Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Pull the latest trunk changes into the sessions branch, and in particular the collating-sequence refactorization. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | sessions |
Files: | files | file ages | folders |
SHA1: |
4f6d69ae94671df92b976525f75404c0 |
User & Date: | drh 2012-12-08 23:37:22.043 |
Context
2013-01-03
| ||
22:22 | Merge recent trunk changes into the sessions branch. (check-in: 7e068e39b3 user: drh tags: sessions) | |
2012-12-08
| ||
23:37 | Pull the latest trunk changes into the sessions branch, and in particular the collating-sequence refactorization. (check-in: 4f6d69ae94 user: drh tags: sessions) | |
22:14 | Factor some work out of the index loop of the bestBtreeIndex() routine for a small performance increase. (check-in: 92c9ab56b1 user: drh tags: trunk) | |
2012-11-27
| ||
21:56 | Update the sessions branch to include the SQLLOG enhancement, the SQLITE_IOERR_DELETE_NOENT fix, and a fix for the number-of-documents bug in FTS4. (check-in: ba8d08b670 user: drh tags: sessions) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
41 42 43 44 45 46 47 | # Compiler options needed for programs that use the TCL library. # TCC += @TCL_INCLUDE_SPEC@ # The library that programs using TCL must link against. # | | | 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | # Compiler options needed for programs that use the TCL library. # TCC += @TCL_INCLUDE_SPEC@ # The library that programs using TCL must link against. # LIBTCL = @TCL_LIB_SPEC@ # Compiler options needed for programs that use the readline() library. # READLINE_FLAGS = -DHAVE_READLINE=@TARGET_HAVE_READLINE@ @TARGET_READLINE_INC@ # The library that programs using readline() must link against. # |
︙ | ︙ | |||
931 932 933 934 935 936 937 | clean: rm -f *.lo *.la *.o sqlite3$(TEXE) libsqlite3.la rm -f sqlite3.h opcodes.* rm -rf .libs .deps rm -f lemon$(BEXE) lempar.c parse.* sqlite*.tar.gz rm -f mkkeywordhash$(BEXE) keywordhash.h | < | 931 932 933 934 935 936 937 938 939 940 941 942 943 944 | clean: rm -f *.lo *.la *.o sqlite3$(TEXE) libsqlite3.la rm -f sqlite3.h opcodes.* rm -rf .libs .deps rm -f lemon$(BEXE) lempar.c parse.* sqlite*.tar.gz rm -f mkkeywordhash$(BEXE) keywordhash.h rm -f *.da *.bb *.bbg gmon.out rm -rf quota2a quota2b quota2c rm -rf tsrc .target_source rm -f tclsqlite3$(TEXE) rm -f testfixture$(TEXE) test.db rm -f sqlite3.dll sqlite3.lib sqlite3.exp sqlite3.def rm -f sqlite3.c |
︙ | ︙ |
Changes to Makefile.msc.
︙ | ︙ | |||
841 842 843 844 845 846 847 | $(TCLSH_CMD) $(TOP)\tool\vdbe-compress.tcl < tsrc\vdbe.c > vdbe.new move vdbe.new tsrc\vdbe.c echo > .target_source sqlite3.c: .target_source $(TOP)\tool\mksqlite3c.tcl $(TCLSH_CMD) $(TOP)\tool\mksqlite3c.tcl | | | | 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 | $(TCLSH_CMD) $(TOP)\tool\vdbe-compress.tcl < tsrc\vdbe.c > vdbe.new move vdbe.new tsrc\vdbe.c echo > .target_source sqlite3.c: .target_source $(TOP)\tool\mksqlite3c.tcl $(TCLSH_CMD) $(TOP)\tool\mksqlite3c.tcl sqlite3-all.c: sqlite3.c $(TOP)\tool\split-sqlite3c.tcl $(TCLSH_CMD) $(TOP)\tool\split-sqlite3c.tcl # Rule to build the amalgamation # sqlite3.lo: sqlite3.c $(LTCOMPILE) -c sqlite3.c # Rules to build the LEMON compiler generator |
︙ | ︙ |
Changes to configure.
︙ | ︙ | |||
875 876 877 878 879 880 881 | SQLITE_OS_UNIX SQLITE_OS_WIN SQLITE_OS_OS2 TARGET_EXEEXT TCL_VERSION TCL_BIN_DIR TCL_SRC_DIR | < | 875 876 877 878 879 880 881 882 883 884 885 886 887 888 | SQLITE_OS_UNIX SQLITE_OS_WIN SQLITE_OS_OS2 TARGET_EXEEXT TCL_VERSION TCL_BIN_DIR TCL_SRC_DIR TCL_INCLUDE_SPEC TCL_LIB_FILE TCL_LIB_FLAG TCL_LIB_SPEC TCL_STUB_LIB_FILE TCL_STUB_LIB_FLAG TCL_STUB_LIB_SPEC |
︙ | ︙ |
Changes to configure.ac.
︙ | ︙ | |||
497 498 499 500 501 502 503 | eval "TCL_STUB_LIB_FILE=\"${TCL_STUB_LIB_FILE}\"" eval "TCL_STUB_LIB_FLAG=\"${TCL_STUB_LIB_FLAG}\"" eval "TCL_STUB_LIB_SPEC=\"${TCL_STUB_LIB_SPEC}\"" AC_SUBST(TCL_VERSION) AC_SUBST(TCL_BIN_DIR) AC_SUBST(TCL_SRC_DIR) | < | 497 498 499 500 501 502 503 504 505 506 507 508 509 510 | eval "TCL_STUB_LIB_FILE=\"${TCL_STUB_LIB_FILE}\"" eval "TCL_STUB_LIB_FLAG=\"${TCL_STUB_LIB_FLAG}\"" eval "TCL_STUB_LIB_SPEC=\"${TCL_STUB_LIB_SPEC}\"" AC_SUBST(TCL_VERSION) AC_SUBST(TCL_BIN_DIR) AC_SUBST(TCL_SRC_DIR) AC_SUBST(TCL_INCLUDE_SPEC) AC_SUBST(TCL_LIB_FILE) AC_SUBST(TCL_LIB_FLAG) AC_SUBST(TCL_LIB_SPEC) AC_SUBST(TCL_STUB_LIB_FILE) |
︙ | ︙ |
Changes to ext/async/README.txt.
1 2 3 4 5 6 7 | Normally, when SQLite writes to a database file, it waits until the write operation is finished before returning control to the calling application. Since writing to the file-system is usually very slow compared with CPU bound operations, this can be a performance bottleneck. This directory contains an extension that causes SQLite to perform all write requests using a separate thread running in the background. Although this does not | > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | NOTE (2012-11-29): The functionality implemented by this extension has been superseded by WAL-mode. This module is no longer supported or maintained. The code is retained for historical reference only. ------------------------------------------------------------------------------ Normally, when SQLite writes to a database file, it waits until the write operation is finished before returning control to the calling application. Since writing to the file-system is usually very slow compared with CPU bound operations, this can be a performance bottleneck. This directory contains an extension that causes SQLite to perform all write requests using a separate thread running in the background. Although this does not |
︙ | ︙ | |||
157 158 159 160 161 162 163 | static void async_mutex_leave(int eMutex); static void async_cond_wait(int eCond, int eMutex); static void async_cond_signal(int eCond); static void async_sched_yield(void); The functionality required of each of the above functions is described in comments in sqlite3async.c. | < | 164 165 166 167 168 169 170 | static void async_mutex_leave(int eMutex); static void async_cond_wait(int eCond, int eMutex); static void async_cond_signal(int eCond); static void async_sched_yield(void); The functionality required of each of the above functions is described in comments in sqlite3async.c. |
Changes to ext/async/sqlite3async.c.
︙ | ︙ | |||
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 | } break; } case ASYNC_DELETE: ASYNC_TRACE(("DELETE %s\n", p->zBuf)); rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); break; case ASYNC_OPENEXCLUSIVE: { int flags = (int)p->iOffset; AsyncFileData *pData = p->pFileData; ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); | > | 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 | } break; } case ASYNC_DELETE: ASYNC_TRACE(("DELETE %s\n", p->zBuf)); rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK; break; case ASYNC_OPENEXCLUSIVE: { int flags = (int)p->iOffset; AsyncFileData *pData = p->pFileData; ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); |
︙ | ︙ |
Changes to ext/async/sqlite3async.h.
︙ | ︙ | |||
71 72 73 74 75 76 77 | /* ** This function unregisters the asynchronous IO VFS using ** sqlite3_vfs_unregister(). ** ** On win32 platforms, this function also releases the small number of ** critical section and event objects created by sqlite3async_initialize(). */ | | | | 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | /* ** This function unregisters the asynchronous IO VFS using ** sqlite3_vfs_unregister(). ** ** On win32 platforms, this function also releases the small number of ** critical section and event objects created by sqlite3async_initialize(). */ void sqlite3async_shutdown(void); /* ** This function may only be called when the asynchronous IO VFS is ** installed (after a call to sqlite3async_initialize()). It processes ** zero or more queued write operations before returning. It is expected ** (but not required) that this function will be called by a different ** thread than those threads that use SQLite. The "background thread" ** that performs IO. ** ** How many queued write operations are performed before returning ** depends on the global setting configured by passing the SQLITEASYNC_HALT ** verb to sqlite3async_control() (see below for details). By default ** this function never returns - it processes all pending operations and ** then blocks waiting for new ones. ** ** If multiple simultaneous calls are made to sqlite3async_run() from two ** or more threads, then the calls are serialized internally. */ void sqlite3async_run(void); /* ** This function may only be called when the asynchronous IO VFS is ** installed (after a call to sqlite3async_initialize()). It is used ** to query or configure various parameters that affect the operation ** of the asynchronous IO VFS. At present there are three parameters ** supported: |
︙ | ︙ |
Changes to ext/fts3/fts3_write.c.
︙ | ︙ | |||
5249 5250 5251 5252 5253 5254 5255 | sqlite3_value **apVal, /* Array of arguments */ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ ){ Fts3Table *p = (Fts3Table *)pVtab; int rc = SQLITE_OK; /* Return Code */ int isRemove = 0; /* True for an UPDATE or DELETE */ u32 *aSzIns = 0; /* Sizes of inserted documents */ | | | 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 | sqlite3_value **apVal, /* Array of arguments */ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ ){ Fts3Table *p = (Fts3Table *)pVtab; int rc = SQLITE_OK; /* Return Code */ int isRemove = 0; /* True for an UPDATE or DELETE */ u32 *aSzIns = 0; /* Sizes of inserted documents */ u32 *aSzDel = 0; /* Sizes of deleted documents */ int nChng = 0; /* Net change in number of documents */ int bInsertDone = 0; assert( p->pSegments==0 ); assert( nArg==1 /* DELETE operations */ || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */ |
︙ | ︙ |
Changes to src/attach.c.
︙ | ︙ | |||
467 468 469 470 471 472 473 | for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ if( pItem->zDatabase && sqlite3StrICmp(pItem->zDatabase, zDb) ){ sqlite3ErrorMsg(pFix->pParse, "%s %T cannot reference objects in database %s", pFix->zType, pFix->pName, pItem->zDatabase); return 1; } | | | 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 | for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ if( pItem->zDatabase && sqlite3StrICmp(pItem->zDatabase, zDb) ){ sqlite3ErrorMsg(pFix->pParse, "%s %T cannot reference objects in database %s", pFix->zType, pFix->pName, pItem->zDatabase); return 1; } sqlite3DbFree(pFix->pParse->db, pItem->zDatabase); pItem->zDatabase = 0; pItem->pSchema = pFix->pSchema; #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1; if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1; #endif } |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
123 124 125 126 127 128 129 130 131 132 133 134 135 136 | ** Note that if an error occurred, it might be the case that ** no VDBE code was generated. */ void sqlite3FinishCoding(Parse *pParse){ sqlite3 *db; Vdbe *v; db = pParse->db; if( db->mallocFailed ) return; if( pParse->nested ) return; if( pParse->nErr ) return; /* Begin by generating some termination code at the end of the ** vdbe program | > | 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | ** Note that if an error occurred, it might be the case that ** no VDBE code was generated. */ void sqlite3FinishCoding(Parse *pParse){ sqlite3 *db; Vdbe *v; assert( pParse->pToplevel==0 ); db = pParse->db; if( db->mallocFailed ) return; if( pParse->nested ) return; if( pParse->nErr ) return; /* Begin by generating some termination code at the end of the ** vdbe program |
︙ | ︙ | |||
2686 2687 2688 2689 2690 2691 2692 | /* Figure out how many bytes of space are required to store explicitly ** specified collation sequence names. */ for(i=0; i<pList->nExpr; i++){ Expr *pExpr = pList->a[i].pExpr; if( pExpr ){ | | < < | | 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 | /* Figure out how many bytes of space are required to store explicitly ** specified collation sequence names. */ for(i=0; i<pList->nExpr; i++){ Expr *pExpr = pList->a[i].pExpr; if( pExpr ){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); if( pColl ){ nExtra += (1 + sqlite3Strlen30(pColl->zName)); } } } /* ** Allocate the index structure. |
︙ | ︙ | |||
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 | ** same column more than once cannot be an error because that would ** break backwards compatibility - it needs to be a warning. */ for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ const char *zColName = pListItem->zName; Column *pTabCol; int requestedSortOrder; char *zColl; /* Collation sequence name */ for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; } if( j>=pTab->nCol ){ sqlite3ErrorMsg(pParse, "table %s has no column named %s", pTab->zName, zColName); pParse->checkSchema = 1; goto exit_create_index; } pIndex->aiColumn[i] = j; | > < < < < < | > > | | 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 | ** same column more than once cannot be an error because that would ** break backwards compatibility - it needs to be a warning. */ for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ const char *zColName = pListItem->zName; Column *pTabCol; int requestedSortOrder; CollSeq *pColl; /* Collating sequence */ char *zColl; /* Collation sequence name */ for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; } if( j>=pTab->nCol ){ sqlite3ErrorMsg(pParse, "table %s has no column named %s", pTab->zName, zColName); pParse->checkSchema = 1; goto exit_create_index; } pIndex->aiColumn[i] = j; if( pListItem->pExpr && (pColl = sqlite3ExprCollSeq(pParse, pListItem->pExpr))!=0 ){ int nColl; zColl = pColl->zName; nColl = sqlite3Strlen30(zColl) + 1; assert( nExtra>=nColl ); memcpy(zExtra, zColl, nColl); zColl = zExtra; zExtra += nColl; nExtra -= nColl; }else{ |
︙ | ︙ | |||
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 | ** If iDb<0 then code the OP_Goto only - don't set flag to verify the ** schema on any databases. This can be used to position the OP_Goto ** early in the code, before we know if any database tables will be used. */ void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ Parse *pToplevel = sqlite3ParseToplevel(pParse); if( pToplevel->cookieGoto==0 ){ Vdbe *v = sqlite3GetVdbe(pToplevel); if( v==0 ) return; /* This only happens if there was a prior error */ pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; } if( iDb>=0 ){ sqlite3 *db = pToplevel->db; | > > > > > > > > > | 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 | ** If iDb<0 then code the OP_Goto only - don't set flag to verify the ** schema on any databases. This can be used to position the OP_Goto ** early in the code, before we know if any database tables will be used. */ void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ Parse *pToplevel = sqlite3ParseToplevel(pParse); #ifndef SQLITE_OMIT_TRIGGER if( pToplevel!=pParse ){ /* This branch is taken if a trigger is currently being coded. In this ** case, set cookieGoto to a non-zero value to show that this function ** has been called. This is used by the sqlite3ExprCodeConstants() ** function. */ pParse->cookieGoto = -1; } #endif if( pToplevel->cookieGoto==0 ){ Vdbe *v = sqlite3GetVdbe(pToplevel); if( v==0 ) return; /* This only happens if there was a prior error */ pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; } if( iDb>=0 ){ sqlite3 *db = pToplevel->db; |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
27 28 29 30 31 32 33 | ** ** CREATE TABLE t1(a); ** SELECT * FROM t1 WHERE a; ** SELECT a AS b FROM t1 WHERE b; ** SELECT * FROM t1 WHERE (select a from t1); */ char sqlite3ExprAffinity(Expr *pExpr){ | > > | | 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ** ** CREATE TABLE t1(a); ** SELECT * FROM t1 WHERE a; ** SELECT a AS b FROM t1 WHERE b; ** SELECT * FROM t1 WHERE (select a from t1); */ char sqlite3ExprAffinity(Expr *pExpr){ int op; pExpr = sqlite3ExprSkipCollate(pExpr); op = pExpr->op; if( op==TK_SELECT ){ assert( pExpr->flags&EP_xIsSelect ); return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); } #ifndef SQLITE_OMIT_CAST if( op==TK_CAST ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
︙ | ︙ | |||
52 53 54 55 56 57 58 | assert( pExpr->pTab && j<pExpr->pTab->nCol ); return pExpr->pTab->aCol[j].affinity; } return pExpr->affinity; } /* | | | > > > > | > > | | | > > > > > > > > > > > > > > > > > > > > | < | > | | > > | < < < | < < | > > > > > | > > > > > > > | < < < < < < < < < < | < > | > | | < < | < | > > > > > > < | 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | assert( pExpr->pTab && j<pExpr->pTab->nCol ); return pExpr->pTab->aCol[j].affinity; } return pExpr->affinity; } /* ** Set the collating sequence for expression pExpr to be the collating ** sequence named by pToken. Return a pointer to a new Expr node that ** implements the COLLATE operator. ** ** If a memory allocation error occurs, that fact is recorded in pParse->db ** and the pExpr parameter is returned unchanged. */ Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){ if( pCollName->n>0 ){ Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); if( pNew ){ pNew->pLeft = pExpr; pNew->flags |= EP_Collate; pExpr = pNew; } } return pExpr; } Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ Token s; assert( zC!=0 ); s.z = zC; s.n = sqlite3Strlen30(s.z); return sqlite3ExprAddCollateToken(pParse, pExpr, &s); } /* ** Skip over any TK_COLLATE and/or TK_AS operators at the root of ** an expression. */ Expr *sqlite3ExprSkipCollate(Expr *pExpr){ while( pExpr && (pExpr->op==TK_COLLATE || pExpr->op==TK_AS) ){ pExpr = pExpr->pLeft; } return pExpr; } /* ** Return the collation sequence for the expression pExpr. If ** there is no defined collating sequence, return NULL. ** ** The collating sequence might be determined by a COLLATE operator ** or by the presence of a column with a defined collating sequence. ** COLLATE operators take first precedence. Left operands take ** precedence over right operands. */ CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ sqlite3 *db = pParse->db; CollSeq *pColl = 0; Expr *p = pExpr; while( p ){ int op = p->op; if( op==TK_CAST || op==TK_UPLUS ){ p = p->pLeft; continue; } assert( op!=TK_REGISTER || p->op2!=TK_COLLATE ); if( op==TK_COLLATE ){ if( db->init.busy ){ /* Do not report errors when parsing while the schema */ pColl = sqlite3FindCollSeq(db, ENC(db), p->u.zToken, 0); }else{ pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); } break; } if( p->pTab!=0 && (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER) ){ /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally ** a TK_COLUMN but was previously evaluated and cached in a register */ int j = p->iColumn; if( j>=0 ){ const char *zColl = p->pTab->aCol[j].zColl; pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); } break; } if( p->flags & EP_Collate ){ if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ p = p->pLeft; }else{ p = p->pRight; } }else{ break; } } if( sqlite3CheckCollSeq(pParse, pColl) ){ pColl = 0; } return pColl; } |
︙ | ︙ | |||
215 216 217 218 219 220 221 | CollSeq *sqlite3BinaryCompareCollSeq( Parse *pParse, Expr *pLeft, Expr *pRight ){ CollSeq *pColl; assert( pLeft ); | | < | | < | | 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | CollSeq *sqlite3BinaryCompareCollSeq( Parse *pParse, Expr *pLeft, Expr *pRight ){ CollSeq *pColl; assert( pLeft ); if( pLeft->flags & EP_Collate ){ pColl = sqlite3ExprCollSeq(pParse, pLeft); }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ pColl = sqlite3ExprCollSeq(pParse, pRight); }else{ pColl = sqlite3ExprCollSeq(pParse, pLeft); if( !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pRight); } } return pColl; |
︙ | ︙ | |||
450 451 452 453 454 455 456 | if( pRoot==0 ){ assert( db->mallocFailed ); sqlite3ExprDelete(db, pLeft); sqlite3ExprDelete(db, pRight); }else{ if( pRight ){ pRoot->pRight = pRight; | < | < < < | < < | 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 | if( pRoot==0 ){ assert( db->mallocFailed ); sqlite3ExprDelete(db, pLeft); sqlite3ExprDelete(db, pRight); }else{ if( pRight ){ pRoot->pRight = pRight; pRoot->flags |= EP_Collate & pRight->flags; } if( pLeft ){ pRoot->pLeft = pLeft; pRoot->flags |= EP_Collate & pLeft->flags; } exprSetHeight(pRoot); } } /* ** Allocate a Expr node which joins as many as two subtrees. |
︙ | ︙ | |||
718 719 720 721 722 723 724 | if( 0==(flags&EXPRDUP_REDUCE) ){ nSize = EXPR_FULLSIZE; }else{ assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); assert( !ExprHasProperty(p, EP_FromJoin) ); assert( (p->flags2 & EP2_MallocedToken)==0 ); assert( (p->flags2 & EP2_Irreducible)==0 ); | | | 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | if( 0==(flags&EXPRDUP_REDUCE) ){ nSize = EXPR_FULLSIZE; }else{ assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); assert( !ExprHasProperty(p, EP_FromJoin) ); assert( (p->flags2 & EP2_MallocedToken)==0 ); assert( (p->flags2 & EP2_Irreducible)==0 ); if( p->pLeft || p->pRight || p->x.pList ){ nSize = EXPR_REDUCEDSIZE | EP_Reduced; }else{ nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; } } return nSize; } |
︙ | ︙ | |||
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 | testcase( regFree2==0 ); codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); sqlite3ReleaseTempReg(pParse, r3); sqlite3ReleaseTempReg(pParse, r4); break; } case TK_UPLUS: { inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); break; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference | > | 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 | testcase( regFree2==0 ); codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); sqlite3ReleaseTempReg(pParse, r3); sqlite3ReleaseTempReg(pParse, r4); break; } case TK_COLLATE: case TK_UPLUS: { inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); break; } case TK_TRIGGER: { /* If the opcode is TK_TRIGGER, then the expression is a reference |
︙ | ︙ | |||
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 | case TK_UMINUS: zUniOp = "UMINUS"; break; case TK_UPLUS: zUniOp = "UPLUS"; break; case TK_BITNOT: zUniOp = "BITNOT"; break; case TK_NOT: zUniOp = "NOT"; break; case TK_ISNULL: zUniOp = "ISNULL"; break; case TK_NOTNULL: zUniOp = "NOTNULL"; break; case TK_AGG_FUNCTION: case TK_CONST_FUNC: case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; | > > > > > > | 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 | case TK_UMINUS: zUniOp = "UMINUS"; break; case TK_UPLUS: zUniOp = "UPLUS"; break; case TK_BITNOT: zUniOp = "BITNOT"; break; case TK_NOT: zUniOp = "NOT"; break; case TK_ISNULL: zUniOp = "ISNULL"; break; case TK_NOTNULL: zUniOp = "NOTNULL"; break; case TK_COLLATE: { sqlite3ExplainExpr(pOut, pExpr->pLeft); sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); break; } case TK_AGG_FUNCTION: case TK_CONST_FUNC: case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; |
︙ | ︙ | |||
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 | static int evalConstExpr(Walker *pWalker, Expr *pExpr){ Parse *pParse = pWalker->pParse; switch( pExpr->op ){ case TK_IN: case TK_REGISTER: { return WRC_Prune; } case TK_FUNCTION: case TK_AGG_FUNCTION: case TK_CONST_FUNC: { /* The arguments to a function have a fixed destination. ** Mark them this way to avoid generated unneeded OP_SCopy ** instructions. */ | > > > | 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 | static int evalConstExpr(Walker *pWalker, Expr *pExpr){ Parse *pParse = pWalker->pParse; switch( pExpr->op ){ case TK_IN: case TK_REGISTER: { return WRC_Prune; } case TK_COLLATE: { return WRC_Continue; } case TK_FUNCTION: case TK_AGG_FUNCTION: case TK_CONST_FUNC: { /* The arguments to a function have a fixed destination. ** Mark them this way to avoid generated unneeded OP_SCopy ** instructions. */ |
︙ | ︙ | |||
3350 3351 3352 3353 3354 3355 3356 | } } break; } } if( isAppropriateForFactoring(pExpr) ){ int r1 = ++pParse->nMem; | < | > | > > | 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 | } } break; } } if( isAppropriateForFactoring(pExpr) ){ int r1 = ++pParse->nMem; int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); /* If r2!=r1, it means that register r1 is never used. That is harmless ** but suboptimal, so we want to know about the situation to fix it. ** Hence the following assert: */ assert( r2==r1 ); pExpr->op2 = pExpr->op; pExpr->op = TK_REGISTER; pExpr->iTable = r2; return WRC_Prune; } return WRC_Continue; } |
︙ | ︙ | |||
3769 3770 3771 3772 3773 3774 3775 | } assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ return 2; } if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; | | > > > > > > > > | < < | 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 | } assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ return 2; } if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; if( pA->op!=pB->op ){ if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){ return 1; } if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){ return 1; } return 2; } if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; if( ExprHasProperty(pA, EP_IntValue) ){ if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ return 2; } }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){ if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ return pA->op==TK_COLLATE ? 1 : 2; } } return 0; } /* ** Compare two ExprList objects. Return 0 if they are identical and ** non-zero if they differ in any way. ** |
︙ | ︙ |
Changes to src/fkey.c.
︙ | ︙ | |||
507 508 509 510 511 512 513 514 515 516 517 518 | pLeft = sqlite3Expr(db, TK_REGISTER, 0); if( pLeft ){ /* Set the collation sequence and affinity of the LHS of each TK_EQ ** expression to the parent key column defaults. */ if( pIdx ){ Column *pCol; iCol = pIdx->aiColumn[i]; pCol = &pTab->aCol[iCol]; if( pTab->iPKey==iCol ) iCol = -1; pLeft->iTable = regData+iCol+1; pLeft->affinity = pCol->affinity; | > | > > | 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | pLeft = sqlite3Expr(db, TK_REGISTER, 0); if( pLeft ){ /* Set the collation sequence and affinity of the LHS of each TK_EQ ** expression to the parent key column defaults. */ if( pIdx ){ Column *pCol; const char *zColl; iCol = pIdx->aiColumn[i]; pCol = &pTab->aCol[iCol]; if( pTab->iPKey==iCol ) iCol = -1; pLeft->iTable = regData+iCol+1; pLeft->affinity = pCol->affinity; zColl = pCol->zColl; if( zColl==0 ) zColl = db->pDfltColl->zName; pLeft = sqlite3ExprAddCollateString(pParse, pLeft, zColl); }else{ pLeft->iTable = regData; pLeft->affinity = SQLITE_AFF_INTEGER; } } iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iCol>=0 ); |
︙ | ︙ |
Changes to src/func.c.
︙ | ︙ | |||
188 189 190 191 192 193 194 195 196 197 198 199 200 201 | const unsigned char *zNeedle; int nHaystack; int nNeedle; int typeHaystack, typeNeedle; int N = 1; int isText; typeHaystack = sqlite3_value_type(argv[0]); typeNeedle = sqlite3_value_type(argv[1]); if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return; nHaystack = sqlite3_value_bytes(argv[0]); nNeedle = sqlite3_value_bytes(argv[1]); if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){ zHaystack = sqlite3_value_blob(argv[0]); | > | 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | const unsigned char *zNeedle; int nHaystack; int nNeedle; int typeHaystack, typeNeedle; int N = 1; int isText; UNUSED_PARAMETER(argc); typeHaystack = sqlite3_value_type(argv[0]); typeNeedle = sqlite3_value_type(argv[1]); if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return; nHaystack = sqlite3_value_bytes(argv[0]); nNeedle = sqlite3_value_bytes(argv[1]); if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){ zHaystack = sqlite3_value_blob(argv[0]); |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
21 22 23 24 25 26 27 | Parse *p, /* Generate code into this VDBE */ int iCur, /* The cursor number of the table */ int iDb, /* The database index in sqlite3.aDb[] */ Table *pTab, /* The table to be opened */ int opcode /* OP_OpenRead or OP_OpenWrite */ ){ Vdbe *v; | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | Parse *p, /* Generate code into this VDBE */ int iCur, /* The cursor number of the table */ int iDb, /* The database index in sqlite3.aDb[] */ Table *pTab, /* The table to be opened */ int opcode /* OP_OpenRead or OP_OpenWrite */ ){ Vdbe *v; assert( !IsVirtual(pTab) ); v = sqlite3GetVdbe(p); assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); VdbeComment((v, "%s", pTab->zName)); } |
︙ | ︙ | |||
1270 1271 1272 1273 1274 1275 1276 | #ifndef SQLITE_OMIT_CHECK if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ ExprList *pCheck = pTab->pCheck; pParse->ckBase = regData; onError = overrideError!=OE_Default ? overrideError : OE_Abort; for(i=0; i<pCheck->nExpr; i++){ int allOk = sqlite3VdbeMakeLabel(v); | < < < | | | | | | | | | | | | | | < < | 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 | #ifndef SQLITE_OMIT_CHECK if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ ExprList *pCheck = pTab->pCheck; pParse->ckBase = regData; onError = overrideError!=OE_Default ? overrideError : OE_Abort; for(i=0; i<pCheck->nExpr; i++){ int allOk = sqlite3VdbeMakeLabel(v); sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL); if( onError==OE_Ignore ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); }else{ char *zConsName = pCheck->a[i].zName; if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ if( zConsName ){ zConsName = sqlite3MPrintf(db, "constraint %s failed", zConsName); }else{ zConsName = 0; } sqlite3HaltConstraint(pParse, onError, zConsName, P4_DYNAMIC); } sqlite3VdbeResolveLabel(v, allOk); } } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* If we have an INTEGER PRIMARY KEY, make sure the primary key ** of the new record does not previously exist. Except, if this ** is an UPDATE and the primary key is not changing, that is OK. |
︙ | ︙ |
Changes to src/journal.c.
︙ | ︙ | |||
223 224 225 226 227 228 229 230 231 232 233 234 235 236 | */ int sqlite3JournalCreate(sqlite3_file *p){ if( p->pMethods!=&JournalFileMethods ){ return SQLITE_OK; } return createFile((JournalFile *)p); } /* ** Return the number of bytes required to store a JournalFile that uses vfs ** pVfs to create the underlying on-disk files. */ int sqlite3JournalSize(sqlite3_vfs *pVfs){ return (pVfs->szOsFile+sizeof(JournalFile)); | > > > > > > > > > > | 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 | */ int sqlite3JournalCreate(sqlite3_file *p){ if( p->pMethods!=&JournalFileMethods ){ return SQLITE_OK; } return createFile((JournalFile *)p); } /* ** The file-handle passed as the only argument is guaranteed to be an open ** file. It may or may not be of class JournalFile. If the file is a ** JournalFile, and the underlying file on disk has not yet been opened, ** return 0. Otherwise, return 1. */ int sqlite3JournalExists(sqlite3_file *p){ return (p->pMethods!=&JournalFileMethods || ((JournalFile *)p)->pReal!=0); } /* ** Return the number of bytes required to store a JournalFile that uses vfs ** pVfs to create the underlying on-disk files. */ int sqlite3JournalSize(sqlite3_vfs *pVfs){ return (pVfs->szOsFile+sizeof(JournalFile)); |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 | }else if( (*pArg)==0 ){ pFile->ctrlFlags &= ~mask; }else{ pFile->ctrlFlags |= mask; } } /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ unixFile *pFile = (unixFile*)id; switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { | > > > | 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 | }else if( (*pArg)==0 ){ pFile->ctrlFlags &= ~mask; }else{ pFile->ctrlFlags |= mask; } } /* Forward declaration */ static int unixGetTempname(int nBuf, char *zBuf); /* ** Information and control of an open file handle. */ static int unixFileControl(sqlite3_file *id, int op, void *pArg){ unixFile *pFile = (unixFile*)id; switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { |
︙ | ︙ | |||
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 | case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg); return SQLITE_OK; } case SQLITE_FCNTL_VFSNAME: { *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); return SQLITE_OK; } #ifdef SQLITE_DEBUG /* The pager calls this method to signal that it has done ** a rollback and that the database is therefore unchanged and ** it hence it is OK for the transaction change counter to be ** unchanged. */ | > > > > > > > > | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 | case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg); return SQLITE_OK; } case SQLITE_FCNTL_VFSNAME: { *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); return SQLITE_OK; } case SQLITE_FCNTL_TEMPFILENAME: { char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname ); if( zTFile ){ unixGetTempname(pFile->pVfs->mxPathname, zTFile); *(char**)pArg = zTFile; } return SQLITE_OK; } #ifdef SQLITE_DEBUG /* The pager calls this method to signal that it has done ** a rollback and that the database is therefore unchanged and ** it hence it is OK for the transaction change counter to be ** unchanged. */ |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 | }else if( (*pArg)==0 ){ pFile->ctrlFlags &= ~mask; }else{ pFile->ctrlFlags |= mask; } } /* ** Control and query of the open file handle. */ static int winFileControl(sqlite3_file *id, int op, void *pArg){ winFile *pFile = (winFile*)id; switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { | > > > | 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 | }else if( (*pArg)==0 ){ pFile->ctrlFlags &= ~mask; }else{ pFile->ctrlFlags |= mask; } } /* Forward declaration */ static int getTempname(int nBuf, char *zBuf); /* ** Control and query of the open file handle. */ static int winFileControl(sqlite3_file *id, int op, void *pArg){ winFile *pFile = (winFile*)id; switch( op ){ case SQLITE_FCNTL_LOCKSTATE: { |
︙ | ︙ | |||
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 | } if( a[1]>0 ){ win32IoerrRetryDelay = a[1]; }else{ a[1] = win32IoerrRetryDelay; } return SQLITE_OK; } } return SQLITE_NOTFOUND; } /* ** Return the sector size in bytes of the underlying block device for | > > > > > > > > | 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 | } if( a[1]>0 ){ win32IoerrRetryDelay = a[1]; }else{ a[1] = win32IoerrRetryDelay; } return SQLITE_OK; } case SQLITE_FCNTL_TEMPFILENAME: { char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname ); if( zTFile ){ getTempname(pFile->pVfs->mxPathname, zTFile); *(char**)pArg = zTFile; } return SQLITE_OK; } } return SQLITE_NOTFOUND; } /* ** Return the sector size in bytes of the underlying block device for |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 | pPager->journalOff = 0; }else{ /* This branch may be executed with Pager.journalMode==MEMORY if ** a hot-journal was just rolled back. In this case the journal ** file should be closed and deleted. If this connection writes to ** the database file, it will do so using an in-memory journal. */ assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE || pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->journalMode==PAGER_JOURNALMODE_WAL ); sqlite3OsClose(pPager->jfd); | > | | 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 | pPager->journalOff = 0; }else{ /* This branch may be executed with Pager.journalMode==MEMORY if ** a hot-journal was just rolled back. In this case the journal ** file should be closed and deleted. If this connection writes to ** the database file, it will do so using an in-memory journal. */ int bDelete = (!pPager->tempFile && sqlite3JournalExists(pPager->jfd)); assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE || pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->journalMode==PAGER_JOURNALMODE_WAL ); sqlite3OsClose(pPager->jfd); if( bDelete ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); } } } #ifdef SQLITE_CHECK_PAGES sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); |
︙ | ︙ | |||
3481 3482 3483 3484 3485 3486 3487 | pPager->xBusyHandler = xBusyHandler; pPager->pBusyHandlerArg = pBusyHandlerArg; if( isOpen(pPager->fd) ){ void **ap = (void **)&pPager->xBusyHandler; assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); assert( ap[1]==pBusyHandlerArg ); | | | 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 | pPager->xBusyHandler = xBusyHandler; pPager->pBusyHandlerArg = pBusyHandlerArg; if( isOpen(pPager->fd) ){ void **ap = (void **)&pPager->xBusyHandler; assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); assert( ap[1]==pBusyHandlerArg ); sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); } } /* ** Change the page size used by the Pager object. The new page size ** is passed in *pPageSize. ** |
︙ | ︙ |
Changes to src/parse.y.
︙ | ︙ | |||
811 812 813 814 815 816 817 | } expr(A) ::= VARIABLE(X). { spanExpr(&A, pParse, TK_VARIABLE, &X); sqlite3ExprAssignVarNumber(pParse, A.pExpr); spanSet(&A, &X, &X); } expr(A) ::= expr(E) COLLATE ids(C). { | | | 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 | } expr(A) ::= VARIABLE(X). { spanExpr(&A, pParse, TK_VARIABLE, &X); sqlite3ExprAssignVarNumber(pParse, A.pExpr); spanSet(&A, &X, &X); } expr(A) ::= expr(E) COLLATE ids(C). { A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C); A.zStart = E.zStart; A.zEnd = &C.z[C.n]; } %ifndef SQLITE_OMIT_CAST expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); spanSet(&A,&X,&Y); |
︙ | ︙ | |||
1136 1137 1138 1139 1140 1141 1142 | %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} %type idxlist_opt {ExprList*} %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} idxlist_opt(A) ::= . {A = 0;} idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { | | < < < < | < < < < | 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 | %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} %type idxlist_opt {ExprList*} %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} idxlist_opt(A) ::= . {A = 0;} idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C); A = sqlite3ExprListAppend(pParse,X, p); sqlite3ExprListSetName(pParse,A,&Y,1); sqlite3ExprListCheckLength(pParse, A, "index"); if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; } idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C); A = sqlite3ExprListAppend(pParse,0, p); sqlite3ExprListSetName(pParse, A, &Y, 1); sqlite3ExprListCheckLength(pParse, A, "index"); if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; } %type collate {Token} |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
63 64 65 66 67 68 69 70 71 72 73 74 75 76 | ** Is equivalent to: ** ** SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5 ** ** The result of random()%5 in the GROUP BY clause is probably different ** from the result in the result-set. We might fix this someday. Or ** then again, we might not... ** ** The nSubquery parameter specifies how many levels of subquery the ** alias is removed from the original expression. The usually value is ** zero but it might be more if the alias is contained within a subquery ** of the original expression. The Expr.op2 field of TK_AGG_FUNCTION ** structures must be increased by the nSubquery amount. */ | > > > > > > > > > | 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | ** Is equivalent to: ** ** SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5 ** ** The result of random()%5 in the GROUP BY clause is probably different ** from the result in the result-set. We might fix this someday. Or ** then again, we might not... ** ** If the reference is followed by a COLLATE operator, then make sure ** the COLLATE operator is preserved. For example: ** ** SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase; ** ** Should be transformed into: ** ** SELECT a+b, c+d FROM t1 ORDER BY (a+b) COLLATE nocase; ** ** The nSubquery parameter specifies how many levels of subquery the ** alias is removed from the original expression. The usually value is ** zero but it might be more if the alias is contained within a subquery ** of the original expression. The Expr.op2 field of TK_AGG_FUNCTION ** structures must be increased by the nSubquery amount. */ |
︙ | ︙ | |||
87 88 89 90 91 92 93 | sqlite3 *db; /* The database connection */ assert( iCol>=0 && iCol<pEList->nExpr ); pOrig = pEList->a[iCol].pExpr; assert( pOrig!=0 ); assert( pOrig->flags & EP_Resolved ); db = pParse->db; | < | > > < < < < < < < < < < < < < | < | > > > > > > > > | 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | sqlite3 *db; /* The database connection */ assert( iCol>=0 && iCol<pEList->nExpr ); pOrig = pEList->a[iCol].pExpr; assert( pOrig!=0 ); assert( pOrig->flags & EP_Resolved ); db = pParse->db; pDup = sqlite3ExprDup(db, pOrig, 0); if( pDup==0 ) return; if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){ incrAggFunctionDepth(pDup, nSubquery); pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0); if( pDup==0 ) return; if( pEList->a[iCol].iAlias==0 ){ pEList->a[iCol].iAlias = (u16)(++pParse->nAlias); } pDup->iTable = pEList->a[iCol].iAlias; } if( pExpr->op==TK_COLLATE ){ pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken); } /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This ** prevents ExprDelete() from deleting the Expr structure itself, ** allowing it to be repopulated by the memcpy() on the following line. ** The pExpr->u.zToken might point into memory that will be freed by the ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to ** make a copy of the token before doing the sqlite3DbFree(). */ ExprSetProperty(pExpr, EP_Static); sqlite3ExprDelete(db, pExpr); memcpy(pExpr, pDup, sizeof(*pExpr)); if( !ExprHasProperty(pExpr, EP_IntValue) && pExpr->u.zToken!=0 ){ assert( (pExpr->flags & (EP_Reduced|EP_TokenOnly))==0 ); pExpr->u.zToken = sqlite3DbStrDup(db, pExpr->u.zToken); pExpr->flags2 |= EP2_MallocedToken; } sqlite3DbFree(db, pDup); } /* ** Return TRUE if the name zCol occurs anywhere in the USING clause. ** |
︙ | ︙ | |||
808 809 810 811 812 813 814 | moreToDo = 0; pEList = pSelect->pEList; assert( pEList!=0 ); for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ int iCol = -1; Expr *pE, *pDup; if( pItem->done ) continue; | | | | < | | < | | > > > > > > > > | 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 | moreToDo = 0; pEList = pSelect->pEList; assert( pEList!=0 ); for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ int iCol = -1; Expr *pE, *pDup; if( pItem->done ) continue; pE = sqlite3ExprSkipCollate(pItem->pExpr); if( sqlite3ExprIsInteger(pE, &iCol) ){ if( iCol<=0 || iCol>pEList->nExpr ){ resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr); return 1; } }else{ iCol = resolveAsName(pParse, pEList, pE); if( iCol==0 ){ pDup = sqlite3ExprDup(db, pE, 0); if( !db->mallocFailed ){ assert(pDup); iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup); } sqlite3ExprDelete(db, pDup); } } if( iCol>0 ){ /* Convert the ORDER BY term into an integer column number iCol, ** taking care to preserve the COLLATE clause if it exists */ Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); if( pNew==0 ) return 1; pNew->flags |= EP_IntValue; pNew->u.iValue = iCol; if( pItem->pExpr==pE ){ pItem->pExpr = pNew; }else{ assert( pItem->pExpr->op==TK_COLLATE ); assert( pItem->pExpr->pLeft==pE ); pItem->pExpr->pLeft = pNew; } sqlite3ExprDelete(db, pE); pItem->iOrderByCol = (u16)iCol; pItem->done = 1; }else{ moreToDo = 1; } } pSelect = pSelect->pNext; |
︙ | ︙ | |||
938 939 940 941 942 943 944 | /* If an AS-name match is found, mark this ORDER BY column as being ** a copy of the iCol-th result-set column. The subsequent call to ** sqlite3ResolveOrderGroupBy() will convert the expression to a ** copy of the iCol-th result-set expression. */ pItem->iOrderByCol = (u16)iCol; continue; } | | | | 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 | /* If an AS-name match is found, mark this ORDER BY column as being ** a copy of the iCol-th result-set column. The subsequent call to ** sqlite3ResolveOrderGroupBy() will convert the expression to a ** copy of the iCol-th result-set expression. */ pItem->iOrderByCol = (u16)iCol; continue; } if( sqlite3ExprIsInteger(sqlite3ExprSkipCollate(pE), &iCol) ){ /* The ORDER BY term is an integer constant. Again, set the column ** number so that sqlite3ResolveOrderGroupBy() will convert the ** order-by term to a copy of the result-set expression */ if( iCol<1 || iCol>0xffff ){ resolveOutOfRangeError(pParse, zType, i+1, nResult); return 1; } pItem->iOrderByCol = (u16)iCol; continue; } |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
1331 1332 1333 1334 1335 1336 1337 | } *pnCol = nCol; *paCol = aCol; for(i=0, pCol=aCol; i<nCol; i++, pCol++){ /* Get an appropriate name for the column */ | | | 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 | } *pnCol = nCol; *paCol = aCol; for(i=0, pCol=aCol; i<nCol; i++, pCol++){ /* Get an appropriate name for the column */ p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); if( (zName = pEList->a[i].zName)!=0 ){ /* If the column contains an "AS <name>" phrase, use <name> as the name */ zName = sqlite3DbStrDup(db, zName); }else{ Expr *pColExpr = p; /* The expression that is the result column name */ |
︙ | ︙ | |||
2329 2330 2331 2332 2333 2334 2335 | if( pKeyMerge ){ pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; pKeyMerge->nField = (u16)nOrderBy; pKeyMerge->enc = ENC(db); for(i=0; i<nOrderBy; i++){ CollSeq *pColl; Expr *pTerm = pOrderBy->a[i].pExpr; | | | | > | | 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 | if( pKeyMerge ){ pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; pKeyMerge->nField = (u16)nOrderBy; pKeyMerge->enc = ENC(db); for(i=0; i<nOrderBy; i++){ CollSeq *pColl; Expr *pTerm = pOrderBy->a[i].pExpr; if( pTerm->flags & EP_Collate ){ pColl = sqlite3ExprCollSeq(pParse, pTerm); }else{ pColl = multiSelectCollSeq(pParse, p, aPermute[i]); if( pColl==0 ) pColl = db->pDfltColl; pOrderBy->a[i].pExpr = sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); } pKeyMerge->aColl[i] = pColl; pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; } } }else{ pKeyMerge = 0; |
︙ | ︙ | |||
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 | /* Implement the main merge loop */ sqlite3VdbeResolveLabel(v, labelCmpr); sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, (char*)pKeyMerge, P4_KEYINFO_HANDOFF); sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); /* Release temporary registers */ if( regPrev ){ sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); } | > | 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 | /* Implement the main merge loop */ sqlite3VdbeResolveLabel(v, labelCmpr); sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, (char*)pKeyMerge, P4_KEYINFO_HANDOFF); sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); /* Release temporary registers */ if( regPrev ){ sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); } |
︙ | ︙ | |||
2604 2605 2606 2607 2608 2609 2610 | if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else{ Expr *pNew; assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); assert( pExpr->pLeft==0 && pExpr->pRight==0 ); pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); | < < < | 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 | if( pExpr->iColumn<0 ){ pExpr->op = TK_NULL; }else{ Expr *pNew; assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); assert( pExpr->pLeft==0 && pExpr->pRight==0 ); pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); sqlite3ExprDelete(db, pExpr); pExpr = pNew; } }else{ pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
︙ | ︙ | |||
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 | /* Implement a co-routine that will return a single row of the result ** set on each invocation. */ int addrTop; int addrEof; pItem->regReturn = ++pParse->nMem; addrEof = ++pParse->nMem; sqlite3VdbeAddOp0(v, OP_Goto); addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor); sqlite3VdbeChangeP5(v, 1); VdbeComment((v, "coroutine for %s", pItem->pTab->zName)); pItem->addrFillSub = addrTop; sqlite3VdbeAddOp2(v, OP_Integer, 0, addrEof); sqlite3VdbeChangeP5(v, 1); | > > > > > > > > > | 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 | /* Implement a co-routine that will return a single row of the result ** set on each invocation. */ int addrTop; int addrEof; pItem->regReturn = ++pParse->nMem; addrEof = ++pParse->nMem; /* Before coding the OP_Goto to jump to the start of the main routine, ** ensure that the jump to the verify-schema routine has already ** been coded. Otherwise, the verify-schema would likely be coded as ** part of the co-routine. If the main routine then accessed the ** database before invoking the co-routine for the first time (for ** example to initialize a LIMIT register from a sub-select), it would ** be doing so without having verified the schema version and obtained ** the required db locks. See ticket d6b36be38. */ sqlite3CodeVerifySchema(pParse, -1); sqlite3VdbeAddOp0(v, OP_Goto); addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor); sqlite3VdbeChangeP5(v, 1); VdbeComment((v, "coroutine for %s", pItem->pTab->zName)); pItem->addrFillSub = addrTop; sqlite3VdbeAddOp2(v, OP_Integer, 0, addrEof); sqlite3VdbeChangeP5(v, 1); |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
537 538 539 540 541 542 543 544 545 546 547 548 549 550 | static void output_c_string(FILE *out, const char *z){ unsigned int c; fputc('"', out); while( (c = *(z++))!=0 ){ if( c=='\\' ){ fputc(c, out); fputc(c, out); }else if( c=='\t' ){ fputc('\\', out); fputc('t', out); }else if( c=='\n' ){ fputc('\\', out); fputc('n', out); }else if( c=='\r' ){ | > > > | 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 | static void output_c_string(FILE *out, const char *z){ unsigned int c; fputc('"', out); while( (c = *(z++))!=0 ){ if( c=='\\' ){ fputc(c, out); fputc(c, out); }else if( c=='"' ){ fputc('\\', out); fputc('"', out); }else if( c=='\t' ){ fputc('\\', out); fputc('t', out); }else if( c=='\n' ){ fputc('\\', out); fputc('n', out); }else if( c=='\r' ){ |
︙ | ︙ | |||
792 793 794 795 796 797 798 | fprintf(p->out,"</TR>\n"); break; } case MODE_Tcl: { if( p->cnt++==0 && p->showHeader ){ for(i=0; i<nArg; i++){ output_c_string(p->out,azCol[i] ? azCol[i] : ""); | | | | 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 | fprintf(p->out,"</TR>\n"); break; } case MODE_Tcl: { if( p->cnt++==0 && p->showHeader ){ for(i=0; i<nArg; i++){ output_c_string(p->out,azCol[i] ? azCol[i] : ""); if(i<nArg-1) fprintf(p->out, "%s", p->separator); } fprintf(p->out,"\n"); } if( azArg==0 ) break; for(i=0; i<nArg; i++){ output_c_string(p->out, azArg[i] ? azArg[i] : p->nullvalue); if(i<nArg-1) fprintf(p->out, "%s", p->separator); } fprintf(p->out,"\n"); break; } case MODE_Csv: { if( p->cnt++==0 && p->showHeader ){ for(i=0; i<nArg; i++){ |
︙ | ︙ | |||
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 | p->mode = MODE_Column; }else if( n2==4 && strncmp(azArg[1],"list",n2)==0 ){ p->mode = MODE_List; }else if( n2==4 && strncmp(azArg[1],"html",n2)==0 ){ p->mode = MODE_Html; }else if( n2==3 && strncmp(azArg[1],"tcl",n2)==0 ){ p->mode = MODE_Tcl; }else if( n2==3 && strncmp(azArg[1],"csv",n2)==0 ){ p->mode = MODE_Csv; sqlite3_snprintf(sizeof(p->separator), p->separator, ","); }else if( n2==4 && strncmp(azArg[1],"tabs",n2)==0 ){ p->mode = MODE_List; sqlite3_snprintf(sizeof(p->separator), p->separator, "\t"); }else if( n2==6 && strncmp(azArg[1],"insert",n2)==0 ){ | > | 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 | p->mode = MODE_Column; }else if( n2==4 && strncmp(azArg[1],"list",n2)==0 ){ p->mode = MODE_List; }else if( n2==4 && strncmp(azArg[1],"html",n2)==0 ){ p->mode = MODE_Html; }else if( n2==3 && strncmp(azArg[1],"tcl",n2)==0 ){ p->mode = MODE_Tcl; sqlite3_snprintf(sizeof(p->separator), p->separator, " "); }else if( n2==3 && strncmp(azArg[1],"csv",n2)==0 ){ p->mode = MODE_Csv; sqlite3_snprintf(sizeof(p->separator), p->separator, ","); }else if( n2==4 && strncmp(azArg[1],"tabs",n2)==0 ){ p->mode = MODE_List; sqlite3_snprintf(sizeof(p->separator), p->separator, "\t"); }else if( n2==6 && strncmp(azArg[1],"insert",n2)==0 ){ |
︙ | ︙ | |||
2707 2708 2709 2710 2711 2712 2713 | if( zSql ){ if( !_all_whitespace(zSql) ){ fprintf(stderr, "Error: incomplete SQL: %s\n", zSql); } free(zSql); } free(zLine); | | | 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 | if( zSql ){ if( !_all_whitespace(zSql) ){ fprintf(stderr, "Error: incomplete SQL: %s\n", zSql); } free(zSql); } free(zLine); return errCnt>0; } /* ** Return a pathname which is the user's home directory. A ** 0 return indicates an error of some kind. */ static char *find_home_dir(void){ |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
848 849 850 851 852 853 854 | ** VFS has handled the PRAGMA itself and the parser generates a no-op ** prepared statement. ^If the [SQLITE_FCNTL_PRAGMA] file control returns ** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means ** that the VFS encountered an error while handling the [PRAGMA] and the ** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA] ** file control occurs at the beginning of pragma statement analysis and so ** it is able to override built-in [PRAGMA] statements. | < > > > > > > > > > > > | 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 | ** VFS has handled the PRAGMA itself and the parser generates a no-op ** prepared statement. ^If the [SQLITE_FCNTL_PRAGMA] file control returns ** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means ** that the VFS encountered an error while handling the [PRAGMA] and the ** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA] ** file control occurs at the beginning of pragma statement analysis and so ** it is able to override built-in [PRAGMA] statements. ** ** <li>[[SQLITE_FCNTL_BUSYHANDLER]] ** ^This file-control may be invoked by SQLite on the database file handle ** shortly after it is opened in order to provide a custom VFS with access ** to the connections busy-handler callback. The argument is of type (void **) ** - an array of two (void *) values. The first (void *) actually points ** to a function of type (int (*)(void *)). In order to invoke the connections ** busy-handler, this function should be invoked with the second (void *) in ** the array as the only argument. If it returns non-zero, then the operation ** should be retried. If it returns zero, the custom VFS should abandon the ** current operation. ** ** <li>[[SQLITE_FCNTL_TEMPFILENAME]] ** ^Application can invoke this file-control to have SQLite generate a ** temporary filename using the same algorithm that is followed to generate ** temporary filenames for TEMP tables and other internal uses. The ** argument should be a char** which will be filled with the filename ** written into memory obtained from [sqlite3_malloc()]. The caller should ** invoke [sqlite3_free()] on the result to avoid a memory leak. ** ** </ul> */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_GET_LOCKPROXYFILE 2 #define SQLITE_SET_LOCKPROXYFILE 3 #define SQLITE_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 #define SQLITE_FCNTL_CHUNK_SIZE 6 #define SQLITE_FCNTL_FILE_POINTER 7 #define SQLITE_FCNTL_SYNC_OMITTED 8 #define SQLITE_FCNTL_WIN32_AV_RETRY 9 #define SQLITE_FCNTL_PERSIST_WAL 10 #define SQLITE_FCNTL_OVERWRITE 11 #define SQLITE_FCNTL_VFSNAME 12 #define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13 #define SQLITE_FCNTL_PRAGMA 14 #define SQLITE_FCNTL_BUSYHANDLER 15 #define SQLITE_FCNTL_TEMPFILENAME 16 /* ** CAPI3REF: Mutex Handle ** ** The mutex module within SQLite defines [sqlite3_mutex] to be an ** abstract type for a mutex object. The SQLite core never looks ** at the internal representation of an [sqlite3_mutex]. It only |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
1154 1155 1156 1157 1158 1159 1160 | #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ /* ** A "Collating Sequence" is defined by an instance of the following ** structure. Conceptually, a collating sequence consists of a name and ** a comparison routine that defines the order of that sequence. ** | < < < < < < < < < < < < | | 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 | #define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */ /* ** A "Collating Sequence" is defined by an instance of the following ** structure. Conceptually, a collating sequence consists of a name and ** a comparison routine that defines the order of that sequence. ** ** If CollSeq.xCmp is NULL, it means that the ** collating sequence is undefined. Indices built on an undefined ** collating sequence may not be read or written. */ struct CollSeq { char *zName; /* Name of the collating sequence, UTF-8 encoded */ u8 enc; /* Text encoding handled by xCmp() */ void *pUser; /* First argument to xCmp() */ |
︙ | ︙ | |||
1694 1695 1696 1697 1698 1699 1700 | Expr *pLeft; /* Left subnode */ Expr *pRight; /* Right subnode */ union { ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ } x; | < | 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 | Expr *pLeft; /* Left subnode */ Expr *pRight; /* Right subnode */ union { ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ } x; /* If the EP_Reduced flag is set in the Expr.flags mask, then no ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ #if SQLITE_MAX_EXPR_DEPTH>0 |
︙ | ︙ | |||
1730 1731 1732 1733 1734 1735 1736 | #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ #define EP_Error 0x0008 /* Expression contains one or more errors */ #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ | | | 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 | #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ #define EP_Error 0x0008 /* Expression contains one or more errors */ #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ #define EP_Collate 0x0100 /* Tree contains a TK_COLLATE opeartor */ #define EP_FixedDest 0x0200 /* Result needed in a specific register */ #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ #define EP_Hint 0x1000 /* Not used */ #define EP_Reduced 0x2000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ #define EP_TokenOnly 0x4000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ #define EP_Static 0x8000 /* Held in memory not obtained from malloc() */ |
︙ | ︙ | |||
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 | #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ /* * Each trigger present in the database schema is stored as an instance of * struct Trigger. * * Pointers to instances of struct Trigger are stored in two ways. * 1. In the "trigHash" hash table (part of the sqlite3* that represents the | > | 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 | #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ #define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */ #define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */ #define OPFLAG_P2ISREG 0x02 /* P2 to OP_Open** is a register number */ #define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */ /* * Each trigger present in the database schema is stored as an instance of * struct Trigger. * * Pointers to instances of struct Trigger are stored in two ways. * 1. In the "trigHash" hash table (part of the sqlite3* that represents the |
︙ | ︙ | |||
3042 3043 3044 3045 3046 3047 3048 | u8 sqlite3HexToInt(int h); int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); const char *sqlite3ErrStr(int); int sqlite3ReadSchema(Parse *pParse); CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); | | > | | 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 | u8 sqlite3HexToInt(int h); int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); const char *sqlite3ErrStr(int); int sqlite3ReadSchema(Parse *pParse); CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, Token*); Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); Expr *sqlite3ExprSkipCollate(Expr*); int sqlite3CheckCollSeq(Parse *, CollSeq *); int sqlite3CheckObjectName(Parse *, const char *); void sqlite3VdbeSetChanges(sqlite3 *, int); int sqlite3AddInt64(i64*,i64); int sqlite3SubInt64(i64*,i64); int sqlite3MulInt64(i64*,i64); int sqlite3AbsInt32(int); |
︙ | ︙ | |||
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 | #define IN_INDEX_INDEX 3 int sqlite3FindInIndex(Parse *, Expr *, int*); #ifdef SQLITE_ENABLE_ATOMIC_WRITE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); int sqlite3JournalSize(sqlite3_vfs *); int sqlite3JournalCreate(sqlite3_file *); #else #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) #endif void sqlite3MemJournalOpen(sqlite3_file *); int sqlite3MemJournalSize(void); int sqlite3IsMemJournal(sqlite3_file *); #if SQLITE_MAX_EXPR_DEPTH>0 | > > | 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 | #define IN_INDEX_INDEX 3 int sqlite3FindInIndex(Parse *, Expr *, int*); #ifdef SQLITE_ENABLE_ATOMIC_WRITE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); int sqlite3JournalSize(sqlite3_vfs *); int sqlite3JournalCreate(sqlite3_file *); int sqlite3JournalExists(sqlite3_file *p); #else #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) #define sqlite3JournalExists(p) 1 #endif void sqlite3MemJournalOpen(sqlite3_file *); int sqlite3MemJournalSize(void); int sqlite3IsMemJournal(sqlite3_file *); #if SQLITE_MAX_EXPR_DEPTH>0 |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 | } sqlite3_file_control(db, zDbName, SQLITE_FCNTL_VFSNAME,(void*)&zVfsName); Tcl_AppendResult(interp, zVfsName, (char*)0); sqlite3_free(zVfsName); return TCL_OK; } /* ** tclcmd: sqlite3_vfs_list ** ** Return a tcl list containing the names of all registered vfs's. */ static int vfs_list( | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 | } sqlite3_file_control(db, zDbName, SQLITE_FCNTL_VFSNAME,(void*)&zVfsName); Tcl_AppendResult(interp, zVfsName, (char*)0); sqlite3_free(zVfsName); return TCL_OK; } /* ** tclcmd: file_control_tempfilename DB ?AUXDB? ** ** Return a string that is a temporary filename */ static int file_control_tempfilename( ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ sqlite3 *db; const char *zDbName = "main"; char *zTName = 0; if( objc!=2 && objc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", Tcl_GetStringFromObj(objv[0], 0), " DB ?AUXDB?", 0); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){ return TCL_ERROR; } if( objc==3 ){ zDbName = Tcl_GetString(objv[2]); } sqlite3_file_control(db, zDbName, SQLITE_FCNTL_TEMPFILENAME, (void*)&zTName); Tcl_AppendResult(interp, zTName, (char*)0); sqlite3_free(zTName); return TCL_OK; } /* ** tclcmd: sqlite3_vfs_list ** ** Return a tcl list containing the names of all registered vfs's. */ static int vfs_list( |
︙ | ︙ | |||
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 | { "file_control_lockproxy_test", file_control_lockproxy_test, 0 }, { "file_control_chunksize_test", file_control_chunksize_test, 0 }, { "file_control_sizehint_test", file_control_sizehint_test, 0 }, { "file_control_win32_av_retry", file_control_win32_av_retry, 0 }, { "file_control_persist_wal", file_control_persist_wal, 0 }, { "file_control_powersafe_overwrite",file_control_powersafe_overwrite,0}, { "file_control_vfsname", file_control_vfsname, 0 }, { "sqlite3_vfs_list", vfs_list, 0 }, { "sqlite3_create_function_v2", test_create_function_v2, 0 }, /* Functions from os.h */ #ifndef SQLITE_OMIT_UTF16 { "add_test_collate", test_collate, 0 }, { "add_test_collate_needed", test_collate_needed, 0 }, | > | 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 | { "file_control_lockproxy_test", file_control_lockproxy_test, 0 }, { "file_control_chunksize_test", file_control_chunksize_test, 0 }, { "file_control_sizehint_test", file_control_sizehint_test, 0 }, { "file_control_win32_av_retry", file_control_win32_av_retry, 0 }, { "file_control_persist_wal", file_control_persist_wal, 0 }, { "file_control_powersafe_overwrite",file_control_powersafe_overwrite,0}, { "file_control_vfsname", file_control_vfsname, 0 }, { "file_control_tempfilename", file_control_tempfilename, 0 }, { "sqlite3_vfs_list", vfs_list, 0 }, { "sqlite3_create_function_v2", test_create_function_v2, 0 }, /* Functions from os.h */ #ifndef SQLITE_OMIT_UTF16 { "add_test_collate", test_collate, 0 }, { "add_test_collate_needed", test_collate_needed, 0 }, |
︙ | ︙ |
Changes to src/test_malloc.c.
︙ | ︙ | |||
716 717 718 719 720 721 722 | if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "TITLE"); return TCL_ERROR; } #ifdef SQLITE_MEMDEBUG { const char *zTitle; | < > | 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 | if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "TITLE"); return TCL_ERROR; } #ifdef SQLITE_MEMDEBUG { const char *zTitle; extern int sqlite3MemdebugSettitle(const char*); zTitle = Tcl_GetString(objv[1]); sqlite3MemdebugSettitle(zTitle); } #endif return TCL_OK; } #define MALLOC_LOG_FRAMES 10 |
︙ | ︙ |
Changes to src/test_sqllog.c.
︙ | ︙ | |||
386 387 388 389 390 391 392 | } } /* ** The SQLITE_CONFIG_SQLLOG callback registered by sqlite3_init_sqllog(). */ static void testSqllog(void *pCtx, sqlite3 *db, const char *zSql, int eType){ | | | 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 | } } /* ** The SQLITE_CONFIG_SQLLOG callback registered by sqlite3_init_sqllog(). */ static void testSqllog(void *pCtx, sqlite3 *db, const char *zSql, int eType){ struct SLConn *p = 0; sqlite3_mutex *master = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); assert( eType==0 || eType==1 || eType==2 ); assert( (eType==2)==(zSql==0) ); /* This is a database open command. */ if( eType==0 ){ |
︙ | ︙ |
Changes to src/test_vfstrace.c.
︙ | ︙ | |||
471 472 473 474 475 476 477 478 479 480 481 482 483 484 | } case SQLITE_FCNTL_FILE_POINTER: zOp = "FILE_POINTER"; break; case SQLITE_FCNTL_SYNC_OMITTED: zOp = "SYNC_OMITTED"; break; case SQLITE_FCNTL_WIN32_AV_RETRY: zOp = "WIN32_AV_RETRY"; break; case SQLITE_FCNTL_PERSIST_WAL: zOp = "PERSIST_WAL"; break; case SQLITE_FCNTL_OVERWRITE: zOp = "OVERWRITE"; break; case SQLITE_FCNTL_VFSNAME: zOp = "VFSNAME"; break; case 0xca093fa0: zOp = "DB_UNCHANGED"; break; case SQLITE_FCNTL_PRAGMA: { const char *const* a = (const char*const*)pArg; sqlite3_snprintf(sizeof(zBuf), zBuf, "PRAGMA,[%s,%s]",a[1],a[2]); zOp = zBuf; break; } | > | 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 | } case SQLITE_FCNTL_FILE_POINTER: zOp = "FILE_POINTER"; break; case SQLITE_FCNTL_SYNC_OMITTED: zOp = "SYNC_OMITTED"; break; case SQLITE_FCNTL_WIN32_AV_RETRY: zOp = "WIN32_AV_RETRY"; break; case SQLITE_FCNTL_PERSIST_WAL: zOp = "PERSIST_WAL"; break; case SQLITE_FCNTL_OVERWRITE: zOp = "OVERWRITE"; break; case SQLITE_FCNTL_VFSNAME: zOp = "VFSNAME"; break; case SQLITE_FCNTL_TEMPFILENAME: zOp = "TEMPFILENAME"; break; case 0xca093fa0: zOp = "DB_UNCHANGED"; break; case SQLITE_FCNTL_PRAGMA: { const char *const* a = (const char*const*)pArg; sqlite3_snprintf(sizeof(zBuf), zBuf, "PRAGMA,[%s,%s]",a[1],a[2]); zOp = zBuf; break; } |
︙ | ︙ | |||
492 493 494 495 496 497 498 | pInfo->zVfsName, p->zFName, zOp); rc = p->pReal->pMethods->xFileControl(p->pReal, op, pArg); vfstrace_print_errcode(pInfo, " -> %s\n", rc); if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){ *(char**)pArg = sqlite3_mprintf("vfstrace.%s/%z", pInfo->zVfsName, *(char**)pArg); } | > | | 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 | pInfo->zVfsName, p->zFName, zOp); rc = p->pReal->pMethods->xFileControl(p->pReal, op, pArg); vfstrace_print_errcode(pInfo, " -> %s\n", rc); if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){ *(char**)pArg = sqlite3_mprintf("vfstrace.%s/%z", pInfo->zVfsName, *(char**)pArg); } if( (op==SQLITE_FCNTL_PRAGMA || op==SQLITE_FCNTL_TEMPFILENAME) && rc==SQLITE_OK && *(char**)pArg ){ vfstrace_printf(pInfo, "%s.xFileControl(%s,%s) returns %s", pInfo->zVfsName, p->zFName, zOp, *(char**)pArg); } return rc; } /* |
︙ | ︙ |
Changes to src/trigger.c.
︙ | ︙ | |||
724 725 726 727 728 729 730 731 732 733 734 735 736 737 | ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b); ** END; ** ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy */ pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf; switch( pStep->op ){ case TK_UPDATE: { sqlite3Update(pParse, targetSrcList(pParse, pStep), sqlite3ExprListDup(db, pStep->pExprList, 0), sqlite3ExprDup(db, pStep->pWhere, 0), | > > > > > > > > > | 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 | ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b); ** END; ** ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy */ pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf; /* Clear the cookieGoto flag. When coding triggers, the cookieGoto ** variable is used as a flag to indicate to sqlite3ExprCodeConstants() ** that it is not safe to refactor constants (this happens after the ** start of the first loop in the SQL statement is coded - at that ** point code may be conditionally executed, so it is no longer safe to ** initialize constant register values). */ assert( pParse->cookieGoto==0 || pParse->cookieGoto==-1 ); pParse->cookieGoto = 0; switch( pStep->op ){ case TK_UPDATE: { sqlite3Update(pParse, targetSrcList(pParse, pStep), sqlite3ExprListDup(db, pStep->pExprList, 0), sqlite3ExprDup(db, pStep->pWhere, 0), |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
428 429 430 431 432 433 434 | #endif #ifdef SQLITE_DEBUG /* ** Print the value of a register for tracing purposes: */ static void memTracePrint(FILE *out, Mem *p){ | | > > | 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 | #endif #ifdef SQLITE_DEBUG /* ** Print the value of a register for tracing purposes: */ static void memTracePrint(FILE *out, Mem *p){ if( p->flags & MEM_Invalid ){ fprintf(out, " undefined"); }else if( p->flags & MEM_Null ){ fprintf(out, " NULL"); }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ fprintf(out, " si:%lld", p->u.i); }else if( p->flags & MEM_Int ){ fprintf(out, " i:%lld", p->u.i); #ifndef SQLITE_OMIT_FLOATING_POINT }else if( p->flags & MEM_Real ){ |
︙ | ︙ | |||
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 | n = pOp->p3; pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; assert( pOut!=pIn1 ); while( 1 ){ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); Deephemeralize(pOut); REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); if( (n--)==0 ) break; pOut++; pIn1++; } break; } | > > > | 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 | n = pOp->p3; pIn1 = &aMem[pOp->p1]; pOut = &aMem[pOp->p2]; assert( pOut!=pIn1 ); while( 1 ){ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); Deephemeralize(pOut); #ifdef SQLITE_DEBUG pOut->pScopyFrom = 0; #endif REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); if( (n--)==0 ) break; pOut++; pIn1++; } break; } |
︙ | ︙ | |||
1893 1894 1895 1896 1897 1898 1899 | } /* Opcode: Permutation * * * P4 * ** ** Set the permutation used by the OP_Compare operator to be the array ** of integers in P4. ** | | | | | > > > > > > | 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 | } /* Opcode: Permutation * * * P4 * ** ** Set the permutation used by the OP_Compare operator to be the array ** of integers in P4. ** ** The permutation is only valid until the next OP_Compare that has ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should ** occur immediately prior to the OP_Compare. */ case OP_Permutation: { assert( pOp->p4type==P4_INTARRAY ); assert( pOp->p4.ai ); aPermute = pOp->p4.ai; break; } /* Opcode: Compare P1 P2 P3 P4 P5 ** ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of ** the comparison for use by the next OP_Jump instruct. ** ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is ** determined by the most recent OP_Permutation operator. If the ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential ** order. ** ** P4 is a KeyInfo structure that defines collating sequences and sort ** orders for the comparison. The permutation applies to registers ** only. The KeyInfo elements are used sequentially. ** ** The comparison is a sort comparison, so NULLs compare equal, ** NULLs are less than numbers, numbers are less than strings, ** and strings are less than blobs. */ case OP_Compare: { int n; int i; int p1; int p2; const KeyInfo *pKeyInfo; int idx; CollSeq *pColl; /* Collating sequence to use on this term */ int bRev; /* True for DESCENDING sort order */ if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; n = pOp->p3; pKeyInfo = pOp->p4.pKeyInfo; assert( n>0 ); assert( pKeyInfo!=0 ); p1 = pOp->p1; p2 = pOp->p2; #if SQLITE_DEBUG |
︙ | ︙ | |||
3306 3307 3308 3309 3310 3311 3312 | } } pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); pCx->isIndex = !pCx->isTable; break; } | | | 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 | } } pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); pCx->isIndex = !pCx->isTable; break; } /* Opcode: SorterOpen P1 P2 * P4 * ** ** This opcode works like OP_OpenEphemeral except that it opens ** a transient index that is specifically designed to sort large ** tables using an external merge-sort algorithm. */ case OP_SorterOpen: { VdbeCursor *pCx; |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
720 721 722 723 724 725 726 727 728 729 730 731 732 733 | } assert( p->nOp>0 ); assert( addr<p->nOp ); if( addr<0 ){ addr = p->nOp - 1; } pOp = &p->aOp[addr]; freeP4(db, pOp->p4type, pOp->p4.p); pOp->p4.p = 0; if( n==P4_INT32 ){ /* Note: this cast is safe, because the origin data point was an int ** that was cast to a (const char *). */ pOp->p4.i = SQLITE_PTR_TO_INT(zP4); pOp->p4type = P4_INT32; | > | 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 | } assert( p->nOp>0 ); assert( addr<p->nOp ); if( addr<0 ){ addr = p->nOp - 1; } pOp = &p->aOp[addr]; assert( pOp->p4type==P4_NOTUSED || pOp->p4type==P4_INT32 ); freeP4(db, pOp->p4type, pOp->p4.p); pOp->p4.p = 0; if( n==P4_INT32 ){ /* Note: this cast is safe, because the origin data point was an int ** that was cast to a (const char *). */ pOp->p4.i = SQLITE_PTR_TO_INT(zP4); pOp->p4type = P4_INT32; |
︙ | ︙ | |||
862 863 864 865 866 867 868 | int i, j; KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; assert( pKeyInfo->aSortOrder!=0 ); sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); i = sqlite3Strlen30(zTemp); for(j=0; j<pKeyInfo->nField; j++){ CollSeq *pColl = pKeyInfo->aColl[j]; | | | | | | | | | | | | | < < < < | 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 | int i, j; KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; assert( pKeyInfo->aSortOrder!=0 ); sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); i = sqlite3Strlen30(zTemp); for(j=0; j<pKeyInfo->nField; j++){ CollSeq *pColl = pKeyInfo->aColl[j]; const char *zColl = pColl ? pColl->zName : "nil"; int n = sqlite3Strlen30(zColl); if( i+n>nTemp-6 ){ memcpy(&zTemp[i],",...",4); break; } zTemp[i++] = ','; if( pKeyInfo->aSortOrder[j] ){ zTemp[i++] = '-'; } memcpy(&zTemp[i], zColl, n+1); i += n; } zTemp[i++] = ')'; zTemp[i] = 0; assert( i<nTemp ); break; } case P4_COLLSEQ: { |
︙ | ︙ | |||
2478 2479 2480 2481 2482 2483 2484 | for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aLabel); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); sqlite3DbFree(db, p->pFree); #if defined(SQLITE_ENABLE_TREE_EXPLAIN) | | | 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 | for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aLabel); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); sqlite3DbFree(db, p->pFree); #if defined(SQLITE_ENABLE_TREE_EXPLAIN) sqlite3_free(p->zExplain); sqlite3DbFree(db, p->pExplain); #endif } /* ** Delete an entire VDBE. */ |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
559 560 561 562 563 564 565 | */ #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} /* ** Commute a comparison operator. Expressions of the form "X op Y" ** are converted into "Y op X". ** | > | | | | | > > > > > | | < > | > | > > | 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 | */ #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} /* ** Commute a comparison operator. Expressions of the form "X op Y" ** are converted into "Y op X". ** ** If left/right precendence rules come into play when determining the ** collating ** side of the comparison, it remains associated with the same side after ** the commutation. So "Y collate NOCASE op X" becomes ** "X op Y". This is because any collation sequence on ** the left hand side of a comparison overrides any collation sequence ** attached to the right. For the same reason the EP_Collate flag ** is not commuted. */ static void exprCommute(Parse *pParse, Expr *pExpr){ u16 expRight = (pExpr->pRight->flags & EP_Collate); u16 expLeft = (pExpr->pLeft->flags & EP_Collate); assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); if( expRight==expLeft ){ /* Either X and Y both have COLLATE operator or neither do */ if( expRight ){ /* Both X and Y have COLLATE operators. Make sure X is always ** used by clearing the EP_Collate flag from Y. */ pExpr->pRight->flags &= ~EP_Collate; }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ /* Neither X nor Y have COLLATE operators, but X has a non-default ** collating sequence. So add the EP_Collate marker on X to cause ** it to be searched first. */ pExpr->pLeft->flags |= EP_Collate; } } SWAP(Expr*,pExpr->pRight,pExpr->pLeft); if( pExpr->op>=TK_GT ){ assert( TK_LT==TK_GT+2 ); assert( TK_GE==TK_LE+2 ); assert( TK_GT>TK_EQ ); assert( TK_GT<TK_LE ); assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
︙ | ︙ | |||
652 653 654 655 656 657 658 | /* Figure out the collation sequence required from an index for ** it to be useful for optimising expression pX. Store this ** value in variable pColl. */ assert(pX->pLeft); pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); | | | | 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 | /* Figure out the collation sequence required from an index for ** it to be useful for optimising expression pX. Store this ** value in variable pColl. */ assert(pX->pLeft); pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); if( pColl==0 ) pColl = pParse->db->pDfltColl; for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ if( NEVER(j>=pIdx->nColumn) ) return 0; } if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; } return pTerm; } } } return 0; } |
︙ | ︙ | |||
1175 1176 1177 1178 1179 1180 1181 | sqlite3 *db = pParse->db; /* Database connection */ if( db->mallocFailed ){ return; } pTerm = &pWC->a[idxTerm]; pMaskSet = pWC->pMaskSet; | | | 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 | sqlite3 *db = pParse->db; /* Database connection */ if( db->mallocFailed ){ return; } pTerm = &pWC->a[idxTerm]; pMaskSet = pWC->pMaskSet; pExpr = sqlite3ExprSkipCollate(pTerm->pExpr); prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); op = pExpr->op; if( op==TK_IN ){ assert( pExpr->pRight==0 ); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); }else{ |
︙ | ︙ | |||
1202 1203 1204 1205 1206 1207 1208 | ** on left table of a LEFT JOIN. Ticket #3015 */ } pTerm->prereqAll = prereqAll; pTerm->leftCursor = -1; pTerm->iParent = -1; pTerm->eOperator = 0; if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ | | | | 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 | ** on left table of a LEFT JOIN. Ticket #3015 */ } pTerm->prereqAll = prereqAll; pTerm->leftCursor = -1; pTerm->iParent = -1; pTerm->eOperator = 0; if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); if( pLeft->op==TK_COLUMN ){ pTerm->leftCursor = pLeft->iTable; pTerm->u.leftColumn = pLeft->iColumn; pTerm->eOperator = operatorMask(op); } if( pRight && pRight->op==TK_COLUMN ){ WhereTerm *pNew; |
︙ | ︙ | |||
1231 1232 1233 1234 1235 1236 1237 | pTerm->nChild = 1; pTerm->wtFlags |= TERM_COPIED; }else{ pDup = pExpr; pNew = pTerm; } exprCommute(pParse, pDup); | | | 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 | pTerm->nChild = 1; pTerm->wtFlags |= TERM_COPIED; }else{ pDup = pExpr; pNew = pTerm; } exprCommute(pParse, pDup); pLeft = sqlite3ExprSkipCollate(pDup->pLeft); pNew->leftCursor = pLeft->iTable; pNew->u.leftColumn = pLeft->iColumn; testcase( (prereqLeft | extraRight) != prereqLeft ); pNew->prereqRight = prereqLeft | extraRight; pNew->prereqAll = prereqAll; pNew->eOperator = operatorMask(pDup->op); } |
︙ | ︙ | |||
1310 1311 1312 1313 1314 1315 1316 | ){ Expr *pLeft; /* LHS of LIKE/GLOB operator */ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ Expr *pNewExpr1; Expr *pNewExpr2; int idxNew1; int idxNew2; | | | 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 | ){ Expr *pLeft; /* LHS of LIKE/GLOB operator */ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ Expr *pNewExpr1; Expr *pNewExpr2; int idxNew1; int idxNew2; Token sCollSeqName; /* Name of collating sequence */ pLeft = pExpr->x.pList->a[1].pExpr; pStr2 = sqlite3ExprDup(db, pStr1, 0); if( !db->mallocFailed ){ u8 c, *pC; /* Last character before the first wildcard */ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; c = *pC; |
︙ | ︙ | |||
1332 1333 1334 1335 1336 1337 1338 | if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */ c = sqlite3UpperToLower[c]; } *pC = c + 1; } | | > > | | > | | | 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 | if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */ c = sqlite3UpperToLower[c]; } *pC = c + 1; } sCollSeqName.z = noCase ? "NOCASE" : "BINARY"; sCollSeqName.n = 6; pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName), pStr1, 0); idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew1==0 ); exprAnalyze(pSrc, pWC, idxNew1); pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName), pStr2, 0); idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); testcase( idxNew2==0 ); exprAnalyze(pSrc, pWC, idxNew2); pTerm = &pWC->a[idxTerm]; if( isComplete ){ pWC->a[idxNew1].iParent = idxTerm; pWC->a[idxNew2].iParent = idxTerm; |
︙ | ︙ | |||
1459 1460 1461 1462 1463 1464 1465 | Index *pIdx, /* Index to match column of */ int iCol /* Column of index to match */ ){ int i; const char *zColl = pIdx->azColl[iCol]; for(i=0; i<pList->nExpr; i++){ | | | | 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 | Index *pIdx, /* Index to match column of */ int iCol /* Column of index to match */ ){ int i; const char *zColl = pIdx->azColl[iCol]; for(i=0; i<pList->nExpr; i++){ Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); if( p->op==TK_COLUMN && p->iColumn==pIdx->aiColumn[iCol] && p->iTable==iBase ){ CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){ return i; } } } return -1; |
︙ | ︙ | |||
1511 1512 1513 1514 1515 1516 1517 | ** can be ignored. If it does not, and the column does not belong to the ** same table as index pIdx, return early. Finally, if there is no ** matching "col=X" expression and the column is on the same table as pIdx, ** set the corresponding bit in variable mask. */ for(i=0; i<pDistinct->nExpr; i++){ WhereTerm *pTerm; | | | 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 | ** can be ignored. If it does not, and the column does not belong to the ** same table as index pIdx, return early. Finally, if there is no ** matching "col=X" expression and the column is on the same table as pIdx, ** set the corresponding bit in variable mask. */ for(i=0; i<pDistinct->nExpr; i++){ WhereTerm *pTerm; Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); if( p->op!=TK_COLUMN ) return 0; pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0); if( pTerm ){ Expr *pX = pTerm->pExpr; CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); CollSeq *p2 = sqlite3ExprCollSeq(pParse, p); if( p1==p2 ) continue; |
︙ | ︙ | |||
1563 1564 1565 1566 1567 1568 1569 | pTab = pTabList->a[0].pTab; /* If any of the expressions is an IPK column on table iBase, then return ** true. Note: The (p->iTable==iBase) part of this test may be false if the ** current SELECT is a correlated sub-query. */ for(i=0; i<pDistinct->nExpr; i++){ | | | 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 | pTab = pTabList->a[0].pTab; /* If any of the expressions is an IPK column on table iBase, then return ** true. Note: The (p->iTable==iBase) part of this test may be false if the ** current SELECT is a correlated sub-query. */ for(i=0; i<pDistinct->nExpr; i++){ Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; } /* Loop through all indices on the table, checking each to see if it makes ** the DISTINCT qualifier redundant. It does so if: ** ** 1. The index is itself UNIQUE, and |
︙ | ︙ | |||
2849 2850 2851 2852 2853 2854 2855 | int isMatch; /* ORDER BY term matches the index term */ const char *zColl; /* Name of collating sequence for i-th index term */ WhereTerm *pConstraint; /* A constraint in the WHERE clause */ /* If the next term of the ORDER BY clause refers to anything other than ** a column in the "base" table, then this index will not be of any ** further use in handling the ORDER BY. */ | | | 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 | int isMatch; /* ORDER BY term matches the index term */ const char *zColl; /* Name of collating sequence for i-th index term */ WhereTerm *pConstraint; /* A constraint in the WHERE clause */ /* If the next term of the ORDER BY clause refers to anything other than ** a column in the "base" table, then this index will not be of any ** further use in handling the ORDER BY. */ pOBExpr = sqlite3ExprSkipCollate(pOBItem->pExpr); if( pOBExpr->op!=TK_COLUMN || pOBExpr->iTable!=base ){ break; } /* Find column number and collating sequence for the next entry ** in the index */ if( pIdx->zName && i<pIdx->nColumn ){ |
︙ | ︙ | |||
2875 2876 2877 2878 2879 2880 2881 | } /* Check to see if the column number and collating sequence of the ** index match the column number and collating sequence of the ORDER BY ** clause entry. Set isMatch to 1 if they both match. */ if( pOBExpr->iColumn==iColumn ){ if( zColl ){ | | | 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 | } /* Check to see if the column number and collating sequence of the ** index match the column number and collating sequence of the ORDER BY ** clause entry. Set isMatch to 1 if they both match. */ if( pOBExpr->iColumn==iColumn ){ if( zColl ){ pColl = sqlite3ExprCollSeq(pParse, pOBItem->pExpr); if( !pColl ) pColl = db->pDfltColl; isMatch = sqlite3StrICmp(pColl->zName, zColl)==0; }else{ isMatch = 1; } }else{ isMatch = 0; |
︙ | ︙ | |||
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 | Index *pIdx; /* Copy of pProbe, or zero for IPK index */ int eqTermMask; /* Current mask of valid equality operators */ int idxEqTermMask; /* Index mask of valid equality operators */ Index sPk; /* A fake index object for the primary key */ tRowcnt aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ int wsFlagMask; /* Allowed flags in p->cost.plan.wsFlag */ /* Initialize the cost to a worst-case value */ memset(&p->cost, 0, sizeof(p->cost)); p->cost.rCost = SQLITE_BIG_DBL; /* If the pSrc table is the right table of a LEFT JOIN then we may not ** use an index to satisfy IS NULL constraints on that table. This is | > > > > > | 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 | Index *pIdx; /* Copy of pProbe, or zero for IPK index */ int eqTermMask; /* Current mask of valid equality operators */ int idxEqTermMask; /* Index mask of valid equality operators */ Index sPk; /* A fake index object for the primary key */ tRowcnt aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ int wsFlagMask; /* Allowed flags in p->cost.plan.wsFlag */ int nPriorSat; /* ORDER BY terms satisfied by outer loops */ int nOrderBy; /* Number of ORDER BY terms */ char bSortInit; /* Initializer for bSort in inner loop */ char bDistInit; /* Initializer for bDist in inner loop */ /* Initialize the cost to a worst-case value */ memset(&p->cost, 0, sizeof(p->cost)); p->cost.rCost = SQLITE_BIG_DBL; /* If the pSrc table is the right table of a LEFT JOIN then we may not ** use an index to satisfy IS NULL constraints on that table. This is |
︙ | ︙ | |||
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 | pProbe = &sPk; wsFlagMask = ~( WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE ); eqTermMask = WO_EQ|WO_IN; pIdx = 0; } /* Loop over all indices looking for the best one to use */ for(; pProbe; pIdx=pProbe=pProbe->pNext){ const tRowcnt * const aiRowEst = pProbe->aiRowEst; WhereCost pc; /* Cost of using pProbe */ double log10N = (double)1; /* base-10 logarithm of nRow (inexact) */ | > > > > > > > > > > > | 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 | pProbe = &sPk; wsFlagMask = ~( WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE ); eqTermMask = WO_EQ|WO_IN; pIdx = 0; } nOrderBy = p->pOrderBy ? p->pOrderBy->nExpr : 0; if( p->i ){ nPriorSat = p->aLevel[p->i-1].plan.nOBSat; bSortInit = nPriorSat<nOrderBy; bDistInit = 0; }else{ nPriorSat = 0; bSortInit = nOrderBy>0; bDistInit = p->pDistinct!=0; } /* Loop over all indices looking for the best one to use */ for(; pProbe; pIdx=pProbe=pProbe->pNext){ const tRowcnt * const aiRowEst = pProbe->aiRowEst; WhereCost pc; /* Cost of using pProbe */ double log10N = (double)1; /* base-10 logarithm of nRow (inexact) */ |
︙ | ︙ | |||
3142 3143 3144 3145 3146 3147 3148 | ** SELECT a, b FROM tbl WHERE a = 1; ** SELECT a, b, c FROM tbl WHERE a = 1; */ int bInEst = 0; /* True if "x IN (SELECT...)" seen */ int nInMul = 1; /* Number of distinct equalities to lookup */ double rangeDiv = (double)1; /* Estimated reduction in search space */ int nBound = 0; /* Number of range constraints seen */ | | | | < < < < < < < < | < < < | 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 | ** SELECT a, b FROM tbl WHERE a = 1; ** SELECT a, b, c FROM tbl WHERE a = 1; */ int bInEst = 0; /* True if "x IN (SELECT...)" seen */ int nInMul = 1; /* Number of distinct equalities to lookup */ double rangeDiv = (double)1; /* Estimated reduction in search space */ int nBound = 0; /* Number of range constraints seen */ char bSort = bSortInit; /* True if external sort required */ char bDist = bDistInit; /* True if index cannot help with DISTINCT */ char bLookup = 0; /* True if not a covering index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ #ifdef SQLITE_ENABLE_STAT3 WhereTerm *pFirstTerm = 0; /* First term matching the index */ #endif WHERETRACE(( " %s(%s):\n", pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk") )); memset(&pc, 0, sizeof(pc)); pc.plan.nOBSat = nPriorSat; /* Determine the values of pc.plan.nEq and nInMul */ for(pc.plan.nEq=0; pc.plan.nEq<pProbe->nColumn; pc.plan.nEq++){ int j = pProbe->aiColumn[pc.plan.nEq]; pTerm = findTerm(pWC, iCur, j, p->notReady, eqTermMask, pIdx); if( pTerm==0 ) break; pc.plan.wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); |
︙ | ︙ | |||
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 | /* Do nothing */ }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); int iCur = pTabItem->iCursor; sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); }else #endif if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); testcase( pTab->nCol==BMS-1 ); | > > | 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 | /* Do nothing */ }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); int iCur = pTabItem->iCursor; sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); }else if( IsVirtual(pTab) ){ /* noop */ }else #endif if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); testcase( pTab->nCol==BMS-1 ); |
︙ | ︙ |
Changes to test/backup4.test.
︙ | ︙ | |||
59 60 61 62 63 64 65 | # Test that if the source is zero bytes, the destination database # consists of a single page only. # do_execsql_test 2.1 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a, b); } | < | | 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | # Test that if the source is zero bytes, the destination database # consists of a single page only. # do_execsql_test 2.1 { CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a, b); } do_test 2.2 { file size test.db } [expr $AUTOVACUUM ? 4096 : 3072] do_test 2.3 { sqlite3 db1 test.db2 db1 backup test.db db1 close file size test.db } {1024} |
︙ | ︙ | |||
86 87 88 89 90 91 92 | # of a single page. # do_execsql_test 3.1 { PRAGMA page_size = 4096; CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a, b); } | < | | 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | # of a single page. # do_execsql_test 3.1 { PRAGMA page_size = 4096; CREATE TABLE t1(a, b); CREATE INDEX i1 ON t1(a, b); } do_test 3.2 { file size test.db } [expr $AUTOVACUUM ? 16384 : 12288] do_test 3.3 { sqlite3 db1 test.db2 db1 backup test.db db1 close file size test.db } {1024} do_test 3.4 { file size test.db2 } 0 finish_test |
Changes to test/collate1.test.
︙ | ︙ | |||
71 72 73 74 75 76 77 78 79 80 81 82 83 84 | } {} do_test collate1-1.1 { execsql { SELECT c2 FROM collate1t1 ORDER BY 1; } } {{} 0x119 0x2D} do_test collate1-1.2 { execsql { SELECT c2 FROM collate1t1 ORDER BY 1 COLLATE hex; } } {{} 0x2D 0x119} do_test collate1-1.3 { execsql { SELECT c2 FROM collate1t1 ORDER BY 1 COLLATE hex DESC; | > | 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | } {} do_test collate1-1.1 { execsql { SELECT c2 FROM collate1t1 ORDER BY 1; } } {{} 0x119 0x2D} do_test collate1-1.2 { breakpoint execsql { SELECT c2 FROM collate1t1 ORDER BY 1 COLLATE hex; } } {{} 0x2D 0x119} do_test collate1-1.3 { execsql { SELECT c2 FROM collate1t1 ORDER BY 1 COLLATE hex DESC; |
︙ | ︙ |
Changes to test/distinct.test.
︙ | ︙ | |||
164 165 166 167 168 169 170 | 2 "b, a FROM t1" {} {B A b a} 3 "a, b, c FROM t1" {hash} {a b c A B C} 4 "a, b, c FROM t1 ORDER BY a, b, c" {btree} {A B C a b c} 5 "b FROM t1 WHERE a = 'a'" {} {b} 6 "b FROM t1" {hash} {b B} 7 "a FROM t1" {} {A a} 8 "b COLLATE nocase FROM t1" {} {b} | | | 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | 2 "b, a FROM t1" {} {B A b a} 3 "a, b, c FROM t1" {hash} {a b c A B C} 4 "a, b, c FROM t1 ORDER BY a, b, c" {btree} {A B C a b c} 5 "b FROM t1 WHERE a = 'a'" {} {b} 6 "b FROM t1" {hash} {b B} 7 "a FROM t1" {} {A a} 8 "b COLLATE nocase FROM t1" {} {b} 9 "b COLLATE nocase FROM t1 ORDER BY b COLLATE nocase" {} {b} } { do_execsql_test 2.$tn.1 "SELECT DISTINCT $sql" $res do_temptables_test 2.$tn.2 "SELECT DISTINCT $sql" $temptables } do_execsql_test 2.A { SELECT (SELECT DISTINCT o.a FROM t1 AS i) FROM t1 AS o ORDER BY rowid; |
︙ | ︙ |
Changes to test/filectrl.test.
︙ | ︙ | |||
32 33 34 35 36 37 38 39 40 41 | file_control_lasterrno_test db } {} do_test filectrl-1.5 { db close sqlite3 db test_control_lockproxy.db file_control_lockproxy_test db [get_pwd] } {} db close forcedelete .test_control_lockproxy.db-conch test.proxy finish_test | > > > > > > | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | file_control_lasterrno_test db } {} do_test filectrl-1.5 { db close sqlite3 db test_control_lockproxy.db file_control_lockproxy_test db [get_pwd] } {} do_test filectrl-1.6 { sqlite3 db test.db set fn [file_control_tempfilename db] puts -nonewline \[$fn\] set fn } {/etilqs_/} db close forcedelete .test_control_lockproxy.db-conch test.proxy finish_test |
Changes to test/interrupt.test.
︙ | ︙ | |||
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | for {set i 1} {$i<$max_count-5} {incr i 1} { do_test interrupt-4.$i.1 { set ::sqlite_interrupt_count $::i catchsql $sql } {1 interrupted} } # Interrupt during parsing # do_test interrupt-5.1 { proc fake_interrupt {args} { db collate fake_collation no-op sqlite3_interrupt db return SQLITE_OK } db collation_needed fake_interrupt catchsql { CREATE INDEX fake ON fake1(a COLLATE fake_collation, b, c DESC); } } {1 interrupt} | > > | | 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | for {set i 1} {$i<$max_count-5} {incr i 1} { do_test interrupt-4.$i.1 { set ::sqlite_interrupt_count $::i catchsql $sql } {1 interrupted} } if {0} { # This doesn't work anymore since the collation factor is # no longer called during schema parsing. # Interrupt during parsing # do_test interrupt-5.1 { proc fake_interrupt {args} { db collate fake_collation no-op sqlite3_interrupt db return SQLITE_OK } db collation_needed fake_interrupt catchsql { CREATE INDEX fake ON fake1(a COLLATE fake_collation, b, c DESC); } } {1 interrupt} } finish_test |
Changes to test/malloc3.test.
︙ | ︙ | |||
23 24 25 26 27 28 29 30 31 32 33 34 35 36 | # if {!$MEMDEBUG} { puts "Skipping malloc3 tests: not compiled with -DSQLITE_MEMDEBUG..." finish_test return } #-------------------------------------------------------------------------- # NOTES ON RECOVERING FROM A MALLOC FAILURE # # The tests in this file test the behaviours described in the following # paragraphs. These tests test the behaviour of the system when malloc() fails # inside of a call to _prepare(), _step(), _finalize() or _reset(). The # handling of malloc() failures within ancillary procedures is tested | > > > > > > > > > > > > > > > > > > | 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | # if {!$MEMDEBUG} { puts "Skipping malloc3 tests: not compiled with -DSQLITE_MEMDEBUG..." finish_test return } # Do not run these tests with an in-memory journal. # # In the pager layer, if an IO or OOM error occurs during a ROLLBACK, or # when flushing a page to disk due to cache-stress, the pager enters an # "error state". The only way out of the error state is to unlock the # database file and end the transaction, leaving whatever journal and # database files happen to be on disk in place. The next time the current # (or any other) connection opens a read transaction, hot-journal rollback # is performed if necessary. # # Of course, this doesn't work with an in-memory journal. # if {[permutation]=="inmemory_journal"} { finish_test return } #-------------------------------------------------------------------------- # NOTES ON RECOVERING FROM A MALLOC FAILURE # # The tests in this file test the behaviours described in the following # paragraphs. These tests test the behaviour of the system when malloc() fails # inside of a call to _prepare(), _step(), _finalize() or _reset(). The # handling of malloc() failures within ancillary procedures is tested |
︙ | ︙ | |||
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | #-------------------------------------------------------------------------- # These procs are used to build up a "program" in global variable # ::run_test_script. At the end of this file, the proc [run_test] is used # to execute the program (and all test cases contained therein). # set ::run_test_script [list] proc TEST {id t} {lappend ::run_test_script -test [list $id $t]} proc PREP {p} {lappend ::run_test_script -prep [string trim $p]} proc DEBUG {s} {lappend ::run_test_script -debug $s} # SQL -- # # SQL ?-norollback? <sql-text> # # Add an 'SQL' primitive to the program (see notes above). If the -norollback # switch is present, then the statement is not allowed to automatically roll # back any active transaction if malloc() fails. It must rollback the statement # transaction only. # proc SQL {a1 {a2 ""}} { | > | | | > | | | 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | #-------------------------------------------------------------------------- # These procs are used to build up a "program" in global variable # ::run_test_script. At the end of this file, the proc [run_test] is used # to execute the program (and all test cases contained therein). # set ::run_test_sql_id 0 set ::run_test_script [list] proc TEST {id t} {lappend ::run_test_script -test [list $id $t]} proc PREP {p} {lappend ::run_test_script -prep [string trim $p]} proc DEBUG {s} {lappend ::run_test_script -debug $s} # SQL -- # # SQL ?-norollback? <sql-text> # # Add an 'SQL' primitive to the program (see notes above). If the -norollback # switch is present, then the statement is not allowed to automatically roll # back any active transaction if malloc() fails. It must rollback the statement # transaction only. # proc SQL {a1 {a2 ""}} { # An SQL primitive parameter is a list of three elements, an id, a boolean # value indicating if the statement may cause transaction rollback when # malloc() fails, and the sql statement itself. set id [incr ::run_test_sql_id] if {$a2 == ""} { lappend ::run_test_script -sql [list $id true [string trim $a1]] } else { lappend ::run_test_script -sql [list $id false [string trim $a2]] } } # TEST_AUTOCOMMIT -- # # A shorthand test to see if a transaction is active or not. The first # argument - $id - is the integer number of the test case. The second |
︙ | ︙ | |||
254 255 256 257 258 259 260 | } } {abc abc abc_i abc abc_t abc abc_v abc_v 1 2 3} } set sql { BEGIN;DELETE FROM abc; } | | | 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | } } {abc abc abc_i abc abc_t abc abc_v abc_v 1 2 3} } set sql { BEGIN;DELETE FROM abc; } for {set i 1} {$i < 100} {incr i} { set a $i set b "String value $i" set c [string repeat X $i] append sql "INSERT INTO abc VALUES ($a, '$b', '$c');" } append sql {COMMIT;} PREP $sql |
︙ | ︙ | |||
525 526 527 528 529 530 531 | proc run_test {arglist iRepeat {pcstart 0} {iFailStart 1}} { if {[llength $arglist] %2} { error "Uneven number of arguments to TEST" } for {set i 0} {$i < $pcstart} {incr i} { | | | | > > > > < < > > > > > | | | > | | | < | | | | | > | | | 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 | proc run_test {arglist iRepeat {pcstart 0} {iFailStart 1}} { if {[llength $arglist] %2} { error "Uneven number of arguments to TEST" } for {set i 0} {$i < $pcstart} {incr i} { set k2 [lindex $arglist [expr {2 * $i}]] set v2 [lindex $arglist [expr {2 * $i + 1}]] set ac [sqlite3_get_autocommit $::DB] ;# Auto-Commit switch -- $k2 { -sql {db eval [lindex $v2 2]} -prep {db eval $v2} -debug {eval $v2} } set nac [sqlite3_get_autocommit $::DB] ;# New Auto-Commit if {$ac && !$nac} {set begin_pc $i} } db rollback_hook [list incr ::rollback_hook_count] set iFail $iFailStart set pc $pcstart while {$pc*2 < [llength $arglist]} { # Fetch the current instruction type and payload. set k [lindex $arglist [expr {2 * $pc}]] set v [lindex $arglist [expr {2 * $pc + 1}]] # Id of this iteration: set iterid "pc=$pc.iFail=$iFail$k" switch -- $k { -test { foreach {id script} $v {} set testid "malloc3-(test $id).$iterid" eval $script incr pc } -sql { set ::rollback_hook_count 0 set id [lindex $v 0] set testid "malloc3-(integrity $id).$iterid" set ac [sqlite3_get_autocommit $::DB] ;# Auto-Commit sqlite3_memdebug_fail $iFail -repeat 0 set rc [catch {db eval [lindex $v 2]} msg] ;# True error occurs set nac [sqlite3_get_autocommit $::DB] ;# New Auto-Commit if {$rc != 0 && $nac && !$ac} { # Before [db eval] the auto-commit flag was clear. Now it # is set. Since an error occured we assume this was not a # commit - therefore a rollback occured. Check that the # rollback-hook was invoked. do_test malloc3-rollback_hook_count.$iterid { set ::rollback_hook_count } {1} } set nFail [sqlite3_memdebug_fail -1 -benigncnt nBenign] if {$rc == 0} { # Successful execution of sql. The number of failed malloc() # calls should be equal to the number of benign failures. # Otherwise a malloc() failed and the error was not reported. # set expr {$nFail!=$nBenign} if {[expr $expr]} { error "Unreported malloc() failure, test \"$testid\", $expr" } if {$ac && !$nac} { # Before the [db eval] the auto-commit flag was set, now it # is clear. We can deduce that a "BEGIN" statement has just # been successfully executed. set begin_pc $pc } incr pc set iFail 1 integrity_check $testid } elseif {[regexp {.*out of memory} $msg] || [db errorcode] == 3082} { # Out of memory error, as expected. # integrity_check $testid incr iFail if {$nac && !$ac} { if {![lindex $v 1] && [db errorcode] != 3082} { # error "Statement \"[lindex $v 2]\" caused a rollback" } for {set i $begin_pc} {$i < $pc} {incr i} { set k2 [lindex $arglist [expr {2 * $i}]] set v2 [lindex $arglist [expr {2 * $i + 1}]] set catchupsql "" switch -- $k2 { -sql {set catchupsql [lindex $v2 2]} -prep {set catchupsql $v2} } db eval $catchupsql } } } else { error $msg } # back up to the previous "-test" block. while {[lindex $arglist [expr {2 * ($pc - 1)}]] == "-test"} { incr pc -1 } } -prep { db eval $v incr pc } -debug { eval $v incr pc } default { error "Unknown switch: $k" } } } } # Turn off the Tcl interface's prepared statement caching facility. Then # run the tests with "persistent" malloc failures. sqlite3_extended_result_codes db 1 db cache size 0 run_test $::run_test_script 1 # Close and reopen the db. db close |
︙ | ︙ |
Changes to test/shared9.test.
︙ | ︙ | |||
131 132 133 134 135 136 137 138 139 140 141 142 143 144 | set ::invoked_mycollate_db1 0 db2 eval { INSERT INTO t1 VALUES('two'); } db2 close set ::invoked_mycollate_db1 } {0} #------------------------------------------------------------------------- # This test verifies that a bug causing a busy-handler belonging to one # shared-cache connection to be executed as a result of an sqlite3_step() # on another has been fixed. # forcedelete test.db test.db2 | > > > > > > > > > > > > > > > > > > > > > > > > | 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | set ::invoked_mycollate_db1 0 db2 eval { INSERT INTO t1 VALUES('two'); } db2 close set ::invoked_mycollate_db1 } {0} forcedelete test.db test.db2 sqlite3 db1 test.db sqlite3 db2 test.db db1 collate mycollate mycollate_db1 db2 collate mycollate mycollate_db2 do_test 2.13 { set ::invoked_mycollate_db1 0 db1 eval { CREATE TABLE t1(a, CHECK (a COLLATE mycollate IN ('one', 'two', 'three'))); INSERT INTO t1 VALUES('one'); } db1 close set ::invoked_mycollate_db1 } {1} do_test 2.14 { set ::invoked_mycollate_db1 0 db2 eval { INSERT INTO t1 VALUES('two'); } db2 close set ::invoked_mycollate_db1 } {0} #------------------------------------------------------------------------- # This test verifies that a bug causing a busy-handler belonging to one # shared-cache connection to be executed as a result of an sqlite3_step() # on another has been fixed. # forcedelete test.db test.db2 |
︙ | ︙ | |||
200 201 202 203 204 205 206 | } {} db1 close db2 close sqlite3_enable_shared_cache $::enable_shared_cache finish_test | < | 224 225 226 227 228 229 230 | } {} db1 close db2 close sqlite3_enable_shared_cache $::enable_shared_cache finish_test |
Changes to test/shared_err.test.
︙ | ︙ | |||
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | } db2 for {set i 0} {$i < 2} {incr i} { set a [string repeat $i 10] set b [string repeat $i 2000] execsql {INSERT INTO t1 VALUES($a, $b)} db2 } execsql {COMMIT} db2 set ::DB2 [sqlite3_connection_pointer db2] set ::STMT [sqlite3_prepare $::DB2 "SELECT a FROM t1 ORDER BY a" -1 DUMMY] sqlite3_step $::STMT ;# Cursor points at 0000000000 sqlite3_step $::STMT ;# Cursor points at 1111111111 } -tclbody { execsql { BEGIN; INSERT INTO t1 VALUES(6, NULL); | > > | < | 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | } db2 for {set i 0} {$i < 2} {incr i} { set a [string repeat $i 10] set b [string repeat $i 2000] execsql {INSERT INTO t1 VALUES($a, $b)} db2 } execsql {COMMIT} db2 execsql BEGIN execsql ROLLBACK set ::DB2 [sqlite3_connection_pointer db2] set ::STMT [sqlite3_prepare $::DB2 "SELECT a FROM t1 ORDER BY a" -1 DUMMY] sqlite3_step $::STMT ;# Cursor points at 0000000000 sqlite3_step $::STMT ;# Cursor points at 1111111111 } -tclbody { execsql { BEGIN; INSERT INTO t1 VALUES(6, NULL); ROLLBACK} } -cleanup { # UPDATE: As of [5668], if the rollback fails SQLITE_CORRUPT is returned. # So these tests have been updated to expect SQLITE_CORRUPT and its # associated English language error message. # do_test shared_malloc-8.$::n.cleanup.1 { set res [catchsql {SELECT a FROM t1} db2] |
︙ | ︙ |
Changes to test/shell1.test.
︙ | ︙ | |||
715 716 717 718 719 720 721 | } {0 {this is a test}} # Test the output of the ".dump" command # do_test shell1-4.1 { db eval { CREATE TABLE t1(x); | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 | } {0 {this is a test}} # Test the output of the ".dump" command # do_test shell1-4.1 { db eval { CREATE TABLE t1(x); INSERT INTO t1 VALUES(null), (''), (1), (2.25), ('hello'), (x'807f'); } catchcmd test.db {.dump} } {0 {PRAGMA foreign_keys=OFF; BEGIN TRANSACTION; CREATE TABLE t1(x); INSERT INTO "t1" VALUES(NULL); INSERT INTO "t1" VALUES(''); INSERT INTO "t1" VALUES(1); INSERT INTO "t1" VALUES(2.25); INSERT INTO "t1" VALUES('hello'); INSERT INTO "t1" VALUES(X'807F'); COMMIT;}} # Test the output of ".mode insert" # do_test shell1-4.2 { catchcmd test.db ".mode insert t1\nselect * from t1;" } {0 {INSERT INTO t1 VALUES(NULL); INSERT INTO t1 VALUES(''); INSERT INTO t1 VALUES(1); INSERT INTO t1 VALUES(2.25); INSERT INTO t1 VALUES('hello'); INSERT INTO t1 VALUES(X'807f');}} # Test the output of ".mode tcl" # do_test shell1-4.3 { catchcmd test.db ".mode tcl\nselect * from t1;" } {0 {"" "" "1" "2.25" "hello" "\200\177"}} # Test the output of ".mode tcl" with multiple columns # do_test shell1-4.4 { db eval { CREATE TABLE t2(x,y); INSERT INTO t2 VALUES(null, ''), (1, 2.25), ('hello', x'807f'); } catchcmd test.db ".mode tcl\nselect * from t2;" } {0 {"" "" "1" "2.25" "hello" "\200\177"}} # Test the output of ".mode tcl" with ".nullvalue" # do_test shell1-4.5 { catchcmd test.db ".mode tcl\n.nullvalue NULL\nselect * from t2;" } {0 {"NULL" "" "1" "2.25" "hello" "\200\177"}} # Test the output of ".mode tcl" with Tcl reserved characters # do_test shell1-4.6 { db eval { CREATE TABLE tcl1(x); INSERT INTO tcl1 VALUES('"'), ('['), (']'), ('\{'), ('\}'), (';'), ('$'); } foreach {x y} [catchcmd test.db ".mode tcl\nselect * from tcl1;"] break list $x $y [llength $y] } {0 {"\"" "[" "]" "\\{" "\\}" ";" "$"} 7} finish_test |
Changes to test/subquery2.test.
︙ | ︙ | |||
11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # This file implements regression tests for SQLite library. The # focus of this script is testing correlated subqueries # # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable !subquery { finish_test return } do_test subquery2-1.1 { | > | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # This file implements regression tests for SQLite library. The # focus of this script is testing correlated subqueries # # set testdir [file dirname $argv0] source $testdir/tester.tcl set ::testprefix subquery2 ifcapable !subquery { finish_test return } do_test subquery2-1.1 { |
︙ | ︙ | |||
77 78 79 80 81 82 83 84 85 86 | do_test subquery2-1.22 { execsql { SELECT a FROM t1 WHERE b=(SELECT x+1 FROM (SELECT DISTINCT f/d AS x FROM t2 JOIN t3 ON d*a=f)) } } {1 3 5 7} finish_test | > > > > > > > > > > > > > > > > > > > > | 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | do_test subquery2-1.22 { execsql { SELECT a FROM t1 WHERE b=(SELECT x+1 FROM (SELECT DISTINCT f/d AS x FROM t2 JOIN t3 ON d*a=f)) } } {1 3 5 7} #------------------------------------------------------------------------- # Test that ticket d6b36be38a has been fixed. do_execsql_test 2.1 { CREATE TABLE t4(a, b); CREATE TABLE t5(a, b); INSERT INTO t5 VALUES(3, 5); INSERT INTO t4 VALUES(1, 1); INSERT INTO t4 VALUES(2, 3); INSERT INTO t4 VALUES(3, 6); INSERT INTO t4 VALUES(4, 10); INSERT INTO t4 VALUES(5, 15); } do_execsql_test 2.2 { SELECT * FROM (SELECT * FROM t4 ORDER BY a LIMIT -1 OFFSET 1) LIMIT (SELECT a FROM t5) } {2 3 3 6 4 10} finish_test |
Changes to test/thread001.test.
︙ | ︙ | |||
83 84 85 86 87 88 89 | } for {set i 0} {$i < 100} {incr i} { # Test that the invariant is true. do_test t1 { execsql { SELECT | | | 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | } for {set i 0} {$i < 100} {incr i} { # Test that the invariant is true. do_test t1 { execsql { SELECT (SELECT md5sum(a, b) FROM ab WHERE +a < (SELECT max(a) FROM ab)) == (SELECT b FROM ab WHERE a = (SELECT max(a) FROM ab)) } } {1} # Add another row to the database. execsql { INSERT INTO ab SELECT NULL, md5sum(a, b) FROM ab } } |
︙ | ︙ | |||
127 128 129 130 131 132 133 | # do_test thread001.$tn.5 { execsql { SELECT count(*) FROM ab; } } [expr {1 + $::NTHREAD*100}] do_test thread001.$tn.6 { execsql { SELECT | | | 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | # do_test thread001.$tn.5 { execsql { SELECT count(*) FROM ab; } } [expr {1 + $::NTHREAD*100}] do_test thread001.$tn.6 { execsql { SELECT (SELECT md5sum(a, b) FROM ab WHERE +a < (SELECT max(a) FROM ab)) == (SELECT b FROM ab WHERE a = (SELECT max(a) FROM ab)) } } {1} do_test thread001.$tn.7 { execsql { PRAGMA integrity_check } } {ok} } sqlite3_enable_shared_cache $::enable_shared_cache set sqlite_open_file_count 0 finish_test |
Changes to test/tkt2822.test.
︙ | ︙ | |||
269 270 271 272 273 274 275 | CREATE TABLE t7(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14, a15,a16,a17,a18,a19,a20,a21,a22,a23,a24,a25); } catchsql { SELECT * FROM t7 ORDER BY 0; } } {1 {1st ORDER BY term out of range - should be between 1 and 25}} | | > > > > > > > > > > | 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | CREATE TABLE t7(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14, a15,a16,a17,a18,a19,a20,a21,a22,a23,a24,a25); } catchsql { SELECT * FROM t7 ORDER BY 0; } } {1 {1st ORDER BY term out of range - should be between 1 and 25}} do_test tkt2822-7.2.1 { catchsql { SELECT * FROM t7 ORDER BY 1, 0; } } {1 {2nd ORDER BY term out of range - should be between 1 and 25}} do_test tkt2822-7.2.2 { catchsql { SELECT * FROM t7 ORDER BY 1, 26; } } {1 {2nd ORDER BY term out of range - should be between 1 and 25}} do_test tkt2822-7.2.3 { catchsql { SELECT * FROM t7 ORDER BY 1, 65536; } } {1 {2nd ORDER BY term out of range - should be between 1 and 25}} do_test tkt2822-7.3 { catchsql { SELECT * FROM t7 ORDER BY 1, 2, 0; } } {1 {3rd ORDER BY term out of range - should be between 1 and 25}} |
︙ | ︙ |
Changes to test/triggerC.test.
︙ | ︙ | |||
945 946 947 948 949 950 951 | UPDATE t12 SET a=new.a+1, b=new.b+1; END; } {} do_catchsql_test triggerC-13.2 { UPDATE t12 SET a=a+1, b=b+1; } {1 {too many levels of trigger recursion}} | > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 | UPDATE t12 SET a=new.a+1, b=new.b+1; END; } {} do_catchsql_test triggerC-13.2 { UPDATE t12 SET a=a+1, b=b+1; } {1 {too many levels of trigger recursion}} #------------------------------------------------------------------------- # The following tests seek to verify that constant values (i.e. literals) # are not factored out of loops within trigger programs. SQLite does # not factor constants out of loops within trigger programs as it may only # do so in code generated before the first table or index is opened. And # by the time a trigger program is coded, at least one table or index has # always been opened. # # At one point, due to a bug allowing constant factoring within triggers, # the following SQL would produce the wrong result. # set SQL { CREATE TABLE t1(a, b, c); CREATE INDEX i1 ON t1(a, c); CREATE INDEX i2 ON t1(b, c); INSERT INTO t1 VALUES(1, 2, 3); CREATE TABLE t2(e, f); CREATE INDEX i3 ON t2(e); INSERT INTO t2 VALUES(1234567, 3); CREATE TABLE empty(x); CREATE TABLE not_empty(x); INSERT INTO not_empty VALUES(2); CREATE TABLE t4(x); CREATE TABLE t5(g, h, i); CREATE TRIGGER trig BEFORE INSERT ON t4 BEGIN INSERT INTO t5 SELECT * FROM t1 WHERE (a IN (SELECT x FROM empty) OR b IN (SELECT x FROM not_empty)) AND c IN (SELECT f FROM t2 WHERE e=1234567); END; INSERT INTO t4 VALUES(0); SELECT * FROM t5; } reset_db do_execsql_test triggerC-14.1 $SQL {1 2 3} reset_db optimization_control db factor-constants 0 do_execsql_test triggerC-14.2 $SQL {1 2 3} finish_test |
Changes to test/vtab1.test.
︙ | ︙ | |||
1288 1289 1290 1291 1292 1293 1294 1295 1296 | } SQLITE_OK do_test 19.2 { register_echo_module [sqlite3_connection_pointer db2] } SQLITE_MISUSE do_test 19.3 { db2 close } {} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 | } SQLITE_OK do_test 19.2 { register_echo_module [sqlite3_connection_pointer db2] } SQLITE_MISUSE do_test 19.3 { db2 close } {} #------------------------------------------------------------------------- # Test that the bug fixed by [b0c1ba655d69] really is fixed. # do_execsql_test 20.1 { CREATE TABLE t7 (a, b); CREATE TABLE t8 (c, d); CREATE INDEX i2 ON t7(a); CREATE INDEX i3 ON t7(b); CREATE INDEX i4 ON t8(c); CREATE INDEX i5 ON t8(d); CREATE VIRTUAL TABLE t7v USING echo(t7); CREATE VIRTUAL TABLE t8v USING echo(t8); } do_test 20.2 { for {set i 0} {$i < 1000} {incr i} { db eval {INSERT INTO t7 VALUES($i, $i)} db eval {INSERT INTO t8 VALUES($i, $i)} } } {} do_execsql_test 20.3 { SELECT a, b FROM ( SELECT a, b FROM t7 WHERE a=11 OR b=12 UNION ALL SELECT c, d FROM t8 WHERE c=5 OR d=6 ) ORDER BY 1, 2; } {5 5 6 6 11 11 12 12} do_execsql_test 20.4 { SELECT a, b FROM ( SELECT a, b FROM t7v WHERE a=11 OR b=12 UNION ALL SELECT c, d FROM t8v WHERE c=5 OR d=6 ) ORDER BY 1, 2; } {5 5 6 6 11 11 12 12} finish_test |
Changes to test/wal9.test.
︙ | ︙ | |||
56 57 58 59 60 61 62 63 | INSERT INTO t SELECT randomblob(100) FROM t; INSERT INTO t SELECT randomblob(100) FROM t; COMMIT; } {} # Check file sizes are as expected. The real requirement here is that # the *shm file is now more than one chunk (>32KiB). do_test 1.3 { file size test.db } {1024} | > > > | | | | > > | 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | INSERT INTO t SELECT randomblob(100) FROM t; INSERT INTO t SELECT randomblob(100) FROM t; COMMIT; } {} # Check file sizes are as expected. The real requirement here is that # the *shm file is now more than one chunk (>32KiB). # # The sizes of various files are slightly different in normal and # auto-vacuum mode. do_test 1.3 { file size test.db } {1024} do_test 1.4 { expr {[file size test.db-wal]>(1500*1024)} } {1} do_test 1.5 { expr {[file size test.db-shm]>32768} } {1} do_test 1.6 { foreach {a b c} [db eval {PRAGMA wal_checkpoint}] break list [expr {$a==0}] [expr {$b>14500}] [expr {$c>14500}] [expr {$b==$c}] } {1 1 1 1} # At this point connection [db2] has mapped the first 32KB of the *shm file # only. Because the entire WAL file has been checkpointed, it is not # necessary to map any more of the *-shm file to read or write the database # (since all data will be read directly from the db file). # # However, at one point if a transaction that had not yet written to the |
︙ | ︙ |
Changes to test/where.test.
︙ | ︙ | |||
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 | } {1 one 4 four nosort} # Ticket #2211. # # When optimizing out ORDER BY clauses, make sure that trailing terms # of the ORDER BY clause do not reference other tables in a join. # do_test where-14.1 { execsql { CREATE TABLE t8(a INTEGER PRIMARY KEY, b TEXT UNIQUE); INSERT INTO t8 VALUES(1,'one'); INSERT INTO t8 VALUES(4,'four'); } cksort { | > | 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 | } {1 one 4 four nosort} # Ticket #2211. # # When optimizing out ORDER BY clauses, make sure that trailing terms # of the ORDER BY clause do not reference other tables in a join. # if {[permutation] != "no_optimization"} { do_test where-14.1 { execsql { CREATE TABLE t8(a INTEGER PRIMARY KEY, b TEXT UNIQUE); INSERT INTO t8 VALUES(1,'one'); INSERT INTO t8 VALUES(4,'four'); } cksort { |
︙ | ︙ | |||
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 | } } {4/1 4/4 1/1 1/4 sort} do_test where-14.12 { cksort { SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.b, y.a||x.b DESC } } {4/4 4/1 1/4 1/1 sort} # Ticket #2445. # # There was a crash that could occur when a where clause contains an # alias for an expression in the result set, and that expression retrieves # a column of the second or subsequent table in a join. # | > | 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 | } } {4/1 4/4 1/1 1/4 sort} do_test where-14.12 { cksort { SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.b, y.a||x.b DESC } } {4/4 4/1 1/4 1/1 sort} } ;# {permutation != "no_optimization"} # Ticket #2445. # # There was a crash that could occur when a where clause contains an # alias for an expression in the result set, and that expression retrieves # a column of the second or subsequent table in a join. # |
︙ | ︙ |