Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge the sqlite3_reoptimize() changes into the trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
50136840d54674c239613265ebbacaab |
User & Date: | drh 2009-10-16 16:21:52.000 |
References
2017-06-23
| ||
19:38 | • Ticket [b9f0101077] Violation of the Query Planner Stability Guarantee status still Open with 6 other changes (artifact: ecf533654f user: drh) | |
Context
2009-10-17
| ||
08:26 | Add documentation comment for new experimental API sqlite3_reoptimize(). (check-in: c48f8ffedc user: dan tags: trunk) | |
2009-10-16
| ||
16:21 | Merge the sqlite3_reoptimize() changes into the trunk. (check-in: 50136840d5 user: drh tags: trunk) | |
15:59 | Fix a problem in the analyze3.test script. (Closed-Leaf check-in: 61174aea74 user: dan tags: experimental) | |
15:19 | Remove a mutex reference leak from sqlite3_reoptimize(). (check-in: 9f09370661 user: dan tags: experimental) | |
15:05 | Comment cleanup in btree.c. (check-in: 32966ba479 user: drh tags: trunk) | |
Changes
Changes to src/expr.c.
︙ | ︙ | |||
567 568 569 570 571 572 573 | assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); z = pExpr->u.zToken; assert( z!=0 ); assert( z[0]!=0 ); if( z[1]==0 ){ /* Wildcard of the form "?". Assign the next variable number */ assert( z[0]=='?' ); | | | | 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 | assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); z = pExpr->u.zToken; assert( z!=0 ); assert( z[0]!=0 ); if( z[1]==0 ){ /* Wildcard of the form "?". Assign the next variable number */ assert( z[0]=='?' ); pExpr->iColumn = ++pParse->nVar; }else if( z[0]=='?' ){ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and ** use it as the variable number */ int i; pExpr->iColumn = i = atoi((char*)&z[1]); testcase( i==0 ); testcase( i==1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); |
︙ | ︙ | |||
596 597 598 599 600 601 602 | int i; u32 n; n = sqlite3Strlen30(z); for(i=0; i<pParse->nVarExpr; i++){ Expr *pE = pParse->apVarExpr[i]; assert( pE!=0 ); if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){ | | | | 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 | int i; u32 n; n = sqlite3Strlen30(z); for(i=0; i<pParse->nVarExpr; i++){ Expr *pE = pParse->apVarExpr[i]; assert( pE!=0 ); if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){ pExpr->iColumn = pE->iColumn; break; } } if( i>=pParse->nVarExpr ){ pExpr->iColumn = ++pParse->nVar; if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; pParse->apVarExpr = sqlite3DbReallocOrFree( db, pParse->apVarExpr, pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) |
︙ | ︙ | |||
2160 2161 2162 2163 2164 2165 2166 | case TK_VARIABLE: { VdbeOp *pOp; assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pExpr->u.zToken[0]!=0 ); if( pExpr->u.zToken[1]==0 && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable | | | | 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 | case TK_VARIABLE: { VdbeOp *pOp; assert( !ExprHasProperty(pExpr, EP_IntValue) ); assert( pExpr->u.zToken!=0 ); assert( pExpr->u.zToken[0]!=0 ); if( pExpr->u.zToken[1]==0 && (pOp = sqlite3VdbeGetOp(v, -1))->opcode==OP_Variable && pOp->p1+pOp->p3==pExpr->iColumn && pOp->p2+pOp->p3==target && pOp->p4.z==0 ){ /* If the previous instruction was a copy of the previous unnamed ** parameter into the previous register, then simply increment the ** repeat count on the prior instruction rather than making a new ** instruction. */ pOp->p3++; }else{ sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iColumn, target, 1); if( pExpr->u.zToken[1]!=0 ){ sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, 0); } } break; } case TK_REGISTER: { |
︙ | ︙ | |||
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 | ** keep the ALWAYS() in case the conditions above change with future ** modifications or enhancements. */ if( ALWAYS(pExpr->op!=TK_REGISTER) ){ int iMem; iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); pExpr->iTable = iMem; pExpr->op = TK_REGISTER; } return inReg; } /* ** Return TRUE if pExpr is an constant expression that is appropriate | > | 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 | ** keep the ALWAYS() in case the conditions above change with future ** modifications or enhancements. */ if( ALWAYS(pExpr->op!=TK_REGISTER) ){ int iMem; iMem = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); pExpr->iTable = iMem; pExpr->op2 = pExpr->op; pExpr->op = TK_REGISTER; } return inReg; } /* ** Return TRUE if pExpr is an constant expression that is appropriate |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
1477 1478 1479 1480 1481 1482 1483 | #endif #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>30 # error SQLITE_MAX_ATTACHED must be between 0 and 30 #endif #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 #endif | | | | 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 | #endif #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>30 # error SQLITE_MAX_ATTACHED must be between 0 and 30 #endif #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 #endif #if SQLITE_MAX_VARIABLE_NUMBER<1 || SQLITE_MAX_VARIABLE_NUMBER>32767 # error SQLITE_MAX_VARIABLE_NUMBER must be between 1 and 32767 #endif #if SQLITE_MAX_COLUMN>32767 # error SQLITE_MAX_COLUMN must not exceed 32767 #endif #if SQLITE_MAX_TRIGGER_DEPTH<1 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 #endif |
︙ | ︙ |
Changes to src/prepare.c.
︙ | ︙ | |||
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. */ static int sqlite3Prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ Parse *pParse; /* Parsing context */ char *zErrMsg = 0; /* Error message */ int rc = SQLITE_OK; /* Result code */ int i; /* Loop counter */ /* Allocate the parsing context */ pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); if( pParse==0 ){ rc = SQLITE_NOMEM; goto end_prepare; } if( sqlite3SafetyOn(db) ){ rc = SQLITE_MISUSE; goto end_prepare; } assert( ppStmt && *ppStmt==0 ); assert( !db->mallocFailed ); | > > | 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 | ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. */ static int sqlite3Prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ Vdbe *pReprepare, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ Parse *pParse; /* Parsing context */ char *zErrMsg = 0; /* Error message */ int rc = SQLITE_OK; /* Result code */ int i; /* Loop counter */ /* Allocate the parsing context */ pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); if( pParse==0 ){ rc = SQLITE_NOMEM; goto end_prepare; } pParse->pReprepare = pReprepare; if( sqlite3SafetyOn(db) ){ rc = SQLITE_MISUSE; goto end_prepare; } assert( ppStmt && *ppStmt==0 ); assert( !db->mallocFailed ); |
︙ | ︙ | |||
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 | return rc; } static int sqlite3LockAndPrepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; assert( ppStmt!=0 ); *ppStmt = 0; if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE; } sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); | > | | | 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 | return rc; } static int sqlite3LockAndPrepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ Vdbe *pOld, /* VM being reprepared */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; assert( ppStmt!=0 ); *ppStmt = 0; if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE; } sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail); if( rc==SQLITE_SCHEMA ){ sqlite3_finalize(*ppStmt); rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail); } sqlite3BtreeLeaveAll(db); sqlite3_mutex_leave(db->mutex); return rc; } /* |
︙ | ︙ | |||
732 733 734 735 736 737 738 | sqlite3 *db; assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); zSql = sqlite3_sql((sqlite3_stmt *)p); assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ db = sqlite3VdbeDb(p); assert( sqlite3_mutex_held(db->mutex) ); | | | 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 | sqlite3 *db; assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); zSql = sqlite3_sql((sqlite3_stmt *)p); assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ db = sqlite3VdbeDb(p); assert( sqlite3_mutex_held(db->mutex) ); rc = sqlite3LockAndPrepare(db, zSql, -1, 0, p, &pNew, 0); if( rc ){ if( rc==SQLITE_NOMEM ){ db->mallocFailed = 1; } assert( pNew==0 ); return (rc==SQLITE_LOCKED) ? SQLITE_LOCKED : SQLITE_SCHEMA; }else{ |
︙ | ︙ | |||
766 767 768 769 770 771 772 | sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; | | | | 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 | sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } int sqlite3_prepare_v2( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char **pzTail /* OUT: End of parsed string */ ){ int rc; rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,0,ppStmt,pzTail); assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ return rc; } #ifndef SQLITE_OMIT_UTF16 /* |
︙ | ︙ | |||
812 813 814 815 816 817 818 | *ppStmt = 0; if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE; } sqlite3_mutex_enter(db->mutex); zSql8 = sqlite3Utf16to8(db, zSql, nBytes); if( zSql8 ){ | | | 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 | *ppStmt = 0; if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE; } sqlite3_mutex_enter(db->mutex); zSql8 = sqlite3Utf16to8(db, zSql, nBytes); if( zSql8 ){ rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, 0, ppStmt, &zTail8); } if( zTail8 && pzTail ){ /* If sqlite3_prepare returns a tail pointer, we calculate the ** equivalent pointer into the UTF-16 string by counting the unicode ** characters between zSql8 and zTail8, and then returning a pointer ** the same number of characters into the UTF-16 string. |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 | ** The [sqlite3_strnicmp()] API allows applications and extensions to ** compare the contents of two buffers containing UTF-8 strings in a ** case-indendent fashion, using the same definition of case independence ** that SQLite uses internally when comparing identifiers. */ int sqlite3_strnicmp(const char *, const char *, int); /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif | > > > > > > > > > | 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 | ** The [sqlite3_strnicmp()] API allows applications and extensions to ** compare the contents of two buffers containing UTF-8 strings in a ** case-indendent fashion, using the same definition of case independence ** that SQLite uses internally when comparing identifiers. */ int sqlite3_strnicmp(const char *, const char *, int); /* ** CAPI3REF: Optimizing for Bound Parameters ** EXPERIMENTAL ** ** If possible, optimize the SQL statement passed as the only argument ** for the values currently bound to the statements SQL variables. */ int sqlite3_reoptimize(sqlite3_stmt *pStmt); /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
1586 1587 1588 1589 1590 1591 1592 | ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number ** TK_TRIGGER: 1 -> new, 0 -> old */ | | > | 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 | ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number ** TK_TRIGGER: 1 -> new, 0 -> old */ i16 iColumn; /* TK_COLUMN: column index. -1 for rowid. ** TK_VARIABLE: variable number (always >= 1). */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ u8 flags2; /* Second set of flags. EP2_... */ u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ Table *pTab; /* Table for TK_COLUMN expressions. */ #if SQLITE_MAX_EXPR_DEPTH>0 |
︙ | ︙ | |||
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 | /* Above is constant between recursions. Below is reset before and after ** each recursion */ int nVar; /* Number of '?' variables seen in the SQL so far */ int nVarExpr; /* Number of used slots in apVarExpr[] */ int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ int nAlias; /* Number of aliased result set columns */ int nAliasAlloc; /* Number of allocated slots for aAlias[] */ int *aAlias; /* Register used to hold aliased result */ u8 explain; /* True if the EXPLAIN flag is found on the query */ Token sNameToken; /* Token with unqualified schema object name */ Token sLastToken; /* The last token parsed */ const char *zTail; /* All SQL text past the last semicolon parsed */ | > | 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 | /* Above is constant between recursions. Below is reset before and after ** each recursion */ int nVar; /* Number of '?' variables seen in the SQL so far */ int nVarExpr; /* Number of used slots in apVarExpr[] */ int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ int nAlias; /* Number of aliased result set columns */ int nAliasAlloc; /* Number of allocated slots for aAlias[] */ int *aAlias; /* Register used to hold aliased result */ u8 explain; /* True if the EXPLAIN flag is found on the query */ Token sNameToken; /* Token with unqualified schema object name */ Token sLastToken; /* The last token parsed */ const char *zTail; /* All SQL text past the last semicolon parsed */ |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 | }else{ sqlite3_bind_null(pStmt, i); } } } pPreStmt->nParm = iParm; *ppPreStmt = pPreStmt; return TCL_OK; } /* ** Release a statement reference obtained by calling dbPrepareAndBind(). ** There should be exactly one call to this function for each call to | > > > > > > > > > > | 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 | }else{ sqlite3_bind_null(pStmt, i); } } } pPreStmt->nParm = iParm; *ppPreStmt = pPreStmt; /* Call sqlite3_reoptimize() to optimize the statement according to ** the values just bound to it. If SQLITE_ENABLE_STAT2 is not defined ** or the statement will not benefit from re-optimization, this ** call is a no-op. */ if( SQLITE_OK!=sqlite3_reoptimize(pPreStmt->pStmt) ){ Tcl_SetObjResult(interp, dbTextToObj(sqlite3_errmsg(pDb->db))); return TCL_ERROR; } return TCL_OK; } /* ** Release a statement reference obtained by calling dbPrepareAndBind(). ** There should be exactly one call to this function for each call to |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 | if( Tcl_GetIntFromObj(interp, objv[2], &op) ) return TCL_ERROR; } if( Tcl_GetBooleanFromObj(interp, objv[3], &resetFlag) ) return TCL_ERROR; iValue = sqlite3_stmt_status(pStmt, op, resetFlag); Tcl_SetObjResult(interp, Tcl_NewIntObj(iValue)); return TCL_OK; } /* ** Usage: sqlite3_next_stmt DB STMT ** ** Return the next statment in sequence after STMT. */ static int test_next_stmt( | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 | if( Tcl_GetIntFromObj(interp, objv[2], &op) ) return TCL_ERROR; } if( Tcl_GetBooleanFromObj(interp, objv[3], &resetFlag) ) return TCL_ERROR; iValue = sqlite3_stmt_status(pStmt, op, resetFlag); Tcl_SetObjResult(interp, Tcl_NewIntObj(iValue)); return TCL_OK; } /* ** Usage: sqlite3_reoptimize STMT ** ** Call sqlite3_reoptimize() on the statement handle passed as the ** only parameter. Return a string representing the value returned by ** sqlite3_reoptimize - "SQLITE_OK", "SQLITE_MISUSE" etc. */ static int test_reoptimize( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ sqlite3_stmt *pStmt; int rc; if( objc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", Tcl_GetString(objv[0]), " STMT", 0); return TCL_ERROR; } if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR; rc = sqlite3_reoptimize(pStmt); Tcl_ResetResult(interp); Tcl_SetResult(interp, (char *)t1ErrorName(rc), 0); return TCL_OK; } /* ** Usage: sqlite3_next_stmt DB STMT ** ** Return the next statment in sequence after STMT. */ static int test_next_stmt( |
︙ | ︙ | |||
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 | return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; zSql = Tcl_GetString(objv[2]); if( Tcl_GetIntFromObj(interp, objv[3], &bytes) ) return TCL_ERROR; rc = sqlite3_prepare(db, zSql, bytes, &pStmt, objc>=5 ? &zTail : 0); if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR; if( zTail && objc>=5 ){ if( bytes>=0 ){ bytes = bytes - (zTail-zSql); } if( strlen(zTail)<bytes ){ bytes = strlen(zTail); | > | 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 | return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; zSql = Tcl_GetString(objv[2]); if( Tcl_GetIntFromObj(interp, objv[3], &bytes) ) return TCL_ERROR; rc = sqlite3_prepare(db, zSql, bytes, &pStmt, objc>=5 ? &zTail : 0); Tcl_ResetResult(interp); if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR; if( zTail && objc>=5 ){ if( bytes>=0 ){ bytes = bytes - (zTail-zSql); } if( strlen(zTail)<bytes ){ bytes = strlen(zTail); |
︙ | ︙ | |||
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 | } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; zSql = Tcl_GetString(objv[2]); if( Tcl_GetIntFromObj(interp, objv[3], &bytes) ) return TCL_ERROR; rc = sqlite3_prepare_v2(db, zSql, bytes, &pStmt, objc>=5 ? &zTail : 0); assert(rc==SQLITE_OK || pStmt==0); if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR; if( zTail && objc>=5 ){ if( bytes>=0 ){ bytes = bytes - (zTail-zSql); } Tcl_ObjSetVar2(interp, objv[4], 0, Tcl_NewStringObj(zTail, bytes), 0); } | > | 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 | } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; zSql = Tcl_GetString(objv[2]); if( Tcl_GetIntFromObj(interp, objv[3], &bytes) ) return TCL_ERROR; rc = sqlite3_prepare_v2(db, zSql, bytes, &pStmt, objc>=5 ? &zTail : 0); assert(rc==SQLITE_OK || pStmt==0); Tcl_ResetResult(interp); if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR; if( zTail && objc>=5 ){ if( bytes>=0 ){ bytes = bytes - (zTail-zSql); } Tcl_ObjSetVar2(interp, objv[4], 0, Tcl_NewStringObj(zTail, bytes), 0); } |
︙ | ︙ | |||
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 | { "sqlite3_reset", test_reset ,0 }, { "sqlite3_expired", test_expired ,0 }, { "sqlite3_transfer_bindings", test_transfer_bind ,0 }, { "sqlite3_changes", test_changes ,0 }, { "sqlite3_step", test_step ,0 }, { "sqlite3_sql", test_sql ,0 }, { "sqlite3_next_stmt", test_next_stmt ,0 }, { "sqlite3_release_memory", test_release_memory, 0}, { "sqlite3_soft_heap_limit", test_soft_heap_limit, 0}, { "sqlite3_thread_cleanup", test_thread_cleanup, 0}, { "sqlite3_pager_refcounts", test_pager_refcounts, 0}, { "sqlite3_load_extension", test_load_extension, 0}, | > | 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 | { "sqlite3_reset", test_reset ,0 }, { "sqlite3_expired", test_expired ,0 }, { "sqlite3_transfer_bindings", test_transfer_bind ,0 }, { "sqlite3_changes", test_changes ,0 }, { "sqlite3_step", test_step ,0 }, { "sqlite3_sql", test_sql ,0 }, { "sqlite3_next_stmt", test_next_stmt ,0 }, { "sqlite3_reoptimize", test_reoptimize ,0 }, { "sqlite3_release_memory", test_release_memory, 0}, { "sqlite3_soft_heap_limit", test_soft_heap_limit, 0}, { "sqlite3_thread_cleanup", test_thread_cleanup, 0}, { "sqlite3_pager_refcounts", test_pager_refcounts, 0}, { "sqlite3_load_extension", test_load_extension, 0}, |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
147 148 149 150 151 152 153 | ** P if required. */ #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) /* ** Argument pMem points at a register that will be passed to a ** user-defined function or returned to the user as the result of a query. | < | | < | | 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | ** P if required. */ #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) /* ** Argument pMem points at a register that will be passed to a ** user-defined function or returned to the user as the result of a query. ** This routine sets the pMem->type variable used by the sqlite3_value_*() ** routines. */ void sqlite3VdbeMemStoreType(Mem *pMem){ int flags = pMem->flags; if( flags & MEM_Null ){ pMem->type = SQLITE_NULL; } else if( flags & MEM_Int ){ pMem->type = SQLITE_INTEGER; } |
︙ | ︙ | |||
323 324 325 326 327 328 329 | ** loss of information and return the revised type of the argument. ** ** This is an EXPERIMENTAL api and is subject to change or removal. */ int sqlite3_value_numeric_type(sqlite3_value *pVal){ Mem *pMem = (Mem*)pVal; applyNumericAffinity(pMem); | | | 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | ** loss of information and return the revised type of the argument. ** ** This is an EXPERIMENTAL api and is subject to change or removal. */ int sqlite3_value_numeric_type(sqlite3_value *pVal){ Mem *pMem = (Mem*)pVal; applyNumericAffinity(pMem); sqlite3VdbeMemStoreType(pMem); return pMem->type; } /* ** Exported version of applyAffinity(). This one works on sqlite3_value*, ** not the internal Mem* type. */ |
︙ | ︙ | |||
1017 1018 1019 1020 1021 1022 1023 | Mem *pVar; /* Value being transferred */ p1 = pOp->p1 - 1; p2 = pOp->p2; n = pOp->p3; assert( p1>=0 && p1+n<=p->nVar ); assert( p2>=1 && p2+n-1<=p->nMem ); | | | 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 | Mem *pVar; /* Value being transferred */ p1 = pOp->p1 - 1; p2 = pOp->p2; n = pOp->p3; assert( p1>=0 && p1+n<=p->nVar ); assert( p2>=1 && p2+n-1<=p->nMem ); assert( pOp->p4.z==0 || pOp->p3==1 || pOp->p3==0 ); while( n-- > 0 ){ pVar = &p->aVar[p1++]; if( sqlite3VdbeMemTooBig(pVar) ){ goto too_big; } pOut = &p->aMem[p2++]; |
︙ | ︙ | |||
1164 1165 1166 1167 1168 1169 1170 | /* Make sure the results of the current row are \000 terminated ** and have an assigned type. The results are de-ephemeralized as ** as side effect. */ pMem = p->pResultSet = &p->aMem[pOp->p1]; for(i=0; i<pOp->p2; i++){ sqlite3VdbeMemNulTerminate(&pMem[i]); | | | 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 | /* Make sure the results of the current row are \000 terminated ** and have an assigned type. The results are de-ephemeralized as ** as side effect. */ pMem = p->pResultSet = &p->aMem[pOp->p1]; for(i=0; i<pOp->p2; i++){ sqlite3VdbeMemNulTerminate(&pMem[i]); sqlite3VdbeMemStoreType(&pMem[i]); REGISTER_TRACE(pOp->p1+i, &pMem[i]); } if( db->mallocFailed ) goto no_mem; /* Return SQLITE_ROW */ p->pc = pc + 1; |
︙ | ︙ | |||
1383 1384 1385 1386 1387 1388 1389 | assert( apVal || n==0 ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pArg = &p->aMem[pOp->p2]; for(i=0; i<n; i++, pArg++){ apVal[i] = pArg; | | | 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 | assert( apVal || n==0 ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pArg = &p->aMem[pOp->p2]; for(i=0; i<n; i++, pArg++){ apVal[i] = pArg; sqlite3VdbeMemStoreType(pArg); REGISTER_TRACE(pOp->p2, pArg); } assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); if( pOp->p4type==P4_FUNCDEF ){ ctx.pFunc = pOp->p4.pFunc; ctx.pVdbeFunc = 0; |
︙ | ︙ | |||
5053 5054 5055 5056 5057 5058 5059 | n = pOp->p5; assert( n>=0 ); pRec = &p->aMem[pOp->p2]; apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ apVal[i] = pRec; | | | 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 | n = pOp->p5; assert( n>=0 ); pRec = &p->aMem[pOp->p2]; apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ apVal[i] = pRec; sqlite3VdbeMemStoreType(pRec); } ctx.pFunc = pOp->p4.pFunc; assert( pOp->p3>0 && pOp->p3<=p->nMem ); ctx.pMem = pMem = &p->aMem[pOp->p3]; pMem->n++; ctx.s.flags = MEM_Null; ctx.s.z = 0; |
︙ | ︙ | |||
5341 5342 5343 5344 5345 5346 5347 | /* Invoke the xFilter method */ { res = 0; apArg = p->apArg; for(i = 0; i<nArg; i++){ apArg[i] = &pArgc[i+1]; | | | 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 | /* Invoke the xFilter method */ { res = 0; apArg = p->apArg; for(i = 0; i<nArg; i++){ apArg[i] = &pArgc[i+1]; sqlite3VdbeMemStoreType(apArg[i]); } if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; p->inVtabMethod = 1; rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); p->inVtabMethod = 0; sqlite3DbFree(db, p->zErrMsg); |
︙ | ︙ | |||
5545 5546 5547 5548 5549 5550 5551 | pModule = (sqlite3_module *)pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(pModule->xUpdate) ){ apArg = p->apArg; pX = &p->aMem[pOp->p3]; for(i=0; i<nArg; i++){ | | | 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 | pModule = (sqlite3_module *)pVtab->pModule; nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(pModule->xUpdate) ){ apArg = p->apArg; pX = &p->aMem[pOp->p3]; for(i=0; i<nArg; i++){ sqlite3VdbeMemStoreType(pX); apArg[i] = pX; pX++; } if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); sqlite3DbFree(db, p->zErrMsg); p->zErrMsg = pVtab->zErrMsg; |
︙ | ︙ |
Changes to src/vdbe.h.
︙ | ︙ | |||
198 199 200 201 202 203 204 205 206 207 208 209 210 211 | int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); void sqlite3VdbeCountChanges(Vdbe*); sqlite3 *sqlite3VdbeDb(Vdbe*); void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); void sqlite3VdbeSwap(Vdbe*,Vdbe*); VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); void sqlite3VdbeProgramDelete(sqlite3 *, SubProgram *, int); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT int sqlite3VdbeReleaseMemory(int); #endif UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int); void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*); int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); | > > | 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); void sqlite3VdbeCountChanges(Vdbe*); sqlite3 *sqlite3VdbeDb(Vdbe*); void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); void sqlite3VdbeSwap(Vdbe*,Vdbe*); VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); void sqlite3VdbeProgramDelete(sqlite3 *, SubProgram *, int); sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8); void sqlite3VdbeSetVarmask(Vdbe*,int,int); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT int sqlite3VdbeReleaseMemory(int); #endif UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int); void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*); int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
319 320 321 322 323 324 325 326 327 328 329 330 331 332 | i64 nStmtDefCons; /* Number of def. constraints when stmt started */ int iStatement; /* Statement number (or 0 if has not opened stmt) */ #ifdef SQLITE_DEBUG FILE *trace; /* Write an execution trace here, if not NULL */ #endif VdbeFrame *pFrame; /* Parent frame */ int nFrame; /* Number of frames in pFrame list */ }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ | > > > | 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | i64 nStmtDefCons; /* Number of def. constraints when stmt started */ int iStatement; /* Statement number (or 0 if has not opened stmt) */ #ifdef SQLITE_DEBUG FILE *trace; /* Write an execution trace here, if not NULL */ #endif VdbeFrame *pFrame; /* Parent frame */ int nFrame; /* Number of frames in pFrame list */ u8 optimizable; /* True if VM may benefit from sqlite3_reoptimize() */ u32 optmask; /* Bitmask of vars that may be used by reoptimize() */ u32 expmask; /* Binding to these vars invalidates VM */ }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ |
︙ | ︙ | |||
384 385 386 387 388 389 390 391 392 393 394 395 396 397 | int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); int sqlite3VdbeCloseStatement(Vdbe *, int); void sqlite3VdbeFrameDelete(VdbeFrame*); int sqlite3VdbeFrameRestore(VdbeFrame *); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT int sqlite3VdbeReleaseBuffers(Vdbe *p); #endif #ifndef SQLITE_OMIT_FOREIGN_KEY int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif | > | 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); int sqlite3VdbeCloseStatement(Vdbe *, int); void sqlite3VdbeFrameDelete(VdbeFrame*); int sqlite3VdbeFrameRestore(VdbeFrame *); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT int sqlite3VdbeReleaseBuffers(Vdbe *p); #endif void sqlite3VdbeMemStoreType(Mem *pMem); #ifndef SQLITE_OMIT_FOREIGN_KEY int sqlite3VdbeCheckFk(Vdbe *, int); #else # define sqlite3VdbeCheckFk(p,i) 0 #endif |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
910 911 912 913 914 915 916 917 918 919 920 921 922 923 | return SQLITE_RANGE; } i--; pVar = &p->aVar[i]; sqlite3VdbeMemRelease(pVar); pVar->flags = MEM_Null; sqlite3Error(p->db, SQLITE_OK, 0); return SQLITE_OK; } /* ** Bind a text or BLOB value. */ static int bindText( | > > > > > > > > > > > > > > > | 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 | return SQLITE_RANGE; } i--; pVar = &p->aVar[i]; sqlite3VdbeMemRelease(pVar); pVar->flags = MEM_Null; sqlite3Error(p->db, SQLITE_OK, 0); /* If the bit corresponding to this variable is set in Vdbe.opmask, set ** the optimizable flag before returning. This tells the sqlite3_reoptimize() ** function that the VM program may benefit from recompilation. ** ** If the bit in Vdbe.expmask is set, then binding a new value to this ** variable invalidates the current query plan. This comes about when the ** variable is the RHS of a LIKE or GLOB operator and the LIKE/GLOB is ** able to use an index. */ if( (i<32 && p->optmask & ((u32)1 << i)) || p->optmask==0xffffffff ){ p->optimizable = 1; } if( (i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff ){ p->expired = 1; } return SQLITE_OK; } /* ** Bind a text or BLOB value. */ static int bindText( |
︙ | ︙ | |||
1201 1202 1203 1204 1205 1206 1207 | */ int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ Vdbe *pVdbe = (Vdbe*)pStmt; int v = pVdbe->aCounter[op-1]; if( resetFlag ) pVdbe->aCounter[op-1] = 0; return v; } | > > > > > > > > > > > > > > > > > > > > > > | 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 | */ int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ Vdbe *pVdbe = (Vdbe*)pStmt; int v = pVdbe->aCounter[op-1]; if( resetFlag ) pVdbe->aCounter[op-1] = 0; return v; } /* ** If possible, optimize the statement for the current bindings. */ int sqlite3_reoptimize(sqlite3_stmt *pStmt){ int rc = SQLITE_OK; Vdbe *v = (Vdbe *)pStmt; sqlite3 *db = v->db; sqlite3_mutex_enter(db->mutex); if( v->isPrepareV2==0 || v->pc>0 ){ rc = SQLITE_MISUSE; }else if( v->optimizable ){ rc = sqlite3Reprepare(v); rc = sqlite3ApiExit(db, rc); } assert( rc!=SQLITE_OK || v->optimizable==0 ); sqlite3_mutex_leave(db->mutex); return rc; } |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
3018 3019 3020 3021 3022 3023 3024 | /* ** Return the database associated with the Vdbe. */ sqlite3 *sqlite3VdbeDb(Vdbe *v){ return v->db; } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 | /* ** Return the database associated with the Vdbe. */ sqlite3 *sqlite3VdbeDb(Vdbe *v){ return v->db; } /* ** Return a pointer to an sqlite3_value structure containing the value bound ** parameter iVar of VM v. Except, if the value is an SQL NULL, return ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* ** constants) to the value before returning it. ** ** The returned value must be freed by the caller using sqlite3ValueFree(). */ sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ assert( iVar>0 ); if( v ){ Mem *pMem = &v->aVar[iVar-1]; if( 0==(pMem->flags & MEM_Null) ){ sqlite3_value *pRet = sqlite3ValueNew(v->db); if( pRet ){ sqlite3VdbeMemCopy((Mem *)pRet, pMem); sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); sqlite3VdbeMemStoreType((Mem *)pRet); } return pRet; } } return 0; } /* ** Configure SQL variable iVar so that binding a new value to it signals ** to sqlite3_reoptimize() that re-preparing the statement may result ** in a better query plan. */ void sqlite3VdbeSetVarmask(Vdbe *v, int iVar, int isExpire){ u32 *mask = (isExpire ? &v->expmask : &v->optmask); assert( iVar>0 ); if( iVar>32 ){ *mask = 0xffffffff; }else{ *mask |= ((u32)1 << (iVar-1)); } } |
Changes to src/vdbemem.c.
︙ | ︙ | |||
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 | nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif *ppVal = pVal; return SQLITE_OK; no_mem: db->mallocFailed = 1; sqlite3DbFree(db, zVal); sqlite3ValueFree(pVal); | > > > | 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 | nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif if( pVal ){ sqlite3VdbeMemStoreType(pVal); } *ppVal = pVal; return SQLITE_OK; no_mem: db->mallocFailed = 1; sqlite3DbFree(db, zVal); sqlite3ValueFree(pVal); |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
621 622 623 624 625 626 627 | ** ** In order for the operator to be optimizible, the RHS must be a string ** literal that does not begin with a wildcard. */ static int isLikeOrGlob( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* Test this expression */ | | | > > < < < < > > > > > > > > > > > > > > > | > | > > > | > > > > > > > > > > > > > | > > > | | 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 | ** ** In order for the operator to be optimizible, the RHS must be a string ** literal that does not begin with a wildcard. */ static int isLikeOrGlob( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* Test this expression */ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ int *pisComplete, /* True if the only wildcard is % in the last character */ int *pnoCase /* True if uppercase is equivalent to lowercase */ ){ const char *z = 0; /* String on RHS of LIKE operator */ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ ExprList *pList; /* List of operands to the LIKE operator */ int c; /* One character in z[] */ int cnt; /* Number of non-wildcard prefix characters */ char wc[3]; /* Wildcard characters */ CollSeq *pColl; /* Collating sequence for LHS */ sqlite3 *db = pParse->db; /* Database connection */ sqlite3_value *pVal = 0; int op; /* Opcode of pRight */ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ return 0; } #ifdef SQLITE_EBCDIC if( *pnoCase ) return 0; #endif pList = pExpr->x.pList; pLeft = pList->a[1].pExpr; if( pLeft->op!=TK_COLUMN ){ return 0; } pColl = sqlite3ExprCollSeq(pParse, pLeft); assert( pColl!=0 || pLeft->iColumn==-1 ); if( pColl==0 ) return 0; if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) && (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){ return 0; } if( sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ) return 0; pRight = pList->a[0].pExpr; op = pRight->op; if( op==TK_REGISTER ){ op = pRight->op2; } if( op==TK_VARIABLE ){ Vdbe *pReprepare = pParse->pReprepare; pVal = sqlite3VdbeGetValue(pReprepare, pRight->iColumn, SQLITE_AFF_NONE); if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ z = (char *)sqlite3_value_text(pVal); } sqlite3VdbeSetVarmask(pParse->pVdbe, pRight->iColumn, 0); assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); }else if( op==TK_STRING ){ z = pRight->u.zToken; } if( z ){ cnt = 0; while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } if( cnt!=0 && c!=0 && 255!=(u8)z[cnt-1] ){ Expr *pPrefix; *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; pPrefix = sqlite3Expr(db, TK_STRING, z); if( pPrefix ) pPrefix->u.zToken[cnt] = 0; *ppPrefix = pPrefix; if( op==TK_VARIABLE ){ Vdbe *v = pParse->pVdbe; sqlite3VdbeSetVarmask(v, pRight->iColumn, 1); if( *pisComplete && pRight->u.zToken[1] ){ /* If the rhs of the LIKE expression is a variable, and the current ** value of the variable means there is no need to invoke the LIKE ** function, then no OP_Variable will be added to the program. ** This causes problems for the sqlite3_bind_parameter_name() ** API. To workaround them, add a dummy OP_Variable here. */ sqlite3ExprCodeTarget(pParse, pRight, 1); sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); } } }else{ z = 0; } } sqlite3ValueFree(pVal); return (z!=0); } #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Check to see if the given expression is of the form |
︙ | ︙ | |||
1051 1052 1053 1054 1055 1056 1057 | ){ WhereTerm *pTerm; /* The term to be analyzed */ WhereMaskSet *pMaskSet; /* Set of table index masks */ Expr *pExpr; /* The expression to be analyzed */ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ Bitmask prereqAll; /* Prerequesites of pExpr */ Bitmask extraRight = 0; | < > | 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 | ){ WhereTerm *pTerm; /* The term to be analyzed */ WhereMaskSet *pMaskSet; /* Set of table index masks */ Expr *pExpr; /* The expression to be analyzed */ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ Bitmask prereqAll; /* Prerequesites of pExpr */ Bitmask extraRight = 0; int isComplete; int noCase; int op; /* Top-level operator. pExpr->op */ Parse *pParse = pWC->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection */ Expr *pStr1; if( db->mallocFailed ){ return; } pTerm = &pWC->a[idxTerm]; pMaskSet = pWC->pMaskSet; pExpr = pTerm->pExpr; |
︙ | ︙ | |||
1188 1189 1190 1191 1192 1193 1194 | ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints ** ** x>='abc' AND x<'abd' AND x LIKE 'abc%' ** ** The last character of the prefix "abc" is incremented to form the ** termination condition "abd". */ | < | > > | | < < < | | 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 | ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints ** ** x>='abc' AND x<'abd' AND x LIKE 'abc%' ** ** The last character of the prefix "abc" is incremented to form the ** termination condition "abd". */ if( pWC->op==TK_AND && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) ){ Expr *pLeft; Expr *pStr2; Expr *pNewExpr1, *pNewExpr2; int idxNew1, idxNew2; pLeft = pExpr->x.pList->a[1].pExpr; pStr2 = sqlite3ExprDup(db, pStr1, 0); if( !db->mallocFailed ){ u8 c, *pC; /* Last character before the first wildcard */ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; c = *pC; if( noCase ){ /* The point is to increment the last character before the first ** wildcard. But if we increment '@', that will push it into the ** alphabetic range where case conversions will mess up the ** inequality. To avoid this, make sure to also run the full ** LIKE on all candidate expressions by clearing the isComplete flag |
︙ | ︙ | |||
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 | assert( i>=0 && i<=SQLITE_INDEX_SAMPLES ); *piRegion = i; } return SQLITE_OK; } #endif /* #ifdef SQLITE_ENABLE_STAT2 */ /* ** This function is used to estimate the number of rows that will be visited ** by scanning an index for a range of values. The range may have an upper ** bound, a lower bound, or both. The WHERE clause terms that set the upper ** and lower bounds are represented by pLower and pUpper respectively. For ** example, assuming that index p is on t1(a): | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 | assert( i>=0 && i<=SQLITE_INDEX_SAMPLES ); *piRegion = i; } return SQLITE_OK; } #endif /* #ifdef SQLITE_ENABLE_STAT2 */ /* ** If expression pExpr represents a literal value, set *pp to point to ** an sqlite3_value structure containing the same value, with affinity ** aff applied to it, before returning. It is the responsibility of the ** caller to eventually release this structure by passing it to ** sqlite3ValueFree(). ** ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr ** is an SQL variable that currently has a non-NULL value bound to it, ** create an sqlite3_value structure containing this value, again with ** affinity aff applied to it, instead. ** ** If neither of the above apply, set *pp to NULL. ** ** If an error occurs, return an error code. Otherwise, SQLITE_OK. */ static int valueFromExpr( Parse *pParse, Expr *pExpr, u8 aff, sqlite3_value **pp ){ if( (pExpr->op==TK_VARIABLE) || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) ){ int iVar = pExpr->iColumn; sqlite3VdbeSetVarmask(pParse->pVdbe, iVar, 0); *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff); return SQLITE_OK; } return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp); } /* ** This function is used to estimate the number of rows that will be visited ** by scanning an index for a range of values. The range may have an upper ** bound, a lower bound, or both. The WHERE clause terms that set the upper ** and lower bounds are represented by pLower and pUpper respectively. For ** example, assuming that index p is on t1(a): |
︙ | ︙ | |||
2032 2033 2034 2035 2036 2037 2038 | WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ int *piEst /* OUT: Return value */ ){ int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_STAT2 | | > | | < < | | | | 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 | WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ int *piEst /* OUT: Return value */ ){ int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_STAT2 if( nEq==0 && p->aSample ){ sqlite3_value *pLowerVal = 0; sqlite3_value *pUpperVal = 0; int iEst; int iLower = 0; int iUpper = SQLITE_INDEX_SAMPLES; u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; if( pLower ){ Expr *pExpr = pLower->pExpr->pRight; rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal); } if( rc==SQLITE_OK && pUpper ){ Expr *pExpr = pUpper->pExpr->pRight; rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal); } if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){ sqlite3ValueFree(pLowerVal); sqlite3ValueFree(pUpperVal); goto range_est_fallback; }else if( pLowerVal==0 ){ |
︙ | ︙ |
Added test/analyze3.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 | # 2009 August 06 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file implements regression tests for SQLite library. This file # implements tests for the sqlite3_reoptimize() functionality. # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable !stat2 { finish_test return } #---------------------------------------------------------------------- # Test Organization: # # analyze3-1.*: Test that the values of bound parameters are considered # in the same way as constants when planning queries that # use range constraints. # # analyze3-2.*: Test that the values of bound parameters are considered # in the same way as constants when planning queries that # use LIKE expressions in the WHERE clause. # # analyze3-3.*: Test that sqlite3_reoptimize() is a no-op when there is # no way for re-preparing the query to produce a superior # query plan. # # analyze3-4.*: Test that SQL or authorization callback errors occuring # within sqlite3_reoptimize() are handled correctly. # proc getvar {varname} { uplevel #0 set $varname } db function var getvar proc eqp {sql {db db}} { uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db } proc sf_execsql {sql {db db}} { set ::sqlite_search_count 0 set r [uplevel [list execsql $sql $db]] concat $::sqlite_search_count [$db status step] $r } #------------------------------------------------------------------------- # # analyze3-1.1.1: # Create a table with two columns. Populate the first column (affinity # INTEGER) with integer values from 100 to 1100. Create an index on this # column. ANALYZE the table. # # analyze3-1.1.2 - 3.1.3 # Show that there are two possible plans for querying the table with # a range constraint on the indexed column - "full table scan" or "use # the index". When the range is specified using literal values, SQLite # is able to pick the best plan based on the samples in sqlite_stat2. # # analyze3-1.1.4 - 3.1.9 # Show that using SQL variables produces the same results as using # literal values to constrain the range scan. This works because the # Tcl interface always calls [sqlite3_reoptimize] after binding values. # # These tests also check that the compiler code considers column # affinities when estimating the number of rows scanned by the "use # index strategy". # do_test analyze3-1.1.1 { execsql { BEGIN; CREATE TABLE t1(x INTEGER, y); CREATE INDEX i1 ON t1(x); } for {set i 0} {$i < 1000} {incr i} { execsql { INSERT INTO t1 VALUES($i+100, $i) } } execsql { COMMIT; ANALYZE; } } {} do_test analyze3-1.1.2 { eqp { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 } } {0 0 {TABLE t1 WITH INDEX i1}} do_test analyze3-1.1.3 { eqp { SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 } } {0 0 {TABLE t1}} do_test analyze3-1.1.4 { sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 } } {199 0 14850} do_test analyze3-1.1.5 { set l [string range "200" 0 end] set u [string range "300" 0 end] sf_execsql { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u } } {199 0 14850} do_test analyze3-1.1.6 { set l [expr int(200)] set u [expr int(300)] sf_execsql { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u } } {199 0 14850} do_test analyze3-1.1.7 { sf_execsql { SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 } } {999 999 499500} do_test analyze3-1.1.8 { set l [string range "0" 0 end] set u [string range "1100" 0 end] sf_execsql { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u } } {999 999 499500} do_test analyze3-1.1.9 { set l [expr int(0)] set u [expr int(1100)] sf_execsql { SELECT sum(y) FROM t1 WHERE x>$l AND x<$u } } {999 999 499500} # The following tests are similar to the block above. The difference is # that the indexed column has TEXT affinity in this case. In the tests # above the affinity is INTEGER. # do_test analyze3-1.2.1 { execsql { BEGIN; CREATE TABLE t2(x TEXT, y); INSERT INTO t2 SELECT * FROM t1; CREATE INDEX i2 ON t2(x); COMMIT; ANALYZE; } } {} do_test analyze3-1.2.2 { eqp { SELECT sum(y) FROM t2 WHERE x>1 AND x<2 } } {0 0 {TABLE t2 WITH INDEX i2}} do_test analyze3-1.2.3 { eqp { SELECT sum(y) FROM t2 WHERE x>0 AND x<99 } } {0 0 {TABLE t2}} do_test analyze3-1.2.4 { sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 } } {161 0 4760} do_test analyze3-1.2.5 { set l [string range "12" 0 end] set u [string range "20" 0 end] sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u} } {161 0 text text 4760} do_test analyze3-1.2.6 { set l [expr int(12)] set u [expr int(20)] sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u} } {161 0 integer integer 4760} do_test analyze3-1.2.7 { sf_execsql { SELECT sum(y) FROM t2 WHERE x>0 AND x<99 } } {999 999 490555} do_test analyze3-1.2.8 { set l [string range "0" 0 end] set u [string range "99" 0 end] sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u} } {999 999 text text 490555} do_test analyze3-1.2.9 { set l [expr int(0)] set u [expr int(99)] sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u} } {999 999 integer integer 490555} # Same tests a third time. This time, column x has INTEGER affinity and # is not the leftmost column of the table. This triggered a bug causing # SQLite to use sub-optimal query plans in 3.6.18 and earlier. # do_test analyze3-1.3.1 { execsql { BEGIN; CREATE TABLE t3(y TEXT, x INTEGER); INSERT INTO t3 SELECT y, x FROM t1; CREATE INDEX i3 ON t3(x); COMMIT; ANALYZE; } } {} do_test analyze3-1.3.2 { eqp { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 } } {0 0 {TABLE t3 WITH INDEX i3}} do_test analyze3-1.3.3 { eqp { SELECT sum(y) FROM t3 WHERE x>0 AND x<1100 } } {0 0 {TABLE t3}} do_test analyze3-1.3.4 { sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 } } {199 0 14850} do_test analyze3-1.3.5 { set l [string range "200" 0 end] set u [string range "300" 0 end] sf_execsql { SELECT sum(y) FROM t3 WHERE x>$l AND x<$u } } {199 0 14850} do_test analyze3-1.3.6 { set l [expr int(200)] set u [expr int(300)] sf_execsql { SELECT sum(y) FROM t3 WHERE x>$l AND x<$u } } {199 0 14850} do_test analyze3-1.3.7 { sf_execsql { SELECT sum(y) FROM t3 WHERE x>0 AND x<1100 } } {999 999 499500} do_test analyze3-1.3.8 { set l [string range "0" 0 end] set u [string range "1100" 0 end] sf_execsql { SELECT sum(y) FROM t3 WHERE x>$l AND x<$u } } {999 999 499500} do_test analyze3-1.3.9 { set l [expr int(0)] set u [expr int(1100)] sf_execsql { SELECT sum(y) FROM t3 WHERE x>$l AND x<$u } } {999 999 499500} #------------------------------------------------------------------------- # Test that the values of bound SQL variables may be used for the LIKE # optimization. # drop_all_tables do_test analyze3-2.1 { execsql { PRAGMA case_sensitive_like=off; BEGIN; CREATE TABLE t1(a, b TEXT COLLATE nocase); CREATE INDEX i1 ON t1(b); } for {set i 0} {$i < 1000} {incr i} { set t "" append t [lindex {a b c d e f g h i j} [expr $i/100]] append t [lindex {a b c d e f g h i j} [expr ($i/10)%10]] append t [lindex {a b c d e f g h i j} [expr ($i%10)]] execsql { INSERT INTO t1 VALUES($i, $t) } } execsql COMMIT } {} do_test analyze3-2.2 { eqp { SELECT count(a) FROM t1 WHERE b LIKE 'a%' } } {0 0 {TABLE t1 WITH INDEX i1}} do_test analyze3-2.3 { eqp { SELECT count(a) FROM t1 WHERE b LIKE '%a' } } {0 0 {TABLE t1}} do_test analyze3-2.4 { sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE 'a%' } } {101 0 100} do_test analyze3-2.5 { sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE '%a' } } {999 999 100} do_test analyze3-2.4 { set like "a%" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {101 0 100} do_test analyze3-2.5 { set like "%a" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {999 999 100} #------------------------------------------------------------------------- # This block of tests checks that sqlite3_reoptimize() is a no-op if # the values bound to any parameters that may affect the query plan # have not changed since the statement was last compiled. # # It is possible to tell if sqlite3_reoptimize() is a no-op by registering # an authorization callback. If the auth callback is not invoked from # within a give call to reoptimize(), then it must have been a no-op. # # Also test that: # # * sqlite3_reoptimize() returns SQLITE_MISUSE if called on a statement # that was prepared using the legacy sqlite3_prepare() interface, # # * sqlite3_reoptimize() returns SQLITE_MISUSE if called on a statement # that is not in the "reset" state. # drop_all_tables db auth auth proc auth {args} { set ::auth 1 return SQLITE_OK } # Return true if calling reoptimize() on the statement handle passed # as an argument causes the statement to be recompiled. # proc test_reoptimize {stmt} { set ::auth 0 sqlite3_reoptimize $stmt set ::auth } do_test analyze3-3.1 { execsql { BEGIN; CREATE TABLE t1(a, b, c); CREATE INDEX i1 ON t1(b); } for {set i 0} {$i < 100} {incr i} { execsql { INSERT INTO t1 VALUES($i, $i, $i) } } execsql COMMIT execsql ANALYZE } {} do_test analyze3-3.2.1 { set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b>?" -1 dummy] test_reoptimize $S } {0} do_test analyze3-3.2.2 { sqlite3_bind_text $S 1 "abc" 3 test_reoptimize $S } {1} do_test analyze3-3.2.3 { test_reoptimize $S } {0} do_test analyze3-3.2.4 { sqlite3_finalize $S } {SQLITE_OK} do_test analyze3-3.2.1 { set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b=?" -1 dummy] test_reoptimize $S } {0} do_test analyze3-3.2.2 { sqlite3_bind_text $S 1 "abc" 3 test_reoptimize $S } {0} do_test analyze3-3.2.3 { sqlite3_finalize $S } {SQLITE_OK} do_test analyze3-3.3.1 { set S [sqlite3_prepare db "SELECT * FROM t1 WHERE b=?" -1 dummy] sqlite3_reoptimize $S } {SQLITE_MISUSE} do_test analyze3-3.3.2 { sqlite3_finalize $S } {SQLITE_OK} do_test analyze3-3.3.1 { set S [sqlite3_prepare_v2 db "SELECT * FROM t1" -1 dummy] sqlite3_reoptimize $S } {SQLITE_OK} do_test analyze3-3.3.2 { sqlite3_step $S } {SQLITE_ROW} do_test analyze3-3.3.3 { sqlite3_reoptimize $S } {SQLITE_MISUSE} do_test analyze3-3.3.4 { while {"SQLITE_ROW" == [sqlite3_step $S]} {} sqlite3_reoptimize $S } {SQLITE_MISUSE} do_test analyze3-3.3.5 { sqlite3_finalize $S } {SQLITE_OK} do_test analyze3-3.4.1 { set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE a=? AND b>?" -1 dummy] test_reoptimize $S } {0} do_test analyze3-3.4.2 { sqlite3_bind_text $S 1 "abc" 3 test_reoptimize $S } {0} do_test analyze3-3.4.3 { sqlite3_bind_text $S 2 "def" 3 test_reoptimize $S } {1} do_test analyze3-3.4.4 { sqlite3_bind_text $S 2 "ghi" 3 test_reoptimize $S } {1} do_test analyze3-3.4.5 { test_reoptimize $S } {0} do_test analyze3-3.4.6 { sqlite3_finalize $S } {SQLITE_OK} do_test analyze3-3.5.1 { set S [sqlite3_prepare_v2 db { SELECT * FROM t1 WHERE a IN ( ?1, ?2, ?3, ?4, ?5, ?6, ?7, ?8, ?9, ?10, ?11, ?12, ?13, ?14, ?15, ?16, ?17, ?18, ?19, ?20, ?21, ?22, ?23, ?24, ?25, ?26, ?27, ?28, ?29, ?30, ?31 ) AND b>?32; } -1 dummy] test_reoptimize $S } {0} do_test analyze3-3.5.2 { sqlite3_bind_text $S 31 "abc" 3 test_reoptimize $S } {0} do_test analyze3-3.5.3 { sqlite3_bind_text $S 32 "def" 3 test_reoptimize $S } {1} do_test analyze3-3.5.4 { test_reoptimize $S } {0} do_test analyze3-3.5.5 { sqlite3_finalize $S } {SQLITE_OK} do_test analyze3-3.6.1 { set S [sqlite3_prepare_v2 db { SELECT * FROM t1 WHERE a IN ( ?1, ?2, ?3, ?4, ?5, ?6, ?7, ?8, ?9, ?10, ?11, ?12, ?13, ?14, ?15, ?16, ?17, ?18, ?19, ?20, ?21, ?22, ?23, ?24, ?25, ?26, ?27, ?28, ?29, ?30, ?31, ?32 ) AND b>?33; } -1 dummy] test_reoptimize $S } {0} do_test analyze3-3.6.2 { sqlite3_bind_text $S 32 "abc" 3 test_reoptimize $S } {1} do_test analyze3-3.6.3 { sqlite3_bind_text $S 33 "def" 3 test_reoptimize $S } {1} do_test analyze3-3.6.4 { test_reoptimize $S } {0} do_test analyze3-3.6.5 { sqlite3_finalize $S } {SQLITE_OK} do_test analyze3-3.7.1 { breakpoint set S [sqlite3_prepare_v2 db { SELECT * FROM t1 WHERE a IN ( ?1, ?2, ?3, ?4, ?5, ?6, ?7, ?8, ?9, ?33, ?11, ?12, ?13, ?14, ?15, ?16, ?17, ?18, ?19, ?20, ?21, ?22, ?23, ?24, ?25, ?26, ?27, ?28, ?29, ?30, ?31, ?32 ) AND b>?10; } -1 dummy] test_reoptimize $S } {0} do_test analyze3-3.7.2 { sqlite3_bind_text $S 32 "abc" 3 test_reoptimize $S } {0} do_test analyze3-3.7.3 { sqlite3_bind_text $S 33 "def" 3 test_reoptimize $S } {0} do_test analyze3-3.7.4 { sqlite3_bind_text $S 10 "def" 3 test_reoptimize $S } {1} do_test analyze3-3.7.5 { test_reoptimize $S } {0} do_test analyze3-3.7.6 { sqlite3_finalize $S } {SQLITE_OK} do_test analyze3-3.8.1 { execsql { CREATE TABLE t4(x, y TEXT COLLATE NOCASE); CREATE INDEX i4 ON t4(y); } } {} do_test analyze3-3.8.2 { set S [sqlite3_prepare_v2 db { SELECT * FROM t4 WHERE x != ? AND y LIKE ? } -1 dummy] test_reoptimize $S } {0} do_test analyze3-3.8.3 { sqlite3_bind_text $S 1 "abc" 3 test_reoptimize $S } {0} do_test analyze3-3.8.4 { sqlite3_bind_text $S 2 "def" 3 test_reoptimize $S } {1} do_test analyze3-3.8.5 { test_reoptimize $S } {0} do_test analyze3-3.8.6 { sqlite3_expired $S } {0} do_test analyze3-3.8.7 { sqlite3_bind_text $S 2 "ghi%" 4 sqlite3_expired $S } {0} do_test analyze3-3.8.8 { test_reoptimize $S } {1} do_test analyze3-3.8.9 { sqlite3_bind_text $S 2 "ghi%def" 7 sqlite3_expired $S } {1} do_test analyze3-3.8.10 { test_reoptimize $S } {1} do_test analyze3-3.8.11 { sqlite3_bind_text $S 2 "%ab" 3 sqlite3_expired $S } {1} do_test analyze3-3.8.12 { test_reoptimize $S } {1} do_test analyze3-3.8.12 { sqlite3_bind_text $S 2 "%de" 3 sqlite3_expired $S } {0} do_test analyze3-3.8.13 { test_reoptimize $S } {1} do_test analyze3-3.8.14 { sqlite3_finalize $S } {SQLITE_OK} #------------------------------------------------------------------------- # These tests check that errors encountered while repreparing an SQL # statement within sqlite3_reoptimize() are handled correctly. # # Check an schema error. # do_test analyze3-4.1.1 { set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE a=? AND b>?" -1 dummy] sqlite3_reoptimize $S } {SQLITE_OK} do_test analyze3-4.1.2 { sqlite3_bind_text $S 2 "abc" 3 execsql { DROP TABLE t1 } sqlite3_reoptimize $S } {SQLITE_SCHEMA} do_test analyze3-4.1.3 { sqlite3_step $S } {SQLITE_SCHEMA} do_test analyze3-4.1.4 { sqlite3_finalize $S } {SQLITE_SCHEMA} # Check an authorization error. # do_test analyze3-4.2.1 { execsql { BEGIN; CREATE TABLE t1(a, b, c); CREATE INDEX i1 ON t1(b); } for {set i 0} {$i < 100} {incr i} { execsql { INSERT INTO t1 VALUES($i, $i, $i) } } execsql COMMIT execsql ANALYZE set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE a=? AND b>?" -1 dummy] sqlite3_reoptimize $S } {SQLITE_OK} db auth auth proc auth {args} { if {[lindex $args 0] == "SQLITE_READ"} {return SQLITE_DENY} return SQLITE_OK } do_test analyze3-4.2.2 { sqlite3_bind_text $S 2 "abc" 3 sqlite3_reoptimize $S } {SQLITE_SCHEMA} do_test analyze3-4.2.3 { sqlite3_step $S } {SQLITE_SCHEMA} do_test analyze3-4.2.4 { sqlite3_finalize $S } {SQLITE_SCHEMA} # Check the effect of an authorization error that occurs in a re-prepare # performed by sqlite3_step() is the same as one that occurs within # sqlite3_reoptimize(). # do_test analyze3-4.3.1 { db auth {} set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE a=? AND b>?" -1 dummy] execsql { CREATE TABLE t2(d, e, f) } db auth auth sqlite3_step $S } {SQLITE_SCHEMA} do_test analyze3-4.3.2 { sqlite3_finalize $S } {SQLITE_SCHEMA} finish_test |