/ Check-in [548bf3f7]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fixes to prior checkins so that they compile and run even if SQLITE_MEMDEBUG is not defined.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | malloc-enhancement
Files: files | file ages | folders
SHA1:548bf3f7d7b962d3eb0f5c874ecf40a8703d4d5d
User & Date: drh 2010-07-25 02:39:07
Original Comment: Fixes to prior checkins so that they compile and run even if SQLITE_MEMDEBUG is not defined.
Context
2010-07-25
02:39
Fixes to prior checkins so that they compile and run even if SQLITE_MEMDEBUG is not defined. Closed-Leaf check-in: 548bf3f7 user: drh tags: malloc-enhancement
02:12
Further examples of using automatic deallocation to replace "delete" methods. check-in: da2f62c5 user: drh tags: malloc-enhancement
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/malloc.c.

78
79
80
81
82
83
84

85
86
87
88
89
90
91

92
93
94
95
96
97
98
...
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
...
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
...
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
...
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
...
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
...
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
...
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
** Macros for querying and setting debugging fields of the EMemHdr object.
*/
#ifdef SQLITE_MEMDEBUG
# define isValidEMem(E)     ((E)->iEMemMagic==0xc0a43fad)
# define setValidEMem(E)    (E)->iEMemMagic = 0xc0a43fad
# define clearValidEMem(E)  (E)->iEMemMagic = 0x12345678
# define isChildEMem(E)     ((E)->isAChild!=0)

# define setChildEMem(E)    (E)->isAChild = 1
# define clearChildEMem(E)  (E)->isAChild = 0
#else
# define isValidEMem(E)
# define setValidEMem(E)
# define clearValidEMem(E)
# define isChildEMem(E)

# define setChildEMem(E)
# define clearChildEMem(E)
#endif

/*
** This routine runs when the memory allocator sees that the
** total memory allocation is about to exceed the soft heap
................................................................................
}
void sqlite3ScratchFree(void *p){
  if( p ){
    if( sqlite3GlobalConfig.pScratch==0
           || p<sqlite3GlobalConfig.pScratch
           || p>=(void*)mem0.aScratchFree ){
      assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
      assert( !sqlite3MemdebugHasType(p, ~MEMTYPE_SCRATCH) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      if( sqlite3GlobalConfig.bMemstat ){
        int iSize = sqlite3MallocSize(p);
        sqlite3_mutex_enter(mem0.mutex);
        sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
        sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
        sqlite3GlobalConfig.m.xFree(p);
................................................................................
** sqlite3Malloc() or sqlite3_malloc().
**
** The size returned is the usable size and does not include any
** bookkeeping overhead or sentinals at the end of the allocation.
*/
int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( !sqlite3MemdebugHasType(p, MEMTYPE_RECURSIVE) );
  return sqlite3GlobalConfig.m.xSize(p);
}
int sqlite3DbMallocSize(sqlite3 *db, void *pObj){
  EMemHdr *p = (EMemHdr*)pObj;
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  if( p ){
    p--;
................................................................................
}

/*
** Free memory previously obtained from sqlite3Malloc().
*/
void sqlite3_free(void *p){
  if( p==0 ) return;
  assert( !sqlite3MemdebugHasType(p, MEMTYPE_RECURSIVE) );
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
    sqlite3GlobalConfig.m.xFree(p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
................................................................................
** allowed to delete a child allocation since that would leave a
** dangling child pointer in the parent.
*/
void sqlite3DbFree(sqlite3 *db, void *pObj){
  EMemHdr *p = (EMemHdr*)pObj;
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  if( p ) p--;
  assert( p==0 || !isChildEMem(p) );  /* pObj is not child allocation */
  while( p ){
    EMemHdr *pNext = p->pESibling;
    assert( isValidEMem(p) );   /* pObj and all siblings are valid */
    if( p->pEChild ){
      clearChildEMem(p->pEChild);
      sqlite3DbFree(db, (void*)&p->pEChild[1]);
    }
................................................................................
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 
          mem0.alarmThreshold ){
      sqlite3MallocAlarm(nNew-nOld);
    }
    assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
    assert( !sqlite3MemdebugHasType(pOld, ~MEMTYPE_HEAP) );
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm(nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
................................................................................
  assert( sqlite3_mutex_held(db->mutex) );
  if( db->mallocFailed==0 ){
    if( p==0 ){
      return sqlite3DbMallocRaw(db, n);
    }
    p--;
    assert( isValidEMem(p) );    /* pOld obtained from extended allocator */
    assert( !isChildEMem(p) );   /* pOld must not be a child allocation */
    if( isLookaside(db, p) ){
      if( n+sizeof(EMemHdr)<=db->lookaside.sz ){
        return pOld;
      }
      pNew = sqlite3DbMallocRaw(db, n);
      if( pNew ){
        memcpy(pNew-1, p, db->lookaside.sz);
................................................................................
  EMemHdr *pParent = (EMemHdr*)pParentObj;
  EMemHdr *pChild = (EMemHdr*)pChildObj;
  if( pParent && pChild ){
    pParent--;
    assert( isValidEMem(pParent) );  /* pParentObj is an extended allocation */ 
    pChild--;
    assert( isValidEMem(pChild) );   /* pChildObj is an extended allocation */
    assert( !isChildEMem(pChild) );  /* pChildObj not a child of another obj */
    pChild->pESibling = pParent->pEChild;
    pParent->pEChild = pChild;
    setChildEMem(pChild);
  }
}

/*







>



|


|
>







 







|







 







|







 







|







 







|







 







|







 







|







 







|







78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
...
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
...
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
...
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
...
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
...
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
...
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
...
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
** Macros for querying and setting debugging fields of the EMemHdr object.
*/
#ifdef SQLITE_MEMDEBUG
# define isValidEMem(E)     ((E)->iEMemMagic==0xc0a43fad)
# define setValidEMem(E)    (E)->iEMemMagic = 0xc0a43fad
# define clearValidEMem(E)  (E)->iEMemMagic = 0x12345678
# define isChildEMem(E)     ((E)->isAChild!=0)
# define notChildEMem(E)    ((E)->isAChild==0)
# define setChildEMem(E)    (E)->isAChild = 1
# define clearChildEMem(E)  (E)->isAChild = 0
#else
# define isValidEMem(E)     1
# define setValidEMem(E)
# define clearValidEMem(E)
# define isChildEMem(E)     1
# define notChildEMem(E)    1
# define setChildEMem(E)
# define clearChildEMem(E)
#endif

/*
** This routine runs when the memory allocator sees that the
** total memory allocation is about to exceed the soft heap
................................................................................
}
void sqlite3ScratchFree(void *p){
  if( p ){
    if( sqlite3GlobalConfig.pScratch==0
           || p<sqlite3GlobalConfig.pScratch
           || p>=(void*)mem0.aScratchFree ){
      assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
      assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      if( sqlite3GlobalConfig.bMemstat ){
        int iSize = sqlite3MallocSize(p);
        sqlite3_mutex_enter(mem0.mutex);
        sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
        sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
        sqlite3GlobalConfig.m.xFree(p);
................................................................................
** sqlite3Malloc() or sqlite3_malloc().
**
** The size returned is the usable size and does not include any
** bookkeeping overhead or sentinals at the end of the allocation.
*/
int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, MEMTYPE_RECURSIVE) );
  return sqlite3GlobalConfig.m.xSize(p);
}
int sqlite3DbMallocSize(sqlite3 *db, void *pObj){
  EMemHdr *p = (EMemHdr*)pObj;
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  if( p ){
    p--;
................................................................................
}

/*
** Free memory previously obtained from sqlite3Malloc().
*/
void sqlite3_free(void *p){
  if( p==0 ) return;
  assert( sqlite3MemdebugNoType(p, MEMTYPE_RECURSIVE) );
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
    sqlite3GlobalConfig.m.xFree(p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
................................................................................
** allowed to delete a child allocation since that would leave a
** dangling child pointer in the parent.
*/
void sqlite3DbFree(sqlite3 *db, void *pObj){
  EMemHdr *p = (EMemHdr*)pObj;
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  if( p ) p--;
  assert( p==0 || notChildEMem(p) );  /* pObj is not child allocation */
  while( p ){
    EMemHdr *pNext = p->pESibling;
    assert( isValidEMem(p) );   /* pObj and all siblings are valid */
    if( p->pEChild ){
      clearChildEMem(p->pEChild);
      sqlite3DbFree(db, (void*)&p->pEChild[1]);
    }
................................................................................
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 
          mem0.alarmThreshold ){
      sqlite3MallocAlarm(nNew-nOld);
    }
    assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
    assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm(nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
................................................................................
  assert( sqlite3_mutex_held(db->mutex) );
  if( db->mallocFailed==0 ){
    if( p==0 ){
      return sqlite3DbMallocRaw(db, n);
    }
    p--;
    assert( isValidEMem(p) );    /* pOld obtained from extended allocator */
    assert( notChildEMem(p) );   /* pOld must not be a child allocation */
    if( isLookaside(db, p) ){
      if( n+sizeof(EMemHdr)<=db->lookaside.sz ){
        return pOld;
      }
      pNew = sqlite3DbMallocRaw(db, n);
      if( pNew ){
        memcpy(pNew-1, p, db->lookaside.sz);
................................................................................
  EMemHdr *pParent = (EMemHdr*)pParentObj;
  EMemHdr *pChild = (EMemHdr*)pChildObj;
  if( pParent && pChild ){
    pParent--;
    assert( isValidEMem(pParent) );  /* pParentObj is an extended allocation */ 
    pChild--;
    assert( isValidEMem(pChild) );   /* pChildObj is an extended allocation */
    assert( notChildEMem(pChild) );  /* pChildObj not a child of another obj */
    pChild->pESibling = pParent->pEChild;
    pParent->pEChild = pChild;
    setChildEMem(pChild);
  }
}

/*

Changes to src/mem2.c.

404
405
406
407
408
409
410





















411
412
413
414
415
416
417
    if( (pHdr->eType&eType)==0 ){
      rc = 0;
    }
  }
  return rc;
}
 






















/*
** Set the number of backtrace levels kept for each allocation.
** A value of zero turns off backtracing.  The number is always rounded
** up to a multiple of 2.
*/
void sqlite3MemdebugBacktrace(int depth){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    if( (pHdr->eType&eType)==0 ){
      rc = 0;
    }
  }
  return rc;
}
 
/*
** Return TRUE if the mask of type in eType matches no bits of the type of the
** allocation p.  Also return true if p==NULL.
**
** This routine is designed for use within an assert() statement, to
** verify the type of an allocation.  For example:
**
**     assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
*/
int sqlite3MemdebugNoType(void *p, u8 eType){
  int rc = 1;
  if( p ){
    struct MemBlockHdr *pHdr;
    pHdr = sqlite3MemsysGetHeader(p);
    assert( pHdr->iForeGuard==FOREGUARD );         /* Allocation is valid */
    if( (pHdr->eType&eType)!=0 ){
      rc = 0;
    }
  }
  return rc;
}

/*
** Set the number of backtrace levels kept for each allocation.
** A value of zero turns off backtracing.  The number is always rounded
** up to a multiple of 2.
*/
void sqlite3MemdebugBacktrace(int depth){

Changes to src/sqliteInt.h.

3117
3118
3119
3120
3121
3122
3123




3124
3125
3126
3127
3128
3129
3130
....
3135
3136
3137
3138
3139
3140
3141

3142
3143
3144

3145
3146
3147
3148
3149
3150
3151
3152
** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
** the MEMTYPE_* macros defined below.  The type must be a bitmask with
** a single bit set.
**
** sqlite3MemdebugHasType() returns true if any of the bits in its second
** argument match the type set by the previous sqlite3MemdebugSetType().
** sqlite3MemdebugHasType() is intended for use inside assert() statements.




** For example:
**
**     assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
**
** Perhaps the most important point is the difference between MEMTYPE_HEAP
** and MEMTYPE_DB.  If an allocation is MEMTYPE_DB, that means it might have
** been allocated by lookaside, except the allocation was too large or
................................................................................
**
** All of this is no-op for a production build.  It only comes into
** play when the SQLITE_MEMDEBUG compile-time option is used.
*/
#ifdef SQLITE_MEMDEBUG
  void sqlite3MemdebugSetType(void*,u8);
  int sqlite3MemdebugHasType(void*,u8);

#else
# define sqlite3MemdebugSetType(X,Y)  /* no-op */
# define sqlite3MemdebugHasType(X,Y)  1

#endif
#define MEMTYPE_HEAP      0x01    /* General heap allocations */
#define MEMTYPE_DB        0x02    /* Associated with a database connection */
#define MEMTYPE_SCRATCH   0x04    /* Scratch allocations */
#define MEMTYPE_PCACHE    0x08    /* Page cache allocations */
#define MEMTYPE_RECURSIVE 0x10    /* Experimental */

#endif /* _SQLITEINT_H_ */







>
>
>
>







 







>



>








3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
....
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
** the MEMTYPE_* macros defined below.  The type must be a bitmask with
** a single bit set.
**
** sqlite3MemdebugHasType() returns true if any of the bits in its second
** argument match the type set by the previous sqlite3MemdebugSetType().
** sqlite3MemdebugHasType() is intended for use inside assert() statements.
**
** sqlite3MemdebugNoType() returns true if none of the bits in its second
** argument match the type set by the previous sqlite3MemdebugSetType().
**
** For example:
**
**     assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
**
** Perhaps the most important point is the difference between MEMTYPE_HEAP
** and MEMTYPE_DB.  If an allocation is MEMTYPE_DB, that means it might have
** been allocated by lookaside, except the allocation was too large or
................................................................................
**
** All of this is no-op for a production build.  It only comes into
** play when the SQLITE_MEMDEBUG compile-time option is used.
*/
#ifdef SQLITE_MEMDEBUG
  void sqlite3MemdebugSetType(void*,u8);
  int sqlite3MemdebugHasType(void*,u8);
  int sqlite3MemdebugNoType(void*,u8);
#else
# define sqlite3MemdebugSetType(X,Y)  /* no-op */
# define sqlite3MemdebugHasType(X,Y)  1
# define sqlite3MemdebugNoType(X,Y)   1
#endif
#define MEMTYPE_HEAP      0x01    /* General heap allocations */
#define MEMTYPE_DB        0x02    /* Associated with a database connection */
#define MEMTYPE_SCRATCH   0x04    /* Scratch allocations */
#define MEMTYPE_PCACHE    0x08    /* Page cache allocations */
#define MEMTYPE_RECURSIVE 0x10    /* Experimental */

#endif /* _SQLITEINT_H_ */