Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge latest trunk changes with this branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | ota-update |
Files: | files | file ages | folders |
SHA1: |
55b8011d5b455927f5b92a3cb911fd90 |
User & Date: | dan 2014-09-15 15:34:31.844 |
Context
2014-09-15
| ||
16:57 | Merge latest trunk fixes into this branch. (check-in: 5efafef51d user: dan tags: ota-update) | |
15:34 | Merge latest trunk changes with this branch. (check-in: 55b8011d5b user: dan tags: ota-update) | |
15:22 | Have sqlite3ota.c use grave accents instead of double-quotes to enclose identifiers in generated SQL. To avoid having the SQL engine substitute a literal string if a column reference cannot be resolved. (check-in: 79f2418429 user: dan tags: ota-update) | |
14:59 | Remove the EXPENSIVE_ASSERTS in pcache.c having to do with the pSynced field of the Pcache object, as they are incorrect, as revealed by recent pcache enhancements. (check-in: 69a6456077 user: drh tags: trunk) | |
Changes
Added ext/userauth/sqlite3userauth.h.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | /* ** 2014-09-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the application interface definitions for the ** user-authentication extension feature. ** ** To compile with the user-authentication feature, append this file to ** end of an SQLite amalgamation header file ("sqlite3.h"), then add ** the SQLITE_USER_AUTHENTICATION compile-time option. See the ** user-auth.txt file in the same source directory as this file for ** additional information. */ #ifdef SQLITE_USER_AUTHENTICATION /* ** If a database contains the SQLITE_USER table, then the ** sqlite3_user_authenticate() interface must be invoked with an ** appropriate username and password prior to enable read and write ** access to the database. ** ** Return SQLITE_OK on success or SQLITE_ERROR if the username/password ** combination is incorrect or unknown. ** ** If the SQLITE_USER table is not present in the database file, then ** this interface is a harmless no-op returnning SQLITE_OK. */ int sqlite3_user_authenticate( sqlite3 *db, /* The database connection */ const char *zUsername, /* Username */ const char *aPW, /* Password or credentials */ int nPW /* Number of bytes in aPW[] */ ); /* ** The sqlite3_user_add() interface can be used (by an admin user only) ** to create a new user. When called on a no-authentication-required ** database, this routine converts the database into an authentication- ** required database, automatically makes the added user an ** administrator, and logs in the current connection as that user. ** The sqlite3_user_add() interface only works for the "main" database, not ** for any ATTACH-ed databases. Any call to sqlite3_user_add() by a ** non-admin user results in an error. */ int sqlite3_user_add( sqlite3 *db, /* Database connection */ const char *zUsername, /* Username to be added */ const char *aPW, /* Password or credentials */ int nPW, /* Number of bytes in aPW[] */ int isAdmin /* True to give new user admin privilege */ ); /* ** The sqlite3_user_change() interface can be used to change a users ** login credentials or admin privilege. Any user can change their own ** login credentials. Only an admin user can change another users login ** credentials or admin privilege setting. No user may change their own ** admin privilege setting. */ int sqlite3_user_change( sqlite3 *db, /* Database connection */ const char *zUsername, /* Username to change */ const char *aPW, /* New password or credentials */ int nPW, /* Number of bytes in aPW[] */ int isAdmin /* Modified admin privilege for the user */ ); /* ** The sqlite3_user_delete() interface can be used (by an admin user only) ** to delete a user. The currently logged-in user cannot be deleted, ** which guarantees that there is always an admin user and hence that ** the database cannot be converted into a no-authentication-required ** database. */ int sqlite3_user_delete( sqlite3 *db, /* Database connection */ const char *zUsername /* Username to remove */ ); #endif /* SQLITE_USER_AUTHENTICATION */ |
Added ext/userauth/user-auth.txt.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | Activate the user authentication logic by including the ext/userauth/userauth.c source code file in the build and adding the -DSQLITE_USER_AUTHENTICATION compile-time option. The ext/userauth/sqlite3userauth.h header file is available to applications to define the interface. When using the SQLite amalgamation, it is sufficient to append the ext/userauth/userauth.c source file onto the end of the amalgamation. The following new APIs are available when user authentication is activated: int sqlite3_user_authenticate( sqlite3 *db, /* The database connection */ const char *zUsername, /* Username */ const char *aPW, /* Password or credentials */ int nPW /* Number of bytes in aPW[] */ ); int sqlite3_user_add( sqlite3 *db, /* Database connection */ const char *zUsername, /* Username to be added */ const char *aPW, /* Password or credentials */ int nPW, /* Number of bytes in aPW[] */ int isAdmin /* True to give new user admin privilege */ ); int sqlite3_user_change( sqlite3 *db, /* Database connection */ const char *zUsername, /* Username to change */ const void *aPW, /* Modified password or credentials */ int nPW, /* Number of bytes in aPW[] */ int isAdmin /* Modified admin privilege for the user */ ); int sqlite3_user_delete( sqlite3 *db, /* Database connection */ const char *zUsername /* Username to remove */ ); With this extension, a database can be marked as requiring authentication. By default a database does not require authentication. The sqlite3_open(), sqlite3_open16(), and sqlite3_open_v2() interfaces work as before: they open a new database connection. However, if the database being opened requires authentication, then attempts to read or write from the database will fail with an SQLITE_AUTH error until after sqlite3_user_authenticate() has been called successfully. The sqlite3_user_authenticate() call will return SQLITE_OK if the authentication credentials are accepted and SQLITE_ERROR if not. Calling sqlite3_user_authenticate() on a no-authentication-required database connection is a harmless no-op. If the database is encrypted, then sqlite3_key_v2() must be called first, with the correct decryption key, prior to invoking sqlite3_user_authenticate(). To recapitulate: When opening an existing unencrypted authentication- required database, the call sequence is: sqlite3_open_v2() sqlite3_user_authenticate(); /* Database is now usable */ To open an existing, encrypted, authentication-required database, the call sequence is: sqlite3_open_v2(); sqlite3_key_v2(); sqlite3_user_authenticate(); /* Database is now usable */ When opening a no-authentication-required database, the database connection is treated as if it was authenticated as an admin user. When ATTACH-ing new database files to a connection, each newly attached database that is an authentication-required database is checked using the same username and password as supplied to the main database. If that check fails, then the ATTACH command fails with an SQLITE_AUTH error. The sqlite3_user_add() interface can be used (by an admin user only) to create a new user. When called on a no-authentication-required database and when A is true, the sqlite3_user_add(D,U,P,N,A) routine converts the database into an authentication-required database and logs in the database connection D as user U with password P,N. To convert a no-authentication-required database into an authentication- required database, the isAdmin parameter must be true. If sqlite3_user_add(D,U,P,N,A) is called on a no-authentication-required database and A is false, then the call fails with an SQLITE_AUTH error. Any call to sqlite3_user_add() by a non-admin user results in an error. Hence, to create a new, unencrypted, authentication-required database, the call sequence is: sqlite3_open_v2(); sqlite3_user_add(); And to create a new, encrypted, authentication-required database, the call sequence is: sqlite3_open_v2(); sqlite3_key_v2(); sqlite3_user_add(); The sqlite3_user_delete() interface can be used (by an admin user only) to delete a user. The currently logged-in user cannot be deleted, which guarantees that there is always an admin user and hence that the database cannot be converted into a no-authentication-required database. The sqlite3_user_change() interface can be used to change a users login credentials or admin privilege. Any user can change their own password. Only an admin user can change another users login credentials or admin privilege setting. No user may change their own admin privilege setting. The sqlite3_set_authorizer() callback is modified to take a 7th parameter which is the username of the currently logged in user, or NULL for a no-authentication-required database. ----------------------------------------------------------------------------- Implementation notes: An authentication-required database is identified by the presence of a new table: CREATE TABLE sqlite_user( uname TEXT PRIMARY KEY, isAdmin BOOLEAN, pw BLOB ) WITHOUT ROWID; The sqlite_user table is inaccessible (unreadable and unwriteable) to non-admin users and is read-only for admin users. However, if the same database file is opened by a version of SQLite that omits the -DSQLITE_USER_AUTHENTICATION compile-time option, then the sqlite_user table will be readable by anybody and writeable by anybody if the "PRAGMA writable_schema=ON" statement is run first. The sqlite_user.pw field is encoded by a built-in SQL function "sqlite_crypt(X,Y)". The two arguments are both BLOBs. The first argument is the plaintext password supplied to the sqlite3_user_authenticate() interface. The second argument is the sqlite_user.pw value and is supplied so that the function can extract the "salt" used by the password encoder. The result of sqlite_crypt(X,Y) is another blob which is the value that ends up being stored in sqlite_user.pw. To verify credentials X supplied by the sqlite3_user_authenticate() routine, SQLite runs: sqlite_user.pw == sqlite_crypt(X, sqlite_user.pw) To compute an appropriate sqlite_user.pw value from a new or modified password X, sqlite_crypt(X,NULL) is run. A new random salt is selected when the second argument is NULL. The built-in version of of sqlite_crypt() uses a simple Ceasar-cypher which prevents passwords from being revealed by searching the raw database for ASCII text, but is otherwise trivally broken. For better password security, the database should be encrypted using the SQLite Encryption Extension or similar technology. Or, the application can use the sqlite3_create_function() interface to provide an alternative implementation of sqlite_crypt() that computes a stronger password hash, perhaps using a cryptographic hash function like SHA1. |
Added ext/userauth/userauth.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | /* ** 2014-09-08 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the bulk of the implementation of the ** user-authentication extension feature. Some parts of the user- ** authentication code are contained within the SQLite core (in the ** src/ subdirectory of the main source code tree) but those parts ** that could reasonable be separated out are moved into this file. ** ** To compile with the user-authentication feature, append this file to ** end of an SQLite amalgamation, then add the SQLITE_USER_AUTHENTICATION ** compile-time option. See the user-auth.txt file in the same source ** directory as this file for additional information. */ #ifdef SQLITE_USER_AUTHENTICATION #ifndef _SQLITEINT_H_ # include "sqliteInt.h" #endif /* ** Prepare an SQL statement for use by the user authentication logic. ** Return a pointer to the prepared statement on success. Return a ** NULL pointer if there is an error of any kind. */ static sqlite3_stmt *sqlite3UserAuthPrepare( sqlite3 *db, const char *zFormat, ... ){ sqlite3_stmt *pStmt; char *zSql; int rc; va_list ap; int savedFlags = db->flags; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( zSql==0 ) return 0; db->flags |= SQLITE_WriteSchema; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); db->flags = savedFlags; sqlite3_free(zSql); if( rc ){ sqlite3_finalize(pStmt); pStmt = 0; } return pStmt; } /* ** Check to see if the sqlite_user table exists in database zDb. */ static int userTableExists(sqlite3 *db, const char *zDb){ int rc; sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); if( db->init.busy==0 ){ char *zErr = 0; sqlite3Init(db, &zErr); sqlite3DbFree(db, zErr); } rc = sqlite3FindTable(db, "sqlite_user", zDb)!=0; sqlite3BtreeLeaveAll(db); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Check to see if database zDb has a "sqlite_user" table and if it does ** whether that table can authenticate zUser with nPw,zPw. Write one of ** the UAUTH_* user authorization level codes into *peAuth and return a ** result code. */ static int userAuthCheckLogin( sqlite3 *db, /* The database connection to check */ const char *zDb, /* Name of specific database to check */ u8 *peAuth /* OUT: One of UAUTH_* constants */ ){ sqlite3_stmt *pStmt; int rc; *peAuth = UAUTH_Unknown; if( !userTableExists(db, "main") ){ *peAuth = UAUTH_Admin; /* No sqlite_user table. Everybody is admin. */ return SQLITE_OK; } if( db->auth.zAuthUser==0 ){ *peAuth = UAUTH_Fail; return SQLITE_OK; } pStmt = sqlite3UserAuthPrepare(db, "SELECT pw=sqlite_crypt(?1,pw), isAdmin FROM \"%w\".sqlite_user" " WHERE uname=?2", zDb); if( pStmt==0 ) return SQLITE_NOMEM; sqlite3_bind_blob(pStmt, 1, db->auth.zAuthPW, db->auth.nAuthPW,SQLITE_STATIC); sqlite3_bind_text(pStmt, 2, db->auth.zAuthUser, -1, SQLITE_STATIC); rc = sqlite3_step(pStmt); if( rc==SQLITE_ROW && sqlite3_column_int(pStmt,0) ){ *peAuth = sqlite3_column_int(pStmt, 1) + UAUTH_User; }else{ *peAuth = UAUTH_Fail; } return sqlite3_finalize(pStmt); } int sqlite3UserAuthCheckLogin( sqlite3 *db, /* The database connection to check */ const char *zDb, /* Name of specific database to check */ u8 *peAuth /* OUT: One of UAUTH_* constants */ ){ int rc; u8 savedAuthLevel; assert( zDb!=0 ); assert( peAuth!=0 ); savedAuthLevel = db->auth.authLevel; db->auth.authLevel = UAUTH_Admin; rc = userAuthCheckLogin(db, zDb, peAuth); db->auth.authLevel = savedAuthLevel; return rc; } /* ** If the current authLevel is UAUTH_Unknown, the take actions to figure ** out what authLevel should be */ void sqlite3UserAuthInit(sqlite3 *db){ if( db->auth.authLevel==UAUTH_Unknown ){ u8 authLevel = UAUTH_Fail; sqlite3UserAuthCheckLogin(db, "main", &authLevel); db->auth.authLevel = authLevel; if( authLevel<UAUTH_Admin ) db->flags &= ~SQLITE_WriteSchema; } } /* ** Implementation of the sqlite_crypt(X,Y) function. ** ** If Y is NULL then generate a new hash for password X and return that ** hash. If Y is not null, then generate a hash for password X using the ** same salt as the previous hash Y and return the new hash. */ void sqlite3CryptFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ const char *zIn; int nIn, ii; u8 *zOut; char zSalt[8]; zIn = sqlite3_value_blob(argv[0]); nIn = sqlite3_value_bytes(argv[0]); if( sqlite3_value_type(argv[1])==SQLITE_BLOB && sqlite3_value_bytes(argv[1])==nIn+sizeof(zSalt) ){ memcpy(zSalt, sqlite3_value_blob(argv[1]), sizeof(zSalt)); }else{ sqlite3_randomness(sizeof(zSalt), zSalt); } zOut = sqlite3_malloc( nIn+sizeof(zSalt) ); if( zOut==0 ){ sqlite3_result_error_nomem(context); }else{ memcpy(zOut, zSalt, sizeof(zSalt)); for(ii=0; ii<nIn; ii++){ zOut[ii+sizeof(zSalt)] = zIn[ii]^zSalt[ii&0x7]; } sqlite3_result_blob(context, zOut, nIn+sizeof(zSalt), sqlite3_free); } } /* ** If a database contains the SQLITE_USER table, then the ** sqlite3_user_authenticate() interface must be invoked with an ** appropriate username and password prior to enable read and write ** access to the database. ** ** Return SQLITE_OK on success or SQLITE_ERROR if the username/password ** combination is incorrect or unknown. ** ** If the SQLITE_USER table is not present in the database file, then ** this interface is a harmless no-op returnning SQLITE_OK. */ int sqlite3_user_authenticate( sqlite3 *db, /* The database connection */ const char *zUsername, /* Username */ const char *zPW, /* Password or credentials */ int nPW /* Number of bytes in aPW[] */ ){ int rc; u8 authLevel = UAUTH_Fail; db->auth.authLevel = UAUTH_Unknown; sqlite3_free(db->auth.zAuthUser); sqlite3_free(db->auth.zAuthPW); memset(&db->auth, 0, sizeof(db->auth)); db->auth.zAuthUser = sqlite3_mprintf("%s", zUsername); if( db->auth.zAuthUser==0 ) return SQLITE_NOMEM; db->auth.zAuthPW = sqlite3_malloc( nPW+1 ); if( db->auth.zAuthPW==0 ) return SQLITE_NOMEM; memcpy(db->auth.zAuthPW,zPW,nPW); db->auth.nAuthPW = nPW; rc = sqlite3UserAuthCheckLogin(db, "main", &authLevel); db->auth.authLevel = authLevel; sqlite3ExpirePreparedStatements(db); if( rc ){ return rc; /* OOM error, I/O error, etc. */ } if( authLevel<UAUTH_User ){ return SQLITE_AUTH; /* Incorrect username and/or password */ } return SQLITE_OK; /* Successful login */ } /* ** The sqlite3_user_add() interface can be used (by an admin user only) ** to create a new user. When called on a no-authentication-required ** database, this routine converts the database into an authentication- ** required database, automatically makes the added user an ** administrator, and logs in the current connection as that user. ** The sqlite3_user_add() interface only works for the "main" database, not ** for any ATTACH-ed databases. Any call to sqlite3_user_add() by a ** non-admin user results in an error. */ int sqlite3_user_add( sqlite3 *db, /* Database connection */ const char *zUsername, /* Username to be added */ const char *aPW, /* Password or credentials */ int nPW, /* Number of bytes in aPW[] */ int isAdmin /* True to give new user admin privilege */ ){ sqlite3_stmt *pStmt; int rc; sqlite3UserAuthInit(db); if( db->auth.authLevel<UAUTH_Admin ) return SQLITE_AUTH; if( !userTableExists(db, "main") ){ if( !isAdmin ) return SQLITE_AUTH; pStmt = sqlite3UserAuthPrepare(db, "CREATE TABLE sqlite_user(\n" " uname TEXT PRIMARY KEY,\n" " isAdmin BOOLEAN,\n" " pw BLOB\n" ") WITHOUT ROWID;"); if( pStmt==0 ) return SQLITE_NOMEM; sqlite3_step(pStmt); rc = sqlite3_finalize(pStmt); if( rc ) return rc; } pStmt = sqlite3UserAuthPrepare(db, "INSERT INTO sqlite_user(uname,isAdmin,pw)" " VALUES(%Q,%d,sqlite_crypt(?1,NULL))", zUsername, isAdmin!=0); if( pStmt==0 ) return SQLITE_NOMEM; sqlite3_bind_blob(pStmt, 1, aPW, nPW, SQLITE_STATIC); sqlite3_step(pStmt); rc = sqlite3_finalize(pStmt); if( rc ) return rc; if( db->auth.zAuthUser==0 ){ assert( isAdmin!=0 ); sqlite3_user_authenticate(db, zUsername, aPW, nPW); } return SQLITE_OK; } /* ** The sqlite3_user_change() interface can be used to change a users ** login credentials or admin privilege. Any user can change their own ** login credentials. Only an admin user can change another users login ** credentials or admin privilege setting. No user may change their own ** admin privilege setting. */ int sqlite3_user_change( sqlite3 *db, /* Database connection */ const char *zUsername, /* Username to change */ const char *aPW, /* Modified password or credentials */ int nPW, /* Number of bytes in aPW[] */ int isAdmin /* Modified admin privilege for the user */ ){ sqlite3_stmt *pStmt; int rc; u8 authLevel; authLevel = db->auth.authLevel; if( authLevel<UAUTH_User ){ /* Must be logged in to make a change */ return SQLITE_AUTH; } if( strcmp(db->auth.zAuthUser, zUsername)!=0 ){ if( db->auth.authLevel<UAUTH_Admin ){ /* Must be an administrator to change a different user */ return SQLITE_AUTH; } }else if( isAdmin!=(authLevel==UAUTH_Admin) ){ /* Cannot change the isAdmin setting for self */ return SQLITE_AUTH; } db->auth.authLevel = UAUTH_Admin; if( !userTableExists(db, "main") ){ /* This routine is a no-op if the user to be modified does not exist */ }else{ pStmt = sqlite3UserAuthPrepare(db, "UPDATE sqlite_user SET isAdmin=%d, pw=sqlite_crypt(?1,NULL)" " WHERE uname=%Q", isAdmin, zUsername); if( pStmt==0 ){ rc = SQLITE_NOMEM; }else{ sqlite3_bind_blob(pStmt, 1, aPW, nPW, SQLITE_STATIC); sqlite3_step(pStmt); rc = sqlite3_finalize(pStmt); } } db->auth.authLevel = authLevel; return rc; } /* ** The sqlite3_user_delete() interface can be used (by an admin user only) ** to delete a user. The currently logged-in user cannot be deleted, ** which guarantees that there is always an admin user and hence that ** the database cannot be converted into a no-authentication-required ** database. */ int sqlite3_user_delete( sqlite3 *db, /* Database connection */ const char *zUsername /* Username to remove */ ){ sqlite3_stmt *pStmt; if( db->auth.authLevel<UAUTH_Admin ){ /* Must be an administrator to delete a user */ return SQLITE_AUTH; } if( strcmp(db->auth.zAuthUser, zUsername)==0 ){ /* Cannot delete self */ return SQLITE_AUTH; } if( !userTableExists(db, "main") ){ /* This routine is a no-op if the user to be deleted does not exist */ return SQLITE_OK; } pStmt = sqlite3UserAuthPrepare(db, "DELETE FROM sqlite_user WHERE uname=%Q", zUsername); if( pStmt==0 ) return SQLITE_NOMEM; sqlite3_step(pStmt); return sqlite3_finalize(pStmt); } #endif /* SQLITE_USER_AUTHENTICATION */ |
Changes to main.mk.
︙ | ︙ | |||
42 43 44 45 46 47 48 | # build the SQLite library and testing tools. ################################################################################ # This is how we compile # TCCX = $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) TCCX += -I$(TOP)/ext/rtree -I$(TOP)/ext/icu -I$(TOP)/ext/fts3 | | | | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | # build the SQLite library and testing tools. ################################################################################ # This is how we compile # TCCX = $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) TCCX += -I$(TOP)/ext/rtree -I$(TOP)/ext/icu -I$(TOP)/ext/fts3 TCCX += -I$(TOP)/ext/async -I$(TOP)/ext/userauth # Object files for the SQLite library. # LIBOBJ+= vdbe.o parse.o \ alter.o analyze.o attach.o auth.o \ backup.o bitvec.o btmutex.o btree.o build.o \ callback.o complete.o ctime.o date.o delete.o expr.o fault.o fkey.o \ fts3.o fts3_aux.o fts3_expr.o fts3_hash.o fts3_icu.o fts3_porter.o \ fts3_snippet.o fts3_tokenizer.o fts3_tokenizer1.o \ fts3_tokenize_vtab.o \ fts3_unicode.o fts3_unicode2.o \ fts3_write.o func.o global.o hash.o \ icu.o insert.o journal.o legacy.o loadext.o \ main.o malloc.o mem0.o mem1.o mem2.o mem3.o mem5.o \ memjournal.o \ mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \ notify.o opcodes.o os.o os_unix.o os_win.o \ pager.o pcache.o pcache1.o pragma.o prepare.o printf.o \ random.o resolve.o rowset.o rtree.o select.o status.o \ table.o threads.o tokenize.o trigger.o \ update.o userauth.o util.o vacuum.o \ vdbeapi.o vdbeaux.o vdbeblob.o vdbemem.o vdbesort.o \ vdbetrace.o wal.o walker.o where.o utf.o vtab.o # All of the source code files. # |
︙ | ︙ | |||
210 211 212 213 214 215 216 | SRC += \ $(TOP)/ext/icu/sqliteicu.h \ $(TOP)/ext/icu/icu.c SRC += \ $(TOP)/ext/rtree/sqlite3rtree.h \ $(TOP)/ext/rtree/rtree.h \ $(TOP)/ext/rtree/rtree.c | | > > | 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | SRC += \ $(TOP)/ext/icu/sqliteicu.h \ $(TOP)/ext/icu/icu.c SRC += \ $(TOP)/ext/rtree/sqlite3rtree.h \ $(TOP)/ext/rtree/rtree.h \ $(TOP)/ext/rtree/rtree.c SRC += \ $(TOP)/ext/userauth/userauth.c \ $(TOP)/ext/userauth/sqlite3userauth.h # Generated source code files # SRC += \ keywordhash.h \ opcodes.c \ opcodes.h \ |
︙ | ︙ | |||
374 375 376 377 378 379 380 381 382 383 384 385 386 387 | $(TOP)/ext/fts3/fts3Int.h \ $(TOP)/ext/fts3/fts3_hash.h \ $(TOP)/ext/fts3/fts3_tokenizer.h EXTHDR += \ $(TOP)/ext/rtree/rtree.h EXTHDR += \ $(TOP)/ext/icu/sqliteicu.h # This is the default Makefile target. The objects listed here # are what get build when you type just "make" with no arguments. # all: sqlite3.h libsqlite3.a sqlite3$(EXE) libsqlite3.a: $(LIBOBJ) | > > | 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 | $(TOP)/ext/fts3/fts3Int.h \ $(TOP)/ext/fts3/fts3_hash.h \ $(TOP)/ext/fts3/fts3_tokenizer.h EXTHDR += \ $(TOP)/ext/rtree/rtree.h EXTHDR += \ $(TOP)/ext/icu/sqliteicu.h EXTHDR += \ $(TOP)/ext/userauth/sqlite3userauth.h # This is the default Makefile target. The objects listed here # are what get build when you type just "make" with no arguments. # all: sqlite3.h libsqlite3.a sqlite3$(EXE) libsqlite3.a: $(LIBOBJ) |
︙ | ︙ | |||
554 555 556 557 558 559 560 561 562 563 564 565 566 567 | $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_unicode2.c fts3_write.o: $(TOP)/ext/fts3/fts3_write.c $(HDR) $(EXTHDR) $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_write.c rtree.o: $(TOP)/ext/rtree/rtree.c $(HDR) $(EXTHDR) $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/rtree/rtree.c # Rules for building test programs and for running tests # tclsqlite3: $(TOP)/src/tclsqlite.c libsqlite3.a $(TCCX) $(TCL_FLAGS) -DTCLSH=1 -o tclsqlite3 \ $(TOP)/src/tclsqlite.c libsqlite3.a $(LIBTCL) $(THREADLIB) | > > > | 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 | $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_unicode2.c fts3_write.o: $(TOP)/ext/fts3/fts3_write.c $(HDR) $(EXTHDR) $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_write.c rtree.o: $(TOP)/ext/rtree/rtree.c $(HDR) $(EXTHDR) $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/rtree/rtree.c userauth.o: $(TOP)/ext/userauth/userauth.c $(HDR) $(EXTHDR) $(TCCX) -DSQLITE_CORE -c $(TOP)/ext/userauth/userauth.c # Rules for building test programs and for running tests # tclsqlite3: $(TOP)/src/tclsqlite.c libsqlite3.a $(TCCX) $(TCL_FLAGS) -DTCLSH=1 -o tclsqlite3 \ $(TOP)/src/tclsqlite.c libsqlite3.a $(LIBTCL) $(THREADLIB) |
︙ | ︙ |
Changes to src/alter.c.
︙ | ︙ | |||
170 171 172 173 174 175 176 | int len = 0; char *zRet; sqlite3 *db = sqlite3_context_db_handle(context); UNUSED_PARAMETER(NotUsed); /* The principle used to locate the table name in the CREATE TRIGGER | | | | 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | int len = 0; char *zRet; sqlite3 *db = sqlite3_context_db_handle(context); UNUSED_PARAMETER(NotUsed); /* The principle used to locate the table name in the CREATE TRIGGER ** statement is that the table name is the first token that is immediately ** preceded by either TK_ON or TK_DOT and immediately followed by one ** of TK_WHEN, TK_BEGIN or TK_FOR. */ if( zSql ){ do { if( !*zCsr ){ /* Ran out of input before finding the table name. Return NULL. */ |
︙ | ︙ |
Changes to src/analyze.c.
︙ | ︙ | |||
31 32 33 34 35 36 37 | ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced ** version of sqlite_stat3 and is only available when compiled with ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is ** not possible to enable both STAT3 and STAT4 at the same time. If they ** are both enabled, then STAT4 takes precedence. ** | | | 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced ** version of sqlite_stat3 and is only available when compiled with ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is ** not possible to enable both STAT3 and STAT4 at the same time. If they ** are both enabled, then STAT4 takes precedence. ** ** For most applications, sqlite_stat1 provides all the statistics required ** for the query planner to make good choices. ** ** Format of sqlite_stat1: ** ** There is normally one row per index, with the index identified by the ** name in the idx column. The tbl column is the name of the table to ** which the index belongs. In each such row, the stat column will be |
︙ | ︙ | |||
383 384 385 386 387 388 389 | ** ** For indexes on ordinary rowid tables, N==K+1. But for indexes on ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the ** PRIMARY KEY of the table. The covering index that implements the ** original WITHOUT ROWID table as N==K as a special case. ** ** This routine allocates the Stat4Accum object in heap memory. The return | | | 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 | ** ** For indexes on ordinary rowid tables, N==K+1. But for indexes on ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the ** PRIMARY KEY of the table. The covering index that implements the ** original WITHOUT ROWID table as N==K as a special case. ** ** This routine allocates the Stat4Accum object in heap memory. The return ** value is a pointer to the Stat4Accum object. The datatype of the ** return value is BLOB, but it is really just a pointer to the Stat4Accum ** object. */ static void statInit( sqlite3_context *context, int argc, sqlite3_value **argv |
︙ | ︙ | |||
1579 1580 1581 1582 1583 1584 1585 | tRowcnt nSum = 0; /* Number of terms contributing to sumEq */ tRowcnt avgEq = 0; tRowcnt nDLt = pFinal->anDLt[iCol]; /* Set nSum to the number of distinct (iCol+1) field prefixes that ** occur in the stat4 table for this index before pFinal. Set ** sumEq to the sum of the nEq values for column iCol for the same | | | 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 | tRowcnt nSum = 0; /* Number of terms contributing to sumEq */ tRowcnt avgEq = 0; tRowcnt nDLt = pFinal->anDLt[iCol]; /* Set nSum to the number of distinct (iCol+1) field prefixes that ** occur in the stat4 table for this index before pFinal. Set ** sumEq to the sum of the nEq values for column iCol for the same ** set (adding the value only once where there exist duplicate ** prefixes). */ for(i=0; i<(pIdx->nSample-1); i++){ if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){ sumEq += aSample[i].anEq[iCol]; nSum++; } } |
︙ | ︙ |
Changes to src/attach.c.
︙ | ︙ | |||
203 204 205 206 207 208 209 210 211 212 213 214 215 216 | ** we found it. */ if( rc==SQLITE_OK ){ sqlite3BtreeEnterAll(db); rc = sqlite3Init(db, &zErrDyn); sqlite3BtreeLeaveAll(db); } if( rc ){ int iDb = db->nDb - 1; assert( iDb>=2 ); if( db->aDb[iDb].pBt ){ sqlite3BtreeClose(db->aDb[iDb].pBt); db->aDb[iDb].pBt = 0; db->aDb[iDb].pSchema = 0; | > > > > > > > > > | 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | ** we found it. */ if( rc==SQLITE_OK ){ sqlite3BtreeEnterAll(db); rc = sqlite3Init(db, &zErrDyn); sqlite3BtreeLeaveAll(db); } #ifdef SQLITE_USER_AUTHENTICATION if( rc==SQLITE_OK ){ u8 newAuth = 0; rc = sqlite3UserAuthCheckLogin(db, zName, &newAuth); if( newAuth<db->auth.authLevel ){ rc = SQLITE_AUTH_USER; } } #endif if( rc ){ int iDb = db->nDb - 1; assert( iDb>=2 ); if( db->aDb[iDb].pBt ){ sqlite3BtreeClose(db->aDb[iDb].pBt); db->aDb[iDb].pBt = 0; db->aDb[iDb].pSchema = 0; |
︙ | ︙ |
Changes to src/auth.c.
︙ | ︙ | |||
69 70 71 72 73 74 75 | */ int sqlite3_set_authorizer( sqlite3 *db, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pArg ){ sqlite3_mutex_enter(db->mutex); | | | 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | */ int sqlite3_set_authorizer( sqlite3 *db, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pArg ){ sqlite3_mutex_enter(db->mutex); db->xAuth = (sqlite3_xauth)xAuth; db->pAuthArg = pArg; sqlite3ExpirePreparedStatements(db); sqlite3_mutex_leave(db->mutex); return SQLITE_OK; } /* |
︙ | ︙ | |||
104 105 106 107 108 109 110 | const char *zCol, /* Column name */ int iDb /* Index of containing database. */ ){ sqlite3 *db = pParse->db; /* Database handle */ char *zDb = db->aDb[iDb].zName; /* Name of attached database */ int rc; /* Auth callback return code */ | | > > > > | 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | const char *zCol, /* Column name */ int iDb /* Index of containing database. */ ){ sqlite3 *db = pParse->db; /* Database handle */ char *zDb = db->aDb[iDb].zName; /* Name of attached database */ int rc; /* Auth callback return code */ rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext #ifdef SQLITE_USER_AUTHENTICATION ,db->auth.zAuthUser #endif ); if( rc==SQLITE_DENY ){ if( db->nDb>2 || iDb!=0 ){ sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",zDb,zTab,zCol); }else{ sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited", zTab, zCol); } pParse->rc = SQLITE_AUTH; |
︙ | ︙ | |||
204 205 206 207 208 209 210 | if( db->init.busy || IN_DECLARE_VTAB ){ return SQLITE_OK; } if( db->xAuth==0 ){ return SQLITE_OK; } | | > > > > | 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | if( db->init.busy || IN_DECLARE_VTAB ){ return SQLITE_OK; } if( db->xAuth==0 ){ return SQLITE_OK; } rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext #ifdef SQLITE_USER_AUTHENTICATION ,db->auth.zAuthUser #endif ); if( rc==SQLITE_DENY ){ sqlite3ErrorMsg(pParse, "not authorized"); pParse->rc = SQLITE_AUTH; }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){ rc = SQLITE_DENY; sqliteAuthBadReturnCode(pParse); } |
︙ | ︙ |
Changes to src/btmutex.c.
︙ | ︙ | |||
102 103 104 105 106 107 108 | ** and thus help the sqlite3BtreeLock() routine to run much faster ** in the common case. */ static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){ Btree *pLater; /* In most cases, we should be able to acquire the lock we | | | 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | ** and thus help the sqlite3BtreeLock() routine to run much faster ** in the common case. */ static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){ Btree *pLater; /* In most cases, we should be able to acquire the lock we ** want without having to go through the ascending lock ** procedure that follows. Just be sure not to block. */ if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){ p->pBt->db = p->db; p->locked = 1; return; } |
︙ | ︙ |
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements an external (disk-based) database using BTrees. ** See the header comment on "btreeInt.h" for additional information. ** Including a description of file format and an overview of operation. */ #include "btreeInt.h" /* ** The header string that appears at the beginning of every |
︙ | ︙ | |||
603 604 605 606 607 608 609 | /* If this is an intKey table, then the above call to BtreeKeySize() ** stores the integer key in pCur->nKey. In this case this value is ** all that is required. Otherwise, if pCur is not open on an intKey ** table, then malloc space for and store the pCur->nKey bytes of key ** data. */ if( 0==pCur->apPage[0]->intKey ){ | | | 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 | /* If this is an intKey table, then the above call to BtreeKeySize() ** stores the integer key in pCur->nKey. In this case this value is ** all that is required. Otherwise, if pCur is not open on an intKey ** table, then malloc space for and store the pCur->nKey bytes of key ** data. */ if( 0==pCur->apPage[0]->intKey ){ void *pKey = sqlite3Malloc( pCur->nKey ); if( pKey ){ rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey); if( rc==SQLITE_OK ){ pCur->pKey = pKey; }else{ sqlite3_free(pKey); } |
︙ | ︙ | |||
1141 1142 1143 1144 1145 1146 1147 | ** Defragment the page given. All Cells are moved to the ** end of the page and all free space is collected into one ** big FreeBlk that occurs in between the header and cell ** pointer array and the cell content area. */ static int defragmentPage(MemPage *pPage){ int i; /* Loop counter */ | | | 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 | ** Defragment the page given. All Cells are moved to the ** end of the page and all free space is collected into one ** big FreeBlk that occurs in between the header and cell ** pointer array and the cell content area. */ static int defragmentPage(MemPage *pPage){ int i; /* Loop counter */ int pc; /* Address of the i-th cell */ int hdr; /* Offset to the page header */ int size; /* Size of a cell */ int usableSize; /* Number of usable bytes on a page */ int cellOffset; /* Offset to the cell pointer array */ int cbrk; /* Offset to the cell content area */ int nCell; /* Number of cells on the page */ unsigned char *data; /* The page data */ |
︙ | ︙ | |||
2598 2599 2600 2601 2602 2603 2604 | ** in assert() expressions, so it is only compiled if NDEBUG is not ** defined. ** ** Only write cursors are counted if wrOnly is true. If wrOnly is ** false then all cursors are counted. ** ** For the purposes of this routine, a cursor is any cursor that | | | 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 | ** in assert() expressions, so it is only compiled if NDEBUG is not ** defined. ** ** Only write cursors are counted if wrOnly is true. If wrOnly is ** false then all cursors are counted. ** ** For the purposes of this routine, a cursor is any cursor that ** is capable of reading or writing to the database. Cursors that ** have been tripped into the CURSOR_FAULT state are not counted. */ static int countValidCursors(BtShared *pBt, int wrOnly){ BtCursor *pCur; int r = 0; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) |
︙ | ︙ | |||
3062 3063 3064 3065 3066 3067 3068 | /* ** Perform a single step of an incremental-vacuum. If successful, return ** SQLITE_OK. If there is no work to do (and therefore no point in ** calling this function again), return SQLITE_DONE. Or, if an error ** occurs, return some other error code. ** | | | | 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 | /* ** Perform a single step of an incremental-vacuum. If successful, return ** SQLITE_OK. If there is no work to do (and therefore no point in ** calling this function again), return SQLITE_DONE. Or, if an error ** occurs, return some other error code. ** ** More specifically, this function attempts to re-organize the database so ** that the last page of the file currently in use is no longer in use. ** ** Parameter nFin is the number of pages that this database would contain ** were this function called until it returns SQLITE_DONE. ** ** If the bCommit parameter is non-zero, this function assumes that the ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE ** or an error. bCommit is passed true for an auto-vacuum-on-commit ** operation, or false for an incremental vacuum. */ static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ Pgno nFreeList; /* Number of pages still on the free-list */ int rc; assert( sqlite3_mutex_held(pBt->mutex) ); |
︙ | ︙ | |||
3537 3538 3539 3540 3541 3542 3543 | btreeEndTransaction(p); sqlite3BtreeLeave(p); return rc; } /* | | | 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 | btreeEndTransaction(p); sqlite3BtreeLeave(p); return rc; } /* ** Start a statement subtransaction. The subtransaction can be rolled ** back independently of the main transaction. You must start a transaction ** before starting a subtransaction. The subtransaction is ended automatically ** if the main transaction commits or rolls back. ** ** Statement subtransactions are used around individual SQL statements ** that are contained within a BEGIN...COMMIT block. If a constraint ** error occurs within the statement, the effect of that one statement |
︙ | ︙ | |||
3771 3772 3773 3774 3775 3776 3777 | ** BtCursor.info is a cache of the information in the current cell. ** Using this cache reduces the number of calls to btreeParseCell(). ** ** 2007-06-25: There is a bug in some versions of MSVC that cause the ** compiler to crash when getCellInfo() is implemented as a macro. ** But there is a measureable speed advantage to using the macro on gcc ** (when less compiler optimizations like -Os or -O0 are used and the | | | 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 | ** BtCursor.info is a cache of the information in the current cell. ** Using this cache reduces the number of calls to btreeParseCell(). ** ** 2007-06-25: There is a bug in some versions of MSVC that cause the ** compiler to crash when getCellInfo() is implemented as a macro. ** But there is a measureable speed advantage to using the macro on gcc ** (when less compiler optimizations like -Os or -O0 are used and the ** compiler is not doing aggressive inlining.) So we use a real function ** for MSVC and a macro for everything else. Ticket #2457. */ #ifndef NDEBUG static void assertCellInfo(BtCursor *pCur){ CellInfo info; int iPage = pCur->iPage; memset(&info, 0, sizeof(info)); |
︙ | ︙ | |||
3988 3989 3990 3991 3992 3993 3994 | ** Data is read to or from the buffer pBuf. ** ** The content being read or written might appear on the main page ** or be scattered out on multiple overflow pages. ** ** If the current cursor entry uses one or more overflow pages and the ** eOp argument is not 2, this function may allocate space for and lazily | | | 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 | ** Data is read to or from the buffer pBuf. ** ** The content being read or written might appear on the main page ** or be scattered out on multiple overflow pages. ** ** If the current cursor entry uses one or more overflow pages and the ** eOp argument is not 2, this function may allocate space for and lazily ** populates the overflow page-list cache array (BtCursor.aOverflow). ** Subsequent calls use this cache to make seeking to the supplied offset ** more efficient. ** ** Once an overflow page-list cache has been allocated, it may be ** invalidated if some other cursor writes to the same table, or if ** the cursor is moved to a different row. Additionally, in auto-vacuum ** mode, the following events may invalidate an overflow page-list cache. |
︙ | ︙ | |||
4190 4191 4192 4193 4194 4195 4196 | return SQLITE_CORRUPT_BKPT; } return rc; } /* ** Read part of the key associated with cursor pCur. Exactly | | | 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 | return SQLITE_CORRUPT_BKPT; } return rc; } /* ** Read part of the key associated with cursor pCur. Exactly ** "amt" bytes will be transferred into pBuf[]. The transfer ** begins at "offset". ** ** The caller must ensure that pCur is pointing to a valid row ** in the table. ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than |
︙ | ︙ | |||
5886 5887 5888 5889 5890 5891 5892 | } /* ** Add a list of cells to a page. The page should be initially empty. ** The cells are guaranteed to fit on the page. */ static void assemblePage( | | | 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 | } /* ** Add a list of cells to a page. The page should be initially empty. ** The cells are guaranteed to fit on the page. */ static void assemblePage( MemPage *pPage, /* The page to be assembled */ int nCell, /* The number of cells to add to this page */ u8 **apCell, /* Pointers to cell bodies */ u16 *aSize /* Sizes of the cells */ ){ int i; /* Loop counter */ u8 *pCellptr; /* Address of next cell pointer */ int cellbody; /* Address of next cell body */ |
︙ | ︙ | |||
6552 6553 6554 6555 6556 6557 6558 | if( rc ) goto balance_cleanup; releasePage(apOld[i]); apOld[i] = 0; i++; } /* | | | 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 | if( rc ) goto balance_cleanup; releasePage(apOld[i]); apOld[i] = 0; i++; } /* ** Put the new pages in ascending order. This helps to ** keep entries in the disk file in order so that a scan ** of the table is a linear scan through the file. That ** in turn helps the operating system to deliver pages ** from the disk more rapidly. ** ** An O(n^2) insertion sort algorithm is used, but since ** n is never more than NB (a small constant), that should |
︙ | ︙ | |||
6947 6948 6949 6950 6951 6952 6953 | && pPage->aiOvfl[0]==pPage->nCell && pParent->pgno!=1 && pParent->nCell==iIdx ){ /* Call balance_quick() to create a new sibling of pPage on which ** to store the overflow cell. balance_quick() inserts a new cell ** into pParent, which may cause pParent overflow. If this | | | 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 | && pPage->aiOvfl[0]==pPage->nCell && pParent->pgno!=1 && pParent->nCell==iIdx ){ /* Call balance_quick() to create a new sibling of pPage on which ** to store the overflow cell. balance_quick() inserts a new cell ** into pParent, which may cause pParent overflow. If this ** happens, the next iteration of the do-loop will balance pParent ** use either balance_nonroot() or balance_deeper(). Until this ** happens, the overflow cell is stored in the aBalanceQuickSpace[] ** buffer. ** ** The purpose of the following assert() is to check that only a ** single call to balance_quick() is made for each call to this ** function. If this were not verified, a subtle bug involving reuse |
︙ | ︙ | |||
7024 7025 7026 7027 7028 7029 7030 | ** For an INTKEY table, only the nKey value of the key is used. pKey is ** ignored. For a ZERODATA table, the pData and nData are both ignored. ** ** If the seekResult parameter is non-zero, then a successful call to ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already ** been performed. seekResult is the search result returned (a negative ** number if pCur points at an entry that is smaller than (pKey, nKey), or | | | 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 | ** For an INTKEY table, only the nKey value of the key is used. pKey is ** ignored. For a ZERODATA table, the pData and nData are both ignored. ** ** If the seekResult parameter is non-zero, then a successful call to ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already ** been performed. seekResult is the search result returned (a negative ** number if pCur points at an entry that is smaller than (pKey, nKey), or ** a positive value if pCur points at an entry that is larger than ** (pKey, nKey)). ** ** If the seekResult parameter is non-zero, then the caller guarantees that ** cursor pCur is pointing at the existing copy of a row that is to be ** overwritten. If the seekResult parameter is 0, then cursor pCur may ** point to any entry or to no entry at all and so this function has to seek ** the cursor before the new key can be inserted. |
︙ | ︙ | |||
7181 7182 7183 7184 7185 7186 7187 | end_insert: return rc; } /* ** Delete the entry that the cursor is pointing to. The cursor | | | 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 | end_insert: return rc; } /* ** Delete the entry that the cursor is pointing to. The cursor ** is left pointing at an arbitrary location. */ int sqlite3BtreeDelete(BtCursor *pCur){ Btree *p = pCur->pBtree; BtShared *pBt = p->pBt; int rc; /* Return code */ MemPage *pPage; /* Page to delete cell from */ unsigned char *pCell; /* Pointer to cell to delete */ |
︙ | ︙ | |||
7879 7880 7881 7882 7883 7884 7885 | pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); } /* ** Add 1 to the reference count for page iPage. If this is the second ** reference to the page, add an error message to pCheck->zErrMsg. | | | 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 | pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); } /* ** Add 1 to the reference count for page iPage. If this is the second ** reference to the page, add an error message to pCheck->zErrMsg. ** Return 1 if there are 2 or more references to the page and 0 if ** if this is the first reference to the page. ** ** Also check that the page number is in bounds. */ static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){ if( iPage==0 ) return 1; if( iPage>pCheck->nPage ){ |
︙ | ︙ |
Changes to src/btreeInt.h.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements an external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. ** ** The basic idea is that each page of the file contains N database |
︙ | ︙ | |||
131 132 133 134 135 136 137 | ** 3 2 number of cells on this page ** 5 2 first byte of the cell content area ** 7 1 number of fragmented free bytes ** 8 4 Right child (the Ptr(N) value). Omitted on leaves. ** ** The flags define the format of this btree page. The leaf flag means that ** this page has no children. The zerodata flag means that this page carries | | | 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | ** 3 2 number of cells on this page ** 5 2 first byte of the cell content area ** 7 1 number of fragmented free bytes ** 8 4 Right child (the Ptr(N) value). Omitted on leaves. ** ** The flags define the format of this btree page. The leaf flag means that ** this page has no children. The zerodata flag means that this page carries ** only keys and no data. The intkey flag means that the key is an integer ** which is stored in the key size entry of the cell header rather than in ** the payload area. ** ** The cell pointer array begins on the first byte after the page header. ** The cell pointer array contains zero or more 2-byte numbers which are ** offsets from the beginning of the page to the cell content in the cell ** content area. The cell pointers occur in sorted order. The system strives |
︙ | ︙ | |||
540 541 542 543 544 545 546 | ** The table that this cursor was opened on still exists, but has been ** modified since the cursor was last used. The cursor position is saved ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in ** this state, restoreCursorPosition() can be called to attempt to ** seek the cursor to the saved position. ** ** CURSOR_FAULT: | | | 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 | ** The table that this cursor was opened on still exists, but has been ** modified since the cursor was last used. The cursor position is saved ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in ** this state, restoreCursorPosition() can be called to attempt to ** seek the cursor to the saved position. ** ** CURSOR_FAULT: ** An unrecoverable error (an I/O error or a malloc failure) has occurred ** on a different connection that shares the BtShared cache with this ** cursor. The error has left the cache in an inconsistent state. ** Do nothing else with this cursor. Any attempt to use the cursor ** should return the error code stored in BtCursor.skip */ #define CURSOR_INVALID 0 #define CURSOR_VALID 1 |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
151 152 153 154 155 156 157 158 159 160 161 162 163 164 | */ v = sqlite3GetVdbe(pParse); assert( !pParse->isMultiWrite || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); if( v ){ while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} sqlite3VdbeAddOp0(v, OP_Halt); /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ | > > > > > > > > > > > | 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | */ v = sqlite3GetVdbe(pParse); assert( !pParse->isMultiWrite || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); if( v ){ while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){} sqlite3VdbeAddOp0(v, OP_Halt); #if SQLITE_USER_AUTHENTICATION if( pParse->nTableLock>0 && db->init.busy==0 ){ sqlite3UserAuthInit(db); if( db->auth.authLevel<UAUTH_User ){ pParse->rc = SQLITE_AUTH_USER; sqlite3ErrorMsg(pParse, "user not authenticated"); return; } } #endif /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ |
︙ | ︙ | |||
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | sqlite3RunParser(pParse, zSql, &zErrMsg); sqlite3DbFree(db, zErrMsg); sqlite3DbFree(db, zSql); memcpy(&pParse->nVar, saveBuf, SAVE_SZ); pParse->nested--; } /* ** Locate the in-memory structure that describes a particular database ** table given the name of that table and (optionally) the name of the ** database containing the table. Return NULL if not found. ** ** If zDatabase is 0, all databases are searched for the table and the ** first matching table is returned. (No checking for duplicate table ** names is done.) The search order is TEMP first, then MAIN, then any ** auxiliary databases added using the ATTACH command. ** ** See also sqlite3LocateTable(). */ Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; assert( zName!=0 ); /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; assert( sqlite3SchemaMutexHeld(db, j, 0) ); p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); if( p ) break; } | > > > > > > > > > > > > > > > > > | 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | sqlite3RunParser(pParse, zSql, &zErrMsg); sqlite3DbFree(db, zErrMsg); sqlite3DbFree(db, zSql); memcpy(&pParse->nVar, saveBuf, SAVE_SZ); pParse->nested--; } #if SQLITE_USER_AUTHENTICATION /* ** Return TRUE if zTable is the name of the system table that stores the ** list of users and their access credentials. */ int sqlite3UserAuthTable(const char *zTable){ return sqlite3_stricmp(zTable, "sqlite_user")==0; } #endif /* ** Locate the in-memory structure that describes a particular database ** table given the name of that table and (optionally) the name of the ** database containing the table. Return NULL if not found. ** ** If zDatabase is 0, all databases are searched for the table and the ** first matching table is returned. (No checking for duplicate table ** names is done.) The search order is TEMP first, then MAIN, then any ** auxiliary databases added using the ATTACH command. ** ** See also sqlite3LocateTable(). */ Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; assert( zName!=0 ); /* All mutexes are required for schema access. Make sure we hold them. */ assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); #if SQLITE_USER_AUTHENTICATION /* Only the admin user is allowed to know that the sqlite_user table ** exists */ if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ return 0; } #endif for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; assert( sqlite3SchemaMutexHeld(db, j, 0) ); p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); if( p ) break; } |
︙ | ︙ | |||
329 330 331 332 333 334 335 336 337 338 339 340 341 342 | if( zDbase ){ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); }else{ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); } pParse->checkSchema = 1; } return p; } /* ** Locate the table identified by *p. ** ** This is a wrapper around sqlite3LocateTable(). The difference between | > > > > > > | 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | if( zDbase ){ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); }else{ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); } pParse->checkSchema = 1; } #if SQLITE_USER_AUTHENICATION else if( pParse->db->auth.authLevel<UAUTH_User ){ sqlite3ErrorMsg(pParse, "user not authenticated"); p = 0; } #endif return p; } /* ** Locate the table identified by *p. ** ** This is a wrapper around sqlite3LocateTable(). The difference between |
︙ | ︙ | |||
1615 1616 1617 1618 1619 1620 1621 | ** are appropriate for a WITHOUT ROWID table instead of a rowid table. ** Changes include: ** ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is ** no rowid btree for a WITHOUT ROWID. Instead, the canonical ** data storage is a covering index btree. ** (2) Bypass the creation of the sqlite_master table entry | | | | 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 | ** are appropriate for a WITHOUT ROWID table instead of a rowid table. ** Changes include: ** ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is ** no rowid btree for a WITHOUT ROWID. Instead, the canonical ** data storage is a covering index btree. ** (2) Bypass the creation of the sqlite_master table entry ** for the PRIMARY KEY as the primary key index is now ** identified by the sqlite_master table entry of the table itself. ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the ** schema to the rootpage from the main table. ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL. ** (5) Add all table columns to the PRIMARY KEY Index object ** so that the PRIMARY KEY is a covering index. The surplus ** columns are part of KeyInfo.nXField and are not used for ** sorting or lookup or uniqueness checks. ** (6) Replace the rowid tail on all automatically generated UNIQUE ** indices with the PRIMARY KEY columns. */ static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ Index *pIdx; Index *pPk; int nPk; int i, j; sqlite3 *db = pParse->db; Vdbe *v = pParse->pVdbe; /* Convert the OP_CreateTable opcode that would normally create the ** root-page for the table into an OP_CreateIndex opcode. The index ** created will become the PRIMARY KEY index. */ if( pParse->addrCrTab ){ assert( v ); sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex; } |
︙ | ︙ | |||
2048 2049 2050 2051 2052 2053 2054 | */ int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ Table *pSelTab; /* A fake table from which we get the result set */ Select *pSel; /* Copy of the SELECT that implements the view */ int nErr = 0; /* Number of errors encountered */ int n; /* Temporarily holds the number of cursors assigned */ sqlite3 *db = pParse->db; /* Database connection for malloc errors */ | | | 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 | */ int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ Table *pSelTab; /* A fake table from which we get the result set */ Select *pSel; /* Copy of the SELECT that implements the view */ int nErr = 0; /* Number of errors encountered */ int n; /* Temporarily holds the number of cursors assigned */ sqlite3 *db = pParse->db; /* Database connection for malloc errors */ sqlite3_xauth xAuth; /* Saved xAuth pointer */ assert( pTable ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( sqlite3VtabCallConnect(pParse, pTable) ){ return SQLITE_ERROR; } |
︙ | ︙ | |||
2650 2651 2652 2653 2654 2655 2656 | int iSorter; /* Cursor opened by OpenSorter (if in use) */ int addr1; /* Address of top of loop */ int addr2; /* Address to jump to for next iteration */ int tnum; /* Root page of index */ int iPartIdxLabel; /* Jump to this label to skip a row */ Vdbe *v; /* Generate code into this virtual machine */ KeyInfo *pKey; /* KeyInfo for index */ | | | 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 | int iSorter; /* Cursor opened by OpenSorter (if in use) */ int addr1; /* Address of top of loop */ int addr2; /* Address to jump to for next iteration */ int tnum; /* Root page of index */ int iPartIdxLabel; /* Jump to this label to skip a row */ Vdbe *v; /* Generate code into this virtual machine */ KeyInfo *pKey; /* KeyInfo for index */ int regRecord; /* Register holding assembled index record */ sqlite3 *db = pParse->db; /* The database connection */ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, db->aDb[iDb].zName ) ){ return; |
︙ | ︙ | |||
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 | iDb = sqlite3SchemaToIndex(db, pTab->pSchema); } pDb = &db->aDb[iDb]; assert( pTab!=0 ); assert( pParse->nErr==0 ); if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); goto exit_create_index; } #ifndef SQLITE_OMIT_VIEW if( pTab->pSelect ){ sqlite3ErrorMsg(pParse, "views may not be indexed"); | > > > > | 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 | iDb = sqlite3SchemaToIndex(db, pTab->pSchema); } pDb = &db->aDb[iDb]; assert( pTab!=0 ); assert( pParse->nErr==0 ); if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 && db->init.busy==0 #if SQLITE_USER_AUTHENTICATION && sqlite3UserAuthTable(pTab->zName)==0 #endif && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); goto exit_create_index; } #ifndef SQLITE_OMIT_VIEW if( pTab->pSelect ){ sqlite3ErrorMsg(pParse, "views may not be indexed"); |
︙ | ︙ | |||
3250 3251 3252 3253 3254 3255 3256 | return pRet; } /* ** Fill the Index.aiRowEst[] array with default information - information ** to be used when we have not run the ANALYZE command. ** | | | 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 | return pRet; } /* ** Fill the Index.aiRowEst[] array with default information - information ** to be used when we have not run the ANALYZE command. ** ** aiRowEst[0] is supposed to contain the number of elements in the index. ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the ** number of rows in the table that match any particular value of the ** first column of the index. aiRowEst[2] is an estimate of the number ** of rows that match any particular combination of the first 2 columns ** of the index. And so forth. It must always be the case that * ** aiRowEst[N]<=aiRowEst[N-1] |
︙ | ︙ | |||
3629 3630 3631 3632 3633 3634 3635 | /* ** This routine is called by the parser to add a new term to the ** end of a growing FROM clause. The "p" parameter is the part of ** the FROM clause that has already been constructed. "p" is NULL ** if this is the first term of the FROM clause. pTable and pDatabase ** are the name of the table and database named in the FROM clause term. ** pDatabase is NULL if the database name qualifier is missing - the | | | 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 | /* ** This routine is called by the parser to add a new term to the ** end of a growing FROM clause. The "p" parameter is the part of ** the FROM clause that has already been constructed. "p" is NULL ** if this is the first term of the FROM clause. pTable and pDatabase ** are the name of the table and database named in the FROM clause term. ** pDatabase is NULL if the database name qualifier is missing - the ** usual case. If the term has an alias, then pAlias points to the ** alias token. If the term is a subquery, then pSubquery is the ** SELECT statement that the subquery encodes. The pTable and ** pDatabase parameters are NULL for subqueries. The pOn and pUsing ** parameters are the content of the ON and USING clauses. ** ** Return a new SrcList which encodes is the FROM with the new ** term added. |
︙ | ︙ |
Changes to src/callback.c.
︙ | ︙ | |||
138 139 140 141 142 143 144 | /* ** Locate and return an entry from the db.aCollSeq hash table. If the entry ** specified by zName and nName is not found and parameter 'create' is ** true, then create a new entry. Otherwise return NULL. ** ** Each pointer stored in the sqlite3.aCollSeq hash table contains an ** array of three CollSeq structures. The first is the collation sequence | | | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | /* ** Locate and return an entry from the db.aCollSeq hash table. If the entry ** specified by zName and nName is not found and parameter 'create' is ** true, then create a new entry. Otherwise return NULL. ** ** Each pointer stored in the sqlite3.aCollSeq hash table contains an ** array of three CollSeq structures. The first is the collation sequence ** preferred for UTF-8, the second UTF-16le, and the third UTF-16be. ** ** Stored immediately after the three collation sequences is a copy of ** the collation sequence name. A pointer to this string is stored in ** each collation sequence structure. */ static CollSeq *findCollSeqEntry( sqlite3 *db, /* Database connection */ |
︙ | ︙ |
Changes to src/complete.c.
︙ | ︙ | |||
66 67 68 69 70 71 72 | ** (2) NORMAL We are in the middle of statement which ends with a single ** semicolon. ** ** (3) EXPLAIN The keyword EXPLAIN has been seen at the beginning of ** a statement. ** ** (4) CREATE The keyword CREATE has been seen at the beginning of a | | | | 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | ** (2) NORMAL We are in the middle of statement which ends with a single ** semicolon. ** ** (3) EXPLAIN The keyword EXPLAIN has been seen at the beginning of ** a statement. ** ** (4) CREATE The keyword CREATE has been seen at the beginning of a ** statement, possibly preceded by EXPLAIN and/or followed by ** TEMP or TEMPORARY ** ** (5) TRIGGER We are in the middle of a trigger definition that must be ** ended by a semicolon, the keyword END, and another semicolon. ** ** (6) SEMI We've seen the first semicolon in the ";END;" that occurs at ** the end of a trigger definition. ** ** (7) END We've seen the ";END" of the ";END;" that occurs at the end ** of a trigger definition. ** ** Transitions between states above are determined by tokens extracted ** from the input. The following tokens are significant: ** ** (0) tkSEMI A semicolon. ** (1) tkWS Whitespace. ** (2) tkOTHER Any other SQL token. |
︙ | ︙ | |||
119 120 121 122 123 124 125 | /* 4 CREATE: */ { 1, 4, 2, 2, 2, 4, 5, 2, }, /* 5 TRIGGER: */ { 6, 5, 5, 5, 5, 5, 5, 5, }, /* 6 SEMI: */ { 6, 6, 5, 5, 5, 5, 5, 7, }, /* 7 END: */ { 1, 7, 5, 5, 5, 5, 5, 5, }, }; #else /* If triggers are not supported by this compile then the statement machine | | | 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | /* 4 CREATE: */ { 1, 4, 2, 2, 2, 4, 5, 2, }, /* 5 TRIGGER: */ { 6, 5, 5, 5, 5, 5, 5, 5, }, /* 6 SEMI: */ { 6, 6, 5, 5, 5, 5, 5, 7, }, /* 7 END: */ { 1, 7, 5, 5, 5, 5, 5, 5, }, }; #else /* If triggers are not supported by this compile then the statement machine ** used to detect the end of a statement is much simpler */ static const u8 trans[3][3] = { /* Token: */ /* State: ** SEMI WS OTHER */ /* 0 INVALID: */ { 1, 0, 2, }, /* 1 START: */ { 1, 1, 2, }, /* 2 NORMAL: */ { 1, 2, 2, }, |
︙ | ︙ |
Changes to src/ctime.c.
︙ | ︙ | |||
363 364 365 366 367 368 369 370 371 372 373 374 375 376 | "TEST", #endif #if defined(SQLITE_THREADSAFE) "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE), #endif #ifdef SQLITE_USE_ALLOCA "USE_ALLOCA", #endif #ifdef SQLITE_WIN32_MALLOC "WIN32_MALLOC", #endif #ifdef SQLITE_ZERO_MALLOC "ZERO_MALLOC" #endif | > > > | 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | "TEST", #endif #if defined(SQLITE_THREADSAFE) "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE), #endif #ifdef SQLITE_USE_ALLOCA "USE_ALLOCA", #endif #ifdef SQLITE_USER_AUTHENTICATION "USER_AUTHENTICATION", #endif #ifdef SQLITE_WIN32_MALLOC "WIN32_MALLOC", #endif #ifdef SQLITE_ZERO_MALLOC "ZERO_MALLOC" #endif |
︙ | ︙ |
Changes to src/date.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** dates and times are stored as the number of days since noon ** in Greenwich on November 24, 4714 B.C. according to the Gregorian ** calendar system. ** ** 1970-01-01 00:00:00 is JD 2440587.5 ** 2000-01-01 00:00:00 is JD 2451544.5 ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** dates and times are stored as the number of days since noon ** in Greenwich on November 24, 4714 B.C. according to the Gregorian ** calendar system. ** ** 1970-01-01 00:00:00 is JD 2440587.5 ** 2000-01-01 00:00:00 is JD 2451544.5 ** ** This implementation requires years to be expressed as a 4-digit number ** which means that only dates between 0000-01-01 and 9999-12-31 can ** be represented, even though julian day numbers allow a much wider ** range of dates. ** ** The Gregorian calendar system is used for all dates and times, ** even those that predate the Gregorian calendar. Historians usually ** use the Julian calendar for dates prior to 1582-10-15 and for some |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
86 87 88 89 90 91 92 | ** pWhere argument is an optional WHERE clause that restricts the ** set of rows in the view that are to be added to the ephemeral table. */ void sqlite3MaterializeView( Parse *pParse, /* Parsing context */ Table *pView, /* View definition */ Expr *pWhere, /* Optional WHERE clause to be added */ | | | 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | ** pWhere argument is an optional WHERE clause that restricts the ** set of rows in the view that are to be added to the ephemeral table. */ void sqlite3MaterializeView( Parse *pParse, /* Parsing context */ Table *pView, /* View definition */ Expr *pWhere, /* Optional WHERE clause to be added */ int iCur /* Cursor number for ephemeral table */ ){ SelectDest dest; Select *pSel; SrcList *pFrom; sqlite3 *db = pParse->db; int iDb = sqlite3SchemaToIndex(db, pView->pSchema); pWhere = sqlite3ExprDup(db, pWhere, 0); |
︙ | ︙ | |||
244 245 246 247 248 249 250 | int iKey; /* Memory cell holding key of row to be deleted */ i16 nKey; /* Number of memory cells in the row key */ int iEphCur = 0; /* Ephemeral table holding all primary key values */ int iRowSet = 0; /* Register for rowset of rows to delete */ int addrBypass = 0; /* Address of jump over the delete logic */ int addrLoop = 0; /* Top of the delete loop */ int addrDelete = 0; /* Jump directly to the delete logic */ | | | 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | int iKey; /* Memory cell holding key of row to be deleted */ i16 nKey; /* Number of memory cells in the row key */ int iEphCur = 0; /* Ephemeral table holding all primary key values */ int iRowSet = 0; /* Register for rowset of rows to delete */ int addrBypass = 0; /* Address of jump over the delete logic */ int addrLoop = 0; /* Top of the delete loop */ int addrDelete = 0; /* Jump directly to the delete logic */ int addrEphOpen = 0; /* Instruction to open the Ephemeral table */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to delete from a view */ Trigger *pTrigger; /* List of table triggers, if required */ #endif memset(&sContext, 0, sizeof(sContext)); |
︙ | ︙ | |||
324 325 326 327 328 329 330 | if( v==0 ){ goto delete_from_cleanup; } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, 1, iDb); /* If we are trying to delete from a view, realize that view into | | | 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | if( v==0 ){ goto delete_from_cleanup; } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, 1, iDb); /* If we are trying to delete from a view, realize that view into ** an ephemeral table. */ #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) if( isView ){ sqlite3MaterializeView(pParse, pTab, pWhere, iTabCur); iDataCur = iIdxCur = iTabCur; } #endif |
︙ | ︙ | |||
378 379 380 381 382 383 384 | if( HasRowid(pTab) ){ /* For a rowid table, initialize the RowSet to an empty set */ pPk = 0; nPk = 1; iRowSet = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); }else{ | | | 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | if( HasRowid(pTab) ){ /* For a rowid table, initialize the RowSet to an empty set */ pPk = 0; nPk = 1; iRowSet = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); }else{ /* For a WITHOUT ROWID table, create an ephemeral table used to ** hold all primary keys for rows to be deleted. */ pPk = sqlite3PrimaryKeyIndex(pTab); assert( pPk!=0 ); nPk = pPk->nKeyCol; iPk = pParse->nMem+1; pParse->nMem += nPk; iEphCur = pParse->nTab++; |
︙ | ︙ | |||
553 554 555 556 557 558 559 | sqlite3AuthContextPop(&sContext); sqlite3SrcListDelete(db, pTabList); sqlite3ExprDelete(db, pWhere); sqlite3DbFree(db, aToOpen); return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise | | | 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 | sqlite3AuthContextPop(&sContext); sqlite3SrcListDelete(db, pTabList); sqlite3ExprDelete(db, pWhere); sqlite3DbFree(db, aToOpen); return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
18 19 20 21 22 23 24 | ** Return the 'affinity' of the expression pExpr if any. ** ** If pExpr is a column, a reference to a column via an 'AS' alias, ** or a sub-select with a column as the return value, then the ** affinity of that column is returned. Otherwise, 0x00 is returned, ** indicating no affinity for the expression. ** | | | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ** Return the 'affinity' of the expression pExpr if any. ** ** If pExpr is a column, a reference to a column via an 'AS' alias, ** or a sub-select with a column as the return value, then the ** affinity of that column is returned. Otherwise, 0x00 is returned, ** indicating no affinity for the expression. ** ** i.e. the WHERE clause expressions in the following statements all ** have an affinity: ** ** CREATE TABLE t1(a); ** SELECT * FROM t1 WHERE a; ** SELECT a AS b FROM t1 WHERE b; ** SELECT * FROM t1 WHERE (select a from t1); */ |
︙ | ︙ | |||
497 498 499 500 501 502 503 | pRoot->flags |= EP_Collate & pLeft->flags; } exprSetHeight(pRoot); } } /* | | | 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | pRoot->flags |= EP_Collate & pLeft->flags; } exprSetHeight(pRoot); } } /* ** Allocate an Expr node which joins as many as two subtrees. ** ** One or both of the subtrees can be NULL. Return a pointer to the new ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, ** free the subtrees and return NULL. */ Expr *sqlite3PExpr( Parse *pParse, /* Parsing context */ |
︙ | ︙ | |||
607 608 609 610 611 612 613 | ** ** Wildcards of the form "?nnn" are assigned the number "nnn". We make ** sure "nnn" is not too be to avoid a denial of service attack when ** the SQL statement comes from an external source. ** ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number ** as the previous instance of the same wildcard. Or if this is the first | | | 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 | ** ** Wildcards of the form "?nnn" are assigned the number "nnn". We make ** sure "nnn" is not too be to avoid a denial of service attack when ** the SQL statement comes from an external source. ** ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number ** as the previous instance of the same wildcard. Or if this is the first ** instance of the wildcard, the next sequential variable number is ** assigned. */ void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ sqlite3 *db = pParse->db; const char *z; if( pExpr==0 ) return; |
︙ | ︙ | |||
742 743 744 745 746 747 748 | ** return value with EP_Reduced|EP_TokenOnly. ** ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size ** (unreduced) Expr objects as they or originally constructed by the parser. ** During expression analysis, extra information is computed and moved into ** later parts of teh Expr object and that extra information might get chopped ** off if the expression is reduced. Note also that it does not work to | | | 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 | ** return value with EP_Reduced|EP_TokenOnly. ** ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size ** (unreduced) Expr objects as they or originally constructed by the parser. ** During expression analysis, extra information is computed and moved into ** later parts of teh Expr object and that extra information might get chopped ** off if the expression is reduced. Note also that it does not work to ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal ** to reduce a pristine expression tree from the parser. The implementation ** of dupedExprStructSize() contain multiple assert() statements that attempt ** to enforce this constraint. */ static int dupedExprStructSize(Expr *p, int flags){ int nSize; assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ |
︙ | ︙ | |||
811 812 813 814 815 816 817 | } /* ** This function is similar to sqlite3ExprDup(), except that if pzBuffer ** is not NULL then *pzBuffer is assumed to point to a buffer large enough ** to store the copy of expression p, the copies of p->u.zToken ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, | | | 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 | } /* ** This function is similar to sqlite3ExprDup(), except that if pzBuffer ** is not NULL then *pzBuffer is assumed to point to a buffer large enough ** to store the copy of expression p, the copies of p->u.zToken ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, ** if any. Before returning, *pzBuffer is set to the first byte past the ** portion of the buffer copied into by this function. */ static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ Expr *pNew = 0; /* Value to return */ if( p ){ const int isReduced = (flags&EXPRDUP_REDUCE); u8 *zAlloc; |
︙ | ︙ | |||
1537 1538 1539 1540 1541 1542 1543 | ** An existing b-tree might be used if the RHS expression pX is a simple ** subquery such as: ** ** SELECT <column> FROM <table> ** ** If the RHS of the IN operator is a list or a more complex subquery, then ** an ephemeral table might need to be generated from the RHS and then | | | 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 | ** An existing b-tree might be used if the RHS expression pX is a simple ** subquery such as: ** ** SELECT <column> FROM <table> ** ** If the RHS of the IN operator is a list or a more complex subquery, then ** an ephemeral table might need to be generated from the RHS and then ** pX->iTable made to point to the ephemeral table instead of an ** existing table. ** ** The inFlags parameter must contain exactly one of the bits ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a ** fast membership test. When the IN_INDEX_LOOP bit is set, the ** IN index will be used to loop over all values of the RHS of the |
︙ | ︙ | |||
1667 1668 1669 1670 1671 1672 1673 | } } /* If no preexisting index is available for the IN clause ** and IN_INDEX_NOOP is an allowed reply ** and the RHS of the IN operator is a list, not a subquery ** and the RHS is not contant or has two or fewer terms, | | | 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 | } } /* If no preexisting index is available for the IN clause ** and IN_INDEX_NOOP is an allowed reply ** and the RHS of the IN operator is a list, not a subquery ** and the RHS is not contant or has two or fewer terms, ** then it is not worth creating an ephemeral table to evaluate ** the IN operator so return IN_INDEX_NOOP. */ if( eType==0 && (inFlags & IN_INDEX_NOOP_OK) && !ExprHasProperty(pX, EP_xIsSelect) && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) ){ |
︙ | ︙ | |||
2428 2429 2430 2431 2432 2433 2434 | } /* ** Generate code to move content from registers iFrom...iFrom+nReg-1 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. */ void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ | < < < < | < < < | 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 | } /* ** Generate code to move content from registers iFrom...iFrom+nReg-1 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. */ void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); sqlite3ExprCacheRemove(pParse, iFrom, nReg); } #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) /* ** Return true if any register in the range iFrom..iTo (inclusive) ** is used as part of the column cache. ** |
︙ | ︙ | |||
2754 2755 2756 2757 2758 2759 2760 | pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); if( pDef==0 || pDef->xFunc==0 ){ sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); break; } /* Attempt a direct implementation of the built-in COALESCE() and | | | 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 | pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); if( pDef==0 || pDef->xFunc==0 ){ sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); break; } /* Attempt a direct implementation of the built-in COALESCE() and ** IFNULL() functions. This avoids unnecessary evaluation of ** arguments past the first non-NULL argument. */ if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ int endCoalesce = sqlite3VdbeMakeLabel(v); assert( nFarg>=2 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; i<nFarg; i++){ |
︙ | ︙ | |||
3193 3194 3195 3196 3197 3198 3199 | sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); }else{ sqlite3ExprCode(pParse, pExpr, target); } } /* | | | 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 | sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); }else{ sqlite3ExprCode(pParse, pExpr, target); } } /* ** Generate code that evaluates the given expression and puts the result ** in register target. ** ** Also make a copy of the expression results into another "cache" register ** and modify the expression so that the next time it is evaluated, ** the result is a copy of the cache register. ** ** This routine is used for expressions that are used multiple |
︙ | ︙ | |||
3548 3549 3550 3551 3552 3553 3554 | ** x BETWEEN y AND z ** ** The above is equivalent to ** ** x>=y AND x<=z ** ** Code it as such, taking care to do the common subexpression | | | 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 | ** x BETWEEN y AND z ** ** The above is equivalent to ** ** x>=y AND x<=z ** ** Code it as such, taking care to do the common subexpression ** elimination of x. */ static void exprCodeBetween( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* The BETWEEN expression */ int dest, /* Jump here if the jump is taken */ int jumpIfTrue, /* Take the jump if the BETWEEN is true */ int jumpIfNull /* Take the jump if the BETWEEN is NULL */ |
︙ | ︙ | |||
4285 4286 4287 4288 4289 4290 4291 | } /* ** Deallocate a register, making available for reuse for some other ** purpose. ** ** If a register is currently being used by the column cache, then | | | 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 | } /* ** Deallocate a register, making available for reuse for some other ** purpose. ** ** If a register is currently being used by the column cache, then ** the deallocation is deferred until the column cache line that uses ** the register becomes stale. */ void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ int i; struct yColCache *p; for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
169 170 171 172 173 174 175 | ** ** 3) No parent key columns were provided explicitly as part of the ** foreign key definition, and the parent table does not have a ** PRIMARY KEY, or ** ** 4) No parent key columns were provided explicitly as part of the ** foreign key definition, and the PRIMARY KEY of the parent table | | | 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | ** ** 3) No parent key columns were provided explicitly as part of the ** foreign key definition, and the parent table does not have a ** PRIMARY KEY, or ** ** 4) No parent key columns were provided explicitly as part of the ** foreign key definition, and the PRIMARY KEY of the parent table ** consists of a different number of columns to the child key in ** the child table. ** ** then non-zero is returned, and a "foreign key mismatch" error loaded ** into pParse. If an OOM error occurs, non-zero is returned and the ** pParse->db->mallocFailed flag is set. */ int sqlite3FkLocateIndex( |
︙ | ︙ |
Changes to src/func.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2002 February 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2002 February 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C-language implementations for many of the SQL ** functions of SQLite. (Some function, and in particular the date and ** time functions, are implemented separately.) */ #include "sqliteInt.h" #include <stdlib.h> #include <assert.h> #include "vdbeInt.h" |
︙ | ︙ | |||
321 322 323 324 325 326 327 | while( *z && p1 ){ SQLITE_SKIP_UTF8(z); p1--; } for(z2=z; *z2 && p2; p2--){ SQLITE_SKIP_UTF8(z2); } | | > | | 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | while( *z && p1 ){ SQLITE_SKIP_UTF8(z); p1--; } for(z2=z; *z2 && p2; p2--){ SQLITE_SKIP_UTF8(z2); } sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT, SQLITE_UTF8); }else{ if( p1+p2>len ){ p2 = len-p1; if( p2<0 ) p2 = 0; } sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT); } } /* ** Implementation of the round() function */ #ifndef SQLITE_OMIT_FLOATING_POINT |
︙ | ︙ | |||
386 387 388 389 390 391 392 | assert( nByte>0 ); testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); z = 0; }else{ | | | 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | assert( nByte>0 ); testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ sqlite3_result_error_toobig(context); z = 0; }else{ z = sqlite3Malloc(nByte); if( !z ){ sqlite3_result_error_nomem(context); } } return z; } |
︙ | ︙ | |||
1037 1038 1039 1040 1041 1042 1043 | }else{ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); *zOut++ = 0x80 + (u8)(c & 0x3F); } \ } | | | 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 | }else{ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); *zOut++ = 0x80 + (u8)(c & 0x3F); } \ } sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8); } /* ** The hex() function. Interpret the argument as a blob. Return ** a hexadecimal rendering as text. */ static void hexFunc( |
︙ | ︙ | |||
1634 1635 1636 1637 1638 1639 1640 | assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0; return 1; } /* | | | 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 | assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0; return 1; } /* ** All of the FuncDef structures in the aBuiltinFunc[] array above ** to the global function hash table. This occurs at start-time (as ** a consequence of calling sqlite3_initialize()). ** ** After this routine runs */ void sqlite3RegisterGlobalFunctions(void){ /* |
︙ | ︙ | |||
1658 1659 1660 1661 1662 1663 1664 | FUNCTION(ltrim, 2, 1, 0, trimFunc ), FUNCTION(rtrim, 1, 2, 0, trimFunc ), FUNCTION(rtrim, 2, 2, 0, trimFunc ), FUNCTION(trim, 1, 3, 0, trimFunc ), FUNCTION(trim, 2, 3, 0, trimFunc ), FUNCTION(min, -1, 0, 1, minmaxFunc ), FUNCTION(min, 0, 0, 1, 0 ), | | > | > | 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 | FUNCTION(ltrim, 2, 1, 0, trimFunc ), FUNCTION(rtrim, 1, 2, 0, trimFunc ), FUNCTION(rtrim, 2, 2, 0, trimFunc ), FUNCTION(trim, 1, 3, 0, trimFunc ), FUNCTION(trim, 2, 3, 0, trimFunc ), FUNCTION(min, -1, 0, 1, minmaxFunc ), FUNCTION(min, 0, 0, 1, 0 ), AGGREGATE2(min, 1, 0, 1, minmaxStep, minMaxFinalize, SQLITE_FUNC_MINMAX ), FUNCTION(max, -1, 1, 1, minmaxFunc ), FUNCTION(max, 0, 1, 1, 0 ), AGGREGATE2(max, 1, 1, 1, minmaxStep, minMaxFinalize, SQLITE_FUNC_MINMAX ), FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), FUNCTION(instr, 2, 0, 0, instrFunc ), FUNCTION(substr, 2, 0, 0, substrFunc ), FUNCTION(substr, 3, 0, 0, substrFunc ), FUNCTION(printf, -1, 0, 0, printfFunc ), FUNCTION(unicode, 1, 0, 0, unicodeFunc ), |
︙ | ︙ | |||
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 | FUNCTION2(likely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), VFUNCTION(random, 0, 0, 0, randomFunc ), VFUNCTION(randomblob, 1, 0, 0, randomBlob ), FUNCTION(nullif, 2, 0, 1, nullifFunc ), FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ FUNCTION(quote, 1, 0, 0, quoteFunc ), VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), VFUNCTION(changes, 0, 0, 0, changes ), VFUNCTION(total_changes, 0, 0, 0, total_changes ), FUNCTION(replace, 3, 0, 0, replaceFunc ), FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), #ifdef SQLITE_SOUNDEX FUNCTION(soundex, 1, 0, 0, soundexFunc ), #endif #ifndef SQLITE_OMIT_LOAD_EXTENSION FUNCTION(load_extension, 1, 0, 0, loadExt ), FUNCTION(load_extension, 2, 0, 0, loadExt ), #endif AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ), AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ), AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ), | > > > | | | 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 | FUNCTION2(likely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), VFUNCTION(random, 0, 0, 0, randomFunc ), VFUNCTION(randomblob, 1, 0, 0, randomBlob ), FUNCTION(nullif, 2, 0, 1, nullifFunc ), FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), #if SQLITE_USER_AUTHENTICATION FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ), #endif #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ FUNCTION(quote, 1, 0, 0, quoteFunc ), VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), VFUNCTION(changes, 0, 0, 0, changes ), VFUNCTION(total_changes, 0, 0, 0, total_changes ), FUNCTION(replace, 3, 0, 0, replaceFunc ), FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), #ifdef SQLITE_SOUNDEX FUNCTION(soundex, 1, 0, 0, soundexFunc ), #endif #ifndef SQLITE_OMIT_LOAD_EXTENSION FUNCTION(load_extension, 1, 0, 0, loadExt ), FUNCTION(load_extension, 2, 0, 0, loadExt ), #endif AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ), AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ), AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ), AGGREGATE2(count, 0, 0, 0, countStep, countFinalize, SQLITE_FUNC_COUNT ), AGGREGATE(count, 1, 0, 0, countStep, countFinalize ), AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize), AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize), LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), #ifdef SQLITE_CASE_SENSITIVE_LIKE LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), |
︙ | ︙ |
Changes to src/global.c.
1 2 3 4 5 6 7 8 9 10 11 12 | /* ** 2008 June 13 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | /* ** 2008 June 13 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains definitions of global variables and constants. */ #include "sqliteInt.h" /* An array to map all upper-case characters into their corresponding ** lower-case character. ** ** SQLite only considers US-ASCII (or EBCDIC) characters. We do not |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
406 407 408 409 410 411 412 | ** insert the select result into <table> from R..R+n ** goto C ** D: cleanup ** ** The 4th template is used if the insert statement takes its ** values from a SELECT but the data is being inserted into a table ** that is also read as part of the SELECT. In the third form, | | | 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | ** insert the select result into <table> from R..R+n ** goto C ** D: cleanup ** ** The 4th template is used if the insert statement takes its ** values from a SELECT but the data is being inserted into a table ** that is also read as part of the SELECT. In the third form, ** we have to use an intermediate table to store the results of ** the select. The template is like this: ** ** X <- A ** goto B ** A: setup for the SELECT ** loop over the tables in the SELECT ** load value into register R..R+n |
︙ | ︙ | |||
571 572 573 574 575 576 577 | /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell regAutoinc. */ regAutoinc = autoIncBegin(pParse, iDb, pTab); /* Allocate registers for holding the rowid of the new row, | | | 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 | /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell regAutoinc. */ regAutoinc = autoIncBegin(pParse, iDb, pTab); /* Allocate registers for holding the rowid of the new row, ** the content of the new row, and the assembled row record. */ regRowid = regIns = pParse->nMem+1; pParse->nMem += pTab->nCol + 1; if( IsVirtual(pTab) ){ regRowid++; pParse->nMem++; } |
︙ | ︙ | |||
1023 1024 1025 1026 1027 1028 1029 | sqlite3ExprListDelete(db, pList); sqlite3SelectDelete(db, pSelect); sqlite3IdListDelete(db, pColumn); sqlite3DbFree(db, aRegIdx); } /* Make sure "isView" and other macros defined above are undefined. Otherwise | | | 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 | sqlite3ExprListDelete(db, pList); sqlite3SelectDelete(db, pSelect); sqlite3IdListDelete(db, pColumn); sqlite3DbFree(db, aRegIdx); } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif |
︙ | ︙ | |||
1139 1140 1141 1142 1143 1144 1145 | Index *pIdx; /* Pointer to one of the indices */ Index *pPk = 0; /* The PRIMARY KEY index */ sqlite3 *db; /* Database connection */ int i; /* loop counter */ int ix; /* Index loop counter */ int nCol; /* Number of columns */ int onError; /* Conflict resolution strategy */ | | | 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 | Index *pIdx; /* Pointer to one of the indices */ Index *pPk = 0; /* The PRIMARY KEY index */ sqlite3 *db; /* Database connection */ int i; /* loop counter */ int ix; /* Index loop counter */ int nCol; /* Number of columns */ int onError; /* Conflict resolution strategy */ int j1; /* Address of jump instruction */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ int ipkTop = 0; /* Top of the rowid change constraint check */ int ipkBottom = 0; /* Bottom of the rowid change constraint check */ u8 isUpdate; /* True if this is an UPDATE operation */ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ int regRowid = -1; /* Register holding ROWID value */ |
︙ | ︙ | |||
1547 1548 1549 1550 1551 1552 1553 | int appendBias, /* True if this is likely to be an append */ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ ){ Vdbe *v; /* Prepared statements under construction */ Index *pIdx; /* An index being inserted or updated */ u8 pik_flags; /* flag values passed to the btree insert */ int regData; /* Content registers (after the rowid) */ | | | 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 | int appendBias, /* True if this is likely to be an append */ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ ){ Vdbe *v; /* Prepared statements under construction */ Index *pIdx; /* An index being inserted or updated */ u8 pik_flags; /* flag values passed to the btree insert */ int regData; /* Content registers (after the rowid) */ int regRec; /* Register holding assembled record for the table */ int i; /* Loop counter */ u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
︙ | ︙ | |||
1681 1682 1683 1684 1685 1686 1687 | #ifdef SQLITE_TEST /* ** The following global variable is incremented whenever the ** transfer optimization is used. This is used for testing ** purposes only - to make sure the transfer optimization really | | | 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 | #ifdef SQLITE_TEST /* ** The following global variable is incremented whenever the ** transfer optimization is used. This is used for testing ** purposes only - to make sure the transfer optimization really ** is happening when it is supposed to. */ int sqlite3_xferopt_count; #endif /* SQLITE_TEST */ #ifndef SQLITE_OMIT_XFER_OPT /* |
︙ | ︙ | |||
1748 1749 1750 1751 1752 1753 1754 | /* ** Attempt the transfer optimization on INSERTs of the form ** ** INSERT INTO tab1 SELECT * FROM tab2; ** ** The xfer optimization transfers raw records from tab2 over to tab1. | | | 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 | /* ** Attempt the transfer optimization on INSERTs of the form ** ** INSERT INTO tab1 SELECT * FROM tab2; ** ** The xfer optimization transfers raw records from tab2 over to tab1. ** Columns are not decoded and reassembled, which greatly improves ** performance. Raw index records are transferred in the same way. ** ** The xfer optimization is only attempted if tab1 and tab2 are compatible. ** There are lots of rules for determining compatibility - see comments ** embedded in the code for details. ** ** This routine returns TRUE if the optimization is guaranteed to be used. |
︙ | ︙ |
Changes to src/legacy.c.
︙ | ︙ | |||
121 122 123 124 125 126 127 | } exec_out: if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt); sqlite3DbFree(db, azCols); rc = sqlite3ApiExit(db, rc); | | | 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | } exec_out: if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt); sqlite3DbFree(db, azCols); rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && pzErrMsg ){ int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db)); *pzErrMsg = sqlite3Malloc(nErrMsg); if( *pzErrMsg ){ memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg); }else{ rc = SQLITE_NOMEM; sqlite3Error(db, SQLITE_NOMEM); |
︙ | ︙ |
Changes to src/lempar.c.
︙ | ︙ | |||
267 268 269 270 271 272 273 | ** Inputs: ** A pointer to the function used to allocate memory. ** ** Outputs: ** A pointer to a parser. This pointer is used in subsequent calls ** to Parse and ParseFree. */ | | | | 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | ** Inputs: ** A pointer to the function used to allocate memory. ** ** Outputs: ** A pointer to a parser. This pointer is used in subsequent calls ** to Parse and ParseFree. */ void *ParseAlloc(void *(*mallocProc)(u64)){ yyParser *pParser; pParser = (yyParser*)(*mallocProc)( (u64)sizeof(yyParser) ); if( pParser ){ pParser->yyidx = -1; #ifdef YYTRACKMAXSTACKDEPTH pParser->yyidxMax = 0; #endif #if YYSTACKDEPTH<=0 pParser->yystack = NULL; |
︙ | ︙ |
Changes to src/loadext.c.
︙ | ︙ | |||
386 387 388 389 390 391 392 | sqlite3_stmt_busy, sqlite3_stmt_readonly, sqlite3_stricmp, sqlite3_uri_boolean, sqlite3_uri_int64, sqlite3_uri_parameter, sqlite3_vsnprintf, | | > > > > > > > > > > > > > | 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | sqlite3_stmt_busy, sqlite3_stmt_readonly, sqlite3_stricmp, sqlite3_uri_boolean, sqlite3_uri_int64, sqlite3_uri_parameter, sqlite3_vsnprintf, sqlite3_wal_checkpoint_v2, /* Version 3.8.7 and later */ sqlite3_auto_extension, sqlite3_bind_blob64, sqlite3_bind_text64, sqlite3_cancel_auto_extension, sqlite3_load_extension, sqlite3_malloc64, sqlite3_msize, sqlite3_realloc64, sqlite3_reset_auto_extension, sqlite3_result_blob64, sqlite3_result_text64, sqlite3_strglob }; /* ** Attempt to load an SQLite extension library contained in the file ** zFile. The entry point is zProc. zProc may be 0 in which case a ** default entry point name (sqlite3_extension_init) is used. Use ** of the default name is recommended. |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
981 982 983 984 985 986 987 988 989 990 991 992 993 994 | } sqlite3HashClear(&db->aModule); #endif sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ sqlite3ValueFree(db->pErr); sqlite3CloseExtensions(db); db->magic = SQLITE_MAGIC_ERROR; /* The temp-database schema is allocated differently from the other schema ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). ** So it needs to be freed here. Todo: Why not roll the temp schema into ** the same sqliteMalloc() as the one that allocates the database | > > > > | 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 | } sqlite3HashClear(&db->aModule); #endif sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ sqlite3ValueFree(db->pErr); sqlite3CloseExtensions(db); #if SQLITE_USER_AUTHENTICATION sqlite3_free(db->auth.zAuthUser); sqlite3_free(db->auth.zAuthPW); #endif db->magic = SQLITE_MAGIC_ERROR; /* The temp-database schema is allocated differently from the other schema ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). ** So it needs to be freed here. Todo: Why not roll the temp schema into ** the same sqliteMalloc() as the one that allocates the database |
︙ | ︙ | |||
2562 2563 2564 2565 2566 2567 2568 | } sqlite3Error(db, rc); goto opendb_out; } db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); | < | 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 | } sqlite3Error(db, rc); goto opendb_out; } db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); /* The default safety_level for the main database is 'full'; for the temp ** database it is 'NONE'. This matches the pager layer defaults. */ db->aDb[0].zName = "main"; db->aDb[0].safety_level = 3; db->aDb[1].zName = "temp"; db->aDb[1].safety_level = 1; |
︙ | ︙ | |||
2849 2850 2851 2852 2853 2854 2855 | ** by the next COMMIT or ROLLBACK. */ int sqlite3_get_autocommit(sqlite3 *db){ return db->autoCommit; } /* | | | | 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 | ** by the next COMMIT or ROLLBACK. */ int sqlite3_get_autocommit(sqlite3 *db){ return db->autoCommit; } /* ** The following routines are substitutes for constants SQLITE_CORRUPT, ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error ** constants. They serve two purposes: ** ** 1. Serve as a convenient place to set a breakpoint in a debugger ** to detect when version error conditions occurs. ** ** 2. Invoke sqlite3_log() to provide the source code location where ** a low-level error is first detected. */ |
︙ | ︙ | |||
3165 3166 3167 3168 3169 3170 3171 | ** Set the PENDING byte to the value in the argument, if X>0. ** Make no changes if X==0. Return the value of the pending byte ** as it existing before this routine was called. ** ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in ** an incompatible database file format. Changing the PENDING byte ** while any database connection is open results in undefined and | | | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 | ** Set the PENDING byte to the value in the argument, if X>0. ** Make no changes if X==0. Return the value of the pending byte ** as it existing before this routine was called. ** ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in ** an incompatible database file format. Changing the PENDING byte ** while any database connection is open results in undefined and ** deleterious behavior. */ case SQLITE_TESTCTRL_PENDING_BYTE: { rc = PENDING_BYTE; #ifndef SQLITE_OMIT_WSD { unsigned int newVal = va_arg(ap, unsigned int); if( newVal ) sqlite3PendingByte = newVal; |
︙ | ︙ |
Changes to src/malloc.c.
︙ | ︙ | |||
290 291 292 293 294 295 296 | return nFull; } /* ** Allocate memory. This routine is like sqlite3_malloc() except that it ** assumes the memory subsystem has already been initialized. */ | | < | < | > > > > > > | 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | return nFull; } /* ** Allocate memory. This routine is like sqlite3_malloc() except that it ** assumes the memory subsystem has already been initialized. */ void *sqlite3Malloc(u64 n){ void *p; if( n==0 || n>=0x7fffff00 ){ /* A memory allocation of a number of bytes which is near the maximum ** signed integer value might cause an integer overflow inside of the ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving ** 255 bytes of overhead. SQLite itself will never use anything near ** this amount. The only way to reach the limit is with sqlite3_malloc() */ p = 0; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); mallocWithAlarm(n, &p); sqlite3_mutex_leave(mem0.mutex); }else{ p = sqlite3GlobalConfig.m.xMalloc((int)n); } assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */ return p; } /* ** This version of the memory allocation is for use by the application. ** First make sure the memory subsystem is initialized, then do the ** allocation. */ void *sqlite3_malloc(int n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return n<=0 ? 0 : sqlite3Malloc(n); } void *sqlite3_malloc64(sqlite3_uint64 n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3Malloc(n); } /* ** Each thread may only have a single outstanding allocation from ** xScratchMalloc(). We verify this constraint in the single-threaded ** case by setting scratchAllocOut to 1 when an allocation |
︙ | ︙ | |||
454 455 456 457 458 459 460 461 462 463 464 465 466 467 | }else{ assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); return sqlite3GlobalConfig.m.xSize(p); } } /* ** Free memory previously obtained from sqlite3Malloc(). */ void sqlite3_free(void *p){ if( p==0 ) return; /* IMP: R-49053-54554 */ assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); | > > > | 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 | }else{ assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); return sqlite3GlobalConfig.m.xSize(p); } } sqlite3_uint64 sqlite3_msize(void *p){ return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p); } /* ** Free memory previously obtained from sqlite3Malloc(). */ void sqlite3_free(void *p){ if( p==0 ) return; /* IMP: R-49053-54554 */ assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); |
︙ | ︙ | |||
515 516 517 518 519 520 521 | sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } /* ** Change the size of an existing memory allocation */ | | | | | 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 | sqlite3MemdebugSetType(p, MEMTYPE_HEAP); sqlite3_free(p); } /* ** Change the size of an existing memory allocation */ void *sqlite3Realloc(void *pOld, u64 nBytes){ int nOld, nNew, nDiff; void *pNew; if( pOld==0 ){ return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */ } if( nBytes==0 ){ sqlite3_free(pOld); /* IMP: R-31593-10574 */ return 0; } if( nBytes>=0x7fffff00 ){ /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ return 0; } nOld = sqlite3MallocSize(pOld); /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second ** argument to xRealloc is always a value returned by a prior call to ** xRoundup. */ nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); if( nOld==nNew ){ pNew = pOld; }else if( sqlite3GlobalConfig.bMemstat ){ sqlite3_mutex_enter(mem0.mutex); sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); nDiff = nNew - nOld; if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= |
︙ | ︙ | |||
571 572 573 574 575 576 577 578 579 580 581 582 583 584 | ** The public interface to sqlite3Realloc. Make sure that the memory ** subsystem is initialized prior to invoking sqliteRealloc. */ void *sqlite3_realloc(void *pOld, int n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3Realloc(pOld, n); } /* ** Allocate and zero memory. */ | > > > > > > > | | | 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 | ** The public interface to sqlite3Realloc. Make sure that the memory ** subsystem is initialized prior to invoking sqliteRealloc. */ void *sqlite3_realloc(void *pOld, int n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif if( n<0 ) n = 0; return sqlite3Realloc(pOld, n); } void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize() ) return 0; #endif return sqlite3Realloc(pOld, n); } /* ** Allocate and zero memory. */ void *sqlite3MallocZero(u64 n){ void *p = sqlite3Malloc(n); if( p ){ memset(p, 0, n); } return p; } /* ** Allocate and zero memory. If the allocation fails, make ** the mallocFailed flag in the connection pointer. */ void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ void *p = sqlite3DbMallocRaw(db, n); if( p ){ memset(p, 0, n); } return p; } |
︙ | ︙ | |||
616 617 618 619 620 621 622 | ** int *a = (int*)sqlite3DbMallocRaw(db, 100); ** int *b = (int*)sqlite3DbMallocRaw(db, 200); ** if( b ) a[10] = 9; ** ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed ** that all prior mallocs (ex: "a") worked too. */ | | | 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 | ** int *a = (int*)sqlite3DbMallocRaw(db, 100); ** int *b = (int*)sqlite3DbMallocRaw(db, 200); ** if( b ) a[10] = 9; ** ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed ** that all prior mallocs (ex: "a") worked too. */ void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ void *p; assert( db==0 || sqlite3_mutex_held(db->mutex) ); assert( db==0 || db->pnBytesFreed==0 ); #ifndef SQLITE_OMIT_LOOKASIDE if( db ){ LookasideSlot *pBuf; if( db->mallocFailed ){ |
︙ | ︙ | |||
660 661 662 663 664 665 666 | return p; } /* ** Resize the block of memory pointed to by p to n bytes. If the ** resize fails, set the mallocFailed flag in the connection object. */ | | | 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | return p; } /* ** Resize the block of memory pointed to by p to n bytes. If the ** resize fails, set the mallocFailed flag in the connection object. */ void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ void *pNew = 0; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); if( db->mallocFailed==0 ){ if( p==0 ){ return sqlite3DbMallocRaw(db, n); } |
︙ | ︙ | |||
697 698 699 700 701 702 703 | return pNew; } /* ** Attempt to reallocate p. If the reallocation fails, then free p ** and set the mallocFailed flag in the database connection. */ | | | 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 | return pNew; } /* ** Attempt to reallocate p. If the reallocation fails, then free p ** and set the mallocFailed flag in the database connection. */ void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ void *pNew; pNew = sqlite3DbRealloc(db, p, n); if( !pNew ){ sqlite3DbFree(db, p); } return pNew; } |
︙ | ︙ | |||
727 728 729 730 731 732 733 | assert( (n&0x7fffffff)==n ); zNew = sqlite3DbMallocRaw(db, (int)n); if( zNew ){ memcpy(zNew, z, n); } return zNew; } | | | 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 | assert( (n&0x7fffffff)==n ); zNew = sqlite3DbMallocRaw(db, (int)n); if( zNew ){ memcpy(zNew, z, n); } return zNew; } char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ char *zNew; if( z==0 ){ return 0; } assert( (n&0x7fffffff)==n ); zNew = sqlite3DbMallocRaw(db, n+1); if( zNew ){ |
︙ | ︙ |
Changes to src/mem1.c.
︙ | ︙ | |||
184 185 186 187 188 189 190 | /* ** Like realloc(). Resize an allocation previously obtained from ** sqlite3MemMalloc(). ** ** For this low-level interface, we know that pPrior!=0. Cases where ** pPrior==0 while have been intercepted by higher-level routine and | | | 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | /* ** Like realloc(). Resize an allocation previously obtained from ** sqlite3MemMalloc(). ** ** For this low-level interface, we know that pPrior!=0. Cases where ** pPrior==0 while have been intercepted by higher-level routine and ** redirected to xMalloc. Similarly, we know that nByte>0 because ** cases where nByte<=0 will have been intercepted by higher-level ** routines and redirected to xFree. */ static void *sqlite3MemRealloc(void *pPrior, int nByte){ #ifdef SQLITE_MALLOCSIZE void *p = SQLITE_REALLOC(pPrior, nByte); if( p==0 ){ |
︙ | ︙ |
Changes to src/mem5.c.
︙ | ︙ | |||
24 25 26 27 28 29 30 | ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. ** ** This memory allocator uses the following algorithm: ** ** 1. All memory allocations sizes are rounded up to a power of 2. ** ** 2. If two adjacent free blocks are the halves of a larger block, | | | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. ** ** This memory allocator uses the following algorithm: ** ** 1. All memory allocations sizes are rounded up to a power of 2. ** ** 2. If two adjacent free blocks are the halves of a larger block, ** then the two blocks are coalesced into the single larger block. ** ** 3. New memory is allocated from the first available free block. ** ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions ** Concerning Dynamic Storage Allocation". Journal of the Association for ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. ** |
︙ | ︙ |
Changes to src/memjournal.c.
︙ | ︙ | |||
22 23 24 25 26 27 28 | typedef struct FileChunk FileChunk; /* Space to hold the rollback journal is allocated in increments of ** this many bytes. ** ** The size chosen is a little less than a power of two. That way, ** the FileChunk object will have a size that almost exactly fills | | | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | typedef struct FileChunk FileChunk; /* Space to hold the rollback journal is allocated in increments of ** this many bytes. ** ** The size chosen is a little less than a power of two. That way, ** the FileChunk object will have a size that almost exactly fills ** a power-of-two allocation. This minimizes wasted space in power-of-two ** memory allocators. */ #define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*))) /* ** The rollback journal is composed of a linked list of these structures. */ |
︙ | ︙ |
Changes to src/mutex.h.
︙ | ︙ | |||
21 22 23 24 25 26 27 | */ /* ** Figure out what version of the code to use. The choices are ** ** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | */ /* ** Figure out what version of the code to use. The choices are ** ** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The ** mutexes implementation cannot be overridden ** at start-time. ** ** SQLITE_MUTEX_NOOP For single-threaded applications. No ** mutual exclusion is provided. But this ** implementation can be overridden at ** start-time. ** |
︙ | ︙ |
Changes to src/os.h.
︙ | ︙ | |||
116 117 118 119 120 121 122 | ** ** The following #defines specify the range of bytes used for locking. ** SHARED_SIZE is the number of bytes available in the pool from which ** a random byte is selected for a shared lock. The pool of bytes for ** shared locks begins at SHARED_FIRST. ** ** The same locking strategy and | | | 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | ** ** The following #defines specify the range of bytes used for locking. ** SHARED_SIZE is the number of bytes available in the pool from which ** a random byte is selected for a shared lock. The pool of bytes for ** shared locks begins at SHARED_FIRST. ** ** The same locking strategy and ** byte ranges are used for Unix. This leaves open the possibility of having ** clients on win95, winNT, and unix all talking to the same shared file ** and all locking correctly. To do so would require that samba (or whatever ** tool is being used for file sharing) implements locks correctly between ** windows and unix. I'm guessing that isn't likely to happen, but by ** using the same locking range we are at least open to the possibility. ** ** Locking in windows is manditory. For this reason, we cannot store |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
295 296 297 298 299 300 301 302 303 304 305 306 307 308 | # if defined(__linux__) && defined(_GNU_SOURCE) # define HAVE_MREMAP 1 # else # define HAVE_MREMAP 0 # endif #endif /* ** Different Unix systems declare open() in different ways. Same use ** open(const char*,int,mode_t). Others use open(const char*,int,...). ** The difference is important when using a pointer to the function. ** ** The safest way to deal with the problem is to always use this wrapper ** which always has the same well-defined interface. | > > > > > > > > | 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | # if defined(__linux__) && defined(_GNU_SOURCE) # define HAVE_MREMAP 1 # else # define HAVE_MREMAP 0 # endif #endif /* ** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek() ** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined. */ #ifdef __ANDROID__ # define lseek lseek64 #endif /* ** Different Unix systems declare open() in different ways. Same use ** open(const char*,int,mode_t). Others use open(const char*,int,...). ** The difference is important when using a pointer to the function. ** ** The safest way to deal with the problem is to always use this wrapper ** which always has the same well-defined interface. |
︙ | ︙ | |||
627 628 629 630 631 632 633 | } #endif #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) /* ** Helper function for printing out trace information from debugging | | | 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 | } #endif #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) /* ** Helper function for printing out trace information from debugging ** binaries. This returns the string representation of the supplied ** integer lock-type. */ static const char *azFileLock(int eFileLock){ switch( eFileLock ){ case NO_LOCK: return "NONE"; case SHARED_LOCK: return "SHARED"; case RESERVED_LOCK: return "RESERVED"; |
︙ | ︙ | |||
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 | } #undef osFcntl #define osFcntl lockTrace #endif /* SQLITE_LOCK_TRACE */ /* ** Retry ftruncate() calls that fail due to EINTR */ static int robust_ftruncate(int h, sqlite3_int64 sz){ int rc; do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); return rc; } /* ** This routine translates a standard POSIX errno code into something ** useful to the clients of the sqlite3 functions. Specifically, it is | > > > > > > > > > > > > > | 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 | } #undef osFcntl #define osFcntl lockTrace #endif /* SQLITE_LOCK_TRACE */ /* ** Retry ftruncate() calls that fail due to EINTR ** ** All calls to ftruncate() within this file should be made through this wrapper. ** On the Android platform, bypassing the logic below could lead to a corrupt ** database. */ static int robust_ftruncate(int h, sqlite3_int64 sz){ int rc; #ifdef __ANDROID__ /* On Android, ftruncate() always uses 32-bit offsets, even if ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to ** truncate a file to any size larger than 2GiB. Silently ignore any ** such attempts. */ if( sz>(sqlite3_int64)0x7FFFFFFF ){ rc = SQLITE_OK; }else #endif do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); return rc; } /* ** This routine translates a standard POSIX errno code into something ** useful to the clients of the sqlite3 functions. Specifically, it is |
︙ | ︙ | |||
3094 3095 3096 3097 3098 3099 3100 | /* ** Seek to the offset passed as the second argument, then read cnt ** bytes into pBuf. Return the number of bytes actually read. ** ** NB: If you define USE_PREAD or USE_PREAD64, then it might also ** be necessary to define _XOPEN_SOURCE to be 500. This varies from ** one system to another. Since SQLite does not define USE_PREAD | | | 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 | /* ** Seek to the offset passed as the second argument, then read cnt ** bytes into pBuf. Return the number of bytes actually read. ** ** NB: If you define USE_PREAD or USE_PREAD64, then it might also ** be necessary to define _XOPEN_SOURCE to be 500. This varies from ** one system to another. Since SQLite does not define USE_PREAD ** in any form by default, we will not attempt to define _XOPEN_SOURCE. ** See tickets #2741 and #2681. ** ** To avoid stomping the errno value on a failed read the lastErrno value ** is set before returning. */ static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ int got; |
︙ | ︙ | |||
3591 3592 3593 3594 3595 3596 3597 | ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk>0 ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } | | | 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 | ** actual file size after the operation may be larger than the requested ** size). */ if( pFile->szChunk>0 ){ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; } rc = robust_ftruncate(pFile->h, nByte); if( rc ){ pFile->lastErrno = errno; return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); }else{ #ifdef SQLITE_DEBUG /* If we are doing a normal write to a database file (as opposed to ** doing a hot-journal rollback or a write to some file other than a |
︙ | ︙ | |||
3726 3727 3728 3729 3730 3731 3732 | } #endif return SQLITE_OK; } /* | | | 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 | } #endif return SQLITE_OK; } /* ** If *pArg is initially negative then this is a query. Set *pArg to ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. ** ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. */ static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){ if( *pArg<0 ){ *pArg = (pFile->ctrlFlags & mask)!=0; |
︙ | ︙ | |||
3933 3934 3935 3936 3937 3938 3939 | } #endif /* __QNXNTO__ */ /* ** Return the device characteristics for the file. ** ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default. | | | 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 | } #endif /* __QNXNTO__ */ /* ** Return the device characteristics for the file. ** ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default. ** However, that choice is controversial since technically the underlying ** file system does not always provide powersafe overwrites. (In other ** words, after a power-loss event, parts of the file that were never ** written might end up being altered.) However, non-PSOW behavior is very, ** very rare. And asserting PSOW makes a large reduction in the amount ** of required I/O for journaling, since a lot of padding is eliminated. ** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control ** available to turn it off and URI query parameter available to turn it off. |
︙ | ︙ | |||
4905 4906 4907 4908 4909 4910 4911 | ** the correct finder-function for that VFS. ** ** Most finder functions return a pointer to a fixed sqlite3_io_methods ** object. The only interesting finder-function is autolockIoFinder, which ** looks at the filesystem type and tries to guess the best locking ** strategy from that. ** | | | 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 | ** the correct finder-function for that VFS. ** ** Most finder functions return a pointer to a fixed sqlite3_io_methods ** object. The only interesting finder-function is autolockIoFinder, which ** looks at the filesystem type and tries to guess the best locking ** strategy from that. ** ** For finder-function F, two objects are created: ** ** (1) The real finder-function named "FImpt()". ** ** (2) A constant pointer to this function named just "F". ** ** ** A pointer to the F pointer is used as the pAppData value for VFS |
︙ | ︙ | |||
5167 5168 5169 5170 5171 5172 5173 | } static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */ /* | | | 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 | } static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */ /* ** An abstract type for a pointer to an IO method finder function: */ typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); /**************************************************************************** **************************** sqlite3_vfs methods **************************** ** |
︙ | ︙ | |||
5481 5482 5483 5484 5485 5486 5487 | /* A stat() call may fail for various reasons. If this happens, it is ** almost certain that an open() call on the same path will also fail. ** For this reason, if an error occurs in the stat() call here, it is ** ignored and -1 is returned. The caller will try to open a new file ** descriptor on the same path, fail, and return an error to SQLite. ** ** Even if a subsequent open() call does succeed, the consequences of | | | 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 | /* A stat() call may fail for various reasons. If this happens, it is ** almost certain that an open() call on the same path will also fail. ** For this reason, if an error occurs in the stat() call here, it is ** ignored and -1 is returned. The caller will try to open a new file ** descriptor on the same path, fail, and return an error to SQLite. ** ** Even if a subsequent open() call does succeed, the consequences of ** not searching for a reusable file descriptor are not dire. */ if( 0==osStat(zPath, &sStat) ){ unixInodeInfo *pInode; unixEnterMutex(); pInode = inodeList; while( pInode && (pInode->fileId.dev!=sStat.st_dev || pInode->fileId.ino!=sStat.st_ino) ){ |
︙ | ︙ | |||
5512 5513 5514 5515 5516 5517 5518 | /* ** This function is called by unixOpen() to determine the unix permissions ** to create new files with. If no error occurs, then SQLITE_OK is returned ** and a value suitable for passing as the third argument to open(2) is ** written to *pMode. If an IO error occurs, an SQLite error code is ** returned and the value of *pMode is not modified. ** | | | 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 | /* ** This function is called by unixOpen() to determine the unix permissions ** to create new files with. If no error occurs, then SQLITE_OK is returned ** and a value suitable for passing as the third argument to open(2) is ** written to *pMode. If an IO error occurs, an SQLite error code is ** returned and the value of *pMode is not modified. ** ** In most cases, this routine sets *pMode to 0, which will become ** an indication to robust_open() to create the file using ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask. ** But if the file being opened is a WAL or regular journal file, then ** this function queries the file-system for the permissions on the ** corresponding database file and sets *pMode to this value. Whenever ** possible, WAL and journal files are created using the same permissions ** as the associated database file. |
︙ | ︙ | |||
6304 6305 6306 6307 6308 6309 6310 | ** ** The conch file - to use a proxy file, sqlite must first "hold the conch" ** by taking an sqlite-style shared lock on the conch file, reading the ** contents and comparing the host's unique host ID (see below) and lock ** proxy path against the values stored in the conch. The conch file is ** stored in the same directory as the database file and the file name ** is patterned after the database file name as ".<databasename>-conch". | | | 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 | ** ** The conch file - to use a proxy file, sqlite must first "hold the conch" ** by taking an sqlite-style shared lock on the conch file, reading the ** contents and comparing the host's unique host ID (see below) and lock ** proxy path against the values stored in the conch. The conch file is ** stored in the same directory as the database file and the file name ** is patterned after the database file name as ".<databasename>-conch". ** If the conch file does not exist, or its contents do not match the ** host ID and/or proxy path, then the lock is escalated to an exclusive ** lock and the conch file contents is updated with the host ID and proxy ** path and the lock is downgraded to a shared lock again. If the conch ** is held by another process (with a shared lock), the exclusive lock ** will fail and SQLITE_BUSY is returned. ** ** The proxy file - a single-byte file used for all advisory file locks |
︙ | ︙ | |||
6356 6357 6358 6359 6360 6361 6362 | ** lock proxy files, only used when LOCKPROXYDIR is not set. ** ** ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will ** force proxy locking to be used for every database file opened, and 0 ** will force automatic proxy locking to be disabled for all database | | | 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 | ** lock proxy files, only used when LOCKPROXYDIR is not set. ** ** ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will ** force proxy locking to be used for every database file opened, and 0 ** will force automatic proxy locking to be disabled for all database ** files (explicitly calling the SQLITE_SET_LOCKPROXYFILE pragma or ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). */ /* ** Proxy locking is only available on MacOSX */ #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 | assert( sleepObj!=NULL ); osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE); #else osSleep(milliseconds); #endif } DWORD sqlite3Win32Wait(HANDLE hObject){ DWORD rc; while( (rc = osWaitForSingleObjectEx(hObject, INFINITE, TRUE))==WAIT_IO_COMPLETION ){} return rc; } /* ** Return true (non-zero) if we are running under WinNT, Win2K, WinXP, ** or WinCE. Return false (zero) for Win95, Win98, or WinME. ** ** Here is an interesting observation: Win95, Win98, and WinME lack ** the LockFileEx() API. But we can still statically link against that | > > | 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 | assert( sleepObj!=NULL ); osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE); #else osSleep(milliseconds); #endif } #if SQLITE_MAX_WORKER_THREADS>0 && !SQLITE_OS_WINRT && SQLITE_THREADSAFE>0 DWORD sqlite3Win32Wait(HANDLE hObject){ DWORD rc; while( (rc = osWaitForSingleObjectEx(hObject, INFINITE, TRUE))==WAIT_IO_COMPLETION ){} return rc; } #endif /* ** Return true (non-zero) if we are running under WinNT, Win2K, WinXP, ** or WinCE. Return false (zero) for Win95, Win98, or WinME. ** ** Here is an interesting observation: Win95, Win98, and WinME lack ** the LockFileEx() API. But we can still statically link against that |
︙ | ︙ | |||
3122 3123 3124 3125 3126 3127 3128 | pFile->locktype = (u8)locktype; OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n", pFile->h, pFile->locktype, sqlite3ErrName(rc))); return rc; } /* | | | 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 | pFile->locktype = (u8)locktype; OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n", pFile->h, pFile->locktype, sqlite3ErrName(rc))); return rc; } /* ** If *pArg is initially negative then this is a query. Set *pArg to ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. ** ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. */ static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){ if( *pArg<0 ){ *pArg = (pFile->ctrlFlags & mask)!=0; |
︙ | ︙ | |||
4136 4137 4138 4139 4140 4141 4142 | osGetCurrentProcessId(), pFd, iOff, p)); if( p ){ pFd->nFetchOut--; }else{ /* FIXME: If Windows truly always prevents truncating or deleting a ** file while a mapping is held, then the following winUnmapfile() call | | | 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 | osGetCurrentProcessId(), pFd, iOff, p)); if( p ){ pFd->nFetchOut--; }else{ /* FIXME: If Windows truly always prevents truncating or deleting a ** file while a mapping is held, then the following winUnmapfile() call ** is unnecessary can be omitted - potentially improving ** performance. */ winUnmapfile(pFd); } assert( pFd->nFetchOut>=0 ); #endif |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
72 73 74 75 76 77 78 | ** ** (6) If a master journal file is used, then all writes to the database file ** are synced prior to the master journal being deleted. ** ** Definition: Two databases (or the same database at two points it time) ** are said to be "logically equivalent" if they give the same answer to ** all queries. Note in particular the content of freelist leaf | | | | 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | ** ** (6) If a master journal file is used, then all writes to the database file ** are synced prior to the master journal being deleted. ** ** Definition: Two databases (or the same database at two points it time) ** are said to be "logically equivalent" if they give the same answer to ** all queries. Note in particular the content of freelist leaf ** pages can be changed arbitrarily without affecting the logical equivalence ** of the database. ** ** (7) At any time, if any subset, including the empty set and the total set, ** of the unsynced changes to a rollback journal are removed and the ** journal is rolled back, the resulting database file will be logically ** equivalent to the database file at the beginning of the transaction. ** ** (8) When a transaction is rolled back, the xTruncate method of the VFS ** is called to restore the database file to the same size it was at ** the beginning of the transaction. (In some VFSes, the xTruncate ** method is a no-op, but that does not change the fact the SQLite will ** invoke it.) |
︙ | ︙ | |||
374 375 376 377 378 379 380 | ** ** This is usually safe. If an xUnlock fails or appears to fail, there may ** be a few redundant xLock() calls or a lock may be held for longer than ** required, but nothing really goes wrong. ** ** The exception is when the database file is unlocked as the pager moves ** from ERROR to OPEN state. At this point there may be a hot-journal file | | | 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 | ** ** This is usually safe. If an xUnlock fails or appears to fail, there may ** be a few redundant xLock() calls or a lock may be held for longer than ** required, but nothing really goes wrong. ** ** The exception is when the database file is unlocked as the pager moves ** from ERROR to OPEN state. At this point there may be a hot-journal file ** in the file-system that needs to be rolled back (as part of an OPEN->SHARED ** transition, by the same pager or any other). If the call to xUnlock() ** fails at this point and the pager is left holding an EXCLUSIVE lock, this ** can confuse the call to xCheckReservedLock() call made later as part ** of hot-journal detection. ** ** xCheckReservedLock() is defined as returning true "if there is a RESERVED ** lock held by this process or any others". So xCheckReservedLock may |
︙ | ︙ | |||
457 458 459 460 461 462 463 | ** Bits of the Pager.doNotSpill flag. See further description below. */ #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ /* | | | 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 | ** Bits of the Pager.doNotSpill flag. See further description below. */ #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ /* ** An open page cache is an instance of struct Pager. A description of ** some of the more important member variables follows: ** ** eState ** ** The current 'state' of the pager object. See the comment and state ** diagram above for a description of the pager state. ** |
︙ | ︙ | |||
630 631 632 633 634 635 636 | u8 noLock; /* Do not lock (except in WAL mode) */ u8 readOnly; /* True for a read-only database */ u8 memDb; /* True to inhibit all file I/O */ u8 otaMode; /* True if in ota_mode */ /************************************************************************** ** The following block contains those class members that change during | | | 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 | u8 noLock; /* Do not lock (except in WAL mode) */ u8 readOnly; /* True for a read-only database */ u8 memDb; /* True to inhibit all file I/O */ u8 otaMode; /* True if in ota_mode */ /************************************************************************** ** The following block contains those class members that change during ** routine operation. Class members not in this block are either fixed ** when the pager is first created or else only change when there is a ** significant mode change (such as changing the page_size, locking_mode, ** or the journal_mode). From another view, these class members describe ** the "state" of the pager, while other class members describe the ** "configuration" of the pager. */ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ |
︙ | ︙ | |||
2427 2428 2429 2430 2431 2432 2433 | ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain ** sufficient space (in zMasterPtr) to hold the names of master ** journal files extracted from regular rollback-journals. */ rc = sqlite3OsFileSize(pMaster, &nMasterJournal); if( rc!=SQLITE_OK ) goto delmaster_out; nMasterPtr = pVfs->mxPathname+1; | | | 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 | ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain ** sufficient space (in zMasterPtr) to hold the names of master ** journal files extracted from regular rollback-journals. */ rc = sqlite3OsFileSize(pMaster, &nMasterJournal); if( rc!=SQLITE_OK ) goto delmaster_out; nMasterPtr = pVfs->mxPathname+1; zMasterJournal = sqlite3Malloc(nMasterJournal + nMasterPtr + 1); if( !zMasterJournal ){ rc = SQLITE_NOMEM; goto delmaster_out; } zMasterPtr = &zMasterJournal[nMasterJournal+1]; rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0); if( rc!=SQLITE_OK ) goto delmaster_out; |
︙ | ︙ | |||
2496 2497 2498 2499 2500 2501 2502 | ** ** If the main database file is not open, or the pager is not in either ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). ** If the file on disk is currently larger than nPage pages, then use the VFS ** xTruncate() method to truncate it. ** | | | 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 | ** ** If the main database file is not open, or the pager is not in either ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). ** If the file on disk is currently larger than nPage pages, then use the VFS ** xTruncate() method to truncate it. ** ** Or, it might be the case that the file on disk is smaller than ** nPage pages. Some operating system implementations can get confused if ** you try to truncate a file to some size that is larger than it ** currently is, so detect this case and write a single zero byte to ** the end of the new file instead. ** ** If successful, return SQLITE_OK. If an IO error occurs while modifying ** the database file, return the error code to the caller. |
︙ | ︙ | |||
2555 2556 2557 2558 2559 2560 2561 | } return iRet; } /* ** Set the value of the Pager.sectorSize variable for the given ** pager based on the value returned by the xSectorSize method | | | 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 | } return iRet; } /* ** Set the value of the Pager.sectorSize variable for the given ** pager based on the value returned by the xSectorSize method ** of the open database file. The sector size will be used ** to determine the size and alignment of journal header and ** master journal pointers within created journal files. ** ** For temporary files the effective sector size is always 512 bytes. ** ** Otherwise, for non-temporary files, the effective sector size is ** the value returned by the xSectorSize() method rounded up to 32 if |
︙ | ︙ | |||
3617 3618 3619 3620 3621 3622 3623 | if( rc==SQLITE_OK ){ pNew = (char *)sqlite3PageMalloc(pageSize); if( !pNew ) rc = SQLITE_NOMEM; } if( rc==SQLITE_OK ){ pager_reset(pPager); | < < > > > > | 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 | if( rc==SQLITE_OK ){ pNew = (char *)sqlite3PageMalloc(pageSize); if( !pNew ) rc = SQLITE_NOMEM; } if( rc==SQLITE_OK ){ pager_reset(pPager); sqlite3PageFree(pPager->pTmpSpace); pPager->pTmpSpace = pNew; rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); } if( rc==SQLITE_OK ){ pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); pPager->pageSize = pageSize; } } *pPageSize = pPager->pageSize; if( rc==SQLITE_OK ){ if( nReserve<0 ) nReserve = pPager->nReserve; assert( nReserve>=0 && nReserve<1000 ); pPager->nReserve = (i16)nReserve; |
︙ | ︙ | |||
3755 3756 3757 3758 3759 3760 3761 | ** the lock. If the lock is obtained successfully, set the Pager.state ** variable to locktype before returning. */ static int pager_wait_on_lock(Pager *pPager, int locktype){ int rc; /* Return code */ /* Check that this is either a no-op (because the requested lock is | | | 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 | ** the lock. If the lock is obtained successfully, set the Pager.state ** variable to locktype before returning. */ static int pager_wait_on_lock(Pager *pPager, int locktype){ int rc; /* Return code */ /* Check that this is either a no-op (because the requested lock is ** already held), or one of the transitions that the busy-handler ** may be invoked during, according to the comment above ** sqlite3PagerSetBusyhandler(). */ assert( (pPager->eLock>=locktype) || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) ); |
︙ | ︙ | |||
4385 4386 4387 4388 4389 4390 4391 | ** pages belonging to the same sector. ** ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling ** regardless of whether or not a sync is required. This is set during ** a rollback or by user request, respectively. ** ** Spilling is also prohibited when in an error state since that could | | | 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 | ** pages belonging to the same sector. ** ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling ** regardless of whether or not a sync is required. This is set during ** a rollback or by user request, respectively. ** ** Spilling is also prohibited when in an error state since that could ** lead to database corruption. In the current implementation it ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 ** while in the error state, hence it is impossible for this routine to ** be called in the error state. Nevertheless, we include a NEVER() ** test for the error state as a safeguard against future changes. */ if( NEVER(pPager->errCode) ) return SQLITE_OK; testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); |
︙ | ︙ | |||
4925 4926 4927 4928 4929 4930 4931 | } if( !jrnlOpen ){ sqlite3OsClose(pPager->jfd); } *pExists = (first!=0); }else if( rc==SQLITE_CANTOPEN ){ /* If we cannot open the rollback journal file in order to see if | | | 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 | } if( !jrnlOpen ){ sqlite3OsClose(pPager->jfd); } *pExists = (first!=0); }else if( rc==SQLITE_CANTOPEN ){ /* If we cannot open the rollback journal file in order to see if ** it has a zero header, that might be due to an I/O error, or ** it might be due to the race condition described above and in ** ticket #3883. Either way, assume that the journal is hot. ** This might be a false positive. But if it is, then the ** automatic journal playback and recovery mechanism will deal ** with it under an EXCLUSIVE lock where we do not need to ** worry so much with race conditions. */ |
︙ | ︙ |
Changes to src/pcache.c.
︙ | ︙ | |||
41 42 43 44 45 46 47 | # define expensive_assert(X) assert(X) #else # define expensive_assert(X) #endif /********************************** Linked List Management ********************/ | < < < < < < < < < < < < < < < < < | 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | # define expensive_assert(X) assert(X) #else # define expensive_assert(X) #endif /********************************** Linked List Management ********************/ /* Allowed values for second argument to pcacheManageDirtyList() */ #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ /* ** Manage pPage's participation on the dirty list. Bits of the addRemove |
︙ | ︙ | |||
103 104 105 106 107 108 109 | if( p->pDirty==0 && p->bPurgeable ){ assert( p->eCreate==1 ); p->eCreate = 2; } } pPage->pDirtyNext = 0; pPage->pDirtyPrev = 0; | < > > | | | | < < < > < | 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | if( p->pDirty==0 && p->bPurgeable ){ assert( p->eCreate==1 ); p->eCreate = 2; } } pPage->pDirtyNext = 0; pPage->pDirtyPrev = 0; } if( addRemove & PCACHE_DIRTYLIST_ADD ){ assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); pPage->pDirtyNext = p->pDirty; if( pPage->pDirtyNext ){ assert( pPage->pDirtyNext->pDirtyPrev==0 ); pPage->pDirtyNext->pDirtyPrev = pPage; }else{ p->pDirtyTail = pPage; if( p->bPurgeable ){ assert( p->eCreate==2 ); p->eCreate = 1; } } p->pDirty = pPage; if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ p->pSynced = pPage; } } } /* ** Wrapper around the pluggable caches xUnpin method. If the cache is ** being used for an in-memory database, this function is a no-op. */ |
︙ | ︙ | |||
300 301 302 303 304 305 306 | /* Find a dirty page to write-out and recycle. First try to find a ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC ** cleared), but if that is not possible settle for any other ** unreferenced dirty page. */ | < | 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | /* Find a dirty page to write-out and recycle. First try to find a ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC ** cleared), but if that is not possible settle for any other ** unreferenced dirty page. */ for(pPg=pCache->pSynced; pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); pPg=pPg->pDirtyPrev ); pCache->pSynced = pPg; if( !pPg ){ for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); |
︙ | ︙ | |||
386 387 388 389 390 391 392 | pCache->pPage1 = pPgHdr; } return pPgHdr; } /* ** Decrement the reference count on a page. If the page is clean and the | | | | 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 | pCache->pPage1 = pPgHdr; } return pPgHdr; } /* ** Decrement the reference count on a page. If the page is clean and the ** reference count drops to 0, then it is made eligible for recycling. */ void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ assert( p->nRef>0 ); p->nRef--; if( p->nRef==0 ){ p->pCache->nRef--; if( (p->flags&PGHDR_DIRTY)==0 ){ pcacheUnpin(p); }else if( p->pDirtyPrev!=0 ){ /* Move the page to the head of the dirty list. */ pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); } } } /* |
︙ | ︙ |
Changes to src/pcache1.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements the default page cache implementation (the ** sqlite3_pcache interface). It also contains part of the implementation ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. | | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file implements the default page cache implementation (the ** sqlite3_pcache interface). It also contains part of the implementation ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. ** If the default page cache implementation is overridden, then neither of ** these two features are available. */ #include "sqliteInt.h" typedef struct PCache1 PCache1; typedef struct PgHdr1 PgHdr1; typedef struct PgFreeslot PgFreeslot; typedef struct PGroup PGroup; /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set ** of one or more PCaches that are able to recycle each other's unpinned ** pages when they are under memory pressure. A PGroup is an instance of ** the following object. ** ** This page cache implementation works in one of two modes: ** ** (1) Every PCache is the sole member of its own PGroup. There is ** one PGroup per PCache. |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 | }else{ int mask = aPragmaNames[mid].iArg; /* Mask of bits to set or clear. */ if( db->autoCommit==0 ){ /* Foreign key support may not be enabled or disabled while not ** in auto-commit mode. */ mask &= ~(SQLITE_ForeignKeys); } if( sqlite3GetBoolean(zRight, 0) ){ db->flags |= mask; }else{ db->flags &= ~mask; if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; } | > > > > > > | 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 | }else{ int mask = aPragmaNames[mid].iArg; /* Mask of bits to set or clear. */ if( db->autoCommit==0 ){ /* Foreign key support may not be enabled or disabled while not ** in auto-commit mode. */ mask &= ~(SQLITE_ForeignKeys); } #if SQLITE_USER_AUTHENTICATION if( db->auth.authLevel==UAUTH_User ){ /* Do not allow non-admin users to modify the schema arbitrarily */ mask &= ~(SQLITE_WriteSchema); } #endif if( sqlite3GetBoolean(zRight, 0) ){ db->flags |= mask; }else{ db->flags &= ~mask; if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; } |
︙ | ︙ |
Changes to src/prepare.c.
︙ | ︙ | |||
324 325 326 327 328 329 330 | { char *zSql; zSql = sqlite3MPrintf(db, "SELECT name, rootpage, sql FROM '%q'.%s ORDER BY rowid", db->aDb[iDb].zName, zMasterName); #ifndef SQLITE_OMIT_AUTHORIZATION { | | | 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | { char *zSql; zSql = sqlite3MPrintf(db, "SELECT name, rootpage, sql FROM '%q'.%s ORDER BY rowid", db->aDb[iDb].zName, zMasterName); #ifndef SQLITE_OMIT_AUTHORIZATION { sqlite3_xauth xAuth; xAuth = db->xAuth; db->xAuth = 0; #endif rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); #ifndef SQLITE_OMIT_AUTHORIZATION db->xAuth = xAuth; } |
︙ | ︙ | |||
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | ** file was of zero-length, then the DB_Empty flag is also set. */ int sqlite3Init(sqlite3 *db, char **pzErrMsg){ int i, rc; int commit_internal = !(db->flags&SQLITE_InternChanges); assert( sqlite3_mutex_held(db->mutex) ); rc = SQLITE_OK; db->init.busy = 1; for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue; rc = sqlite3InitOne(db, i, pzErrMsg); if( rc ){ sqlite3ResetOneSchema(db, i); } } /* Once all the other databases have been initialized, load the schema ** for the TEMP database. This is loaded last, as the TEMP database ** schema may contain references to objects in other databases. */ #ifndef SQLITE_OMIT_TEMPDB | > | | | 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | ** file was of zero-length, then the DB_Empty flag is also set. */ int sqlite3Init(sqlite3 *db, char **pzErrMsg){ int i, rc; int commit_internal = !(db->flags&SQLITE_InternChanges); assert( sqlite3_mutex_held(db->mutex) ); assert( db->init.busy==0 ); rc = SQLITE_OK; db->init.busy = 1; for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue; rc = sqlite3InitOne(db, i, pzErrMsg); if( rc ){ sqlite3ResetOneSchema(db, i); } } /* Once all the other databases have been initialized, load the schema ** for the TEMP database. This is loaded last, as the TEMP database ** schema may contain references to objects in other databases. */ #ifndef SQLITE_OMIT_TEMPDB assert( db->nDb>1 ); if( rc==SQLITE_OK && !DbHasProperty(db, 1, DB_SchemaLoaded) ){ rc = sqlite3InitOne(db, 1, pzErrMsg); if( rc ){ sqlite3ResetOneSchema(db, 1); } } #endif |
︙ | ︙ |
Changes to src/printf.c.
︙ | ︙ | |||
900 901 902 903 904 905 906 | z = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); return z; } /* ** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting | | | 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 | z = sqlite3VMPrintf(db, zFormat, ap); va_end(ap); return z; } /* ** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting ** the string and before returning. This routine is intended to be used ** to modify an existing string. For example: ** ** x = sqlite3MPrintf(db, x, "prefix %s suffix", x); ** */ char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){ va_list ap; |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
715 716 717 718 719 720 721 | ** likelihood(X,0.9375). ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent to ** likelihood(X,0.9375). */ /* TUNING: unlikely() probability is 0.0625. likely() is 0.9375 */ pExpr->iTable = pDef->zName[0]=='u' ? 62 : 938; } } | < < > < | 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 | ** likelihood(X,0.9375). ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent to ** likelihood(X,0.9375). */ /* TUNING: unlikely() probability is 0.0625. likely() is 0.9375 */ pExpr->iTable = pDef->zName[0]=='u' ? 62 : 938; } } #ifndef SQLITE_OMIT_AUTHORIZATION auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); if( auth!=SQLITE_OK ){ if( auth==SQLITE_DENY ){ sqlite3ErrorMsg(pParse, "not authorized to use function: %s", pDef->zName); pNC->nErr++; } pExpr->op = TK_NULL; return WRC_Prune; } #endif if( pDef->funcFlags & SQLITE_FUNC_CONSTANT ) ExprSetProperty(pExpr,EP_Constant); } if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){ sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); pNC->nErr++; is_agg = 0; }else if( no_such_func && pParse->db->init.busy==0 ){ sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); pNC->nErr++; |
︙ | ︙ | |||
753 754 755 756 757 758 759 | NameContext *pNC2 = pNC; pExpr->op = TK_AGG_FUNCTION; pExpr->op2 = 0; while( pNC2 && !sqlite3FunctionUsesThisSrc(pExpr, pNC2->pSrcList) ){ pExpr->op2++; pNC2 = pNC2->pNext; } | > | > > > > > | 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 | NameContext *pNC2 = pNC; pExpr->op = TK_AGG_FUNCTION; pExpr->op2 = 0; while( pNC2 && !sqlite3FunctionUsesThisSrc(pExpr, pNC2->pSrcList) ){ pExpr->op2++; pNC2 = pNC2->pNext; } assert( pDef!=0 ); if( pNC2 ){ assert( SQLITE_FUNC_MINMAX==NC_MinMaxAgg ); testcase( (pDef->funcFlags & SQLITE_FUNC_MINMAX)!=0 ); pNC2->ncFlags |= NC_HasAgg | (pDef->funcFlags & SQLITE_FUNC_MINMAX); } pNC->ncFlags |= NC_AllowAgg; } /* FIX ME: Compute pExpr->affinity based on the expected return ** type of the function */ return WRC_Prune; } |
︙ | ︙ | |||
1114 1115 1116 1117 1118 1119 1120 | } } } return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); } /* | | | 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 | } } } return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); } /* ** Resolve names in the SELECT statement p and all of its descendants. */ static int resolveSelectStep(Walker *pWalker, Select *p){ NameContext *pOuterNC; /* Context that contains this SELECT */ NameContext sNC; /* Name context of this SELECT */ int isCompound; /* True if p is a compound select */ int nCompound; /* Number of compound terms processed so far */ Parse *pParse; /* Parsing context */ |
︙ | ︙ | |||
1218 1219 1220 1221 1222 1223 1224 | /* If there are no aggregate functions in the result-set, and no GROUP BY ** expression, do not allow aggregates in any of the other expressions. */ assert( (p->selFlags & SF_Aggregate)==0 ); pGroupBy = p->pGroupBy; if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){ | > | | 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 | /* If there are no aggregate functions in the result-set, and no GROUP BY ** expression, do not allow aggregates in any of the other expressions. */ assert( (p->selFlags & SF_Aggregate)==0 ); pGroupBy = p->pGroupBy; if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){ assert( NC_MinMaxAgg==SF_MinMaxAgg ); p->selFlags |= SF_Aggregate | (sNC.ncFlags&NC_MinMaxAgg); }else{ sNC.ncFlags &= ~NC_AllowAgg; } /* If a HAVING clause is present, then there must be a GROUP BY clause. */ if( p->pHaving && !pGroupBy ){ |
︙ | ︙ | |||
1346 1347 1348 1349 1350 1351 1352 | ** An error message is left in pParse if anything is amiss. The number ** if errors is returned. */ int sqlite3ResolveExprNames( NameContext *pNC, /* Namespace to resolve expressions in. */ Expr *pExpr /* The expression to be analyzed. */ ){ | | | | < < > | 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 | ** An error message is left in pParse if anything is amiss. The number ** if errors is returned. */ int sqlite3ResolveExprNames( NameContext *pNC, /* Namespace to resolve expressions in. */ Expr *pExpr /* The expression to be analyzed. */ ){ u16 savedHasAgg; Walker w; if( pExpr==0 ) return 0; #if SQLITE_MAX_EXPR_DEPTH>0 { Parse *pParse = pNC->pParse; if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){ return 1; } pParse->nHeight += pExpr->nHeight; } #endif savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg); pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg); memset(&w, 0, sizeof(w)); w.xExprCallback = resolveExprStep; w.xSelectCallback = resolveSelectStep; w.pParse = pNC->pParse; w.u.pNC = pNC; sqlite3WalkExpr(&w, pExpr); #if SQLITE_MAX_EXPR_DEPTH>0 pNC->pParse->nHeight -= pExpr->nHeight; #endif if( pNC->nErr>0 || w.pParse->nErr>0 ){ ExprSetProperty(pExpr, EP_Error); } if( pNC->ncFlags & NC_HasAgg ){ ExprSetProperty(pExpr, EP_Agg); } pNC->ncFlags |= savedHasAgg; return ExprHasProperty(pExpr, EP_Error); } /* ** Resolve all names in all expressions of a SELECT and in all ** decendents of the SELECT, including compounds off of p->pPrior, |
︙ | ︙ |
Changes to src/rowset.c.
︙ | ︙ | |||
46 47 48 49 50 51 52 | ** value added by the INSERT will not be visible to the second TEST. ** The initial batch number is zero, so if the very first TEST contains ** a non-zero batch number, it will see all prior INSERTs. ** ** No INSERTs may occurs after a SMALLEST. An assertion will fail if ** that is attempted. ** | | | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | ** value added by the INSERT will not be visible to the second TEST. ** The initial batch number is zero, so if the very first TEST contains ** a non-zero batch number, it will see all prior INSERTs. ** ** No INSERTs may occurs after a SMALLEST. An assertion will fail if ** that is attempted. ** ** The cost of an INSERT is roughly constant. (Sometimes new memory ** has to be allocated on an INSERT.) The cost of a TEST with a new ** batch number is O(NlogN) where N is the number of elements in the RowSet. ** The cost of a TEST using the same batch number is O(logN). The cost ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST ** primitives are constant time. The cost of DESTROY is O(N). ** ** There is an added cost of O(N) when switching between TEST and |
︙ | ︙ | |||
439 440 441 442 443 444 445 | } } /* ** Check to see if element iRowid was inserted into the rowset as ** part of any insert batch prior to iBatch. Return 1 or 0. ** | | | | 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | } } /* ** Check to see if element iRowid was inserted into the rowset as ** part of any insert batch prior to iBatch. Return 1 or 0. ** ** If this is the first test of a new batch and if there exist entries ** on pRowSet->pEntry, then sort those entries into the forest at ** pRowSet->pForest so that they can be tested. */ int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){ struct RowSetEntry *p, *pTree; /* This routine is never called after sqlite3RowSetNext() */ assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 ); |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
484 485 486 487 488 489 490 | pParse->nMem += nBase; } sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); if( bSeq ){ sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); } if( nPrefixReg==0 ){ | | | 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 | pParse->nMem += nBase; } sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP); if( bSeq ){ sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); } if( nPrefixReg==0 ){ sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); if( nOBSat>0 ){ int regPrevKey; /* The first nOBSat columns of the previous row */ int addrFirst; /* Address of the OP_IfNot opcode */ int addrJmp; /* Address of the OP_Jump opcode */ |
︙ | ︙ | |||
520 521 522 523 524 525 526 | addrJmp = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); pSort->labelBkOut = sqlite3VdbeMakeLabel(v); pSort->regReturn = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); sqlite3VdbeJumpHere(v, addrFirst); | | | 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 | addrJmp = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); pSort->labelBkOut = sqlite3VdbeMakeLabel(v); pSort->regReturn = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); sqlite3VdbeJumpHere(v, addrFirst); sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); sqlite3VdbeJumpHere(v, addrJmp); } if( pSort->sortFlags & SORTFLAG_UseSorter ){ op = OP_SorterInsert; }else{ op = OP_IdxInsert; } |
︙ | ︙ | |||
1006 1007 1008 1009 1010 1011 1012 | ** ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting ** KeyInfo structure is appropriate for initializing a virtual index to ** implement that clause. If the ExprList is the result set of a SELECT ** then the KeyInfo structure is appropriate for initializing a virtual ** index to implement a DISTINCT test. ** | | | 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 | ** ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting ** KeyInfo structure is appropriate for initializing a virtual index to ** implement that clause. If the ExprList is the result set of a SELECT ** then the KeyInfo structure is appropriate for initializing a virtual ** index to implement a DISTINCT test. ** ** Space to hold the KeyInfo structure is obtained from malloc. The calling ** function is responsible for seeing that this structure is eventually ** freed. */ static KeyInfo *keyInfoFromExprList( Parse *pParse, /* Parsing context */ ExprList *pList, /* Form the KeyInfo object from this ExprList */ int iStart, /* Begin with this column of pList */ |
︙ | ︙ | |||
1537 1538 1539 1540 1541 1542 1543 | sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); } } generateColumnTypes(pParse, pTabList, pEList); } /* | | | 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 | sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); } } generateColumnTypes(pParse, pTabList, pEList); } /* ** Given an expression list (which is really the list of expressions ** that form the result set of a SELECT statement) compute appropriate ** column names for a table that would hold the expression list. ** ** All column names will be unique. ** ** Only the column names are computed. Column.zType, Column.zColl, ** and other fields of Column are zeroed. |
︙ | ︙ | |||
1610 1611 1612 1613 1614 1615 1616 | } if( db->mallocFailed ){ sqlite3DbFree(db, zName); break; } /* Make sure the column name is unique. If the name is not unique, | | | 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 | } if( db->mallocFailed ){ sqlite3DbFree(db, zName); break; } /* Make sure the column name is unique. If the name is not unique, ** append an integer to the name so that it becomes unique. */ nName = sqlite3Strlen30(zName); for(j=cnt=0; j<i; j++){ if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ char *zNewName; int k; for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} |
︙ | ︙ | |||
3094 3095 3096 3097 3098 3099 3100 | ** optimized. ** ** This routine attempts to rewrite queries such as the above into ** a single flat select, like this: ** ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 ** | | | 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 | ** optimized. ** ** This routine attempts to rewrite queries such as the above into ** a single flat select, like this: ** ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 ** ** The code generated for this simplification gives the same result ** but only has to scan the data once. And because indices might ** exist on the table t1, a complete scan of the data might be ** avoided. ** ** Flattening is only attempted if all of the following are true: ** ** (1) The subquery and the outer query do not both use aggregates. |
︙ | ︙ | |||
3127 3128 3129 3130 3131 3132 3133 | ** single NULL. ** ** (8) The subquery does not use LIMIT or the outer query is not a join. ** ** (9) The subquery does not use LIMIT or the outer query does not use ** aggregates. ** | > > | | | 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 | ** single NULL. ** ** (8) The subquery does not use LIMIT or the outer query is not a join. ** ** (9) The subquery does not use LIMIT or the outer query does not use ** aggregates. ** ** (**) Restriction (10) was removed from the code on 2005-02-05 but we ** accidently carried the comment forward until 2014-09-15. Original ** text: "The subquery does not use aggregates or the outer query does not ** use LIMIT." ** ** (11) The subquery and the outer query do not both have ORDER BY clauses. ** ** (**) Not implemented. Subsumed into restriction (3). Was previously ** a separate restriction deriving from ticket #350. ** ** (13) The subquery and outer query do not both use LIMIT. |
︙ | ︙ | |||
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 | ** (22) The subquery is not a recursive CTE. ** ** (23) The parent is not a recursive CTE, or the sub-query is not a ** compound query. This restriction is because transforming the ** parent to a compound query confuses the code that handles ** recursive queries in multiSelect(). ** ** ** In this routine, the "p" parameter is a pointer to the outer query. ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. ** ** If flattening is not attempted, this routine is a no-op and returns 0. ** If flattening is attempted this routine returns 1. | > > > > > | 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 | ** (22) The subquery is not a recursive CTE. ** ** (23) The parent is not a recursive CTE, or the sub-query is not a ** compound query. This restriction is because transforming the ** parent to a compound query confuses the code that handles ** recursive queries in multiSelect(). ** ** (24) The subquery is not an aggregate that uses the built-in min() or ** or max() functions. (Without this restriction, a query like: ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily ** return the value X for which Y was maximal.) ** ** ** In this routine, the "p" parameter is a pointer to the outer query. ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. ** ** If flattening is not attempted, this routine is a no-op and returns 0. ** If flattening is attempted this routine returns 1. |
︙ | ︙ | |||
3238 3239 3240 3241 3242 3243 3244 | pSub = pSubitem->pSelect; assert( pSub!=0 ); if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ pSubSrc = pSub->pSrc; assert( pSubSrc ); /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, | | | 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 | pSub = pSubitem->pSelect; assert( pSub!=0 ); if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ pSubSrc = pSub->pSrc; assert( pSubSrc ); /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET ** because they could be computed at compile-time. But when LIMIT and OFFSET ** became arbitrary expressions, we were forced to add restrictions (13) ** and (14). */ if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ if( pSub->pOffset ) return 0; /* Restriction (14) */ if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ return 0; /* Restriction (15) */ |
︙ | ︙ | |||
3263 3264 3265 3266 3267 3268 3269 | return 0; /* Restriction (11) */ } if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ return 0; /* Restriction (21) */ } | | > > > > | > > | 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 | return 0; /* Restriction (11) */ } if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ return 0; /* Restriction (21) */ } testcase( pSub->selFlags & SF_Recursive ); testcase( pSub->selFlags & SF_MinMaxAgg ); if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ return 0; /* Restrictions (22) and (24) */ } if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ return 0; /* Restriction (23) */ } /* OBSOLETE COMMENT 1: ** Restriction 3: If the subquery is a join, make sure the subquery is ** not used as the right operand of an outer join. Examples of why this ** is not allowed: ** ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
︙ | ︙ | |||
3624 3625 3626 3627 3628 3629 3630 | assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); return eRet; } /* ** The select statement passed as the first argument is an aggregate query. | | | 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 | assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); return eRet; } /* ** The select statement passed as the first argument is an aggregate query. ** The second argument is the associated aggregate-info object. This ** function tests if the SELECT is of the form: ** ** SELECT count(*) FROM <tbl> ** ** where table is a database table, not a sub-select or view. If the query ** does match this pattern, then a pointer to the Table object representing ** <tbl> is returned. Otherwise, 0 is returned. |
︙ | ︙ | |||
3954 3955 3956 3957 3958 3959 3960 | ** element of the FROM clause. ** ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that ** defines FROM clause. When views appear in the FROM clause, ** fill pTabList->a[].pSelect with a copy of the SELECT statement ** that implements the view. A copy is made of the view's SELECT ** statement so that we can freely modify or delete that statement | | | | 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 | ** element of the FROM clause. ** ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that ** defines FROM clause. When views appear in the FROM clause, ** fill pTabList->a[].pSelect with a copy of the SELECT statement ** that implements the view. A copy is made of the view's SELECT ** statement so that we can freely modify or delete that statement ** without worrying about messing up the persistent representation ** of the view. ** ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword ** on joins and the ON and USING clause of joins. ** ** (4) Scan the list of columns in the result set (pEList) looking ** for instances of the "*" operator or the TABLE.* operator. ** If found, expand each "*" to be every column in every table ** and TABLE.* to be every column in TABLE. ** |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
29 30 31 32 33 34 35 36 37 38 39 40 41 42 | #endif #include <stdlib.h> #include <string.h> #include <stdio.h> #include <assert.h> #include "sqlite3.h" #include <ctype.h> #include <stdarg.h> #if !defined(_WIN32) && !defined(WIN32) # include <signal.h> # if !defined(__RTP__) && !defined(_WRS_KERNEL) # include <pwd.h> | > > > | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | #endif #include <stdlib.h> #include <string.h> #include <stdio.h> #include <assert.h> #include "sqlite3.h" #if SQLITE_USER_AUTHENTICATION # include "sqlite3userauth.h" #endif #include <ctype.h> #include <stdarg.h> #if !defined(_WIN32) && !defined(WIN32) # include <signal.h> # if !defined(__RTP__) && !defined(_WRS_KERNEL) # include <pwd.h> |
︙ | ︙ | |||
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 | sqlite3_trace(p->db, 0, 0); }else{ sqlite3_trace(p->db, sql_trace_callback, p->traceOut); } #endif }else if( c=='v' && strncmp(azArg[0], "version", n)==0 ){ fprintf(p->out, "SQLite %s %s\n" /*extra-version-info*/, sqlite3_libversion(), sqlite3_sourceid()); }else if( c=='v' && strncmp(azArg[0], "vfsname", n)==0 ){ const char *zDbName = nArg==2 ? azArg[1] : "main"; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 | sqlite3_trace(p->db, 0, 0); }else{ sqlite3_trace(p->db, sql_trace_callback, p->traceOut); } #endif }else #if SQLITE_USER_AUTHENTICATION if( c=='u' && strncmp(azArg[0], "user", n)==0 ){ if( nArg<2 ){ fprintf(stderr, "Usage: .user SUBCOMMAND ...\n"); rc = 1; goto meta_command_exit; } open_db(p, 0); if( strcmp(azArg[1],"login")==0 ){ if( nArg!=4 ){ fprintf(stderr, "Usage: .user login USER PASSWORD\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_user_authenticate(p->db, azArg[2], azArg[3], (int)strlen(azArg[3])); if( rc ){ fprintf(stderr, "Authentication failed for user %s\n", azArg[2]); rc = 1; } }else if( strcmp(azArg[1],"add")==0 ){ if( nArg!=5 ){ fprintf(stderr, "Usage: .user add USER PASSWORD ISADMIN\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_user_add(p->db, azArg[2], azArg[3], (int)strlen(azArg[3]), booleanValue(azArg[4])); if( rc ){ fprintf(stderr, "User-Add failed: %d\n", rc); rc = 1; } }else if( strcmp(azArg[1],"edit")==0 ){ if( nArg!=5 ){ fprintf(stderr, "Usage: .user edit USER PASSWORD ISADMIN\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_user_change(p->db, azArg[2], azArg[3], (int)strlen(azArg[3]), booleanValue(azArg[4])); if( rc ){ fprintf(stderr, "User-Edit failed: %d\n", rc); rc = 1; } }else if( strcmp(azArg[1],"delete")==0 ){ if( nArg!=3 ){ fprintf(stderr, "Usage: .user delete USER\n"); rc = 1; goto meta_command_exit; } rc = sqlite3_user_delete(p->db, azArg[2]); if( rc ){ fprintf(stderr, "User-Delete failed: %d\n", rc); rc = 1; } }else{ fprintf(stderr, "Usage: .user login|add|edit|delete ...\n"); rc = 1; goto meta_command_exit; } }else #endif /* SQLITE_USER_AUTHENTICATION */ if( c=='v' && strncmp(azArg[0], "version", n)==0 ){ fprintf(p->out, "SQLite %s %s\n" /*extra-version-info*/, sqlite3_libversion(), sqlite3_sourceid()); }else if( c=='v' && strncmp(azArg[0], "vfsname", n)==0 ){ const char *zDbName = nArg==2 ? azArg[1] : "main"; |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
488 489 490 491 492 493 494 495 496 497 498 499 500 501 | #define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8)) #define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8)) #define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8)) #define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8)) #define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8)) #define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8)) #define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8)) /* ** CAPI3REF: Flags For File Open Operations ** ** These bit values are intended for use in the ** 3rd parameter to the [sqlite3_open_v2()] interface and ** in the 4th parameter to the [sqlite3_vfs.xOpen] method. | > | 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 | #define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8)) #define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8)) #define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8)) #define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8)) #define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8)) #define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8)) #define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8)) #define SQLITE_AUTH_USER (SQLITE_AUTH | (1<<8)) /* ** CAPI3REF: Flags For File Open Operations ** ** These bit values are intended for use in the ** 3rd parameter to the [sqlite3_open_v2()] interface and ** in the 4th parameter to the [sqlite3_vfs.xOpen] method. |
︙ | ︙ | |||
2090 2091 2092 2093 2094 2095 2096 | ** the handler returns 0 which causes [sqlite3_step()] to return ** [SQLITE_BUSY]. ** ** ^Calling this routine with an argument less than or equal to zero ** turns off all busy handlers. ** ** ^(There can only be a single busy handler for a particular | | | 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 | ** the handler returns 0 which causes [sqlite3_step()] to return ** [SQLITE_BUSY]. ** ** ^Calling this routine with an argument less than or equal to zero ** turns off all busy handlers. ** ** ^(There can only be a single busy handler for a particular ** [database connection] at any given moment. If another busy handler ** was defined (using [sqlite3_busy_handler()]) prior to calling ** this routine, that other busy handler is cleared.)^ ** ** See also: [PRAGMA busy_timeout] */ int sqlite3_busy_timeout(sqlite3*, int ms); |
︙ | ︙ | |||
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 | ** ** ^The sqlite3_malloc() routine returns a pointer to a block ** of memory at least N bytes in length, where N is the parameter. ** ^If sqlite3_malloc() is unable to obtain sufficient free ** memory, it returns a NULL pointer. ^If the parameter N to ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns ** a NULL pointer. ** ** ^Calling sqlite3_free() with a pointer previously returned ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so ** that it might be reused. ^The sqlite3_free() routine is ** a no-op if is called with a NULL pointer. Passing a NULL pointer ** to sqlite3_free() is harmless. After being freed, memory ** should neither be read nor written. Even reading previously freed ** memory might result in a segmentation fault or other severe error. ** Memory corruption, a segmentation fault, or other severe error ** might result if sqlite3_free() is called with a non-NULL pointer that ** was not obtained from sqlite3_malloc() or sqlite3_realloc(). ** | > > > > | | < | | | | | | | | | > > > > > > > > > > > > > > | > | 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 | ** ** ^The sqlite3_malloc() routine returns a pointer to a block ** of memory at least N bytes in length, where N is the parameter. ** ^If sqlite3_malloc() is unable to obtain sufficient free ** memory, it returns a NULL pointer. ^If the parameter N to ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns ** a NULL pointer. ** ** ^The sqlite3_malloc64(N) routine works just like ** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead ** of a signed 32-bit integer. ** ** ^Calling sqlite3_free() with a pointer previously returned ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so ** that it might be reused. ^The sqlite3_free() routine is ** a no-op if is called with a NULL pointer. Passing a NULL pointer ** to sqlite3_free() is harmless. After being freed, memory ** should neither be read nor written. Even reading previously freed ** memory might result in a segmentation fault or other severe error. ** Memory corruption, a segmentation fault, or other severe error ** might result if sqlite3_free() is called with a non-NULL pointer that ** was not obtained from sqlite3_malloc() or sqlite3_realloc(). ** ** ^The sqlite3_realloc(X,N) interface attempts to resize a ** prior memory allocation X to be at least N bytes. ** ^If the X parameter to sqlite3_realloc(X,N) ** is a NULL pointer then its behavior is identical to calling ** sqlite3_malloc(N). ** ^If the N parameter to sqlite3_realloc(X,N) is zero or ** negative then the behavior is exactly the same as calling ** sqlite3_free(X). ** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation ** of at least N bytes in size or NULL if insufficient memory is available. ** ^If M is the size of the prior allocation, then min(N,M) bytes ** of the prior allocation are copied into the beginning of buffer returned ** by sqlite3_realloc(X,N) and the prior allocation is freed. ** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the ** prior allocation is not freed. ** ** ^The sqlite3_realloc64(X,N) interfaces works the same as ** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead ** of a 32-bit signed integer. ** ** ^If X is a memory allocation previously obtained from sqlite3_malloc(), ** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then ** sqlite3_msize(X) returns the size of that memory allocation in bytes. ** ^The value returned by sqlite3_msize(X) might be larger than the number ** of bytes requested when X was allocated. ^If X is a NULL pointer then ** sqlite3_msize(X) returns zero. If X points to something that is not ** the beginning of memory allocation, or if it points to a formerly ** valid memory allocation that has now been freed, then the behavior ** of sqlite3_msize(X) is undefined and possibly harmful. ** ** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(), ** sqlite3_malloc64(), and sqlite3_realloc64() ** is always aligned to at least an 8 byte boundary, or to a ** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time ** option is used. ** ** In SQLite version 3.5.0 and 3.5.1, it was possible to define ** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in ** implementation of these routines to be omitted. That capability |
︙ | ︙ | |||
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 | ** not yet been released. ** ** The application must not read or write any part of ** a block of memory after it has been released using ** [sqlite3_free()] or [sqlite3_realloc()]. */ void *sqlite3_malloc(int); void *sqlite3_realloc(void*, int); void sqlite3_free(void*); /* ** CAPI3REF: Memory Allocator Statistics ** ** SQLite provides these two interfaces for reporting on the status ** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()] ** routines, which form the built-in memory allocation subsystem. | > > > | 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 | ** not yet been released. ** ** The application must not read or write any part of ** a block of memory after it has been released using ** [sqlite3_free()] or [sqlite3_realloc()]. */ void *sqlite3_malloc(int); void *sqlite3_malloc64(sqlite3_uint64); void *sqlite3_realloc(void*, int); void *sqlite3_realloc64(void*, sqlite3_uint64); void sqlite3_free(void*); sqlite3_uint64 sqlite3_msize(void*); /* ** CAPI3REF: Memory Allocator Statistics ** ** SQLite provides these two interfaces for reporting on the status ** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()] ** routines, which form the built-in memory allocation subsystem. |
︙ | ︙ | |||
3360 3361 3362 3363 3364 3365 3366 | ** number of <u>bytes</u> in the value, not the number of characters.)^ ** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16() ** is negative, then the length of the string is ** the number of bytes up to the first zero terminator. ** If the fourth parameter to sqlite3_bind_blob() is negative, then ** the behavior is undefined. ** If a non-negative fourth parameter is provided to sqlite3_bind_text() | > | > > > > > > > > | 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 | ** number of <u>bytes</u> in the value, not the number of characters.)^ ** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16() ** is negative, then the length of the string is ** the number of bytes up to the first zero terminator. ** If the fourth parameter to sqlite3_bind_blob() is negative, then ** the behavior is undefined. ** If a non-negative fourth parameter is provided to sqlite3_bind_text() ** or sqlite3_bind_text16() or sqlite3_bind_text64() then ** that parameter must be the byte offset ** where the NUL terminator would occur assuming the string were NUL ** terminated. If any NUL characters occur at byte offsets less than ** the value of the fourth parameter then the resulting string value will ** contain embedded NULs. The result of expressions involving strings ** with embedded NULs is undefined. ** ** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and ** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or ** string after SQLite has finished with it. ^The destructor is called ** to dispose of the BLOB or string even if the call to sqlite3_bind_blob(), ** sqlite3_bind_text(), or sqlite3_bind_text16() fails. ** ^If the fifth argument is ** the special value [SQLITE_STATIC], then SQLite assumes that the ** information is in static, unmanaged space and does not need to be freed. ** ^If the fifth argument has the value [SQLITE_TRANSIENT], then ** SQLite makes its own private copy of the data immediately, before ** the sqlite3_bind_*() routine returns. ** ** ^The sixth argument to sqlite3_bind_text64() must be one of ** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE] ** to specify the encoding of the text in the third parameter. If ** the sixth argument to sqlite3_bind_text64() is not how of the ** allowed values shown above, or if the text encoding is different ** from the encoding specified by the sixth parameter, then the behavior ** is undefined. ** ** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that ** is filled with zeroes. ^A zeroblob uses a fixed amount of memory ** (just an integer to hold its size) while it is being processed. ** Zeroblobs are intended to serve as placeholders for BLOBs whose ** content is later written using ** [sqlite3_blob_open | incremental BLOB I/O] routines. |
︙ | ︙ | |||
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 | ** result is undefined and probably harmful. ** ** ^Bindings are not cleared by the [sqlite3_reset()] routine. ** ^Unbound parameters are interpreted as NULL. ** ** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an ** [error code] if anything goes wrong. ** ^[SQLITE_RANGE] is returned if the parameter ** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails. ** ** See also: [sqlite3_bind_parameter_count()], ** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. */ int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); int sqlite3_bind_double(sqlite3_stmt*, int, double); int sqlite3_bind_int(sqlite3_stmt*, int, int); int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); int sqlite3_bind_null(sqlite3_stmt*, int); | > > > > > | > > | 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 | ** result is undefined and probably harmful. ** ** ^Bindings are not cleared by the [sqlite3_reset()] routine. ** ^Unbound parameters are interpreted as NULL. ** ** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an ** [error code] if anything goes wrong. ** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB ** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or ** [SQLITE_MAX_LENGTH]. ** ^[SQLITE_RANGE] is returned if the parameter ** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails. ** ** See also: [sqlite3_bind_parameter_count()], ** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()]. */ int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64, void(*)(void*)); int sqlite3_bind_double(sqlite3_stmt*, int, double); int sqlite3_bind_int(sqlite3_stmt*, int, int); int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); int sqlite3_bind_null(sqlite3_stmt*, int); int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*)); int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64, void(*)(void*), unsigned char encoding); int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); /* ** CAPI3REF: Number Of SQL Parameters ** ** ^This routine can be used to find the number of [SQL parameters] |
︙ | ︙ | |||
4160 4161 4162 4163 4164 4165 4166 | ** extract values from the [sqlite3_value] objects. ** ** These routines work only with [protected sqlite3_value] objects. ** Any attempt to use these routines on an [unprotected sqlite3_value] ** object results in undefined behavior. ** ** ^These routines work just like the corresponding [column access functions] | | | 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 | ** extract values from the [sqlite3_value] objects. ** ** These routines work only with [protected sqlite3_value] objects. ** Any attempt to use these routines on an [unprotected sqlite3_value] ** object results in undefined behavior. ** ** ^These routines work just like the corresponding [column access functions] ** except that these routines take a single [protected sqlite3_value] object ** pointer instead of a [sqlite3_stmt*] pointer and an integer column number. ** ** ^The sqlite3_value_text16() interface extracts a UTF-16 string ** in the native byte-order of the host machine. ^The ** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces ** extract UTF-16 strings as big-endian and little-endian respectively. ** |
︙ | ︙ | |||
4403 4404 4405 4406 4407 4408 4409 | ** of the application-defined function to be the 64-bit signed integer ** value given in the 2nd argument. ** ** ^The sqlite3_result_null() interface sets the return value ** of the application-defined function to be NULL. ** ** ^The sqlite3_result_text(), sqlite3_result_text16(), | | > > > > | 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 | ** of the application-defined function to be the 64-bit signed integer ** value given in the 2nd argument. ** ** ^The sqlite3_result_null() interface sets the return value ** of the application-defined function to be NULL. ** ** ^The sqlite3_result_text(), sqlite3_result_text16(), ** sqlite3_result_text16le(), and sqlite3_result_text16be() ** set the return value of the application-defined function to be ** a text string which is represented as UTF-8, UTF-16 native byte order, ** UTF-16 little endian, or UTF-16 big endian, respectively. ** ^The sqlite3_result_text64() interface sets the return value of an ** application-defined function to be a text string in an encoding ** specified by the fifth (and last) parameter, which must be one ** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]. ** ^SQLite takes the text result from the application from ** the 2nd parameter of the sqlite3_result_text* interfaces. ** ^If the 3rd parameter to the sqlite3_result_text* interfaces ** is negative, then SQLite takes result text from the 2nd parameter ** through the first zero character. ** ^If the 3rd parameter to the sqlite3_result_text* interfaces ** is non-negative, then as many bytes (not characters) of the text |
︙ | ︙ | |||
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 | ** kind of [sqlite3_value] object can be used with this interface. ** ** If these routines are called from within the different thread ** than the one containing the application-defined function that received ** the [sqlite3_context] pointer, the results are undefined. */ void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); void sqlite3_result_double(sqlite3_context*, double); void sqlite3_result_error(sqlite3_context*, const char*, int); void sqlite3_result_error16(sqlite3_context*, const void*, int); void sqlite3_result_error_toobig(sqlite3_context*); void sqlite3_result_error_nomem(sqlite3_context*); void sqlite3_result_error_code(sqlite3_context*, int); void sqlite3_result_int(sqlite3_context*, int); void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); void sqlite3_result_null(sqlite3_context*); void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); void sqlite3_result_value(sqlite3_context*, sqlite3_value*); void sqlite3_result_zeroblob(sqlite3_context*, int n); /* | > > > | 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 | ** kind of [sqlite3_value] object can be used with this interface. ** ** If these routines are called from within the different thread ** than the one containing the application-defined function that received ** the [sqlite3_context] pointer, the results are undefined. */ void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); void sqlite3_result_blob64(sqlite3_context*,const void*,sqlite3_uint64,void(*)(void*)); void sqlite3_result_double(sqlite3_context*, double); void sqlite3_result_error(sqlite3_context*, const char*, int); void sqlite3_result_error16(sqlite3_context*, const void*, int); void sqlite3_result_error_toobig(sqlite3_context*); void sqlite3_result_error_nomem(sqlite3_context*); void sqlite3_result_error_code(sqlite3_context*, int); void sqlite3_result_int(sqlite3_context*, int); void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); void sqlite3_result_null(sqlite3_context*); void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64, void(*)(void*), unsigned char encoding); void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); void sqlite3_result_value(sqlite3_context*, sqlite3_value*); void sqlite3_result_zeroblob(sqlite3_context*, int n); /* |
︙ | ︙ | |||
6353 6354 6355 6356 6357 6358 6359 | ** <dd>This parameter returns the number malloc attempts that might have ** been satisfied using lookaside memory but failed due to all lookaside ** memory already being in use. ** Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt> | | | | | 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 | ** <dd>This parameter returns the number malloc attempts that might have ** been satisfied using lookaside memory but failed due to all lookaside ** memory already being in use. ** Only the high-water value is meaningful; ** the current value is always zero.)^ ** ** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt> ** <dd>This parameter returns the approximate number of bytes of heap ** memory used by all pager caches associated with the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0. ** ** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt> ** <dd>This parameter returns the approximate number of bytes of heap ** memory used to store the schema for all databases associated ** with the connection - main, temp, and any [ATTACH]-ed databases.)^ ** ^The full amount of memory used by the schemas is reported, even if the ** schema memory is shared with other database connections due to ** [shared cache mode] being enabled. ** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0. ** ** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt> ** <dd>This parameter returns the approximate number of bytes of heap ** and lookaside memory used by all prepared statements associated with ** the database connection.)^ ** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0. ** </dd> ** ** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt> ** <dd>This parameter returns the number of pager cache hits that have |
︙ | ︙ |
Changes to src/sqlite3ext.h.
︙ | ︙ | |||
24 25 26 27 28 29 30 | /* ** The following structure holds pointers to all of the SQLite API ** routines. ** ** WARNING: In order to maintain backwards compatibility, add new ** interfaces to the end of this structure only. If you insert new ** interfaces in the middle of this structure, then older different | | | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | /* ** The following structure holds pointers to all of the SQLite API ** routines. ** ** WARNING: In order to maintain backwards compatibility, add new ** interfaces to the end of this structure only. If you insert new ** interfaces in the middle of this structure, then older different ** versions of SQLite will not be able to load each other's shared ** libraries! */ struct sqlite3_api_routines { void * (*aggregate_context)(sqlite3_context*,int nBytes); int (*aggregate_count)(sqlite3_context*); int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*)); int (*bind_double)(sqlite3_stmt*,int,double); |
︙ | ︙ | |||
246 247 248 249 250 251 252 253 254 255 256 | int (*stmt_readonly)(sqlite3_stmt*); int (*stricmp)(const char*,const char*); int (*uri_boolean)(const char*,const char*,int); sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64); const char *(*uri_parameter)(const char*,const char*); char *(*vsnprintf)(int,char*,const char*,va_list); int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*); }; /* ** The following macros redefine the API routines so that they are | > > > > > > > > > > > > > > > > > | | 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | int (*stmt_readonly)(sqlite3_stmt*); int (*stricmp)(const char*,const char*); int (*uri_boolean)(const char*,const char*,int); sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64); const char *(*uri_parameter)(const char*,const char*); char *(*vsnprintf)(int,char*,const char*,va_list); int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*); /* Version 3.8.7 and later */ int (*auto_extension)(void(*)(void)); int (*bind_blob64)(sqlite3_stmt*,int,const void*,sqlite3_uint64, void(*)(void*)); int (*bind_text64)(sqlite3_stmt*,int,const char*,sqlite3_uint64, void(*)(void*),unsigned char); int (*cancel_auto_extension)(void(*)(void)); int (*load_extension)(sqlite3*,const char*,const char*,char**); void *(*malloc64)(sqlite3_uint64); sqlite3_uint64 (*msize)(void*); void *(*realloc64)(void*,sqlite3_uint64); void (*reset_auto_extension)(void); void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64, void(*)(void*)); void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64, void(*)(void*), unsigned char); int (*strglob)(const char*,const char*); }; /* ** The following macros redefine the API routines so that they are ** redirected through the global sqlite3_api structure. ** ** This header file is also used by the loadext.c source file ** (part of the main SQLite library - not an extension) so that ** it can get access to the sqlite3_api_routines structure ** definition. But the main library does not want to redefine ** the API. So the redefinition macros are only valid if the ** SQLITE_CORE macros is undefined. |
︙ | ︙ | |||
463 464 465 466 467 468 469 470 471 472 473 474 475 476 | #define sqlite3_stmt_readonly sqlite3_api->stmt_readonly #define sqlite3_stricmp sqlite3_api->stricmp #define sqlite3_uri_boolean sqlite3_api->uri_boolean #define sqlite3_uri_int64 sqlite3_api->uri_int64 #define sqlite3_uri_parameter sqlite3_api->uri_parameter #define sqlite3_uri_vsnprintf sqlite3_api->vsnprintf #define sqlite3_wal_checkpoint_v2 sqlite3_api->wal_checkpoint_v2 #endif /* SQLITE_CORE */ #ifndef SQLITE_CORE /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; | > > > > > > > > > > > > > | 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 | #define sqlite3_stmt_readonly sqlite3_api->stmt_readonly #define sqlite3_stricmp sqlite3_api->stricmp #define sqlite3_uri_boolean sqlite3_api->uri_boolean #define sqlite3_uri_int64 sqlite3_api->uri_int64 #define sqlite3_uri_parameter sqlite3_api->uri_parameter #define sqlite3_uri_vsnprintf sqlite3_api->vsnprintf #define sqlite3_wal_checkpoint_v2 sqlite3_api->wal_checkpoint_v2 /* Version 3.8.7 and later */ #define sqlite3_auto_extension sqlite3_api->auto_extension #define sqlite3_bind_blob64 sqlite3_api->bind_blob64 #define sqlite3_bind_text64 sqlite3_api->bind_text64 #define sqlite3_cancel_auto_extension sqlite3_api->cancel_auto_extension #define sqlite3_load_extension sqlite3_api->load_extension #define sqlite3_malloc64 sqlite3_api->malloc64 #define sqlite3_msize sqlite3_api->msize #define sqlite3_realloc64 sqlite3_api->realloc64 #define sqlite3_reset_auto_extension sqlite3_api->reset_auto_extension #define sqlite3_result_blob64 sqlite3_api->result_blob64 #define sqlite3_result_text64 sqlite3_api->result_text64 #define sqlite3_strglob sqlite3_api->strglob #endif /* SQLITE_CORE */ #ifndef SQLITE_CORE /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
347 348 349 350 351 352 353 | # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif /* | | | 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif /* ** Return true (non-zero) if the input is an integer that is too large ** to fit in 32-bits. This macro is used inside of various testcase() ** macros to verify that we have tested SQLite for large-file support. */ #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) /* ** The macro unlikely() is a hint that surrounds a boolean |
︙ | ︙ | |||
635 636 637 638 639 640 641 | /* ** Assert that the pointer X is aligned to an 8-byte boundary. This ** macro is used only within assert() to verify that the code gets ** all alignment restrictions correct. ** ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the | | | 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 | /* ** Assert that the pointer X is aligned to an 8-byte boundary. This ** macro is used only within assert() to verify that the code gets ** all alignment restrictions correct. ** ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the ** underlying malloc() implementation might return us 4-byte aligned ** pointers. In that case, only verify 4-byte alignment. */ #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) #else # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) #endif |
︙ | ︙ | |||
983 984 985 986 987 988 989 990 991 992 993 994 995 996 | ** ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. ** Collisions are on the FuncDef.pHash chain. */ struct FuncDefHash { FuncDef *a[23]; /* Hash table for functions */ }; /* ** Each database connection is an instance of the following structure. */ struct sqlite3 { sqlite3_vfs *pVfs; /* OS Interface */ struct Vdbe *pVdbe; /* List of active virtual machines */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 | ** ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. ** Collisions are on the FuncDef.pHash chain. */ struct FuncDefHash { FuncDef *a[23]; /* Hash table for functions */ }; #ifdef SQLITE_USER_AUTHENTICATION /* ** Information held in the "sqlite3" database connection object and used ** to manage user authentication. */ typedef struct sqlite3_userauth sqlite3_userauth; struct sqlite3_userauth { u8 authLevel; /* Current authentication level */ int nAuthPW; /* Size of the zAuthPW in bytes */ char *zAuthPW; /* Password used to authenticate */ char *zAuthUser; /* User name used to authenticate */ }; /* Allowed values for sqlite3_userauth.authLevel */ #define UAUTH_Unknown 0 /* Authentication not yet checked */ #define UAUTH_Fail 1 /* User authentication failed */ #define UAUTH_User 2 /* Authenticated as a normal user */ #define UAUTH_Admin 3 /* Authenticated as an administrator */ /* Functions used only by user authorization logic */ int sqlite3UserAuthTable(const char*); int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*); void sqlite3UserAuthInit(sqlite3*); void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**); #endif /* SQLITE_USER_AUTHENTICATION */ /* ** typedef for the authorization callback function. */ #ifdef SQLITE_USER_AUTHENTICATION typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, const char*, const char*); #else typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*, const char*); #endif /* ** Each database connection is an instance of the following structure. */ struct sqlite3 { sqlite3_vfs *pVfs; /* OS Interface */ struct Vdbe *pVdbe; /* List of active virtual machines */ |
︙ | ︙ | |||
1051 1052 1053 1054 1055 1056 1057 | sqlite3_value *pErr; /* Most recent error message */ union { volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ double notUsed1; /* Spacer */ } u1; Lookaside lookaside; /* Lookaside malloc configuration */ #ifndef SQLITE_OMIT_AUTHORIZATION | < | | 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 | sqlite3_value *pErr; /* Most recent error message */ union { volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ double notUsed1; /* Spacer */ } u1; Lookaside lookaside; /* Lookaside malloc configuration */ #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth; /* Access authorization function */ void *pAuthArg; /* 1st argument to the access auth function */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int (*xProgress)(void *); /* The progress callback */ void *pProgressArg; /* Argument to the progress callback */ unsigned nProgressOps; /* Number of opcodes for progress callback */ #endif |
︙ | ︙ | |||
1078 1079 1080 1081 1082 1083 1084 | Savepoint *pSavepoint; /* List of active savepoints */ int busyTimeout; /* Busy handler timeout, in msec */ int nSavepoint; /* Number of non-transaction savepoints */ int nStatement; /* Number of nested statement-transactions */ i64 nDeferredCons; /* Net deferred constraints this transaction. */ i64 nDeferredImmCons; /* Net deferred immediate constraints */ int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ | < > > > | 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 | Savepoint *pSavepoint; /* List of active savepoints */ int busyTimeout; /* Busy handler timeout, in msec */ int nSavepoint; /* Number of non-transaction savepoints */ int nStatement; /* Number of nested statement-transactions */ i64 nDeferredCons; /* Net deferred constraints this transaction. */ i64 nDeferredImmCons; /* Net deferred immediate constraints */ int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY /* The following variables are all protected by the STATIC_MASTER ** mutex, not by sqlite3.mutex. They are used by code in notify.c. ** ** When X.pUnlockConnection==Y, that means that X is waiting for Y to ** unlock so that it can proceed. ** ** When X.pBlockingConnection==Y, that means that something that X tried ** tried to do recently failed with an SQLITE_LOCKED error due to locks ** held by Y. */ sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ void *pUnlockArg; /* Argument to xUnlockNotify */ void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ #endif #ifdef SQLITE_USER_AUTHENTICATION sqlite3_userauth auth; /* User authentication information */ #endif }; /* ** A macro to discover the encoding of a database. */ #define ENC(db) ((db)->aDb[0].pSchema->enc) |
︙ | ︙ | |||
1157 1158 1159 1160 1161 1162 1163 | #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ #define SQLITE_Transitive 0x0200 /* Transitive constraints */ #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ #define SQLITE_Stat3 0x0800 /* Use the SQLITE_STAT3 table */ | < | 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 | #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ #define SQLITE_Transitive 0x0200 /* Transitive constraints */ #define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */ #define SQLITE_Stat3 0x0800 /* Use the SQLITE_STAT3 table */ #define SQLITE_AllOpts 0xffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ #ifndef SQLITE_OMIT_BUILTIN_TEST #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) |
︙ | ︙ | |||
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 | #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ /* ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are ** used to create the initializers for the FuncDef structures. ** ** FUNCTION(zName, nArg, iArg, bNC, xFunc) ** Used to create a scalar function definition of a function zName | > | 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 | #define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */ #define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */ #define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */ #define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */ #define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */ #define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */ #define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */ #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ /* ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are ** used to create the initializers for the FuncDef structures. ** ** FUNCTION(zName, nArg, iArg, bNC, xFunc) ** Used to create a scalar function definition of a function zName |
︙ | ︙ | |||
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 | {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ pArg, 0, xFunc, 0, 0, #zName, 0, 0} #define LIKEFUNC(zName, nArg, arg, flags) \ {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} /* ** All current savepoints are stored in a linked list starting at ** sqlite3.pSavepoint. The first element in the list is the most recently ** opened savepoint. Savepoints are added to the list by the vdbe ** OP_Savepoint instruction. | > > > | 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 | {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \ pArg, 0, xFunc, 0, 0, #zName, 0, 0} #define LIKEFUNC(zName, nArg, arg, flags) \ {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \ (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} /* ** All current savepoints are stored in a linked list starting at ** sqlite3.pSavepoint. The first element in the list is the most recently ** opened savepoint. Savepoints are added to the list by the vdbe ** OP_Savepoint instruction. |
︙ | ︙ | |||
2213 2214 2215 2216 2217 2218 2219 | Parse *pParse; /* The parser */ SrcList *pSrcList; /* One or more tables used to resolve names */ ExprList *pEList; /* Optional list of result-set columns */ AggInfo *pAggInfo; /* Information about aggregates at this level */ NameContext *pNext; /* Next outer name context. NULL for outermost */ int nRef; /* Number of names resolved by this context */ int nErr; /* Number of errors encountered while resolving names */ | | > > > > | | | | | > | 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 | Parse *pParse; /* The parser */ SrcList *pSrcList; /* One or more tables used to resolve names */ ExprList *pEList; /* Optional list of result-set columns */ AggInfo *pAggInfo; /* Information about aggregates at this level */ NameContext *pNext; /* Next outer name context. NULL for outermost */ int nRef; /* Number of names resolved by this context */ int nErr; /* Number of errors encountered while resolving names */ u16 ncFlags; /* Zero or more NC_* flags defined below */ }; /* ** Allowed values for the NameContext, ncFlags field. ** ** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and ** SQLITE_FUNC_MINMAX. ** */ #define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */ #define NC_HasAgg 0x0002 /* One or more aggregate functions seen */ #define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */ #define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */ #define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */ #define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */ /* ** An instance of the following structure contains all information ** needed to generate code for a single SELECT statement. ** ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. ** If there is a LIMIT clause, the parser sets nLimit to the value of the |
︙ | ︙ | |||
2274 2275 2276 2277 2278 2279 2280 | */ #define SF_Distinct 0x0001 /* Output should be DISTINCT */ #define SF_Resolved 0x0002 /* Identifiers have been resolved */ #define SF_Aggregate 0x0004 /* Contains aggregate functions */ #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ | | | | 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 | */ #define SF_Distinct 0x0001 /* Output should be DISTINCT */ #define SF_Resolved 0x0002 /* Identifiers have been resolved */ #define SF_Aggregate 0x0004 /* Contains aggregate functions */ #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ #define SF_Compound 0x0040 /* Part of a compound query */ #define SF_Values 0x0080 /* Synthesized from VALUES clause */ /* 0x0100 NOT USED */ #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ #define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */ #define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */ #define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */ /* ** The results of a SELECT can be distributed in several ways, as defined ** by one of the following macros. The "SRT" prefix means "SELECT Result ** Type". ** |
︙ | ︙ | |||
2882 2883 2884 2885 2886 2887 2888 | #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) /* ** FTS4 is really an extension for FTS3. It is enabled using the | | | | 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 | #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) /* ** FTS4 is really an extension for FTS3. It is enabled using the ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call ** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3. */ #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) # define SQLITE_ENABLE_FTS3 #endif /* ** The ctype.h header is needed for non-ASCII systems. It is also |
︙ | ︙ | |||
2930 2931 2932 2933 2934 2935 2936 | */ #define sqlite3StrICmp sqlite3_stricmp int sqlite3Strlen30(const char*); #define sqlite3StrNICmp sqlite3_strnicmp int sqlite3MallocInit(void); void sqlite3MallocEnd(void); | | | | | | | | | | 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 | */ #define sqlite3StrICmp sqlite3_stricmp int sqlite3Strlen30(const char*); #define sqlite3StrNICmp sqlite3_strnicmp int sqlite3MallocInit(void); void sqlite3MallocEnd(void); void *sqlite3Malloc(u64); void *sqlite3MallocZero(u64); void *sqlite3DbMallocZero(sqlite3*, u64); void *sqlite3DbMallocRaw(sqlite3*, u64); char *sqlite3DbStrDup(sqlite3*,const char*); char *sqlite3DbStrNDup(sqlite3*,const char*, u64); void *sqlite3Realloc(void*, u64); void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64); void *sqlite3DbRealloc(sqlite3 *, void *, u64); void sqlite3DbFree(sqlite3*, void*); int sqlite3MallocSize(void*); int sqlite3DbMallocSize(sqlite3*, void*); void *sqlite3ScratchMalloc(int); void sqlite3ScratchFree(void*); void *sqlite3PageMalloc(int); void sqlite3PageFree(void*); |
︙ | ︙ | |||
3479 3480 3481 3482 3483 3484 3485 | void sqlite3Stat4ProbeFree(UnpackedRecord*); int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); #endif /* ** The interface to the LEMON-generated parser */ | | | 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 | void sqlite3Stat4ProbeFree(UnpackedRecord*); int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**); #endif /* ** The interface to the LEMON-generated parser */ void *sqlite3ParserAlloc(void*(*)(u64)); void sqlite3ParserFree(void*, void(*)(void*)); void sqlite3Parser(void*, int, Token, Parse*); #ifdef YYTRACKMAXSTACKDEPTH int sqlite3ParserStackPeak(void*); #endif void sqlite3AutoLoadExtensions(sqlite3*); |
︙ | ︙ |
Changes to src/table.c.
︙ | ︙ | |||
25 26 27 28 29 30 31 | /* ** This structure is used to pass data from sqlite3_get_table() through ** to the callback function is uses to build the result. */ typedef struct TabResult { char **azResult; /* Accumulated output */ char *zErrMsg; /* Error message text, if an error occurs */ | | | | | | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | /* ** This structure is used to pass data from sqlite3_get_table() through ** to the callback function is uses to build the result. */ typedef struct TabResult { char **azResult; /* Accumulated output */ char *zErrMsg; /* Error message text, if an error occurs */ u32 nAlloc; /* Slots allocated for azResult[] */ u32 nRow; /* Number of rows in the result */ u32 nColumn; /* Number of columns in the result */ u32 nData; /* Slots used in azResult[]. (nRow+1)*nColumn */ int rc; /* Return code from sqlite3_exec() */ } TabResult; /* ** This routine is called once for each row in the result table. Its job ** is to fill in the TabResult structure appropriately, allocating new ** memory as necessary. |
︙ | ︙ | |||
54 55 56 57 58 59 60 | need = nCol*2; }else{ need = nCol; } if( p->nData + need > p->nAlloc ){ char **azNew; p->nAlloc = p->nAlloc*2 + need; | | | 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | need = nCol*2; }else{ need = nCol; } if( p->nData + need > p->nAlloc ){ char **azNew; p->nAlloc = p->nAlloc*2 + need; azNew = sqlite3_realloc64( p->azResult, sizeof(char*)*p->nAlloc ); if( azNew==0 ) goto malloc_failed; p->azResult = azNew; } /* If this is the first row, then generate an extra row containing ** the names of all columns. */ |
︙ | ︙ | |||
178 179 180 181 182 183 184 | return rc; } /* ** This routine frees the space the sqlite3_get_table() malloced. */ void sqlite3_free_table( | | | 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | return rc; } /* ** This routine frees the space the sqlite3_get_table() malloced. */ void sqlite3_free_table( char **azResult /* Result returned from sqlite3_get_table() */ ){ if( azResult ){ int i, n; azResult--; assert( azResult!=0 ); n = SQLITE_PTR_TO_INT(azResult[0]); for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); } sqlite3_free(azResult); } } #endif /* SQLITE_OMIT_GET_TABLE */ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
756 757 758 759 760 761 762 | Tcl_IncrRefCount(pCmd); rc = Tcl_EvalObjEx(p->interp, pCmd, 0); Tcl_DecrRefCount(pCmd); }else{ /* If there are arguments to the function, make a shallow copy of the ** script object, lappend the arguments, then evaluate the copy. ** | | | 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 | Tcl_IncrRefCount(pCmd); rc = Tcl_EvalObjEx(p->interp, pCmd, 0); Tcl_DecrRefCount(pCmd); }else{ /* If there are arguments to the function, make a shallow copy of the ** script object, lappend the arguments, then evaluate the copy. ** ** By "shallow" copy, we mean only the outer list Tcl_Obj is duplicated. ** The new Tcl_Obj contains pointers to the original list elements. ** That way, when Tcl_EvalObjv() is run and shimmers the first element ** of the list to tclCmdNameType, that alternate representation will ** be preserved and reused on the next invocation. */ Tcl_Obj **aArg; int nArg; |
︙ | ︙ | |||
868 869 870 871 872 873 874 875 876 877 878 879 880 881 | static int auth_callback( void *pArg, int code, const char *zArg1, const char *zArg2, const char *zArg3, const char *zArg4 ){ const char *zCode; Tcl_DString str; int rc; const char *zReply; SqliteDb *pDb = (SqliteDb*)pArg; if( pDb->disableAuth ) return SQLITE_OK; | > > > | 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 | static int auth_callback( void *pArg, int code, const char *zArg1, const char *zArg2, const char *zArg3, const char *zArg4 #ifdef SQLITE_USER_AUTHENTICATION ,const char *zArg5 #endif ){ const char *zCode; Tcl_DString str; int rc; const char *zReply; SqliteDb *pDb = (SqliteDb*)pArg; if( pDb->disableAuth ) return SQLITE_OK; |
︙ | ︙ | |||
920 921 922 923 924 925 926 927 928 929 930 931 932 933 | Tcl_DStringInit(&str); Tcl_DStringAppend(&str, pDb->zAuth, -1); Tcl_DStringAppendElement(&str, zCode); Tcl_DStringAppendElement(&str, zArg1 ? zArg1 : ""); Tcl_DStringAppendElement(&str, zArg2 ? zArg2 : ""); Tcl_DStringAppendElement(&str, zArg3 ? zArg3 : ""); Tcl_DStringAppendElement(&str, zArg4 ? zArg4 : ""); rc = Tcl_GlobalEval(pDb->interp, Tcl_DStringValue(&str)); Tcl_DStringFree(&str); zReply = rc==TCL_OK ? Tcl_GetStringResult(pDb->interp) : "SQLITE_DENY"; if( strcmp(zReply,"SQLITE_OK")==0 ){ rc = SQLITE_OK; }else if( strcmp(zReply,"SQLITE_DENY")==0 ){ rc = SQLITE_DENY; | > > > | 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 | Tcl_DStringInit(&str); Tcl_DStringAppend(&str, pDb->zAuth, -1); Tcl_DStringAppendElement(&str, zCode); Tcl_DStringAppendElement(&str, zArg1 ? zArg1 : ""); Tcl_DStringAppendElement(&str, zArg2 ? zArg2 : ""); Tcl_DStringAppendElement(&str, zArg3 ? zArg3 : ""); Tcl_DStringAppendElement(&str, zArg4 ? zArg4 : ""); #ifdef SQLITE_USER_AUTHENTICATION Tcl_DStringAppendElement(&str, zArg5 ? zArg5 : ""); #endif rc = Tcl_GlobalEval(pDb->interp, Tcl_DStringValue(&str)); Tcl_DStringFree(&str); zReply = rc==TCL_OK ? Tcl_GetStringResult(pDb->interp) : "SQLITE_DENY"; if( strcmp(zReply,"SQLITE_OK")==0 ){ rc = SQLITE_OK; }else if( strcmp(zReply,"SQLITE_DENY")==0 ){ rc = SQLITE_DENY; |
︙ | ︙ | |||
1696 1697 1698 1699 1700 1701 1702 1703 | if( zAuth && len>0 ){ pDb->zAuth = Tcl_Alloc( len + 1 ); memcpy(pDb->zAuth, zAuth, len+1); }else{ pDb->zAuth = 0; } if( pDb->zAuth ){ pDb->interp = interp; | > > > | | 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 | if( zAuth && len>0 ){ pDb->zAuth = Tcl_Alloc( len + 1 ); memcpy(pDb->zAuth, zAuth, len+1); }else{ pDb->zAuth = 0; } if( pDb->zAuth ){ typedef int (*sqlite3_auth_cb)( void*,int,const char*,const char*, const char*,const char*); pDb->interp = interp; sqlite3_set_authorizer(pDb->db,(sqlite3_auth_cb)auth_callback,pDb); }else{ sqlite3_set_authorizer(pDb->db, 0, 0); } } #endif break; } |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
2601 2602 2603 2604 2605 2606 2607 | ** "test_collate <enc> <lhs> <rhs>" ** ** The <lhs> and <rhs> are the two values being compared, encoded in UTF-8. ** The <enc> parameter is the encoding of the collation function that ** SQLite selected to call. The TCL test script implements the ** "test_collate" proc. ** | | | 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 | ** "test_collate <enc> <lhs> <rhs>" ** ** The <lhs> and <rhs> are the two values being compared, encoded in UTF-8. ** The <enc> parameter is the encoding of the collation function that ** SQLite selected to call. The TCL test script implements the ** "test_collate" proc. ** ** Note that this will only work with one interpreter at a time, as the ** interp pointer to use when evaluating the TCL script is stored in ** pTestCollateInterp. */ static Tcl_Interp* pTestCollateInterp; static int test_collate_func( void *pCtx, int nA, const void *zA, |
︙ | ︙ | |||
3754 3755 3756 3757 3758 3759 3760 | return TCL_OK; } /* ** Usage: sqlite3_prepare_tkt3134 DB ** ** Generate a prepared statement for a zero-byte string as a test | | | 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 | return TCL_OK; } /* ** Usage: sqlite3_prepare_tkt3134 DB ** ** Generate a prepared statement for a zero-byte string as a test ** for ticket #3134. The string should be preceded by a zero byte. */ static int test_prepare_tkt3134( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ |
︙ | ︙ | |||
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 | Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite3ErrName(rc), -1)); return TCL_ERROR; } return TCL_OK; } /* ** Register commands with the TCL interpreter. */ int Sqlitetest1_Init(Tcl_Interp *interp){ extern int sqlite3_search_count; extern int sqlite3_found_count; extern int sqlite3_interrupt_count; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 | Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite3ErrName(rc), -1)); return TCL_ERROR; } return TCL_OK; } #ifdef SQLITE_USER_AUTHENTICATION #include "sqlite3userauth.h" /* ** tclcmd: sqlite3_user_authenticate DB USERNAME PASSWORD */ static int test_user_authenticate( ClientData clientData, /* Unused */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ char *zUser = 0; char *zPasswd = 0; int nPasswd = 0; sqlite3 *db; int rc; if( objc!=4 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB USERNAME PASSWORD"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){ return TCL_ERROR; } zUser = Tcl_GetString(objv[2]); zPasswd = Tcl_GetStringFromObj(objv[3], &nPasswd); rc = sqlite3_user_authenticate(db, zUser, zPasswd, nPasswd); Tcl_SetResult(interp, (char *)t1ErrorName(rc), TCL_STATIC); return TCL_OK; } #endif /* SQLITE_USER_AUTHENTICATION */ #ifdef SQLITE_USER_AUTHENTICATION /* ** tclcmd: sqlite3_user_add DB USERNAME PASSWORD ISADMIN */ static int test_user_add( ClientData clientData, /* Unused */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ char *zUser = 0; char *zPasswd = 0; int nPasswd = 0; int isAdmin = 0; sqlite3 *db; int rc; if( objc!=5 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB USERNAME PASSWORD ISADMIN"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){ return TCL_ERROR; } zUser = Tcl_GetString(objv[2]); zPasswd = Tcl_GetStringFromObj(objv[3], &nPasswd); Tcl_GetBooleanFromObj(interp, objv[4], &isAdmin); rc = sqlite3_user_add(db, zUser, zPasswd, nPasswd, isAdmin); Tcl_SetResult(interp, (char *)t1ErrorName(rc), TCL_STATIC); return TCL_OK; } #endif /* SQLITE_USER_AUTHENTICATION */ #ifdef SQLITE_USER_AUTHENTICATION /* ** tclcmd: sqlite3_user_change DB USERNAME PASSWORD ISADMIN */ static int test_user_change( ClientData clientData, /* Unused */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ char *zUser = 0; char *zPasswd = 0; int nPasswd = 0; int isAdmin = 0; sqlite3 *db; int rc; if( objc!=5 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB USERNAME PASSWORD ISADMIN"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){ return TCL_ERROR; } zUser = Tcl_GetString(objv[2]); zPasswd = Tcl_GetStringFromObj(objv[3], &nPasswd); Tcl_GetBooleanFromObj(interp, objv[4], &isAdmin); rc = sqlite3_user_change(db, zUser, zPasswd, nPasswd, isAdmin); Tcl_SetResult(interp, (char *)t1ErrorName(rc), TCL_STATIC); return TCL_OK; } #endif /* SQLITE_USER_AUTHENTICATION */ #ifdef SQLITE_USER_AUTHENTICATION /* ** tclcmd: sqlite3_user_delete DB USERNAME */ static int test_user_delete( ClientData clientData, /* Unused */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ char *zUser = 0; sqlite3 *db; int rc; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB USERNAME"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){ return TCL_ERROR; } zUser = Tcl_GetString(objv[2]); rc = sqlite3_user_delete(db, zUser); Tcl_SetResult(interp, (char *)t1ErrorName(rc), TCL_STATIC); return TCL_OK; } #endif /* SQLITE_USER_AUTHENTICATION */ /* ** Register commands with the TCL interpreter. */ int Sqlitetest1_Init(Tcl_Interp *interp){ extern int sqlite3_search_count; extern int sqlite3_found_count; extern int sqlite3_interrupt_count; |
︙ | ︙ | |||
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 | { "getrusage", test_getrusage }, #endif { "load_static_extension", tclLoadStaticExtensionCmd }, { "sorter_test_fakeheap", sorter_test_fakeheap }, { "sorter_test_sort4_helper", sorter_test_sort4_helper }, { "sqlite3_transaction_save", testTransactionSave }, { "sqlite3_transaction_restore", testTransactionRestore }, }; static int bitmask_size = sizeof(Bitmask)*8; int i; extern int sqlite3_sync_count, sqlite3_fullsync_count; extern int sqlite3_opentemp_count; extern int sqlite3_like_count; extern int sqlite3_xferopt_count; extern int sqlite3_pager_readdb_count; | > > > > > > > | 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 | { "getrusage", test_getrusage }, #endif { "load_static_extension", tclLoadStaticExtensionCmd }, { "sorter_test_fakeheap", sorter_test_fakeheap }, { "sorter_test_sort4_helper", sorter_test_sort4_helper }, { "sqlite3_transaction_save", testTransactionSave }, { "sqlite3_transaction_restore", testTransactionRestore }, #ifdef SQLITE_USER_AUTHENTICATION { "sqlite3_user_authenticate", test_user_authenticate, 0 }, { "sqlite3_user_add", test_user_add, 0 }, { "sqlite3_user_change", test_user_change, 0 }, { "sqlite3_user_delete", test_user_delete, 0 }, #endif }; static int bitmask_size = sizeof(Bitmask)*8; int i; extern int sqlite3_sync_count, sqlite3_fullsync_count; extern int sqlite3_opentemp_count; extern int sqlite3_like_count; extern int sqlite3_xferopt_count; extern int sqlite3_pager_readdb_count; |
︙ | ︙ |
Changes to src/test_config.c.
︙ | ︙ | |||
598 599 600 601 602 603 604 605 606 607 608 609 610 611 | #endif #ifdef SQLITE_SECURE_DELETE Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_MULTIPLEX_EXT_OVWR Tcl_SetVar2(interp, "sqlite_options", "multiplex_ext_overwrite", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "multiplex_ext_overwrite", "0", TCL_GLOBAL_ONLY); #endif | > > > > > > | 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 | #endif #ifdef SQLITE_SECURE_DELETE Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_USER_AUTHENTICATION Tcl_SetVar2(interp, "sqlite_options", "userauth", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "userauth", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_MULTIPLEX_EXT_OVWR Tcl_SetVar2(interp, "sqlite_options", "multiplex_ext_overwrite", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "multiplex_ext_overwrite", "0", TCL_GLOBAL_ONLY); #endif |
︙ | ︙ |
Changes to src/test_intarray.c.
︙ | ︙ | |||
33 34 35 36 37 38 39 | void (*xFree)(void*); /* Function used to free a[] */ }; /* Objects used internally by the virtual table implementation */ typedef struct intarray_vtab intarray_vtab; typedef struct intarray_cursor intarray_cursor; | | | | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | void (*xFree)(void*); /* Function used to free a[] */ }; /* Objects used internally by the virtual table implementation */ typedef struct intarray_vtab intarray_vtab; typedef struct intarray_cursor intarray_cursor; /* An intarray table object */ struct intarray_vtab { sqlite3_vtab base; /* Base class */ sqlite3_intarray *pContent; /* Content of the integer array */ }; /* An intarray cursor object */ struct intarray_cursor { sqlite3_vtab_cursor base; /* Base class */ int i; /* Current cursor position */ }; /* ** None of this works unless we have virtual tables. |
︙ | ︙ |
Changes to src/test_malloc.c.
︙ | ︙ | |||
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 | return TCL_ERROR; } nPending = faultsimPending(); Tcl_SetObjResult(interp, Tcl_NewIntObj(nPending)); return TCL_OK; } /* ** Usage: sqlite3_memdebug_settitle TITLE ** ** Set a title string stored with each allocation. The TITLE is ** typically the name of the test that was running when the ** allocation occurred. The TITLE is stored with the allocation ** and can be used to figure out which tests are leaking memory. ** ** Each title overwrite the previous. */ static int test_memdebug_settitle( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "TITLE"); return TCL_ERROR; } #ifdef SQLITE_MEMDEBUG { const char *zTitle; | > > > > > > > | 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 | return TCL_ERROR; } nPending = faultsimPending(); Tcl_SetObjResult(interp, Tcl_NewIntObj(nPending)); return TCL_OK; } /* ** The following global variable keeps track of the number of tests ** that have run. This variable is only useful when running in the ** debugger. */ static int sqlite3_memdebug_title_count = 0; /* ** Usage: sqlite3_memdebug_settitle TITLE ** ** Set a title string stored with each allocation. The TITLE is ** typically the name of the test that was running when the ** allocation occurred. The TITLE is stored with the allocation ** and can be used to figure out which tests are leaking memory. ** ** Each title overwrite the previous. */ static int test_memdebug_settitle( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ sqlite3_memdebug_title_count++; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "TITLE"); return TCL_ERROR; } #ifdef SQLITE_MEMDEBUG { const char *zTitle; |
︙ | ︙ | |||
876 877 878 879 880 881 882 | } /* ** Usage: sqlite3_config_scratch SIZE N ** ** Set the scratch memory buffer using SQLITE_CONFIG_SCRATCH. ** The buffer is static and is of limited size. N might be | | | 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 | } /* ** Usage: sqlite3_config_scratch SIZE N ** ** Set the scratch memory buffer using SQLITE_CONFIG_SCRATCH. ** The buffer is static and is of limited size. N might be ** adjusted downward as needed to accommodate the requested size. ** The revised value of N is returned. ** ** A negative SIZE causes the buffer pointer to be NULL. */ static int test_config_scratch( void * clientData, Tcl_Interp *interp, |
︙ | ︙ | |||
916 917 918 919 920 921 922 | } /* ** Usage: sqlite3_config_pagecache SIZE N ** ** Set the page-cache memory buffer using SQLITE_CONFIG_PAGECACHE. ** The buffer is static and is of limited size. N might be | | | 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 | } /* ** Usage: sqlite3_config_pagecache SIZE N ** ** Set the page-cache memory buffer using SQLITE_CONFIG_PAGECACHE. ** The buffer is static and is of limited size. N might be ** adjusted downward as needed to accommodate the requested size. ** The revised value of N is returned. ** ** A negative SIZE causes the buffer pointer to be NULL. */ static int test_config_pagecache( void * clientData, Tcl_Interp *interp, |
︙ | ︙ |
Changes to src/test_schema.c.
︙ | ︙ | |||
185 186 187 188 189 190 191 | while( SQLITE_ROW!=sqlite3_step(pCur->pDbList) ){ rc = finalize(&pCur->pDbList); goto next_exit; } /* Set zSql to the SQL to pull the list of tables from the ** sqlite_master (or sqlite_temp_master) table of the database | | | 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | while( SQLITE_ROW!=sqlite3_step(pCur->pDbList) ){ rc = finalize(&pCur->pDbList); goto next_exit; } /* Set zSql to the SQL to pull the list of tables from the ** sqlite_master (or sqlite_temp_master) table of the database ** identified by the row pointed to by the SQL statement pCur->pDbList ** (iterating through a "PRAGMA database_list;" statement). */ if( sqlite3_column_int(pCur->pDbList, 0)==1 ){ zSql = sqlite3_mprintf( "SELECT name FROM sqlite_temp_master WHERE type='table'" ); }else{ |
︙ | ︙ |
Changes to src/tokenize.c.
︙ | ︙ | |||
73 74 75 76 77 78 79 | ** allowed in an identifier. For 7-bit characters, ** sqlite3IsIdChar[X] must be 1. ** ** For EBCDIC, the rules are more complex but have the same ** end result. ** ** Ticket #1066. the SQL standard does not allow '$' in the | | | 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | ** allowed in an identifier. For 7-bit characters, ** sqlite3IsIdChar[X] must be 1. ** ** For EBCDIC, the rules are more complex but have the same ** end result. ** ** Ticket #1066. the SQL standard does not allow '$' in the ** middle of identifiers. But many SQL implementations do. ** SQLite will allow '$' in identifiers for compatibility. ** But the feature is undocumented. */ #ifdef SQLITE_ASCII #define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0) #endif #ifdef SQLITE_EBCDIC |
︙ | ︙ | |||
394 395 396 397 398 399 400 | if( db->nVdbeActive==0 ){ db->u1.isInterrupted = 0; } pParse->rc = SQLITE_OK; pParse->zTail = zSql; i = 0; assert( pzErrMsg!=0 ); | | | 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 | if( db->nVdbeActive==0 ){ db->u1.isInterrupted = 0; } pParse->rc = SQLITE_OK; pParse->zTail = zSql; i = 0; assert( pzErrMsg!=0 ); pEngine = sqlite3ParserAlloc(sqlite3Malloc); if( pEngine==0 ){ db->mallocFailed = 1; return SQLITE_NOMEM; } assert( pParse->pNewTable==0 ); assert( pParse->pNewTrigger==0 ); assert( pParse->nVar==0 ); |
︙ | ︙ |
Changes to src/trigger.c.
︙ | ︙ | |||
123 124 125 126 127 128 129 | /* A long-standing parser bug is that this syntax was allowed: ** ** CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab .... ** ^^^^^^^^ ** ** To maintain backwards compatibility, ignore the database | | | 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | /* A long-standing parser bug is that this syntax was allowed: ** ** CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab .... ** ^^^^^^^^ ** ** To maintain backwards compatibility, ignore the database ** name on pTableName if we are reparsing out of SQLITE_MASTER. */ if( db->init.busy && iDb!=1 ){ sqlite3DbFree(db, pTableName->a[0].zDatabase); pTableName->a[0].zDatabase = 0; } /* If the trigger name was unqualified, and the table is a temp table, |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
323 324 325 326 327 328 329 | /* Start the view context. */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); } /* If we are trying to update a view, realize that view into | | | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | /* Start the view context. */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); } /* If we are trying to update a view, realize that view into ** an ephemeral table. */ #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) if( isView ){ sqlite3MaterializeView(pParse, pTab, pWhere, iDataCur); } #endif |
︙ | ︙ | |||
484 485 486 487 488 489 490 | } if( chngRowid==0 && pPk==0 ){ sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid); } } /* Populate the array of registers beginning at regNew with the new | | | 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 | } if( chngRowid==0 && pPk==0 ){ sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid); } } /* Populate the array of registers beginning at regNew with the new ** row data. This array is used to check constants, create the new ** table and index records, and as the values for any new.* references ** made by triggers. ** ** If there are one or more BEFORE triggers, then do not populate the ** registers associated with columns that are (a) not modified by ** this UPDATE statement and (b) not accessed by new.* references. The ** values for registers not modified by the UPDATE must be reloaded from |
︙ | ︙ | |||
664 665 666 667 668 669 670 | sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */ sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pChanges); sqlite3ExprDelete(db, pWhere); return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise | | | | | 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 | sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */ sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pChanges); sqlite3ExprDelete(db, pWhere); return; } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** they may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Generate code for an UPDATE of a virtual table. ** ** The strategy is that we create an ephemeral table that contains ** for each row to be changed: ** ** (A) The original rowid of that row. ** (B) The revised rowid for the row. (note1) ** (C) The content of every column in the row. ** ** Then we loop over this ephemeral table and for each row in ** the ephemeral table call VUpdate. ** ** When finished, drop the ephemeral table. ** ** (note1) Actually, if we know in advance that (A) is always the same ** as (B) we only store (A), then duplicate (A) when pulling ** it out of the ephemeral table before calling VUpdate. */ |
︙ | ︙ |
Changes to src/util.c.
︙ | ︙ | |||
200 201 202 203 204 205 206 | ** is added to the dequoted string. ** ** The return value is -1 if no dequoting occurs or the length of the ** dequoted string, exclusive of the zero terminator, if dequoting does ** occur. ** ** 2002-Feb-14: This routine is extended to remove MS-Access style | | | 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | ** is added to the dequoted string. ** ** The return value is -1 if no dequoting occurs or the length of the ** dequoted string, exclusive of the zero terminator, if dequoting does ** occur. ** ** 2002-Feb-14: This routine is extended to remove MS-Access style ** brackets from around identifiers. For example: "[a-b-c]" becomes ** "a-b-c". */ int sqlite3Dequote(char *z){ char quote; int i, j; if( z==0 ) return -1; quote = z[0]; |
︙ | ︙ |
Changes to src/vacuum.c.
︙ | ︙ | |||
83 84 85 86 87 88 89 | ** original database. ** ** The transient database requires temporary disk space approximately ** equal to the size of the original database. The copy operation of ** step (3) requires additional temporary disk space approximately equal ** to the size of the original database for the rollback journal. ** Hence, temporary disk space that is approximately 2x the size of the | | | 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | ** original database. ** ** The transient database requires temporary disk space approximately ** equal to the size of the original database. The copy operation of ** step (3) requires additional temporary disk space approximately equal ** to the size of the original database for the rollback journal. ** Hence, temporary disk space that is approximately 2x the size of the ** original database is required. Every page of the database is written ** approximately 3 times: Once for step (2) and twice for step (3). ** Two writes per page are required in step (3) because the original ** database content must be written into the rollback journal prior to ** overwriting the database with the vacuumed content. ** ** Only 1x temporary space and only 1x writes would be required if ** the copy of step (3) were replace by deleting the original database |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
2556 2557 2558 2559 2560 2561 2562 | ** like this: ** ** ------------------------------------------------------------------------ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | ** ------------------------------------------------------------------------ ** ** Data(0) is taken from register P1. Data(1) comes from register P1+1 | | | 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 | ** like this: ** ** ------------------------------------------------------------------------ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | ** ------------------------------------------------------------------------ ** ** Data(0) is taken from register P1. Data(1) comes from register P1+1 ** and so forth. ** ** Each type field is a varint representing the serial type of the ** corresponding data element (see sqlite3VdbeSerialType()). The ** hdr-size field is also a varint which is the offset from the beginning ** of the record to data0. */ nData = 0; /* Number of bytes of data space */ |
︙ | ︙ | |||
3543 3544 3545 3546 3547 3548 3549 | pC->nullRow = 0; #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif if( pC->isTable ){ /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do | | | 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 | pC->nullRow = 0; #ifdef SQLITE_DEBUG pC->seekOp = pOp->opcode; #endif if( pC->isTable ){ /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so convert it. */ pIn3 = &aMem[pOp->p3]; if( (pIn3->flags & (MEM_Int|MEM_Real))==0 ){ applyNumericAffinity(pIn3, 0); } iKey = sqlite3VdbeIntValue(pIn3); pC->rowidIsValid = 0; |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
234 235 236 237 238 239 240 | ** is for use inside assert() statements only. */ #ifdef SQLITE_DEBUG #define memIsValid(M) ((M)->flags & MEM_Undefined)==0 #endif /* | | | | 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | ** is for use inside assert() statements only. */ #ifdef SQLITE_DEBUG #define memIsValid(M) ((M)->flags & MEM_Undefined)==0 #endif /* ** Each auxiliary data pointer stored by a user defined function ** implementation calling sqlite3_set_auxdata() is stored in an instance ** of this structure. All such structures associated with a single VM ** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed ** when the VM is halted (if not before). */ struct AuxData { int iOp; /* Instruction number of OP_Function opcode */ int iArg; /* Index of function argument. */ void *pAux; /* Aux data pointer */ void (*xDelete)(void *); /* Destructor for the aux data */ AuxData *pNext; /* Next element in list */ }; /* ** The "context" argument for an installable function. A pointer to an ** instance of this structure is the first argument to the routines used ** implement the SQL functions. ** ** There is a typedef for this structure in sqlite.h. So all routines, ** even the public interface to SQLite, can use a pointer to this structure. ** But this file is the only place where the internal details of this ** structure are known. |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
208 209 210 211 212 213 214 | return aType[pVal->flags&MEM_AffMask]; } /**************************** sqlite3_result_ ******************************* ** The following routines are used by user-defined functions to specify ** the function result. ** | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | return aType[pVal->flags&MEM_AffMask]; } /**************************** sqlite3_result_ ******************************* ** The following routines are used by user-defined functions to specify ** the function result. ** ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the ** result as a string or blob but if the string or blob is too large, it ** then sets the error code to SQLITE_TOOBIG ** ** The invokeValueDestructor(P,X) routine invokes destructor function X() ** on value P is not going to be used and need to be destroyed. */ static void setResultStrOrError( sqlite3_context *pCtx, /* Function context */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ sqlite3_result_error_toobig(pCtx); } } static int invokeValueDestructor( const void *p, /* Value to destroy */ void (*xDel)(void*), /* The destructor */ sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ ){ assert( xDel!=SQLITE_DYNAMIC ); if( xDel==0 ){ /* noop */ }else if( xDel==SQLITE_TRANSIENT ){ /* noop */ }else{ xDel((void*)p); } if( pCtx ) sqlite3_result_error_toobig(pCtx); return SQLITE_TOOBIG; } void sqlite3_result_blob( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( n>=0 ); assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, 0, xDel); } void sqlite3_result_blob64( sqlite3_context *pCtx, const void *z, sqlite3_uint64 n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); assert( xDel!=SQLITE_DYNAMIC ); if( n>0x7fffffff ){ (void)invokeValueDestructor(z, xDel, pCtx); }else{ setResultStrOrError(pCtx, z, (int)n, 0, xDel); } } void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); } void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
︙ | ︙ | |||
271 272 273 274 275 276 277 278 279 280 281 282 283 284 | sqlite3_context *pCtx, const char *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); } #ifndef SQLITE_OMIT_UTF16 void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) | > > > > > > > > > > > > > > > | 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | sqlite3_context *pCtx, const char *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); } void sqlite3_result_text64( sqlite3_context *pCtx, const char *z, sqlite3_uint64 n, void (*xDel)(void *), unsigned char enc ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); assert( xDel!=SQLITE_DYNAMIC ); if( n>0x7fffffff ){ (void)invokeValueDestructor(z, xDel, pCtx); }else{ setResultStrOrError(pCtx, z, (int)n, enc, xDel); } } #ifndef SQLITE_OMIT_UTF16 void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) |
︙ | ︙ | |||
641 642 643 644 645 646 647 | return createAggContext(p, nByte); }else{ return (void*)p->pMem->z; } } /* | | | | 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 | return createAggContext(p, nByte); }else{ return (void*)p->pMem->z; } } /* ** Return the auxiliary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. */ void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ AuxData *pAuxData; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; } return (pAuxData ? pAuxData->pAux : 0); } /* ** Set the auxiliary data pointer and delete function, for the iArg'th ** argument to the user-function defined by pCtx. Any previous value is ** deleted by calling the delete function specified when it was set. */ void sqlite3_set_auxdata( sqlite3_context *pCtx, int iArg, void *pAux, |
︙ | ︙ | |||
702 703 704 705 706 707 708 | if( xDelete ){ xDelete(pAux); } } #ifndef SQLITE_OMIT_DEPRECATED /* | | | 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 | if( xDelete ){ xDelete(pAux); } } #ifndef SQLITE_OMIT_DEPRECATED /* ** Return the number of times the Step function of an aggregate has been ** called. ** ** This function is deprecated. Do not use it for new code. It is ** provide only to avoid breaking legacy code. New aggregate function ** implementations should keep their own counts within their aggregate ** context. */ |
︙ | ︙ | |||
972 973 974 975 976 977 978 | #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_OMIT_DECLTYPE */ #ifdef SQLITE_ENABLE_COLUMN_METADATA /* ** Return the name of the database from which a result column derives. ** NULL is returned if the result column is an expression or constant or | | | | | 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 | #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_OMIT_DECLTYPE */ #ifdef SQLITE_ENABLE_COLUMN_METADATA /* ** Return the name of the database from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unambiguous reference to a database column. */ const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ return columnName( pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); } #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ return columnName( pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the name of the table from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unambiguous reference to a database column. */ const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ return columnName( pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); } #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ return columnName( pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the name of the table column from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unambiguous reference to a database column. */ const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ return columnName( pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); } #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ |
︙ | ︙ | |||
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 | sqlite3_stmt *pStmt, int i, const void *zData, int nData, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, 0); } int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); | > > > > > > > > > > > > > > | 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 | sqlite3_stmt *pStmt, int i, const void *zData, int nData, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, 0); } int sqlite3_bind_blob64( sqlite3_stmt *pStmt, int i, const void *zData, sqlite3_uint64 nData, void (*xDel)(void*) ){ assert( xDel!=SQLITE_DYNAMIC ); if( nData>0x7fffffff ){ return invokeValueDestructor(zData, xDel, 0); }else{ return bindText(pStmt, i, zData, nData, xDel, 0); } } int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); |
︙ | ︙ | |||
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 | sqlite3_stmt *pStmt, int i, const char *zData, int nData, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); } #ifndef SQLITE_OMIT_UTF16 int sqlite3_bind_text16( sqlite3_stmt *pStmt, int i, const void *zData, int nData, | > > > > > > > > > > > > > > > > | 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 | sqlite3_stmt *pStmt, int i, const char *zData, int nData, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); } int sqlite3_bind_text64( sqlite3_stmt *pStmt, int i, const char *zData, sqlite3_uint64 nData, void (*xDel)(void*), unsigned char enc ){ assert( xDel!=SQLITE_DYNAMIC ); if( nData>0x7fffffff ){ return invokeValueDestructor(zData, xDel, 0); }else{ if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; return bindText(pStmt, i, zData, nData, xDel, enc); } } #ifndef SQLITE_OMIT_UTF16 int sqlite3_bind_text16( sqlite3_stmt *pStmt, int i, const void *zData, int nData, |
︙ | ︙ | |||
1284 1285 1286 1287 1288 1289 1290 | } #ifndef SQLITE_OMIT_DEPRECATED /* ** Deprecated external interface. Internal/core SQLite code ** should call sqlite3TransferBindings. ** | | | 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 | } #ifndef SQLITE_OMIT_DEPRECATED /* ** Deprecated external interface. Internal/core SQLite code ** should call sqlite3TransferBindings. ** ** It is misuse to call this routine with statements from different ** database connections. But as this is a deprecated interface, we ** will not bother to check for that condition. ** ** If the two statements contain a different number of bindings, then ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise ** SQLITE_OK is returned. */ |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
891 892 893 894 895 896 897 | ** Return the opcode for a given address. If the address is -1, then ** return the most recently inserted opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. ** The return of a dummy opcode allows the call to continue functioning | | | 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 | ** Return the opcode for a given address. If the address is -1, then ** return the most recently inserted opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. ** The return of a dummy opcode allows the call to continue functioning ** after an OOM fault without having to check to see if the return from ** this routine is a valid pointer. But because the dummy.opcode is 0, ** dummy will never be written to. This is verified by code inspection and ** by running with Valgrind. */ VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ /* C89 specifies that the constant "dummy" will be initialized to all ** zeros, which is correct. MSVC generates a warning, nevertheless. */ |
︙ | ︙ | |||
1606 1607 1608 1609 1610 1611 1612 | /* ** Prepare a virtual machine for execution for the first time after ** creating the virtual machine. This involves things such ** as allocating stack space and initializing the program counter. ** After the VDBE has be prepped, it can be executed by one or more ** calls to sqlite3VdbeExec(). ** | | | | 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 | /* ** Prepare a virtual machine for execution for the first time after ** creating the virtual machine. This involves things such ** as allocating stack space and initializing the program counter. ** After the VDBE has be prepped, it can be executed by one or more ** calls to sqlite3VdbeExec(). ** ** This function may be called exactly once on each virtual machine. ** After this routine is called the VM has been "packaged" and is ready ** to run. After this routine is called, further calls to ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects ** the Vdbe from the Parse object that helped generate it so that the ** the Vdbe becomes an independent entity and the Parse object can be ** destroyed. ** ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back ** to its initial state after it has been run. |
︙ | ︙ | |||
1986 1987 1988 1989 1990 1991 1992 | if( rc==SQLITE_OK ){ sqlite3VtabCommit(db); } } /* The complex case - There is a multi-file write-transaction active. ** This requires a master journal file to ensure the transaction is | | | 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 | if( rc==SQLITE_OK ){ sqlite3VtabCommit(db); } } /* The complex case - There is a multi-file write-transaction active. ** This requires a master journal file to ensure the transaction is ** committed atomically. */ #ifndef SQLITE_OMIT_DISKIO else{ sqlite3_vfs *pVfs = db->pVfs; int needSync = 0; char *zMaster = 0; /* File-name for the master journal */ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); |
︙ | ︙ | |||
2634 2635 2636 2637 2638 2639 2640 | ** function invoked by the OP_Function opcode at instruction iOp of ** VM pVdbe, and only then if: ** ** * the associated function parameter is the 32nd or later (counting ** from left to right), or ** ** * the corresponding bit in argument mask is clear (where the first | | | 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 | ** function invoked by the OP_Function opcode at instruction iOp of ** VM pVdbe, and only then if: ** ** * the associated function parameter is the 32nd or later (counting ** from left to right), or ** ** * the corresponding bit in argument mask is clear (where the first ** function parameter corresponds to bit 0 etc.). */ void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ AuxData **pp = &pVdbe->pAuxData; while( *pp ){ AuxData *pAux = *pp; if( (iOp<0) || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) |
︙ | ︙ | |||
2738 2739 2740 2741 2742 2743 2744 | return SQLITE_OK; } /* ** Something has moved cursor "p" out of place. Maybe the row it was ** pointed to was deleted out from under it. Or maybe the btree was ** rebalanced. Whatever the cause, try to restore "p" to the place it | | | 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 | return SQLITE_OK; } /* ** Something has moved cursor "p" out of place. Maybe the row it was ** pointed to was deleted out from under it. Or maybe the btree was ** rebalanced. Whatever the cause, try to restore "p" to the place it ** is supposed to be pointing. If the row was deleted out from under the ** cursor, set the cursor to point to a NULL row. */ static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ int isDifferentRow, rc; assert( p->pCursor!=0 ); assert( sqlite3BtreeCursorHasMoved(p->pCursor) ); rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow); |
︙ | ︙ | |||
3263 3264 3265 3266 3267 3268 3269 | /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one of the keys ran out of fields and | | | 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 | /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one of the keys ran out of fields and ** all the fields up to that point were equal. Return the default_rc ** value. */ rc = pPKey2->default_rc; debugCompareEnd: if( desiredResult==0 && rc==0 ) return 1; if( desiredResult<0 && rc<0 ) return 1; if( desiredResult>0 && rc>0 ) return 1; |
︙ | ︙ | |||
3454 3455 3456 3457 3458 3459 3460 | } /* ** This function compares the two table rows or index records ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero ** or positive integer if key1 is less than, equal to or ** greater than key2. The {nKey1, pKey1} key must be a blob | | | 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 | } /* ** This function compares the two table rows or index records ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero ** or positive integer if key1 is less than, equal to or ** greater than key2. The {nKey1, pKey1} key must be a blob ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 ** key must be a parsed key such as obtained from ** sqlite3VdbeParseRecord. ** ** If argument bSkip is non-zero, it is assumed that the caller has already ** determined that the first fields of the keys are equal. ** ** Key1 and Key2 do not have to contain the same number of fields. If all |
︙ | ︙ | |||
3644 3645 3646 3647 3648 3649 3650 | /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one or both of the keys ran out of fields and | | | 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 | /* No memory allocation is ever used on mem1. Prove this using ** the following assert(). If the assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ assert( mem1.zMalloc==0 ); /* rc==0 here means that one or both of the keys ran out of fields and ** all the fields up to that point were equal. Return the default_rc ** value. */ assert( CORRUPT_DB || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) || pKeyInfo->db->mallocFailed ); return pPKey2->default_rc; } |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
33 34 35 36 37 38 39 | assert( (p->flags & MEM_Dyn)!=0 || p->xDel==0 ); /* If p holds a string or blob, the Mem.z must point to exactly ** one of the following: ** ** (1) Memory in Mem.zMalloc and managed by the Mem object ** (2) Memory to be freed using Mem.xDel | | | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | assert( (p->flags & MEM_Dyn)!=0 || p->xDel==0 ); /* If p holds a string or blob, the Mem.z must point to exactly ** one of the following: ** ** (1) Memory in Mem.zMalloc and managed by the Mem object ** (2) Memory to be freed using Mem.xDel ** (3) An ephemeral string or blob ** (4) A static string or blob */ if( (p->flags & (MEM_Str|MEM_Blob)) && p->z!=0 ){ assert( ((p->z==p->zMalloc)? 1 : 0) + ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + |
︙ | ︙ | |||
236 237 238 239 240 241 242 | ** Existing representations MEM_Int and MEM_Real are invalidated if ** bForce is true but are retained if bForce is false. ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the | | | 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | ** Existing representations MEM_Int and MEM_Real are invalidated if ** bForce is true but are retained if bForce is false. ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the latter is an internal programming error. */ int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ int fg = pMem->flags; const int nByte = 32; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !(fg&MEM_Zero) ); |
︙ | ︙ | |||
401 402 403 404 405 406 407 | /* ** Return some kind of integer value which is the best we can do ** at representing the value that *pMem describes as an integer. ** If pMem is an integer, then the value is exact. If pMem is ** a floating-point then the value returned is the integer part. ** If pMem is a string or blob, then we make an attempt to convert | | | 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | /* ** Return some kind of integer value which is the best we can do ** at representing the value that *pMem describes as an integer. ** If pMem is an integer, then the value is exact. If pMem is ** a floating-point then the value returned is the integer part. ** If pMem is a string or blob, then we make an attempt to convert ** it into an integer and return that. If pMem represents an ** an SQL-NULL value, return 0. ** ** If pMem represents a string value, its encoding might be changed. */ i64 sqlite3VdbeIntValue(Mem *pMem){ int flags; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
︙ | ︙ | |||
693 694 695 696 697 698 699 | return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; } return 0; } #ifdef SQLITE_DEBUG /* | | | 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 | return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; } return 0; } #ifdef SQLITE_DEBUG /* ** This routine prepares a memory cell for modification by breaking ** its link to a shallow copy and by marking any current shallow ** copies of this cell as invalid. ** ** This is used for testing and debugging only - to make sure shallow ** copies are not misused. */ void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ |
︙ | ︙ |
Changes to src/vdbesort.c.
︙ | ︙ | |||
2057 2058 2059 2060 2061 2062 2063 | ); pReader->pIncr->pTask->bDone = 1; return pRet; } /* ** Use a background thread to invoke vdbePmaReaderIncrMergeInit(INCRINIT_TASK) | | | 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 | ); pReader->pIncr->pTask->bDone = 1; return pRet; } /* ** Use a background thread to invoke vdbePmaReaderIncrMergeInit(INCRINIT_TASK) ** on the PmaReader object passed as the first argument. ** ** This call will initialize the various fields of the pReadr->pIncr ** structure and, if it is a multi-threaded IncrMerger, launch a ** background thread to populate aFile[1]. */ static int vdbePmaReaderBgIncrInit(PmaReader *pReadr){ void *pCtx = (void*)pReadr; |
︙ | ︙ |
Changes to src/vdbetrace.c.
︙ | ︙ | |||
60 61 62 63 64 65 66 | ** ** The calling function is responsible for making sure the memory returned ** is eventually freed. ** ** ALGORITHM: Scan the input string looking for host parameters in any of ** these forms: ?, ?N, $A, @A, :A. Take care to avoid text within ** string literals, quoted identifier names, and comments. For text forms, | | | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | ** ** The calling function is responsible for making sure the memory returned ** is eventually freed. ** ** ALGORITHM: Scan the input string looking for host parameters in any of ** these forms: ?, ?N, $A, @A, :A. Take care to avoid text within ** string literals, quoted identifier names, and comments. For text forms, ** the host parameter index is found by scanning the prepared ** statement for the corresponding OP_Variable opcode. Once the host ** parameter index is known, locate the value in p->aVar[]. Then render ** the value as a literal in place of the host parameter name. */ char *sqlite3VdbeExpandSql( Vdbe *p, /* The prepared statement being evaluated */ const char *zRawSql /* Raw text of the SQL statement */ |
︙ | ︙ |
Changes to src/wal.c.
︙ | ︙ | |||
570 571 572 573 574 575 576 | return (volatile WalIndexHdr*)pWal->apWiData[0]; } /* ** The argument to this macro must be of type u32. On a little-endian ** architecture, it returns the u32 value that results from interpreting ** the 4 bytes as a big-endian value. On a big-endian architecture, it | | | 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 | return (volatile WalIndexHdr*)pWal->apWiData[0]; } /* ** The argument to this macro must be of type u32. On a little-endian ** architecture, it returns the u32 value that results from interpreting ** the 4 bytes as a big-endian value. On a big-endian architecture, it ** returns the value that would be produced by interpreting the 4 bytes ** of the input value as a little-endian integer. */ #define BYTESWAP32(x) ( \ (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ ) |
︙ | ︙ | |||
984 985 986 987 988 989 990 | int idx; /* Value to write to hash-table slot */ int nCollide; /* Number of hash collisions */ idx = iFrame - iZero; assert( idx <= HASHTABLE_NSLOT/2 + 1 ); /* If this is the first entry to be added to this hash-table, zero the | | | 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 | int idx; /* Value to write to hash-table slot */ int nCollide; /* Number of hash collisions */ idx = iFrame - iZero; assert( idx <= HASHTABLE_NSLOT/2 + 1 ); /* If this is the first entry to be added to this hash-table, zero the ** entire hash table and aPgno[] array before proceeding. */ if( idx==1 ){ int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); memset((void*)&aPgno[1], 0, nByte); } /* If the entry in aPgno[] is already set, then the previous writer |
︙ | ︙ | |||
1657 1658 1659 1660 1661 1662 1663 | ** ** Fsync is also called on the database file if (and only if) the entire ** WAL content is copied into the database file. This second fsync makes ** it safe to delete the WAL since the new content will persist in the ** database file. ** ** This routine uses and updates the nBackfill field of the wal-index header. | | | 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 | ** ** Fsync is also called on the database file if (and only if) the entire ** WAL content is copied into the database file. This second fsync makes ** it safe to delete the WAL since the new content will persist in the ** database file. ** ** This routine uses and updates the nBackfill field of the wal-index header. ** This is the only routine that will increase the value of nBackfill. ** (A WAL reset or recovery will revert nBackfill to zero, but not increase ** its value.) ** ** The caller must be holding sufficient locks to ensure that no other ** checkpoint is running (in any other thread or process) at the same ** time. */ |
︙ | ︙ | |||
1963 1964 1965 1966 1967 1968 1969 | /* ** Read the wal-index header from the wal-index and into pWal->hdr. ** If the wal-header appears to be corrupt, try to reconstruct the ** wal-index from the WAL before returning. ** ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is | | | 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 | /* ** Read the wal-index header from the wal-index and into pWal->hdr. ** If the wal-header appears to be corrupt, try to reconstruct the ** wal-index from the WAL before returning. ** ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is ** changed by this operation. If pWal->hdr is unchanged, set *pChanged ** to 0. ** ** If the wal-index header is successfully read, return SQLITE_OK. ** Otherwise an SQLite error code. */ static int walIndexReadHdr(Wal *pWal, int *pChanged){ int rc; /* Return code */ |
︙ | ︙ | |||
2167 2168 2169 2170 2171 2172 2173 | walShmBarrier(pWal); if( rc==SQLITE_OK ){ if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ /* It is not safe to allow the reader to continue here if frames ** may have been appended to the log before READ_LOCK(0) was obtained. ** When holding READ_LOCK(0), the reader ignores the entire log file, ** which implies that the database file contains a trustworthy | | | 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 | walShmBarrier(pWal); if( rc==SQLITE_OK ){ if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ /* It is not safe to allow the reader to continue here if frames ** may have been appended to the log before READ_LOCK(0) was obtained. ** When holding READ_LOCK(0), the reader ignores the entire log file, ** which implies that the database file contains a trustworthy ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from ** happening, this is usually correct. ** ** However, if frames have been appended to the log (or if the log ** is wrapped and written for that matter) before the READ_LOCK(0) ** is obtained, that is not necessarily true. A checkpointer may ** have started to backfill the appended frames but crashed before ** it finished. Leaving a corrupt image in the database file. |
︙ | ︙ | |||
2835 2836 2837 2838 2839 2840 2841 | } /* If this is the end of a transaction, then we might need to pad ** the transaction and/or sync the WAL file. ** ** Padding and syncing only occur if this set of frames complete a ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL | | | 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 | } /* If this is the end of a transaction, then we might need to pad ** the transaction and/or sync the WAL file. ** ** Padding and syncing only occur if this set of frames complete a ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL ** or synchronous==OFF, then no padding or syncing are needed. ** ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not ** needed and only the sync is done. If padding is needed, then the ** final frame is repeated (with its commit mark) until the next sector ** boundary is crossed. Only the part of the WAL prior to the last ** sector boundary is synced; the part of the last frame that extends ** past the sector boundary is written after the sync. |
︙ | ︙ |
Changes to src/walker.c.
︙ | ︙ | |||
15 16 17 18 19 20 21 | #include "sqliteInt.h" #include <stdlib.h> #include <string.h> /* ** Walk an expression tree. Invoke the callback once for each node | | | 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | #include "sqliteInt.h" #include <stdlib.h> #include <string.h> /* ** Walk an expression tree. Invoke the callback once for each node ** of the expression, while descending. (In other words, the callback ** is invoked before visiting children.) ** ** The return value from the callback should be one of the WRC_* ** constants to specify how to proceed with the walk. ** ** WRC_Continue Continue descending down the tree. ** |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
697 698 699 700 701 702 703 | Vdbe *v = pParse->pVdbe; sqlite3VdbeSetVarmask(v, pRight->iColumn); if( *pisComplete && pRight->u.zToken[1] ){ /* If the rhs of the LIKE expression is a variable, and the current ** value of the variable means there is no need to invoke the LIKE ** function, then no OP_Variable will be added to the program. ** This causes problems for the sqlite3_bind_parameter_name() | | | 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 | Vdbe *v = pParse->pVdbe; sqlite3VdbeSetVarmask(v, pRight->iColumn); if( *pisComplete && pRight->u.zToken[1] ){ /* If the rhs of the LIKE expression is a variable, and the current ** value of the variable means there is no need to invoke the LIKE ** function, then no OP_Variable will be added to the program. ** This causes problems for the sqlite3_bind_parameter_name() ** API. To work around them, add a dummy OP_Variable here. */ int r1 = sqlite3GetTempReg(pParse); sqlite3ExprCodeTarget(pParse, pRight, r1); sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); sqlite3ReleaseTempReg(pParse, r1); } } |
︙ | ︙ | |||
817 818 819 820 821 822 823 | ** From another point of view, "indexable" means that the subterm could ** potentially be used with an index if an appropriate index exists. ** This analysis does not consider whether or not the index exists; that ** is decided elsewhere. This analysis only looks at whether subterms ** appropriate for indexing exist. ** ** All examples A through E above satisfy case 2. But if a term | | | 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 | ** From another point of view, "indexable" means that the subterm could ** potentially be used with an index if an appropriate index exists. ** This analysis does not consider whether or not the index exists; that ** is decided elsewhere. This analysis only looks at whether subterms ** appropriate for indexing exist. ** ** All examples A through E above satisfy case 2. But if a term ** also satisfies case 1 (such as B) we know that the optimizer will ** always prefer case 1, so in that case we pretend that case 2 is not ** satisfied. ** ** It might be the case that multiple tables are indexable. For example, ** (E) above is indexable on tables P, Q, and R. ** ** Terms that satisfy case 2 are candidates for lookup by using |
︙ | ︙ | |||
975 976 977 978 979 980 981 | /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ assert( j==1 ); continue; } if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ /* This term must be of the form t1.a==t2.b where t2 is in the | | | 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 | /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ assert( j==1 ); continue; } if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ /* This term must be of the form t1.a==t2.b where t2 is in the ** chngToIN set but t1 is not. This term will be either preceded ** or follwed by an inverted copy (t2.b==t1.a). Skip this term ** and use its inversion. */ testcase( pOrTerm->wtFlags & TERM_COPIED ); testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); continue; } |
︙ | ︙ | |||
1386 1387 1388 1389 1390 1391 1392 | /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ pTerm->prereqRight |= extraRight; } /* | | | 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 | /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ pTerm->prereqRight |= extraRight; } /* ** This function searches pList for an entry that matches the iCol-th column ** of index pIdx. ** ** If such an expression is found, its index in pList->a[] is returned. If ** no expression is found, -1 is returned. */ static int findIndexCol( Parse *pParse, /* Parse context */ |
︙ | ︙ | |||
2136 2137 2138 2139 2140 2141 2142 | ** ** then nEq is set to 0. ** ** When this function is called, *pnOut is set to the sqlite3LogEst() of the ** number of rows that the index scan is expected to visit without ** considering the range constraints. If nEq is 0, this is the number of ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) | | | 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 | ** ** then nEq is set to 0. ** ** When this function is called, *pnOut is set to the sqlite3LogEst() of the ** number of rows that the index scan is expected to visit without ** considering the range constraints. If nEq is 0, this is the number of ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) ** to account for the range constraints pLower and pUpper. ** ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be ** used, a single range inequality reduces the search space by a factor of 4. ** and a pair of constraints (x>? AND x<?) reduces the expected number of ** rows visited by a factor of 64. */ static int whereRangeScanEst( |
︙ | ︙ | |||
3413 3414 3415 3416 3417 3418 3419 | ** A: <loop body> # Return data, whatever. ** ** Return 2 # Jump back to the Gosub ** ** B: <after the loop> ** ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then | | | 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 | ** A: <loop body> # Return data, whatever. ** ** Return 2 # Jump back to the Gosub ** ** B: <after the loop> ** ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then ** use an ephemeral index instead of a RowSet to record the primary ** keys of the rows we have already seen. ** */ WhereClause *pOrWc; /* The OR-clause broken out into subterms */ SrcList *pOrTab; /* Shortened table list or OR-clause generation */ Index *pCov = 0; /* Potential covering index (or NULL) */ int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ |
︙ | ︙ | |||
3464 3465 3466 3467 3468 3469 3470 | memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); } }else{ pOrTab = pWInfo->pTabList; } /* Initialize the rowset register to contain NULL. An SQL NULL is | | | 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 | memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); } }else{ pOrTab = pWInfo->pTabList; } /* Initialize the rowset register to contain NULL. An SQL NULL is ** equivalent to an empty rowset. Or, create an ephemeral index ** capable of holding primary keys in the case of a WITHOUT ROWID. ** ** Also initialize regReturn to contain the address of the instruction ** immediately following the OP_Return at the bottom of the loop. This ** is required in a few obscure LEFT JOIN cases where control jumps ** over the top of the loop into the body of it. In this case the ** correct response for the end-of-loop code (the OP_Return) is to |
︙ | ︙ | |||
4217 4218 4219 4220 4221 4222 4223 | ** WHERE clause that reference the loop but which are not used by an ** index. ** ** In the current implementation, the first extra WHERE clause term reduces ** the number of output rows by a factor of 10 and each additional term ** reduces the number of output rows by sqrt(2). */ | | > > > > | < < | | > > > > | > > > > > > > > | 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 | ** WHERE clause that reference the loop but which are not used by an ** index. ** ** In the current implementation, the first extra WHERE clause term reduces ** the number of output rows by a factor of 10 and each additional term ** reduces the number of output rows by sqrt(2). */ static void whereLoopOutputAdjust( WhereClause *pWC, /* The WHERE clause */ WhereLoop *pLoop, /* The loop to adjust downward */ LogEst nRow /* Number of rows in the entire table */ ){ WhereTerm *pTerm, *pX; Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); int i, j; int nEq = 0; /* Number of = constraints not within likely()/unlikely() */ for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; if( (pTerm->prereqAll & notAllowed)!=0 ) continue; for(j=pLoop->nLTerm-1; j>=0; j--){ pX = pLoop->aLTerm[j]; if( pX==0 ) continue; if( pX==pTerm ) break; if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; } if( j<0 ){ if( pTerm->truthProb<=0 ){ pLoop->nOut += pTerm->truthProb; }else{ pLoop->nOut--; if( pTerm->eOperator&WO_EQ ) nEq++; } } } /* TUNING: If there is at least one equality constraint in the WHERE ** clause that does not have a likelihood() explicitly assigned to it ** then do not let the estimated number of output rows exceed half ** the number of rows in the table. */ if( nEq && pLoop->nOut>nRow-10 ){ pLoop->nOut = nRow - 10; } } /* ** Adjust the cost C by the costMult facter T. This only occurs if ** compiled with -DSQLITE_ENABLE_COSTMULT */ |
︙ | ︙ | |||
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 | u16 saved_nLTerm; /* Original value of pNew->nLTerm */ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ u16 saved_nSkip; /* Original value of pNew->u.btree.nSkip */ u32 saved_wsFlags; /* Original value of pNew->wsFlags */ LogEst saved_nOut; /* Original value of pNew->nOut */ int iCol; /* Index of the column in the table */ int rc = SQLITE_OK; /* Return code */ LogEst rLogSize; /* Logarithm of table size */ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ pNew = pBuilder->pNew; if( db->mallocFailed ) return SQLITE_NOMEM; assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); | > | 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 | u16 saved_nLTerm; /* Original value of pNew->nLTerm */ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ u16 saved_nSkip; /* Original value of pNew->u.btree.nSkip */ u32 saved_wsFlags; /* Original value of pNew->wsFlags */ LogEst saved_nOut; /* Original value of pNew->nOut */ int iCol; /* Index of the column in the table */ int rc = SQLITE_OK; /* Return code */ LogEst rSize; /* Number of rows in the table */ LogEst rLogSize; /* Logarithm of table size */ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ pNew = pBuilder->pNew; if( db->mallocFailed ) return SQLITE_NOMEM; assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
︙ | ︙ | |||
4313 4314 4315 4316 4317 4318 4319 | saved_nEq = pNew->u.btree.nEq; saved_nSkip = pNew->u.btree.nSkip; saved_nLTerm = pNew->nLTerm; saved_wsFlags = pNew->wsFlags; saved_prereq = pNew->prereq; saved_nOut = pNew->nOut; pNew->rSetup = 0; | > | | 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 | saved_nEq = pNew->u.btree.nEq; saved_nSkip = pNew->u.btree.nSkip; saved_nLTerm = pNew->nLTerm; saved_wsFlags = pNew->wsFlags; saved_prereq = pNew->prereq; saved_nOut = pNew->nOut; pNew->rSetup = 0; rSize = pProbe->aiRowLogEst[0]; rLogSize = estLog(rSize); /* Consider using a skip-scan if there are no WHERE clause constraints ** available for the left-most terms of the index, and if the average ** number of repeats in the left-most terms is at least 18. ** ** The magic number 18 is selected on the basis that scanning 17 rows ** is almost always quicker than an index seek (even though if the index |
︙ | ︙ | |||
4490 4491 4492 4493 4494 4495 4496 | pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); } ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); nOutUnadjusted = pNew->nOut; pNew->rRun += nInMul + nIn; pNew->nOut += nInMul + nIn; | | | 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 | pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); } ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); nOutUnadjusted = pNew->nOut; pNew->rRun += nInMul + nIn; pNew->nOut += nInMul + nIn; whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); rc = whereLoopInsert(pBuilder, pNew); if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ pNew->nOut = saved_nOut; }else{ pNew->nOut = nOutUnadjusted; } |
︙ | ︙ | |||
4703 4704 4705 4706 4707 4708 4709 | /* TUNING: One-time cost for computing the automatic index is ** approximately 7*N*log2(N) where N is the number of rows in ** the table being indexed. */ pNew->rSetup = rLogSize + rSize + 28; assert( 28==sqlite3LogEst(7) ); ApplyCostMultiplier(pNew->rSetup, pTab->costMult); /* TUNING: Each index lookup yields 20 rows in the table. This ** is more than the usual guess of 10 rows, since we have no way | | | 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 | /* TUNING: One-time cost for computing the automatic index is ** approximately 7*N*log2(N) where N is the number of rows in ** the table being indexed. */ pNew->rSetup = rLogSize + rSize + 28; assert( 28==sqlite3LogEst(7) ); ApplyCostMultiplier(pNew->rSetup, pTab->costMult); /* TUNING: Each index lookup yields 20 rows in the table. This ** is more than the usual guess of 10 rows, since we have no way ** of knowing how selective the index will ultimately be. It would ** not be unreasonable to make this value much larger. */ pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); pNew->wsFlags = WHERE_AUTO_INDEX; pNew->prereq = mExtra | pTerm->prereqRight; rc = whereLoopInsert(pBuilder, pNew); } |
︙ | ︙ | |||
4744 4745 4746 4747 4748 4749 4750 | pNew->wsFlags = WHERE_IPK; /* Full table scan */ pNew->iSortIdx = b ? iSortIdx : 0; /* TUNING: Cost of full table scan is (N*3.0). */ pNew->rRun = rSize + 16; ApplyCostMultiplier(pNew->rRun, pTab->costMult); | | | 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 | pNew->wsFlags = WHERE_IPK; /* Full table scan */ pNew->iSortIdx = b ? iSortIdx : 0; /* TUNING: Cost of full table scan is (N*3.0). */ pNew->rRun = rSize + 16; ApplyCostMultiplier(pNew->rRun, pTab->costMult); whereLoopOutputAdjust(pWC, pNew, rSize); rc = whereLoopInsert(pBuilder, pNew); pNew->nOut = rSize; if( rc ) break; }else{ Bitmask m; if( pProbe->isCovering ){ pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; |
︙ | ︙ | |||
4780 4781 4782 4783 4784 4785 4786 | ** index and table rows. If this is a non-covering index scan, ** also add the cost of visiting table rows (N*3.0). */ pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; if( m!=0 ){ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); } ApplyCostMultiplier(pNew->rRun, pTab->costMult); | | | 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 | ** index and table rows. If this is a non-covering index scan, ** also add the cost of visiting table rows (N*3.0). */ pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; if( m!=0 ){ pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); } ApplyCostMultiplier(pNew->rRun, pTab->costMult); whereLoopOutputAdjust(pWC, pNew, rSize); rc = whereLoopInsert(pBuilder, pNew); pNew->nOut = rSize; if( rc ) break; } } rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); |
︙ | ︙ | |||
5133 5134 5135 5136 5137 5138 5139 | ** N==0: No terms of the ORDER BY clause are satisfied ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. ** ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as ** strict. With GROUP BY and DISTINCT the only requirement is that ** equivalent rows appear immediately adjacent to one another. GROUP BY ** and DISTINCT do not require rows to appear in any particular order as long | | | 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 | ** N==0: No terms of the ORDER BY clause are satisfied ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. ** ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as ** strict. With GROUP BY and DISTINCT the only requirement is that ** equivalent rows appear immediately adjacent to one another. GROUP BY ** and DISTINCT do not require rows to appear in any particular order as long ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT ** the pOrderBy terms can be matched in any order. With ORDER BY, the ** pOrderBy terms must be matched in strict left-to-right order. */ static i8 wherePathSatisfiesOrderBy( WhereInfo *pWInfo, /* The WHERE clause */ ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ WherePath *pPath, /* The WherePath to check */ |
︙ | ︙ |
Changes to src/whereInt.h.
︙ | ︙ | |||
172 173 174 175 176 177 178 | ** Then a WherePath object is a path through the graph that visits some ** or all of the WhereLoop objects once. ** ** The "solver" works by creating the N best WherePath objects of length ** 1. Then using those as a basis to compute the N best WherePath objects ** of length 2. And so forth until the length of WherePaths equals the ** number of nodes in the FROM clause. The best (lowest cost) WherePath | | | 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | ** Then a WherePath object is a path through the graph that visits some ** or all of the WhereLoop objects once. ** ** The "solver" works by creating the N best WherePath objects of length ** 1. Then using those as a basis to compute the N best WherePath objects ** of length 2. And so forth until the length of WherePaths equals the ** number of nodes in the FROM clause. The best (lowest cost) WherePath ** at the end is the chosen query plan. */ struct WherePath { Bitmask maskLoop; /* Bitmask of all WhereLoop objects in this path */ Bitmask revLoop; /* aLoop[]s that should be reversed for ORDER BY */ LogEst nRow; /* Estimated number of rows generated by this path */ LogEst rCost; /* Total cost of this path */ LogEst rUnsorted; /* Total cost of this path ignoring sorting costs */ |
︙ | ︙ |
Changes to test/aggnested.test.
︙ | ︙ | |||
152 153 154 155 156 157 158 159 | INSERT INTO t2 VALUES(1); SELECT (SELECT sum(value2==xyz) FROM t2) FROM (SELECT value1 as xyz, max(x1) AS pqr FROM t1 GROUP BY id1); } | > > > > > > | | 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | INSERT INTO t2 VALUES(1); SELECT (SELECT sum(value2==xyz) FROM t2) FROM (SELECT value1 as xyz, max(x1) AS pqr FROM t1 GROUP BY id1); SELECT (SELECT sum(value2<>xyz) FROM t2) FROM (SELECT value1 as xyz, max(x1) AS pqr FROM t1 GROUP BY id1); } } {1 0} do_test aggnested-3.3 { db eval { DROP TABLE IF EXISTS t1; DROP TABLE IF EXISTS t2; CREATE TABLE t1(id1, value1); INSERT INTO t1 VALUES(4469,2),(4469,1); CREATE TABLE t2 (value2); |
︙ | ︙ |
Changes to test/auth.test.
︙ | ︙ | |||
32 33 34 35 36 37 38 | db authorizer ::auth } } do_test auth-1.1.1 { db close set ::DB [sqlite3 db test.db] | | | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | db authorizer ::auth } } do_test auth-1.1.1 { db close set ::DB [sqlite3 db test.db] proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} { return SQLITE_DENY } return SQLITE_OK } db authorizer ::auth catchsql {CREATE TABLE t1(a,b,c)} |
︙ | ︙ | |||
57 58 59 60 61 62 63 | SELECT x; } } {1 {no such column: x}} do_test auth-1.2 { execsql {SELECT name FROM sqlite_master} } {} do_test auth-1.3.1 { | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 | SELECT x; } } {1 {no such column: x}} do_test auth-1.2 { execsql {SELECT name FROM sqlite_master} } {} do_test auth-1.3.1 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE TABLE t1(a,b,c)} } {1 {not authorized}} do_test auth-1.3.2 { db errorcode } {23} do_test auth-1.3.3 { set ::authargs } {t1 {} main {}} do_test auth-1.4 { execsql {SELECT name FROM sqlite_master} } {} ifcapable tempdb { do_test auth-1.5 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE TEMP TABLE t1(a,b,c)} } {1 {not authorized}} do_test auth-1.6 { execsql {SELECT name FROM sqlite_temp_master} } {} do_test auth-1.7.1 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE TEMP TABLE t1(a,b,c)} } {1 {not authorized}} do_test auth-1.7.2 { set ::authargs } {t1 {} temp {}} do_test auth-1.8 { execsql {SELECT name FROM sqlite_temp_master} } {} } do_test auth-1.9 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE TABLE t1(a,b,c)} } {0 {}} do_test auth-1.10 { execsql {SELECT name FROM sqlite_master} } {} do_test auth-1.11 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE TABLE t1(a,b,c)} } {0 {}} do_test auth-1.12 { execsql {SELECT name FROM sqlite_master} } {} ifcapable tempdb { do_test auth-1.13 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE TEMP TABLE t1(a,b,c)} } {0 {}} do_test auth-1.14 { execsql {SELECT name FROM sqlite_temp_master} } {} do_test auth-1.15 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE TEMP TABLE t1(a,b,c)} } {0 {}} do_test auth-1.16 { execsql {SELECT name FROM sqlite_temp_master} } {} do_test auth-1.17 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE TEMP TABLE t1(a,b,c)} } {0 {}} do_test auth-1.18 { execsql {SELECT name FROM sqlite_temp_master} } {t1} } do_test auth-1.19.1 { set ::authargs {} proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE TABLE t2(a,b,c)} } {0 {}} do_test auth-1.19.2 { set ::authargs } {} do_test auth-1.20 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.21.1 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {DROP TABLE t2} } {1 {not authorized}} do_test auth-1.21.2 { set ::authargs } {t2 {} main {}} do_test auth-1.22 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.23.1 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP TABLE t2} } {0 {}} do_test auth-1.23.2 { set ::authargs } {t2 {} main {}} do_test auth-1.24 { execsql {SELECT name FROM sqlite_master} } {t2} ifcapable tempdb { do_test auth-1.25 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {DROP TABLE t1} } {1 {not authorized}} do_test auth-1.26 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.27 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP TABLE t1} } {0 {}} do_test auth-1.28 { execsql {SELECT name FROM sqlite_temp_master} } {t1} } do_test auth-1.29 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="t2"} { return SQLITE_DENY } return SQLITE_OK } catchsql {INSERT INTO t2 VALUES(1,2,3)} } {1 {not authorized}} do_test auth-1.30 { execsql {SELECT * FROM t2} } {} do_test auth-1.31 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="t2"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {INSERT INTO t2 VALUES(1,2,3)} } {0 {}} do_test auth-1.32 { execsql {SELECT * FROM t2} } {} do_test auth-1.33 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="t1"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {INSERT INTO t2 VALUES(1,2,3)} } {0 {}} do_test auth-1.34 { execsql {SELECT * FROM t2} } {1 2 3} do_test auth-1.35.1 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} { return SQLITE_DENY } return SQLITE_OK } catchsql {SELECT * FROM t2} } {1 {access to t2.b is prohibited}} ifcapable attach { do_test auth-1.35.2 { execsql {ATTACH DATABASE 'test.db' AS two} catchsql {SELECT * FROM two.t2} } {1 {access to two.t2.b is prohibited}} execsql {DETACH DATABASE two} } do_test auth-1.36 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {SELECT * FROM t2} } {0 {1 {} 3}} do_test auth-1.37 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {SELECT * FROM t2 WHERE b=2} } {0 {}} do_test auth-1.38 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="a"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {SELECT * FROM t2 WHERE b=2} } {0 {{} 2 3}} do_test auth-1.39 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {SELECT * FROM t2 WHERE b IS NULL} } {0 {1 {} 3}} do_test auth-1.40 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} { return SQLITE_DENY } return SQLITE_OK } catchsql {SELECT a,c FROM t2 WHERE b IS NULL} } {1 {access to t2.b is prohibited}} do_test auth-1.41 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_UPDATE" && $arg1=="t2" && $arg2=="b"} { return SQLITE_DENY } return SQLITE_OK } catchsql {UPDATE t2 SET a=11} } {0 {}} do_test auth-1.42 { execsql {SELECT * FROM t2} } {11 2 3} do_test auth-1.43 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_UPDATE" && $arg1=="t2" && $arg2=="b"} { return SQLITE_DENY } return SQLITE_OK } catchsql {UPDATE t2 SET b=22, c=33} } {1 {not authorized}} do_test auth-1.44 { execsql {SELECT * FROM t2} } {11 2 3} do_test auth-1.45 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_UPDATE" && $arg1=="t2" && $arg2=="b"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {UPDATE t2 SET b=22, c=33} } {0 {}} do_test auth-1.46 { execsql {SELECT * FROM t2} } {11 2 33} do_test auth-1.47 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="t2"} { return SQLITE_DENY } return SQLITE_OK } catchsql {DELETE FROM t2 WHERE a=11} } {1 {not authorized}} do_test auth-1.48 { execsql {SELECT * FROM t2} } {11 2 33} do_test auth-1.49 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="t2"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DELETE FROM t2 WHERE a=11} } {0 {}} do_test auth-1.50 { execsql {SELECT * FROM t2} } {} do_test auth-1.50.2 { execsql {INSERT INTO t2 VALUES(11, 2, 33)} } {} do_test auth-1.51 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_SELECT"} { return SQLITE_DENY } return SQLITE_OK } catchsql {SELECT * FROM t2} } {1 {not authorized}} do_test auth-1.52 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_SELECT"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {SELECT * FROM t2} } {0 {}} do_test auth-1.53 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_SELECT"} { return SQLITE_OK } return SQLITE_OK } catchsql {SELECT * FROM t2} } {0 {11 2 33}} # Update for version 3: There used to be a handful of test here that # tested the authorisation callback with the COPY command. The following # test makes the same database modifications as they used to. do_test auth-1.54 { execsql {INSERT INTO t2 VALUES(7, 8, 9);} } {} do_test auth-1.55 { execsql {SELECT * FROM t2} } {11 2 33 7 8 9} do_test auth-1.63 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {DROP TABLE t2} } {1 {not authorized}} do_test auth-1.64 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.65 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="t2"} { return SQLITE_DENY } return SQLITE_OK } catchsql {DROP TABLE t2} } {1 {not authorized}} do_test auth-1.66 { execsql {SELECT name FROM sqlite_master} } {t2} ifcapable tempdb { do_test auth-1.67 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {DROP TABLE t1} } {1 {not authorized}} do_test auth-1.68 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.69 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="t1"} { return SQLITE_DENY } return SQLITE_OK } catchsql {DROP TABLE t1} } {1 {not authorized}} do_test auth-1.70 { execsql {SELECT name FROM sqlite_temp_master} } {t1} } do_test auth-1.71 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP TABLE t2} } {0 {}} do_test auth-1.72 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.73 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="t2"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP TABLE t2} } {0 {}} do_test auth-1.74 { execsql {SELECT name FROM sqlite_master} } {t2} ifcapable tempdb { do_test auth-1.75 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP TABLE t1} } {0 {}} do_test auth-1.76 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.77 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="t1"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP TABLE t1} } {0 {}} do_test auth-1.78 { execsql {SELECT name FROM sqlite_temp_master} } {t1} } # Test cases auth-1.79 to auth-1.124 test creating and dropping views. # Omit these if the library was compiled with views omitted. ifcapable view { do_test auth-1.79 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_VIEW"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2} } {1 {not authorized}} do_test auth-1.80 { set ::authargs } {v1 {} main {}} do_test auth-1.81 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.82 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_VIEW"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2} } {0 {}} do_test auth-1.83 { set ::authargs } {v1 {} main {}} do_test auth-1.84 { execsql {SELECT name FROM sqlite_master} } {t2} ifcapable tempdb { do_test auth-1.85 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_VIEW"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2} } {1 {not authorized}} do_test auth-1.86 { set ::authargs } {v1 {} temp {}} do_test auth-1.87 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.88 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_VIEW"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2} } {0 {}} do_test auth-1.89 { set ::authargs } {v1 {} temp {}} do_test auth-1.90 { execsql {SELECT name FROM sqlite_temp_master} } {t1} } do_test auth-1.91 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2} } {1 {not authorized}} do_test auth-1.92 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.93 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2} } {0 {}} do_test auth-1.94 { execsql {SELECT name FROM sqlite_master} } {t2} ifcapable tempdb { do_test auth-1.95 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2} } {1 {not authorized}} do_test auth-1.96 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.97 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2} } {0 {}} do_test auth-1.98 { execsql {SELECT name FROM sqlite_temp_master} } {t1} } do_test auth-1.99 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql { CREATE VIEW v2 AS SELECT a+1,b+1 FROM t2; DROP VIEW v2 } } {1 {not authorized}} do_test auth-1.100 { execsql {SELECT name FROM sqlite_master} } {t2 v2} do_test auth-1.101 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_VIEW"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {DROP VIEW v2} } {1 {not authorized}} do_test auth-1.102 { set ::authargs } {v2 {} main {}} do_test auth-1.103 { execsql {SELECT name FROM sqlite_master} } {t2 v2} do_test auth-1.104 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP VIEW v2} } {0 {}} do_test auth-1.105 { execsql {SELECT name FROM sqlite_master} } {t2 v2} do_test auth-1.106 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_VIEW"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP VIEW v2} } {0 {}} do_test auth-1.107 { set ::authargs } {v2 {} main {}} do_test auth-1.108 { execsql {SELECT name FROM sqlite_master} } {t2 v2} do_test auth-1.109 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_VIEW"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql {DROP VIEW v2} } {0 {}} do_test auth-1.110 { set ::authargs } {v2 {} main {}} do_test auth-1.111 { execsql {SELECT name FROM sqlite_master} } {t2} ifcapable tempdb { do_test auth-1.112 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql { CREATE TEMP VIEW v1 AS SELECT a+1,b+1 FROM t1; DROP VIEW v1 } } {1 {not authorized}} do_test auth-1.113 { execsql {SELECT name FROM sqlite_temp_master} } {t1 v1} do_test auth-1.114 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_VIEW"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {DROP VIEW v1} } {1 {not authorized}} do_test auth-1.115 { set ::authargs } {v1 {} temp {}} do_test auth-1.116 { execsql {SELECT name FROM sqlite_temp_master} } {t1 v1} do_test auth-1.117 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP VIEW v1} } {0 {}} do_test auth-1.118 { execsql {SELECT name FROM sqlite_temp_master} } {t1 v1} do_test auth-1.119 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_VIEW"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP VIEW v1} } {0 {}} do_test auth-1.120 { set ::authargs } {v1 {} temp {}} do_test auth-1.121 { execsql {SELECT name FROM sqlite_temp_master} } {t1 v1} do_test auth-1.122 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_VIEW"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql {DROP VIEW v1} |
︙ | ︙ | |||
845 846 847 848 849 850 851 | } ;# ifcapable view # Test cases auth-1.125 to auth-1.176 test creating and dropping triggers. # Omit these if the library was compiled with triggers omitted. # ifcapable trigger&&tempdb { do_test auth-1.125 { | | | | | | | 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 | } ;# ifcapable view # Test cases auth-1.125 to auth-1.176 test creating and dropping triggers. # Omit these if the library was compiled with triggers omitted. # ifcapable trigger&&tempdb { do_test auth-1.125 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql { CREATE TRIGGER r2 DELETE on t2 BEGIN SELECT NULL; END; } } {1 {not authorized}} do_test auth-1.126 { set ::authargs } {r2 t2 main {}} do_test auth-1.127 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.128 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql { CREATE TRIGGER r2 DELETE on t2 BEGIN SELECT NULL; END; } } {1 {not authorized}} do_test auth-1.129 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.130 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql { CREATE TRIGGER r2 DELETE on t2 BEGIN SELECT NULL; END; } } {0 {}} do_test auth-1.131 { set ::authargs } {r2 t2 main {}} do_test auth-1.132 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.133 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql { CREATE TRIGGER r2 DELETE on t2 BEGIN SELECT NULL; END; } } {0 {}} do_test auth-1.134 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.135 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql { |
︙ | ︙ | |||
940 941 942 943 944 945 946 | } {r2 t2 main {}} do_test auth-1.136.2 { execsql { SELECT name FROM sqlite_master WHERE type='trigger' } } {r2} do_test auth-1.136.3 { | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 | } {r2 t2 main {}} do_test auth-1.136.2 { execsql { SELECT name FROM sqlite_master WHERE type='trigger' } } {r2} do_test auth-1.136.3 { proc auth {code arg1 arg2 arg3 arg4 args} { lappend ::authargs $code $arg1 $arg2 $arg3 $arg4 return SQLITE_OK } set ::authargs {} execsql { INSERT INTO t2 VALUES(1,2,3); } set ::authargs } {SQLITE_INSERT t2 {} main {} SQLITE_INSERT tx {} main r2 SQLITE_READ t2 ROWID main r2} do_test auth-1.136.4 { execsql { SELECT * FROM tx; } } {3} do_test auth-1.137 { execsql {SELECT name FROM sqlite_master} } {t2 tx r2} do_test auth-1.138 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql { CREATE TRIGGER r1 DELETE on t1 BEGIN SELECT NULL; END; } } {1 {not authorized}} do_test auth-1.139 { set ::authargs } {r1 t1 temp {}} do_test auth-1.140 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.141 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql { CREATE TRIGGER r1 DELETE on t1 BEGIN SELECT NULL; END; } } {1 {not authorized}} do_test auth-1.142 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.143 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql { CREATE TRIGGER r1 DELETE on t1 BEGIN SELECT NULL; END; } } {0 {}} do_test auth-1.144 { set ::authargs } {r1 t1 temp {}} do_test auth-1.145 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.146 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql { CREATE TRIGGER r1 DELETE on t1 BEGIN SELECT NULL; END; } } {0 {}} do_test auth-1.147 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.148 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql { CREATE TRIGGER r1 DELETE on t1 BEGIN SELECT NULL; END; } } {0 {}} do_test auth-1.149 { set ::authargs } {r1 t1 temp {}} do_test auth-1.150 { execsql {SELECT name FROM sqlite_temp_master} } {t1 r1} do_test auth-1.151 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {DROP TRIGGER r2} } {1 {not authorized}} do_test auth-1.152 { execsql {SELECT name FROM sqlite_master} } {t2 tx r2} do_test auth-1.153 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {DROP TRIGGER r2} } {1 {not authorized}} do_test auth-1.154 { set ::authargs } {r2 t2 main {}} do_test auth-1.155 { execsql {SELECT name FROM sqlite_master} } {t2 tx r2} do_test auth-1.156 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP TRIGGER r2} } {0 {}} do_test auth-1.157 { execsql {SELECT name FROM sqlite_master} } {t2 tx r2} do_test auth-1.158 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP TRIGGER r2} } {0 {}} do_test auth-1.159 { set ::authargs } {r2 t2 main {}} do_test auth-1.160 { execsql {SELECT name FROM sqlite_master} } {t2 tx r2} do_test auth-1.161 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql {DROP TRIGGER r2} } {0 {}} do_test auth-1.162 { set ::authargs } {r2 t2 main {}} do_test auth-1.163 { execsql { DROP TABLE tx; DELETE FROM t2 WHERE a=1 AND b=2 AND c=3; SELECT name FROM sqlite_master; } } {t2} do_test auth-1.164 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {DROP TRIGGER r1} } {1 {not authorized}} do_test auth-1.165 { execsql {SELECT name FROM sqlite_temp_master} } {t1 r1} do_test auth-1.166 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {DROP TRIGGER r1} } {1 {not authorized}} do_test auth-1.167 { set ::authargs } {r1 t1 temp {}} do_test auth-1.168 { execsql {SELECT name FROM sqlite_temp_master} } {t1 r1} do_test auth-1.169 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP TRIGGER r1} } {0 {}} do_test auth-1.170 { execsql {SELECT name FROM sqlite_temp_master} } {t1 r1} do_test auth-1.171 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP TRIGGER r1} } {0 {}} do_test auth-1.172 { set ::authargs } {r1 t1 temp {}} do_test auth-1.173 { execsql {SELECT name FROM sqlite_temp_master} } {t1 r1} do_test auth-1.174 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_TRIGGER"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql {DROP TRIGGER r1} } {0 {}} do_test auth-1.175 { set ::authargs } {r1 t1 temp {}} do_test auth-1.176 { execsql {SELECT name FROM sqlite_temp_master} } {t1} } ;# ifcapable trigger do_test auth-1.177 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE INDEX i2 ON t2(a)} } {1 {not authorized}} do_test auth-1.178 { set ::authargs } {i2 t2 main {}} do_test auth-1.179 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.180 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE INDEX i2 ON t2(a)} } {1 {not authorized}} do_test auth-1.181 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.182 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE INDEX i2 ON t2(b)} } {0 {}} do_test auth-1.183 { set ::authargs } {i2 t2 main {}} do_test auth-1.184 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.185 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE INDEX i2 ON t2(b)} } {0 {}} do_test auth-1.186 { execsql {SELECT name FROM sqlite_master} } {t2} do_test auth-1.187 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql {CREATE INDEX i2 ON t2(a)} } {0 {}} do_test auth-1.188 { set ::authargs } {i2 t2 main {}} do_test auth-1.189 { execsql {SELECT name FROM sqlite_master} } {t2 i2} ifcapable tempdb { do_test auth-1.190 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE INDEX i1 ON t1(a)} } {1 {not authorized}} do_test auth-1.191 { set ::authargs } {i1 t1 temp {}} do_test auth-1.192 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.193 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {CREATE INDEX i1 ON t1(b)} } {1 {not authorized}} do_test auth-1.194 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.195 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE INDEX i1 ON t1(b)} } {0 {}} do_test auth-1.196 { set ::authargs } {i1 t1 temp {}} do_test auth-1.197 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.198 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {CREATE INDEX i1 ON t1(c)} } {0 {}} do_test auth-1.199 { execsql {SELECT name FROM sqlite_temp_master} } {t1} do_test auth-1.200 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_CREATE_TEMP_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql {CREATE INDEX i1 ON t1(a)} } {0 {}} do_test auth-1.201 { set ::authargs } {i1 t1 temp {}} do_test auth-1.202 { execsql {SELECT name FROM sqlite_temp_master} } {t1 i1} } do_test auth-1.203 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {DROP INDEX i2} } {1 {not authorized}} do_test auth-1.204 { execsql {SELECT name FROM sqlite_master} } {t2 i2} do_test auth-1.205 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {DROP INDEX i2} } {1 {not authorized}} do_test auth-1.206 { set ::authargs } {i2 t2 main {}} do_test auth-1.207 { execsql {SELECT name FROM sqlite_master} } {t2 i2} do_test auth-1.208 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP INDEX i2} } {0 {}} do_test auth-1.209 { execsql {SELECT name FROM sqlite_master} } {t2 i2} do_test auth-1.210 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP INDEX i2} } {0 {}} do_test auth-1.211 { set ::authargs } {i2 t2 main {}} do_test auth-1.212 { execsql {SELECT name FROM sqlite_master} } {t2 i2} do_test auth-1.213 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql {DROP INDEX i2} } {0 {}} do_test auth-1.214 { set ::authargs } {i2 t2 main {}} do_test auth-1.215 { execsql {SELECT name FROM sqlite_master} } {t2} ifcapable tempdb { do_test auth-1.216 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} { return SQLITE_DENY } return SQLITE_OK } catchsql {DROP INDEX i1} } {1 {not authorized}} do_test auth-1.217 { execsql {SELECT name FROM sqlite_temp_master} } {t1 i1} do_test auth-1.218 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {DROP INDEX i1} } {1 {not authorized}} do_test auth-1.219 { set ::authargs } {i1 t1 temp {}} do_test auth-1.220 { execsql {SELECT name FROM sqlite_temp_master} } {t1 i1} do_test auth-1.221 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP INDEX i1} } {0 {}} do_test auth-1.222 { execsql {SELECT name FROM sqlite_temp_master} } {t1 i1} do_test auth-1.223 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {DROP INDEX i1} } {0 {}} do_test auth-1.224 { set ::authargs } {i1 t1 temp {}} do_test auth-1.225 { execsql {SELECT name FROM sqlite_temp_master} } {t1 i1} do_test auth-1.226 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DROP_TEMP_INDEX"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql {DROP INDEX i1} } {0 {}} do_test auth-1.227 { set ::authargs } {i1 t1 temp {}} do_test auth-1.228 { execsql {SELECT name FROM sqlite_temp_master} } {t1} } do_test auth-1.229 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_PRAGMA"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {PRAGMA full_column_names=on} } {1 {not authorized}} do_test auth-1.230 { set ::authargs } {full_column_names on {} {}} do_test auth-1.231 { execsql2 {SELECT a FROM t2} } {a 11 a 7} do_test auth-1.232 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_PRAGMA"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql {PRAGMA full_column_names=on} } {0 {}} do_test auth-1.233 { set ::authargs } {full_column_names on {} {}} do_test auth-1.234 { execsql2 {SELECT a FROM t2} } {a 11 a 7} do_test auth-1.235 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_PRAGMA"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql {PRAGMA full_column_names=on} } {0 {}} do_test auth-1.236 { execsql2 {SELECT a FROM t2} } {t2.a 11 t2.a 7} do_test auth-1.237 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_PRAGMA"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql {PRAGMA full_column_names=OFF} } {0 {}} do_test auth-1.238 { set ::authargs } {full_column_names OFF {} {}} do_test auth-1.239 { execsql2 {SELECT a FROM t2} } {a 11 a 7} do_test auth-1.240 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_TRANSACTION"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {BEGIN} } {1 {not authorized}} do_test auth-1.241 { set ::authargs } {BEGIN {} {} {}} do_test auth-1.242 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_TRANSACTION" && $arg1!="BEGIN"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql {BEGIN; INSERT INTO t2 VALUES(44,55,66); COMMIT} |
︙ | ︙ | |||
1614 1615 1616 1617 1618 1619 1620 | } {11 2 33 7 8 9} # ticket #340 - authorization for ATTACH and DETACH. # ifcapable attach { do_test auth-1.251 { db authorizer ::auth | | | 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 | } {11 2 33 7 8 9} # ticket #340 - authorization for ATTACH and DETACH. # ifcapable attach { do_test auth-1.251 { db authorizer ::auth proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ATTACH"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] } return SQLITE_OK } catchsql { ATTACH DATABASE ':memory:' AS test1 |
︙ | ︙ | |||
1640 1641 1642 1643 1644 1645 1646 | do_test auth-1.252c { db eval {DETACH test1} db eval {ATTACH ':mem' || 'ory:' AS test1} set ::authargs } {{} {} {} {}} do_test auth-1.253 { catchsql {DETACH DATABASE test1} | | | | | | | 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 | do_test auth-1.252c { db eval {DETACH test1} db eval {ATTACH ':mem' || 'ory:' AS test1} set ::authargs } {{} {} {} {}} do_test auth-1.253 { catchsql {DETACH DATABASE test1} proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ATTACH"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql { ATTACH DATABASE ':memory:' AS test1; } } {1 {not authorized}} do_test auth-1.254 { lindex [execsql {PRAGMA database_list}] 7 } {} do_test auth-1.255 { catchsql {DETACH DATABASE test1} proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ATTACH"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql { ATTACH DATABASE ':memory:' AS test1; } } {0 {}} do_test auth-1.256 { lindex [execsql {PRAGMA database_list}] 7 } {} do_test auth-1.257 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DETACH"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } execsql {ATTACH DATABASE ':memory:' AS test1} catchsql { DETACH DATABASE test1; } } {0 {}} do_test auth-1.258 { lindex [execsql {PRAGMA database_list}] 7 } {} do_test auth-1.259 { execsql {ATTACH DATABASE ':memory:' AS test1} proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DETACH"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql { DETACH DATABASE test1; } } {0 {}} ifcapable tempdb { ifcapable schema_pragmas { do_test auth-1.260 { lindex [execsql {PRAGMA database_list}] 7 } {test1} } ;# ifcapable schema_pragmas do_test auth-1.261 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DETACH"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql { |
︙ | ︙ | |||
1731 1732 1733 1734 1735 1736 1737 | db authorizer ::auth # Authorization for ALTER TABLE. These tests are omitted if the library # was built without ALTER TABLE support. ifcapable altertable { do_test auth-1.263 { | | | | | 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 | db authorizer ::auth # Authorization for ALTER TABLE. These tests are omitted if the library # was built without ALTER TABLE support. ifcapable altertable { do_test auth-1.263 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ALTER_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql { ALTER TABLE t1 RENAME TO t1x } } {0 {}} do_test auth-1.264 { execsql {SELECT name FROM sqlite_temp_master WHERE type='table'} } {t1x} do_test auth-1.265 { set authargs } {temp t1 {} {}} do_test auth-1.266 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ALTER_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql { ALTER TABLE t1x RENAME TO t1 } } {0 {}} do_test auth-1.267 { execsql {SELECT name FROM sqlite_temp_master WHERE type='table'} } {t1x} do_test auth-1.268 { set authargs } {temp t1x {} {}} do_test auth-1.269 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ALTER_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql { |
︙ | ︙ | |||
1800 1801 1802 1803 1804 1805 1806 | } ifcapable altertable { db authorizer {} catchsql {ALTER TABLE t1x RENAME TO t1} db authorizer ::auth do_test auth-1.272 { | | | | | 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 | } ifcapable altertable { db authorizer {} catchsql {ALTER TABLE t1x RENAME TO t1} db authorizer ::auth do_test auth-1.272 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ALTER_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql { ALTER TABLE t2 RENAME TO t2x } } {0 {}} do_test auth-1.273 { execsql {SELECT name FROM sqlite_master WHERE type='table'} } {t2x} do_test auth-1.274 { set authargs } {main t2 {} {}} do_test auth-1.275 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ALTER_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql { ALTER TABLE t2x RENAME TO t2 } } {0 {}} do_test auth-1.276 { execsql {SELECT name FROM sqlite_master WHERE type='table'} } {t2x} do_test auth-1.277 { set authargs } {main t2x {} {}} do_test auth-1.278 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ALTER_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql { |
︙ | ︙ | |||
1863 1864 1865 1866 1867 1868 1869 | } ;# ifcapable altertable # Test the authorization callbacks for the REINDEX command. ifcapable reindex { proc auth {code args} { if {$code=="SQLITE_REINDEX"} { | | | 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 | } ;# ifcapable altertable # Test the authorization callbacks for the REINDEX command. ifcapable reindex { proc auth {code args} { if {$code=="SQLITE_REINDEX"} { set ::authargs [concat $::authargs [lrange $args 0 3]] } return SQLITE_OK } db authorizer auth do_test auth-1.281 { execsql { CREATE TABLE t3(a PRIMARY KEY, b, c); |
︙ | ︙ | |||
1946 1947 1948 1949 1950 1951 1952 | execsql { REINDEX temp.t3; } set ::authargs } {t3_idx2 {} temp {} t3_idx1 {} temp {} sqlite_autoindex_t3_1 {} temp {}} proc auth {code args} { if {$code=="SQLITE_REINDEX"} { | | | 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 | execsql { REINDEX temp.t3; } set ::authargs } {t3_idx2 {} temp {} t3_idx1 {} temp {} sqlite_autoindex_t3_1 {} temp {}} proc auth {code args} { if {$code=="SQLITE_REINDEX"} { set ::authargs [concat $::authargs [lrange $args 0 3]] return SQLITE_DENY } return SQLITE_OK } do_test auth-1.292 { set ::authargs {} catchsql { |
︙ | ︙ | |||
1969 1970 1971 1972 1973 1974 1975 | } } ;# ifcapable reindex ifcapable analyze { proc auth {code args} { if {$code=="SQLITE_ANALYZE"} { | | | 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 | } } ;# ifcapable reindex ifcapable analyze { proc auth {code args} { if {$code=="SQLITE_ANALYZE"} { set ::authargs [concat $::authargs [lrange $args 0 3]] } return SQLITE_OK } do_test auth-1.294 { set ::authargs {} execsql { CREATE TABLE t4(a,b,c); |
︙ | ︙ | |||
2016 2017 2018 2019 2020 2021 2022 | # Authorization for ALTER TABLE ADD COLUMN. # These tests are omitted if the library # was built without ALTER TABLE support. ifcapable {altertable} { do_test auth-1.300 { execsql {CREATE TABLE t5(x)} | | | | | 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 | # Authorization for ALTER TABLE ADD COLUMN. # These tests are omitted if the library # was built without ALTER TABLE support. ifcapable {altertable} { do_test auth-1.300 { execsql {CREATE TABLE t5(x)} proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ALTER_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_OK } return SQLITE_OK } catchsql { ALTER TABLE t5 ADD COLUMN new_col_1; } } {0 {}} do_test auth-1.301 { set x [execsql {SELECT sql FROM sqlite_master WHERE name='t5'}] regexp new_col_1 $x } {1} do_test auth-1.302 { set authargs } {main t5 {} {}} do_test auth-1.303 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ALTER_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_IGNORE } return SQLITE_OK } catchsql { ALTER TABLE t5 ADD COLUMN new_col_2; } } {0 {}} do_test auth-1.304 { set x [execsql {SELECT sql FROM sqlite_master WHERE name='t5'}] regexp new_col_2 $x } {0} do_test auth-1.305 { set authargs } {main t5 {} {}} do_test auth-1.306 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_ALTER_TABLE"} { set ::authargs [list $arg1 $arg2 $arg3 $arg4] return SQLITE_DENY } return SQLITE_OK } catchsql { |
︙ | ︙ | |||
2078 2079 2080 2081 2082 2083 2084 | set authargs } {main t5 {} {}} execsql {DROP TABLE t5} } ;# ifcapable altertable ifcapable {cte} { do_test auth-1.310 { | | | 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 | set authargs } {main t5 {} {}} execsql {DROP TABLE t5} } ;# ifcapable altertable ifcapable {cte} { do_test auth-1.310 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_RECURSIVE"} { return SQLITE_DENY } return SQLITE_OK } db eval { DROP TABLE IF EXISTS t1; |
︙ | ︙ | |||
2113 2114 2115 2116 2117 2118 2119 | WITH RECURSIVE auth1314(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM auth1314 WHERE x<5) SELECT * FROM t1 LEFT JOIN auth1314; } {1 {not authorized}} } ;# ifcapable cte do_test auth-2.1 { | | | | | | | | | | | | | 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 | WITH RECURSIVE auth1314(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM auth1314 WHERE x<5) SELECT * FROM t1 LEFT JOIN auth1314; } {1 {not authorized}} } ;# ifcapable cte do_test auth-2.1 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t3" && $arg2=="x"} { return SQLITE_DENY } return SQLITE_OK } db authorizer ::auth execsql {CREATE TABLE t3(x INTEGER PRIMARY KEY, y, z)} catchsql {SELECT * FROM t3} } {1 {access to t3.x is prohibited}} do_test auth-2.1 { catchsql {SELECT y,z FROM t3} } {0 {}} do_test auth-2.2 { catchsql {SELECT ROWID,y,z FROM t3} } {1 {access to t3.x is prohibited}} do_test auth-2.3 { catchsql {SELECT OID,y,z FROM t3} } {1 {access to t3.x is prohibited}} do_test auth-2.4 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t3" && $arg2=="x"} { return SQLITE_IGNORE } return SQLITE_OK } execsql {INSERT INTO t3 VALUES(44,55,66)} catchsql {SELECT * FROM t3} } {0 {{} 55 66}} do_test auth-2.5 { catchsql {SELECT rowid,y,z FROM t3} } {0 {{} 55 66}} do_test auth-2.6 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t3" && $arg2=="ROWID"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {SELECT * FROM t3} } {0 {44 55 66}} do_test auth-2.7 { catchsql {SELECT ROWID,y,z FROM t3} } {0 {44 55 66}} do_test auth-2.8 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="ROWID"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {SELECT ROWID,b,c FROM t2} } {0 {{} 2 33 {} 8 9}} do_test auth-2.9.1 { # We have to flush the cache here in case the Tcl interface tries to # reuse a statement compiled with sqlite3_prepare_v2(). In this case, # the first error encountered is an SQLITE_SCHEMA error. Then, when # trying to recompile the statement, the authorization error is encountered. # If we do not flush the cache, the correct error message is returned, but # the error code is SQLITE_SCHEMA, not SQLITE_ERROR as required by the test # case after this one. # db cache flush proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="ROWID"} { return bogus } return SQLITE_OK } catchsql {SELECT ROWID,b,c FROM t2} } {1 {authorizer malfunction}} do_test auth-2.9.2 { db errorcode } {1} do_test auth-2.10 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_SELECT"} { return bogus } return SQLITE_OK } catchsql {SELECT ROWID,b,c FROM t2} } {1 {authorizer malfunction}} do_test auth-2.11.1 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg2=="a"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {SELECT * FROM t2, t3} } {0 {{} 2 33 44 55 66 {} 8 9 44 55 66}} do_test auth-2.11.2 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg2=="x"} { return SQLITE_IGNORE } return SQLITE_OK } catchsql {SELECT * FROM t2, t3} } {0 {11 2 33 {} 55 66 7 8 9 {} 55 66}} # Make sure the OLD and NEW pseudo-tables of a trigger get authorized. # ifcapable trigger { do_test auth-3.1 { proc auth {code arg1 arg2 arg3 arg4 args} { return SQLITE_OK } execsql { CREATE TABLE tx(a1,a2,b1,b2,c1,c2); CREATE TRIGGER r1 AFTER UPDATE ON t2 FOR EACH ROW BEGIN INSERT INTO tx VALUES(OLD.a,NEW.a,OLD.b,NEW.b,OLD.c,NEW.c); END; UPDATE t2 SET a=a+1; SELECT * FROM tx; } } {11 12 2 2 33 33 7 8 8 8 9 9} do_test auth-3.2 { proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="c"} { return SQLITE_IGNORE } return SQLITE_OK } execsql { DELETE FROM tx; UPDATE t2 SET a=a+100; SELECT * FROM tx; } } {12 112 2 2 {} {} 8 108 8 8 {} {}} } ;# ifcapable trigger # Make sure the names of views and triggers are passed on on arg4. # ifcapable trigger { do_test auth-4.1 { proc auth {code arg1 arg2 arg3 arg4 args} { lappend ::authargs $code $arg1 $arg2 $arg3 $arg4 return SQLITE_OK } set authargs {} execsql { UPDATE t2 SET a=a+1; } |
︙ | ︙ | |||
2336 2337 2338 2339 2340 2341 2342 | } ;# ifcapable view && trigger # Ticket #1338: Make sure authentication works in the presence of an AS # clause. # do_test auth-5.1 { | | | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 | } ;# ifcapable view && trigger # Ticket #1338: Make sure authentication works in the presence of an AS # clause. # do_test auth-5.1 { proc auth {code arg1 arg2 arg3 arg4 args} { return SQLITE_OK } execsql { SELECT count(a) AS cnt FROM t4 ORDER BY cnt } } {1} |
︙ | ︙ | |||
2389 2390 2391 2392 2393 2394 2395 | CREATE TRIGGER t5_tr1 AFTER INSERT ON t5 BEGIN UPDATE t5 SET x = 1 WHERE NEW.x = 0; END; } } {} set ::authargs [list] proc auth {args} { | | | 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 | CREATE TRIGGER t5_tr1 AFTER INSERT ON t5 BEGIN UPDATE t5 SET x = 1 WHERE NEW.x = 0; END; } } {} set ::authargs [list] proc auth {args} { eval lappend ::authargs [lrange $args 0 4] return SQLITE_OK } do_test auth-5.3.2 { execsql { INSERT INTO t5 (x) values(0) } set ::authargs } [list SQLITE_INSERT t5 {} main {} \ SQLITE_UPDATE t5 x main t5_tr1 \ |
︙ | ︙ | |||
2415 2416 2417 2418 2419 2420 2421 | execsql { CREATE TABLE t6(a,b,c,d,e,f,g,h); INSERT INTO t6 VALUES(1,2,3,4,5,6,7,8); } } {} set ::authargs [list] proc auth {args} { | | | 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 | execsql { CREATE TABLE t6(a,b,c,d,e,f,g,h); INSERT INTO t6 VALUES(1,2,3,4,5,6,7,8); } } {} set ::authargs [list] proc auth {args} { eval lappend ::authargs [lrange $args 0 4] return SQLITE_OK } do_test auth-6.2 { execsql {UPDATE t6 SET rowID=rowID+100} set ::authargs } [list SQLITE_READ t6 ROWID main {} \ SQLITE_UPDATE t6 ROWID main {} \ |
︙ | ︙ |
Changes to test/auth2.test.
︙ | ︙ | |||
27 28 29 30 31 32 33 | do_test auth2-1.1 { execsql { CREATE TABLE t1(a,b,c); INSERT INTO t1 VALUES(1,2,3); } set ::flist {} | | | 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | do_test auth2-1.1 { execsql { CREATE TABLE t1(a,b,c); INSERT INTO t1 VALUES(1,2,3); } set ::flist {} proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_FUNCTION"} { lappend ::flist $arg2 if {$arg2=="max"} { return SQLITE_DENY } elseif {$arg2=="min"} { return SQLITE_IGNORE } else { |
︙ | ︙ | |||
76 77 78 79 80 81 82 | # and when computing the result set of a view. # db close sqlite3 db test.db sqlite3 db2 test.db proc auth {args} { global authargs | | | 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | # and when computing the result set of a view. # db close sqlite3 db test.db sqlite3 db2 test.db proc auth {args} { global authargs append authargs [lrange $args 0 4]\n return SQLITE_OK } db auth auth do_test auth2-2.1 { set ::authargs {} db eval { CREATE TABLE t2(x,y,z); |
︙ | ︙ |
Changes to test/auth3.test.
︙ | ︙ | |||
26 27 28 29 30 31 32 | } # Disable the statement cache for these tests. # db cache size 0 db authorizer ::auth | | | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | } # Disable the statement cache for these tests. # db cache size 0 db authorizer ::auth proc auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_DELETE"} { return $::authcode } return SQLITE_OK } #-------------------------------------------------------------------------- |
︙ | ︙ |
Changes to test/fkey2.test.
︙ | ︙ | |||
1550 1551 1552 1553 1554 1555 1556 | execsql { CREATE TABLE long(a, b PRIMARY KEY, c); CREATE TABLE short(d, e, f REFERENCES long); CREATE TABLE mid(g, h, i REFERENCES long DEFERRABLE INITIALLY DEFERRED); } } {} | | | 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 | execsql { CREATE TABLE long(a, b PRIMARY KEY, c); CREATE TABLE short(d, e, f REFERENCES long); CREATE TABLE mid(g, h, i REFERENCES long DEFERRABLE INITIALLY DEFERRED); } } {} proc auth {args} {eval lappend ::authargs [lrange $args 0 4]; return SQLITE_OK} db auth auth # An insert on the parent table must read the child key of any deferred # foreign key constraints. But not the child key of immediate constraints. set authargs {} do_test fkey2-18.2 { execsql { INSERT INTO long VALUES(1, 2, 3) } |
︙ | ︙ |
Changes to test/fts4aa.test.
︙ | ︙ | |||
166 167 168 169 170 171 172 | db eval {SELECT docid FROM t1 WHERE words MATCH $::q ORDER BY docid} } $r } # Should get the same search results when an authorizer prevents # all PRAGMA statements. # | | | 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | db eval {SELECT docid FROM t1 WHERE words MATCH $::q ORDER BY docid} } $r } # Should get the same search results when an authorizer prevents # all PRAGMA statements. # proc no_pragma_auth {code arg1 arg2 arg3 arg4 args} { if {$code=="SQLITE_PRAGMA"} {return SQLITE_DENY} return SQLITE_OK; } do_test fts4aa-4.0 { db auth ::no_pragma_auth db eval { DROP TABLE t1; |
︙ | ︙ |
Changes to test/minmax4.test.
︙ | ︙ | |||
52 53 54 55 56 57 58 59 | INSERT INTO t1 VALUES(3,4); SELECT p, max(q) FROM t1; } } {3 4} do_test minmax4-1.6 { db eval { SELECT p, min(q) FROM t1; } | > | > | > | | 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | INSERT INTO t1 VALUES(3,4); SELECT p, max(q) FROM t1; } } {3 4} do_test minmax4-1.6 { db eval { SELECT p, min(q) FROM t1; SELECT p FROM (SELECT p, min(q) FROM t1); } } {1 2 1} do_test minmax4-1.7 { db eval { INSERT INTO t1 VALUES(5,0); SELECT p, max(q) FROM t1; SELECT p FROM (SELECT max(q), p FROM t1); } } {3 4 3} do_test minmax4-1.8 { db eval { SELECT p, min(q) FROM t1; } } {5 0} do_test minmax4-1.9 { db eval { INSERT INTO t1 VALUES(6,1); SELECT p, max(q) FROM t1; SELECT p FROM (SELECT max(q), p FROM t1); } } {3 4 3} do_test minmax4-1.10 { db eval { SELECT p, min(q) FROM t1; } } {5 0} do_test minmax4-1.11 { db eval { |
︙ | ︙ |
Changes to test/savepoint.test.
︙ | ︙ | |||
557 558 559 560 561 562 563 | execsql { RELEASE "including Whitespace " } } {} # Test that the authorization callback works. # ifcapable auth { proc auth {args} { | | | 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | execsql { RELEASE "including Whitespace " } } {} # Test that the authorization callback works. # ifcapable auth { proc auth {args} { eval lappend ::authdata [lrange $args 0 4] return SQLITE_OK } db auth auth do_test savepoint-9.1 { set ::authdata [list] execsql { SAVEPOINT sp1 } |
︙ | ︙ | |||
579 580 581 582 583 584 585 | do_test savepoint-9.3 { set ::authdata [list] execsql { RELEASE sp1 } set ::authdata } {SQLITE_SAVEPOINT RELEASE sp1 {} {}} proc auth {args} { | | | 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 | do_test savepoint-9.3 { set ::authdata [list] execsql { RELEASE sp1 } set ::authdata } {SQLITE_SAVEPOINT RELEASE sp1 {} {}} proc auth {args} { eval lappend ::authdata [lrange $args 0 4] return SQLITE_DENY } db auth auth do_test savepoint-9.4 { set ::authdata [list] set res [catchsql { SAVEPOINT sp1 }] |
︙ | ︙ |
Added test/userauth01.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | # 2014-09-10 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file implements tests of the SQLITE_USER_AUTHENTICATION extension. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix userauth01 ifcapable !userauth { finish_test return } # Create a no-authentication-required database # do_execsql_test userauth01-1.0 { CREATE TABLE t1(x); INSERT INTO t1 VALUES(1),(2.5),('three'),(x'4444'),(NULL); SELECT quote(x) FROM t1 ORDER BY x; SELECT name FROM sqlite_master; } {NULL 1 2.5 'three' X'4444' t1} # Calling sqlite3_user_authenticate() on a no-authentication-required # database connection is a harmless no-op. # do_test userauth01-1.1 { sqlite3_user_authenticate db alice pw-4-alice execsql { SELECT quote(x) FROM t1 ORDER BY x; SELECT name FROM sqlite_master; } } {NULL 1 2.5 'three' X'4444' t1} # If sqlite3_user_add(D,U,P,N,A) is called on a no-authentication-required # database and A is false, then the call fails with an SQLITE_AUTH error. # do_test userauth01-1.2 { sqlite3_user_add db bob pw-4-bob 0 } {SQLITE_AUTH} do_test userauth01-1.3 { execsql { SELECT quote(x) FROM t1 ORDER BY x; SELECT name FROM sqlite_master; } } {NULL 1 2.5 'three' X'4444' t1} # When called on a no-authentication-required # database and when A is true, the sqlite3_user_add(D,U,P,N,A) routine # converts the database into an authentication-required database and # logs the database connection D in using user U with password P,N. # do_test userauth01-1.4 { sqlite3_user_add db alice pw-4-alice 1 } {SQLITE_OK} do_test userauth01-1.5 { execsql { SELECT quote(x) FROM t1 ORDER BY x; SELECT uname, isadmin FROM sqlite_user ORDER BY uname; SELECT name FROM sqlite_master ORDER BY name; } } {NULL 1 2.5 'three' X'4444' alice 1 sqlite_user t1} # The sqlite3_user_add() interface can be used (by an admin user only) # to create a new user. # do_test userauth01-1.6 { sqlite3_user_add db bob pw-4-bob 0 sqlite3_user_add db cindy pw-4-cindy 0 sqlite3_user_add db david pw-4-david 0 execsql { SELECT uname, isadmin FROM sqlite_user ORDER BY uname; } } {alice 1 bob 0 cindy 0 david 0} # The sqlite_user table is inaccessible (unreadable and unwriteable) to # non-admin users and is read-only for admin users. However, if the same # do_test userauth01-1.7 { sqlite3 db2 test.db sqlite3_user_authenticate db2 cindy pw-4-cindy db2 eval { SELECT quote(x) FROM t1 ORDER BY x; SELECT name FROM sqlite_master ORDER BY name; } } {NULL 1 2.5 'three' X'4444' sqlite_user t1} do_test userauth01-1.8 { catchsql { SELECT uname, isadmin FROM sqlite_user ORDER BY uname; } db2 } {1 {no such table: sqlite_user}} # Any user can change their own password. # do_test userauth01-1.9 { sqlite3_user_change db2 cindy xyzzy-cindy 0 } {SQLITE_OK} do_test userauth01-1.10 { sqlite3_user_authenticate db2 cindy pw-4-cindy } {SQLITE_AUTH} do_test userauth01-1.11 { sqlite3_user_authenticate db2 cindy xyzzy-cindy } {SQLITE_OK} do_test userauth01-1.12 { sqlite3_user_change db alice xyzzy-alice 1 } {SQLITE_OK} do_test userauth01-1.13 { sqlite3_user_authenticate db alice pw-4-alice } {SQLITE_AUTH} do_test userauth01-1.14 { sqlite3_user_authenticate db alice xyzzy-alice } {SQLITE_OK} # No user may change their own admin privilege setting. # do_test userauth01-1.15 { sqlite3_user_change db alice xyzzy-alice 0 } {SQLITE_AUTH} do_test userauth01-1.16 { db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} } {alice 1 bob 0 cindy 0 david 0} do_test userauth01-1.17 { sqlite3_user_change db2 cindy xyzzy-cindy 1 } {SQLITE_AUTH} do_test userauth01-1.18 { db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} } {alice 1 bob 0 cindy 0 david 0} # The sqlite3_user_change() interface can be used to change a users # login credentials or admin privilege. # do_test userauth01-1.20 { sqlite3_user_change db david xyzzy-david 1 } {SQLITE_OK} do_test userauth01-1.21 { db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} } {alice 1 bob 0 cindy 0 david 1} do_test userauth01-1.22 { sqlite3_user_authenticate db2 david xyzzy-david } {SQLITE_OK} do_test userauth01-1.23 { db2 eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} } {alice 1 bob 0 cindy 0 david 1} do_test userauth01-1.24 { sqlite3_user_change db david pw-4-david 0 } {SQLITE_OK} do_test userauth01-1.25 { sqlite3_user_authenticate db2 david pw-4-david } {SQLITE_OK} do_test userauth01-1.26 { db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} } {alice 1 bob 0 cindy 0 david 0} do_test userauth01-1.27 { catchsql {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} db2 } {1 {no such table: sqlite_user}} # Only an admin user can change another users login # credentials or admin privilege setting. # do_test userauth01-1.30 { sqlite3_user_change db2 bob xyzzy-bob 1 } {SQLITE_AUTH} do_test userauth01-1.31 { db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} } {alice 1 bob 0 cindy 0 david 0} # The sqlite3_user_delete() interface can be used (by an admin user only) # to delete a user. # do_test userauth01-1.40 { sqlite3_user_delete db bob } {SQLITE_OK} do_test userauth01-1.41 { db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} } {alice 1 cindy 0 david 0} do_test userauth01-1.42 { sqlite3_user_delete db2 cindy } {SQLITE_AUTH} do_test userauth01-1.43 { sqlite3_user_delete db2 alice } {SQLITE_AUTH} do_test userauth01-1.44 { db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} } {alice 1 cindy 0 david 0} # The currently logged-in user cannot be deleted # do_test userauth01-1.50 { sqlite3_user_delete db alice } {SQLITE_AUTH} do_test userauth01-1.51 { db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} } {alice 1 cindy 0 david 0} # When ATTACH-ing new database files to a connection, each newly attached # database that is an authentication-required database is checked using # the same username and password as supplied to the main database. If that # check fails, then the ATTACH command fails with an SQLITE_AUTH error. # do_test userauth01-1.60 { forcedelete test3.db sqlite3 db3 test3.db sqlite3_user_add db3 alice xyzzy-alice 1 } {SQLITE_OK} do_test userauth01-1.61 { db3 eval { CREATE TABLE t3(a,b,c); INSERT INTO t3 VALUES(1,2,3); SELECT * FROM t3; } } {1 2 3} do_test userauth01-1.62 { db eval { ATTACH 'test3.db' AS aux; SELECT * FROM t1, t3 ORDER BY x LIMIT 1; DETACH aux; } } {{} 1 2 3} do_test userauth01-1.63 { sqlite3_user_change db alice pw-4-alice 1 sqlite3_user_authenticate db alice pw-4-alice catchsql { ATTACH 'test3.db' AS aux; } } {1 {unable to open database: test3.db}} do_test userauth01-1.64 { sqlite3_extended_errcode db } {SQLITE_AUTH} do_test userauth01-1.65 { db eval {PRAGMA database_list} } {~/test3.db/} # The sqlite3_set_authorizer() callback is modified to take a 7th parameter # which is the username of the currently logged in user, or NULL for a # no-authentication-required database. # proc auth {args} { lappend ::authargs $args return SQLITE_OK } do_test authuser01-2.1 { unset -nocomplain ::authargs db auth auth db eval {SELECT x FROM t1} set ::authargs } {/SQLITE_SELECT {} {} {} {} alice/} finish_test |
Changes to test/vtab3.test.
︙ | ︙ | |||
21 22 23 24 25 26 27 | return } set ::auth_fail 0 set ::auth_log [list] set ::auth_filter [list SQLITE_READ SQLITE_UPDATE SQLITE_SELECT SQLITE_PRAGMA] | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | return } set ::auth_fail 0 set ::auth_log [list] set ::auth_filter [list SQLITE_READ SQLITE_UPDATE SQLITE_SELECT SQLITE_PRAGMA] proc auth {code arg1 arg2 arg3 arg4 args} { if {[lsearch $::auth_filter $code]>-1} { return SQLITE_OK } lappend ::auth_log $code $arg1 $arg2 $arg3 $arg4 incr ::auth_fail -1 if {$::auth_fail == 0} { return SQLITE_DENY |
︙ | ︙ |
Changes to test/whereJ.test.
︙ | ︙ | |||
369 370 371 372 373 374 375 | AND t3b.id BETWEEN t2b.minChild AND t2b.maxChild AND t4.id BETWEEN t3a.minChild AND t3b.maxChild ORDER BY t4.x; } {~/SCAN/} ############################################################################ | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 | AND t3b.id BETWEEN t2b.minChild AND t2b.maxChild AND t4.id BETWEEN t3a.minChild AND t3b.maxChild ORDER BY t4.x; } {~/SCAN/} ############################################################################ # Create and populate table. do_execsql_test 3.1 { CREATE TABLE t1(a, b, c) } for {set i 0} {$i < 32} {incr i 2} { for {set x 0} {$x < 100} {incr x} { execsql { INSERT INTO t1 VALUES($i, $x, $c) } incr c } execsql { INSERT INTO t1 VALUES($i+1, 5, $c) } incr c } do_execsql_test 3.2 { SELECT a, count(*) FROM t1 GROUP BY a HAVING a < 8; } { 0 100 1 1 2 100 3 1 4 100 5 1 6 100 7 1 } do_execsql_test 3.3 { CREATE INDEX idx_ab ON t1(a, b); CREATE INDEX idx_c ON t1(c); ANALYZE; } {} # This one should use index "idx_c". do_eqp_test 3.4 { SELECT * FROM t1 WHERE a = 4 AND b BETWEEN 20 AND 80 -- Matches 80 rows AND c BETWEEN 150 AND 160 -- Matches 10 rows } { 0 0 0 {SEARCH TABLE t1 USING INDEX idx_c (c>? AND c<?)} } # This one should use index "idx_ab". do_eqp_test 3.5 { SELECT * FROM t1 WHERE a = 5 AND b BETWEEN 20 AND 80 -- Matches 1 row AND c BETWEEN 150 AND 160 -- Matches 10 rows } { 0 0 0 {SEARCH TABLE t1 USING INDEX idx_ab (a=? AND b>? AND b<?)} } ########################################################################################### # Reset the database and setup for a test case derived from actual SQLite users # db close sqlite3 db test.db do_execsql_test 4.1 { CREATE TABLE le( le_id largeint, xid char(31), type smallint, name char(255) DEFAULT '', mtime largeint DEFAULT 0, muuid int DEFAULT 0 ); CREATE TABLE cx( cx_id largeint, code char(31), type smallint, name char(31), description varchar, role smallint, mtime largeint DEFAULT 0, muuid int DEFAULT 0, le_id largeint DEFAULT 0, imco smallint DEFAULT 0 ); CREATE TABLE px( px_id largeint, cx_id largeint, px_tid largeint, name char(31), description varchar DEFAULT '', ia smallint, sl smallint, le_id largeint DEFAULT 0, mtime largeint DEFAULT 0, muuid int DEFAULT 0 ); CREATE INDEX le_id on le (le_id); CREATE INDEX c_id on cx (cx_id); CREATE INDEX c_leid on cx (le_id); CREATE INDEX p_id on px (px_id); CREATE INDEX p_cid0 on px (cx_id); CREATE INDEX p_pt on px (px_tid); CREATE INDEX p_leid on px (le_id); } {} do_execsql_test 4.2 { ANALYZE sqlite_master; INSERT INTO sqlite_stat1 VALUES('le','le_id','1979 1'); INSERT INTO sqlite_stat1 VALUES('cx','c_leid','852 171'); INSERT INTO sqlite_stat1 VALUES('cx','c_id','852 1'); INSERT INTO sqlite_stat1 VALUES('px','p_leid','114443 63'); INSERT INTO sqlite_stat1 VALUES('px','p_pt','114443 22889'); INSERT INTO sqlite_stat1 VALUES('px','p_cid0','114443 181'); INSERT INTO sqlite_stat1 VALUES('px','p_id','114443 1'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','162 162','162 162',X'030202013903fb'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','208 208','208 208',X'0302020253012d'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','219 219','219 219',X'030202025e0131'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','248 248','248 248',X'030202027b014e'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','265 265','265 265',X'030202028c015f'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','358 358','358 358',X'03020202e901bc'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','439 439','439 439',X'030202033a020d'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','657 657','657 657',X'030202041402b4'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','659 659','659 659',X'030202041602b6'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','681 681','681 681',X'030202042c02cc'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','831 831','831 831',X'03020204c20482'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','852 852','852 852',X'03020204d70497'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','870 870','870 870',X'03020204e904a9'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','879 879','879 879',X'03020204f204b2'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1099 1099','1099 1099',X'03020205ce058e'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1273 1273','1273 1273',X'030202067c05a9'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1319 1319','1319 1319',X'03020206e30730'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1330 1330','1330 1330',X'0302020700035b'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1539 1539','1539 1539',X'03020207d105d8'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1603 1603','1603 1603',X'03020208390780'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1759 1759','1759 1759',X'030202092f0618'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1843 1843','1843 1843',X'03020209880650'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1915 1915','1915 1915',X'03020209d0068b'); INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1927 1927','1927 1927',X'03020209dc0697'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 94','0 94',X'0308015f'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 189','0 189',X'03080200be'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 284','0 284',X'0308020120'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 379','0 379',X'030802017f'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 474','0 474',X'03080201de'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 569','0 569',X'030802023d'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 664','0 664',X'030802029f'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 759','0 759',X'03080202fe'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','3 1','846 847','1 847',X'0301024500e6'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','1 1','849 849','2 849',X'03010246027e'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','1 1','850 850','3 850',X'0301024700c9'); INSERT INTO sqlite_stat4 VALUES('cx','c_leid','1 1','851 851','4 851',X'03010248027f'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','94 94','94 94',X'03020200b801a8'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','113 113','113 113',X'03020200d101ad'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','171 171','171 171',X'030201011d2a'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','177 177','177 177',X'030202012600f2'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','189 189','189 189',X'030202013501c8'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','206 206','206 206',X'030201014f2d'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','231 231','231 231',X'030202016d00fc'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','284 284','284 284',X'03020201b702d0'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','291 291','291 291',X'03020101c042'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','311 311','311 311',X'03020201d801e7'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','339 339','339 339',X'03020101f74b'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','347 347','347 347',X'03020202030118'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','379 379','379 379',X'030202022f01fa'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','393 393','393 393',X'030201023f55'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','407 407','407 407',X'03020202500201'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','413 413','413 413',X'03020102565a'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','468 468','468 468',X'030201029468'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','474 474','474 474',X'030202029a0211'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','517 517','517 517',X'03020102cc76'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','548 548','548 548',X'03020202f00223'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','569 569','569 569',X'03020203090087'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','664 664','664 664',X'03020203740163'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','759 759','759 759',X'03020203e800b3'); INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','803 803','803 803',X'030202041b026f'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 12715','0 12715',X'030802345b'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 25431','0 25431',X'0308026718'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 38147','0 38147',X'030803009a5c'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 50863','0 50863',X'03080300cdbe'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 63579','0 63579',X'0308030100e8'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 76295','0 76295',X'03080301351d'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 89011','0 89011',X'03080301674c'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 101727','0 101727',X'030803019b99'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','28 1','110824 110843','16 110843',X'0301037a0107f1'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','53 1','110873 110875','25 110875',X'0302020095275a'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','32 1','110927 110936','27 110936',X'030203009b009b4a'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','51 1','110980 111017','30 111017',X'03020300a4016c00'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','67 1','111047 111059','38 111059',X'03020200af2611'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','60 1','111136 111156','43 111156',X'03020300bc009aeb'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','42 1','111222 111239','59 111239',X'03020300d200b17b'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','36 1','111264 111266','60 111266',X'03020200d426d6'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','27 1','111733 111757','159 111757',X'030203014e017e1b'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','36 1','111760 111773','160 111773',X'030203014f00a2b9'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','29 1','111822 111833','167 111833',X'0302030176009c22'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','75 1','113031 113095','1190 113095',X'030203068501912c'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','132 1','113230 113263','1252 113263',X'0302030711009ee6'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','110 1','113851 113918','1572 113918',X'03020308e9011ca2'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','78 1','114212 114217','1791 114217',X'03020209e13b24'); INSERT INTO sqlite_stat4 VALUES('px','p_leid','112 1','114303 114351','1799 114351',X'03020309ea0128f2'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 12715','0 12715',X'030802477e'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 25431','0 25431',X'0308027c20'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 38147','0 38147',X'03080300c211'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 50863','0 50863',X'03080300fbe5'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 63579','0 63579',X'0308030140ff'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 76295','0 76295',X'03080301792d'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 89011','0 89011',X'03080301bb68'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','24217 1','89824 101727','1 101727',X'03090300da12'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','154 1','114041 114154','2 114154',X'0301030200e5e9'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','198 1','114195 114351','3 114351',X'03010303015cb1'); INSERT INTO sqlite_stat4 VALUES('px','p_pt','50 1','114393 114441','4 114441',X'0301030401b2ef'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','3867 1','3 3736','2 3736',X'03010337015c6a'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','4194 1','4177 8209','5 8209',X'0301033b015075'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','4335 1','8371 11129','6 11129',X'0301033d0156fc'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1740 1','12706 12715','7 12715',X'0301023e34b9'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1680 1','14446 15487','8 15487',X'0301033f011694'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','7163 1','20116 25431','32 25431',X'03020300a400ed26'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1525 1','29100 29302','42 29302',X'03020200bb00d1'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','3703 1','30655 33323','45 33323',X'03020300be013fa5'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','2612 1','37767 38147','61 38147',X'03020200e32828'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1882 1','40545 41584','63 41584',X'03020300ea01a35a'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','6984 1','44110 50863','73 50863',X'0302030102017467'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1728 1','51230 51680','75 51680',X'030203010400b3e0'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','2805 1','55491 57936','95 57936',X'030203014101a004'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','2837 1','58934 59506','103 59506',X'030203015900a283'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','94 1','63492 63579','137 63579',X'0302030191016319'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','3573 1','63591 64497','140 64497',X'030203019c00822e'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','5037 1','70917 73033','160 73033',X'03020301c70091d9'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1940 1','75954 76295','161 76295',X'03020201c817f1'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1927 1','83926 84371','209 84371',X'03020202114295'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1522 1','86601 88117','213 88117',X'030203021b01b7b5'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','210 1','88906 89011','226 89011',X'030203022800dbbb'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','6165 1','92125 98066','258 98066',X'030203024d0189ac'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','2900 1','100721 101727','293 101727',X'030203027500cf39'); INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1501 1','110012 110154','503 110154',X'0302020380493a'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','11129 11129','11129 11129',X'03030300d84e014d51'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','12715 12715','12715 12715',X'03030200de816f51'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','13030 13030','13030 13030',X'03030200e05b6fc4'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','25431 25431','25431 25431',X'0303030123df00efb0'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','29302 29302','29302 29302',X'030302013a2812c7'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','35463 35463','35463 35463',X'03030301666e00f866'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','38147 38147','38147 38147',X'030302017a391b74'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','38525 38525','38525 38525',X'030303017c6e00fb58'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','50863 50863','50863 50863',X'03030201b68724dd'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','58461 58461','58461 58461',X'03030201d95b2e1e'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','59506 59506','59506 59506',X'03030301dd7000a0fb'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','63468 63468','63468 63468',X'03030301ecea011405'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','63579 63579','63579 63579',X'03030201ed5932d5'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','64497 64497','64497 64497',X'03030301f0ef00a680'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','73033 73033','73033 73033',X'0303030225b90190e5'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','75650 75650','75650 75650',X'030303023a19019362'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','76295 76295','76295 76295',X'030303023e9801940c'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','79152 79152','79152 79152',X'030303024be50196b9'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','83249 83249','83249 83249',X'0303030261750123b1'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','89011 89011','89011 89011',X'030303027b3900c3af'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','98066 98066','98066 98066',X'03030302a76500ce54'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','101590 101590','101590 101590',X'03030302b63d00d3b5'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','101727 101727','101727 101727',X'03030202b6f24e9b'); INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','107960 107960','107960 107960',X'03030302d8ce0136ad'); ANALYZE sqlite_master; } {} # The following query should do a full table scan of cx in the outer loop. # It is not correct to search table px using indx p_pt in the outer loop # with cx in the middle loop. Test case from Bloomberg on 2014-09-05. # do_execsql_test 4.2 { EXPLAIN QUERY PLAN SELECT px.name, px.description FROM le, cx, px WHERE cx.code = '2990' AND cx.type=2 AND px.cx_id = cx.cx_id AND px.px_tid = 0 AND px.le_id = le.le_id; } {/.*SCAN TABLE cx.*SEARCH TABLE px.*SEARCH TABLE le.*/} finish_test |
Changes to test/without_rowid3.test.
︙ | ︙ | |||
1617 1618 1619 1620 1621 1622 1623 | execsql { CREATE TABLE long(a, b PRIMARY KEY, c) WITHOUT rowid; CREATE TABLE short(d, e, f REFERENCES long); CREATE TABLE mid(g, h, i REFERENCES long DEFERRABLE INITIALLY DEFERRED); } } {} | | | 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 | execsql { CREATE TABLE long(a, b PRIMARY KEY, c) WITHOUT rowid; CREATE TABLE short(d, e, f REFERENCES long); CREATE TABLE mid(g, h, i REFERENCES long DEFERRABLE INITIALLY DEFERRED); } } {} proc auth {args} {eval lappend ::authargs [lrange $args 0 4]; return SQLITE_OK} db auth auth # An insert on the parent table must read the child key of any deferred # foreign key constraints. But not the child key of immediate constraints. set authargs {} do_test without_rowid3-18.2 { execsql { INSERT INTO long VALUES(1, 2, 3) } |
︙ | ︙ |