/ Check-in [4b02703d]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Test cases and tuning of the new optimizer code. (CVS 2567)
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 4b02703dec71aa78e5f8d8cab5b950966a4c6abc
User & Date: drh 2005-07-28 20:51:19
Context
2005-07-28
23:12
The BETWEEN operator in a WHERE clause is now able to use indices. (CVS 2568) check-in: cdf8c958 user: drh tags: trunk
20:51
Test cases and tuning of the new optimizer code. (CVS 2567) check-in: 4b02703d user: drh tags: trunk
16:51
The new optimizer now passes all regression tests. (CVS 2566) check-in: a2121284 user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/vdbe.c.

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
...
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
....
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
....
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
....
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.477 2005/07/23 03:18:40 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
................................................................................
  Vdbe *p                    /* The VDBE */
){
  int pc;                    /* The program counter */
  Op *pOp;                   /* Current operation */
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  Mem *pTos;                 /* Top entry in the operand stack */
  char zBuf[100];            /* Space to sprintf() an integer */
#ifdef VDBE_PROFILE
  unsigned long long start;  /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif
................................................................................
  wrFlag = pOp->opcode==OP_OpenWrite;
  if( p2<=0 ){
    assert( pTos>=p->aStack );
    Integerify(pTos);
    p2 = pTos->i;
    assert( (pTos->flags & MEM_Dyn)==0 );
    pTos--;
    if( p2<2 ){
      sqlite3SetString(&p->zErrMsg, "root page number less than 2", (char*)0);
      rc = SQLITE_INTERNAL;
      break;
    }
  }
  assert( i>=0 );
  pCur = allocateCursor(p, i);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  if( pX==0 ) break;
  /* We always provide a key comparison function.  If the table being
................................................................................
  break;
}


/* An other opcode is illegal...
*/
default: {
  sqlite3_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
  sqlite3SetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
  rc = SQLITE_INTERNAL;
  break;
}

/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
** readability.  From this point on down, the normal indentation rules are
................................................................................
    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
    */
#ifndef NDEBUG
    /* Sanity checking on the top element of the stack */
    if( pTos>=p->aStack ){
      sqlite3VdbeMemSanity(pTos, db->enc);
    }
    if( pc<-1 || pc>=p->nOp ){
      sqlite3SetString(&p->zErrMsg, "jump destination out of range", (char*)0);
      rc = SQLITE_INTERNAL;
    }
#ifdef SQLITE_DEBUG
    /* Code for tracing the vdbe stack. */
    if( p->trace && pTos>=p->aStack ){
      int i;
      fprintf(p->trace, "Stack:");
      for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
        if( pTos[i].flags & MEM_Null ){







|







 







<







 







|
<
<
<
<







 







|
<
<







 







|
<
<
<







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
...
450
451
452
453
454
455
456

457
458
459
460
461
462
463
....
2534
2535
2536
2537
2538
2539
2540
2541




2542
2543
2544
2545
2546
2547
2548
....
4596
4597
4598
4599
4600
4601
4602
4603


4604
4605
4606
4607
4608
4609
4610
....
4633
4634
4635
4636
4637
4638
4639
4640



4641
4642
4643
4644
4645
4646
4647
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.478 2005/07/28 20:51:19 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
................................................................................
  Vdbe *p                    /* The VDBE */
){
  int pc;                    /* The program counter */
  Op *pOp;                   /* Current operation */
  int rc = SQLITE_OK;        /* Value to return */
  sqlite3 *db = p->db;       /* The database */
  Mem *pTos;                 /* Top entry in the operand stack */

#ifdef VDBE_PROFILE
  unsigned long long start;  /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
#endif
................................................................................
  wrFlag = pOp->opcode==OP_OpenWrite;
  if( p2<=0 ){
    assert( pTos>=p->aStack );
    Integerify(pTos);
    p2 = pTos->i;
    assert( (pTos->flags & MEM_Dyn)==0 );
    pTos--;
    assert( p2>=2 );




  }
  assert( i>=0 );
  pCur = allocateCursor(p, i);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  if( pX==0 ) break;
  /* We always provide a key comparison function.  If the table being
................................................................................
  break;
}


/* An other opcode is illegal...
*/
default: {
  assert( 0 );


  break;
}

/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
** readability.  From this point on down, the normal indentation rules are
................................................................................
    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
    */
#ifndef NDEBUG
    /* Sanity checking on the top element of the stack */
    if( pTos>=p->aStack ){
      sqlite3VdbeMemSanity(pTos, db->enc);
    }
    assert( pc>=-1 && pc<p->nOp );



#ifdef SQLITE_DEBUG
    /* Code for tracing the vdbe stack. */
    if( p->trace && pTos>=p->aStack ){
      int i;
      fprintf(p->trace, "Stack:");
      for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
        if( pTos[i].flags & MEM_Null ){

Changes to src/where.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
...
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
...
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
...
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
...
688
689
690
691
692
693
694

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
...
773
774
775
776
777
778
779

780
781

782
783

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
...
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
...
959
960
961
962
963
964
965


966
967
968
969
970
971
972
....
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
....
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.154 2005/07/28 16:51:51 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)
................................................................................

/*
** Bitmasks for the operators that indices are able to exploit.  An
** OR-ed combination of these values can be used when searching for
** terms in the where clause.
*/
#define WO_IN     1
#define WO_LIST   2
#define WO_SELECT 4
#define WO_EQ     8
#define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))

/*
** Value for flags returned by bestIndex()
................................................................................
  if( allowedOp(pExpr->op) && (pTerm->prereqRight & prereqLeft)==0 ){
    Expr *pLeft = pExpr->pLeft;
    Expr *pRight = pExpr->pRight;
    if( pLeft->op==TK_COLUMN ){
      pTerm->leftCursor = pLeft->iTable;
      pTerm->leftColumn = pLeft->iColumn;
      pTerm->operator = operatorMask(pExpr->op);
      if( pTerm->operator==WO_IN ){
        if( pExpr->pSelect ){
          pTerm->operator |= WO_SELECT;
        }else if( pExpr->pList ){
          pTerm->operator |= WO_LIST;
        }
      }
    }
    if( pRight && pRight->op==TK_COLUMN ){
      WhereTerm *pNew;
      Expr *pDup;
      if( pTerm->leftCursor>=0 ){
        pDup = sqlite3ExprDup(pExpr);
        pNew = whereClauseInsert(pTerm->pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
................................................................................
  }
  return logN;
}

/*
** Find the best index for accessing a particular table.  Return a pointer
** to the index, flags that describe how the index should be used, the
** number of equality constraints and the "cost" for this index.
**
** The lowest cost index wins.  The cost is an estimate of the amount of
** CPU and disk I/O need to process the request using the selected index.
** Factors that influence cost include:
**
**    *  The estimated number of rows that will be retrieved.  (The
**       fewer the better.)
................................................................................

  TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));

  /* Check for a rowid=EXPR or rowid IN (...) constraints
  */
  pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
  if( pTerm ){

    *ppIndex = 0;
    bestFlags = WHERE_ROWID_EQ;
    if( pTerm->operator & WO_EQ ){
      /* Rowid== is always the best pick.  Look no further.  Because only
      ** a single row is generated, output is always in sorted order */
      *pFlags = WHERE_ROWID_EQ;
      *pnEq = 1;
      if( pOrderBy ) *pFlags |= WHERE_ORDERBY;
      TRACE(("... best is rowid\n"));
      return 0.0;
    }else if( pTerm->operator & WO_LIST ){
      /* Rowid IN (LIST): cost is NlogN where N is the number of list
      ** elements.  */
      lowestCost = pTerm->pExpr->pList->nExpr;
      lowestCost *= estLog(lowestCost);
    }else{
      /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
      ** in the result of the inner select.  We have no way to estimate
      ** that value so make a wild guess. */
      lowestCost = 200.0;
    }
................................................................................
    flags = 0;
    for(i=0; i<pProbe->nColumn; i++){
      int j = pProbe->aiColumn[i];
      pTerm = findTerm(pWC, iCur, j, notReady, WO_EQ|WO_IN, pProbe);
      if( pTerm==0 ) break;
      flags |= WHERE_COLUMN_EQ;
      if( pTerm->operator & WO_IN ){

        flags |= WHERE_COLUMN_IN;
        if( pTerm->operator & WO_SELECT ){

          inMultiplier *= 100.0;
        }else if( pTerm->operator & WO_LIST ){

          inMultiplier *= pTerm->pExpr->pList->nExpr + 1.0;
        }
      }
    }
    cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
    nEq = i;
    TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));

    /* Look for range constraints
    */
    if( nEq<pProbe->nColumn ){
      int j = pProbe->aiColumn[nEq];
      pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
      if( pTerm ){
        flags = WHERE_COLUMN_RANGE;
        if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
          flags |= WHERE_TOP_LIMIT;
          cost *= 0.333;
        }
        if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
          flags |= WHERE_BTM_LIMIT;
          cost *= 0.333;
................................................................................
    }

    /* If this index has achieved the lowest cost so far, then use it.
    */
    if( cost < lowestCost ){
      bestIdx = pProbe;
      lowestCost = cost;
      if( flags==0 ){
        flags = WHERE_COLUMN_RANGE;
      }
      bestFlags = flags;
      bestNEq = nEq;
    }
  }

  /* Report the best result
  */
................................................................................
    pLevel->aInLoop = aIn = sqliteRealloc(pLevel->aInLoop,
                                 sizeof(pLevel->aInLoop[0])*3*pLevel->nIn);
    if( aIn ){
      aIn += pLevel->nIn*3 - 3;
      aIn[0] = OP_Next;
      aIn[1] = iTab;
      aIn[2] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);


    }
#endif
  }
  disableTerm(pLevel, pTerm);
}

/*
................................................................................
      /* Case 2:  We have an inequality comparison against the ROWID field.
      */
      int testOp = OP_Noop;
      int start;
      WhereTerm *pStart, *pEnd;

      assert( omitTable==0 );
      if( pLevel->flags & WHERE_BTM_LIMIT ){
        pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
        assert( pStart!=0 );
      }else{
        pStart = 0;
      }
      if( pLevel->flags & WHERE_TOP_LIMIT ){
        pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
        assert( pEnd!=0 );
      }else{
        pEnd = 0;
      }
      if( bRev ){
        pTerm = pStart;
        pStart = pEnd;
        pEnd = pTerm;
      }
      if( pStart ){
        Expr *pX;
................................................................................
      }
      pLevel->p1 = iIdxCur;
      pLevel->p2 = start;
    }else{
      /* Case 5:  There is no usable index.  We must do a complete
      **          scan of the entire table.
      */
      int opRewind;

      assert( omitTable==0 );
      if( bRev ){
        opRewind = OP_Last;
        pLevel->op = OP_Prev;
      }else{
        opRewind = OP_Rewind;
        pLevel->op = OP_Next;
      }
      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp(v, opRewind, iCur, brk);
    }
    notReady &= ~getMask(&maskSet, iCur);

    /* Insert code to test every subexpression that can be completely
    ** computed using the current set of tables.
    */
    for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){







|







 







<
<
|







 







<
<
<
<
<
<
<







 







|







 







>










|


|







 







>

<
>

<
>
|













|







 







|
<
<







 







>
>







 







<
|
<
<
<
<
<
|
<
<
<
<







 







<
<

|
<
<
<
<
|
<

|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
...
145
146
147
148
149
150
151


152
153
154
155
156
157
158
159
...
464
465
466
467
468
469
470







471
472
473
474
475
476
477
...
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
...
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
...
765
766
767
768
769
770
771
772
773

774
775

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
...
840
841
842
843
844
845
846
847


848
849
850
851
852
853
854
...
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
....
1359
1360
1361
1362
1363
1364
1365

1366





1367




1368
1369
1370
1371
1372
1373
1374
....
1582
1583
1584
1585
1586
1587
1588


1589
1590




1591

1592
1593
1594
1595
1596
1597
1598
1599
1600
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.155 2005/07/28 20:51:19 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)
................................................................................

/*
** Bitmasks for the operators that indices are able to exploit.  An
** OR-ed combination of these values can be used when searching for
** terms in the where clause.
*/
#define WO_IN     1


#define WO_EQ     2
#define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))

/*
** Value for flags returned by bestIndex()
................................................................................
  if( allowedOp(pExpr->op) && (pTerm->prereqRight & prereqLeft)==0 ){
    Expr *pLeft = pExpr->pLeft;
    Expr *pRight = pExpr->pRight;
    if( pLeft->op==TK_COLUMN ){
      pTerm->leftCursor = pLeft->iTable;
      pTerm->leftColumn = pLeft->iColumn;
      pTerm->operator = operatorMask(pExpr->op);







    }
    if( pRight && pRight->op==TK_COLUMN ){
      WhereTerm *pNew;
      Expr *pDup;
      if( pTerm->leftCursor>=0 ){
        pDup = sqlite3ExprDup(pExpr);
        pNew = whereClauseInsert(pTerm->pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
................................................................................
  }
  return logN;
}

/*
** Find the best index for accessing a particular table.  Return a pointer
** to the index, flags that describe how the index should be used, the
** number of equality constraints, and the "cost" for this index.
**
** The lowest cost index wins.  The cost is an estimate of the amount of
** CPU and disk I/O need to process the request using the selected index.
** Factors that influence cost include:
**
**    *  The estimated number of rows that will be retrieved.  (The
**       fewer the better.)
................................................................................

  TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));

  /* Check for a rowid=EXPR or rowid IN (...) constraints
  */
  pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
  if( pTerm ){
    Expr *pExpr;
    *ppIndex = 0;
    bestFlags = WHERE_ROWID_EQ;
    if( pTerm->operator & WO_EQ ){
      /* Rowid== is always the best pick.  Look no further.  Because only
      ** a single row is generated, output is always in sorted order */
      *pFlags = WHERE_ROWID_EQ;
      *pnEq = 1;
      if( pOrderBy ) *pFlags |= WHERE_ORDERBY;
      TRACE(("... best is rowid\n"));
      return 0.0;
    }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
      /* Rowid IN (LIST): cost is NlogN where N is the number of list
      ** elements.  */
      lowestCost = pExpr->pList->nExpr;
      lowestCost *= estLog(lowestCost);
    }else{
      /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
      ** in the result of the inner select.  We have no way to estimate
      ** that value so make a wild guess. */
      lowestCost = 200.0;
    }
................................................................................
    flags = 0;
    for(i=0; i<pProbe->nColumn; i++){
      int j = pProbe->aiColumn[i];
      pTerm = findTerm(pWC, iCur, j, notReady, WO_EQ|WO_IN, pProbe);
      if( pTerm==0 ) break;
      flags |= WHERE_COLUMN_EQ;
      if( pTerm->operator & WO_IN ){
        Expr *pExpr = pTerm->pExpr;
        flags |= WHERE_COLUMN_IN;

        if( pExpr->pSelect!=0 ){
          inMultiplier *= 100.0;

        }else if( pExpr->pList!=0 ){
          inMultiplier *= pExpr->pList->nExpr + 1.0;
        }
      }
    }
    cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
    nEq = i;
    TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));

    /* Look for range constraints
    */
    if( nEq<pProbe->nColumn ){
      int j = pProbe->aiColumn[nEq];
      pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
      if( pTerm ){
        flags |= WHERE_COLUMN_RANGE;
        if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
          flags |= WHERE_TOP_LIMIT;
          cost *= 0.333;
        }
        if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
          flags |= WHERE_BTM_LIMIT;
          cost *= 0.333;
................................................................................
    }

    /* If this index has achieved the lowest cost so far, then use it.
    */
    if( cost < lowestCost ){
      bestIdx = pProbe;
      lowestCost = cost;
      assert( flags!=0 );


      bestFlags = flags;
      bestNEq = nEq;
    }
  }

  /* Report the best result
  */
................................................................................
    pLevel->aInLoop = aIn = sqliteRealloc(pLevel->aInLoop,
                                 sizeof(pLevel->aInLoop[0])*3*pLevel->nIn);
    if( aIn ){
      aIn += pLevel->nIn*3 - 3;
      aIn[0] = OP_Next;
      aIn[1] = iTab;
      aIn[2] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
    }else{
      pLevel->nIn = 0;
    }
#endif
  }
  disableTerm(pLevel, pTerm);
}

/*
................................................................................
      /* Case 2:  We have an inequality comparison against the ROWID field.
      */
      int testOp = OP_Noop;
      int start;
      WhereTerm *pStart, *pEnd;

      assert( omitTable==0 );

      pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);





      pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);




      if( bRev ){
        pTerm = pStart;
        pStart = pEnd;
        pEnd = pTerm;
      }
      if( pStart ){
        Expr *pX;
................................................................................
      }
      pLevel->p1 = iIdxCur;
      pLevel->p2 = start;
    }else{
      /* Case 5:  There is no usable index.  We must do a complete
      **          scan of the entire table.
      */


      assert( omitTable==0 );
      assert( bRev==0 );




      pLevel->op = OP_Next;

      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
    }
    notReady &= ~getMask(&maskSet, iCur);

    /* Insert code to test every subexpression that can be completely
    ** computed using the current set of tables.
    */
    for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){

Added test/where2.test.































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# 2005 July 28
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the use of indices in WHERE clauses
# based on recent changes to the optimizer.
#
# $Id: where2.test,v 1.1 2005/07/28 20:51:19 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Build some test data
#
do_test where2-1.0 {
  execsql {
    BEGIN;
    CREATE TABLE t1(w int, x int, y int, z int);
  }
  for {set i 1} {$i<=100} {incr i} {
    set w $i
    set x [expr {int(log($i)/log(2))}]
    set y [expr {$i*$i + 2*$i + 1}]
    set z [expr {$x+$y}]
    execsql {INSERT INTO t1 VALUES($::w,$::x,$::y,$::z)}
  }
  execsql {
    CREATE UNIQUE INDEX i1w ON t1(w);
    CREATE INDEX i1xy ON t1(x,y);
    CREATE INDEX i1zyx ON t1(z,y,x);
    COMMIT;
  }
} {}

# Do an SQL statement.  Append the search count to the end of the result.
#
proc count sql {
  set ::sqlite_search_count 0
  return [concat [execsql $sql] $::sqlite_search_count]
}

# This procedure executes the SQL.  Then it checks to see if the OP_Sort
# opcode was executed.  If an OP_Sort did occur, then "sort" is appended
# to the result.  If no OP_Sort happened, then "nosort" is appended.
#
# This procedure is used to check to make sure sorting is or is not
# occurring as expected.
#
proc cksort {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  return $data
}

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword (as in the cksort procedure above) then
# it appends the ::sqlite_query_plan variable.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  return [concat $data $::sqlite_query_plan]
}


# Prefer a UNIQUE index over another index.
#
do_test where2-1.1 {
  queryplan {
    SELECT * FROM t1 WHERE w=85 AND x=6 AND y=7396
  }
} {85 6 7396 7402 nosort t1 i1w}

# Always prefer a rowid== constraint over any other index.
#
do_test where2-1.3 {
  queryplan {
    SELECT * FROM t1 WHERE w=85 AND x=6 AND y=7396 AND rowid=85
  }
} {85 6 7396 7402 nosort t1 *}

# When constrained by a UNIQUE index, the ORDER BY clause is always ignored.
#
do_test where2-2.1 {
  queryplan {
    SELECT * FROM t1 WHERE w=85 ORDER BY random(5);
  }
} {85 6 7396 7402 nosort t1 i1w}
do_test where2-2.2 {
  queryplan {
    SELECT * FROM t1 WHERE x=6 AND y=7396 ORDER BY random(5);
  }
} {85 6 7396 7402 sort t1 i1xy}
do_test where2-2.3 {
  queryplan {
    SELECT * FROM t1 WHERE rowid=85 AND x=6 AND y=7396 ORDER BY random(5);
  }
} {85 6 7396 7402 nosort t1 *}


# Efficient handling of forward and reverse table scans.
#
do_test where2-3.1 {
  queryplan {
    SELECT * FROM t1 ORDER BY rowid LIMIT 2
  }
} {1 0 4 4 2 1 9 10 nosort t1 *}
do_test where2-3.2 {
  queryplan {
    SELECT * FROM t1 ORDER BY rowid DESC LIMIT 2
  }
} {100 6 10201 10207 99 6 10000 10006 nosort t1 *}

# The IN operator can be used by indices at multiple layers
#
do_test where2-4.1 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (10207,10006) AND y IN (10000,10201)
                     AND x>0 AND x<10
    ORDER BY w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
do_test where2-4.2 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (10207,10006) AND y=10000
                     AND x>0 AND x<10
    ORDER BY w
  }
} {99 6 10000 10006 sort t1 i1zyx}
do_test where2-4.3 {
  queryplan {
    SELECT * FROM t1 WHERE z=10006 AND y IN (10000,10201)
                     AND x>0 AND x<10
    ORDER BY w
  }
} {99 6 10000 10006 sort t1 i1zyx}
do_test where2-4.4 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (SELECT 10207 UNION SELECT 10006)
                     AND y IN (10000,10201)
                     AND x>0 AND x<10
    ORDER BY w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
do_test where2-4.5 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (SELECT 10207 UNION SELECT 10006)
                     AND y IN (SELECT 10000 UNION SELECT 10201)
                     AND x>0 AND x<10
    ORDER BY w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
do_test where2-4.6 {
  queryplan {
    SELECT * FROM t1
     WHERE x IN (1,2,3,4,5,6,7,8)
       AND y IN (10000,10001,10002,10003,10004,10005)
     ORDER BY 2
  }
} {99 6 10000 10006 sort t1 i1xy}

# Duplicate entires on the RHS of an IN operator do not cause duplicate
# output rows.
#
do_test where2-4.6 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (10207,10006,10006,10207)
    ORDER BY w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}
do_test where2-4.7 {
  queryplan {
    SELECT * FROM t1 WHERE z IN (
       SELECT 10207 UNION ALL SELECT 10006
       UNION ALL SELECT 10006 UNION ALL SELECT 10207)
    ORDER BY w
  }
} {99 6 10000 10006 100 6 10201 10207 sort t1 i1zyx}

# The use of an IN operator disables the index as a sorter.
#
do_test where2-5.1 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 ORDER BY w
  }
} {99 6 10000 10006 nosort t1 i1w}
do_test where2-5.2 {
  queryplan {
    SELECT * FROM t1 WHERE w IN (99) ORDER BY w
  }
} {99 6 10000 10006 sort t1 i1w}


integrity_check {where2-99.0}

finish_test