SQLite

Check-in [550705fcb6]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Simplification of PRAGMA integrity_check logic. Make sure that the depth of the right-most subtree is correct. Size reduction and performance increase, with no change in output.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 550705fcb64e7ad637686e47cabe2621d65851bf
User & Date: drh 2015-07-01 17:53:49.435
Context
2015-07-01
19:59
Avoid create a stack from in sqlite3BackupUpdate() in the common case where the first argument is NULL. (check-in: 2a897b9e94 user: drh tags: trunk)
17:53
Simplification of PRAGMA integrity_check logic. Make sure that the depth of the right-most subtree is correct. Size reduction and performance increase, with no change in output. (check-in: 550705fcb6 user: drh tags: trunk)
04:08
Fix some harmless compiler warnings. (check-in: 307195c870 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
** the tree depth.  Root pages return 0.  Parents of root pages
** return 1, and so forth.
** 
** These checks are done:
**
**      1.  Make sure that cells and freeblocks do not overlap
**          but combine to completely cover the page.
**  NO  2.  Make sure cell keys are in order.
**  NO  3.  Make sure no key is less than or equal to zLowerBound.
**  NO  4.  Make sure no key is greater than or equal to zUpperBound.
**      5.  Check the integrity of overflow pages.
**      6.  Recursively call checkTreePage on all children.
**      7.  Verify that the depth of all children is the same.
**      8.  Make sure this page is at least 33% full or else it is
**          the root of the tree.
*/
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  int iPage,            /* Page number of the page to check */
  i64 *pnParentMinKey, 
  i64 *pnParentMaxKey
){
  MemPage *pPage;
  int i, rc, depth, d2, pgno, cnt;
  int hdr, cellStart;
  int nCell;
  u8 *data;
  BtShared *pBt;
  int usableSize;
  u32 *heap = 0;







|
<
<
|
|
|
<
<







|







8920
8921
8922
8923
8924
8925
8926
8927


8928
8929
8930


8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
** the tree depth.  Root pages return 0.  Parents of root pages
** return 1, and so forth.
** 
** These checks are done:
**
**      1.  Make sure that cells and freeblocks do not overlap
**          but combine to completely cover the page.
**      2.  Make sure integer cell keys are in order.


**      3.  Check the integrity of overflow pages.
**      4.  Recursively call checkTreePage on all children.
**      5.  Verify that the depth of all children is the same.


*/
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  int iPage,            /* Page number of the page to check */
  i64 *pnParentMinKey, 
  i64 *pnParentMaxKey
){
  MemPage *pPage = 0;
  int i, rc, depth, d2, pgno, cnt;
  int hdr, cellStart;
  int nCell;
  u8 *data;
  BtShared *pBt;
  int usableSize;
  u32 *heap = 0;
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986

8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */
  pPage->isInit = 0;
  if( (rc = btreeInitPage(pPage))!=0 ){
    assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
    checkAppendMsg(pCheck,
                   "btreeInitPage() returns error code %d", rc);
    releasePage(pPage);
    depth = -1;
    goto end_of_check;
  }

  /* Check out all the cells.
  */
  depth = 0;

  for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
    u8 *pCell;
    u32 sz;
    CellInfo info;

    /* Check payload overflow pages
    */
    pCheck->zPfx = "On tree page %d cell %d: ";
    pCheck->v1 = iPage;
    pCheck->v2 = i;
    pCell = findCell(pPage,i);
    pPage->xParseCell(pPage, pCell, &info);
    sz = info.nPayload;
    /* For intKey pages, check that the keys are in order.
    */
    if( pPage->intKey ){







<







>







<
<







8968
8969
8970
8971
8972
8973
8974

8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989


8990
8991
8992
8993
8994
8995
8996
  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */
  pPage->isInit = 0;
  if( (rc = btreeInitPage(pPage))!=0 ){
    assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
    checkAppendMsg(pCheck,
                   "btreeInitPage() returns error code %d", rc);

    depth = -1;
    goto end_of_check;
  }

  /* Check out all the cells.
  */
  depth = 0;
  pCheck->zPfx = "On tree page %d cell %d: ";
  for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
    u8 *pCell;
    u32 sz;
    CellInfo info;

    /* Check payload overflow pages
    */


    pCheck->v2 = i;
    pCell = findCell(pPage,i);
    pPage->xParseCell(pPage, pCell, &info);
    sz = info.nPayload;
    /* For intKey pages, check that the keys are in order.
    */
    if( pPage->intKey ){
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050



9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
      depth = d2;
    }
  }

  if( !pPage->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCheck->zPfx = "On page %d at right child: ";
    pCheck->v1 = iPage;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
    }
#endif
    checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);



  }
 
  /* For intKey leaf pages, check that the min/max keys are in order
  ** with any left/parent/right pages.
  */
  pCheck->zPfx = "Page %d: ";
  pCheck->v1 = iPage;
  if( pPage->leaf && pPage->intKey ){
    /* if we are a left child page */
    if( pnParentMinKey ){
      /* if we are the left most child page */
      if( !pnParentMaxKey ){
        if( nMaxKey > *pnParentMinKey ){
          checkAppendMsg(pCheck,







<





|
>
>
>






<







9031
9032
9033
9034
9035
9036
9037

9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052

9053
9054
9055
9056
9057
9058
9059
      depth = d2;
    }
  }

  if( !pPage->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCheck->zPfx = "On page %d at right child: ";

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
    }
#endif
    d2 = checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
    if( d2!=depth && iPage!=1 ){
      checkAppendMsg(pCheck, "Child page depth differs");
    }
  }
 
  /* For intKey leaf pages, check that the min/max keys are in order
  ** with any left/parent/right pages.
  */
  pCheck->zPfx = "Page %d: ";

  if( pPage->leaf && pPage->intKey ){
    /* if we are a left child page */
    if( pnParentMinKey ){
      /* if we are the left most child page */
      if( !pnParentMaxKey ){
        if( nMaxKey > *pnParentMinKey ){
          checkAppendMsg(pCheck,
9088
9089
9090
9091
9092
9093
9094
9095

9096
9097
9098
9099

9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
    }
  }

  /* Check for complete coverage of the page
  */
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  heap = (u32*)sqlite3PageMalloc( pBt->pageSize );

  pCheck->zPfx = 0;
  if( heap==0 ){
    pCheck->mallocFailed = 1;
  }else{

    int contentOffset = get2byteNotZero(&data[hdr+5]);
    assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
    heap[0] = 0;
    btreeHeapInsert(heap, contentOffset-1);
    /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
    ** number of cells on the page. */
    nCell = get2byte(&data[hdr+3]);
    /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
    ** immediately follows the b-tree page header. */
    cellStart = hdr + 12 - 4*pPage->leaf;







|
>

<
<
<
>


<







9083
9084
9085
9086
9087
9088
9089
9090
9091
9092



9093
9094
9095

9096
9097
9098
9099
9100
9101
9102
    }
  }

  /* Check for complete coverage of the page
  */
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  heap = pCheck->heap;
  heap[0] = 0;
  pCheck->zPfx = 0;



  {
    int contentOffset = get2byteNotZero(&data[hdr+5]);
    assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */

    btreeHeapInsert(heap, contentOffset-1);
    /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
    ** number of cells on the page. */
    nCell = get2byte(&data[hdr+3]);
    /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
    ** immediately follows the b-tree page header. */
    cellStart = hdr + 12 - 4*pPage->leaf;
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173

9174
9175
9176
9177
9178
9179
9180
    */
    if( heap[0]==0 && cnt!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %d",
          cnt, data[hdr+7], iPage);
    }
  }
  sqlite3PageFree(heap);
  releasePage(pPage);

end_of_check:

  pCheck->zPfx = saved_zPfx;
  pCheck->v1 = saved_v1;
  pCheck->v2 = saved_v2;
  return depth+1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */








<
<


>







9156
9157
9158
9159
9160
9161
9162


9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
    */
    if( heap[0]==0 && cnt!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %d",
          cnt, data[hdr+7], iPage);
    }
  }



end_of_check:
  releasePage(pPage);
  pCheck->zPfx = saved_zPfx;
  pCheck->v1 = saved_v1;
  pCheck->v2 = saved_v2;
  return depth+1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219

9220

9221
9222
9223

9224
9225
9226
9227
9228


9229
9230



9231

9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
  Btree *p,     /* The btree to be checked */
  int *aRoot,   /* An array of root pages numbers for individual trees */
  int nRoot,    /* Number of entries in aRoot[] */
  int mxErr,    /* Stop reporting errors after this many */
  int *pnErr    /* Write number of errors seen to this variable */
){
  Pgno i;
  int nRef;
  IntegrityCk sCheck;
  BtShared *pBt = p->pBt;
  char zErr[100];

  sqlite3BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
  nRef = sqlite3PagerRefcount(pBt->pPager);
  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = btreePagecount(sCheck.pBt);
  sCheck.mxErr = mxErr;
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  sCheck.zPfx = 0;
  sCheck.v1 = 0;
  sCheck.v2 = 0;

  *pnErr = 0;

  if( sCheck.nPage==0 ){
    sqlite3BtreeLeave(p);
    return 0;

  }

  sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
  if( !sCheck.aPgRef ){
    *pnErr = 1;


    sqlite3BtreeLeave(p);
    return 0;



  }

  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
  sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);

  /* Check the integrity of the freelist
  */
  sCheck.zPfx = "Main freelist: ";
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]));
  sCheck.zPfx = 0;

  /* Check all the tables.
  */
  for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
    if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && aRoot[i]>1 ){
      checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
    }
#endif
    sCheck.zPfx = "List of tree roots: ";
    checkTreePage(&sCheck, aRoot[i], NULL, NULL);
    sCheck.zPfx = 0;
  }

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( getPageReferenced(&sCheck, i)==0 ){







|






|









>
|
>

<
<
>




|
>
>
|
<
>
>
>

>


<

















<

<







9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215


9216
9217
9218
9219
9220
9221
9222
9223
9224

9225
9226
9227
9228
9229
9230
9231

9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248

9249

9250
9251
9252
9253
9254
9255
9256
  Btree *p,     /* The btree to be checked */
  int *aRoot,   /* An array of root pages numbers for individual trees */
  int nRoot,    /* Number of entries in aRoot[] */
  int mxErr,    /* Stop reporting errors after this many */
  int *pnErr    /* Write number of errors seen to this variable */
){
  Pgno i;
  VVA_ONLY( int nRef );
  IntegrityCk sCheck;
  BtShared *pBt = p->pBt;
  char zErr[100];

  sqlite3BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
  assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );
  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = btreePagecount(sCheck.pBt);
  sCheck.mxErr = mxErr;
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  sCheck.zPfx = 0;
  sCheck.v1 = 0;
  sCheck.v2 = 0;
  sCheck.aPgRef = 0;
  sCheck.heap = 0;
  sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
  if( sCheck.nPage==0 ){


    goto integrity_ck_cleanup;
  }

  sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
  if( !sCheck.aPgRef ){
    sCheck.mallocFailed = 1;
    goto integrity_ck_cleanup;
  }
  sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );

  if( sCheck.heap==0 ){
    sCheck.mallocFailed = 1;
    goto integrity_ck_cleanup;
  }

  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);


  /* Check the integrity of the freelist
  */
  sCheck.zPfx = "Main freelist: ";
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]));
  sCheck.zPfx = 0;

  /* Check all the tables.
  */
  for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
    if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && aRoot[i]>1 ){
      checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
    }
#endif

    checkTreePage(&sCheck, aRoot[i], NULL, NULL);

  }

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( getPageReferenced(&sCheck, i)==0 ){
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291

9292
9293
9294
9295
9296
9297
9298
9299
9300



9301
9302
9303
9304
9305
9306
9307
    if( getPageReferenced(&sCheck, i)!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Make sure this analysis did not leave any unref() pages.
  ** This is an internal consistency check; an integrity check
  ** of the integrity check.
  */
  if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
    checkAppendMsg(&sCheck,
      "Outstanding page count goes from %d to %d during this analysis",
      nRef, sqlite3PagerRefcount(pBt->pPager)
    );
  }

  /* Clean  up and report errors.
  */

  sqlite3BtreeLeave(p);
  sqlite3_free(sCheck.aPgRef);
  if( sCheck.mallocFailed ){
    sqlite3StrAccumReset(&sCheck.errMsg);
    *pnErr = sCheck.nErr+1;
    return 0;
  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);



  return sqlite3StrAccumFinish(&sCheck.errMsg);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/*
** Return the full pathname of the underlying database file.  Return
** an empty string if the database is in-memory or a TEMP database.







<
<
<
<
<
<
<
<
<
<
<


>
|



|
<



>
>
>







9267
9268
9269
9270
9271
9272
9273











9274
9275
9276
9277
9278
9279
9280
9281

9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
    if( getPageReferenced(&sCheck, i)!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
    }
#endif
  }












  /* Clean  up and report errors.
  */
integrity_ck_cleanup:
  sqlite3PageFree(sCheck.heap);
  sqlite3_free(sCheck.aPgRef);
  if( sCheck.mallocFailed ){
    sqlite3StrAccumReset(&sCheck.errMsg);
    sCheck.nErr++;

  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
  /* Make sure this analysis did not leave any unref() pages. */
  assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
  sqlite3BtreeLeave(p);
  return sqlite3StrAccumFinish(&sCheck.errMsg);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/*
** Return the full pathname of the underlying database file.  Return
** an empty string if the database is in-memory or a TEMP database.
Changes to src/btreeInt.h.
678
679
680
681
682
683
684

685
686
687
688
689
690
691
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */
  const char *zPfx; /* Error message prefix */
  int v1, v2;       /* Values for up to two %d fields in zPfx */
  StrAccum errMsg;  /* Accumulate the error message text here */

};

/*
** Routines to read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))







>







678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */
  const char *zPfx; /* Error message prefix */
  int v1, v2;       /* Values for up to two %d fields in zPfx */
  StrAccum errMsg;  /* Accumulate the error message text here */
  u32 *heap;        /* Min-heap used for analyzing cell coverage */
};

/*
** Routines to read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
Changes to src/pager.c.
6383
6384
6385
6386
6387
6388
6389

6390
6391
6392
6393
6394
6395

6396
6397
6398
6399
6400
6401
6402
** Return TRUE if the database file is opened read-only.  Return FALSE
** if the database is (in theory) writable.
*/
u8 sqlite3PagerIsreadonly(Pager *pPager){
  return pPager->readOnly;
}


/*
** Return the number of references to the pager.
*/
int sqlite3PagerRefcount(Pager *pPager){
  return sqlite3PcacheRefCount(pPager->pPCache);
}


/*
** Return the approximate number of bytes of memory currently
** used by the pager and its associated cache.
*/
int sqlite3PagerMemUsed(Pager *pPager){
  int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr)







>






>







6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
** Return TRUE if the database file is opened read-only.  Return FALSE
** if the database is (in theory) writable.
*/
u8 sqlite3PagerIsreadonly(Pager *pPager){
  return pPager->readOnly;
}

#ifdef SQLITE_DEBUG
/*
** Return the number of references to the pager.
*/
int sqlite3PagerRefcount(Pager *pPager){
  return sqlite3PcacheRefCount(pPager->pPCache);
}
#endif

/*
** Return the approximate number of bytes of memory currently
** used by the pager and its associated cache.
*/
int sqlite3PagerMemUsed(Pager *pPager){
  int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr)
Changes to src/pager.h.
169
170
171
172
173
174
175

176

177
178
179
180
181
182
183
#ifdef SQLITE_ENABLE_ZIPVFS
  int sqlite3PagerWalFramesize(Pager *pPager);
#endif

/* Functions used to query pager state and configuration. */
u8 sqlite3PagerIsreadonly(Pager*);
u32 sqlite3PagerDataVersion(Pager*);

int sqlite3PagerRefcount(Pager*);

int sqlite3PagerMemUsed(Pager*);
const char *sqlite3PagerFilename(Pager*, int);
const sqlite3_vfs *sqlite3PagerVfs(Pager*);
sqlite3_file *sqlite3PagerFile(Pager*);
const char *sqlite3PagerJournalname(Pager*);
int sqlite3PagerNosync(Pager*);
void *sqlite3PagerTempSpace(Pager*);







>
|
>







169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#ifdef SQLITE_ENABLE_ZIPVFS
  int sqlite3PagerWalFramesize(Pager *pPager);
#endif

/* Functions used to query pager state and configuration. */
u8 sqlite3PagerIsreadonly(Pager*);
u32 sqlite3PagerDataVersion(Pager*);
#ifdef SQLITE_DEBUG
  int sqlite3PagerRefcount(Pager*);
#endif
int sqlite3PagerMemUsed(Pager*);
const char *sqlite3PagerFilename(Pager*, int);
const sqlite3_vfs *sqlite3PagerVfs(Pager*);
sqlite3_file *sqlite3PagerFile(Pager*);
const char *sqlite3PagerJournalname(Pager*);
int sqlite3PagerNosync(Pager*);
void *sqlite3PagerTempSpace(Pager*);