache.c.
249
250
251
252
253
254
255







256
257
258
259
260
261
262
    );
    pCache->pSynced = pPg;
    if( !pPg ){
      for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
    }
    if( pPg ){
      int rc;







      rc = pCache->xStress(pCache->pStress, pPg);
      if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
        return rc;
      }
    }

    pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, 2);







>
>
>
>
>
>
>







249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    );
    pCache->pSynced = pPg;
    if( !pPg ){
      for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
    }
    if( pPg ){
      int rc;
#ifdef SQLITE_LOG_CACHE_SPILL
      sqlite3_log(SQLITE_FULL, 
                  "spill page %d making room for %d - cache used: %d/%d",
                  pPg->pgno, pgno,
                  sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache),
                  pCache->nMax);
#endif
      rc = pCache->xStress(pCache->pStress, pPg);
      if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
        return rc;
      }
    }

    pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, 2);
Changes to src/pragma.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
*/
#include "sqliteInt.h"

/* Ignore this whole file if pragmas are disabled
*/
#if !defined(SQLITE_OMIT_PRAGMA)

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
** unrecognized string argument.
**
** Note that the values returned are one less that the values that
** should be passed into sqlite3BtreeSetSafetyLevel().  The is done







<
<
<
<







9
10
11
12
13
14
15




16
17
18
19
20
21
22
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
*/
#include "sqliteInt.h"





/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
** unrecognized string argument.
**
** Note that the values returned are one less that the values that
** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
48
49
50
51
52
53
54






55
56
57
58
59
60
61

/*
** Interpret the given string as a boolean value.
*/
u8 sqlite3GetBoolean(const char *z){
  return getSafetyLevel(z)&1;
}







/*
** Interpret the given string as a locking mode value.
*/
static int getLockingMode(const char *z){
  if( z ){
    if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;







>
>
>
>
>
>







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

/*
** Interpret the given string as a boolean value.
*/
u8 sqlite3GetBoolean(const char *z){
  return getSafetyLevel(z)&1;
}

/* The sqlite3GetBoolean() function is used by other modules but the
** remainder of this file is specific to PRAGMA processing.  So omit
** the rest of the file if PRAGMAs are omitted from the build.
*/
#if !defined(SQLITE_OMIT_PRAGMA)

/*
** Interpret the given string as a locking mode value.
*/
static int getLockingMode(const char *z){
  if( z ){
    if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
Changes to src/shell.c.
2298
2299
2300
2301
2302
2303
2304





2305
2306
2307
2308
2309
2310
2311
    
  if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0
   && nArg==2
  ){
    enableTimer = booleanValue(azArg[1]);
  }else
  





  if( c=='w' && strncmp(azArg[0], "width", n)==0 && nArg>1 ){
    int j;
    assert( nArg<=ArraySize(azArg) );
    for(j=1; j<nArg && j<ArraySize(p->colWidth); j++){
      p->colWidth[j-1] = atoi(azArg[j]);
    }
  }else







>
>
>
>
>







2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
    
  if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0
   && nArg==2
  ){
    enableTimer = booleanValue(azArg[1]);
  }else
  
  if( c=='v' && strncmp(azArg[0], "version", n)==0 ){
    printf("SQLite %s %s\n",
        sqlite3_libversion(), sqlite3_sourceid());
  }else

  if( c=='w' && strncmp(azArg[0], "width", n)==0 && nArg>1 ){
    int j;
    assert( nArg<=ArraySize(azArg) );
    for(j=1; j<nArg && j<ArraySize(p->colWidth); j++){
      p->colWidth[j-1] = atoi(azArg[j]);
    }
  }else
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
    }else if( strcmp(z,"-echo")==0 ){
      data.echoOn = 1;
    }else if( strcmp(z,"-stats")==0 ){
      data.statsOn = 1;
    }else if( strcmp(z,"-bail")==0 ){
      bail_on_error = 1;
    }else if( strcmp(z,"-version")==0 ){
      printf("%s\n", sqlite3_libversion());
      return 0;
    }else if( strcmp(z,"-interactive")==0 ){
      stdin_is_interactive = 1;
    }else if( strcmp(z,"-batch")==0 ){
      stdin_is_interactive = 0;
    }else if( strcmp(z,"-heap")==0 ){
      i++;







|







2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
    }else if( strcmp(z,"-echo")==0 ){
      data.echoOn = 1;
    }else if( strcmp(z,"-stats")==0 ){
      data.statsOn = 1;
    }else if( strcmp(z,"-bail")==0 ){
      bail_on_error = 1;
    }else if( strcmp(z,"-version")==0 ){
      printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid());
      return 0;
    }else if( strcmp(z,"-interactive")==0 ){
      stdin_is_interactive = 1;
    }else if( strcmp(z,"-batch")==0 ){
      stdin_is_interactive = 0;
    }else if( strcmp(z,"-heap")==0 ){
      i++;
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
    /* Run commands received from standard input
    */
    if( stdin_is_interactive ){
      char *zHome;
      char *zHistory = 0;
      int nHistory;
      printf(
        "SQLite version %s\n"
        "Enter \".help\" for instructions\n"
        "Enter SQL statements terminated with a \";\"\n",
        sqlite3_libversion()
      );
      zHome = find_home_dir();
      if( zHome ){
        nHistory = strlen30(zHome) + 20;
        if( (zHistory = malloc(nHistory))!=0 ){
          sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome);
        }







|


|







2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
    /* Run commands received from standard input
    */
    if( stdin_is_interactive ){
      char *zHome;
      char *zHistory = 0;
      int nHistory;
      printf(
        "SQLite version %s %.19s\n"
        "Enter \".help\" for instructions\n"
        "Enter SQL statements terminated with a \";\"\n",
        sqlite3_libversion(), sqlite3_sourceid()
      );
      zHome = find_home_dir();
      if( zHome ){
        nHistory = strlen30(zHome) + 20;
        if( (zHistory = malloc(nHistory))!=0 ){
          sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome);
        }
Changes to src/sqlite.h.in.
450
451
452
453
454
455
456


457
458
459
460
461
462
463
#define SQLITE_IOERR_SHMLOCK           (SQLITE_IOERR | (20<<8))
#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))



/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.







>
>







450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#define SQLITE_IOERR_SHMLOCK           (SQLITE_IOERR | (20<<8))
#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))

/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
Changes to src/sqliteInt.h.
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
  u8 disableTriggers;  /* True to disable triggers */
  double nQueryLoop;   /* Estimated number of iterations of a query */

  /* Above is constant between recursions.  Below is reset before and after
  ** each recursion */

  int nVar;            /* Number of '?' variables seen in the SQL so far */
  int nVarExpr;        /* Number of used slots in apVarExpr[] */
  int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
  Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
  Vdbe *pReprepare;    /* VM being reprepared (sqlite3Reprepare()) */
  int nAlias;          /* Number of aliased result set columns */
  int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
  int *aAlias;         /* Register used to hold aliased result */
  u8 explain;          /* True if the EXPLAIN flag is found on the query */
  Token sNameToken;    /* Token with unqualified schema object name */
  Token sLastToken;    /* The last token parsed */







<
|
|







2226
2227
2228
2229
2230
2231
2232

2233
2234
2235
2236
2237
2238
2239
2240
2241
  u8 disableTriggers;  /* True to disable triggers */
  double nQueryLoop;   /* Estimated number of iterations of a query */

  /* Above is constant between recursions.  Below is reset before and after
  ** each recursion */

  int nVar;            /* Number of '?' variables seen in the SQL so far */

  int nzVar;           /* Number of available slots in azVar[] */
  char **azVar;        /* Pointers to names of parameters */
  Vdbe *pReprepare;    /* VM being reprepared (sqlite3Reprepare()) */
  int nAlias;          /* Number of aliased result set columns */
  int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
  int *aAlias;         /* Register used to hold aliased result */
  u8 explain;          /* True if the EXPLAIN flag is found on the query */
  Token sNameToken;    /* Token with unqualified schema object name */
  Token sLastToken;    /* The last token parsed */
Changes to src/test1.c.
160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
    case SQLITE_IOERR_BLOCKED:       zName = "SQLITE_IOERR_BLOCKED";     break;
    case SQLITE_IOERR_NOMEM:         zName = "SQLITE_IOERR_NOMEM";       break;
    case SQLITE_IOERR_ACCESS:        zName = "SQLITE_IOERR_ACCESS";      break;
    case SQLITE_IOERR_CHECKRESERVEDLOCK:
                               zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
    case SQLITE_IOERR_LOCK:          zName = "SQLITE_IOERR_LOCK";        break;
    case SQLITE_CORRUPT_VTAB:        zName = "SQLITE_CORRUPT_VTAB";      break;
                               zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;

    default:                         zName = "SQLITE_Unknown";           break;
  }
  return zName;
}
#define t1ErrorName sqlite3TestErrorName

/*







|
>







160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    case SQLITE_IOERR_BLOCKED:       zName = "SQLITE_IOERR_BLOCKED";     break;
    case SQLITE_IOERR_NOMEM:         zName = "SQLITE_IOERR_NOMEM";       break;
    case SQLITE_IOERR_ACCESS:        zName = "SQLITE_IOERR_ACCESS";      break;
    case SQLITE_IOERR_CHECKRESERVEDLOCK:
                               zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
    case SQLITE_IOERR_LOCK:          zName = "SQLITE_IOERR_LOCK";        break;
    case SQLITE_CORRUPT_VTAB:        zName = "SQLITE_CORRUPT_VTAB";      break;
    case SQLITE_READONLY_RECOVERY:   zName = "SQLITE_READONLY_RECOVERY"; break;
    case SQLITE_READONLY_CANTLOCK:   zName = "SQLITE_READONLY_CANTLOCK"; break;
    default:                         zName = "SQLITE_Unknown";           break;
  }
  return zName;
}
#define t1ErrorName sqlite3TestErrorName

/*
Changes to src/tokenize.c.
349
350
351
352
353
354
355
356
357

358

359
360
361
362
363
364
365
366
367
368
369
      return i;
    }
#ifndef SQLITE_OMIT_BLOB_LITERAL
    case 'x': case 'X': {
      testcase( z[0]=='x' ); testcase( z[0]=='X' );
      if( z[1]=='\'' ){
        *tokenType = TK_BLOB;
        for(i=2; (c=z[i])!=0 && c!='\''; i++){
          if( !sqlite3Isxdigit(c) ){

            *tokenType = TK_ILLEGAL;

          }
        }
        if( i%2 || !c ) *tokenType = TK_ILLEGAL;
        if( c ) i++;
        return i;
      }
      /* Otherwise fall through to the next case */
    }
#endif
    default: {
      if( !IdChar(*z) ){







<
|
>
|
>
|
<
<
|







349
350
351
352
353
354
355

356
357
358
359
360


361
362
363
364
365
366
367
368
      return i;
    }
#ifndef SQLITE_OMIT_BLOB_LITERAL
    case 'x': case 'X': {
      testcase( z[0]=='x' ); testcase( z[0]=='X' );
      if( z[1]=='\'' ){
        *tokenType = TK_BLOB;

        for(i=2; sqlite3Isxdigit(z[i]); i++){}
        if( z[i]!='\'' || i%2 ){
          *tokenType = TK_ILLEGAL;
          while( z[i] && z[i]!='\'' ){ i++; }
        }


        if( z[i] ) i++;
        return i;
      }
      /* Otherwise fall through to the next case */
    }
#endif
    default: {
      if( !IdChar(*z) ){
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nVarExpr==0 );
  assert( pParse->nVarExprAlloc==0 );
  assert( pParse->apVarExpr==0 );
  enableLookaside = db->lookaside.bEnabled;
  if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
  while( !db->mallocFailed && zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = &zSql[i];
    pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;







|
<
|







407
408
409
410
411
412
413
414

415
416
417
418
419
420
421
422
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nzVar==0 );

  assert( pParse->azVar==0 );
  enableLookaside = db->lookaside.bEnabled;
  if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
  while( !db->mallocFailed && zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = &zSql[i];
    pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;
504
505
506
507
508
509
510

511
512
513
514
515
516
517
518
    ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
    ** will take responsibility for freeing the Table structure.
    */
    sqlite3DeleteTable(db, pParse->pNewTable);
  }

  sqlite3DeleteTrigger(db, pParse->pNewTrigger);

  sqlite3DbFree(db, pParse->apVarExpr);
  sqlite3DbFree(db, pParse->aAlias);
  while( pParse->pAinc ){
    AutoincInfo *p = pParse->pAinc;
    pParse->pAinc = p->pNext;
    sqlite3DbFree(db, p);
  }
  while( pParse->pZombieTab ){







>
|







502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
    ** will take responsibility for freeing the Table structure.
    */
    sqlite3DeleteTable(db, pParse->pNewTable);
  }

  sqlite3DeleteTrigger(db, pParse->pNewTrigger);
  for(i=pParse->nzVar-1; i>=0; i--) sqlite3DbFree(db, pParse->azVar[i]);
  sqlite3DbFree(db, pParse->azVar);
  sqlite3DbFree(db, pParse->aAlias);
  while( pParse->pAinc ){
    AutoincInfo *p = pParse->pAinc;
    pParse->pAinc = p->pNext;
    sqlite3DbFree(db, p);
  }
  while( pParse->pZombieTab ){
Changes to src/trigger.c.
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
    sqlite3NestedParse(pParse,
       "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
       db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zName,
       pTrig->table, z);
    sqlite3DbFree(db, z);
    sqlite3ChangeCookie(pParse, iDb);
    sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
        db, "type='trigger' AND name='%q'", zName), P4_DYNAMIC
    );
  }

  if( db->init.busy ){
    Trigger *pLink = pTrig;
    Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig);







|
|
<







297
298
299
300
301
302
303
304
305

306
307
308
309
310
311
312
    z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
    sqlite3NestedParse(pParse,
       "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
       db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zName,
       pTrig->table, z);
    sqlite3DbFree(db, z);
    sqlite3ChangeCookie(pParse, iDb);
    sqlite3VdbeAddParseSchemaOp(v, iDb,
        sqlite3MPrintf(db, "type='trigger' AND name='%q'", zName));

  }

  if( db->init.busy ){
    Trigger *pLink = pTrig;
    Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig);
Changes to src/vdbe.c.
984
985
986
987
988
989
990

991
992
993
994
995
996
997
** If the parameter is named, then its name appears in P4 and P3==1.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: {            /* out2-prerelease */
  Mem *pVar;       /* Value being transferred */

  assert( pOp->p1>0 && pOp->p1<=p->nVar );

  pVar = &p->aVar[pOp->p1 - 1];
  if( sqlite3VdbeMemTooBig(pVar) ){
    goto too_big;
  }
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;







>







984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
** If the parameter is named, then its name appears in P4 and P3==1.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: {            /* out2-prerelease */
  Mem *pVar;       /* Value being transferred */

  assert( pOp->p1>0 && pOp->p1<=p->nVar );
  assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
  pVar = &p->aVar[pOp->p1 - 1];
  if( sqlite3VdbeMemTooBig(pVar) ){
    goto too_big;
  }
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
  u16 flags1;         /* Copy of initial value of pIn1->flags */
  u16 flags3;         /* Copy of initial value of pIn3->flags */

  pIn1 = &aMem[pOp->p1];
  pIn3 = &aMem[pOp->p3];
  flags1 = pIn1->flags;
  flags3 = pIn3->flags;
  if( (pIn1->flags | pIn3->flags)&MEM_Null ){
    /* One or both operands are NULL */
    if( pOp->p5 & SQLITE_NULLEQ ){
      /* If SQLITE_NULLEQ is set (which will only happen if the operator is
      ** OP_Eq or OP_Ne) then take the jump or not depending on whether
      ** or not both operands are null.
      */
      assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
      res = (pIn1->flags & pIn3->flags & MEM_Null)==0;
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &aMem[pOp->p2];







|







|







1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
  u16 flags1;         /* Copy of initial value of pIn1->flags */
  u16 flags3;         /* Copy of initial value of pIn3->flags */

  pIn1 = &aMem[pOp->p1];
  pIn3 = &aMem[pOp->p3];
  flags1 = pIn1->flags;
  flags3 = pIn3->flags;
  if( (flags1 | flags3)&MEM_Null ){
    /* One or both operands are NULL */
    if( pOp->p5 & SQLITE_NULLEQ ){
      /* If SQLITE_NULLEQ is set (which will only happen if the operator is
      ** OP_Eq or OP_Ne) then take the jump or not depending on whether
      ** or not both operands are null.
      */
      assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
      res = (flags1 & flags3 & MEM_Null)==0;
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &aMem[pOp->p2];
2580
2581
2582
2583
2584
2585
2586

2587
2588
2589
2590
2591
2592
2593
2594

2595
2596
2597
2598
2599
2600
2601
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
      nName = sqlite3Strlen30(zName);


      /* This call is Ok even if this savepoint is actually a transaction
      ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
      ** If this is a transaction savepoint being opened, it is guaranteed
      ** that the db->aVTrans[] array is empty.  */
      assert( db->autoCommit==0 || db->nVTrans==0 );
      rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
                                db->nStatement+db->nSavepoint);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;


      /* Create a new savepoint structure. */
      pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
      if( pNew ){
        pNew->zName = (char *)&pNew[1];
        memcpy(pNew->zName, zName, nName+1);
    







>








>







2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
      nName = sqlite3Strlen30(zName);

#ifndef SQLITE_OMIT_VIRTUALTABLE
      /* This call is Ok even if this savepoint is actually a transaction
      ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
      ** If this is a transaction savepoint being opened, it is guaranteed
      ** that the db->aVTrans[] array is empty.  */
      assert( db->autoCommit==0 || db->nVTrans==0 );
      rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
                                db->nStatement+db->nSavepoint);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
#endif

      /* Create a new savepoint structure. */
      pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
      if( pNew ){
        pNew->zName = (char *)&pNew[1];
        memcpy(pNew->zName, zName, nName+1);
    
5876
5877
5878
5879
5880
5881
5882

5883
5884
5885
5886
5887
5888
5889
5890
5891
5892


5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
/* Opcode: Trace * * * P4 *
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
*/
case OP_Trace: {
  char *zTrace;


  zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
  if( zTrace ){
    if( db->xTrace ){
      char *z = sqlite3VdbeExpandSql(p, zTrace);
      db->xTrace(db->pTraceArg, z);
      sqlite3DbFree(db, z);
    }
#ifdef SQLITE_DEBUG
    if( (db->flags & SQLITE_SqlTrace)!=0 ){


      sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
    }
#endif /* SQLITE_DEBUG */
  }
  break;
}
#endif


/* Opcode: Noop * * * * *
**







>

|
<
<
|
|
|
|

|
>
>
|
|

<







5879
5880
5881
5882
5883
5884
5885
5886
5887
5888


5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899

5900
5901
5902
5903
5904
5905
5906
/* Opcode: Trace * * * P4 *
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
*/
case OP_Trace: {
  char *zTrace;
  char *z;

  if( db->xTrace && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){


    z = sqlite3VdbeExpandSql(p, zTrace);
    db->xTrace(db->pTraceArg, z);
    sqlite3DbFree(db, z);
  }
#ifdef SQLITE_DEBUG
  if( (db->flags & SQLITE_SqlTrace)!=0
   && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
  ){
    sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
  }
#endif /* SQLITE_DEBUG */

  break;
}
#endif


/* Opcode: Noop * * * * *
**
Changes to src/vdbe.h.
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

197
198
199
200
201
202
203
int sqlite3VdbeAddOp0(Vdbe*,int);
int sqlite3VdbeAddOp1(Vdbe*,int,int);
int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);

void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
void sqlite3VdbeUsesBtree(Vdbe*, int);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeRunOnlyOnce(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeDeleteObject(sqlite3*,Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
#ifdef SQLITE_DEBUG
  int sqlite3VdbeAssertMayAbort(Vdbe *, int);
  void sqlite3VdbeTrace(Vdbe*,FILE*);
#endif
void sqlite3VdbeResetStepResult(Vdbe*);

int sqlite3VdbeReset(Vdbe*);
void sqlite3VdbeSetNumCols(Vdbe*,int);
int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
void sqlite3VdbeCountChanges(Vdbe*);
sqlite3 *sqlite3VdbeDb(Vdbe*);
void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
void sqlite3VdbeSwap(Vdbe*,Vdbe*);







>













|








>







168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
int sqlite3VdbeAddOp0(Vdbe*,int);
int sqlite3VdbeAddOp1(Vdbe*,int,int);
int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
void sqlite3VdbeUsesBtree(Vdbe*, int);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeRunOnlyOnce(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeDeleteObject(sqlite3*,Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,Parse*);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
#ifdef SQLITE_DEBUG
  int sqlite3VdbeAssertMayAbort(Vdbe *, int);
  void sqlite3VdbeTrace(Vdbe*,FILE*);
#endif
void sqlite3VdbeResetStepResult(Vdbe*);
void sqlite3VdbeRewind(Vdbe*);
int sqlite3VdbeReset(Vdbe*);
void sqlite3VdbeSetNumCols(Vdbe*,int);
int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
void sqlite3VdbeCountChanges(Vdbe*);
sqlite3 *sqlite3VdbeDb(Vdbe*);
void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
void sqlite3VdbeSwap(Vdbe*,Vdbe*);
Changes to src/vdbeInt.h.
283
284
285
286
287
288
289

290
291
292
293
294
295
296
297
298
299
300
301
  u32 magic;              /* Magic number for sanity checking */
  char *zErrMsg;          /* Error message written here */
  Vdbe *pPrev,*pNext;     /* Linked list of VDBEs with the same Vdbe.db */
  VdbeCursor **apCsr;     /* One element of this array for each open cursor */
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  ynVar nVar;             /* Number of entries in aVar[] */

  u32 cacheCtr;           /* VdbeCursor row cache generation counter */
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */
  u8 errorAction;         /* Recovery action to do in case of an error */
  u8 okVar;               /* True if azVar[] has been initialized */
  u8 explain;             /* True if EXPLAIN present on SQL command */
  u8 changeCntOn;         /* True to update the change-counter */
  u8 expired;             /* True if the VM needs to be recompiled */
  u8 runOnlyOnce;         /* Automatically expire on reset */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 inVtabMethod;        /* See comments above */
  u8 usesStmtJournal;     /* True if uses a statement journal */







>




<







283
284
285
286
287
288
289
290
291
292
293
294

295
296
297
298
299
300
301
  u32 magic;              /* Magic number for sanity checking */
  char *zErrMsg;          /* Error message written here */
  Vdbe *pPrev,*pNext;     /* Linked list of VDBEs with the same Vdbe.db */
  VdbeCursor **apCsr;     /* One element of this array for each open cursor */
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  ynVar nVar;             /* Number of entries in aVar[] */
  ynVar nzVar;            /* Number of entries in azVar[] */
  u32 cacheCtr;           /* VdbeCursor row cache generation counter */
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */
  u8 errorAction;         /* Recovery action to do in case of an error */

  u8 explain;             /* True if EXPLAIN present on SQL command */
  u8 changeCntOn;         /* True to update the change-counter */
  u8 expired;             /* True if the VM needs to be recompiled */
  u8 runOnlyOnce;         /* Automatically expire on reset */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 inVtabMethod;        /* See comments above */
  u8 usesStmtJournal;     /* True if uses a statement journal */
Changes to src/vdbeapi.c.
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  int rc;
  if( pStmt==0 ){
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
    sqlite3_mutex_enter(v->db->mutex);
    rc = sqlite3VdbeReset(v);
    sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0);
    assert( (rc & (v->db->errMask))==rc );
    rc = sqlite3ApiExit(v->db, rc);
    sqlite3_mutex_leave(v->db->mutex);
  }
  return rc;
}








|







98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  int rc;
  if( pStmt==0 ){
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
    sqlite3_mutex_enter(v->db->mutex);
    rc = sqlite3VdbeReset(v);
    sqlite3VdbeRewind(v);
    assert( (rc & (v->db->errMask))==rc );
    rc = sqlite3ApiExit(v->db, rc);
    sqlite3_mutex_leave(v->db->mutex);
  }
  return rc;
}

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
** This routine is added to support DBD::SQLite.  
*/
int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  return p ? p->nVar : 0;
}

/*
** Create a mapping from variable numbers to variable names
** in the Vdbe.azVar[] array, if such a mapping does not already
** exist.
*/
static void createVarMap(Vdbe *p){
  if( !p->okVar ){
    int j;
    Op *pOp;
    sqlite3_mutex_enter(p->db->mutex);
    /* The race condition here is harmless.  If two threads call this
    ** routine on the same Vdbe at the same time, they both might end
    ** up initializing the Vdbe.azVar[] array.  That is a little extra
    ** work but it results in the same answer.
    */
    for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
      if( pOp->opcode==OP_Variable ){
        assert( pOp->p1>0 && pOp->p1<=p->nVar );
        p->azVar[pOp->p1-1] = pOp->p4.z;
      }
    }
    p->okVar = 1;
    sqlite3_mutex_leave(p->db->mutex);
  }
}

/*
** Return the name of a wildcard parameter.  Return NULL if the index
** is out of range or if the wildcard is unnamed.
**
** The result is always UTF-8.
*/
const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
  Vdbe *p = (Vdbe*)pStmt;
  if( p==0 || i<1 || i>p->nVar ){
    return 0;
  }
  createVarMap(p);
  return p->azVar[i-1];
}

/*
** Given a wildcard parameter name, return the index of the variable
** with that name.  If there is no variable with the given name,
** return 0.
*/
int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
  int i;
  if( p==0 ){
    return 0;
  }
  createVarMap(p); 
  if( zName ){
    for(i=0; i<p->nVar; i++){
      const char *z = p->azVar[i];
      if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){
        return i+1;
      }
    }
  }
  return 0;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








|


<













<

|







1163
1164
1165
1166
1167
1168
1169


























1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

1194
1195
1196
1197
1198
1199
1200
1201
1202
** This routine is added to support DBD::SQLite.  
*/
int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  return p ? p->nVar : 0;
}



























/*
** Return the name of a wildcard parameter.  Return NULL if the index
** is out of range or if the wildcard is unnamed.
**
** The result is always UTF-8.
*/
const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
  Vdbe *p = (Vdbe*)pStmt;
  if( p==0 || i<1 || i>p->nzVar ){
    return 0;
  }

  return p->azVar[i-1];
}

/*
** Given a wildcard parameter name, return the index of the variable
** with that name.  If there is no variable with the given name,
** return 0.
*/
int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
  int i;
  if( p==0 ){
    return 0;
  }

  if( zName ){
    for(i=0; i<p->nzVar; i++){
      const char *z = p->azVar[i];
      if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){
        return i+1;
      }
    }
  }
  return 0;
Changes to src/vdbeaux.c.
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  pOp->opcode = (u8)op;
  pOp->p5 = 0;
  pOp->p1 = p1;
  pOp->p2 = p2;
  pOp->p3 = p3;
  pOp->p4.p = 0;
  pOp->p4type = P4_NOTUSED;
  p->expired = 0;
  if( op==OP_ParseSchema ){
    /* Any program that uses the OP_ParseSchema opcode needs to lock
    ** all btrees. */
    int j;
    for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
  }
#ifdef SQLITE_DEBUG
  pOp->zComment = 0;
  if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
#endif
#ifdef VDBE_PROFILE
  pOp->cycles = 0;
  pOp->cnt = 0;







<
<
<
<
<
<
<







152
153
154
155
156
157
158







159
160
161
162
163
164
165
  pOp->opcode = (u8)op;
  pOp->p5 = 0;
  pOp->p1 = p1;
  pOp->p2 = p2;
  pOp->p3 = p3;
  pOp->p4.p = 0;
  pOp->p4type = P4_NOTUSED;







#ifdef SQLITE_DEBUG
  pOp->zComment = 0;
  if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
#endif
#ifdef VDBE_PROFILE
  pOp->cycles = 0;
  pOp->cnt = 0;
196
197
198
199
200
201
202














203
204
205
206
207
208
209
  const char *zP4,    /* The P4 operand */
  int p4type          /* P4 operand type */
){
  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
  sqlite3VdbeChangeP4(p, addr, zP4, p4type);
  return addr;
}















/*
** Add an opcode that includes the p4 value as an integer.
*/
int sqlite3VdbeAddOp4Int(
  Vdbe *p,            /* Add the opcode to this VM */
  int op,             /* The new opcode */







>
>
>
>
>
>
>
>
>
>
>
>
>
>







189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
  const char *zP4,    /* The P4 operand */
  int p4type          /* P4 operand type */
){
  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
  sqlite3VdbeChangeP4(p, addr, zP4, p4type);
  return addr;
}

/*
** Add an OP_ParseSchema opcode.  This routine is broken out from
** sqlite3VdbeAddOp4() since it needs to also local all btrees.
**
** The zWhere string must have been obtained from sqlite3_malloc().
** This routine will take ownership of the allocated memory.
*/
void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
  int j;
  int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
  sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
  for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
}

/*
** Add an opcode that includes the p4 value as an integer.
*/
int sqlite3VdbeAddOp4Int(
  Vdbe *p,            /* Add the opcode to this VM */
  int op,             /* The new opcode */
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431

































































1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494





1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
  }else{
    *pnByte += nByte;
  }
  return pBuf;
}

/*
** Prepare a virtual machine for execution.  This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().  
**
** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
** VDBE_MAGIC_RUN.
**
** This function may be called more than once on a single virtual machine.
** The first call is made while compiling the SQL statement. Subsequent
** calls are made as part of the process of resetting a statement to be
** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor 
** and isExplain parameters are only passed correct values the first time
** the function is called. On subsequent calls, from sqlite3_reset(), nVar
** is passed -1 and nMem, nCursor and isExplain are all passed zero.
*/
void sqlite3VdbeMakeReady(
  Vdbe *p,                       /* The VDBE */
  int nVar,                      /* Number of '?' see in the SQL statement */
  int nMem,                      /* Number of memory cells to allocate */
  int nCursor,                   /* Number of cursors to allocate */
  int nArg,                      /* Maximum number of args in SubPrograms */
  int isExplain,                 /* True if the EXPLAIN keywords is present */
  int usesStmtJournal            /* True to set Vdbe.usesStmtJournal */
){

  int n;
  sqlite3 *db = p->db;

  assert( p!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );

  /* There should be at least one opcode.
  */
  assert( p->nOp>0 );

  /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
  p->magic = VDBE_MAGIC_RUN;


































































  /* For each cursor required, also allocate a memory cell. Memory
  ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
  ** the vdbe program. Instead they are used to allocate space for
  ** VdbeCursor/BtCursor structures. The blob of memory associated with 
  ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
  ** stores the blob of memory associated with cursor 1, etc.
  **
  ** See also: allocateCursor().
  */
  nMem += nCursor;

  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
  ** an array to marshal SQL function arguments in. This is only done the
  ** first time this function is called for a given VDBE, not when it is
  ** being called from sqlite3_reset() to reset the virtual machine.
  */
  if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
    u8 *zCsr = (u8 *)&p->aOp[p->nOp];       /* Memory avaliable for alloation */
    u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];  /* First byte past available mem */
    int nByte;                              /* How much extra memory needed */

    resolveP2Values(p, &nArg);
    p->usesStmtJournal = (u8)usesStmtJournal;
    if( isExplain && nMem<10 ){
      nMem = 10;
    }
    memset(zCsr, 0, zEnd-zCsr);
    zCsr += (zCsr - (u8*)0)&7;
    assert( EIGHT_BYTE_ALIGNMENT(zCsr) );

    /* Memory for registers, parameters, cursor, etc, is allocated in two
    ** passes.  On the first pass, we try to reuse unused space at the 
    ** end of the opcode array.  If we are unable to satisfy all memory
    ** requirements by reusing the opcode array tail, then the second
    ** pass will fill in the rest using a fresh allocation.  
    **
    ** This two-pass approach that reuses as much memory as possible from
    ** the leftover space at the end of the opcode array can significantly
    ** reduce the amount of memory held by a prepared statement.
    */
    do {
      nByte = 0;
      p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
      p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
      p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
      p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
      p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                            &zCsr, zEnd, &nByte);
      if( nByte ){
        p->pFree = sqlite3DbMallocZero(db, nByte);
      }
      zCsr = p->pFree;
      zEnd = &zCsr[nByte];
    }while( nByte && !db->mallocFailed );

    p->nCursor = (u16)nCursor;
    if( p->aVar ){
      p->nVar = (ynVar)nVar;
      for(n=0; n<nVar; n++){
        p->aVar[n].flags = MEM_Null;
        p->aVar[n].db = db;
      }
    }





    if( p->aMem ){
      p->aMem--;                      /* aMem[] goes from 1..nMem */
      p->nMem = nMem;                 /*       not from 0..nMem-1 */
      for(n=1; n<=nMem; n++){
        p->aMem[n].flags = MEM_Null;
        p->aMem[n].db = db;
      }
    }
  }
#ifdef SQLITE_DEBUG
  for(n=1; n<p->nMem; n++){
    assert( p->aMem[n].db==db );
  }
#endif

  p->pc = -1;
  p->rc = SQLITE_OK;
  p->errorAction = OE_Abort;
  p->explain |= isExplain;
  p->magic = VDBE_MAGIC_RUN;
  p->nChange = 0;
  p->cacheCtr = 1;
  p->minWriteFileFormat = 255;
  p->iStatement = 0;
  p->nFkConstraint = 0;
#ifdef VDBE_PROFILE
  {
    int i;
    for(i=0; i<p->nOp; i++){
      p->aOp[i].cnt = 0;
      p->aOp[i].cycles = 0;
    }
  }
#endif
}

/*
** Close a VDBE cursor and release all the resources that cursor 
** happens to hold.
*/
void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){







<
<
|
<
|
<
<
<
<
<
<
<
<
<
<

|
<
<
<
<
<
<
<
<
>
|
<
|










>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>












|
<
<

<
|
|
<

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
>
>
>
>
>
|
|
|
|
|
|
|
|
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<







1394
1395
1396
1397
1398
1399
1400


1401

1402










1403
1404








1405
1406

1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495


1496

1497
1498

1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554










1555








1556






1557
1558
1559
1560
1561
1562
1563
  }else{
    *pnByte += nByte;
  }
  return pBuf;
}

/*


** Rewind the VDBE back to the beginning in preparation for

** running it.










*/
void sqlite3VdbeRewind(Vdbe *p){








#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
  int i;

#endif
  assert( p!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );

  /* There should be at least one opcode.
  */
  assert( p->nOp>0 );

  /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
  p->magic = VDBE_MAGIC_RUN;

#ifdef SQLITE_DEBUG
  for(i=1; i<p->nMem; i++){
    assert( p->aMem[i].db==p->db );
  }
#endif
  p->pc = -1;
  p->rc = SQLITE_OK;
  p->errorAction = OE_Abort;
  p->magic = VDBE_MAGIC_RUN;
  p->nChange = 0;
  p->cacheCtr = 1;
  p->minWriteFileFormat = 255;
  p->iStatement = 0;
  p->nFkConstraint = 0;
#ifdef VDBE_PROFILE
  for(i=0; i<p->nOp; i++){
    p->aOp[i].cnt = 0;
    p->aOp[i].cycles = 0;
  }
#endif
}

/*
** Prepare a virtual machine for execution for the first time after
** creating the virtual machine.  This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().  
**
** This function may be called exact once on a each virtual machine.
** After this routine is called the VM has been "packaged" and is ready
** to run.  After this routine is called, futher calls to 
** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
** the Vdbe from the Parse object that helped generate it so that the
** the Vdbe becomes an independent entity and the Parse object can be
** destroyed.
**
** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
** to its initial state after it has been run.
*/
void sqlite3VdbeMakeReady(
  Vdbe *p,                       /* The VDBE */
  Parse *pParse                  /* Parsing context */
){
  sqlite3 *db;                   /* The database connection */
  int nVar;                      /* Number of parameters */
  int nMem;                      /* Number of VM memory registers */
  int nCursor;                   /* Number of cursors required */
  int nArg;                      /* Number of arguments in subprograms */
  int n;                         /* Loop counter */
  u8 *zCsr;                      /* Memory available for allocation */
  u8 *zEnd;                      /* First byte past allocated memory */
  int nByte;                     /* How much extra memory is needed */

  assert( p!=0 );
  assert( p->nOp>0 );
  assert( pParse!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );
  db = p->db;
  assert( db->mallocFailed==0 );
  nVar = pParse->nVar;
  nMem = pParse->nMem;
  nCursor = pParse->nTab;
  nArg = pParse->nMaxArg;
  
  /* For each cursor required, also allocate a memory cell. Memory
  ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
  ** the vdbe program. Instead they are used to allocate space for
  ** VdbeCursor/BtCursor structures. The blob of memory associated with 
  ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
  ** stores the blob of memory associated with cursor 1, etc.
  **
  ** See also: allocateCursor().
  */
  nMem += nCursor;

  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
  ** an array to marshal SQL function arguments in.


  */

  zCsr = (u8*)&p->aOp[p->nOp];       /* Memory avaliable for allocation */
  zEnd = (u8*)&p->aOp[p->nOpAlloc];  /* First byte past end of zCsr[] */


  resolveP2Values(p, &nArg);
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain && nMem<10 ){
    nMem = 10;
  }
  memset(zCsr, 0, zEnd-zCsr);
  zCsr += (zCsr - (u8*)0)&7;
  assert( EIGHT_BYTE_ALIGNMENT(zCsr) );

  /* Memory for registers, parameters, cursor, etc, is allocated in two
  ** passes.  On the first pass, we try to reuse unused space at the 
  ** end of the opcode array.  If we are unable to satisfy all memory
  ** requirements by reusing the opcode array tail, then the second
  ** pass will fill in the rest using a fresh allocation.  
  **
  ** This two-pass approach that reuses as much memory as possible from
  ** the leftover space at the end of the opcode array can significantly
  ** reduce the amount of memory held by a prepared statement.
  */
  do {
    nByte = 0;
    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                          &zCsr, zEnd, &nByte);
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );

  p->nCursor = (u16)nCursor;
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }
  }
  if( p->azVar ){
    p->nzVar = pParse->nzVar;
    memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
    memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
  }
  if( p->aMem ){
    p->aMem--;                      /* aMem[] goes from 1..nMem */
    p->nMem = nMem;                 /*       not from 0..nMem-1 */
    for(n=1; n<=nMem; n++){
      p->aMem[n].flags = MEM_Null;
      p->aMem[n].db = db;
    }
  }










  p->explain = pParse->explain;








  sqlite3VdbeRewind(p);






}

/*
** Close a VDBE cursor and release all the resources that cursor 
** happens to hold.
*/
void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2395
2396
2397
2398
2399
2400
2401

2402
2403
2404
2405
2406
2407
2408
2409

2410
2411
2412
2413
2414
2415
2416
** Free all memory associated with the Vdbe passed as the second argument.
** The difference between this function and sqlite3VdbeDelete() is that
** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
** the database connection.
*/
void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
  SubProgram *pSub, *pNext;

  assert( p->db==0 || p->db==db );
  releaseMemArray(p->aVar, p->nVar);
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  for(pSub=p->pProgram; pSub; pSub=pNext){
    pNext = pSub->pNext;
    vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
    sqlite3DbFree(db, pSub);
  }

  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aLabel);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
  sqlite3DbFree(db, p);
}







>








>







2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
** Free all memory associated with the Vdbe passed as the second argument.
** The difference between this function and sqlite3VdbeDelete() is that
** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
** the database connection.
*/
void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
  SubProgram *pSub, *pNext;
  int i;
  assert( p->db==0 || p->db==db );
  releaseMemArray(p->aVar, p->nVar);
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  for(pSub=p->pProgram; pSub; pSub=pNext){
    pNext = pSub->pNext;
    vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
    sqlite3DbFree(db, pSub);
  }
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aLabel);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
  sqlite3DbFree(db, p);
}
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869

2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882

2883
2884
2885
2886
2887
2888
2889
  u = 0;
  while( idx<szHdr && u<p->nField && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    pMem->flags = 0;
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
  return (void*)p;
}

/*
** This routine destroys a UnpackedRecord object.
*/
void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){

  int i;
  Mem *pMem;

  assert( p!=0 );
  assert( p->flags & UNPACKED_NEED_DESTROY );
  for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
    /* The unpacked record is always constructed by the
    ** sqlite3VdbeUnpackRecord() function above, which makes all
    ** strings and blobs static.  And none of the elements are
    ** ever transformed, so there is never anything to delete.
    */
    if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
  }

  if( p->flags & UNPACKED_NEED_FREE ){
    sqlite3DbFree(p->pKeyInfo->db, p);
  }
}

/*
** This function compares the two table rows or index records







|














>













>







2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
  u = 0;
  while( idx<szHdr && u<p->nField && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
  return (void*)p;
}

/*
** This routine destroys a UnpackedRecord object.
*/
void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
#ifdef SQLITE_DEBUG
  int i;
  Mem *pMem;

  assert( p!=0 );
  assert( p->flags & UNPACKED_NEED_DESTROY );
  for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
    /* The unpacked record is always constructed by the
    ** sqlite3VdbeUnpackRecord() function above, which makes all
    ** strings and blobs static.  And none of the elements are
    ** ever transformed, so there is never anything to delete.
    */
    if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
  }
#endif
  if( p->flags & UNPACKED_NEED_FREE ){
    sqlite3DbFree(p->pKeyInfo->db, p);
  }
}

/*
** This function compares the two table rows or index records
Changes to src/vdbeblob.c.
293
294
295
296
297
298
299



300
301
302
303
304
305
306
307
      ** always return an SQL NULL. This is useful because it means
      ** we can invoke OP_Column to fill in the vdbe cursors type 
      ** and offset cache without causing any IO.
      */
      sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
      sqlite3VdbeChangeP2(v, 7, pTab->nCol);
      if( !db->mallocFailed ){



        sqlite3VdbeMakeReady(v, 1, 1, 1, 0, 0, 0);
      }
    }
   
    pBlob->flags = flags;
    pBlob->iCol = iCol;
    pBlob->db = db;
    sqlite3BtreeLeaveAll(db);







>
>
>
|







293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
      ** always return an SQL NULL. This is useful because it means
      ** we can invoke OP_Column to fill in the vdbe cursors type 
      ** and offset cache without causing any IO.
      */
      sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
      sqlite3VdbeChangeP2(v, 7, pTab->nCol);
      if( !db->mallocFailed ){
        pParse->nVar = 1;
        pParse->nMem = 1;
        pParse->nTab = 1;
        sqlite3VdbeMakeReady(v, pParse);
      }
    }
   
    pBlob->flags = flags;
    pBlob->iCol = iCol;
    pBlob->db = db;
    sqlite3BtreeLeaveAll(db);
Changes to src/vtab.c.
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    );
    sqlite3DbFree(db, zStmt);
    v = sqlite3GetVdbe(pParse);
    sqlite3ChangeCookie(pParse, iDb);

    sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
    zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
    sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
    sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 
                         pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
  }

  /* If we are rereading the sqlite_master table create the in-memory
  ** record of the table. The xConnect() method is not called until
  ** the first time the virtual table is used in an SQL statement. This







|







379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    );
    sqlite3DbFree(db, zStmt);
    v = sqlite3GetVdbe(pParse);
    sqlite3ChangeCookie(pParse, iDb);

    sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
    zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
    sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
    sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 
                         pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
  }

  /* If we are rereading the sqlite_master table create the in-memory
  ** record of the table. The xConnect() method is not called until
  ** the first time the virtual table is used in an SQL statement. This
Changes to src/wal.c.
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438







439
440
441
442
443
444
445
  int nWiData;               /* Size of array apWiData */
  volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
  u32 szPage;                /* Database page size */
  i16 readLock;              /* Which read lock is being held.  -1 for none */
  u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
  u8 writeLock;              /* True if in a write transaction */
  u8 ckptLock;               /* True if holding a checkpoint lock */
  u8 readOnly;               /* True if the WAL file is open read-only */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif
};

/*
** Candidate values for Wal.exclusiveMode.
*/
#define WAL_NORMAL_MODE     0
#define WAL_EXCLUSIVE_MODE  1     
#define WAL_HEAPMEMORY_MODE 2








/*
** Each page of the wal-index mapping contains a hash-table made up of
** an array of HASHTABLE_NSLOT elements of the following type.
*/
typedef u16 ht_slot;

/*







|















>
>
>
>
>
>
>







416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
  int nWiData;               /* Size of array apWiData */
  volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
  u32 szPage;                /* Database page size */
  i16 readLock;              /* Which read lock is being held.  -1 for none */
  u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
  u8 writeLock;              /* True if in a write transaction */
  u8 ckptLock;               /* True if holding a checkpoint lock */
  u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif
};

/*
** Candidate values for Wal.exclusiveMode.
*/
#define WAL_NORMAL_MODE     0
#define WAL_EXCLUSIVE_MODE  1     
#define WAL_HEAPMEMORY_MODE 2

/*
** Possible values for WAL.readOnly
*/
#define WAL_RDWR        0    /* Normal read/write connection */
#define WAL_RDONLY      1    /* The WAL file is readonly */
#define WAL_SHM_RDONLY  2    /* The SHM file is readonly */

/*
** Each page of the wal-index mapping contains a hash-table made up of
** an array of HASHTABLE_NSLOT elements of the following type.
*/
typedef u16 ht_slot;

/*
525
526
527
528
529
530
531




532
533
534
535
536
537
538
    if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
      pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
      if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 
          pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
      );




    }
  }

  *ppPage = pWal->apWiData[iPage];
  assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
  return rc;
}







>
>
>
>







532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
      pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
      if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 
          pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
      );
      if( rc==SQLITE_READONLY ){
        pWal->readOnly |= WAL_SHM_RDONLY;
        rc = SQLITE_OK;
      }
    }
  }

  *ppPage = pWal->apWiData[iPage];
  assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
  return rc;
}
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
  pRet->zWalName = zWalName;
  pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);

  /* Open file handle on the write-ahead log file. */
  flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
  rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
  if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
    pRet->readOnly = 1;
  }

  if( rc!=SQLITE_OK ){
    walIndexClose(pRet, 0);
    sqlite3OsClose(pRet->pWalFd);
    sqlite3_free(pRet);
  }else{







|







1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
  pRet->zWalName = zWalName;
  pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);

  /* Open file handle on the write-ahead log file. */
  flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
  rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
  if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
    pRet->readOnly = WAL_RDONLY;
  }

  if( rc!=SQLITE_OK ){
    walIndexClose(pRet, 0);
    sqlite3OsClose(pRet->pWalFd);
    sqlite3_free(pRet);
  }else{
1913
1914
1915
1916
1917
1918
1919






1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934

1935
1936
1937
1938
1939
1940
1941
  */
  badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);

  /* If the first attempt failed, it might have been due to a race
  ** with a writer.  So get a WRITE lock and try again.
  */
  assert( badHdr==0 || pWal->writeLock==0 );






  if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
    pWal->writeLock = 1;
    if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
      badHdr = walIndexTryHdr(pWal, pChanged);
      if( badHdr ){
        /* If the wal-index header is still malformed even while holding
        ** a WRITE lock, it can only mean that the header is corrupted and
        ** needs to be reconstructed.  So run recovery to do exactly that.
        */
        rc = walIndexRecover(pWal);
        *pChanged = 1;
      }
    }
    pWal->writeLock = 0;
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);

  }

  /* If the header is read successfully, check the version number to make
  ** sure the wal-index was not constructed with some future format that
  ** this version of SQLite cannot understand.
  */
  if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){







>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
  */
  badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);

  /* If the first attempt failed, it might have been due to a race
  ** with a writer.  So get a WRITE lock and try again.
  */
  assert( badHdr==0 || pWal->writeLock==0 );
  if( badHdr ){
    if( pWal->readOnly & WAL_SHM_RDONLY ){
      if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
        walUnlockShared(pWal, WAL_WRITE_LOCK);
        rc = SQLITE_READONLY_RECOVERY;
      }
    }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
      pWal->writeLock = 1;
      if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
        badHdr = walIndexTryHdr(pWal, pChanged);
        if( badHdr ){
          /* If the wal-index header is still malformed even while holding
          ** a WRITE lock, it can only mean that the header is corrupted and
          ** needs to be reconstructed.  So run recovery to do exactly that.
          */
          rc = walIndexRecover(pWal);
          *pChanged = 1;
        }
      }
      pWal->writeLock = 0;
      walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    }
  }

  /* If the header is read successfully, check the version number to make
  ** sure the wal-index was not constructed with some future format that
  ** this version of SQLite cannot understand.
  */
  if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2114
2115
2116
2117
2118
2119
2120

2121

2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
      assert( thisMark!=READMARK_NOT_USED );
      mxReadMark = thisMark;
      mxI = i;
    }
  }
  /* There was once an "if" here. The extra "{" is to preserve indentation. */
  {

    if( mxReadMark < pWal->hdr.mxFrame || mxI==0 ){

      for(i=1; i<WAL_NREADER; i++){
        rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
          mxI = i;
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
          break;
        }else if( rc!=SQLITE_BUSY ){
          return rc;
        }
      }
    }
    if( mxI==0 ){
      assert( rc==SQLITE_BUSY );
      return WAL_RETRY;
    }

    rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
    if( rc ){
      return rc==SQLITE_BUSY ? WAL_RETRY : rc;
    }
    /* Now that the read-lock has been obtained, check that neither the







>
|
>













|
|







2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
      assert( thisMark!=READMARK_NOT_USED );
      mxReadMark = thisMark;
      mxI = i;
    }
  }
  /* There was once an "if" here. The extra "{" is to preserve indentation. */
  {
    if( (pWal->readOnly & WAL_SHM_RDONLY)==0
     && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
    ){
      for(i=1; i<WAL_NREADER; i++){
        rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
          mxI = i;
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
          break;
        }else if( rc!=SQLITE_BUSY ){
          return rc;
        }
      }
    }
    if( mxI==0 ){
      assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
      return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
    }

    rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
    if( rc ){
      return rc==SQLITE_BUSY ? WAL_RETRY : rc;
    }
    /* Now that the read-lock has been obtained, check that neither the
2535
2536
2537
2538
2539
2540
2541

2542
2543
2544
2545

2546
2547
2548
2549
2550
2551
2552

        /* Limit the size of WAL file if the journal_size_limit PRAGMA is
        ** set to a non-negative value.  Log errors encountered
        ** during the truncation attempt. */
        if( pWal->mxWalSize>=0 ){
          i64 sz;
          int rx;

          rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
          if( rx==SQLITE_OK && (sz > pWal->mxWalSize) ){
            rx = sqlite3OsTruncate(pWal->pWalFd, pWal->mxWalSize);
          }

          if( rx ){
            sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
          }
        }

        pWal->nCkpt++;
        pWal->hdr.mxFrame = 0;







>




>







2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574

        /* Limit the size of WAL file if the journal_size_limit PRAGMA is
        ** set to a non-negative value.  Log errors encountered
        ** during the truncation attempt. */
        if( pWal->mxWalSize>=0 ){
          i64 sz;
          int rx;
          sqlite3BeginBenignMalloc();
          rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
          if( rx==SQLITE_OK && (sz > pWal->mxWalSize) ){
            rx = sqlite3OsTruncate(pWal->pWalFd, pWal->mxWalSize);
          }
          sqlite3EndBenignMalloc();
          if( rx ){
            sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
          }
        }

        pWal->nCkpt++;
        pWal->hdr.mxFrame = 0;
2769
2770
2771
2772
2773
2774
2775

2776
2777
2778
2779
2780
2781
2782
  int rc;                         /* Return code */
  int isChanged = 0;              /* True if a new wal-index header is loaded */
  int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */

  assert( pWal->ckptLock==0 );
  assert( pWal->writeLock==0 );


  WALTRACE(("WAL%p: checkpoint begins\n", pWal));
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc ){
    /* Usually this is SQLITE_BUSY meaning that another thread or process
    ** is already running a checkpoint, or maybe a recovery.  But it might
    ** also be SQLITE_IOERR. */
    return rc;







>







2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
  int rc;                         /* Return code */
  int isChanged = 0;              /* True if a new wal-index header is loaded */
  int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */

  assert( pWal->ckptLock==0 );
  assert( pWal->writeLock==0 );

  if( pWal->readOnly ) return SQLITE_READONLY;
  WALTRACE(("WAL%p: checkpoint begins\n", pWal));
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc ){
    /* Usually this is SQLITE_BUSY meaning that another thread or process
    ** is already running a checkpoint, or maybe a recovery.  But it might
    ** also be SQLITE_IOERR. */
    return rc;
Changes to test/e_uri.test.
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
  set e
}

# EVIDENCE-OF: R-35840-33204 If URI filename interpretation is enabled,
# and the filename argument begins with "file:", then the filename is
# interpreted as a URI.
#
# EVIDENCE-OF: R-00067-59538 URI filename interpretation is enabled if
# the SQLITE_OPEN_URI flag is is set in the fourth argument to
# sqlite3_open_v2(), or if it has been enabled globally using the
# SQLITE_CONFIG_URI option with the sqlite3_config() method.

#
if {$tcl_platform(platform) == "unix"} {
  set flags [list SQLITE_OPEN_READWRITE SQLITE_OPEN_CREATE]

  # Tests with SQLITE_CONFIG_URI configured to false. URI intepretation is
  # only enabled if the SQLITE_OPEN_URI flag is specified.
  sqlite3_shutdown







|


|
>







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  set e
}

# EVIDENCE-OF: R-35840-33204 If URI filename interpretation is enabled,
# and the filename argument begins with "file:", then the filename is
# interpreted as a URI.
#
# EVIDENCE-OF: R-32637-34037 URI filename interpretation is enabled if
# the SQLITE_OPEN_URI flag is is set in the fourth argument to
# sqlite3_open_v2(), or if it has been enabled globally using the
# SQLITE_CONFIG_URI option with the sqlite3_config() method or by the
# SQLITE_USE_URI compile-time option.
#
if {$tcl_platform(platform) == "unix"} {
  set flags [list SQLITE_OPEN_READWRITE SQLITE_OPEN_CREATE]

  # Tests with SQLITE_CONFIG_URI configured to false. URI intepretation is
  # only enabled if the SQLITE_OPEN_URI flag is specified.
  sqlite3_shutdown
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

167
168
169
170
171
172
173
174
      set e [sqlite3_errmsg $DB]
      sqlite3_close $DB
      set e
    } $error
  }
}

# EVIDENCE-OF: R-43804-65312 The 'fragment' component of a URI, if
# present, is always ignored.
#
#   It is difficult to test that something is ignore correctly. So these tests
#   just show that adding a fragment does not interfere with the pathname or
#   parameters passed through to the VFS xOpen() methods.
#
if {$tcl_platform(platform) == "unix"} {
  foreach {tn uri parse} "
    1    {file:test.db#abc}     {[pwd]/test.db {}}
    2    {file:test.db?a=b#abc} {[pwd]/test.db {a b}}
    3    {file:test.db?a=b#?c=d} {[pwd]/test.db {a b}}
  " {
    do_test 3.$tn { parse_uri $uri } $parse
  }
}

# EVIDENCE-OF: R-00273-20588 SQLite uses the 'path' component of the URI
# as the path to the database file to open.
#
# EVIDENCE-OF: R-28659-11035 If the path begins with a '/' character,
# then it is interpreted as an absolute path.
#
# EVIDENCE-OF: R-39349-47203 If it does not begin with a '/', it is

# interpreted as a relative path.
#
if {$tcl_platform(platform) == "unix"} {
  foreach {tn uri parse} "
    1    {file:test.db}             {[pwd]/test.db {}}
    2    {file:/test.db}            {/test.db {}}
    3    {file:///test.db}          {/test.db {}}
    4    {file://localhost/test.db} {/test.db {}}







|
|















|
|




|
>
|







137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
      set e [sqlite3_errmsg $DB]
      sqlite3_close $DB
      set e
    } $error
  }
}

# EVIDENCE-OF: R-45981-25528 The fragment component of a URI, if
# present, is ignored.
#
#   It is difficult to test that something is ignore correctly. So these tests
#   just show that adding a fragment does not interfere with the pathname or
#   parameters passed through to the VFS xOpen() methods.
#
if {$tcl_platform(platform) == "unix"} {
  foreach {tn uri parse} "
    1    {file:test.db#abc}     {[pwd]/test.db {}}
    2    {file:test.db?a=b#abc} {[pwd]/test.db {a b}}
    3    {file:test.db?a=b#?c=d} {[pwd]/test.db {a b}}
  " {
    do_test 3.$tn { parse_uri $uri } $parse
  }
}

# EVIDENCE-OF: R-62557-09390 SQLite uses the path component of the URI
# as the name of the disk file which contains the database.
#
# EVIDENCE-OF: R-28659-11035 If the path begins with a '/' character,
# then it is interpreted as an absolute path.
#
# EVIDENCE-OF: R-46234-61323 If the path does not begin with a '/'
# (meaning that the authority section is omitted from the URI) then the
# path is interpreted as a relative path.
#
if {$tcl_platform(platform) == "unix"} {
  foreach {tn uri parse} "
    1    {file:test.db}             {[pwd]/test.db {}}
    2    {file:/test.db}            {/test.db {}}
    3    {file:///test.db}          {/test.db {}}
    4    {file://localhost/test.db} {/test.db {}}
Changes to test/lock_common.tcl.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    proc csql1 {sql} { list [catch { sql1 $sql } msg] $msg }
    proc csql2 {sql} { list [catch { sql2 $sql } msg] $msg }
    proc csql3 {sql} { list [catch { sql3 $sql } msg] $msg }

    uplevel set $varname $tn
    uplevel $script

    code2 { db2 close }
    code3 { db3 close }
    catch { close $::code2_chan }
    catch { close $::code3_chan }
    catch { db close }
  }
}

# Launch another testfixture process to be controlled by this one. A







|
|







51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    proc csql1 {sql} { list [catch { sql1 $sql } msg] $msg }
    proc csql2 {sql} { list [catch { sql2 $sql } msg] $msg }
    proc csql3 {sql} { list [catch { sql3 $sql } msg] $msg }

    uplevel set $varname $tn
    uplevel $script

    catch { code2 { db2 close } }
    catch { code3 { db3 close } }
    catch { close $::code2_chan }
    catch { close $::code3_chan }
    catch { db close }
  }
}

# Launch another testfixture process to be controlled by this one. A
Changes to test/tkt-2d1a5c67d.test.
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# 
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix tkt-2d1a5c67d

ifcapable !wal {finish_test; return}

for {set ii 1} {$ii<=10} {incr ii} {
  do_test tkt-2d1a5c67d.1.$ii {
    db close
    forcedelete test.db test.db-wal
    sqlite3 db test.db
    db eval "PRAGMA cache_size=$::ii"







|







15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# 
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix tkt-2d1a5c67d

ifcapable {!wal || !vtab} {finish_test; return}

for {set ii 1} {$ii<=10} {incr ii} {
  do_test tkt-2d1a5c67d.1.$ii {
    db close
    forcedelete test.db test.db-wal
    sqlite3 db test.db
    db eval "PRAGMA cache_size=$::ii"
Added test/walro.test.






























































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# 2011 May 09
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains tests for using WAL databases in read-only mode.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/lock_common.tcl
set ::testprefix walro


do_multiclient_test tn {
  # These tests are only going to work on unix.
  #
  if {$tcl_platform(platform) != "unix"} continue

  # Do not run tests with the connections in the same process.
  #
  if {$tn==2} continue
  
  # Close all connections and delete the database.
  #
  code1 { db close  }
  code2 { db2 close }
  code3 { db3 close }
  forcedelete test.db
  forcedelete walro

  foreach c {code1 code2 code3} {
    $c {
      sqlite3_shutdown
      sqlite3_config_uri 1
    }
  }

  file mkdir walro

  do_test 1.1.1 {
    code2 { sqlite3 db2 test.db }
    sql2 { 
      PRAGMA journal_mode = WAL;
      CREATE TABLE t1(x, y);
      INSERT INTO t1 VALUES('a', 'b');
    }
    file exists test.db-shm
  } {1}

  do_test 1.1.2 {
    file attributes test.db-shm -permissions r--r--r--
    code1 { sqlite3 db file:test.db?readonly_shm=1 }
  } {}

  do_test 1.1.3 { sql1 "SELECT * FROM t1" }                {a b}
  do_test 1.1.4 { sql2 "INSERT INTO t1 VALUES('c', 'd')" } {}
  do_test 1.1.5 { sql1 "SELECT * FROM t1" }                {a b c d}

  # Check that the read-only connection cannot write or checkpoint the db.
  #
  do_test 1.1.6 { 
    csql1 "INSERT INTO t1 VALUES('e', 'f')" 
  } {1 {attempt to write a readonly database}}
  do_test 1.1.7 { 
    csql1 "PRAGMA wal_checkpoint"
  } {1 {attempt to write a readonly database}}

  do_test 1.1.9  { sql2 "INSERT INTO t1 VALUES('e', 'f')" } {}
  do_test 1.1.10 { sql1 "SELECT * FROM t1" }                {a b c d e f}

  do_test 1.1.11 { 
    sql2 {
      INSERT INTO t1 VALUES('g', 'h');
      PRAGMA wal_checkpoint;
    }
    set {} {}
  } {}
  do_test 1.1.12 { sql1 "SELECT * FROM t1" }                {a b c d e f g h}
  do_test 1.1.13  { sql2 "INSERT INTO t1 VALUES('i', 'j')" } {}

  do_test 1.2.1 {
    code2 { db2 close }
    code1 { db close }
    list [file exists test.db-wal] [file exists test.db-shm]
  } {1 1}
  do_test 1.2.2 {
    code1 { sqlite3 db file:test.db?readonly_shm=1 }
    sql1 { SELECT * FROM t1 }
  } {a b c d e f g h i j}

  do_test 1.2.3 {
    code1 { db close }
    file attributes test.db-shm -permissions rw-r--r--
    hexio_write test.db-shm 0 01020304 
    file attributes test.db-shm -permissions r--r--r--
    code1 { sqlite3 db file:test.db?readonly_shm=1 }
    csql1 { SELECT * FROM t1 }
  } {1 {attempt to write a readonly database}}
  do_test 1.2.4 {
    code1 { sqlite3_extended_errcode db } 
  } {SQLITE_READONLY_RECOVERY}

  do_test 1.2.5 {
    file attributes test.db-shm -permissions rw-r--r--
    code2 { sqlite3 db2 test.db }
    sql2 "SELECT * FROM t1" 
  } {a b c d e f g h i j}
  file attributes test.db-shm -permissions r--r--r--
  do_test 1.2.6 { sql1 "SELECT * FROM t1" } {a b c d e f g h i j}

  do_test 1.2.7 { 
    sql2 {
      PRAGMA wal_checkpoint;
      INSERT INTO t1 VALUES('k', 'l');
    }
    set {} {}
  } {}
  do_test 1.2.8 { sql1 "SELECT * FROM t1" } {a b c d e f g h i j k l}

  # Now check that if the readonly_shm option is not supplied, or if it
  # is set to zero, it is not possible to connect to the database without
  # read-write access to the shm.
  do_test 1.3.1 {
    code1 { db close }
    code1 { sqlite3 db test.db }
    csql1 { SELECT * FROM t1 }
  } {1 {unable to open database file}}

  # Also test that if the -shm file can be opened for read/write access,
  # it is, even if readonly_shm=1 is present in the URI.
  do_test 1.3.2.1 {
    code1 { db close }
    code2 { db2 close }
    file exists test.db-shm
  } {0}
  do_test 1.3.2.2 {
    code1 { sqlite3 db file:test.db?readonly_shm=1 }
    sql1 { SELECT * FROM t1 }
  } {a b c d e f g h i j k l}
  do_test 1.3.2.3 {
    code1 { db close }
    close [open test.db-shm w]
    file attributes test.db-shm -permissions r--r--r--
    code1 { sqlite3 db file:test.db?readonly_shm=1 }
    csql1 { SELECT * FROM t1 }
  } {1 {attempt to write a readonly database}}
  do_test 1.3.2.4 {
    code1 { sqlite3_extended_errcode db } 
  } {SQLITE_READONLY_RECOVERY}
}

finish_test
Added tool/build-shell.sh.










































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/bin/sh
#
# This script demonstrates how to do a full-featured build of the sqlite3
# command-line shell on Linux.
#
# SQLite source code should be in a sibling directory named "sqlite".  For
# example, put SQLite sources in ~/sqlite/sqlite and run this script from
# ~/sqlite/bld.  There should be an appropriate Makefile in the current
# directory as well.
#
make sqlite3.c
gcc -o sqlite3 -g -Os -I. \
   -DSQLITE_THREADSAFE=0 \
   -DSQLITE_ENABLE_VFSTRACE \
   -DSQLITE_ENABLE_STAT2 \
   -DSQLITE_ENABLE_FTS3 \
   -DSQLITE_ENABLE_RTREE \
   -DHAVE_READLINE \
   -DHAVE_USLEEP=1 \
   ../sqlite/src/shell.c ../sqlite/src/test_vfstrace.c \
   sqlite3.c -ldl -lreadline -lncurses
Changes to tool/lemon.c.
3430
3431
3432
3433
3434
3435
3436




3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
  int i,j;                  /* Loop counters */
  int hash;                 /* For hashing the name of a type */
  const char *name;         /* Name of the parser */

  /* Allocate and initialize types[] and allocate stddt[] */
  arraysize = lemp->nsymbol * 2;
  types = (char**)calloc( arraysize, sizeof(char*) );




  for(i=0; i<arraysize; i++) types[i] = 0;
  maxdtlength = 0;
  if( lemp->vartype ){
    maxdtlength = lemonStrlen(lemp->vartype);
  }
  for(i=0; i<lemp->nsymbol; i++){
    int len;
    struct symbol *sp = lemp->symbols[i];
    if( sp->datatype==0 ) continue;
    len = lemonStrlen(sp->datatype);
    if( len>maxdtlength ) maxdtlength = len;
  }
  stddt = (char*)malloc( maxdtlength*2 + 1 );
  if( types==0 || stddt==0 ){
    fprintf(stderr,"Out of memory.\n");
    exit(1);
  }

  /* Build a hash table of datatypes. The ".dtnum" field of each symbol
  ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
  ** used for terminal symbols.  If there is no %default_type defined then







>
>
>
>













|







3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
  int i,j;                  /* Loop counters */
  int hash;                 /* For hashing the name of a type */
  const char *name;         /* Name of the parser */

  /* Allocate and initialize types[] and allocate stddt[] */
  arraysize = lemp->nsymbol * 2;
  types = (char**)calloc( arraysize, sizeof(char*) );
  if( types==0 ){
    fprintf(stderr,"Out of memory.\n");
    exit(1);
  }
  for(i=0; i<arraysize; i++) types[i] = 0;
  maxdtlength = 0;
  if( lemp->vartype ){
    maxdtlength = lemonStrlen(lemp->vartype);
  }
  for(i=0; i<lemp->nsymbol; i++){
    int len;
    struct symbol *sp = lemp->symbols[i];
    if( sp->datatype==0 ) continue;
    len = lemonStrlen(sp->datatype);
    if( len>maxdtlength ) maxdtlength = len;
  }
  stddt = (char*)malloc( maxdtlength*2 + 1 );
  if( stddt==0 ){
    fprintf(stderr,"Out of memory.\n");
    exit(1);
  }

  /* Build a hash table of datatypes. The ".dtnum" field of each symbol
  ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
  ** used for terminal symbols.  If there is no %default_type defined then
Changes to tool/shell1.test.
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
  set rc [lindex $res 0]
  list $rc \
       [regexp {Error: missing argument for option: -nullvalue} $res]
} {1 1}

# -version             show SQLite version
do_test shell1-1.16.1 {
  catchcmd "-version test.db" "" 

} {0 3.7.7}

#----------------------------------------------------------------------------
# Test cases shell1-2.*: Basic "dot" command token parsing.
#

# check first token handling
do_test shell1-2.1.1 {







|
>
|







195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
  set rc [lindex $res 0]
  list $rc \
       [regexp {Error: missing argument for option: -nullvalue} $res]
} {1 1}

# -version             show SQLite version
do_test shell1-1.16.1 {
  set x [catchcmd "-version test.db" ""]
  regexp {0 \{3.\d.\d+ 20\d\d-[01]\d-\d\d \d\d:\d\d:\d\d [0-9a-f]+\}} $x 
} 1

#----------------------------------------------------------------------------
# Test cases shell1-2.*: Basic "dot" command token parsing.
#

# check first token handling
do_test shell1-2.1.1 {
Added tool/symbols.sh.




































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/bin/sh
#
# Run this script in a directory that contains a valid SQLite makefile in
# order to verify that unintentionally exported symbols.
#
make sqlite3.c

echo '****** Exported symbols from a build including RTREE, FTS4 & ICU ******'
gcc -c -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE \
  -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \
  -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \
  -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \
  -DSQLITE_ENABLE_ICU \
  sqlite3.c
nm sqlite3.o | grep ' T ' | sort -k 3

echo '****** Surplus symbols from a build including RTREE, FTS4 & ICU ******'
nm sqlite3.o | grep ' T ' | grep -v ' sqlite3_'

echo '****** Dependencies of the core. No extensions. No OS interface *******'
gcc -c -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \
  -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \
  -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \
  -DSQLITE_OS_OTHER -DSQLITE_THREADSAFE=0 \
  sqlite3.c
nm sqlite3.o | grep ' U ' | sort -k 3

echo '****** Dependencies including RTREE & FTS4 *******'
gcc -c -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE \
  -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \
  -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \
  -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \
  sqlite3.c
nm sqlite3.o | grep ' U ' | sort -k 3
Added tool/warnings.sh.




























>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#/bin/sh
#
# Run this script in a directory with a working makefile to check for 
# compiler warnings in SQLite.
#
make sqlite3.c
echo '********** No optimizations.  Includes FTS4 and RTREE *********'
gcc -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \
      -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \
      sqlite3.c
echo '********** Optimized -O3.  Includes FTS4 and RTREE *********'
gcc -O3 -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \
      -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \
      sqlite3.c