/ Check-in [3ee736a3]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge changes from the trunk.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | zipvfs-multifile-commit
Files: files | file ages | folders
SHA1: 3ee736a39d1fc175a297c5fdd0d2e1c5a9b5b18e
User & Date: dan 2013-12-10 16:35:42
Context
2013-12-10
17:34
Use SQLITE_FCNTL_SYNC instead of SQLITE_FCNTL_SYNC_OMITTED. Add documentation in for FCNTL_SYNC and FCNTL_COMMIT_PHASETWO. check-in: 46231af9 user: dan tags: zipvfs-multifile-commit
16:35
Merge changes from the trunk. check-in: 3ee736a3 user: dan tags: zipvfs-multifile-commit
16:27
Fix handling of errors returned by the SQLITE_FCNTL_OMIT_SYNCED file-control. check-in: d9a5f44f user: dan tags: zipvfs-multifile-commit
2013-12-09
23:17
Simplifications to the OP_MakeRecord opcode and the sqlite3VdbeSerialPut() helper function. check-in: 7277a769 user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/btree.c.

4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222

4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245

4246
4247
4248
4249
4250
4251
4252
....
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
....
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
  }
  return rc;
}

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if skipKey==0 and it points to the beginning of data if
** skipKey==1.  The number of bytes of available key/data is written
** into *pAmt.  If *pAmt==0, then the value returned will not be
** a valid pointer.
**
** This routine is an optimization.  It is common for the entire key
** and data to fit on the local page and for there to be no overflow
** pages.  When that is so, this routine can be used to access the
** key and data without making a copy.  If the key and/or data spills
** onto overflow pages, then accessPayload() must be used to reassemble
** the key/data and copy it into a preallocated buffer.
**
** The pointer returned by this routine looks directly into the cached
** page of the database.  The data might change or move the next time
** any btree routine is called.
*/
static const unsigned char *fetchPayload(
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 *pAmt,           /* Write the number of available bytes here */
  int skipKey          /* read beginning at data if this is true */
){
  unsigned char *aPayload;
  MemPage *pPage;
  u32 nKey;
  u32 nLocal;

  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );

  assert( cursorHoldsMutex(pCur) );
  pPage = pCur->apPage[pCur->iPage];
  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  if( pCur->info.nSize==0 ){
    btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
                   &pCur->info);
  }
  aPayload = pCur->info.pCell;
  aPayload += pCur->info.nHeader;
  if( pPage->intKey ){
    nKey = 0;
  }else{
    nKey = (int)pCur->info.nKey;
  }
  if( skipKey ){
    aPayload += nKey;
    nLocal = pCur->info.nLocal - nKey;
  }else{
    nLocal = pCur->info.nLocal;
    assert( nLocal<=nKey );
  }
  *pAmt = nLocal;
  return aPayload;

}


/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page.  Write the number of available bytes into *pAmt.
................................................................................
** Hence, a mutex on the BtShared should be held prior to calling
** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
  const void *p = 0;
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );
  if( ALWAYS(pCur->eState==CURSOR_VALID) ){
    p = (const void*)fetchPayload(pCur, pAmt, 0);
  }
  return p;
}
const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
  const void *p = 0;
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );
  if( ALWAYS(pCur->eState==CURSOR_VALID) ){
    p = (const void*)fetchPayload(pCur, pAmt, 1);
  }
  return p;
}


/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page to move to.
**
................................................................................
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( zMsg1 ){
    sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
  }
  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}







|
|
|
|












|

|
<

<
<
<
<
<


>

<
|




<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
>







 







<
<
<
<
|
|
<
<

<
<
<
<
|
<
<







 







|







4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213

4214





4215
4216
4217
4218

4219
4220
4221
4222
4223











4224




4225
4226
4227
4228
4229
4230
4231
4232
....
4237
4238
4239
4240
4241
4242
4243




4244
4245


4246




4247


4248
4249
4250
4251
4252
4253
4254
....
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
  }
  return rc;
}

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if index btrees (pPage->intKey==0) and is the data for
** table btrees (pPage->intKey==1). The number of bytes of available
** key/data is written into *pAmt.  If *pAmt==0, then the value
** returned will not be a valid pointer.
**
** This routine is an optimization.  It is common for the entire key
** and data to fit on the local page and for there to be no overflow
** pages.  When that is so, this routine can be used to access the
** key and data without making a copy.  If the key and/or data spills
** onto overflow pages, then accessPayload() must be used to reassemble
** the key/data and copy it into a preallocated buffer.
**
** The pointer returned by this routine looks directly into the cached
** page of the database.  The data might change or move the next time
** any btree routine is called.
*/
static const void *fetchPayload(
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 *pAmt            /* Write the number of available bytes here */

){





  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );

  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  if( pCur->info.nSize==0 ){
    btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
                   &pCur->info);
  }











  *pAmt = pCur->info.nLocal;




  return (void*)(pCur->info.pCell + pCur->info.nHeader);
}


/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page.  Write the number of available bytes into *pAmt.
................................................................................
** Hence, a mutex on the BtShared should be held prior to calling
** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){




  return fetchPayload(pCur, pAmt);
}


const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){




  return fetchPayload(pCur, pAmt);


}


/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page to move to.
**
................................................................................
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( zMsg1 ){
    sqlite3StrAccumAppendAll(&pCheck->errMsg, zMsg1);
  }
  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}

Changes to src/build.c.

3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
  Table *pTab = pIdx->pTable;

  sqlite3StrAccumInit(&errMsg, 0, 0, 200);
  errMsg.db = pParse->db;
  for(j=0; j<pIdx->nKeyCol; j++){
    char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
    if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
    sqlite3StrAccumAppend(&errMsg, pTab->zName, -1);
    sqlite3StrAccumAppend(&errMsg, ".", 1);
    sqlite3StrAccumAppend(&errMsg, zCol, -1);
  }
  zErr = sqlite3StrAccumFinish(&errMsg);
  sqlite3HaltConstraint(pParse, 
    (pIdx->autoIndex==2)?SQLITE_CONSTRAINT_PRIMARYKEY:SQLITE_CONSTRAINT_UNIQUE,
    onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
}








|

|







3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
  Table *pTab = pIdx->pTable;

  sqlite3StrAccumInit(&errMsg, 0, 0, 200);
  errMsg.db = pParse->db;
  for(j=0; j<pIdx->nKeyCol; j++){
    char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
    if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
    sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
    sqlite3StrAccumAppend(&errMsg, ".", 1);
    sqlite3StrAccumAppendAll(&errMsg, zCol);
  }
  zErr = sqlite3StrAccumFinish(&errMsg);
  sqlite3HaltConstraint(pParse, 
    (pIdx->autoIndex==2)?SQLITE_CONSTRAINT_PRIMARYKEY:SQLITE_CONSTRAINT_UNIQUE,
    onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
}

Changes to src/os_win.c.

3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
    }
    case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
      winModeBit(pFile, WINFILE_PSOW, (int*)pArg);
      OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_VFSNAME: {
      *(char**)pArg = sqlite3_mprintf("win32");
      OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_WIN32_AV_RETRY: {
      int *a = (int*)pArg;
      if( a[0]>0 ){
        winIoerrRetry = a[0];







|







3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
    }
    case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
      winModeBit(pFile, WINFILE_PSOW, (int*)pArg);
      OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_VFSNAME: {
      *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
      OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h));
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_WIN32_AV_RETRY: {
      int *a = (int*)pArg;
      if( a[0]>0 ){
        winIoerrRetry = a[0];

Changes to src/pager.c.

5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
....
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800

5801
5802
5803
5804
5805
5806
5807
  ** It is never called in the ERROR state.
  */
  assert( pPager->eState==PAGER_WRITER_LOCKED
       || pPager->eState==PAGER_WRITER_CACHEMOD
       || pPager->eState==PAGER_WRITER_DBMOD
  );
  assert( assert_pager_state(pPager) );

  /* If an error has been previously detected, report the same error
  ** again. This should not happen, but the check provides robustness. */
  if( NEVER(pPager->errCode) )  return pPager->errCode;

  /* Higher-level routines never call this function if database is not
  ** writable.  But check anyway, just for robustness. */
  if( NEVER(pPager->readOnly) ) return SQLITE_PERM;

  CHECK_PAGE(pPg);

  /* The journal file needs to be opened. Higher level routines have already
  ** obtained the necessary locks to begin the write-transaction, but the
  ** rollback journal might not yet be open. Open it now if this is the case.
  **
................................................................................
** as appropriate. Otherwise, SQLITE_OK.
*/
int sqlite3PagerWrite(DbPage *pDbPage){
  int rc = SQLITE_OK;

  PgHdr *pPg = pDbPage;
  Pager *pPager = pPg->pPager;
  Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);

  assert( (pPg->flags & PGHDR_MMAP)==0 );
  assert( pPager->eState>=PAGER_WRITER_LOCKED );
  assert( pPager->eState!=PAGER_ERROR );
  assert( assert_pager_state(pPager) );

  if( nPagePerSector>1 ){
    Pgno nPageCount;          /* Total number of pages in database file */
    Pgno pg1;                 /* First page of the sector pPg is located on. */
    int nPage = 0;            /* Number of pages starting at pg1 to journal */
    int ii;                   /* Loop counter */
    int needSync = 0;         /* True if any page has PGHDR_NEED_SYNC */


    /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow
    ** a journal header to be written between the pages journaled by
    ** this function.
    */
    assert( !MEMDB );
    assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 );







<
<
<
|
<
<
<
|







 







<






|





>







5645
5646
5647
5648
5649
5650
5651



5652



5653
5654
5655
5656
5657
5658
5659
5660
....
5775
5776
5777
5778
5779
5780
5781

5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
  ** It is never called in the ERROR state.
  */
  assert( pPager->eState==PAGER_WRITER_LOCKED
       || pPager->eState==PAGER_WRITER_CACHEMOD
       || pPager->eState==PAGER_WRITER_DBMOD
  );
  assert( assert_pager_state(pPager) );



  assert( pPager->errCode==0 );



  assert( pPager->readOnly==0 );

  CHECK_PAGE(pPg);

  /* The journal file needs to be opened. Higher level routines have already
  ** obtained the necessary locks to begin the write-transaction, but the
  ** rollback journal might not yet be open. Open it now if this is the case.
  **
................................................................................
** as appropriate. Otherwise, SQLITE_OK.
*/
int sqlite3PagerWrite(DbPage *pDbPage){
  int rc = SQLITE_OK;

  PgHdr *pPg = pDbPage;
  Pager *pPager = pPg->pPager;


  assert( (pPg->flags & PGHDR_MMAP)==0 );
  assert( pPager->eState>=PAGER_WRITER_LOCKED );
  assert( pPager->eState!=PAGER_ERROR );
  assert( assert_pager_state(pPager) );

  if( pPager->sectorSize > pPager->pageSize ){
    Pgno nPageCount;          /* Total number of pages in database file */
    Pgno pg1;                 /* First page of the sector pPg is located on. */
    int nPage = 0;            /* Number of pages starting at pg1 to journal */
    int ii;                   /* Loop counter */
    int needSync = 0;         /* True if any page has PGHDR_NEED_SYNC */
    Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);

    /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow
    ** a journal header to be written between the pages journaled by
    ** this function.
    */
    assert( !MEMDB );
    assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 );

Changes to src/printf.c.

143
144
145
146
147
148
149








150
151
152
153
154
155
156
...
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
...
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
...
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
...
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
...
680
681
682
683
684
685
686





687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

727
728
729
730
731
732
733
734








735
736
737
738
739
740
741
...
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
    sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
    N -= sizeof(zSpaces)-1;
  }
  if( N>0 ){
    sqlite3StrAccumAppend(pAccum, zSpaces, N);
  }
}









/*
** On machines with a small stack size, you can redefine the
** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired.
*/
#ifndef SQLITE_PRINT_BUF_SIZE
# define SQLITE_PRINT_BUF_SIZE 70
................................................................................
        if( precision<etBUFSIZE-10 ){
          nOut = etBUFSIZE;
          zOut = buf;
        }else{
          nOut = precision + 10;
          zOut = zExtra = sqlite3Malloc( nOut );
          if( zOut==0 ){
            pAccum->accError = STRACCUM_NOMEM;
            return;
          }
        }
        bufpt = &zOut[nOut-1];
        if( xtype==etORDINAL ){
          static const char zOrd[] = "thstndrd";
          int x = (int)(longvalue % 10);
................................................................................
          e2 = 0;
        }else{
          e2 = exp;
        }
        if( MAX(e2,0)+precision+width > etBUFSIZE - 15 ){
          bufpt = zExtra = sqlite3Malloc( MAX(e2,0)+precision+width+15 );
          if( bufpt==0 ){
            pAccum->accError = STRACCUM_NOMEM;
            return;
          }
        }
        zOut = bufpt;
        nsd = 16 + flag_altform2*10;
        flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
        /* The sign in front of the number */
................................................................................
          if( ch==q )  n++;
        }
        needQuote = !isnull && xtype==etSQLESCAPE2;
        n += i + 1 + needQuote*2;
        if( n>etBUFSIZE ){
          bufpt = zExtra = sqlite3Malloc( n );
          if( bufpt==0 ){
            pAccum->accError = STRACCUM_NOMEM;
            return;
          }
        }else{
          bufpt = buf;
        }
        j = 0;
        if( needQuote ) bufpt[j++] = q;
................................................................................
      }
      case etSRCLIST: {
        SrcList *pSrc = va_arg(ap, SrcList*);
        int k = va_arg(ap, int);
        struct SrcList_item *pItem = &pSrc->a[k];
        assert( k>=0 && k<pSrc->nSrc );
        if( pItem->zDatabase ){
          sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
          sqlite3StrAccumAppend(pAccum, ".", 1);
        }
        sqlite3StrAccumAppend(pAccum, pItem->zName, -1);
        length = width = 0;
        break;
      }
      default: {
        assert( xtype==etINVALID );
        return;
      }
................................................................................
} /* End of function */

/*
** Append N bytes of text from z to the StrAccum object.
*/
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
  assert( z!=0 || N==0 );





  if( p->accError ){
    testcase(p->accError==STRACCUM_TOOBIG);
    testcase(p->accError==STRACCUM_NOMEM);
    return;
  }
  assert( p->zText!=0 || p->nChar==0 );
  if( N<=0 ){
    if( N==0 || z[0]==0 ) return;
    N = sqlite3Strlen30(z);
  }
  if( p->nChar+N >= p->nAlloc ){
    char *zNew;
    if( !p->useMalloc ){
      p->accError = STRACCUM_TOOBIG;
      N = p->nAlloc - p->nChar - 1;

      if( N<=0 ){
        return;
      }
    }else{
      char *zOld = (p->zText==p->zBase ? 0 : p->zText);
      i64 szNew = p->nChar;
      szNew += N + 1;
      if( szNew > p->mxAlloc ){
        sqlite3StrAccumReset(p);
        p->accError = STRACCUM_TOOBIG;
        return;
      }else{
        p->nAlloc = (int)szNew;
      }
      if( p->useMalloc==1 ){
        zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
      }else{
        zNew = sqlite3_realloc(zOld, p->nAlloc);
      }
      if( zNew ){
        if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
        p->zText = zNew;
      }else{
        p->accError = STRACCUM_NOMEM;
        sqlite3StrAccumReset(p);

        return;
      }
    }
  }
  assert( p->zText );
  memcpy(&p->zText[p->nChar], z, N);
  p->nChar += N;
}









/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string.  Return a NULL
** pointer if any kind of error was encountered.
*/
char *sqlite3StrAccumFinish(StrAccum *p){
................................................................................
        p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
      }else{
        p->zText = sqlite3_malloc(p->nChar+1);
      }
      if( p->zText ){
        memcpy(p->zText, p->zBase, p->nChar+1);
      }else{
        p->accError = STRACCUM_NOMEM;
      }
    }
  }
  return p->zText;
}

/*







>
>
>
>
>
>
>
>







 







|







 







|







 







|







 







|


|







 







>
>
>
>
>
|
|
|
|
|
<
<
<
<
<
<
<

<

>









|













<

>








>
>
>
>
>
>
>
>







 







|







143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
...
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
...
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
...
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
...
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
...
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704







705

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
...
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
    N -= sizeof(zSpaces)-1;
  }
  if( N>0 ){
    sqlite3StrAccumAppend(pAccum, zSpaces, N);
  }
}

/*
** Set the StrAccum object to an error mode.
*/
void setStrAccumError(StrAccum *p, u8 eError){
  p->accError = eError;
  p->nAlloc = 0;
}

/*
** On machines with a small stack size, you can redefine the
** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired.
*/
#ifndef SQLITE_PRINT_BUF_SIZE
# define SQLITE_PRINT_BUF_SIZE 70
................................................................................
        if( precision<etBUFSIZE-10 ){
          nOut = etBUFSIZE;
          zOut = buf;
        }else{
          nOut = precision + 10;
          zOut = zExtra = sqlite3Malloc( nOut );
          if( zOut==0 ){
            setStrAccumError(pAccum, STRACCUM_NOMEM);
            return;
          }
        }
        bufpt = &zOut[nOut-1];
        if( xtype==etORDINAL ){
          static const char zOrd[] = "thstndrd";
          int x = (int)(longvalue % 10);
................................................................................
          e2 = 0;
        }else{
          e2 = exp;
        }
        if( MAX(e2,0)+precision+width > etBUFSIZE - 15 ){
          bufpt = zExtra = sqlite3Malloc( MAX(e2,0)+precision+width+15 );
          if( bufpt==0 ){
            setStrAccumError(pAccum, STRACCUM_NOMEM);
            return;
          }
        }
        zOut = bufpt;
        nsd = 16 + flag_altform2*10;
        flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
        /* The sign in front of the number */
................................................................................
          if( ch==q )  n++;
        }
        needQuote = !isnull && xtype==etSQLESCAPE2;
        n += i + 1 + needQuote*2;
        if( n>etBUFSIZE ){
          bufpt = zExtra = sqlite3Malloc( n );
          if( bufpt==0 ){
            setStrAccumError(pAccum, STRACCUM_NOMEM);
            return;
          }
        }else{
          bufpt = buf;
        }
        j = 0;
        if( needQuote ) bufpt[j++] = q;
................................................................................
      }
      case etSRCLIST: {
        SrcList *pSrc = va_arg(ap, SrcList*);
        int k = va_arg(ap, int);
        struct SrcList_item *pItem = &pSrc->a[k];
        assert( k>=0 && k<pSrc->nSrc );
        if( pItem->zDatabase ){
          sqlite3StrAccumAppendAll(pAccum, pItem->zDatabase);
          sqlite3StrAccumAppend(pAccum, ".", 1);
        }
        sqlite3StrAccumAppendAll(pAccum, pItem->zName);
        length = width = 0;
        break;
      }
      default: {
        assert( xtype==etINVALID );
        return;
      }
................................................................................
} /* End of function */

/*
** Append N bytes of text from z to the StrAccum object.
*/
void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
  assert( z!=0 || N==0 );
  assert( p->zText!=0 || p->nChar==0 || p->accError );
  assert( N>=0 );
  assert( p->accError==0 || p->nAlloc==0 );
  if( p->nChar+N >= p->nAlloc ){
    char *zNew;
    if( p->accError ){
      testcase(p->accError==STRACCUM_TOOBIG);
      testcase(p->accError==STRACCUM_NOMEM);
      return;
    }







    if( !p->useMalloc ){

      N = p->nAlloc - p->nChar - 1;
      setStrAccumError(p, STRACCUM_TOOBIG);
      if( N<=0 ){
        return;
      }
    }else{
      char *zOld = (p->zText==p->zBase ? 0 : p->zText);
      i64 szNew = p->nChar;
      szNew += N + 1;
      if( szNew > p->mxAlloc ){
        sqlite3StrAccumReset(p);
        setStrAccumError(p, STRACCUM_TOOBIG);
        return;
      }else{
        p->nAlloc = (int)szNew;
      }
      if( p->useMalloc==1 ){
        zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
      }else{
        zNew = sqlite3_realloc(zOld, p->nAlloc);
      }
      if( zNew ){
        if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
        p->zText = zNew;
      }else{

        sqlite3StrAccumReset(p);
        setStrAccumError(p, STRACCUM_NOMEM);
        return;
      }
    }
  }
  assert( p->zText );
  memcpy(&p->zText[p->nChar], z, N);
  p->nChar += N;
}

/*
** Append the complete text of zero-terminated string z[] to the p string.
*/
void sqlite3StrAccumAppendAll(StrAccum *p, const char *z){
  return sqlite3StrAccumAppend(p, z, sqlite3Strlen30(z));
}


/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string.  Return a NULL
** pointer if any kind of error was encountered.
*/
char *sqlite3StrAccumFinish(StrAccum *p){
................................................................................
        p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
      }else{
        p->zText = sqlite3_malloc(p->nChar+1);
      }
      if( p->zText ){
        memcpy(p->zText, p->zBase, p->nChar+1);
      }else{
        setStrAccumError(p, STRACCUM_NOMEM);
      }
    }
  }
  return p->zText;
}

/*

Changes to src/sqliteInt.h.

3218
3219
3220
3221
3222
3223
3224

3225
3226
3227
3228
3229
3230
3231
  FuncDestructor *pDestructor
);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);

void sqlite3StrAccumInit(StrAccum*, char*, int, int);
void sqlite3StrAccumAppend(StrAccum*,const char*,int);

void sqlite3AppendSpace(StrAccum*,int);
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumReset(StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);

void sqlite3BackupRestart(sqlite3_backup *);







>







3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
  FuncDestructor *pDestructor
);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);

void sqlite3StrAccumInit(StrAccum*, char*, int, int);
void sqlite3StrAccumAppend(StrAccum*,const char*,int);
void sqlite3StrAccumAppendAll(StrAccum*,const char*);
void sqlite3AppendSpace(StrAccum*,int);
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumReset(StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);

void sqlite3BackupRestart(sqlite3_backup *);

Changes to src/vdbe.c.

2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
....
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608



2609



2610
2611
2612

2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
....
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
      pDest->z = sMem.z;
      pDest->zMalloc = sMem.zMalloc;
    }
  }
  pDest->enc = encoding;

op_column_out:
  rc = sqlite3VdbeMemMakeWriteable(pDest);
op_column_error:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
................................................................................
  pOut = &aMem[pOp->p3];
  memAboutToChange(p, pOut);

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    assert( memIsValid(pRec) );
    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
    }
    if( (pRec->flags&MEM_Zero)!=0 && pRec->n>0 ){



      sqlite3VdbeMemExpandBlob(pRec);



    }
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    len = sqlite3VdbeSerialTypeLen(serial_type);

    nData += len;
    testcase( serial_type==127 );
    testcase( serial_type==128 );
    nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
    if( pRec->flags & MEM_Zero ){
      /* Only pure zero-filled BLOBs can be input to this Opcode.
      ** We do not allow blobs with a prefix and a zero-filled tail. */
      nZero += pRec->u.nZero;
    }else if( len ){
      nZero = 0;
    }
  }while( (++pRec)<=pLast );

  /* Add the initial header varint and total the size */
  testcase( nHdr==126 );
  testcase( nHdr==127 );
  if( nHdr<=126 ){
    /* The common case */
    nHdr += 1;
  }else{
    /* Rare case of a really large header */
    nVarint = sqlite3VarintLen(nHdr);
    nHdr += nVarint;
    if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
  }
  nByte = nHdr+nData-nZero;
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  /* Make sure the output register has a buffer large enough to store 
  ** the new record. The output register (pOp->p3) is not allowed to
  ** be one of the input registers (because the following call to
................................................................................
  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
    j += sqlite3VdbeSerialPut(&zNewRecord[j], (int)(nByte-j), pRec,file_format);
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob | MEM_Dyn;







|







 







|





|
>
>
>
|
>
>
>
|
<
<
>




|
<
<
<
<
<
<
<













|







 







|
|







2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
....
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616


2617
2618
2619
2620
2621
2622







2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
....
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
      pDest->z = sMem.z;
      pDest->zMalloc = sMem.zMalloc;
    }
  }
  pDest->enc = encoding;

op_column_out:
  Deephemeralize(pDest);
op_column_error:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
................................................................................
  pOut = &aMem[pOp->p3];
  memAboutToChange(p, pOut);

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  assert( pData0<=pLast );
  pRec = pLast;
  do{
    assert( memIsValid(pRec) );
    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
    }
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    len = sqlite3VdbeSerialTypeLen(serial_type);
    if( pRec->flags & MEM_Zero ){
      if( nData ){
        sqlite3VdbeMemExpandBlob(pRec);
      }else{
        nZero += pRec->u.nZero;
        len -= pRec->u.nZero;
      }


    }
    nData += len;
    testcase( serial_type==127 );
    testcase( serial_type==128 );
    nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
  }while( (--pRec)>=pData0 );








  /* Add the initial header varint and total the size */
  testcase( nHdr==126 );
  testcase( nHdr==127 );
  if( nHdr<=126 ){
    /* The common case */
    nHdr += 1;
  }else{
    /* Rare case of a really large header */
    nVarint = sqlite3VarintLen(nHdr);
    nHdr += nVarint;
    if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
  }
  nByte = nHdr+nData;
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  /* Make sure the output register has a buffer large enough to store 
  ** the new record. The output register (pOp->p3) is not allowed to
  ** be one of the input registers (because the following call to
................................................................................
  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
    j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, file_format); /* content */
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob | MEM_Dyn;

Changes to src/vdbeInt.h.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
void sqliteVdbePopStack(Vdbe*,int);
int sqlite3VdbeCursorMoveto(VdbeCursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);







|







385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
void sqliteVdbePopStack(Vdbe*,int);
int sqlite3VdbeCursorMoveto(VdbeCursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, int);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);

Changes to src/vdbeaux.c.

2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
....
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
#endif

/*
** Write the serialized data blob for the value stored in pMem into 
** buf. It is assumed that the caller has allocated sufficient space.
** Return the number of bytes written.
**
** nBuf is the amount of space left in buf[].  nBuf must always be
** large enough to hold the entire field.  Except, if the field is
** a blob with a zero-filled tail, then buf[] might be just the right
** size to hold everything except for the zero-filled tail.  If buf[]
** is only big enough to hold the non-zero prefix, then only write that
** prefix into buf[].  But if buf[] is large enough to hold both the
** prefix and the tail then write the prefix and set the tail to all
** zeros.
**
** Return the number of bytes actually written into buf[].  The number
** of bytes in the zero-filled tail is included in the return value only
** if those bytes were zeroed in buf[].
*/ 
u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
  u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
  u32 len;

  /* Integer and Real */
  if( serial_type<=7 && serial_type>0 ){
    u64 v;
    u32 i;
................................................................................
      assert( sizeof(v)==sizeof(pMem->r) );
      memcpy(&v, &pMem->r, sizeof(v));
      swapMixedEndianFloat(v);
    }else{
      v = pMem->u.i;
    }
    len = i = sqlite3VdbeSerialTypeLen(serial_type);
    assert( len<=(u32)nBuf );
    while( i-- ){
      buf[i] = (u8)(v&0xFF);
      v >>= 8;
    }
    return len;
  }

  /* String or blob */
  if( serial_type>=12 ){
    assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
             == (int)sqlite3VdbeSerialTypeLen(serial_type) );
    assert( pMem->n<=nBuf );
    len = pMem->n;
    memcpy(buf, pMem->z, len);
    if( pMem->flags & MEM_Zero ){
      len += pMem->u.nZero;
      assert( nBuf>=0 );
      if( len > (u32)nBuf ){
        len = (u32)nBuf;
      }
      memset(&buf[pMem->n], 0, len-pMem->n);
    }
    return len;
  }

  /* NULL or constants 0 or 1 */
  return 0;
}








|
|
|
<
<
<
<
<





|







 







<











<


<
<
<
<
<
<
<
<







2823
2824
2825
2826
2827
2828
2829
2830
2831
2832





2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
....
2847
2848
2849
2850
2851
2852
2853

2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864

2865
2866








2867
2868
2869
2870
2871
2872
2873
#endif

/*
** Write the serialized data blob for the value stored in pMem into 
** buf. It is assumed that the caller has allocated sufficient space.
** Return the number of bytes written.
**
** nBuf is the amount of space left in buf[].  The caller is responsible
** for allocating enough space to buf[] to hold the entire field, exclusive
** of the pMem->u.nZero bytes for a MEM_Zero value.





**
** Return the number of bytes actually written into buf[].  The number
** of bytes in the zero-filled tail is included in the return value only
** if those bytes were zeroed in buf[].
*/ 
u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, int file_format){
  u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
  u32 len;

  /* Integer and Real */
  if( serial_type<=7 && serial_type>0 ){
    u64 v;
    u32 i;
................................................................................
      assert( sizeof(v)==sizeof(pMem->r) );
      memcpy(&v, &pMem->r, sizeof(v));
      swapMixedEndianFloat(v);
    }else{
      v = pMem->u.i;
    }
    len = i = sqlite3VdbeSerialTypeLen(serial_type);

    while( i-- ){
      buf[i] = (u8)(v&0xFF);
      v >>= 8;
    }
    return len;
  }

  /* String or blob */
  if( serial_type>=12 ){
    assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
             == (int)sqlite3VdbeSerialTypeLen(serial_type) );

    len = pMem->n;
    memcpy(buf, pMem->z, len);








    return len;
  }

  /* NULL or constants 0 or 1 */
  return 0;
}

Changes to src/vdbemem.c.

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
  nRet = 1 + nSerial + nVal;
  aRet = sqlite3DbMallocRaw(db, nRet);
  if( aRet==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    aRet[0] = nSerial+1;
    sqlite3PutVarint(&aRet[1], iSerial);
    sqlite3VdbeSerialPut(&aRet[1+nSerial], nVal, argv[0], file_format);
    sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
    sqlite3DbFree(db, aRet);
  }
}

/*
** Register built-in functions used to help read ANALYZE data.







|







1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
  nRet = 1 + nSerial + nVal;
  aRet = sqlite3DbMallocRaw(db, nRet);
  if( aRet==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    aRet[0] = nSerial+1;
    sqlite3PutVarint(&aRet[1], iSerial);
    sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], file_format);
    sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
    sqlite3DbFree(db, aRet);
  }
}

/*
** Register built-in functions used to help read ANALYZE data.

Changes to src/where.c.

2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
....
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
static void explainAppendTerm(
  StrAccum *pStr,             /* The text expression being built */
  int iTerm,                  /* Index of this term.  First is zero */
  const char *zColumn,        /* Name of the column */
  const char *zOp             /* Name of the operator */
){
  if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
  sqlite3StrAccumAppend(pStr, zColumn, -1);
  sqlite3StrAccumAppend(pStr, zOp, 1);
  sqlite3StrAccumAppend(pStr, "?", 1);
}

/*
** Argument pLevel describes a strategy for scanning table pTab. This 
** function returns a pointer to a string buffer containing a description
................................................................................
  for(i=0; i<nEq; i++){
    char *z = (i==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[i]].zName;
    if( i>=nSkip ){
      explainAppendTerm(&txt, i, z, "=");
    }else{
      if( i ) sqlite3StrAccumAppend(&txt, " AND ", 5);
      sqlite3StrAccumAppend(&txt, "ANY(", 4);
      sqlite3StrAccumAppend(&txt, z, -1);
      sqlite3StrAccumAppend(&txt, ")", 1);
    }
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    char *z = (j==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[j]].zName;







|







 







|







2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
....
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
static void explainAppendTerm(
  StrAccum *pStr,             /* The text expression being built */
  int iTerm,                  /* Index of this term.  First is zero */
  const char *zColumn,        /* Name of the column */
  const char *zOp             /* Name of the operator */
){
  if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
  sqlite3StrAccumAppendAll(pStr, zColumn);
  sqlite3StrAccumAppend(pStr, zOp, 1);
  sqlite3StrAccumAppend(pStr, "?", 1);
}

/*
** Argument pLevel describes a strategy for scanning table pTab. This 
** function returns a pointer to a string buffer containing a description
................................................................................
  for(i=0; i<nEq; i++){
    char *z = (i==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[i]].zName;
    if( i>=nSkip ){
      explainAppendTerm(&txt, i, z, "=");
    }else{
      if( i ) sqlite3StrAccumAppend(&txt, " AND ", 5);
      sqlite3StrAccumAppend(&txt, "ANY(", 4);
      sqlite3StrAccumAppendAll(&txt, z);
      sqlite3StrAccumAppend(&txt, ")", 1);
    }
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    char *z = (j==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[j]].zName;

Changes to test/win32longpath.test.

14
15
16
17
18
19
20




21
22
23
24
25
26




27
28
29
30
31
32
33
..
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
..
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#

if {$tcl_platform(platform)!="windows"} return

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix win32longpath





db close
set path [file nativename [get_pwd]]
sqlite3 db [file join $path test.db] -vfs win32-longpath

do_test 1.1 {




  db eval {
    BEGIN EXCLUSIVE;
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(1);
    INSERT INTO t1 VALUES(2);
    INSERT INTO t1 VALUES(3);
    INSERT INTO t1 VALUES(4);
................................................................................
make_win32_dir $longPath(2)

set longPath(3) $longPath(2)\\[string repeat Y 255]
make_win32_dir $longPath(3)

set fileName $longPath(3)\\test.db

do_test 1.2 {
  list [catch {sqlite3 db2 [string range $fileName 4 end]} msg] $msg
} {1 {unable to open database file}}

sqlite3 db3 $fileName -vfs win32-longpath

do_test 1.3 {
  db3 eval {
    BEGIN EXCLUSIVE;
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(5);
    INSERT INTO t1 VALUES(6);
    INSERT INTO t1 VALUES(7);
    INSERT INTO t1 VALUES(8);
................................................................................
} {5 6 7 8}

db3 close
# puts "  Database exists \{[exists_win32_path $fileName]\}"

sqlite3 db3 $fileName -vfs win32-longpath

do_test 1.4 {
  db3 eval {
    PRAGMA journal_mode = WAL;
  }
} {wal}

do_test 1.5 {
  db3 eval {
    BEGIN EXCLUSIVE;
    INSERT INTO t1 VALUES(9);
    INSERT INTO t1 VALUES(10);
    INSERT INTO t1 VALUES(11);
    INSERT INTO t1 VALUES(12);
    SELECT x FROM t1 ORDER BY x;







>
>
>
>






>
>
>
>







 







|





|







 







|





|







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
..
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
..
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#

if {$tcl_platform(platform)!="windows"} return

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix win32longpath

do_test 1.0 {
  file_control_vfsname db
} win32

db close
set path [file nativename [get_pwd]]
sqlite3 db [file join $path test.db] -vfs win32-longpath

do_test 1.1 {
  file_control_vfsname db
} win32-longpath

do_test 1.2 {
  db eval {
    BEGIN EXCLUSIVE;
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(1);
    INSERT INTO t1 VALUES(2);
    INSERT INTO t1 VALUES(3);
    INSERT INTO t1 VALUES(4);
................................................................................
make_win32_dir $longPath(2)

set longPath(3) $longPath(2)\\[string repeat Y 255]
make_win32_dir $longPath(3)

set fileName $longPath(3)\\test.db

do_test 1.3 {
  list [catch {sqlite3 db2 [string range $fileName 4 end]} msg] $msg
} {1 {unable to open database file}}

sqlite3 db3 $fileName -vfs win32-longpath

do_test 1.4 {
  db3 eval {
    BEGIN EXCLUSIVE;
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(5);
    INSERT INTO t1 VALUES(6);
    INSERT INTO t1 VALUES(7);
    INSERT INTO t1 VALUES(8);
................................................................................
} {5 6 7 8}

db3 close
# puts "  Database exists \{[exists_win32_path $fileName]\}"

sqlite3 db3 $fileName -vfs win32-longpath

do_test 1.5 {
  db3 eval {
    PRAGMA journal_mode = WAL;
  }
} {wal}

do_test 1.6 {
  db3 eval {
    BEGIN EXCLUSIVE;
    INSERT INTO t1 VALUES(9);
    INSERT INTO t1 VALUES(10);
    INSERT INTO t1 VALUES(11);
    INSERT INTO t1 VALUES(12);
    SELECT x FROM t1 ORDER BY x;