SQLite

Check-in [4bb94c7c4c]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:In Lemon, add the ability for the left-most RHS label to be the same as the LHS label, causing the LHS values to be written directly into the stack.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | parser-performance
Files: files | file ages | folders
SHA1: 4bb94c7c4c3cb3ccad72c2451d88684130dde845
User & Date: drh 2016-02-17 01:18:33.698
Context
2016-02-17
01:46
Further improvements to the Lemon-generated code for yy_reduce(). (check-in: ef95a7d649 user: drh tags: parser-performance)
01:18
In Lemon, add the ability for the left-most RHS label to be the same as the LHS label, causing the LHS values to be written directly into the stack. (check-in: 4bb94c7c4c user: drh tags: parser-performance)
2016-02-16
21:19
Experimental changes to Lemon for improved parser performance. (check-in: a65d583ce9 user: drh tags: parser-performance)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/parse.y.
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
columnlist ::= column.

// A "column" is a complete description of a single column in a
// CREATE TABLE statement.  This includes the column name, its
// datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
// NOT NULL and so forth.
//
column(A) ::= columnid(X) type carglist. {
  A.z = X.z;
  A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
}
columnid(A) ::= nm(X). {
  sqlite3AddColumn(pParse,&X);
  A = X;
  pParse->constraintName.n = 0;
}


// An IDENTIFIER can be a generic identifier, or one of several
// keywords.  Any non-standard keyword can also be an identifier.
//







|
<
|

|
|
<







196
197
198
199
200
201
202
203

204
205
206
207

208
209
210
211
212
213
214
columnlist ::= column.

// A "column" is a complete description of a single column in a
// CREATE TABLE statement.  This includes the column name, its
// datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
// NOT NULL and so forth.
//
column(A) ::= columnid(A) type carglist. {

  A.n = (int)(pParse->sLastToken.z-A.z) + pParse->sLastToken.n;
}
columnid(A) ::= nm(A). {
  sqlite3AddColumn(pParse,&A);

  pParse->constraintName.n = 0;
}


// An IDENTIFIER can be a generic identifier, or one of several
// keywords.  Any non-standard keyword can also be an identifier.
//
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// And "ids" is an identifer-or-string.
//
%token_class ids  ID|STRING.

// The name of a column or table can be any of the following:
//
%type nm {Token}
nm(A) ::= id(X).         {A = X;}
nm(A) ::= STRING(X).     {A = X;}
nm(A) ::= JOIN_KW(X).    {A = X;}

// A typetoken is really one or more tokens that form a type name such
// as can be found after the column name in a CREATE TABLE statement.
// Multiple tokens are concatenated to form the value of the typetoken.
//
%type typetoken {Token}
type ::= .
type ::= typetoken(X).                   {sqlite3AddColumnType(pParse,&X);}
typetoken(A) ::= typename(X).   {A = X;}
typetoken(A) ::= typename(X) LP signed RP(Y). {
  A.z = X.z;
  A.n = (int)(&Y.z[Y.n] - X.z);
}
typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
  A.z = X.z;
  A.n = (int)(&Y.z[Y.n] - X.z);
}
%type typename {Token}
typename(A) ::= ids(X).             {A = X;}
typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);}
signed ::= plus_num.
signed ::= minus_num.

// "carglist" is a list of additional constraints that come after the
// column name and column type in a CREATE TABLE statement.
//
carglist ::= carglist ccons.







|
|
|








|
|
<
|

|
<
|


|
|







258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

278
279
280

281
282
283
284
285
286
287
288
289
290
291
292
// And "ids" is an identifer-or-string.
//
%token_class ids  ID|STRING.

// The name of a column or table can be any of the following:
//
%type nm {Token}
nm(A) ::= id(A).
nm(A) ::= STRING(A).
nm(A) ::= JOIN_KW(A).

// A typetoken is really one or more tokens that form a type name such
// as can be found after the column name in a CREATE TABLE statement.
// Multiple tokens are concatenated to form the value of the typetoken.
//
%type typetoken {Token}
type ::= .
type ::= typetoken(X).                   {sqlite3AddColumnType(pParse,&X);}
typetoken(A) ::= typename(A).
typetoken(A) ::= typename(A) LP signed RP(Y). {

  A.n = (int)(&Y.z[Y.n] - A.z);
}
typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). {

  A.n = (int)(&Y.z[Y.n] - A.z);
}
%type typename {Token}
typename(A) ::= ids(A).
typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
signed ::= plus_num.
signed ::= minus_num.

// "carglist" is a list of additional constraints that come after the
// column name and column type in a CREATE TABLE statement.
//
carglist ::= carglist ccons.
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
// The next group of rules parses the arguments to a REFERENCES clause
// that determine if the referential integrity checking is deferred or
// or immediate and which determine what action to take if a ref-integ
// check fails.
//
%type refargs {int}
refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
%type refarg {struct {int value; int mask;}}
refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
%type refact {int}
refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
%type defer_subclause {int}
defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
%type init_deferred_pred_opt {int}
init_deferred_pred_opt(A) ::= .                       {A = 0;}
init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}

conslist_opt(A) ::= .                         {A.n = 0; A.z = 0;}
conslist_opt(A) ::= COMMA(X) conslist.        {A = X;}
conslist ::= conslist tconscomma tcons.
conslist ::= tcons.
tconscomma ::= COMMA.            {pParse->constraintName.n = 0;}
tconscomma ::= .
tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
                                 {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
                                 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
tcons ::= CHECK LP expr(E) RP onconf.
                                 {sqlite3AddCheckConstraint(pParse,E.pExpr);}
tcons ::= FOREIGN KEY LP eidlist(FA) RP
          REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
    sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
    sqlite3DeferForeignKey(pParse, D);
}
%type defer_subclause_opt {int}
defer_subclause_opt(A) ::= .                    {A = 0;}
defer_subclause_opt(A) ::= defer_subclause(X).  {A = X;}

// The following is a non-standard extension that allows us to declare the
// default behavior when there is a constraint conflict.
//
%type onconf {int}
%type orconf {int}
%type resolvetype {int}
onconf(A) ::= .                              {A = OE_Default;}
onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
orconf(A) ::= .                              {A = OE_Default;}
orconf(A) ::= OR resolvetype(X).             {A = X;}
resolvetype(A) ::= raisetype(X).             {A = X;}
resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}

////////////////////////// The DROP TABLE /////////////////////////////////////
//
cmd ::= DROP TABLE ifexists(E) fullname(X). {
  sqlite3DropTable(pParse, X, 0, E);







|




















|


















|











|







330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
// The next group of rules parses the arguments to a REFERENCES clause
// that determine if the referential integrity checking is deferred or
// or immediate and which determine what action to take if a ref-integ
// check fails.
//
%type refargs {int}
refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; }
%type refarg {struct {int value; int mask;}}
refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
%type refact {int}
refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
%type defer_subclause {int}
defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
%type init_deferred_pred_opt {int}
init_deferred_pred_opt(A) ::= .                       {A = 0;}
init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}

conslist_opt(A) ::= .                         {A.n = 0; A.z = 0;}
conslist_opt(A) ::= COMMA(A) conslist.
conslist ::= conslist tconscomma tcons.
conslist ::= tcons.
tconscomma ::= COMMA.            {pParse->constraintName.n = 0;}
tconscomma ::= .
tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
                                 {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
                                 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
tcons ::= CHECK LP expr(E) RP onconf.
                                 {sqlite3AddCheckConstraint(pParse,E.pExpr);}
tcons ::= FOREIGN KEY LP eidlist(FA) RP
          REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
    sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
    sqlite3DeferForeignKey(pParse, D);
}
%type defer_subclause_opt {int}
defer_subclause_opt(A) ::= .                    {A = 0;}
defer_subclause_opt(A) ::= defer_subclause(A).

// The following is a non-standard extension that allows us to declare the
// default behavior when there is a constraint conflict.
//
%type onconf {int}
%type orconf {int}
%type resolvetype {int}
onconf(A) ::= .                              {A = OE_Default;}
onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
orconf(A) ::= .                              {A = OE_Default;}
orconf(A) ::= OR resolvetype(X).             {A = X;}
resolvetype(A) ::= raisetype(A).
resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}

////////////////////////// The DROP TABLE /////////////////////////////////////
//
cmd ::= DROP TABLE ifexists(E) fullname(X). {
  sqlite3DropTable(pParse, X, 0, E);
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    parserDoubleLinkSelect(pParse, p);
  }else{
    sqlite3WithDelete(pParse->db, W);
  }
  A = p;
}

selectnowith(A) ::= oneselect(X).                      {A = X;}
%ifndef SQLITE_OMIT_COMPOUND_SELECT
selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z).  {
  Select *pRhs = Z;
  Select *pLhs = X;
  if( pRhs && pRhs->pPrior ){
    SrcList *pFrom;
    Token x;
    x.n = 0;
    parserDoubleLinkSelect(pParse, pRhs);
    pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
    pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);







|

|

|







457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    parserDoubleLinkSelect(pParse, p);
  }else{
    sqlite3WithDelete(pParse->db, W);
  }
  A = p;
}

selectnowith(A) ::= oneselect(A).
%ifndef SQLITE_OMIT_COMPOUND_SELECT
selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z).  {
  Select *pRhs = Z;
  Select *pLhs = A;
  if( pRhs && pRhs->pPrior ){
    SrcList *pFrom;
    Token x;
    x.n = 0;
    parserDoubleLinkSelect(pParse, pRhs);
    pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
    pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
      while( z[0]==' ' ) z++;
      for(i=0; sqlite3Isalnum(z[i]); i++){}
      sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
    }
  }
#endif /* SELECTRACE_ENABLED */
}
oneselect(A) ::= values(X).    {A = X;}

%type values {Select*}
%destructor values {sqlite3SelectDelete(pParse->db, $$);}
values(A) ::= VALUES LP nexprlist(X) RP. {
  A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);
}
values(A) ::= values(X) COMMA LP exprlist(Y) RP. {
  Select *pRight, *pLeft = X;
  pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0);
  if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
  if( pRight ){
    pRight->op = TK_ALL;
    pLeft = X;
    pRight->pPrior = pLeft;
    A = pRight;
  }else{
    A = pLeft;
  }
}








|






|
|




<







514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

534
535
536
537
538
539
540
      while( z[0]==' ' ) z++;
      for(i=0; sqlite3Isalnum(z[i]); i++){}
      sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
    }
  }
#endif /* SELECTRACE_ENABLED */
}
oneselect(A) ::= values(A).

%type values {Select*}
%destructor values {sqlite3SelectDelete(pParse->db, $$);}
values(A) ::= VALUES LP nexprlist(X) RP. {
  A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);
}
values(A) ::= values(A) COMMA LP exprlist(Y) RP. {
  Select *pRight, *pLeft = A;
  pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0);
  if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
  if( pRight ){
    pRight->op = TK_ALL;

    pRight->pPrior = pLeft;
    A = pRight;
  }else{
    A = pLeft;
  }
}

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
// "SELECT * FROM ..." is encoded as a special expression with an
// opcode of TK_ASTERISK.
//
%type selcollist {ExprList*}
%destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
%type sclp {ExprList*}
%destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
sclp(A) ::= selcollist(X) COMMA.             {A = X;}
sclp(A) ::= .                                {A = 0;}
selcollist(A) ::= sclp(P) expr(X) as(Y).     {
   A = sqlite3ExprListAppend(pParse, P, X.pExpr);
   if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
   sqlite3ExprListSetSpan(pParse,A,&X);
}
selcollist(A) ::= sclp(P) STAR. {
  Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
  A = sqlite3ExprListAppend(pParse, P, p);
}
selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). {
  Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0, &Y);
  Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
  Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
  A = sqlite3ExprListAppend(pParse,P, pDot);
}

// An option "AS <id>" phrase that can follow one of the expressions that
// define the result set, or one of the tables in the FROM clause.
//
%type as {Token}
as(X) ::= AS nm(Y).    {X = Y;}
as(X) ::= ids(Y).      {X = Y;}
as(X) ::= .            {X.n = 0;}


%type seltablist {SrcList*}
%destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
%type stl_prefix {SrcList*}
%destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}







|

|
|



|

|

|



|







|







551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
// "SELECT * FROM ..." is encoded as a special expression with an
// opcode of TK_ASTERISK.
//
%type selcollist {ExprList*}
%destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
%type sclp {ExprList*}
%destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
sclp(A) ::= selcollist(A) COMMA.
sclp(A) ::= .                                {A = 0;}
selcollist(A) ::= sclp(A) expr(X) as(Y).     {
   A = sqlite3ExprListAppend(pParse, A, X.pExpr);
   if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
   sqlite3ExprListSetSpan(pParse,A,&X);
}
selcollist(A) ::= sclp(A) STAR. {
  Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
  A = sqlite3ExprListAppend(pParse, A, p);
}
selcollist(A) ::= sclp(A) nm(X) DOT STAR(Y). {
  Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0, &Y);
  Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
  Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
  A = sqlite3ExprListAppend(pParse,A, pDot);
}

// An option "AS <id>" phrase that can follow one of the expressions that
// define the result set, or one of the tables in the FROM clause.
//
%type as {Token}
as(X) ::= AS nm(Y).    {X = Y;}
as(X) ::= ids(X).
as(X) ::= .            {X.n = 0;}


%type seltablist {SrcList*}
%destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
%type stl_prefix {SrcList*}
%destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
  A = X;
  sqlite3SrcListShiftJoinType(A);
}

// "seltablist" is a "Select Table List" - the content of the FROM clause
// in a SELECT statement.  "stl_prefix" is a prefix of this list.
//
stl_prefix(A) ::= seltablist(X) joinop(Y).    {
   A = X;
   if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
}
stl_prefix(A) ::= .                           {A = 0;}
seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I)
                  on_opt(N) using_opt(U). {
  A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
  sqlite3SrcListIndexedBy(pParse, A, &I);
}
seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) LP exprlist(E) RP as(Z)
                  on_opt(N) using_opt(U). {
  A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
  sqlite3SrcListFuncArgs(pParse, A, E);
}
%ifndef SQLITE_OMIT_SUBQUERY
  seltablist(A) ::= stl_prefix(X) LP select(S) RP
                    as(Z) on_opt(N) using_opt(U). {
    A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
  }
  seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
                    as(Z) on_opt(N) using_opt(U). {
    if( X==0 && Z.n==0 && N==0 && U==0 ){
      A = F;
    }else if( F->nSrc==1 ){
      A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U);
      if( A ){
        struct SrcList_item *pNew = &A->a[A->nSrc-1];
        struct SrcList_item *pOld = F->a;
        pNew->zName = pOld->zName;
        pNew->zDatabase = pOld->zDatabase;
        pNew->pSelect = pOld->pSelect;
        pOld->zName = pOld->zDatabase = 0;
        pOld->pSelect = 0;
      }
      sqlite3SrcListDelete(pParse->db, F);
    }else{
      Select *pSubquery;
      sqlite3SrcListShiftJoinType(F);
      pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0);
      A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
    }
  }
%endif  SQLITE_OMIT_SUBQUERY

%type dbnm {Token}
dbnm(A) ::= .          {A.z=0; A.n=0;}
dbnm(A) ::= DOT nm(X). {A = X;}







|
<



|

|


|

|



|

|

|

|


|














|







596
597
598
599
600
601
602
603

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
  A = X;
  sqlite3SrcListShiftJoinType(A);
}

// "seltablist" is a "Select Table List" - the content of the FROM clause
// in a SELECT statement.  "stl_prefix" is a prefix of this list.
//
stl_prefix(A) ::= seltablist(A) joinop(Y).    {

   if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
}
stl_prefix(A) ::= .                           {A = 0;}
seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I)
                  on_opt(N) using_opt(U). {
  A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
  sqlite3SrcListIndexedBy(pParse, A, &I);
}
seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z)
                  on_opt(N) using_opt(U). {
  A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
  sqlite3SrcListFuncArgs(pParse, A, E);
}
%ifndef SQLITE_OMIT_SUBQUERY
  seltablist(A) ::= stl_prefix(A) LP select(S) RP
                    as(Z) on_opt(N) using_opt(U). {
    A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U);
  }
  seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP
                    as(Z) on_opt(N) using_opt(U). {
    if( A==0 && Z.n==0 && N==0 && U==0 ){
      A = F;
    }else if( F->nSrc==1 ){
      A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U);
      if( A ){
        struct SrcList_item *pNew = &A->a[A->nSrc-1];
        struct SrcList_item *pOld = F->a;
        pNew->zName = pOld->zName;
        pNew->zDatabase = pOld->zDatabase;
        pNew->pSelect = pOld->pSelect;
        pOld->zName = pOld->zDatabase = 0;
        pOld->pSelect = 0;
      }
      sqlite3SrcListDelete(pParse->db, F);
    }else{
      Select *pSubquery;
      sqlite3SrcListShiftJoinType(F);
      pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0);
      A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U);
    }
  }
%endif  SQLITE_OMIT_SUBQUERY

%type dbnm {Token}
dbnm(A) ::= .          {A.z=0; A.n=0;}
dbnm(A) ::= DOT nm(X). {A = X;}
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
// sort order.
//
%type sortlist {ExprList*}
%destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}

orderby_opt(A) ::= .                          {A = 0;}
orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). {
  A = sqlite3ExprListAppend(pParse,X,Y.pExpr);
  sqlite3ExprListSetSortOrder(A,Z);
}
sortlist(A) ::= expr(Y) sortorder(Z). {
  A = sqlite3ExprListAppend(pParse,0,Y.pExpr);
  sqlite3ExprListSetSortOrder(A,Z);
}








|
|







693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// sort order.
//
%type sortlist {ExprList*}
%destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}

orderby_opt(A) ::= .                          {A = 0;}
orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). {
  A = sqlite3ExprListAppend(pParse,A,Y.pExpr);
  sqlite3ExprListSetSortOrder(A,Z);
}
sortlist(A) ::= expr(Y) sortorder(Z). {
  A = sqlite3ExprListAppend(pParse,0,Y.pExpr);
  sqlite3ExprListSetSortOrder(A,Z);
}

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
  sqlite3Update(pParse,X,Y,W,R);
}
%endif

%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}

setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, Z, Y.pExpr);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}








|
|







788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
  sqlite3Update(pParse,X,Y,W,R);
}
%endif

%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}

setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, A, Y.pExpr);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= nm(X) EQ expr(Y). {
  A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
  sqlite3ExprListSetName(pParse, A, &X, 1);
}

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
%type idlist_opt {IdList*}
%destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
%type idlist {IdList*}
%destructor idlist {sqlite3IdListDelete(pParse->db, $$);}

idlist_opt(A) ::= .                       {A = 0;}
idlist_opt(A) ::= LP idlist(X) RP.    {A = X;}
idlist(A) ::= idlist(X) COMMA nm(Y).
    {A = sqlite3IdListAppend(pParse->db,X,&Y);}
idlist(A) ::= nm(Y).
    {A = sqlite3IdListAppend(pParse->db,0,&Y);}

/////////////////////////// Expression Processing /////////////////////////////
//

%type expr {ExprSpan}







|
|







820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
%type idlist_opt {IdList*}
%destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
%type idlist {IdList*}
%destructor idlist {sqlite3IdListDelete(pParse->db, $$);}

idlist_opt(A) ::= .                       {A = 0;}
idlist_opt(A) ::= LP idlist(X) RP.    {A = X;}
idlist(A) ::= idlist(A) COMMA nm(Y).
    {A = sqlite3IdListAppend(pParse->db,A,&Y);}
idlist(A) ::= nm(Y).
    {A = sqlite3IdListAppend(pParse->db,0,&Y);}

/////////////////////////// Expression Processing /////////////////////////////
//

%type expr {ExprSpan}
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
  static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
    pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
    pOut->zStart = pValue->z;
    pOut->zEnd = &pValue->z[pValue->n];
  }
}

expr(A) ::= term(X).             {A = X;}
expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
term(A) ::= NULL(X).             {spanExpr(&A, pParse, @X, &X);}
expr(A) ::= id(X).               {spanExpr(&A, pParse, TK_ID, &X);}
expr(A) ::= JOIN_KW(X).          {spanExpr(&A, pParse, TK_ID, &X);}
expr(A) ::= nm(X) DOT nm(Y). {
  Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
  Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);







|







854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
  static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
    pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
    pOut->zStart = pValue->z;
    pOut->zEnd = &pValue->z[pValue->n];
  }
}

expr(A) ::= term(A).
expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
term(A) ::= NULL(X).             {spanExpr(&A, pParse, @X, &X);}
expr(A) ::= id(X).               {spanExpr(&A, pParse, TK_ID, &X);}
expr(A) ::= JOIN_KW(X).          {spanExpr(&A, pParse, TK_ID, &X);}
expr(A) ::= nm(X) DOT nm(Y). {
  Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
  Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
    }
  }else{
    spanExpr(&A, pParse, TK_VARIABLE, &X);
    sqlite3ExprAssignVarNumber(pParse, A.pExpr);
  }
  spanSet(&A, &X, &X);
}
expr(A) ::= expr(E) COLLATE ids(C). {
  A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C, 1);
  A.zStart = E.zStart;
  A.zEnd = &C.z[C.n];
}
%ifndef SQLITE_OMIT_CAST
expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
  A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
  spanSet(&A,&X,&Y);
}







|
|
<







893
894
895
896
897
898
899
900
901

902
903
904
905
906
907
908
    }
  }else{
    spanExpr(&A, pParse, TK_VARIABLE, &X);
    sqlite3ExprAssignVarNumber(pParse, A.pExpr);
  }
  spanSet(&A, &X, &X);
}
expr(A) ::= expr(A) COLLATE ids(C). {
  A.pExpr = sqlite3ExprAddCollateToken(pParse, A.pExpr, &C, 1);

  A.zEnd = &C.z[C.n];
}
%ifndef SQLITE_OMIT_CAST
expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
  A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
  spanSet(&A,&X,&Y);
}
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

956
957
958
959

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
}

%include {
  /* This routine constructs a binary expression node out of two ExprSpan
  ** objects and uses the result to populate a new ExprSpan object.
  */
  static void spanBinaryExpr(
    ExprSpan *pOut,     /* Write the result here */
    Parse *pParse,      /* The parsing context.  Errors accumulate here */
    int op,             /* The binary operation */
    ExprSpan *pLeft,    /* The left operand */
    ExprSpan *pRight    /* The right operand */
  ){
    pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
    pOut->zStart = pLeft->zStart;
    pOut->zEnd = pRight->zEnd;
  }

  /* If doNot is true, then add a TK_NOT Expr-node wrapper around the
  ** outside of *ppExpr.
  */
  static void exprNot(Parse *pParse, int doNot, Expr **ppExpr){

    if( doNot ) *ppExpr = sqlite3PExpr(pParse, TK_NOT, *ppExpr, 0, 0);
  }
}


expr(A) ::= expr(X) AND(OP) expr(Y).    {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) OR(OP) expr(Y).     {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y).
                                        {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) EQ|NE(OP) expr(Y).  {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
                                        {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).
                                        {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y).
                                        {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
%type likeop {struct LikeOp}
likeop(A) ::= LIKE_KW|MATCH(X).     {A.eOperator = X; A.bNot = 0;}
likeop(A) ::= NOT LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 1;}
expr(A) ::= expr(X) likeop(OP) expr(Y).  [LIKE_KW]  {
  ExprList *pList;
  pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
  A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
  exprNot(pParse, OP.bNot, &A.pExpr);
  A.zStart = X.zStart;
  A.zEnd = Y.zEnd;
  if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
}
expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
  ExprList *pList;
  pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
  A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
  exprNot(pParse, OP.bNot, &A.pExpr);
  A.zStart = X.zStart;
  A.zEnd = E.zEnd;
  if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
}

%include {
  /* Construct an expression node for a unary postfix operator
  */
  static void spanUnaryPostfix(
    ExprSpan *pOut,        /* Write the new expression node here */
    Parse *pParse,         /* Parsing context to record errors */
    int op,                /* The operator */
    ExprSpan *pOperand,    /* The operand */
    Token *pPostOp         /* The operand token for setting the span */
  ){
    pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
    pOut->zStart = pOperand->zStart;
    pOut->zEnd = &pPostOp->z[pPostOp->n];
  }                           
}

expr(A) ::= expr(X) ISNULL|NOTNULL(E).   {spanUnaryPostfix(&A,pParse,@E,&X,&E);}
expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}

%include {
  /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
  ** unary TK_ISNULL or TK_NOTNULL expression. */
  static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
    sqlite3 *db = pParse->db;
    if( pA && pY && pY->op==TK_NULL ){
      pA->op = (u8)op;
      sqlite3ExprDelete(db, pA->pRight);
      pA->pRight = 0;
    }
  }
}

//    expr1 IS expr2
//    expr1 IS NOT expr2
//
// If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
// is any other expression, code as TK_IS or TK_ISNOT.
// 
expr(A) ::= expr(X) IS expr(Y).     {
  spanBinaryExpr(&A,pParse,TK_IS,&X,&Y);
  binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
}
expr(A) ::= expr(X) IS NOT expr(Y). {
  spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y);
  binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
}

%include {
  /* Construct an expression node for a unary prefix operator
  */
  static void spanUnaryPrefix(







<


|


|
<
|





|
>
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|



|


|

|
<



|


|


|
<








<


|


|
<
|



|
|




















|
|


|
|







927
928
929
930
931
932
933

934
935
936
937
938
939

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

974
975
976
977
978
979
980
981
982
983

984
985
986
987
988
989
990
991

992
993
994
995
996
997

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
}

%include {
  /* This routine constructs a binary expression node out of two ExprSpan
  ** objects and uses the result to populate a new ExprSpan object.
  */
  static void spanBinaryExpr(

    Parse *pParse,      /* The parsing context.  Errors accumulate here */
    int op,             /* The binary operation */
    ExprSpan *pLeft,    /* The left operand, and output */
    ExprSpan *pRight    /* The right operand */
  ){
    pLeft->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);

    pLeft->zEnd = pRight->zEnd;
  }

  /* If doNot is true, then add a TK_NOT Expr-node wrapper around the
  ** outside of *ppExpr.
  */
  static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){
    if( doNot ){
      pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0, 0);
    }
  }
}

expr(A) ::= expr(A) AND(OP) expr(Y).    {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) OR(OP) expr(Y).     {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
                                        {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
                                        {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y).
                                        {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y).
                                        {spanBinaryExpr(pParse,@OP,&A,&Y);}
expr(A) ::= expr(A) CONCAT(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);}
%type likeop {struct LikeOp}
likeop(A) ::= LIKE_KW|MATCH(X).     {A.eOperator = X; A.bNot = 0;}
likeop(A) ::= NOT LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 1;}
expr(A) ::= expr(A) likeop(OP) expr(Y).  [LIKE_KW]  {
  ExprList *pList;
  pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, A.pExpr);
  A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
  exprNot(pParse, OP.bNot, &A);

  A.zEnd = Y.zEnd;
  if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
}
expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
  ExprList *pList;
  pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, A.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
  A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
  exprNot(pParse, OP.bNot, &A);

  A.zEnd = E.zEnd;
  if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
}

%include {
  /* Construct an expression node for a unary postfix operator
  */
  static void spanUnaryPostfix(

    Parse *pParse,         /* Parsing context to record errors */
    int op,                /* The operator */
    ExprSpan *pOperand,    /* The operand, and output */
    Token *pPostOp         /* The operand token for setting the span */
  ){
    pOperand->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);

    pOperand->zEnd = &pPostOp->z[pPostOp->n];
  }                           
}

expr(A) ::= expr(A) ISNULL|NOTNULL(E).   {spanUnaryPostfix(pParse,@E,&A,&E);}
expr(A) ::= expr(A) NOT NULL(E). {spanUnaryPostfix(pParse,TK_NOTNULL,&A,&E);}

%include {
  /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
  ** unary TK_ISNULL or TK_NOTNULL expression. */
  static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
    sqlite3 *db = pParse->db;
    if( pA && pY && pY->op==TK_NULL ){
      pA->op = (u8)op;
      sqlite3ExprDelete(db, pA->pRight);
      pA->pRight = 0;
    }
  }
}

//    expr1 IS expr2
//    expr1 IS NOT expr2
//
// If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
// is any other expression, code as TK_IS or TK_ISNOT.
// 
expr(A) ::= expr(A) IS expr(Y).     {
  spanBinaryExpr(pParse,TK_IS,&A,&Y);
  binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
}
expr(A) ::= expr(A) IS NOT expr(Y). {
  spanBinaryExpr(pParse,TK_ISNOT,&A,&Y);
  binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
}

%include {
  /* Construct an expression node for a unary prefix operator
  */
  static void spanUnaryPrefix(
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098

1099
1100
1101
1102
1103
1104
1105
1106
1107
                               {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
expr(A) ::= PLUS(B) expr(X). [BITNOT]
                               {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}

%type between_op {int}
between_op(A) ::= BETWEEN.     {A = 0;}
between_op(A) ::= NOT BETWEEN. {A = 1;}
expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
  ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
  A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0);
  if( A.pExpr ){
    A.pExpr->x.pList = pList;
  }else{
    sqlite3ExprListDelete(pParse->db, pList);
  } 
  exprNot(pParse, N, &A.pExpr);
  A.zStart = W.zStart;
  A.zEnd = Y.zEnd;
}
%ifndef SQLITE_OMIT_SUBQUERY
  %type in_op {int}
  in_op(A) ::= IN.      {A = 0;}
  in_op(A) ::= NOT IN.  {A = 1;}
  expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
    if( Y==0 ){
      /* Expressions of the form
      **
      **      expr1 IN ()
      **      expr1 NOT IN ()
      **
      ** simplify to constants 0 (false) and 1 (true), respectively,
      ** regardless of the value of expr1.
      */

      A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);
      sqlite3ExprDelete(pParse->db, X.pExpr);
    }else if( Y->nExpr==1 ){
      /* Expressions of the form:
      **
      **      expr1 IN (?1)
      **      expr1 NOT IN (?2)
      **
      ** with exactly one value on the RHS can be simplified to something







|


|





|
<






|









>

<







1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

1089
1090
1091
1092
1093
1094
1095
                               {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
expr(A) ::= PLUS(B) expr(X). [BITNOT]
                               {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}

%type between_op {int}
between_op(A) ::= BETWEEN.     {A = 0;}
between_op(A) ::= NOT BETWEEN. {A = 1;}
expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
  ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
  A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, A.pExpr, 0, 0);
  if( A.pExpr ){
    A.pExpr->x.pList = pList;
  }else{
    sqlite3ExprListDelete(pParse->db, pList);
  } 
  exprNot(pParse, N, &A);

  A.zEnd = Y.zEnd;
}
%ifndef SQLITE_OMIT_SUBQUERY
  %type in_op {int}
  in_op(A) ::= IN.      {A = 0;}
  in_op(A) ::= NOT IN.  {A = 1;}
  expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP(E). [IN] {
    if( Y==0 ){
      /* Expressions of the form
      **
      **      expr1 IN ()
      **      expr1 NOT IN ()
      **
      ** simplify to constants 0 (false) and 1 (true), respectively,
      ** regardless of the value of expr1.
      */
      sqlite3ExprDelete(pParse->db, A.pExpr);
      A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);

    }else if( Y->nExpr==1 ){
      /* Expressions of the form:
      **
      **      expr1 IN (?1)
      **      expr1 NOT IN (?2)
      **
      ** with exactly one value on the RHS can be simplified to something
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
      sqlite3ExprListDelete(pParse->db, Y);
      /* pRHS cannot be NULL because a malloc error would have been detected
      ** before now and control would have never reached this point */
      if( ALWAYS(pRHS) ){
        pRHS->flags &= ~EP_Collate;
        pRHS->flags |= EP_Generic;
      }
      A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0);
    }else{
      A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
      if( A.pExpr ){
        A.pExpr->x.pList = Y;
        sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
      }else{
        sqlite3ExprListDelete(pParse->db, Y);
      }
      exprNot(pParse, N, &A.pExpr);
    }
    A.zStart = X.zStart;
    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= LP(B) select(X) RP(E). {
    A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
    if( A.pExpr ){
      A.pExpr->x.pSelect = X;
      ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, X);
    }
    A.zStart = B.z;
    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E).  [IN] {
    A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
    if( A.pExpr ){
      A.pExpr->x.pSelect = Y;
      ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, Y);
    }
    exprNot(pParse, N, &A.pExpr);
    A.zStart = X.zStart;
    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
    SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
    A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
    if( A.pExpr ){
      A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
      ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
    }else{
      sqlite3SrcListDelete(pParse->db, pSrc);
    }
    exprNot(pParse, N, &A.pExpr);
    A.zStart = X.zStart;
    A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
  }
  expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
    Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
    if( p ){
      p->x.pSelect = Y;
      ExprSetProperty(p, EP_xIsSelect|EP_Subquery);







|

|






|

<














|
|







|
<


|

|







|
<







1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

1163
1164
1165
1166
1167
1168
1169
      sqlite3ExprListDelete(pParse->db, Y);
      /* pRHS cannot be NULL because a malloc error would have been detected
      ** before now and control would have never reached this point */
      if( ALWAYS(pRHS) ){
        pRHS->flags &= ~EP_Collate;
        pRHS->flags |= EP_Generic;
      }
      A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A.pExpr, pRHS, 0);
    }else{
      A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0);
      if( A.pExpr ){
        A.pExpr->x.pList = Y;
        sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
      }else{
        sqlite3ExprListDelete(pParse->db, Y);
      }
      exprNot(pParse, N, &A);
    }

    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= LP(B) select(X) RP(E). {
    A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
    if( A.pExpr ){
      A.pExpr->x.pSelect = X;
      ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, X);
    }
    A.zStart = B.z;
    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= expr(A) in_op(N) LP select(Y) RP(E).  [IN] {
    A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0);
    if( A.pExpr ){
      A.pExpr->x.pSelect = Y;
      ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, Y);
    }
    exprNot(pParse, N, &A);

    A.zEnd = &E.z[E.n];
  }
  expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z). [IN] {
    SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
    A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0, 0);
    if( A.pExpr ){
      A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
      ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
    }else{
      sqlite3SrcListDelete(pParse->db, pSrc);
    }
    exprNot(pParse, N, &A);

    A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
  }
  expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
    Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
    if( p ){
      p->x.pSelect = Y;
      ExprSetProperty(p, EP_xIsSelect|EP_Subquery);
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
    sqlite3ExprDelete(pParse->db, Z);
  }
  A.zStart = C.z;
  A.zEnd = &E.z[E.n];
}
%type case_exprlist {ExprList*}
%destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
  A = sqlite3ExprListAppend(pParse,X, Y.pExpr);
  A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
}
case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
  A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
  A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
}
%type case_else {Expr*}
%destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
case_else(A) ::=  .                     {A = 0;} 
%type case_operand {Expr*}
%destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
case_operand(A) ::= expr(X).            {A = X.pExpr;} 
case_operand(A) ::= .                   {A = 0;} 

%type exprlist {ExprList*}
%destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
%type nexprlist {ExprList*}
%destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}

exprlist(A) ::= nexprlist(X).                {A = X;}
exprlist(A) ::= .                            {A = 0;}
nexprlist(A) ::= nexprlist(X) COMMA expr(Y).
    {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
nexprlist(A) ::= expr(Y).
    {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}


///////////////////////////// The CREATE INDEX command ///////////////////////
//
cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)







|
|




















|

|
|







1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
    sqlite3ExprDelete(pParse->db, Z);
  }
  A.zStart = C.z;
  A.zEnd = &E.z[E.n];
}
%type case_exprlist {ExprList*}
%destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). {
  A = sqlite3ExprListAppend(pParse,A, Y.pExpr);
  A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
}
case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
  A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
  A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
}
%type case_else {Expr*}
%destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
case_else(A) ::=  .                     {A = 0;} 
%type case_operand {Expr*}
%destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
case_operand(A) ::= expr(X).            {A = X.pExpr;} 
case_operand(A) ::= .                   {A = 0;} 

%type exprlist {ExprList*}
%destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
%type nexprlist {ExprList*}
%destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}

exprlist(A) ::= nexprlist(A).
exprlist(A) ::= .                            {A = 0;}
nexprlist(A) ::= nexprlist(A) COMMA expr(Y).
    {A = sqlite3ExprListAppend(pParse,A,Y.pExpr);}
nexprlist(A) ::= expr(Y).
    {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}


///////////////////////////// The CREATE INDEX command ///////////////////////
//
cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
    sqlite3ExprListSetName(pParse, p, pIdToken, 1);
    return p;
  }
} // end %include

eidlist_opt(A) ::= .                         {A = 0;}
eidlist_opt(A) ::= LP eidlist(X) RP.         {A = X;}
eidlist(A) ::= eidlist(X) COMMA nm(Y) collate(C) sortorder(Z).  {
  A = parserAddExprIdListTerm(pParse, X, &Y, C, Z);
}
eidlist(A) ::= nm(Y) collate(C) sortorder(Z). {
  A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z);
}

%type collate {int}
collate(C) ::= .              {C = 0;}







|
|







1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
    sqlite3ExprListSetName(pParse, p, pIdToken, 1);
    return p;
  }
} // end %include

eidlist_opt(A) ::= .                         {A = 0;}
eidlist_opt(A) ::= LP eidlist(X) RP.         {A = X;}
eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z).  {
  A = parserAddExprIdListTerm(pParse, A, &Y, C, Z);
}
eidlist(A) ::= nm(Y) collate(C) sortorder(Z). {
  A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z);
}

%type collate {int}
collate(C) ::= .              {C = 0;}
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
%type when_clause {Expr*}
%destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
when_clause(A) ::= .             { A = 0; }
when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }

%type trigger_cmd_list {TriggerStep*}
%destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
  assert( Y!=0 );
  Y->pLast->pNext = X;
  Y->pLast = X;
  A = Y;
}
trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 
  assert( X!=0 );
  X->pLast = X;
  A = X;
}

// Disallow qualified table names on INSERT, UPDATE, and DELETE statements
// within a trigger.  The table to INSERT, UPDATE, or DELETE is always in 
// the same database as the table that the trigger fires on.
//
%type trnm {Token}
trnm(A) ::= nm(X).   {A = X;}
trnm(A) ::= nm DOT nm(X). {
  A = X;
  sqlite3ErrorMsg(pParse, 
        "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
        "statements within triggers");
}








|
|
|
|
<

|
|
|
<







|







1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

1375
1376
1377
1378

1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
%type when_clause {Expr*}
%destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
when_clause(A) ::= .             { A = 0; }
when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }

%type trigger_cmd_list {TriggerStep*}
%destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. {
  assert( A!=0 );
  A->pLast->pNext = X;
  A->pLast = X;

}
trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 
  assert( A!=0 );
  A->pLast = A;

}

// Disallow qualified table names on INSERT, UPDATE, and DELETE statements
// within a trigger.  The table to INSERT, UPDATE, or DELETE is always in 
// the same database as the table that the trigger fires on.
//
%type trnm {Token}
trnm(A) ::= nm(A).
trnm(A) ::= nm DOT nm(X). {
  A = X;
  sqlite3ErrorMsg(pParse, 
        "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
        "statements within triggers");
}

1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
%ifndef SQLITE_OMIT_CTE
with(A) ::= WITH wqlist(W).              { A = W; }
with(A) ::= WITH RECURSIVE wqlist(W).    { A = W; }

wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
  A = sqlite3WithAdd(pParse, 0, &X, Y, Z);
}
wqlist(A) ::= wqlist(W) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
  A = sqlite3WithAdd(pParse, W, &X, Y, Z);
}
%endif  SQLITE_OMIT_CTE







|
|


1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
%ifndef SQLITE_OMIT_CTE
with(A) ::= WITH wqlist(W).              { A = W; }
with(A) ::= WITH RECURSIVE wqlist(W).    { A = W; }

wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
  A = sqlite3WithAdd(pParse, 0, &X, Y, Z);
}
wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
  A = sqlite3WithAdd(pParse, A, &X, Y, Z);
}
%endif  SQLITE_OMIT_CTE
Changes to tool/lemon.c.
282
283
284
285
286
287
288


289
290
291
292
293
294
295
  int lhsStart;            /* True if left-hand side is the start symbol */
  int ruleline;            /* Line number for the rule */
  int nrhs;                /* Number of RHS symbols */
  struct symbol **rhs;     /* The RHS symbols */
  const char **rhsalias;   /* An alias for each RHS symbol (NULL if none) */
  int line;                /* Line number at which code begins */
  const char *code;        /* The code executed when this rule is reduced */


  struct symbol *precsym;  /* Precedence symbol for this rule */
  int index;               /* An index number for this rule */
  Boolean canReduce;       /* True if this rule is ever reduced */
  struct rule *nextlhs;    /* Next rule with the same LHS */
  struct rule *next;       /* Next rule in the global list */
};








>
>







282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
  int lhsStart;            /* True if left-hand side is the start symbol */
  int ruleline;            /* Line number for the rule */
  int nrhs;                /* Number of RHS symbols */
  struct symbol **rhs;     /* The RHS symbols */
  const char **rhsalias;   /* An alias for each RHS symbol (NULL if none) */
  int line;                /* Line number at which code begins */
  const char *code;        /* The code executed when this rule is reduced */
  const char *codePrefix;  /* Setup code before code[] above */
  const char *codeSuffix;  /* Breakdown code after code[] above */
  struct symbol *precsym;  /* Precedence symbol for this rule */
  int index;               /* An index number for this rule */
  Boolean canReduce;       /* True if this rule is ever reduced */
  struct rule *nextlhs;    /* Next rule with the same LHS */
  struct rule *next;       /* Next rule in the global list */
};

3426
3427
3428
3429
3430
3431
3432

3433
3434
3435
3436
3437
3438
3439
  static char empty[1] = { 0 };
  static char *z = 0;
  static int alloced = 0;
  static int used = 0;
  int c;
  char zInt[40];
  if( zText==0 ){

    used = 0;
    return z;
  }
  if( n<=0 ){
    if( n<0 ){
      used += n;
      assert( used>=0 );







>







3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
  static char empty[1] = { 0 };
  static char *z = 0;
  static int alloced = 0;
  static int used = 0;
  int c;
  char zInt[40];
  if( zText==0 ){
    if( used==0 && z!=0 ) z[0] = 0;
    used = 0;
    return z;
  }
  if( n<=0 ){
    if( n<0 ){
      used += n;
      assert( used>=0 );
3467
3468
3469
3470
3471
3472
3473

3474

3475
3476
3477
3478
3479
3480
3481
3482
3483
3484










































3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
** the symbols in this string so that the refer to elements of the parser
** stack.
*/
PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
  char *cp, *xp;
  int i;
  char lhsused = 0;    /* True if the LHS element has been used */

  char used[MAXRHS];   /* True for each RHS element which is used */


  for(i=0; i<rp->nrhs; i++) used[i] = 0;
  lhsused = 0;

  if( rp->code==0 ){
    static char newlinestr[2] = { '\n', '\0' };
    rp->code = newlinestr;
    rp->line = rp->ruleline;
  }











































  append_str(0,0,0,0);

  /* This const cast is wrong but harmless, if we're careful. */
  for(cp=(char *)rp->code; *cp; cp++){
    if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
      char saved;
      for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
      saved = *xp;
      *xp = 0;
      if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
        append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
        cp = xp;
        lhsused = 1;
      }else{
        for(i=0; i<rp->nrhs; i++){
          if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
            if( cp!=rp->code && cp[-1]=='@' ){
              /* If the argument is of the form @X then substituted







>

>










>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










|







3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
** the symbols in this string so that the refer to elements of the parser
** stack.
*/
PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
  char *cp, *xp;
  int i;
  char lhsused = 0;    /* True if the LHS element has been used */
  char lhsdirect;      /* True if LHS writes directly into stack */
  char used[MAXRHS];   /* True for each RHS element which is used */
  char zLhs[50];       /* Convert the LHS symbol into this string */

  for(i=0; i<rp->nrhs; i++) used[i] = 0;
  lhsused = 0;

  if( rp->code==0 ){
    static char newlinestr[2] = { '\n', '\0' };
    rp->code = newlinestr;
    rp->line = rp->ruleline;
  }


  if( rp->lhsalias==0 ){
    /* There is no LHS value symbol. */
    lhsdirect = 1;
  }else if( rp->nrhs==0 ){
    /* If there are no RHS symbols, then writing directly to the LHS is ok */
    lhsdirect = 1;
  }else if( rp->rhsalias[0]==0 ){
    /* The left-most RHS symbol has not value.  LHS direct is ok.  But
    ** we have to call the distructor on the RHS symbol first. */
    lhsdirect = 1;
    if( has_destructor(rp->rhs[0],lemp) ){
      append_str(0,0,0,0);
      append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
                 rp->rhs[0]->index,1-rp->nrhs);
      rp->codePrefix = Strsafe(append_str(0,0,0,0));
    }
  }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
    /* The LHS symbol and the left-most RHS symbol are the same, so 
    ** direct writing is allowed */
    lhsdirect = 1;
    lhsused = 1;
    used[0] = 1;
    if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
      ErrorMsg(lemp->filename,rp->ruleline,
        "%s(%s) and %s(%s) share the same label but have "
        "different datatypes.",
        rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
      lemp->errorcnt++;
    }    
  }else{
    lhsdirect = 0;
  }
  if( lhsdirect ){
    sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum);
  }else{
    append_str(0,0,0,0);
    append_str("  YYMINORTYPE yylhsminor;\n", 0, 0, 0);
    rp->codePrefix = Strsafe(append_str(0,0,0,0));
    sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum);
  }

  append_str(0,0,0,0);

  /* This const cast is wrong but harmless, if we're careful. */
  for(cp=(char *)rp->code; *cp; cp++){
    if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
      char saved;
      for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
      saved = *xp;
      *xp = 0;
      if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
        append_str(zLhs,0,0,0);
        cp = xp;
        lhsused = 1;
      }else{
        for(i=0; i<rp->nrhs; i++){
          if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
            if( cp!=rp->code && cp[-1]=='@' ){
              /* If the argument is of the form @X then substituted
3518
3519
3520
3521
3522
3523
3524





3525
3526
3527
3528
3529
3530
3531
3532
3533
3534

3535
3536
3537



3538

















3539
3540
3541
3542

3543
3544
3545
3546
3547
3548
3549
3550







3551

3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567






3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583








3584


3585
3586
3587
3588
3589
3590
3591
          }
        }
      }
      *xp = saved;
    }
    append_str(cp, 1, 0, 0);
  } /* End loop */






  /* Check to make sure the LHS has been used */
  if( rp->lhsalias && !lhsused ){
    ErrorMsg(lemp->filename,rp->ruleline,
      "Label \"%s\" for \"%s(%s)\" is never used.",
        rp->lhsalias,rp->lhs->name,rp->lhsalias);
    lemp->errorcnt++;
  }

  /* Generate destructor code for RHS symbols which are not used in the

  ** reduce code */
  for(i=0; i<rp->nrhs; i++){
    if( rp->rhsalias[i] && !used[i] ){



      ErrorMsg(lemp->filename,rp->ruleline,

















        "Label %s for \"%s(%s)\" is never used.",
        rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
      lemp->errorcnt++;
    }else if( rp->rhsalias[i]==0 ){

      if( has_destructor(rp->rhs[i],lemp) ){
        append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
           rp->rhs[i]->index,i-rp->nrhs+1);
      }else{
        /* No destructor defined for this term */
      }
    }
  }







  if( rp->code ){

    cp = append_str(0,0,0,0);
    rp->code = Strsafe(cp?cp:"");
  }
}

/* 
** Generate code which executes when the rule "rp" is reduced.  Write
** the code to "out".  Make sure lineno stays up-to-date.
*/
PRIVATE void emit_code(
  FILE *out,
  struct rule *rp,
  struct lemon *lemp,
  int *lineno
){
 const char *cp;







 /* Generate code to do the reduce action */
 if( rp->code ){
   if( !lemp->nolinenosflag ){
     (*lineno)++;
     tplt_linedir(out,rp->line,lemp->filename);
   }
   fprintf(out,"{%s",rp->code);
   for(cp=rp->code; *cp; cp++){
     if( *cp=='\n' ) (*lineno)++;
   } /* End loop */
   fprintf(out,"}\n"); (*lineno)++;
   if( !lemp->nolinenosflag ){
     (*lineno)++;
     tplt_linedir(out,*lineno,lemp->outname);
   }








 } /* End if( rp->code ) */



 return;
}

/*
** Print the definition of the union used for the parser's data stack.
** This union contains fields for every possible data type for tokens







>
>
>
>
>









|
>
|

|
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
<
>
|
|
|
<
<
|
|
|
>
>
>
>
>
>
>
|
>
|
|
<













>
>
>
>
>
>








|
<
<





>
>
>
>
>
>
>
>
|
>
>







3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614

3615
3616
3617
3618


3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632

3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660


3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
          }
        }
      }
      *xp = saved;
    }
    append_str(cp, 1, 0, 0);
  } /* End loop */

  /* Main code generation completed */
  cp = append_str(0,0,0,0);
  if( cp && cp[0] ) rp->code = Strsafe(cp);
  append_str(0,0,0,0);

  /* Check to make sure the LHS has been used */
  if( rp->lhsalias && !lhsused ){
    ErrorMsg(lemp->filename,rp->ruleline,
      "Label \"%s\" for \"%s(%s)\" is never used.",
        rp->lhsalias,rp->lhs->name,rp->lhsalias);
    lemp->errorcnt++;
  }

  /* Generate destructor code for RHS minor values which are not referenced.
  ** Generate error messages for unused labels and duplicate labels.
  */
  for(i=0; i<rp->nrhs; i++){
    if( rp->rhsalias[i] ){
      if( i>0 ){
        int j;
        if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){
          ErrorMsg(lemp->filename,rp->ruleline,
            "%s(%s) has the same label as the LHS but is not the left-most "
            "symbol on the RHS.",
            rp->rhs[i]->name, rp->rhsalias);
          lemp->errorcnt++;
        }
        for(j=0; j<i; j++){
          if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){
            ErrorMsg(lemp->filename,rp->ruleline,
              "Label %s used for multiple symbols on the RHS of a rule.",
              rp->rhsalias[i]);
            lemp->errorcnt++;
            break;
          }
        }
      }
      if( !used[i] ){
        ErrorMsg(lemp->filename,rp->ruleline,
          "Label %s for \"%s(%s)\" is never used.",
          rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
        lemp->errorcnt++;

      }
    }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){
      append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
         rp->rhs[i]->index,i-rp->nrhs+1);


    }
  }

  /* If unable to write LHS values directly into the stack, write the
  ** saved LHS value now. */
  if( lhsdirect==0 ){
    append_str("  yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
    append_str(zLhs, 0, 0, 0);
    append_str(";\n", 0, 0, 0);
  }

  /* Suffix code generation complete */
  cp = append_str(0,0,0,0);
  if( cp ) rp->codeSuffix = Strsafe(cp);

}

/* 
** Generate code which executes when the rule "rp" is reduced.  Write
** the code to "out".  Make sure lineno stays up-to-date.
*/
PRIVATE void emit_code(
  FILE *out,
  struct rule *rp,
  struct lemon *lemp,
  int *lineno
){
 const char *cp;

 /* Setup code prior to the #line directive */
 if( rp->codePrefix && rp->codePrefix[0] ){
   fprintf(out, "{%s", rp->codePrefix);
   for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
 }

 /* Generate code to do the reduce action */
 if( rp->code ){
   if( !lemp->nolinenosflag ){
     (*lineno)++;
     tplt_linedir(out,rp->line,lemp->filename);
   }
   fprintf(out,"{%s",rp->code);
   for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }


   fprintf(out,"}\n"); (*lineno)++;
   if( !lemp->nolinenosflag ){
     (*lineno)++;
     tplt_linedir(out,*lineno,lemp->outname);
   }
 }

 /* Generate breakdown code that occurs after the #line directive */
 if( rp->codeSuffix && rp->codeSuffix[0] ){
   fprintf(out, "%s", rp->codeSuffix);
   for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
 }

 if( rp->codePrefix ){
   fprintf(out, "}\n"); (*lineno)++;
 }

 return;
}

/*
** Print the definition of the union used for the parser's data stack.
** This union contains fields for every possible data type for tokens
Changes to tool/lempar.c.
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
*/
static void yy_reduce(
  yyParser *yypParser,         /* The parser */
  int yyruleno                 /* Number of the rule by which to reduce */
){
  int yygoto;                     /* The next state */
  int yyact;                      /* The next action */
  YYMINORTYPE yygotominor;        /* The LHS of the rule reduced */
  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  ParseARG_FETCH;
  yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno>=0 
        && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){







<







610
611
612
613
614
615
616

617
618
619
620
621
622
623
*/
static void yy_reduce(
  yyParser *yypParser,         /* The parser */
  int yyruleno                 /* Number of the rule by which to reduce */
){
  int yygoto;                     /* The next state */
  int yyact;                      /* The next action */

  yyStackEntry *yymsp;            /* The top of the parser's stack */
  int yysize;                     /* Amount to pop the stack */
  ParseARG_FETCH;
  yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno>=0 
        && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
  yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
  if( yyact <= YY_MAX_SHIFTREDUCE ){
    if( yyact>YY_MAX_SHIFT ) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
    yypParser->yyidx -= yysize - 1;
    yymsp -= yysize-1;
    yymsp->stateno = (YYACTIONTYPE)yyact;
    yymsp->major = (YYCODETYPE)yygoto;
    yymsp->minor = yygotominor;
    yyTraceShift(yypParser, yyact);
  }else{
    assert( yyact == YY_ACCEPT_ACTION );
    yypParser->yyidx -= yysize;
    yy_accept(yypParser);
  }
}







<







672
673
674
675
676
677
678

679
680
681
682
683
684
685
  yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
  if( yyact <= YY_MAX_SHIFTREDUCE ){
    if( yyact>YY_MAX_SHIFT ) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
    yypParser->yyidx -= yysize - 1;
    yymsp -= yysize-1;
    yymsp->stateno = (YYACTIONTYPE)yyact;
    yymsp->major = (YYCODETYPE)yygoto;

    yyTraceShift(yypParser, yyact);
  }else{
    assert( yyact == YY_ACCEPT_ACTION );
    yypParser->yyidx -= yysize;
    yy_accept(yypParser);
  }
}