Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge updates from trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | expShell |
Files: | files | file ages | folders |
SHA1: |
3e363f405655e2e39588029d797496a9 |
User & Date: | mistachkin 2015-03-19 14:46:52.931 |
Context
2015-03-21
| ||
02:34 | Merge updates from trunk. (check-in: 441a00e70d user: mistachkin tags: expShell) | |
2015-03-19
| ||
14:46 | Merge updates from trunk. (check-in: 3e363f4056 user: mistachkin tags: expShell) | |
13:30 | Fix a bug in error handling in the ".trace" command of the command-line shell. (check-in: 6a48b5d794 user: drh tags: trunk) | |
2015-02-27
| ||
19:40 | Merge updates from trunk. (check-in: acf7684323 user: mistachkin tags: expShell) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
283 284 285 286 287 288 289 290 291 292 293 294 295 296 | $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbesort.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vtab.c \ $(TOP)/src/wal.c \ $(TOP)/src/wal.h \ $(TOP)/src/walker.c \ $(TOP)/src/where.c \ $(TOP)/src/whereInt.h # Source code for extensions | > | 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbesort.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vtab.c \ $(TOP)/src/vxworks.h \ $(TOP)/src/wal.c \ $(TOP)/src/wal.h \ $(TOP)/src/walker.c \ $(TOP)/src/where.c \ $(TOP)/src/whereInt.h # Source code for extensions |
︙ | ︙ | |||
478 479 480 481 482 483 484 485 486 487 488 489 490 491 | $(TOP)/src/pragma.h \ sqlite3.h \ $(TOP)/src/sqlite3ext.h \ $(TOP)/src/sqliteInt.h \ $(TOP)/src/sqliteLimit.h \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/whereInt.h \ config.h # Header files used by extensions # EXTHDR += \ $(TOP)/ext/fts1/fts1.h \ | > | 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | $(TOP)/src/pragma.h \ sqlite3.h \ $(TOP)/src/sqlite3ext.h \ $(TOP)/src/sqliteInt.h \ $(TOP)/src/sqliteLimit.h \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vxworks.h \ $(TOP)/src/whereInt.h \ config.h # Header files used by extensions # EXTHDR += \ $(TOP)/ext/fts1/fts1.h \ |
︙ | ︙ | |||
534 535 536 537 538 539 540 541 | -o $@ $(TOP)/src/shell.c libsqlite3.la \ $(LIBREADLINE) $(TLIBS) -rpath "$(libdir)" mptester$(EXE): sqlite3.c $(TOP)/mptest/mptest.c $(LTLINK) -o $@ -I. $(TOP)/mptest/mptest.c sqlite3.c \ $(TLIBS) -rpath "$(libdir)" mptest: mptester$(EXE) | > > | > > > > > > > > | < < | 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 | -o $@ $(TOP)/src/shell.c libsqlite3.la \ $(LIBREADLINE) $(TLIBS) -rpath "$(libdir)" mptester$(EXE): sqlite3.c $(TOP)/mptest/mptest.c $(LTLINK) -o $@ -I. $(TOP)/mptest/mptest.c sqlite3.c \ $(TLIBS) -rpath "$(libdir)" MPTEST1=./mptester$(EXE) mptest.db $(TOP)/mptest/crash01.test --repeat 20 MPTEST2=./mptester$(EXE) mptest.db $(TOP)/mptest/multiwrite01.test --repeat 20 mptest: mptester$(EXE) rm -f mptest.db $(MPTEST1) --journalmode DELETE $(MPTEST2) --journalmode WAL $(MPTEST1) --journalmode WAL $(MPTEST2) --journalmode PERSIST $(MPTEST1) --journalmode PERSIST $(MPTEST2) --journalmode TRUNCATE $(MPTEST1) --journalmode TRUNCATE $(MPTEST2) --journalmode DELETE # This target creates a directory named "tsrc" and fills it with # copies of all of the C source code and header files needed to # build on the target system. Some of the C source code and header # files are automatically generated. This target takes care of # all that automatic generation. # |
︙ | ︙ |
Changes to Makefile.msc.
︙ | ︙ | |||
801 802 803 804 805 806 807 808 809 810 811 812 813 814 | $(TOP)\src\vdbeaux.c \ $(TOP)\src\vdbeblob.c \ $(TOP)\src\vdbemem.c \ $(TOP)\src\vdbesort.c \ $(TOP)\src\vdbetrace.c \ $(TOP)\src\vdbeInt.h \ $(TOP)\src\vtab.c \ $(TOP)\src\wal.c \ $(TOP)\src\wal.h \ $(TOP)\src\walker.c \ $(TOP)\src\where.c \ $(TOP)\src\whereInt.h # Source code for extensions | > | 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 | $(TOP)\src\vdbeaux.c \ $(TOP)\src\vdbeblob.c \ $(TOP)\src\vdbemem.c \ $(TOP)\src\vdbesort.c \ $(TOP)\src\vdbetrace.c \ $(TOP)\src\vdbeInt.h \ $(TOP)\src\vtab.c \ $(TOP)\src\vxworks.h \ $(TOP)\src\wal.c \ $(TOP)\src\wal.h \ $(TOP)\src\walker.c \ $(TOP)\src\where.c \ $(TOP)\src\whereInt.h # Source code for extensions |
︙ | ︙ | |||
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 | $(TOP)\src\pragma.h \ sqlite3.h \ $(TOP)\src\sqlite3ext.h \ $(TOP)\src\sqliteInt.h \ $(TOP)\src\sqliteLimit.h \ $(TOP)\src\vdbe.h \ $(TOP)\src\vdbeInt.h \ $(TOP)\src\whereInt.h # Header files used by extensions # EXTHDR = $(EXTHDR) \ $(TOP)\ext\fts1\fts1.h \ $(TOP)\ext\fts1\fts1_hash.h \ | > | 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 | $(TOP)\src\pragma.h \ sqlite3.h \ $(TOP)\src\sqlite3ext.h \ $(TOP)\src\sqliteInt.h \ $(TOP)\src\sqliteLimit.h \ $(TOP)\src\vdbe.h \ $(TOP)\src\vdbeInt.h \ $(TOP)\src\vxworks.h \ $(TOP)\src\whereInt.h # Header files used by extensions # EXTHDR = $(EXTHDR) \ $(TOP)\ext\fts1\fts1.h \ $(TOP)\ext\fts1\fts1_hash.h \ |
︙ | ︙ |
Changes to VERSION.
|
| | | 1 | 3.8.9 |
Changes to configure.
1 2 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. | | | 1 2 3 4 5 6 7 8 9 10 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.62 for sqlite 3.8.9. # # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, # 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## --------------------- ## ## M4sh Initialization. ## |
︙ | ︙ | |||
739 740 741 742 743 744 745 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' | | | | 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' PACKAGE_VERSION='3.8.9' PACKAGE_STRING='sqlite 3.8.9' PACKAGE_BUGREPORT='' # Factoring default headers for most tests. ac_includes_default="\ #include <stdio.h> #ifdef HAVE_SYS_TYPES_H # include <sys/types.h> |
︙ | ︙ | |||
1476 1477 1478 1479 1480 1481 1482 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF | | | 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures sqlite 3.8.9 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. |
︙ | ︙ | |||
1541 1542 1543 1544 1545 1546 1547 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in | | | 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of sqlite 3.8.9:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] |
︙ | ︙ | |||
1655 1656 1657 1658 1659 1660 1661 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF | | | | 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF sqlite configure 3.8.9 generated by GNU Autoconf 2.62 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by sqlite $as_me 3.8.9, which was generated by GNU Autoconf 2.62. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { |
︙ | ︙ | |||
13947 13948 13949 13950 13951 13952 13953 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" | | | 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by sqlite $as_me 3.8.9, which was generated by GNU Autoconf 2.62. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ |
︙ | ︙ | |||
14000 14001 14002 14003 14004 14005 14006 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ | | | 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ sqlite config.status 3.8.9 configured by $0, generated by GNU Autoconf 2.62, with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\" Copyright (C) 2008 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." |
︙ | ︙ |
Changes to ext/fts3/fts3_snippet.c.
︙ | ︙ | |||
1249 1250 1251 1252 1253 1254 1255 | /* Loop through all columns of the table being considered for snippets. ** If the iCol argument to this function was negative, this means all ** columns of the FTS3 table. Otherwise, only column iCol is considered. */ for(iRead=0; iRead<pTab->nColumn; iRead++){ SnippetFragment sF = {0, 0, 0, 0}; | | | 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 | /* Loop through all columns of the table being considered for snippets. ** If the iCol argument to this function was negative, this means all ** columns of the FTS3 table. Otherwise, only column iCol is considered. */ for(iRead=0; iRead<pTab->nColumn; iRead++){ SnippetFragment sF = {0, 0, 0, 0}; int iS = 0; if( iCol>=0 && iRead!=iCol ) continue; /* Find the best snippet of nFToken tokens in column iRead. */ rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS); if( rc!=SQLITE_OK ){ goto snippet_out; } |
︙ | ︙ |
Changes to main.mk.
︙ | ︙ | |||
161 162 163 164 165 166 167 168 169 170 171 172 173 174 | $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbesort.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vtab.c \ $(TOP)/src/wal.c \ $(TOP)/src/wal.h \ $(TOP)/src/walker.c \ $(TOP)/src/where.c \ $(TOP)/src/whereInt.h # Source code for extensions | > | 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbesort.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vtab.c \ $(TOP)/src/vxworks.h \ $(TOP)/src/wal.c \ $(TOP)/src/wal.h \ $(TOP)/src/walker.c \ $(TOP)/src/where.c \ $(TOP)/src/whereInt.h # Source code for extensions |
︙ | ︙ | |||
360 361 362 363 364 365 366 367 368 369 370 371 372 373 | $(TOP)/src/pragma.h \ sqlite3.h \ $(TOP)/src/sqlite3ext.h \ $(TOP)/src/sqliteInt.h \ $(TOP)/src/sqliteLimit.h \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/whereInt.h # Header files used by extensions # EXTHDR += \ $(TOP)/ext/fts1/fts1.h \ $(TOP)/ext/fts1/fts1_hash.h \ | > | 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | $(TOP)/src/pragma.h \ sqlite3.h \ $(TOP)/src/sqlite3ext.h \ $(TOP)/src/sqliteInt.h \ $(TOP)/src/sqliteLimit.h \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vxworks.h \ $(TOP)/src/whereInt.h # Header files used by extensions # EXTHDR += \ $(TOP)/ext/fts1/fts1.h \ $(TOP)/ext/fts1/fts1_hash.h \ |
︙ | ︙ |
Changes to mptest/crash01.test.
︙ | ︙ | |||
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | SELECT a FROM t1 WHERE b='x17y'; --match 17 SELECT a FROM t1 WHERE b GLOB 'x2?y' ORDER BY b DESC LIMIT 5; --match 29 28 27 26 25 --end --wait 1 --task 2 CREATE TABLE t2(a INTEGER PRIMARY KEY, b); INSERT INTO t2 SELECT a, b FROM t1; UPDATE t1 SET b='x'||a||'y'; SELECT sum(length(b)) FROM t2; --match 247 SELECT a FROM t2 WHERE b='x17y'; --match 17 CREATE INDEX t2b ON t2(b); SELECT a FROM t2 WHERE b='x17y'; --match 17 SELECT a FROM t2 WHERE b GLOB 'x2?y' ORDER BY b DESC LIMIT 5; --match 29 28 27 26 25 --end --task 3 CREATE TABLE t3(a INTEGER PRIMARY KEY, b); INSERT INTO t3 SELECT a, b FROM t1; UPDATE t1 SET b='x'||a||'y'; SELECT sum(length(b)) FROM t3; --match 247 SELECT a FROM t3 WHERE b='x17y'; --match 17 CREATE INDEX t3b ON t3(b); SELECT a FROM t3 WHERE b='x17y'; --match 17 SELECT a FROM t3 WHERE b GLOB 'x2?y' ORDER BY b DESC LIMIT 5; --match 29 28 27 26 25 --end --task 4 CREATE TABLE t4(a INTEGER PRIMARY KEY, b); INSERT INTO t4 SELECT a, b FROM t1; UPDATE t1 SET b='x'||a||'y'; SELECT sum(length(b)) FROM t4; --match 247 SELECT a FROM t4 WHERE b='x17y'; --match 17 CREATE INDEX t4b ON t4(b); SELECT a FROM t4 WHERE b='x17y'; --match 17 SELECT a FROM t4 WHERE b GLOB 'x2?y' ORDER BY b DESC LIMIT 5; --match 29 28 27 26 25 --end --task 5 CREATE TABLE t5(a INTEGER PRIMARY KEY, b); INSERT INTO t5 SELECT a, b FROM t1; UPDATE t1 SET b='x'||a||'y'; SELECT sum(length(b)) FROM t5; --match 247 SELECT a FROM t5 WHERE b='x17y'; --match 17 | > > > > | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | SELECT a FROM t1 WHERE b='x17y'; --match 17 SELECT a FROM t1 WHERE b GLOB 'x2?y' ORDER BY b DESC LIMIT 5; --match 29 28 27 26 25 --end --wait 1 --task 2 DROP TABLE IF EXISTS t2; CREATE TABLE t2(a INTEGER PRIMARY KEY, b); INSERT INTO t2 SELECT a, b FROM t1; UPDATE t1 SET b='x'||a||'y'; SELECT sum(length(b)) FROM t2; --match 247 SELECT a FROM t2 WHERE b='x17y'; --match 17 CREATE INDEX t2b ON t2(b); SELECT a FROM t2 WHERE b='x17y'; --match 17 SELECT a FROM t2 WHERE b GLOB 'x2?y' ORDER BY b DESC LIMIT 5; --match 29 28 27 26 25 --end --task 3 DROP TABLE IF EXISTS t3; CREATE TABLE t3(a INTEGER PRIMARY KEY, b); INSERT INTO t3 SELECT a, b FROM t1; UPDATE t1 SET b='x'||a||'y'; SELECT sum(length(b)) FROM t3; --match 247 SELECT a FROM t3 WHERE b='x17y'; --match 17 CREATE INDEX t3b ON t3(b); SELECT a FROM t3 WHERE b='x17y'; --match 17 SELECT a FROM t3 WHERE b GLOB 'x2?y' ORDER BY b DESC LIMIT 5; --match 29 28 27 26 25 --end --task 4 DROP TABLE IF EXISTS t4; CREATE TABLE t4(a INTEGER PRIMARY KEY, b); INSERT INTO t4 SELECT a, b FROM t1; UPDATE t1 SET b='x'||a||'y'; SELECT sum(length(b)) FROM t4; --match 247 SELECT a FROM t4 WHERE b='x17y'; --match 17 CREATE INDEX t4b ON t4(b); SELECT a FROM t4 WHERE b='x17y'; --match 17 SELECT a FROM t4 WHERE b GLOB 'x2?y' ORDER BY b DESC LIMIT 5; --match 29 28 27 26 25 --end --task 5 DROP TABLE IF EXISTS t5; CREATE TABLE t5(a INTEGER PRIMARY KEY, b); INSERT INTO t5 SELECT a, b FROM t1; UPDATE t1 SET b='x'||a||'y'; SELECT sum(length(b)) FROM t5; --match 247 SELECT a FROM t5 WHERE b='x17y'; --match 17 |
︙ | ︙ |
Changes to mptest/mptest.c.
︙ | ︙ | |||
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 | int n, i; int openFlags = SQLITE_OPEN_READWRITE; int rc; char *zScript; int taskId; const char *zTrace; const char *zCOption; g.argv0 = argv[0]; g.iTrace = 1; if( argc<2 ) usage(argv[0]); g.zDbFile = argv[1]; if( strglob("*.test", g.zDbFile) ) usage(argv[0]); if( strcmp(sqlite3_sourceid(), SQLITE_SOURCE_ID)!=0 ){ fprintf(stderr, "SQLite library and header mismatch\n" "Library: %s\n" "Header: %s\n", sqlite3_sourceid(), SQLITE_SOURCE_ID); exit(1); } n = argc-2; sqlite3_snprintf(sizeof(g.zName), g.zName, "%05d.mptest", GETPID()); g.zVfs = findOption(argv+2, &n, "vfs", 1); zClient = findOption(argv+2, &n, "client", 1); g.zErrLog = findOption(argv+2, &n, "errlog", 1); g.zLog = findOption(argv+2, &n, "log", 1); zTrace = findOption(argv+2, &n, "trace", 1); if( zTrace ) g.iTrace = atoi(zTrace); if( findOption(argv+2, &n, "quiet", 0)!=0 ) g.iTrace = 0; | > > > > > > > | 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 | int n, i; int openFlags = SQLITE_OPEN_READWRITE; int rc; char *zScript; int taskId; const char *zTrace; const char *zCOption; const char *zJMode; const char *zNRep; int nRep = 1, iRep; g.argv0 = argv[0]; g.iTrace = 1; if( argc<2 ) usage(argv[0]); g.zDbFile = argv[1]; if( strglob("*.test", g.zDbFile) ) usage(argv[0]); if( strcmp(sqlite3_sourceid(), SQLITE_SOURCE_ID)!=0 ){ fprintf(stderr, "SQLite library and header mismatch\n" "Library: %s\n" "Header: %s\n", sqlite3_sourceid(), SQLITE_SOURCE_ID); exit(1); } n = argc-2; sqlite3_snprintf(sizeof(g.zName), g.zName, "%05d.mptest", GETPID()); zJMode = findOption(argv+2, &n, "journalmode", 1); zNRep = findOption(argv+2, &n, "repeat", 1); if( zNRep ) nRep = atoi(zNRep); if( nRep<1 ) nRep = 1; g.zVfs = findOption(argv+2, &n, "vfs", 1); zClient = findOption(argv+2, &n, "client", 1); g.zErrLog = findOption(argv+2, &n, "errlog", 1); g.zLog = findOption(argv+2, &n, "log", 1); zTrace = findOption(argv+2, &n, "trace", 1); if( zTrace ) g.iTrace = atoi(zTrace); if( findOption(argv+2, &n, "quiet", 0)!=0 ) g.iTrace = 0; |
︙ | ︙ | |||
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 | }else{ sqlite3_stmt *pStmt; int iTimeout; if( n==0 ){ fatalError("missing script filename"); } if( n>1 ) unrecognizedArguments(argv[0], n, argv+2); runSql( "CREATE TABLE task(\n" " id INTEGER PRIMARY KEY,\n" " name TEXT,\n" " client INTEGER,\n" " starttime DATE,\n" " endtime DATE,\n" " script TEXT\n" ");" "CREATE INDEX task_i1 ON task(client, starttime);\n" "CREATE INDEX task_i2 ON task(client, endtime);\n" "CREATE TABLE counters(nError,nTest);\n" "INSERT INTO counters VALUES(0,0);\n" "CREATE TABLE client(id INTEGER PRIMARY KEY, wantHalt);\n" ); zScript = readFile(argv[2]); | > > > > > | | > > < | 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 | }else{ sqlite3_stmt *pStmt; int iTimeout; if( n==0 ){ fatalError("missing script filename"); } if( n>1 ) unrecognizedArguments(argv[0], n, argv+2); if( zJMode ) runSql("PRAGMA journal_mode=%Q;", zJMode); runSql( "DROP TABLE IF EXISTS task;\n" "DROP TABLE IF EXISTS counters;\n" "DROP TABLE IF EXISTS client;\n" "CREATE TABLE task(\n" " id INTEGER PRIMARY KEY,\n" " name TEXT,\n" " client INTEGER,\n" " starttime DATE,\n" " endtime DATE,\n" " script TEXT\n" ");" "CREATE INDEX task_i1 ON task(client, starttime);\n" "CREATE INDEX task_i2 ON task(client, endtime);\n" "CREATE TABLE counters(nError,nTest);\n" "INSERT INTO counters VALUES(0,0);\n" "CREATE TABLE client(id INTEGER PRIMARY KEY, wantHalt);\n" ); zScript = readFile(argv[2]); for(iRep=1; iRep<=nRep; iRep++){ if( g.iTrace ) logMessage("begin script [%s] cycle %d\n", argv[2], iRep); runScript(0, 0, zScript, argv[2]); if( g.iTrace ) logMessage("end script [%s] cycle %d\n", argv[2], iRep); } sqlite3_free(zScript); waitForClient(0, 2000, "during shutdown...\n"); trySql("UPDATE client SET wantHalt=1"); sqlite3_sleep(10); g.iTimeout = 0; iTimeout = 1000; while( ((rc = trySql("SELECT 1 FROM client"))==SQLITE_BUSY || rc==SQLITE_ROW) && iTimeout>0 ){ |
︙ | ︙ | |||
1387 1388 1389 1390 1391 1392 1393 | } if( rc==SQLITE_ROW ){ g.nError += sqlite3_column_int(pStmt, 0); g.nTest += sqlite3_column_int(pStmt, 1); } sqlite3_finalize(pStmt); } | | | 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 | } if( rc==SQLITE_ROW ){ g.nError += sqlite3_column_int(pStmt, 0); g.nTest += sqlite3_column_int(pStmt, 1); } sqlite3_finalize(pStmt); } sqlite3_close(g.db); maybeClose(g.pLog); maybeClose(g.pErrLog); if( iClient==0 ){ printf("Summary: %d errors out of %d tests\n", g.nError, g.nTest); } return g.nError>0; } |
Changes to mptest/multiwrite01.test.
︙ | ︙ | |||
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | WHERE t2.b GLOB 'x3?y' AND t1.b=('x'||(t2.a+3)||'y') ORDER BY t1.a LIMIT 4 --match 33 34 35 36 SELECT t3.a FROM t3, t4 WHERE t4.b GLOB 'x4?y' AND t3.b=('x'||(t4.a+5)||'y') ORDER BY t3.a LIMIT 7 --match 45 46 47 48 49 50 51 --end --task 5 SELECT t1.a FROM t1, t2 WHERE t2.b GLOB 'x3?y' AND t1.b=('x'||(t2.a+3)||'y') ORDER BY t1.a LIMIT 4 --match 33 34 35 36 SELECT t3.a FROM t3, t4 WHERE t4.b GLOB 'x4?y' AND t3.b=('x'||(t4.a+5)||'y') ORDER BY t3.a LIMIT 7 --match 45 46 47 48 49 50 51 --end --task 3 SELECT t1.a FROM t1, t2 WHERE t2.b GLOB 'x3?y' AND t1.b=('x'||(t2.a+3)||'y') ORDER BY t1.a LIMIT 4 --match 33 34 35 36 SELECT t3.a FROM t3, t4 WHERE t4.b GLOB 'x4?y' AND t3.b=('x'||(t4.a+5)||'y') ORDER BY t3.a LIMIT 7 --match 45 46 47 48 49 50 51 --end --task 2 SELECT t1.a FROM t1, t2 WHERE t2.b GLOB 'x3?y' AND t1.b=('x'||(t2.a+3)||'y') ORDER BY t1.a LIMIT 4 --match 33 34 35 36 SELECT t3.a FROM t3, t4 WHERE t4.b GLOB 'x4?y' AND t3.b=('x'||(t4.a+5)||'y') ORDER BY t3.a LIMIT 7 --match 45 46 47 48 49 50 51 --end --task 4 SELECT t1.a FROM t1, t2 WHERE t2.b GLOB 'x3?y' AND t1.b=('x'||(t2.a+3)||'y') ORDER BY t1.a LIMIT 4 --match 33 34 35 36 SELECT t3.a FROM t3, t4 WHERE t4.b GLOB 'x4?y' AND t3.b=('x'||(t4.a+5)||'y') ORDER BY t3.a LIMIT 7 --match 45 46 47 48 49 50 51 --end --wait all | > > > > > > > > > > | 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | WHERE t2.b GLOB 'x3?y' AND t1.b=('x'||(t2.a+3)||'y') ORDER BY t1.a LIMIT 4 --match 33 34 35 36 SELECT t3.a FROM t3, t4 WHERE t4.b GLOB 'x4?y' AND t3.b=('x'||(t4.a+5)||'y') ORDER BY t3.a LIMIT 7 --match 45 46 47 48 49 50 51 PRAGMA integrity_check; --match ok --end --task 5 SELECT t1.a FROM t1, t2 WHERE t2.b GLOB 'x3?y' AND t1.b=('x'||(t2.a+3)||'y') ORDER BY t1.a LIMIT 4 --match 33 34 35 36 SELECT t3.a FROM t3, t4 WHERE t4.b GLOB 'x4?y' AND t3.b=('x'||(t4.a+5)||'y') ORDER BY t3.a LIMIT 7 --match 45 46 47 48 49 50 51 PRAGMA integrity_check; --match ok --end --task 3 SELECT t1.a FROM t1, t2 WHERE t2.b GLOB 'x3?y' AND t1.b=('x'||(t2.a+3)||'y') ORDER BY t1.a LIMIT 4 --match 33 34 35 36 SELECT t3.a FROM t3, t4 WHERE t4.b GLOB 'x4?y' AND t3.b=('x'||(t4.a+5)||'y') ORDER BY t3.a LIMIT 7 --match 45 46 47 48 49 50 51 PRAGMA integrity_check; --match ok --end --task 2 SELECT t1.a FROM t1, t2 WHERE t2.b GLOB 'x3?y' AND t1.b=('x'||(t2.a+3)||'y') ORDER BY t1.a LIMIT 4 --match 33 34 35 36 SELECT t3.a FROM t3, t4 WHERE t4.b GLOB 'x4?y' AND t3.b=('x'||(t4.a+5)||'y') ORDER BY t3.a LIMIT 7 --match 45 46 47 48 49 50 51 PRAGMA integrity_check; --match ok --end --task 4 SELECT t1.a FROM t1, t2 WHERE t2.b GLOB 'x3?y' AND t1.b=('x'||(t2.a+3)||'y') ORDER BY t1.a LIMIT 4 --match 33 34 35 36 SELECT t3.a FROM t3, t4 WHERE t4.b GLOB 'x4?y' AND t3.b=('x'||(t4.a+5)||'y') ORDER BY t3.a LIMIT 7 --match 45 46 47 48 49 50 51 PRAGMA integrity_check; --match ok --end --wait all |
Changes to src/alter.c.
︙ | ︙ | |||
686 687 688 689 690 691 692 | } /* Ensure the default expression is something that sqlite3ValueFromExpr() ** can handle (i.e. not CURRENT_TIME etc.) */ if( pDflt ){ sqlite3_value *pVal = 0; | > | > > | 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 | } /* Ensure the default expression is something that sqlite3ValueFromExpr() ** can handle (i.e. not CURRENT_TIME etc.) */ if( pDflt ){ sqlite3_value *pVal = 0; int rc; rc = sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal); assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); if( rc!=SQLITE_OK ){ db->mallocFailed = 1; return; } if( !pVal ){ sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default"); return; } |
︙ | ︙ |
Changes to src/func.c.
︙ | ︙ | |||
18 19 20 21 22 23 24 | #include <assert.h> #include "vdbeInt.h" /* ** Return the collating function associated with a function. */ static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ | > > | | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | #include <assert.h> #include "vdbeInt.h" /* ** Return the collating function associated with a function. */ static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ VdbeOp *pOp; assert( context->pVdbe!=0 ); pOp = &context->pVdbe->aOp[context->iOp-1]; assert( pOp->opcode==OP_CollSeq ); assert( pOp->p4type==P4_COLLSEQ ); return pOp->p4.pColl; } /* ** Indicate that the accumulator load should be skipped on this |
︙ | ︙ | |||
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 | /* ** pExpr points to an expression which implements a function. If ** it is appropriate to apply the LIKE optimization to that function ** then set aWc[0] through aWc[2] to the wildcard characters and ** return TRUE. If the function is not a LIKE-style function then ** return FALSE. */ int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ FuncDef *pDef; if( pExpr->op!=TK_FUNCTION || !pExpr->x.pList || pExpr->x.pList->nExpr!=2 ){ | > > > > > | 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 | /* ** pExpr points to an expression which implements a function. If ** it is appropriate to apply the LIKE optimization to that function ** then set aWc[0] through aWc[2] to the wildcard characters and ** return TRUE. If the function is not a LIKE-style function then ** return FALSE. ** ** *pIsNocase is set to true if uppercase and lowercase are equivalent for ** the function (default for LIKE). If the function makes the distinction ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to ** false. */ int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ FuncDef *pDef; if( pExpr->op!=TK_FUNCTION || !pExpr->x.pList || pExpr->x.pList->nExpr!=2 ){ |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
336 337 338 339 340 341 342 | switch( op ){ /* Mutex configuration options are only available in a threadsafe ** compile. */ #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ case SQLITE_CONFIG_SINGLETHREAD: { | > | | | | | | | > | | | | 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 | switch( op ){ /* Mutex configuration options are only available in a threadsafe ** compile. */ #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ case SQLITE_CONFIG_SINGLETHREAD: { /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to ** Single-thread. */ sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ case SQLITE_CONFIG_MULTITHREAD: { /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to ** Multi-thread. */ sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ case SQLITE_CONFIG_SERIALIZED: { /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to ** Serialized. */ sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ break; } #endif #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ case SQLITE_CONFIG_MUTEX: { /* Specify an alternative mutex implementation */ sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); |
︙ | ︙ | |||
467 468 469 470 471 472 473 | /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) case SQLITE_CONFIG_HEAP: { /* EVIDENCE-OF: R-19854-42126 There are three arguments to ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the | | > | 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) case SQLITE_CONFIG_HEAP: { /* EVIDENCE-OF: R-19854-42126 There are three arguments to ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the ** number of bytes in the memory buffer, and the minimum allocation size. */ sqlite3GlobalConfig.pHeap = va_arg(ap, void*); sqlite3GlobalConfig.nHeap = va_arg(ap, int); sqlite3GlobalConfig.mnReq = va_arg(ap, int); if( sqlite3GlobalConfig.mnReq<1 ){ sqlite3GlobalConfig.mnReq = 1; }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ |
︙ | ︙ | |||
572 573 574 575 576 577 578 | ** negative, then that argument is changed to its compile-time default. ** ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be ** silently truncated if necessary so that it does not exceed the ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE ** compile-time option. */ | | > > | 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | ** negative, then that argument is changed to its compile-time default. ** ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be ** silently truncated if necessary so that it does not exceed the ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE ** compile-time option. */ if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ mxMmap = SQLITE_MAX_MMAP_SIZE; } if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; if( szMmap>mxMmap) szMmap = mxMmap; sqlite3GlobalConfig.mxMmap = mxMmap; sqlite3GlobalConfig.szMmap = szMmap; break; } |
︙ | ︙ | |||
2416 2417 2418 2419 2420 2421 2422 | flags |= SQLITE_OPEN_URI; for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); zFile = sqlite3_malloc(nByte); if( !zFile ) return SQLITE_NOMEM; iIn = 5; | | > > > > > > > > > > > > | 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 | flags |= SQLITE_OPEN_URI; for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); zFile = sqlite3_malloc(nByte); if( !zFile ) return SQLITE_NOMEM; iIn = 5; #ifdef SQLITE_ALLOW_URI_AUTHORITY if( strncmp(zUri+5, "///", 3)==0 ){ iIn = 7; /* The following condition causes URIs with five leading / characters ** like file://///host/path to be converted into UNCs like //host/path. ** The correct URI for that UNC has only two or four leading / characters ** file://host/path or file:////host/path. But 5 leading slashes is a ** common error, we are told, so we handle it as a special case. */ if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; } }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){ iIn = 16; } #else /* Discard the scheme and authority segments of the URI. */ if( zUri[5]=='/' && zUri[6]=='/' ){ iIn = 7; while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", iIn-7, &zUri[7]); |
︙ | ︙ | |||
2859 2860 2861 2862 2863 2864 2865 | sqlite3GlobalConfig.nLookaside); sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); opendb_out: sqlite3_free(zOpen); if( db ){ | | > | 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 | sqlite3GlobalConfig.nLookaside); sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); opendb_out: sqlite3_free(zOpen); if( db ){ assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); sqlite3_mutex_leave(db->mutex); } rc = sqlite3_errcode(db); assert( db!=0 || rc==SQLITE_NOMEM ); if( rc==SQLITE_NOMEM ){ sqlite3_close(db); db = 0; |
︙ | ︙ | |||
3604 3605 3606 3607 3608 3609 3610 | ** not. */ case SQLITE_TESTCTRL_ISINIT: { if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; break; } | | | | | 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 | ** not. */ case SQLITE_TESTCTRL_ISINIT: { if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; break; } /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); ** ** This test control is used to create imposter tables. "db" is a pointer ** to the database connection. dbName is the database name (ex: "main" or ** "temp") which will receive the imposter. "onOff" turns imposter mode on ** or off. "tnum" is the root page of the b-tree to which the imposter ** table should connect. ** ** Enable imposter mode only when the schema has already been parsed. Then ** run a single CREATE TABLE statement to construct the imposter table in ** the parsed schema. Then turn imposter mode back off again. ** ** If onOff==0 and tnum>0 then reset the schema for all databases, causing ** the schema to be reparsed the next time it is needed. This has the ** effect of erasing all imposter tables. */ case SQLITE_TESTCTRL_IMPOSTER: { sqlite3 *db = va_arg(ap, sqlite3*); |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
67 68 69 70 71 72 73 | # if defined(__APPLE__) # define SQLITE_ENABLE_LOCKING_STYLE 1 # else # define SQLITE_ENABLE_LOCKING_STYLE 0 # endif #endif | < < < < < < < < < < < < | > > > > | > | | < < < | < | | 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | # if defined(__APPLE__) # define SQLITE_ENABLE_LOCKING_STYLE 1 # else # define SQLITE_ENABLE_LOCKING_STYLE 0 # endif #endif /* ** standard include files. */ #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <time.h> #include <sys/time.h> #include <errno.h> #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 # include <sys/mman.h> #endif #if SQLITE_ENABLE_LOCKING_STYLE # include <sys/ioctl.h> # include <sys/file.h> # include <sys/param.h> #endif /* SQLITE_ENABLE_LOCKING_STYLE */ #if OS_VXWORKS # include <sys/ioctl.h> # include <semaphore.h> # include <limits.h> #endif /* OS_VXWORKS */ #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE # include <sys/mount.h> #endif #ifdef HAVE_UTIME # include <utime.h> #endif |
︙ | ︙ | |||
144 145 146 147 148 149 150 151 152 153 154 155 156 157 | # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 #endif /* ** Maximum supported path-length. */ #define MAX_PATHNAME 512 /* ** Only set the lastErrno if the error code is a real error and not ** a normal expected return code of SQLITE_BUSY or SQLITE_OK */ #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) | > > > > | 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 #endif /* ** Maximum supported path-length. */ #define MAX_PATHNAME 512 /* Always cast the getpid() return type for compatibility with ** kernel modules in VxWorks. */ #define osGetpid(X) (pid_t)getpid() /* ** Only set the lastErrno if the error code is a real error and not ** a normal expected return code of SQLITE_BUSY or SQLITE_OK */ #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) |
︙ | ︙ | |||
233 234 235 236 237 238 239 | #endif }; /* This variable holds the process id (pid) from when the xRandomness() ** method was called. If xOpen() is called from a different process id, ** indicating that a fork() has occurred, the PRNG will be reset. */ | | > | 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | #endif }; /* This variable holds the process id (pid) from when the xRandomness() ** method was called. If xOpen() is called from a different process id, ** indicating that a fork() has occurred, the PRNG will be reset. */ static pid_t randomnessPid = 0; /* ** Allowed values for the unixFile.ctrlFlags bitmask: */ #define UNIXFILE_EXCL 0x01 /* Connections from one process only */ #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ #ifndef SQLITE_DISABLE_DIRSYNC # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ #else # define UNIXFILE_DIRSYNC 0x00 #endif #define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ #define UNIXFILE_DELETE 0x20 /* Delete on close */ #define UNIXFILE_URI 0x40 /* Filename might have query parameters */ #define UNIXFILE_NOLOCK 0x80 /* Do no file locking */ #define UNIXFILE_WARNED 0x0100 /* verifyDbFile() warnings issued */ #define UNIXFILE_BLOCK 0x0200 /* Next SHM lock might block */ /* ** Include code that is common to all os_*.c files */ #include "os_common.h" /* |
︙ | ︙ | |||
381 382 383 384 385 386 387 | { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) { "read", (sqlite3_syscall_ptr)read, 0 }, #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) | | | | 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) { "read", (sqlite3_syscall_ptr)read, 0 }, #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE { "pread", (sqlite3_syscall_ptr)pread, 0 }, #else { "pread", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) #if defined(USE_PREAD64) { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, #else { "pread64", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent) { "write", (sqlite3_syscall_ptr)write, 0 }, #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, #else { "pwrite", (sqlite3_syscall_ptr)0, 0 }, #endif #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ aSyscall[12].pCurrent) |
︙ | ︙ | |||
1537 1538 1539 1540 1541 1542 1543 | unixInodeInfo *pInode; struct flock lock; int tErrno = 0; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), | | > | 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 | unixInodeInfo *pInode; struct flock lock; int tErrno = 0; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared, osGetpid())); /* If there is already a lock of this type or more restrictive on the ** unixFile, do nothing. Don't use the end_lock: exit path, as ** unixEnterMutex() hasn't been called yet. */ if( pFile->eFileLock>=eFileLock ){ OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, |
︙ | ︙ | |||
1745 1746 1747 1748 1749 1750 1751 | unixInodeInfo *pInode; struct flock lock; int rc = SQLITE_OK; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, | | | 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 | unixInodeInfo *pInode; struct flock lock; int rc = SQLITE_OK; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, osGetpid())); assert( eFileLock<=SHARED_LOCK ); if( pFile->eFileLock<=eFileLock ){ return SQLITE_OK; } unixEnterMutex(); pInode = pFile->pInode; |
︙ | ︙ | |||
2172 2173 2174 2175 2176 2177 2178 | static int dotlockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; char *zLockFile = (char *)pFile->lockingContext; int rc; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, | | | 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 | static int dotlockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; char *zLockFile = (char *)pFile->lockingContext; int rc; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid())); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } |
︙ | ︙ | |||
2235 2236 2237 2238 2239 2240 2241 | ** flock() locking is like dot-file locking in that the various ** fine-grain locking levels supported by SQLite are collapsed into ** a single exclusive lock. In other words, SHARED, RESERVED, and ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite ** still works when you do this, but concurrency is reduced since ** only a single process can be reading the database at a time. ** | | < | | 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 | ** flock() locking is like dot-file locking in that the various ** fine-grain locking levels supported by SQLite are collapsed into ** a single exclusive lock. In other words, SHARED, RESERVED, and ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite ** still works when you do this, but concurrency is reduced since ** only a single process can be reading the database at a time. ** ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off */ #if SQLITE_ENABLE_LOCKING_STYLE /* ** Retry flock() calls that fail with EINTR */ #ifdef EINTR static int robust_flock(int fd, int op){ int rc; |
︙ | ︙ | |||
2391 2392 2393 2394 2395 2396 2397 | ** the requested locking level, this routine is a no-op. */ static int flockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, | | | 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 | ** the requested locking level, this routine is a no-op. */ static int flockUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; assert( pFile ); OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid())); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } |
︙ | ︙ | |||
2452 2453 2454 2455 2456 2457 2458 | /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ | | | 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 | /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, set *pResOut ** to a non-zero value otherwise *pResOut is set to zero. The return value ** is set to SQLITE_OK unless an I/O error occurs during lock checking. */ static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) { int rc = SQLITE_OK; int reserved = 0; unixFile *pFile = (unixFile*)id; SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); assert( pFile ); |
︙ | ︙ | |||
2519 2520 2521 2522 2523 2524 2525 | ** lock states in the sqlite3_file structure, but all locks SHARED or ** above are really EXCLUSIVE locks and exclude all other processes from ** access the file. ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ | | | 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 | ** lock states in the sqlite3_file structure, but all locks SHARED or ** above are really EXCLUSIVE locks and exclude all other processes from ** access the file. ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ static int semXLock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; sem_t *pSem = pFile->pInode->pSem; int rc = SQLITE_OK; /* if we already have a lock, it is exclusive. ** Just adjust level and punt on outta here. */ if (pFile->eFileLock > NO_LOCK) { |
︙ | ︙ | |||
2552 2553 2554 2555 2556 2557 2558 | /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ | | | | 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 | /* ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. */ static int semXUnlock(sqlite3_file *id, int eFileLock) { unixFile *pFile = (unixFile*)id; sem_t *pSem = pFile->pInode->pSem; assert( pFile ); assert( pSem ); OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, pFile->eFileLock, osGetpid())); assert( eFileLock<=SHARED_LOCK ); /* no-op if possible */ if( pFile->eFileLock==eFileLock ){ return SQLITE_OK; } |
︙ | ︙ | |||
2589 2590 2591 2592 2593 2594 2595 | pFile->eFileLock = NO_LOCK; return SQLITE_OK; } /* ** Close a file. */ | | | | 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 | pFile->eFileLock = NO_LOCK; return SQLITE_OK; } /* ** Close a file. */ static int semXClose(sqlite3_file *id) { if( id ){ unixFile *pFile = (unixFile*)id; semXUnlock(id, NO_LOCK); assert( pFile ); unixEnterMutex(); releaseInodeInfo(pFile); unixLeaveMutex(); closeUnixFile(id); } return SQLITE_OK; |
︙ | ︙ | |||
2773 2774 2775 2776 2777 2778 2779 | unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode = pFile->pInode; afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), | | | 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 | unixFile *pFile = (unixFile*)id; unixInodeInfo *pInode = pFile->pInode; afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; assert( pFile ); OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, azFileLock(eFileLock), azFileLock(pFile->eFileLock), azFileLock(pInode->eFileLock), pInode->nShared , osGetpid())); /* If there is already a lock of this type or more restrictive on the ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as ** unixEnterMutex() hasn't been called yet. */ if( pFile->eFileLock>=eFileLock ){ OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, |
︙ | ︙ | |||
2959 2960 2961 2962 2963 2964 2965 | #ifdef SQLITE_TEST int h = pFile->h; #endif assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, | | | 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 | #ifdef SQLITE_TEST int h = pFile->h; #endif assert( pFile ); OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, osGetpid())); assert( eFileLock<=SHARED_LOCK ); if( pFile->eFileLock<=eFileLock ){ return SQLITE_OK; } unixEnterMutex(); pInode = pFile->pInode; |
︙ | ︙ | |||
3998 3999 4000 4001 4002 4003 4004 | /* ** Return the system page size. ** ** This function should not be called directly by other code in this file. ** Instead, it should be called via macro osGetpagesize(). */ static int unixGetpagesize(void){ | > > | | 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 | /* ** Return the system page size. ** ** This function should not be called directly by other code in this file. ** Instead, it should be called via macro osGetpagesize(). */ static int unixGetpagesize(void){ #if OS_VXWORKS return 1024; #elif defined(_BSD_SOURCE) return getpagesize(); #else return (int)sysconf(_SC_PAGESIZE); #endif } #endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */ |
︙ | ︙ | |||
4091 4092 4093 4094 4095 4096 4097 | /* ** Apply posix advisory locks for all bytes from ofst through ofst+n-1. ** ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking ** otherwise. */ static int unixShmSystemLock( | | > | | > > > | > | 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 | /* ** Apply posix advisory locks for all bytes from ofst through ofst+n-1. ** ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking ** otherwise. */ static int unixShmSystemLock( unixFile *pFile, /* Open connection to the WAL file */ int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ int ofst, /* First byte of the locking range */ int n /* Number of bytes to lock */ ){ unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */ struct flock f; /* The posix advisory locking structure */ int rc = SQLITE_OK; /* Result code form fcntl() */ /* Access to the unixShmNode object is serialized by the caller */ pShmNode = pFile->pInode->pShmNode; assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 ); /* Shared locks never span more than one byte */ assert( n==1 || lockType!=F_RDLCK ); /* Locks are within range */ assert( n>=1 && n<SQLITE_SHM_NLOCK ); if( pShmNode->h>=0 ){ int lkType; /* Initialize the locking parameters */ memset(&f, 0, sizeof(f)); f.l_type = lockType; f.l_whence = SEEK_SET; f.l_start = ofst; f.l_len = n; lkType = (pFile->ctrlFlags & UNIXFILE_BLOCK)!=0 ? F_SETLKW : F_SETLK; rc = osFcntl(pShmNode->h, lkType, &f); rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; pFile->ctrlFlags &= ~UNIXFILE_BLOCK; } /* Update the global lock state and do debug tracing */ #ifdef SQLITE_DEBUG { u16 mask; OSTRACE(("SHM-LOCK ")); mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst); |
︙ | ︙ | |||
4327 4328 4329 4330 4331 4332 4333 | */ osFchown(pShmNode->h, sStat.st_uid, sStat.st_gid); /* Check to see if another process is holding the dead-man switch. ** If not, truncate the file to zero length. */ rc = SQLITE_OK; | | | | 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 | */ osFchown(pShmNode->h, sStat.st_uid, sStat.st_gid); /* Check to see if another process is holding the dead-man switch. ** If not, truncate the file to zero length. */ rc = SQLITE_OK; if( unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){ if( robust_ftruncate(pShmNode->h, 0) ){ rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename); } } if( rc==SQLITE_OK ){ rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1); } if( rc ) goto shm_open_err; } } /* Make the new connection a child of the unixShmNode */ p->pShmNode = pShmNode; |
︙ | ︙ | |||
4565 4566 4567 4568 4569 4570 4571 | if( pX==p ) continue; assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); allMask |= pX->sharedMask; } /* Unlock the system-level locks */ if( (mask & allMask)==0 ){ | | | 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 | if( pX==p ) continue; assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); allMask |= pX->sharedMask; } /* Unlock the system-level locks */ if( (mask & allMask)==0 ){ rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n); }else{ rc = SQLITE_OK; } /* Undo the local locks */ if( rc==SQLITE_OK ){ p->exclMask &= ~mask; |
︙ | ︙ | |||
4593 4594 4595 4596 4597 4598 4599 | } allShared |= pX->sharedMask; } /* Get shared locks at the system level, if necessary */ if( rc==SQLITE_OK ){ if( (allShared & mask)==0 ){ | | | 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 | } allShared |= pX->sharedMask; } /* Get shared locks at the system level, if necessary */ if( rc==SQLITE_OK ){ if( (allShared & mask)==0 ){ rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n); }else{ rc = SQLITE_OK; } } /* Get the local shared locks */ if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
4618 4619 4620 4621 4622 4623 4624 | } } /* Get the exclusive locks at the system level. Then if successful ** also mark the local connection as being locked. */ if( rc==SQLITE_OK ){ | | | | 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 | } } /* Get the exclusive locks at the system level. Then if successful ** also mark the local connection as being locked. */ if( rc==SQLITE_OK ){ rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n); if( rc==SQLITE_OK ){ assert( (p->sharedMask & mask)==0 ); p->exclMask |= mask; } } } sqlite3_mutex_leave(pShmNode->mutex); OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", p->id, osGetpid(), p->sharedMask, p->exclMask)); return rc; } /* ** Implement a memory barrier or memory fence on shared memory. ** ** All loads and stores begun before the barrier must complete before |
︙ | ︙ | |||
5030 5031 5032 5033 5034 5035 5036 | dotlockClose, /* xClose method */ dotlockLock, /* xLock method */ dotlockUnlock, /* xUnlock method */ dotlockCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) | | | | | | | 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 | dotlockClose, /* xClose method */ dotlockLock, /* xLock method */ dotlockUnlock, /* xUnlock method */ dotlockCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #if SQLITE_ENABLE_LOCKING_STYLE IOMETHODS( flockIoFinder, /* Finder function name */ flockIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ flockClose, /* xClose method */ flockLock, /* xLock method */ flockUnlock, /* xUnlock method */ flockCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif #if OS_VXWORKS IOMETHODS( semIoFinder, /* Finder function name */ semIoMethods, /* sqlite3_io_methods object name */ 1, /* shared memory is disabled */ semXClose, /* xClose method */ semXLock, /* xLock method */ semXUnlock, /* xUnlock method */ semXCheckReservedLock, /* xCheckReservedLock method */ 0 /* xShmMap method */ ) #endif #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE IOMETHODS( afpIoFinder, /* Finder function name */ |
︙ | ︙ | |||
5175 5176 5177 5178 5179 5180 5181 | } } static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ | | | | | | < < | | 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 | } } static const sqlite3_io_methods *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ #if OS_VXWORKS /* ** This "finder" function for VxWorks checks to see if posix advisory ** locking works. If it does, then that is what is used. If it does not ** work, then fallback to named semaphore locking. */ static const sqlite3_io_methods *vxworksIoFinderImpl( const char *filePath, /* name of the database file */ unixFile *pNew /* the open file object */ ){ struct flock lockInfo; if( !filePath ){ /* If filePath==NULL that means we are dealing with a transient file |
︙ | ︙ | |||
5209 5210 5211 5212 5213 5214 5215 | if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { return &posixIoMethods; }else{ return &semIoMethods; } } static const sqlite3_io_methods | | | | 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 | if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { return &posixIoMethods; }else{ return &semIoMethods; } } static const sqlite3_io_methods *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl; #endif /* OS_VXWORKS */ /* ** An abstract type for a pointer to an IO method finder function: */ typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); |
︙ | ︙ | |||
5724 5725 5726 5727 5728 5729 5730 | ); /* Detect a pid change and reset the PRNG. There is a race condition ** here such that two or more threads all trying to open databases at ** the same instant might all reset the PRNG. But multiple resets ** are harmless. */ | | | | 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 | ); /* Detect a pid change and reset the PRNG. There is a race condition ** here such that two or more threads all trying to open databases at ** the same instant might all reset the PRNG. But multiple resets ** are harmless. */ if( randomnessPid!=osGetpid() ){ randomnessPid = osGetpid(); sqlite3_randomness(0,0); } memset(p, 0, sizeof(unixFile)); if( eType==SQLITE_OPEN_MAIN_DB ){ UnixUnusedFd *pUnused; |
︙ | ︙ | |||
6116 6117 6118 6119 6120 6121 6122 | ** in the random seed. ** ** When testing, initializing zBuf[] to zero is all we do. That means ** that we always use the same random number sequence. This makes the ** tests repeatable. */ memset(zBuf, 0, nBuf); | | | 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 | ** in the random seed. ** ** When testing, initializing zBuf[] to zero is all we do. That means ** that we always use the same random number sequence. This makes the ** tests repeatable. */ memset(zBuf, 0, nBuf); randomnessPid = osGetpid(); #if !defined(SQLITE_TEST) { int fd, got; fd = robust_open("/dev/urandom", O_RDONLY, 0); if( fd<0 ){ time_t t; time(&t); |
︙ | ︙ | |||
6437 6438 6439 6440 6441 6442 6443 | #ifdef LOCKPROXYDIR len = strlcpy(lPath, LOCKPROXYDIR, maxLen); #else # ifdef _CS_DARWIN_USER_TEMP_DIR { if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", | | | 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 | #ifdef LOCKPROXYDIR len = strlcpy(lPath, LOCKPROXYDIR, maxLen); #else # ifdef _CS_DARWIN_USER_TEMP_DIR { if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", lPath, errno, osGetpid())); return SQLITE_IOERR_LOCK; } len = strlcat(lPath, "sqliteplocks", maxLen); } # else len = strlcpy(lPath, "/tmp/", maxLen); # endif |
︙ | ︙ | |||
6459 6460 6461 6462 6463 6464 6465 | dbLen = (int)strlen(dbPath); for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ char c = dbPath[i]; lPath[i+len] = (c=='/')?'_':c; } lPath[i+len]='\0'; strlcat(lPath, ":auto:", maxLen); | | | 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 | dbLen = (int)strlen(dbPath); for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ char c = dbPath[i]; lPath[i+len] = (c=='/')?'_':c; } lPath[i+len]='\0'; strlcat(lPath, ":auto:", maxLen); OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, osGetpid())); return SQLITE_OK; } /* ** Creates the lock file and any missing directories in lockPath */ static int proxyCreateLockPath(const char *lockPath){ |
︙ | ︙ | |||
6486 6487 6488 6489 6490 6491 6492 | || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ buf[i]='\0'; if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ int err=errno; if( err!=EEXIST ) { OSTRACE(("CREATELOCKPATH FAILED creating %s, " "'%s' proxy lock path=%s pid=%d\n", | | | | 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 | || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ buf[i]='\0'; if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ int err=errno; if( err!=EEXIST ) { OSTRACE(("CREATELOCKPATH FAILED creating %s, " "'%s' proxy lock path=%s pid=%d\n", buf, strerror(err), lockPath, osGetpid())); return err; } } } start=i+1; } buf[i] = lockPath[i]; } OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, osGetpid())); return 0; } /* ** Create a new VFS file descriptor (stored in memory obtained from ** sqlite3_malloc) and open the file named "path" in the file descriptor. ** |
︙ | ︙ | |||
6800 6801 6802 6803 6804 6805 6806 | int createConch = 0; int hostIdMatch = 0; int readLen = 0; int tryOldLockPath = 0; int forceNewLockPath = 0; OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, | | > | 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 | int createConch = 0; int hostIdMatch = 0; int readLen = 0; int tryOldLockPath = 0; int forceNewLockPath = 0; OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), osGetpid())); rc = proxyGetHostID(myHostID, &pError); if( (rc&0xff)==SQLITE_IOERR ){ storeLastErrno(pFile, pError); goto end_takeconch; } rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); |
︙ | ︙ | |||
7010 7011 7012 7013 7014 7015 7016 | proxyLockingContext *pCtx; /* The locking context for the proxy lock */ unixFile *conchFile; /* Name of the conch file */ pCtx = (proxyLockingContext *)pFile->lockingContext; conchFile = pCtx->conchFile; OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), | | | 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 | proxyLockingContext *pCtx; /* The locking context for the proxy lock */ unixFile *conchFile; /* Name of the conch file */ pCtx = (proxyLockingContext *)pFile->lockingContext; conchFile = pCtx->conchFile; OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), osGetpid())); if( pCtx->conchHeld>0 ){ rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); } pCtx->conchHeld = 0; OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, (rc==SQLITE_OK ? "ok" : "failed"))); return rc; |
︙ | ︙ | |||
7152 7153 7154 7155 7156 7157 7158 | if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ lockPath=NULL; }else{ lockPath=(char *)path; } OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, | | | 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 | if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ lockPath=NULL; }else{ lockPath=(char *)path; } OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, (lockPath ? lockPath : ":auto:"), osGetpid())); pCtx = sqlite3_malloc( sizeof(*pCtx) ); if( pCtx==0 ){ return SQLITE_NOMEM; } memset(pCtx, 0, sizeof(*pCtx)); |
︙ | ︙ | |||
7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 | /* ** This routine handles sqlite3_file_control() calls that are specific ** to proxy locking. */ static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ switch( op ){ case SQLITE_FCNTL_GET_LOCKPROXYFILE: { unixFile *pFile = (unixFile*)id; if( pFile->pMethod == &proxyIoMethods ){ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; proxyTakeConch(pFile); if( pCtx->lockProxyPath ){ *(const char **)pArg = pCtx->lockProxyPath; | > > > > | 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 | /* ** This routine handles sqlite3_file_control() calls that are specific ** to proxy locking. */ static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ switch( op ){ case SQLITE_FCNTL_WAL_BLOCK: { id->ctrlFlags |= UNIXFILE_BLOCK; return SQLITE_OK; } case SQLITE_FCNTL_GET_LOCKPROXYFILE: { unixFile *pFile = (unixFile*)id; if( pFile->pMethod == &proxyIoMethods ){ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; proxyTakeConch(pFile); if( pCtx->lockProxyPath ){ *(const char **)pArg = pCtx->lockProxyPath; |
︙ | ︙ | |||
7493 7494 7495 7496 7497 7498 7499 | ** All default VFSes for unix are contained in the following array. ** ** Note that the sqlite3_vfs.pNext field of the VFS object is modified ** by the SQLite core when the VFS is registered. So the following ** array cannot be const. */ static sqlite3_vfs aVfs[] = { | | > > | > | < | 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 | ** All default VFSes for unix are contained in the following array. ** ** Note that the sqlite3_vfs.pNext field of the VFS object is modified ** by the SQLite core when the VFS is registered. So the following ** array cannot be const. */ static sqlite3_vfs aVfs[] = { #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) UNIXVFS("unix", autolockIoFinder ), #elif OS_VXWORKS UNIXVFS("unix", vxworksIoFinder ), #else UNIXVFS("unix", posixIoFinder ), #endif UNIXVFS("unix-none", nolockIoFinder ), UNIXVFS("unix-dotfile", dotlockIoFinder ), UNIXVFS("unix-excl", posixIoFinder ), #if OS_VXWORKS UNIXVFS("unix-namedsem", semIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS UNIXVFS("unix-posix", posixIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE UNIXVFS("unix-flock", flockIoFinder ), #endif #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) UNIXVFS("unix-afp", afpIoFinder ), UNIXVFS("unix-nfs", nfsIoFinder ), UNIXVFS("unix-proxy", proxyIoFinder ), #endif }; |
︙ | ︙ |
Changes to src/pcache.c.
︙ | ︙ | |||
110 111 112 113 114 115 116 | p->pCache->pPage1 = 0; } sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); } } /* | | > > > > > > > > | 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | p->pCache->pPage1 = 0; } sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); } } /* ** Compute the number of pages of cache requested. p->szCache is the ** cache size requested by the "PRAGMA cache_size" statement. ** ** */ static int numberOfCachePages(PCache *p){ if( p->szCache>=0 ){ /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the ** suggested cache size is set to N. */ return p->szCache; }else{ /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then ** the number of cache pages is adjusted to use approximately abs(N*1024) ** bytes of memory. */ return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); } } /*************************************************** General Interfaces ****** ** ** Initialize and shutdown the page cache subsystem. Neither of these |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
313 314 315 316 317 318 319 320 321 322 323 324 325 326 | if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ goto pragma_out; } /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS ** connection. If it returns SQLITE_OK, then assume that the VFS ** handled the pragma and generate a no-op prepared statement. */ aFcntl[0] = 0; aFcntl[1] = zLeft; aFcntl[2] = zRight; aFcntl[3] = 0; db->busyHandler.nBusy = 0; rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); | > > > > > > > > > > > | 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ goto pragma_out; } /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS ** connection. If it returns SQLITE_OK, then assume that the VFS ** handled the pragma and generate a no-op prepared statement. ** ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file ** object corresponding to the database file to which the pragma ** statement refers. ** ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA ** file control is an array of pointers to strings (char**) in which the ** second element of the array is the name of the pragma and the third ** element is the argument to the pragma or NULL if the pragma has no ** argument. */ aFcntl[0] = 0; aFcntl[1] = zLeft; aFcntl[2] = zRight; aFcntl[3] = 0; db->busyHandler.nBusy = 0; rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); |
︙ | ︙ | |||
1073 1074 1075 1076 1077 1078 1079 | case PragTyp_INDEX_INFO: if( zRight ){ Index *pIdx; Table *pTab; pIdx = sqlite3FindIndex(db, zRight, zDb); if( pIdx ){ int i; | > | > > > > > > > > | < > | | | > > | | | > | | 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 | case PragTyp_INDEX_INFO: if( zRight ){ Index *pIdx; Table *pTab; pIdx = sqlite3FindIndex(db, zRight, zDb); if( pIdx ){ int i; int mx; if( pPragma->iArg ){ /* PRAGMA index_xinfo (newer version with more rows and columns) */ mx = pIdx->nColumn; pParse->nMem = 6; }else{ /* PRAGMA index_info (legacy version) */ mx = pIdx->nKeyCol; pParse->nMem = 3; } pTab = pIdx->pTable; sqlite3VdbeSetNumCols(v, pParse->nMem); sqlite3CodeVerifySchema(pParse, iDb); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC); if( pPragma->iArg ){ sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "desc", SQLITE_STATIC); sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "coll", SQLITE_STATIC); sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "key", SQLITE_STATIC); } for(i=0; i<mx; i++){ i16 cnum = pIdx->aiColumn[i]; sqlite3VdbeAddOp2(v, OP_Integer, i, 1); sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2); if( cnum<0 ){ sqlite3VdbeAddOp2(v, OP_Null, 0, 3); }else{ sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0); } if( pPragma->iArg ){ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->aSortOrder[i], 4); sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, pIdx->azColl[i], 0); sqlite3VdbeAddOp2(v, OP_Integer, i<pIdx->nKeyCol, 6); } sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem); } } } break; case PragTyp_INDEX_LIST: if( zRight ){ Index *pIdx; |
︙ | ︙ | |||
1798 1799 1800 1801 1802 1803 1804 | } break; #endif /* ** PRAGMA shrink_memory ** | | | > | 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 | } break; #endif /* ** PRAGMA shrink_memory ** ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database ** connection on which it is invoked to free up as much memory as it ** can, by calling sqlite3_db_release_memory(). */ case PragTyp_SHRINK_MEMORY: { sqlite3_db_release_memory(db); break; } /* |
︙ | ︙ | |||
1828 1829 1830 1831 1832 1833 1834 | break; } /* ** PRAGMA soft_heap_limit ** PRAGMA soft_heap_limit = N ** | > | | > > > | 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 | break; } /* ** PRAGMA soft_heap_limit ** PRAGMA soft_heap_limit = N ** ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the ** sqlite3_soft_heap_limit64() interface with the argument N, if N is ** specified and is a non-negative integer. ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always ** returns the same integer that would be returned by the ** sqlite3_soft_heap_limit64(-1) C-language function. */ case PragTyp_SOFT_HEAP_LIMIT: { sqlite3_int64 N; if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ sqlite3_soft_heap_limit64(N); } returnSingleInt(pParse, "soft_heap_limit", sqlite3_soft_heap_limit64(-1)); |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
559 560 561 562 563 564 565 | if( pSort->sortFlags & SORTFLAG_UseSorter ){ op = OP_SorterInsert; }else{ op = OP_IdxInsert; } sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); if( pSelect->iLimit ){ | | < < | < | | 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 | if( pSort->sortFlags & SORTFLAG_UseSorter ){ op = OP_SorterInsert; }else{ op = OP_IdxInsert; } sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); if( pSelect->iLimit ){ int addr; int iLimit; if( pSelect->iOffset ){ iLimit = pSelect->iOffset+1; }else{ iLimit = pSelect->iLimit; } addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); sqlite3VdbeJumpHere(v, addr); } } /* ** Add code to implement the OFFSET */ static void codeOffset( |
︙ | ︙ | |||
969 970 971 972 973 974 975 | } /* Jump to the end of the loop if the LIMIT is reached. Except, if ** there is a sorter, in which case the sorter has already limited ** the output for us. */ if( pSort==0 && p->iLimit ){ | | | 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 | } /* Jump to the end of the loop if the LIMIT is reached. Except, if ** there is a sorter, in which case the sorter has already limited ** the output for us. */ if( pSort==0 && p->iLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); } } /* ** Allocate a KeyInfo object sufficient for an index of N key columns and ** X extra columns. */ |
︙ | ︙ | |||
1822 1823 1824 1825 1826 1827 1828 | }else if( n>=0 && p->nSelectRow>(u64)n ){ p->nSelectRow = n; } }else{ sqlite3ExprCode(pParse, p->pLimit, iLimit); sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); VdbeComment((v, "LIMIT counter")); | | | 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 | }else if( n>=0 && p->nSelectRow>(u64)n ){ p->nSelectRow = n; } }else{ sqlite3ExprCode(pParse, p->pLimit, iLimit); sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); VdbeComment((v, "LIMIT counter")); sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); } if( p->pOffset ){ p->iOffset = iOffset = ++pParse->nMem; pParse->nMem++; /* Allocate an extra register for limit+offset */ sqlite3ExprCode(pParse, p->pOffset, iOffset); sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); VdbeComment((v, "OFFSET counter")); |
︙ | ︙ | |||
2041 2042 2043 2044 2045 2046 2047 | /* Output the single row in Current */ addrCont = sqlite3VdbeMakeLabel(v); codeOffset(v, regOffset, addrCont); selectInnerLoop(pParse, p, p->pEList, iCurrent, 0, 0, pDest, addrCont, addrBreak); if( regLimit ){ | | | 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 | /* Output the single row in Current */ addrCont = sqlite3VdbeMakeLabel(v); codeOffset(v, regOffset, addrCont); selectInnerLoop(pParse, p, p->pEList, iCurrent, 0, 0, pDest, addrCont, addrBreak); if( regLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); VdbeCoverage(v); } sqlite3VdbeResolveLabel(v, addrCont); /* Execute the recursive SELECT taking the single row in Current as ** the value for the recursive-table. Store the results in the Queue. */ |
︙ | ︙ | |||
2266 2267 2268 2269 2270 2271 2272 | if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ | | | 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 | if( rc ){ goto multi_select_end; } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); VdbeComment((v, "Jump ahead if LIMIT reached")); } explainSetInteger(iSub2, pParse->iNextSelectId); rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; |
︙ | ︙ | |||
2667 2668 2669 2670 2671 2672 2673 | break; } } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit ){ | | | 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 | break; } } /* Jump to the end of the loop if the LIMIT is reached. */ if( p->iLimit ){ sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); } /* Generate the subroutine return */ sqlite3VdbeResolveLabel(v, iContinue); sqlite3VdbeAddOp1(v, OP_Return, regReturn); |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 27 28 29 30 31 32 33 | /* ** If requested, include the SQLite compiler options file for MSVC. */ #if defined(INCLUDE_MSVC_H) #include "msvc.h" #endif /* ** Enable large-file support for fopen() and friends on unix. */ #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 | > > > > > > > | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | /* ** If requested, include the SQLite compiler options file for MSVC. */ #if defined(INCLUDE_MSVC_H) #include "msvc.h" #endif /* ** No support for loadable extensions in VxWorks. */ #if defined(_WRS_KERNEL) && !SQLITE_OMIT_LOAD_EXTENSION # define SQLITE_OMIT_LOAD_EXTENSION 1 #endif /* ** Enable large-file support for fopen() and friends on unix. */ #ifndef SQLITE_DISABLE_LFS # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 |
︙ | ︙ | |||
103 104 105 106 107 108 109 | #undef pclose #define pclose _pclose #else /* Make sure isatty() has a prototype. */ extern int isatty(int); | > | | | | > > > > | 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | #undef pclose #define pclose _pclose #else /* Make sure isatty() has a prototype. */ extern int isatty(int); #if !defined(__RTP__) && !defined(_WRS_KERNEL) /* popen and pclose are not C89 functions and so are sometimes omitted from ** the <stdio.h> header */ extern FILE *popen(const char*,const char*); extern int pclose(FILE*); #else # define SQLITE_OMIT_POPEN 1 #endif #endif #if defined(_WIN32_WCE) /* Windows CE (arm-wince-mingw32ce-gcc) does not provide isatty() * thus we always assume that we have a console. That can be * overridden with the -batch command line option. */ |
︙ | ︙ | |||
161 162 163 164 165 166 167 | double r; clockVfs->xCurrentTime(clockVfs, &r); t = (sqlite3_int64)(r*86400000.0); } return t; } | | < > > > > > > > > > | 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | double r; clockVfs->xCurrentTime(clockVfs, &r); t = (sqlite3_int64)(r*86400000.0); } return t; } #if !defined(_WIN32) && !defined(WIN32) && !defined(__minux) #include <sys/time.h> #include <sys/resource.h> /* VxWorks does not support getrusage() as far as we can determine */ #if defined(_WRS_KERNEL) || defined(__RTP__) struct rusage { struct timeval ru_utime; /* user CPU time used */ struct timeval ru_stime; /* system CPU time used */ }; #define getrusage(A,B) memset(B,0,sizeof(*B)) #endif /* Saved resource information for the beginning of an operation */ static struct rusage sBegin; /* CPU time at start */ static sqlite3_int64 iBegin; /* Wall-clock time at start */ /* ** Begin timing an operation |
︙ | ︙ | |||
191 192 193 194 195 196 197 | } /* ** Print the timing results. */ static void endTimer(void){ if( enableTimer ){ | < > | 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | } /* ** Print the timing results. */ static void endTimer(void){ if( enableTimer ){ sqlite3_int64 iEnd = timeOfDay(); struct rusage sEnd; getrusage(RUSAGE_SELF, &sEnd); printf("Run Time: real %.3f user %f sys %f\n", (iEnd - iBegin)*0.001, timeDiff(&sBegin.ru_utime, &sEnd.ru_utime), timeDiff(&sBegin.ru_stime, &sEnd.ru_stime)); } } |
︙ | ︙ | |||
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 | } /* ** Change the output file back to stdout */ static void output_reset(ShellState *p){ if( p->outfile[0]=='|' ){ pclose(p->out); }else{ output_file_close(p->out); } p->outfile[0] = 0; p->out = stdout; } | > > | 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 | } /* ** Change the output file back to stdout */ static void output_reset(ShellState *p){ if( p->outfile[0]=='|' ){ #ifndef SQLITE_OMIT_POPEN pclose(p->out); #endif }else{ output_file_close(p->out); } p->outfile[0] = 0; p->out = stdout; } |
︙ | ︙ | |||
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 | fprintf(stderr, "Error: multi-character row separators not allowed" " for import\n"); return 1; } sCtx.zFile = zFile; sCtx.nLine = 1; if( sCtx.zFile[0]=='|' ){ sCtx.in = popen(sCtx.zFile+1, "r"); sCtx.zFile = "<pipe>"; xCloser = pclose; }else{ sCtx.in = fopen(sCtx.zFile, "rb"); xCloser = fclose; } if( p->mode==MODE_Ascii ){ xRead = ascii_read_one_field; }else{ | > > > > > | 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 | fprintf(stderr, "Error: multi-character row separators not allowed" " for import\n"); return 1; } sCtx.zFile = zFile; sCtx.nLine = 1; if( sCtx.zFile[0]=='|' ){ #ifdef SQLITE_OMIT_POPEN fprintf(stderr, "Error: pipes are not supporte in this OS\n"); return 1; #else sCtx.in = popen(sCtx.zFile+1, "r"); sCtx.zFile = "<pipe>"; xCloser = pclose; #endif }else{ sCtx.in = fopen(sCtx.zFile, "rb"); xCloser = fclose; } if( p->mode==MODE_Ascii ){ xRead = ascii_read_one_field; }else{ |
︙ | ︙ | |||
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 | } p->outCount = 2; }else{ p->outCount = 0; } output_reset(p); if( zFile[0]=='|' ){ p->out = popen(zFile + 1, "w"); if( p->out==0 ){ fprintf(stderr,"Error: cannot open pipe \"%s\"\n", zFile + 1); p->out = stdout; rc = 1; }else{ sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", zFile); } }else{ p->out = output_file_open(zFile); if( p->out==0 ){ if( strcmp(zFile,"off")!=0 ){ fprintf(stderr,"Error: cannot write to \"%s\"\n", zFile); } p->out = stdout; | > > > > > > | 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 | } p->outCount = 2; }else{ p->outCount = 0; } output_reset(p); if( zFile[0]=='|' ){ #ifdef SQLITE_OMIT_POPEN fprintf(stderr,"Error: pipes are not supported in this OS\n"); rc = 1; p->out = stdout; #else p->out = popen(zFile + 1, "w"); if( p->out==0 ){ fprintf(stderr,"Error: cannot open pipe \"%s\"\n", zFile + 1); p->out = stdout; rc = 1; }else{ sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", zFile); } #endif }else{ p->out = output_file_open(zFile); if( p->out==0 ){ if( strcmp(zFile,"off")!=0 ){ fprintf(stderr,"Error: cannot write to \"%s\"\n", zFile); } p->out = stdout; |
︙ | ︙ | |||
3836 3837 3838 3839 3840 3841 3842 | fprintf(stderr, "Usage: .timer on|off\n"); rc = 1; } }else if( c=='t' && strncmp(azArg[0], "trace", n)==0 ){ open_db(p, 0); | < > | 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 | fprintf(stderr, "Usage: .timer on|off\n"); rc = 1; } }else if( c=='t' && strncmp(azArg[0], "trace", n)==0 ){ open_db(p, 0); if( nArg!=2 ){ fprintf(stderr, "Usage: .trace FILE|off\n"); rc = 1; goto meta_command_exit; } output_file_close(p->traceOut); p->traceOut = output_file_open(azArg[1]); #if !defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_OMIT_FLOATING_POINT) if( p->traceOut==0 ){ sqlite3_trace(p->db, 0, 0); }else{ sqlite3_trace(p->db, sql_trace_callback, p->traceOut); } |
︙ | ︙ | |||
4217 4218 4219 4220 4221 4222 4223 | /* ** Read input from the file given by sqliterc_override. Or if that ** parameter is NULL, take input from ~/.sqliterc ** ** Returns the number of errors. */ | | < < | < > | | < | 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 | /* ** Read input from the file given by sqliterc_override. Or if that ** parameter is NULL, take input from ~/.sqliterc ** ** Returns the number of errors. */ static void process_sqliterc( ShellState *p, /* Configuration data */ const char *sqliterc_override /* Name of config file. NULL to use default */ ){ char *home_dir = NULL; const char *sqliterc = sqliterc_override; char *zBuf = 0; FILE *in = NULL; if (sqliterc == NULL) { home_dir = find_home_dir(); if( home_dir==0 ){ fprintf(stderr, "-- warning: cannot find home directory;" " cannot read ~/.sqliterc\n"); return; } sqlite3_initialize(); zBuf = sqlite3_mprintf("%s/.sqliterc",home_dir); sqliterc = zBuf; } in = fopen(sqliterc,"rb"); if( in ){ if( stdin_is_interactive ){ fprintf(stderr,"-- Loading resources from %s\n",sqliterc); } process_input(p,in); fclose(in); } sqlite3_free(zBuf); } /* ** Show available command line options */ static const char zOptions[] = " -ascii set output mode to 'ascii'\n" |
︙ | ︙ | |||
4524 4525 4526 4527 4528 4529 4530 | open_db(&data, 0); } /* Process the initialization file if there is one. If no -init option ** is given on the command line, look for a file named ~/.sqliterc and ** try to process it. */ | | < < < | 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 | open_db(&data, 0); } /* Process the initialization file if there is one. If no -init option ** is given on the command line, look for a file named ~/.sqliterc and ** try to process it. */ process_sqliterc(&data,zInitFile); /* Make a second pass through the command-line argument and set ** options. This second pass is delayed until after the initialization ** file is processed so that the command-line arguments will override ** settings in the initialization file. */ for(i=1; i<argc; i++){ |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
747 748 749 750 751 752 753 754 755 756 757 758 | ** CAPI3REF: Standard File Control Opcodes ** KEYWORDS: {file control opcodes} {file control opcode} ** ** These integer constants are opcodes for the xFileControl method ** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()] ** interface. ** ** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This ** opcode causes the xFileControl method to write the current state of ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) ** into an integer that the pArg argument points to. This capability | > > | | | | 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 | ** CAPI3REF: Standard File Control Opcodes ** KEYWORDS: {file control opcodes} {file control opcode} ** ** These integer constants are opcodes for the xFileControl method ** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()] ** interface. ** ** <ul> ** <li>[[SQLITE_FCNTL_LOCKSTATE]] ** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This ** opcode causes the xFileControl method to write the current state of ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) ** into an integer that the pArg argument points to. This capability ** is used during testing and is only available when the SQLITE_TEST ** compile-time option is used. ** ** <li>[[SQLITE_FCNTL_SIZE_HINT]] ** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS ** layer a hint of how large the database file will grow to be during the ** current transaction. This hint is not guaranteed to be accurate but it ** is often close. The underlying VFS might choose to preallocate database ** file space based on this hint in order to help writes to the database ** file run faster. |
︙ | ︙ | |||
879 880 881 882 883 884 885 | ** of the char** argument point to a string obtained from [sqlite3_mprintf()] ** or the equivalent and that string will become the result of the pragma or ** the error message if the pragma fails. ^If the ** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal ** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA] ** file control returns [SQLITE_OK], then the parser assumes that the ** VFS has handled the PRAGMA itself and the parser generates a no-op | > > | | 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 | ** of the char** argument point to a string obtained from [sqlite3_mprintf()] ** or the equivalent and that string will become the result of the pragma or ** the error message if the pragma fails. ^If the ** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal ** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA] ** file control returns [SQLITE_OK], then the parser assumes that the ** VFS has handled the PRAGMA itself and the parser generates a no-op ** prepared statement if result string is NULL, or that returns a copy ** of the result string if the string is non-NULL. ** ^If the [SQLITE_FCNTL_PRAGMA] file control returns ** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means ** that the VFS encountered an error while handling the [PRAGMA] and the ** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA] ** file control occurs at the beginning of pragma statement analysis and so ** it is able to override built-in [PRAGMA] statements. ** ** <li>[[SQLITE_FCNTL_BUSYHANDLER]] |
︙ | ︙ | |||
937 938 939 940 941 942 943 944 945 946 947 948 949 950 | ** ** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]] ** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This ** opcode causes the xFileControl method to swap the file handle with the one ** pointed to by the pArg argument. This capability is used during testing ** and only needs to be supported when SQLITE_TEST is defined. ** ** </ul> */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_FCNTL_GET_LOCKPROXYFILE 2 #define SQLITE_FCNTL_SET_LOCKPROXYFILE 3 #define SQLITE_FCNTL_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 | > > > > > > > | 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 | ** ** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]] ** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This ** opcode causes the xFileControl method to swap the file handle with the one ** pointed to by the pArg argument. This capability is used during testing ** and only needs to be supported when SQLITE_TEST is defined. ** ** <li>[[SQLITE_FCNTL_WAL_BLOCK]] ** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might ** be advantageous to block on the next WAL lock if the lock is not immediately ** available. The WAL subsystem issues this signal during rare ** circumstances in order to fix a problem with priority inversion. ** Applications should <em>not</em> use this file-control. ** ** </ul> */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_FCNTL_GET_LOCKPROXYFILE 2 #define SQLITE_FCNTL_SET_LOCKPROXYFILE 3 #define SQLITE_FCNTL_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 |
︙ | ︙ | |||
961 962 963 964 965 966 967 968 969 970 971 972 973 974 | #define SQLITE_FCNTL_TEMPFILENAME 16 #define SQLITE_FCNTL_MMAP_SIZE 18 #define SQLITE_FCNTL_TRACE 19 #define SQLITE_FCNTL_HAS_MOVED 20 #define SQLITE_FCNTL_SYNC 21 #define SQLITE_FCNTL_COMMIT_PHASETWO 22 #define SQLITE_FCNTL_WIN32_SET_HANDLE 23 /* deprecated names */ #define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE #define SQLITE_SET_LOCKPROXYFILE SQLITE_FCNTL_SET_LOCKPROXYFILE #define SQLITE_LAST_ERRNO SQLITE_FCNTL_LAST_ERRNO | > | 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 | #define SQLITE_FCNTL_TEMPFILENAME 16 #define SQLITE_FCNTL_MMAP_SIZE 18 #define SQLITE_FCNTL_TRACE 19 #define SQLITE_FCNTL_HAS_MOVED 20 #define SQLITE_FCNTL_SYNC 21 #define SQLITE_FCNTL_COMMIT_PHASETWO 22 #define SQLITE_FCNTL_WIN32_SET_HANDLE 23 #define SQLITE_FCNTL_WAL_BLOCK 24 /* deprecated names */ #define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE #define SQLITE_SET_LOCKPROXYFILE SQLITE_FCNTL_SET_LOCKPROXYFILE #define SQLITE_LAST_ERRNO SQLITE_FCNTL_LAST_ERRNO |
︙ | ︙ | |||
1738 1739 1740 1741 1742 1743 1744 | ** ** [[SQLITE_CONFIG_WIN32_HEAPSIZE]] ** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE ** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is ** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro ** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value ** that specifies the maximum size of the created heap. | < | 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 | ** ** [[SQLITE_CONFIG_WIN32_HEAPSIZE]] ** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE ** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is ** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro ** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value ** that specifies the maximum size of the created heap. ** ** [[SQLITE_CONFIG_PCACHE_HDRSZ]] ** <dt>SQLITE_CONFIG_PCACHE_HDRSZ ** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which ** is a pointer to an integer and writes into that integer the number of extra ** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE]. ** The amount of extra space required can change depending on the compiler, |
︙ | ︙ | |||
2985 2986 2987 2988 2989 2990 2991 | int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault); sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64); /* ** CAPI3REF: Error Codes And Messages ** | > | | | | > | | 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 | int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault); sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64); /* ** CAPI3REF: Error Codes And Messages ** ** ^If the most recent sqlite3_* API call associated with ** [database connection] D failed, then the sqlite3_errcode(D) interface ** returns the numeric [result code] or [extended result code] for that ** API call. ** If the most recent API call was successful, ** then the return value from sqlite3_errcode() is undefined. ** ^The sqlite3_extended_errcode() ** interface is the same except that it always returns the ** [extended result code] even when extended result codes are ** disabled. ** ** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language ** text that describes the error, as either UTF-8 or UTF-16 respectively. ** ^(Memory to hold the error message string is managed internally. |
︙ | ︙ | |||
4214 4215 4216 4217 4218 4219 4220 | /* ** CAPI3REF: Deprecated Functions ** DEPRECATED ** ** These functions are [deprecated]. In order to maintain ** backwards compatibility with older code, these functions continue ** to be supported. However, new applications should avoid | | | | 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 | /* ** CAPI3REF: Deprecated Functions ** DEPRECATED ** ** These functions are [deprecated]. In order to maintain ** backwards compatibility with older code, these functions continue ** to be supported. However, new applications should avoid ** the use of these functions. To encourage programmers to avoid ** these functions, we will not explain what they do. */ #ifndef SQLITE_OMIT_DEPRECATED SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*); SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*); SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); SQLITE_DEPRECATED int sqlite3_global_recover(void); SQLITE_DEPRECATED void sqlite3_thread_cleanup(void); |
︙ | ︙ | |||
6977 6978 6979 6980 6981 6982 6983 | ** sqlite3_backup_step() call on the same [sqlite3_backup] object, then ** sqlite3_backup_finish() returns the corresponding [error code]. ** ** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() ** is not a permanent error and does not affect the return value of ** sqlite3_backup_finish(). ** | | > | | | | < < | | < | > > | | 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 | ** sqlite3_backup_step() call on the same [sqlite3_backup] object, then ** sqlite3_backup_finish() returns the corresponding [error code]. ** ** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() ** is not a permanent error and does not affect the return value of ** sqlite3_backup_finish(). ** ** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]] ** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b> ** ** ^The sqlite3_backup_remaining() routine returns the number of pages still ** to be backed up at the conclusion of the most recent sqlite3_backup_step(). ** ^The sqlite3_backup_pagecount() routine returns the total number of pages ** in the source database at the conclusion of the most recent ** sqlite3_backup_step(). ** ^(The values returned by these functions are only updated by ** sqlite3_backup_step(). If the source database is modified in a way that ** changes the size of the source database or the number of pages remaining, ** those changes are not reflected in the output of sqlite3_backup_pagecount() ** and sqlite3_backup_remaining() until after the next ** sqlite3_backup_step().)^ ** ** <b>Concurrent Usage of Database Handles</b> ** ** ^The source [database connection] may be used by the application for other ** purposes while a backup operation is underway or being initialized. ** ^If SQLite is compiled and configured to support threadsafe database ** connections, then the source database connection may be used concurrently |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ** Include the header file used to customize the compiler options for MSVC. ** This should be done first so that it can successfully prevent spurious ** compiler warnings due to subsequent content in this file and other files ** that are included by this file. */ #include "msvc.h" /* ** These #defines should enable >2GB file support on POSIX if the ** underlying operating system supports it. If the OS lacks ** large file support, or if the OS is windows, these should be no-ops. ** ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any ** system #includes. Hence, this block of code must be the very first | > > > > > | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ** Include the header file used to customize the compiler options for MSVC. ** This should be done first so that it can successfully prevent spurious ** compiler warnings due to subsequent content in this file and other files ** that are included by this file. */ #include "msvc.h" /* ** Special setup for VxWorks */ #include "vxworks.h" /* ** These #defines should enable >2GB file support on POSIX if the ** underlying operating system supports it. If the OS lacks ** large file support, or if the OS is windows, these should be no-ops. ** ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any ** system #includes. Hence, this block of code must be the very first |
︙ | ︙ | |||
2246 2247 2248 2249 2250 2251 2252 | #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ | | | 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 | #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ #define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */ #define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */ #define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */ #define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */ #define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */ #define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */ /* Allowed return values from sqlite3WhereIsDistinct() |
︙ | ︙ |
Changes to src/sqliteLimit.h.
︙ | ︙ | |||
94 95 96 97 98 99 100 | ** The maximum number of arguments to an SQL function. */ #ifndef SQLITE_MAX_FUNCTION_ARG # define SQLITE_MAX_FUNCTION_ARG 127 #endif /* | | | > > > > > < < < | 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | ** The maximum number of arguments to an SQL function. */ #ifndef SQLITE_MAX_FUNCTION_ARG # define SQLITE_MAX_FUNCTION_ARG 127 #endif /* ** The suggested maximum number of in-memory pages to use for ** the main database table and for temporary tables. ** ** IMPLEMENTATION-OF: R-31093-59126 The default suggested cache size ** is 2000 pages. ** IMPLEMENTATION-OF: R-48205-43578 The default suggested cache size can be ** altered using the SQLITE_DEFAULT_CACHE_SIZE compile-time options. */ #ifndef SQLITE_DEFAULT_CACHE_SIZE # define SQLITE_DEFAULT_CACHE_SIZE 2000 #endif /* ** The default number of frames to accumulate in the log file before ** checkpointing the database in WAL mode. */ #ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT # define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT 1000 |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
2316 2317 2318 2319 2320 2321 2322 | cd[1] = (void *)pScript; rc = DbEvalNextCmd(cd, interp, TCL_OK); } break; } /* | | > > | > > > > | > > > > | > | < > > | > | > | > > | | < | | 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 | cd[1] = (void *)pScript; rc = DbEvalNextCmd(cd, interp, TCL_OK); } break; } /* ** $db function NAME [-argcount N] [-deterministic] SCRIPT ** ** Create a new SQL function called NAME. Whenever that function is ** called, invoke SCRIPT to evaluate the function. */ case DB_FUNCTION: { int flags = SQLITE_UTF8; SqlFunc *pFunc; Tcl_Obj *pScript; char *zName; int nArg = -1; int i; if( objc<4 ){ Tcl_WrongNumArgs(interp, 2, objv, "NAME ?SWITCHES? SCRIPT"); return TCL_ERROR; } for(i=3; i<(objc-1); i++){ const char *z = Tcl_GetString(objv[i]); int n = strlen30(z); if( n>2 && strncmp(z, "-argcount",n)==0 ){ if( i==(objc-2) ){ Tcl_AppendResult(interp, "option requires an argument: ", z, 0); return TCL_ERROR; } if( Tcl_GetIntFromObj(interp, objv[i+1], &nArg) ) return TCL_ERROR; if( nArg<0 ){ Tcl_AppendResult(interp, "number of arguments must be non-negative", (char*)0); return TCL_ERROR; } i++; }else if( n>2 && strncmp(z, "-deterministic",n)==0 ){ flags |= SQLITE_DETERMINISTIC; }else{ Tcl_AppendResult(interp, "bad option \"", z, "\": must be -argcount or -deterministic", 0 ); return TCL_ERROR; } } pScript = objv[objc-1]; zName = Tcl_GetStringFromObj(objv[2], 0); pFunc = findSqlFunc(pDb, zName); if( pFunc==0 ) return TCL_ERROR; if( pFunc->pScript ){ Tcl_DecrRefCount(pFunc->pScript); } pFunc->pScript = pScript; Tcl_IncrRefCount(pScript); pFunc->useEvalObjv = safeToUseEvalObjv(interp, pScript); rc = sqlite3_create_function(pDb->db, zName, nArg, flags, pFunc, tclSqlFunc, 0, 0); if( rc!=SQLITE_OK ){ rc = TCL_ERROR; Tcl_SetResult(interp, (char *)sqlite3_errmsg(pDb->db), TCL_VOLATILE); } break; } |
︙ | ︙ |
Changes to src/test_config.c.
︙ | ︙ | |||
646 647 648 649 650 651 652 | LINKVAR( MAX_VDBE_OP ); LINKVAR( MAX_FUNCTION_ARG ); LINKVAR( MAX_VARIABLE_NUMBER ); LINKVAR( MAX_PAGE_SIZE ); LINKVAR( MAX_PAGE_COUNT ); LINKVAR( MAX_LIKE_PATTERN_LENGTH ); LINKVAR( MAX_TRIGGER_DEPTH ); | < | 646 647 648 649 650 651 652 653 654 655 656 657 658 659 | LINKVAR( MAX_VDBE_OP ); LINKVAR( MAX_FUNCTION_ARG ); LINKVAR( MAX_VARIABLE_NUMBER ); LINKVAR( MAX_PAGE_SIZE ); LINKVAR( MAX_PAGE_COUNT ); LINKVAR( MAX_LIKE_PATTERN_LENGTH ); LINKVAR( MAX_TRIGGER_DEPTH ); LINKVAR( DEFAULT_CACHE_SIZE ); LINKVAR( DEFAULT_PAGE_SIZE ); LINKVAR( DEFAULT_FILE_FORMAT ); LINKVAR( MAX_ATTACHED ); LINKVAR( MAX_DEFAULT_PAGE_SIZE ); LINKVAR( MAX_WORKER_THREADS ); |
︙ | ︙ |
Changes to src/test_func.c.
︙ | ︙ | |||
596 597 598 599 600 601 602 603 604 605 606 607 | } } sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT); Tcl_DecrRefCount(pRet); } static int registerTestFunctions(sqlite3 *db){ static const struct { char *zName; signed char nArg; | > > > > > > > > > > > > > > | > | 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 | } } sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT); Tcl_DecrRefCount(pRet); } /* ** The implementation of scalar SQL function "test_zeroblob()". This is ** similar to the built-in zeroblob() function, except that it does not ** check that the integer parameter is within range before passing it ** to sqlite3_result_zeroblob(). */ static void test_zeroblob( sqlite3_context *context, int argc, sqlite3_value **argv ){ int nZero = sqlite3_value_int(argv[0]); sqlite3_result_zeroblob(context, nZero); } static int registerTestFunctions(sqlite3 *db){ static const struct { char *zName; signed char nArg; unsigned int eTextRep; /* 1: UTF-16. 0: UTF-8 */ void (*xFunc)(sqlite3_context*,int,sqlite3_value **); } aFuncs[] = { { "randstr", 2, SQLITE_UTF8, randStr }, { "test_destructor", 1, SQLITE_UTF8, test_destructor}, #ifndef SQLITE_OMIT_UTF16 { "test_destructor16", 1, SQLITE_UTF8, test_destructor16}, { "hex_to_utf16be", 1, SQLITE_UTF8, testHexToUtf16be}, { "hex_to_utf16le", 1, SQLITE_UTF8, testHexToUtf16le}, #endif { "hex_to_utf8", 1, SQLITE_UTF8, testHexToUtf8}, { "test_destructor_count", 0, SQLITE_UTF8, test_destructor_count}, { "test_auxdata", -1, SQLITE_UTF8, test_auxdata}, { "test_error", 1, SQLITE_UTF8, test_error}, { "test_error", 2, SQLITE_UTF8, test_error}, { "test_eval", 1, SQLITE_UTF8, test_eval}, { "test_isolation", 2, SQLITE_UTF8, test_isolation}, { "test_counter", 1, SQLITE_UTF8, counterFunc}, { "real2hex", 1, SQLITE_UTF8, real2hex}, { "test_decode", 1, SQLITE_UTF8, test_decode}, { "test_extract", 2, SQLITE_UTF8, test_extract}, { "test_zeroblob", 1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob}, }; int i; for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg, aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0); } |
︙ | ︙ |
Changes to src/test_multiplex.c.
︙ | ︙ | |||
569 570 571 572 573 574 575 576 577 578 579 580 581 582 | } if( rc==SQLITE_OK ){ sqlite3_int64 sz; rc = pSubOpen->pMethods->xFileSize(pSubOpen, &sz); if( rc==SQLITE_OK && zName ){ int bExists; if( sz==0 ){ if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ /* If opening a main journal file and the first chunk is zero ** bytes in size, delete any subsequent chunks from the ** file-system. */ int iChunk = 1; do { | > > > | 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 | } if( rc==SQLITE_OK ){ sqlite3_int64 sz; rc = pSubOpen->pMethods->xFileSize(pSubOpen, &sz); if( rc==SQLITE_OK && zName ){ int bExists; if( flags & SQLITE_OPEN_MASTER_JOURNAL ){ pGroup->bEnabled = 0; }else if( sz==0 ){ if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ /* If opening a main journal file and the first chunk is zero ** bytes in size, delete any subsequent chunks from the ** file-system. */ int iChunk = 1; do { |
︙ | ︙ | |||
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 | case SQLITE_FCNTL_SIZE_HINT: case SQLITE_FCNTL_CHUNK_SIZE: /* no-op these */ rc = SQLITE_OK; break; case SQLITE_FCNTL_PRAGMA: { char **aFcntl = (char**)pArg; if( aFcntl[1] && sqlite3_stricmp(aFcntl[1],"multiplex_truncate")==0 ){ if( aFcntl[2] && aFcntl[2][0] ){ if( sqlite3_stricmp(aFcntl[2], "on")==0 || sqlite3_stricmp(aFcntl[2], "1")==0 ){ pGroup->bTruncate = 1; }else if( sqlite3_stricmp(aFcntl[2], "off")==0 || sqlite3_stricmp(aFcntl[2], "0")==0 ){ pGroup->bTruncate = 0; } } aFcntl[0] = sqlite3_mprintf(pGroup->bTruncate ? "on" : "off"); rc = SQLITE_OK; break; } /* If the multiplexor does not handle the pragma, pass it through ** into the default case. */ } | > > > > > > > > > > > > > | 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 | case SQLITE_FCNTL_SIZE_HINT: case SQLITE_FCNTL_CHUNK_SIZE: /* no-op these */ rc = SQLITE_OK; break; case SQLITE_FCNTL_PRAGMA: { char **aFcntl = (char**)pArg; /* ** EVIDENCE-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA ** file control is an array of pointers to strings (char**) in which the ** second element of the array is the name of the pragma and the third ** element is the argument to the pragma or NULL if the pragma has no ** argument. */ if( aFcntl[1] && sqlite3_stricmp(aFcntl[1],"multiplex_truncate")==0 ){ if( aFcntl[2] && aFcntl[2][0] ){ if( sqlite3_stricmp(aFcntl[2], "on")==0 || sqlite3_stricmp(aFcntl[2], "1")==0 ){ pGroup->bTruncate = 1; }else if( sqlite3_stricmp(aFcntl[2], "off")==0 || sqlite3_stricmp(aFcntl[2], "0")==0 ){ pGroup->bTruncate = 0; } } /* EVIDENCE-OF: R-27806-26076 The handler for an SQLITE_FCNTL_PRAGMA ** file control can optionally make the first element of the char** ** argument point to a string obtained from sqlite3_mprintf() or the ** equivalent and that string will become the result of the pragma ** or the error message if the pragma fails. */ aFcntl[0] = sqlite3_mprintf(pGroup->bTruncate ? "on" : "off"); rc = SQLITE_OK; break; } /* If the multiplexor does not handle the pragma, pass it through ** into the default case. */ } |
︙ | ︙ |
Changes to src/test_vfs.c.
︙ | ︙ | |||
962 963 964 965 966 967 968 969 970 971 972 973 | return rc; } static void tvfsShmBarrier(sqlite3_file *pFile){ TestvfsFd *pFd = tvfsGetFd(pFile); Testvfs *p = (Testvfs *)(pFd->pVfs->pAppData); if( p->isFullshm ){ sqlite3OsShmBarrier(pFd->pReal); return; } | > > > > > < < < < < < | 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 | return rc; } static void tvfsShmBarrier(sqlite3_file *pFile){ TestvfsFd *pFd = tvfsGetFd(pFile); Testvfs *p = (Testvfs *)(pFd->pVfs->pAppData); if( p->pScript && p->mask&TESTVFS_SHMBARRIER_MASK ){ const char *z = pFd->pShm ? pFd->pShm->zFile : ""; tvfsExecTcl(p, "xShmBarrier", Tcl_NewStringObj(z, -1), pFd->pShmId, 0, 0); } if( p->isFullshm ){ sqlite3OsShmBarrier(pFd->pReal); return; } } static int tvfsShmUnmap( sqlite3_file *pFile, int deleteFlag ){ int rc = SQLITE_OK; |
︙ | ︙ | |||
1528 1529 1530 1531 1532 1533 1534 | p->mask = TESTVFS_ALL_MASK; sqlite3_vfs_register(pVfs, isDefault); return TCL_OK; bad_args: | | | 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 | p->mask = TESTVFS_ALL_MASK; sqlite3_vfs_register(pVfs, isDefault); return TCL_OK; bad_args: Tcl_WrongNumArgs(interp, 1, objv, "VFSNAME ?-noshm BOOL? ?-fullshm BOOL? ?-default BOOL? ?-mxpathname INT? ?-szosfile INT? ?-iversion INT?"); return TCL_ERROR; } int Sqlitetestvfs_Init(Tcl_Interp *interp){ Tcl_CreateObjCommand(interp, "testvfs", testvfs_cmd, 0, 0); return TCL_OK; } #endif |
Changes to src/vdbe.c.
︙ | ︙ | |||
1011 1012 1013 1014 1015 1016 1017 | } #endif /* Opcode: String8 * P2 * P4 * ** Synopsis: r[P2]='P4' ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed | | | 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 | } #endif /* Opcode: String8 * P2 * P4 * ** Synopsis: r[P2]='P4' ** ** P4 points to a nul terminated UTF-8 string. This opcode is transformed ** into a String opcode before it is executed for the first time. During ** this transformation, the length of string P4 is computed and stored ** as the P1 parameter. */ case OP_String8: { /* same as TK_STRING, out2-prerelease */ assert( pOp->p4.z!=0 ); pOp->opcode = OP_String; pOp->p1 = sqlite3Strlen30(pOp->p4.z); |
︙ | ︙ | |||
1043 1044 1045 1046 1047 1048 1049 | #endif if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } /* Fall through to the next case, OP_String */ } | | > > > > > > > > > > > > | 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 | #endif if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } /* Fall through to the next case, OP_String */ } /* Opcode: String P1 P2 P3 P4 P5 ** Synopsis: r[P2]='P4' (len=P1) ** ** The string value P4 of length P1 (bytes) is stored in register P2. ** ** If P5!=0 and the content of register P3 is greater than zero, then ** the datatype of the register P2 is converted to BLOB. The content is ** the same sequence of bytes, it is merely interpreted as a BLOB instead ** of a string, as if it had been CAST. */ case OP_String: { /* out2-prerelease */ assert( pOp->p4.z!=0 ); pOut->flags = MEM_Str|MEM_Static|MEM_Term; pOut->z = pOp->p4.z; pOut->n = pOp->p1; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); if( pOp->p5 ){ assert( pOp->p3>0 ); assert( pOp->p3<=(p->nMem-p->nCursor) ); pIn3 = &aMem[pOp->p3]; assert( pIn3->flags & MEM_Int ); if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; } break; } /* Opcode: Null P1 P2 P3 * * ** Synopsis: r[P2..P3]=NULL ** ** Write a NULL into registers P2. If P3 greater than P2, then also write |
︙ | ︙ | |||
1501 1502 1503 1504 1505 1506 1507 | ** ** If P1 is not zero, then it is a register that a subsequent min() or ** max() aggregate will set to 1 if the current row is not the minimum or ** maximum. The P1 register is initialized to 0 by this instruction. ** ** The interface used by the implementation of the aforementioned functions ** to retrieve the collation sequence set by this opcode is not available | | | 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 | ** ** If P1 is not zero, then it is a register that a subsequent min() or ** max() aggregate will set to 1 if the current row is not the minimum or ** maximum. The P1 register is initialized to 0 by this instruction. ** ** The interface used by the implementation of the aforementioned functions ** to retrieve the collation sequence set by this opcode is not available ** publicly. Only built-in functions have access to this feature. */ case OP_CollSeq: { assert( pOp->p4type==P4_COLLSEQ ); if( pOp->p1 ){ sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); } break; |
︙ | ︙ | |||
3046 3047 3048 3049 3050 3051 3052 | /* Store the current value of the database handles deferred constraint ** counter. If the statement transaction needs to be rolled back, ** the value of this counter needs to be restored too. */ p->nStmtDefCons = db->nDeferredCons; p->nStmtDefImmCons = db->nDeferredImmCons; } | | > > > > > | 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 | /* Store the current value of the database handles deferred constraint ** counter. If the statement transaction needs to be rolled back, ** the value of this counter needs to be restored too. */ p->nStmtDefCons = db->nDeferredCons; p->nStmtDefImmCons = db->nDeferredImmCons; } /* Gather the schema version number for checking: ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite ** each time a query is executed to ensure that the internal cache of the ** schema used when compiling the SQL query matches the schema of the ** database against which the compiled query is actually executed. */ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); iGen = db->aDb[pOp->p1].pSchema->iGeneration; }else{ iGen = iMeta = 0; } assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ |
︙ | ︙ | |||
5564 5565 5566 5567 5568 5569 5570 | break; } #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Opcode: IfPos P1 P2 * * * ** Synopsis: if r[P1]>0 goto P2 ** | > | > | < > | 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 | break; } #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Opcode: IfPos P1 P2 * * * ** Synopsis: if r[P1]>0 goto P2 ** ** Register P1 must contain an integer. ** If the value of register P1 is 1 or greater, jump to P2 and ** add the literal value P3 to register P1. ** ** If the initial value of register P1 is less than 1, then the ** value is unchanged and control passes through to the next instruction. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken( pIn1->u.i>0, 2); if( pIn1->u.i>0 ){ pc = pOp->p2 - 1; |
︙ | ︙ | |||
5596 5597 5598 5599 5600 5601 5602 | VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i<0 ){ pc = pOp->p2 - 1; } break; } | | | | | > | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 | VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i<0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfNotZero P1 P2 P3 * * ** Synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2 ** ** Register P1 must contain an integer. If the content of register P1 is ** initially nonzero, then add P3 to P1 and jump to P2. If register P1 is ** initially zero, leave it unchanged and fall through. */ case OP_IfNotZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i ){ pIn1->u.i += pOp->p3; pc = pOp->p2 - 1; } break; } /* Opcode: DecrJumpZero P1 P2 * * * ** Synopsis: if (--r[P1])==0 goto P2 ** ** Register P1 must hold an integer. Decrement the value in register P1 ** then jump to P2 if the new value is exactly zero. */ case OP_DecrJumpZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); pIn1->u.i--; VdbeBranchTaken(pIn1->u.i==0, 2); if( pIn1->u.i==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: JumpZeroIncr P1 P2 * * * ** Synopsis: if (r[P1]++)==0 ) goto P2 ** ** The register P1 must contain an integer. If register P1 is initially ** zero, then jump to P2. Increment register P1 regardless of whether or ** not the jump is taken. */ case OP_JumpZeroIncr: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i==0, 2); if( (pIn1->u.i++)==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggStep * P2 P3 P4 P5 ** Synopsis: accum=r[P3] step(r[P2@P5]) ** ** Execute the step function for an aggregate. The ** function has P5 arguments. P4 is a pointer to the FuncDef ** structure that specifies the function. Use register ** P3 as the accumulator. |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
366 367 368 369 370 371 372 | assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); } void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ pCtx->isError = errCode; pCtx->fErrorOrAux = 1; #ifdef SQLITE_DEBUG | | | 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); } void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ pCtx->isError = errCode; pCtx->fErrorOrAux = 1; #ifdef SQLITE_DEBUG if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; #endif if( pCtx->pOut->flags & MEM_Null ){ sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, SQLITE_STATIC); } } |
︙ | ︙ | |||
629 630 631 632 633 634 635 | */ sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ assert( p && p->pFunc ); return p->pOut->db; } /* | | > > > > < > > > > > > > | | | | | 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 | */ sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ assert( p && p->pFunc ); return p->pOut->db; } /* ** Return the current time for a statement. If the current time ** is requested more than once within the same run of a single prepared ** statement, the exact same time is returned for each invocation regardless ** of the amount of time that elapses between invocations. In other words, ** the time returned is always the time of the first call. */ sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ int rc; #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; assert( p->pVdbe!=0 ); #else sqlite3_int64 iTime = 0; sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; #endif if( *piTime==0 ){ rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); if( rc ) *piTime = 0; } return *piTime; } /* ** The following is the implementation of an SQL function that always ** fails with an error message stating that the function is used in the ** wrong context. The sqlite3_overload_function() API might construct ** SQL function that use this routine so that the functions will exist |
︙ | ︙ | |||
708 709 710 711 712 713 714 715 716 717 718 719 720 721 | ** Return the auxiliary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. */ void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ AuxData *pAuxData; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; } return (pAuxData ? pAuxData->pAux : 0); } | > > > > > | 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 | ** Return the auxiliary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. */ void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ AuxData *pAuxData; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); #if SQLITE_ENABLE_STAT3_OR_STAT4 if( pCtx->pVdbe==0 ) return 0; #else assert( pCtx->pVdbe!=0 ); #endif for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; } return (pAuxData ? pAuxData->pAux : 0); } |
︙ | ︙ | |||
731 732 733 734 735 736 737 738 739 740 741 742 743 744 | void (*xDelete)(void*) ){ AuxData *pAuxData; Vdbe *pVdbe = pCtx->pVdbe; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); if( iArg<0 ) goto failed; for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; } if( pAuxData==0 ){ pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); if( !pAuxData ) goto failed; | > > > > > | 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 | void (*xDelete)(void*) ){ AuxData *pAuxData; Vdbe *pVdbe = pCtx->pVdbe; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); if( iArg<0 ) goto failed; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( pVdbe==0 ) goto failed; #else assert( pVdbe!=0 ); #endif for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; } if( pAuxData==0 ){ pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); if( !pAuxData ) goto failed; |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
2139 2140 2141 2142 2143 2144 2145 | return rc; } /* Delete the master journal file. This commits the transaction. After ** doing this the directory is synced again before any individual ** transaction files are deleted. */ | | | 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 | return rc; } /* Delete the master journal file. This commits the transaction. After ** doing this the directory is synced again before any individual ** transaction files are deleted. */ rc = sqlite3OsDelete(pVfs, zMaster, needSync); sqlite3DbFree(db, zMaster); zMaster = 0; if( rc ){ return rc; } /* All files and directories have already been synced, so the following |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
1086 1087 1088 1089 1090 1091 1092 | ** Allocate and return a pointer to a new sqlite3_value object. If ** the second argument to this function is NULL, the object is allocated ** by calling sqlite3ValueNew(). ** ** Otherwise, if the second argument is non-zero, then this function is ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not ** already been allocated, allocate the UnpackedRecord structure that | | | 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 | ** Allocate and return a pointer to a new sqlite3_value object. If ** the second argument to this function is NULL, the object is allocated ** by calling sqlite3ValueNew(). ** ** Otherwise, if the second argument is non-zero, then this function is ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not ** already been allocated, allocate the UnpackedRecord structure that ** that function will return to its caller here. Then return a pointer to ** an sqlite3_value within the UnpackedRecord.a[] array. */ static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( p ){ UnpackedRecord *pRec = p->ppRec[0]; |
︙ | ︙ | |||
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 | } #else UNUSED_PARAMETER(p); #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ return sqlite3ValueNew(db); } /* ** Extract a value from the supplied expression in the manner described ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object ** using valueNew(). ** ** If pCtx is NULL and an error occurs after the sqlite3_value object ** has been allocated, it is freed before returning. Or, if pCtx is not | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 | } #else UNUSED_PARAMETER(p); #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ return sqlite3ValueNew(db); } /* ** The expression object indicated by the second argument is guaranteed ** to be a scalar SQL function. If ** ** * all function arguments are SQL literals, ** * the SQLITE_FUNC_CONSTANT function flag is set, and ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, ** ** then this routine attempts to invoke the SQL function. Assuming no ** error occurs, output parameter (*ppVal) is set to point to a value ** object containing the result before returning SQLITE_OK. ** ** Affinity aff is applied to the result of the function before returning. ** If the result is a text value, the sqlite3_value object uses encoding ** enc. ** ** If the conditions above are not met, this function returns SQLITE_OK ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to ** NULL and an SQLite error code returned. */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 static int valueFromFunction( sqlite3 *db, /* The database connection */ Expr *p, /* The expression to evaluate */ u8 enc, /* Encoding to use */ u8 aff, /* Affinity to use */ sqlite3_value **ppVal, /* Write the new value here */ struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ ){ sqlite3_context ctx; /* Context object for function invocation */ sqlite3_value **apVal = 0; /* Function arguments */ int nVal = 0; /* Size of apVal[] array */ FuncDef *pFunc = 0; /* Function definition */ sqlite3_value *pVal = 0; /* New value */ int rc = SQLITE_OK; /* Return code */ int nName; /* Size of function name in bytes */ ExprList *pList = 0; /* Function arguments */ int i; /* Iterator variable */ assert( pCtx!=0 ); assert( (p->flags & EP_TokenOnly)==0 ); pList = p->x.pList; if( pList ) nVal = pList->nExpr; nName = sqlite3Strlen30(p->u.zToken); pFunc = sqlite3FindFunction(db, p->u.zToken, nName, nVal, enc, 0); assert( pFunc ); if( (pFunc->funcFlags & SQLITE_FUNC_CONSTANT)==0 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) ){ return SQLITE_OK; } if( pList ){ apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); if( apVal==0 ){ rc = SQLITE_NOMEM; goto value_from_function_out; } for(i=0; i<nVal; i++){ rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; } } pVal = valueNew(db, pCtx); if( pVal==0 ){ rc = SQLITE_NOMEM; goto value_from_function_out; } assert( pCtx->pParse->rc==SQLITE_OK ); memset(&ctx, 0, sizeof(ctx)); ctx.pOut = pVal; ctx.pFunc = pFunc; pFunc->xFunc(&ctx, nVal, apVal); if( ctx.isError ){ rc = ctx.isError; sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); }else{ sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); assert( rc==SQLITE_OK ); rc = sqlite3VdbeChangeEncoding(pVal, enc); if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ rc = SQLITE_TOOBIG; pCtx->pParse->nErr++; } } pCtx->pParse->rc = rc; value_from_function_out: if( rc!=SQLITE_OK ){ pVal = 0; } if( apVal ){ for(i=0; i<nVal; i++){ sqlite3ValueFree(apVal[i]); } sqlite3DbFree(db, apVal); } *ppVal = pVal; return rc; } #else # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ /* ** Extract a value from the supplied expression in the manner described ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object ** using valueNew(). ** ** If pCtx is NULL and an error occurs after the sqlite3_value object ** has been allocated, it is freed before returning. Or, if pCtx is not |
︙ | ︙ | |||
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 | if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft; if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; if( op==TK_CAST ){ u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); testcase( rc!=SQLITE_OK ); if( *ppVal ){ sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); | > > > > > > | 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 | if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft; if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; /* Compressed expressions only appear when parsing the DEFAULT clause ** on a table column definition, and hence only when pCtx==0. This ** check ensures that an EP_TokenOnly expression is never passed down ** into valueFromFunction(). */ assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); if( op==TK_CAST ){ u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); testcase( rc!=SQLITE_OK ); if( *ppVal ){ sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); |
︙ | ︙ | |||
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 | zVal = &pExpr->u.zToken[2]; nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif *ppVal = pVal; return rc; no_mem: db->mallocFailed = 1; sqlite3DbFree(db, zVal); | > > > > > > | 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 | zVal = &pExpr->u.zToken[2]; nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 else if( op==TK_FUNCTION && pCtx!=0 ){ rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); } #endif *ppVal = pVal; return rc; no_mem: db->mallocFailed = 1; sqlite3DbFree(db, zVal); |
︙ | ︙ |
Changes to src/vdbesort.c.
︙ | ︙ | |||
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 | */ static int vdbeSorterOpenTempFile( sqlite3 *db, /* Database handle doing sort */ i64 nExtend, /* Attempt to extend file to this size */ sqlite3_file **ppFd ){ int rc; rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd, SQLITE_OPEN_TEMP_JOURNAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc ); if( rc==SQLITE_OK ){ i64 max = SQLITE_MAX_MMAP_SIZE; | > | 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 | */ static int vdbeSorterOpenTempFile( sqlite3 *db, /* Database handle doing sort */ i64 nExtend, /* Attempt to extend file to this size */ sqlite3_file **ppFd ){ int rc; if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS; rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd, SQLITE_OPEN_TEMP_JOURNAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc ); if( rc==SQLITE_OK ){ i64 max = SQLITE_MAX_MMAP_SIZE; |
︙ | ︙ |
Added src/vxworks.h.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | /* ** 2015-03-02 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code that is specific to Wind River's VxWorks */ #if defined(__RTP__) || defined(_WRS_KERNEL) /* This is VxWorks. Set up things specially for that OS */ #include <vxWorks.h> #include <pthread.h> /* amalgamator: dontcache */ #define OS_VXWORKS 1 #define SQLITE_OS_OTHER 0 #define SQLITE_HOMEGROWN_RECURSIVE_MUTEX 1 #define SQLITE_OMIT_LOAD_EXTENSION 1 #define SQLITE_ENABLE_LOCKING_STYLE 0 #define HAVE_UTIME 1 #else /* This is not VxWorks. */ #define OS_VXWORKS 0 #endif /* defined(_WRS_KERNEL) */ |
Changes to src/wal.c.
︙ | ︙ | |||
784 785 786 787 788 789 790 | } static void walUnlockShared(Wal *pWal, int lockIdx){ if( pWal->exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); } | | > | 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 | } static void walUnlockShared(Wal *pWal, int lockIdx){ if( pWal->exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); } static int walLockExclusive(Wal *pWal, int lockIdx, int n, int fBlock){ int rc; if( pWal->exclusiveMode ) return SQLITE_OK; if( fBlock ) sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_WAL_BLOCK, 0); rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, walLockName(lockIdx), n, rc ? "failed" : "ok")); VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) return rc; } |
︙ | ︙ | |||
1072 1073 1074 1075 1076 1077 1078 | */ assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); assert( pWal->writeLock ); iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; nLock = SQLITE_SHM_NLOCK - iLock; | | | 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 | */ assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); assert( pWal->writeLock ); iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; nLock = SQLITE_SHM_NLOCK - iLock; rc = walLockExclusive(pWal, iLock, nLock, 0); if( rc ){ return rc; } WALTRACE(("WAL%p: recovery begin...\n", pWal)); memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); |
︙ | ︙ | |||
1606 1607 1608 1609 1610 1611 1612 | int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int lockIdx, /* Offset of first byte to lock */ int n /* Number of bytes to lock */ ){ int rc; do { | | | 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 | int (*xBusy)(void*), /* Function to call when busy */ void *pBusyArg, /* Context argument for xBusyHandler */ int lockIdx, /* Offset of first byte to lock */ int n /* Number of bytes to lock */ ){ int rc; do { rc = walLockExclusive(pWal, lockIdx, n, 0); }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); return rc; } /* ** The cache of the wal-index header must be valid to call this function. ** Return the page-size in bytes used by the database. |
︙ | ︙ | |||
2039 2040 2041 2042 2043 2044 2045 | assert( badHdr==0 || pWal->writeLock==0 ); if( badHdr ){ if( pWal->readOnly & WAL_SHM_RDONLY ){ if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ walUnlockShared(pWal, WAL_WRITE_LOCK); rc = SQLITE_READONLY_RECOVERY; } | | | 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 | assert( badHdr==0 || pWal->writeLock==0 ); if( badHdr ){ if( pWal->readOnly & WAL_SHM_RDONLY ){ if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ walUnlockShared(pWal, WAL_WRITE_LOCK); rc = SQLITE_READONLY_RECOVERY; } }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 1)) ){ pWal->writeLock = 1; if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ badHdr = walIndexTryHdr(pWal, pChanged); if( badHdr ){ /* If the wal-index header is still malformed even while holding ** a WRITE lock, it can only mean that the header is corrupted and ** needs to be reconstructed. So run recovery to do exactly that. |
︙ | ︙ | |||
2245 2246 2247 2248 2249 2250 2251 | } /* There was once an "if" here. The extra "{" is to preserve indentation. */ { if( (pWal->readOnly & WAL_SHM_RDONLY)==0 && (mxReadMark<pWal->hdr.mxFrame || mxI==0) ){ for(i=1; i<WAL_NREADER; i++){ | | | 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 | } /* There was once an "if" here. The extra "{" is to preserve indentation. */ { if( (pWal->readOnly & WAL_SHM_RDONLY)==0 && (mxReadMark<pWal->hdr.mxFrame || mxI==0) ){ for(i=1; i<WAL_NREADER; i++){ rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1, 0); if( rc==SQLITE_OK ){ mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame; mxI = i; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); break; }else if( rc!=SQLITE_BUSY ){ return rc; |
︙ | ︙ | |||
2501 2502 2503 2504 2505 2506 2507 | if( pWal->readOnly ){ return SQLITE_READONLY; } /* Only one writer allowed at a time. Get the write lock. Return ** SQLITE_BUSY if unable. */ | | | 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 | if( pWal->readOnly ){ return SQLITE_READONLY; } /* Only one writer allowed at a time. Get the write lock. Return ** SQLITE_BUSY if unable. */ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 0); if( rc ){ return rc; } pWal->writeLock = 1; /* If another connection has written to the database file since the ** time the read transaction on this connection was started, then |
︙ | ︙ | |||
2646 2647 2648 2649 2650 2651 2652 | if( pWal->readLock==0 ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); if( pInfo->nBackfill>0 ){ u32 salt1; sqlite3_randomness(4, &salt1); | | | 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 | if( pWal->readLock==0 ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); if( pInfo->nBackfill>0 ){ u32 salt1; sqlite3_randomness(4, &salt1); rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1, 0); if( rc==SQLITE_OK ){ /* If all readers are using WAL_READ_LOCK(0) (in other words if no ** readers are currently using the WAL), then the transactions ** frames will overwrite the start of the existing log. Update the ** wal-index header to reflect this. ** ** In theory it would be Ok to update the cache of the header only |
︙ | ︙ | |||
2971 2972 2973 2974 2975 2976 2977 | assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); if( pWal->readOnly ) return SQLITE_READONLY; WALTRACE(("WAL%p: checkpoint begins\n", pWal)); /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive ** "checkpoint" lock on the database file. */ | | | 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 | assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); if( pWal->readOnly ) return SQLITE_READONLY; WALTRACE(("WAL%p: checkpoint begins\n", pWal)); /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive ** "checkpoint" lock on the database file. */ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1, 0); if( rc ){ /* EVIDENCE-OF: R-10421-19736 If any other process is running a ** checkpoint operation at the same time, the lock cannot be obtained and ** SQLITE_BUSY is returned. ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, ** it will not be invoked in this case. */ |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
198 199 200 201 202 203 204 | ** This is true even if this routine fails to allocate a new WhereTerm. ** ** WARNING: This routine might reallocate the space used to store ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC->a[] array. */ | | | 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 | ** This is true even if this routine fails to allocate a new WhereTerm. ** ** WARNING: This routine might reallocate the space used to store ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC->a[] array. */ static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ WhereTerm *pTerm; int idx; testcase( wtFlags & TERM_VIRTUAL ); if( pWC->nTerm>=pWC->nSlot ){ WhereTerm *pOld = pWC->a; sqlite3 *db = pWC->pWInfo->pParse->db; pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
︙ | ︙ | |||
623 624 625 626 627 628 629 | #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* ** Check to see if the given expression is a LIKE or GLOB operator that ** can be optimized using inequality constraints. Return TRUE if it is ** so and false if not. ** ** In order for the operator to be optimizible, the RHS must be a string | | > > > > | 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 | #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* ** Check to see if the given expression is a LIKE or GLOB operator that ** can be optimized using inequality constraints. Return TRUE if it is ** so and false if not. ** ** In order for the operator to be optimizible, the RHS must be a string ** literal that does not begin with a wildcard. The LHS must be a column ** that may only be NULL, a string, or a BLOB, never a number. (This means ** that virtual tables cannot participate in the LIKE optimization.) If the ** collating sequence for the column on the LHS must be appropriate for ** the operator. */ static int isLikeOrGlob( Parse *pParse, /* Parsing and code generating context */ Expr *pExpr, /* Test this expression */ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ int *pisComplete, /* True if the only wildcard is % in the last character */ int *pnoCase /* True if uppercase is equivalent to lowercase */ |
︙ | ︙ | |||
652 653 654 655 656 657 658 | #ifdef SQLITE_EBCDIC if( *pnoCase ) return 0; #endif pList = pExpr->x.pList; pLeft = pList->a[1].pExpr; if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT | | | 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 | #ifdef SQLITE_EBCDIC if( *pnoCase ) return 0; #endif pList = pExpr->x.pList; pLeft = pList->a[1].pExpr; if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT || IsVirtual(pLeft->pTab) /* Value might be numeric */ ){ /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must ** be the name of an indexed column with TEXT affinity. */ return 0; } assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ |
︙ | ︙ | |||
761 762 763 764 765 766 767 768 769 770 771 772 773 774 | ** Mark term iChild as being a child of term iParent */ static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ pWC->a[iChild].iParent = iParent; pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; pWC->a[iParent].nChild++; } #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* ** Analyze a term that consists of two or more OR-connected ** subterms. So in: ** ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 | ** Mark term iChild as being a child of term iParent */ static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ pWC->a[iChild].iParent = iParent; pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; pWC->a[iParent].nChild++; } /* ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not ** a conjunction, then return just pTerm when N==0. If N is exceeds ** the number of available subterms, return NULL. */ static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ if( pTerm->eOperator!=WO_AND ){ return N==0 ? pTerm : 0; } if( N<pTerm->u.pAndInfo->wc.nTerm ){ return &pTerm->u.pAndInfo->wc.a[N]; } return 0; } /* ** Subterms pOne and pTwo are contained within WHERE clause pWC. The ** two subterms are in disjunction - they are OR-ed together. ** ** If these two terms are both of the form: "A op B" with the same ** A and B values but different operators and if the operators are ** compatible (if one is = and the other is <, for example) then ** add a new virtual AND term to pWC that is the combination of the ** two. ** ** Some examples: ** ** x<y OR x=y --> x<=y ** x=y OR x=y --> x=y ** x<=y OR x<y --> x<=y ** ** The following is NOT generated: ** ** x<y OR x>y --> x!=y */ static void whereCombineDisjuncts( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* The complete WHERE clause */ WhereTerm *pOne, /* First disjunct */ WhereTerm *pTwo /* Second disjunct */ ){ u16 eOp = pOne->eOperator | pTwo->eOperator; sqlite3 *db; /* Database connection (for malloc) */ Expr *pNew; /* New virtual expression */ int op; /* Operator for the combined expression */ int idxNew; /* Index in pWC of the next virtual term */ if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; /* If we reach this point, it means the two subterms can be combined */ if( (eOp & (eOp-1))!=0 ){ if( eOp & (WO_LT|WO_LE) ){ eOp = WO_LE; }else{ assert( eOp & (WO_GT|WO_GE) ); eOp = WO_GE; } } db = pWC->pWInfo->pParse->db; pNew = sqlite3ExprDup(db, pOne->pExpr, 0); if( pNew==0 ) return; for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } pNew->op = op; idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); exprAnalyze(pSrc, pWC, idxNew); } #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) /* ** Analyze a term that consists of two or more OR-connected ** subterms. So in: ** ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) |
︙ | ︙ | |||
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 | ** Examples of terms under analysis: ** ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 ** (B) x=expr1 OR expr2=x OR x=expr3 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) ** ** CASE 1: ** ** If all subterms are of the form T.C=expr for some single column of C and ** a single table T (as shown in example B above) then create a new virtual ** term that is an equivalent IN expression. In other words, if the term ** being analyzed is: ** ** x = expr1 OR expr2 = x OR x = expr3 ** ** then create a new virtual term like this: ** ** x IN (expr1,expr2,expr3) ** ** CASE 2: ** ** If all subterms are indexable by a single table T, then set ** ** WhereTerm.eOperator = WO_OR ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T ** ** A subterm is "indexable" if it is of the form | > > > > > > > > > > > | 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 | ** Examples of terms under analysis: ** ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 ** (B) x=expr1 OR expr2=x OR x=expr3 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) ** (F) x>A OR (x=A AND y>=B) ** ** CASE 1: ** ** If all subterms are of the form T.C=expr for some single column of C and ** a single table T (as shown in example B above) then create a new virtual ** term that is an equivalent IN expression. In other words, if the term ** being analyzed is: ** ** x = expr1 OR expr2 = x OR x = expr3 ** ** then create a new virtual term like this: ** ** x IN (expr1,expr2,expr3) ** ** CASE 2: ** ** If there are exactly two disjuncts one side has x>A and the other side ** has x=A (for the same x and A) then add a new virtual conjunct term to the ** WHERE clause of the form "x>=A". Example: ** ** x>A OR (x=A AND y>B) adds: x>=A ** ** The added conjunct can sometimes be helpful in query planning. ** ** CASE 3: ** ** If all subterms are indexable by a single table T, then set ** ** WhereTerm.eOperator = WO_OR ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T ** ** A subterm is "indexable" if it is of the form |
︙ | ︙ | |||
928 929 930 931 932 933 934 | }else{ chngToIN &= b; } } } /* | | > > > > > > > > > > > > > > | 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 | }else{ chngToIN &= b; } } } /* ** Record the set of tables that satisfy case 3. The set might be ** empty. */ pOrInfo->indexable = indexable; pTerm->eOperator = indexable==0 ? 0 : WO_OR; /* For a two-way OR, attempt to implementation case 2. */ if( indexable && pOrWc->nTerm==2 ){ int iOne = 0; WhereTerm *pOne; while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ int iTwo = 0; WhereTerm *pTwo; while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); } } } /* ** chngToIN holds a set of tables that *might* satisfy case 1. But ** we have to do some additional checking to see if case 1 really ** is satisfied. ** ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means |
︙ | ︙ | |||
1063 1064 1065 1066 1067 1068 1069 | testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); }else{ sqlite3ExprListDelete(db, pList); } | | | 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 | testcase( idxNew==0 ); exprAnalyze(pSrc, pWC, idxNew); pTerm = &pWC->a[idxTerm]; markTermAsChild(pWC, idxNew, idxTerm); }else{ sqlite3ExprListDelete(db, pList); } pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ } } } #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ /* ** The input to this routine is an WhereTerm structure with only the |
︙ | ︙ | |||
1101 1102 1103 1104 1105 1106 1107 | WhereMaskSet *pMaskSet; /* Set of table index masks */ Expr *pExpr; /* The expression to be analyzed */ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ Bitmask prereqAll; /* Prerequesites of pExpr */ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ | | | 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 | WhereMaskSet *pMaskSet; /* Set of table index masks */ Expr *pExpr; /* The expression to be analyzed */ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ Bitmask prereqAll; /* Prerequesites of pExpr */ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ int noCase = 0; /* uppercase equivalent to lowercase */ int op; /* Top-level operator. pExpr->op */ Parse *pParse = pWInfo->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection */ if( db->mallocFailed ){ return; } |
︙ | ︙ | |||
1239 1240 1241 1242 1243 1244 1245 | } #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* Add constraints to reduce the search space on a LIKE or GLOB ** operator. ** | | | | > > > > > > > > > > > > > > > > > > > | | | | 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 | } #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION /* Add constraints to reduce the search space on a LIKE or GLOB ** operator. ** ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints ** ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' ** ** The last character of the prefix "abc" is incremented to form the ** termination condition "abd". If case is not significant (the default ** for LIKE) then the lower-bound is made all uppercase and the upper- ** bound is made all lowercase so that the bounds also work when comparing ** BLOBs. */ if( pWC->op==TK_AND && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) ){ Expr *pLeft; /* LHS of LIKE/GLOB operator */ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ Expr *pNewExpr1; Expr *pNewExpr2; int idxNew1; int idxNew2; Token sCollSeqName; /* Name of collating sequence */ const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; pLeft = pExpr->x.pList->a[1].pExpr; pStr2 = sqlite3ExprDup(db, pStr1, 0); /* Convert the lower bound to upper-case and the upper bound to ** lower-case (upper-case is less than lower-case in ASCII) so that ** the range constraints also work for BLOBs */ if( noCase && !pParse->db->mallocFailed ){ int i; char c; pTerm->wtFlags |= TERM_LIKE; for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ pStr1->u.zToken[i] = sqlite3Toupper(c); pStr2->u.zToken[i] = sqlite3Tolower(c); } } if( !db->mallocFailed ){ u8 c, *pC; /* Last character before the first wildcard */ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; c = *pC; if( noCase ){ /* The point is to increment the last character before the first ** wildcard. But if we increment '@', that will push it into the ** alphabetic range where case conversions will mess up the ** inequality. To avoid this, make sure to also run the full ** LIKE on all candidate expressions by clearing the isComplete flag */ if( c=='A'-1 ) isComplete = 0; c = sqlite3UpperToLower[c]; } *pC = c + 1; } sCollSeqName.z = noCase ? "NOCASE" : "BINARY"; sCollSeqName.n = 6; pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName), pStr1, 0); transferJoinMarkings(pNewExpr1, pExpr); idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); testcase( idxNew1==0 ); exprAnalyze(pSrc, pWC, idxNew1); pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName), pStr2, 0); transferJoinMarkings(pNewExpr2, pExpr); idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); testcase( idxNew2==0 ); exprAnalyze(pSrc, pWC, idxNew2); pTerm = &pWC->a[idxTerm]; if( isComplete ){ markTermAsChild(pWC, idxNew1, idxTerm); markTermAsChild(pWC, idxNew2, idxTerm); } |
︙ | ︙ | |||
1904 1905 1906 1907 1908 1909 1910 | #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 /* ** Estimate the location of a particular key among all keys in an ** index. Store the results in aStat as follows: ** | | | | > > > > > < > > < | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > | > > > > > | > | > > | | | > > | | > | > | | > > | | | | > > > > > > > > > > > | | | > > < < < < > > > > > | | < | < | < | > > > > | 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 | #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 /* ** Estimate the location of a particular key among all keys in an ** index. Store the results in aStat as follows: ** ** aStat[0] Est. number of rows less than pRec ** aStat[1] Est. number of rows equal to pRec ** ** Return the index of the sample that is the smallest sample that ** is greater than or equal to pRec. Note that this index is not an index ** into the aSample[] array - it is an index into a virtual set of samples ** based on the contents of aSample[] and the number of fields in record ** pRec. */ static int whereKeyStats( Parse *pParse, /* Database connection */ Index *pIdx, /* Index to consider domain of */ UnpackedRecord *pRec, /* Vector of values to consider */ int roundUp, /* Round up if true. Round down if false */ tRowcnt *aStat /* OUT: stats written here */ ){ IndexSample *aSample = pIdx->aSample; int iCol; /* Index of required stats in anEq[] etc. */ int i; /* Index of first sample >= pRec */ int iSample; /* Smallest sample larger than or equal to pRec */ int iMin = 0; /* Smallest sample not yet tested */ int iTest; /* Next sample to test */ int res; /* Result of comparison operation */ int nField; /* Number of fields in pRec */ tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ #ifndef SQLITE_DEBUG UNUSED_PARAMETER( pParse ); #endif assert( pRec!=0 ); assert( pIdx->nSample>0 ); assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); /* Do a binary search to find the first sample greater than or equal ** to pRec. If pRec contains a single field, the set of samples to search ** is simply the aSample[] array. If the samples in aSample[] contain more ** than one fields, all fields following the first are ignored. ** ** If pRec contains N fields, where N is more than one, then as well as the ** samples in aSample[] (truncated to N fields), the search also has to ** consider prefixes of those samples. For example, if the set of samples ** in aSample is: ** ** aSample[0] = (a, 5) ** aSample[1] = (a, 10) ** aSample[2] = (b, 5) ** aSample[3] = (c, 100) ** aSample[4] = (c, 105) ** ** Then the search space should ideally be the samples above and the ** unique prefixes [a], [b] and [c]. But since that is hard to organize, ** the code actually searches this set: ** ** 0: (a) ** 1: (a, 5) ** 2: (a, 10) ** 3: (a, 10) ** 4: (b) ** 5: (b, 5) ** 6: (c) ** 7: (c, 100) ** 8: (c, 105) ** 9: (c, 105) ** ** For each sample in the aSample[] array, N samples are present in the ** effective sample array. In the above, samples 0 and 1 are based on ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. ** ** Often, sample i of each block of N effective samples has (i+1) fields. ** Except, each sample may be extended to ensure that it is greater than or ** equal to the previous sample in the array. For example, in the above, ** sample 2 is the first sample of a block of N samples, so at first it ** appears that it should be 1 field in size. However, that would make it ** smaller than sample 1, so the binary search would not work. As a result, ** it is extended to two fields. The duplicates that this creates do not ** cause any problems. */ nField = pRec->nField; iCol = 0; iSample = pIdx->nSample * nField; do{ int iSamp; /* Index in aSample[] of test sample */ int n; /* Number of fields in test sample */ iTest = (iMin+iSample)/2; iSamp = iTest / nField; if( iSamp>0 ){ /* The proposed effective sample is a prefix of sample aSample[iSamp]. ** Specifically, the shortest prefix of at least (1 + iTest%nField) ** fields that is greater than the previous effective sample. */ for(n=(iTest % nField) + 1; n<nField; n++){ if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; } }else{ n = iTest + 1; } pRec->nField = n; res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); if( res<0 ){ iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; iMin = iTest+1; }else if( res==0 && n<nField ){ iLower = aSample[iSamp].anLt[n-1]; iMin = iTest+1; res = -1; }else{ iSample = iTest; iCol = n-1; } }while( res && iMin<iSample ); i = iSample / nField; #ifdef SQLITE_DEBUG /* The following assert statements check that the binary search code ** above found the right answer. This block serves no purpose other ** than to invoke the asserts. */ if( pParse->db->mallocFailed==0 ){ if( res==0 ){ /* If (res==0) is true, then pRec must be equal to sample i. */ assert( i<pIdx->nSample ); assert( iCol==nField-1 ); pRec->nField = nField; assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) || pParse->db->mallocFailed ); }else{ /* Unless i==pIdx->nSample, indicating that pRec is larger than ** all samples in the aSample[] array, pRec must be smaller than the ** (iCol+1) field prefix of sample i. */ assert( i<=pIdx->nSample && i>=0 ); pRec->nField = iCol+1; assert( i==pIdx->nSample || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 || pParse->db->mallocFailed ); /* if i==0 and iCol==0, then record pRec is smaller than all samples ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must ** be greater than or equal to the (iCol) field prefix of sample i. ** If (i>0), then pRec must also be greater than sample (i-1). */ if( iCol>0 ){ pRec->nField = iCol; assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 || pParse->db->mallocFailed ); } if( i>0 ){ pRec->nField = nField; assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 || pParse->db->mallocFailed ); } } } #endif /* ifdef SQLITE_DEBUG */ if( res==0 ){ /* Record pRec is equal to sample i */ assert( iCol==nField-1 ); aStat[0] = aSample[i].anLt[iCol]; aStat[1] = aSample[i].anEq[iCol]; }else{ /* At this point, the (iCol+1) field prefix of aSample[i] is the first ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec ** is larger than all samples in the array. */ tRowcnt iUpper, iGap; if( i>=pIdx->nSample ){ iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); }else{ iUpper = aSample[i].anLt[iCol]; } if( iLower>=iUpper ){ iGap = 0; }else{ iGap = iUpper - iLower; } if( roundUp ){ iGap = (iGap*2)/3; }else{ iGap = iGap/3; } aStat[0] = iLower + iGap; aStat[1] = pIdx->aAvgEq[iCol]; } /* Restore the pRec->nField value before returning. */ pRec->nField = nField; return i; } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* ** If it is not NULL, pTerm is a term that provides an upper or lower ** bound on a range scan. Without considering pTerm, it is estimated |
︙ | ︙ | |||
2465 2466 2467 2468 2469 2470 2471 2472 2473 | ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. When terms are satisfied ** by indices, we disable them to prevent redundant tests in the inner ** loop. We would get the correct results if nothing were ever disabled, ** but joins might run a little slower. The trick is to disable as much ** as we can without disabling too much. If we disabled in (1), we'd get ** the wrong answer. See ticket #813. */ static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ | > > > > > > > > > > > > > > > > > > > > | > > > | > | | | | < < > | 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 | ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. When terms are satisfied ** by indices, we disable them to prevent redundant tests in the inner ** loop. We would get the correct results if nothing were ever disabled, ** but joins might run a little slower. The trick is to disable as much ** as we can without disabling too much. If we disabled in (1), we'd get ** the wrong answer. See ticket #813. ** ** If all the children of a term are disabled, then that term is also ** automatically disabled. In this way, terms get disabled if derived ** virtual terms are tested first. For example: ** ** x GLOB 'abc*' AND x>='abc' AND x<'acd' ** \___________/ \______/ \_____/ ** parent child1 child2 ** ** Only the parent term was in the original WHERE clause. The child1 ** and child2 terms were added by the LIKE optimization. If both of ** the virtual child terms are valid, then testing of the parent can be ** skipped. ** ** Usually the parent term is marked as TERM_CODED. But if the parent ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. ** The TERM_LIKECOND marking indicates that the term should be coded inside ** a conditional such that is only evaluated on the second pass of a ** LIKE-optimization loop, when scanning BLOBs instead of strings. */ static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ int nLoop = 0; while( pTerm && (pTerm->wtFlags & TERM_CODED)==0 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) && (pLevel->notReady & pTerm->prereqAll)==0 ){ if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ pTerm->wtFlags |= TERM_LIKECOND; }else{ pTerm->wtFlags |= TERM_CODED; } if( pTerm->iParent<0 ) break; pTerm = &pTerm->pWC->a[pTerm->iParent]; pTerm->nChild--; if( pTerm->nChild!=0 ) break; nLoop++; } } /* ** Code an OP_Affinity opcode to apply the column affinity string zAff ** to the n registers starting at base. ** |
︙ | ︙ | |||
2962 2963 2964 2965 2966 2967 2968 | v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj ); } #else # define addScanStatus(a, b, c, d) ((void)d) #endif | > > > > > > > > > > > > > > > > > > > > > > > > > > | > | 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 | v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj ); } #else # define addScanStatus(a, b, c, d) ((void)d) #endif /* ** If the most recently coded instruction is a constant range contraint ** that originated from the LIKE optimization, then change the P3 to be ** pLoop->iLikeRepCntr and set P5. ** ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range ** expression: "x>='ABC' AND x<'abd'". But this requires that the range ** scan loop run twice, once for strings and a second time for BLOBs. ** The OP_String opcodes on the second pass convert the upper and lower ** bound string contants to blobs. This routine makes the necessary changes ** to the OP_String opcodes for that to happen. */ static void whereLikeOptimizationStringFixup( Vdbe *v, /* prepared statement under construction */ WhereLevel *pLevel, /* The loop that contains the LIKE operator */ WhereTerm *pTerm /* The upper or lower bound just coded */ ){ if( pTerm->wtFlags & TERM_LIKEOPT ){ VdbeOp *pOp; assert( pLevel->iLikeRepCntr>0 ); pOp = sqlite3VdbeGetOp(v, -1); assert( pOp!=0 ); assert( pOp->opcode==OP_String8 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); pOp->p3 = pLevel->iLikeRepCntr; pOp->p5 = 1; } } /* ** Generate code for the start of the iLevel-th loop in the WHERE clause ** implementation described by pWInfo. */ static Bitmask codeOneLoopStart( WhereInfo *pWInfo, /* Complete information about the WHERE clause */ |
︙ | ︙ | |||
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 | /* Find any inequality constraint terms for the start and end ** of the range. */ j = nEq; if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ pRangeStart = pLoop->aLTerm[j++]; nExtraReg = 1; } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = 1; if( pRangeStart==0 && (j = pIdx->aiColumn[nEq])>=0 && pIdx->pTable->aCol[j].notNull==0 ){ bSeekPastNull = 1; } } | > > > > > > > > > > > > > > > | 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 | /* Find any inequality constraint terms for the start and end ** of the range. */ j = nEq; if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ pRangeStart = pLoop->aLTerm[j++]; nExtraReg = 1; /* Like optimization range constraints always occur in pairs */ assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = 1; if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ assert( pRangeStart!=0 ); /* LIKE opt constraints */ assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ pLevel->iLikeRepCntr = ++pParse->nMem; testcase( bRev ); testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); sqlite3VdbeAddOp2(v, OP_Integer, bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC), pLevel->iLikeRepCntr); VdbeComment((v, "LIKE loop counter")); pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); } if( pRangeStart==0 && (j = pIdx->aiColumn[nEq])>=0 && pIdx->pTable->aCol[j].notNull==0 ){ bSeekPastNull = 1; } } |
︙ | ︙ | |||
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 | start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; sqlite3ExprCode(pParse, pRight, regBase+nEq); if( (pRangeStart->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( zStartAff ){ | > | 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 | start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; sqlite3ExprCode(pParse, pRight, regBase+nEq); whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); if( (pRangeStart->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( zStartAff ){ |
︙ | ︙ | |||
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 | ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE | > | 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 | ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); if( (pRangeEnd->wtFlags & TERM_VNULL)==0 && sqlite3ExprCanBeNull(pRight) ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); VdbeCoverage(v); } if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE |
︙ | ︙ | |||
3610 3611 3612 3613 3614 3615 3616 | /* Run a separate WHERE clause for each term of the OR clause. After ** eliminating duplicates from other WHERE clauses, the action for each ** sub-WHERE clause is to to invoke the main loop body as a subroutine. */ wctrlFlags = WHERE_OMIT_OPEN_CLOSE | WHERE_FORCE_TABLE | | > | 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 | /* Run a separate WHERE clause for each term of the OR clause. After ** eliminating duplicates from other WHERE clauses, the action for each ** sub-WHERE clause is to to invoke the main loop body as a subroutine. */ wctrlFlags = WHERE_OMIT_OPEN_CLOSE | WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY | WHERE_NO_AUTOINDEX; for(ii=0; ii<pOrWc->nTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ int j1 = 0; /* Address of jump operation */ if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ |
︙ | ︙ | |||
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 | #endif /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; testcase( pTerm->wtFlags & TERM_VIRTUAL ); testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); pWInfo->untestedTerms = 1; continue; } pE = pTerm->pExpr; assert( pE!=0 ); if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ continue; } sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } /* Insert code to test for implied constraints based on transitivity ** of the "==" operator. ** ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" | > > > > > > > | 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 | #endif /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; int skipLikeAddr = 0; testcase( pTerm->wtFlags & TERM_VIRTUAL ); testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); pWInfo->untestedTerms = 1; continue; } pE = pTerm->pExpr; assert( pE!=0 ); if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ continue; } if( pTerm->wtFlags & TERM_LIKECOND ){ assert( pLevel->iLikeRepCntr>0 ); skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr); VdbeCoverage(v); } sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); pTerm->wtFlags |= TERM_CODED; } /* Insert code to test for implied constraints based on transitivity ** of the "==" operator. ** ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" |
︙ | ︙ | |||
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 | if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) ){ continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ } if( pTerm->prereqRight & pNew->maskSelf ) continue; pNew->wsFlags = saved_wsFlags; pNew->u.btree.nEq = saved_nEq; pNew->nLTerm = saved_nLTerm; if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ pNew->aLTerm[pNew->nLTerm++] = pTerm; pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; | > > > > | 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 | if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) ){ continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ } if( pTerm->prereqRight & pNew->maskSelf ) continue; /* Do not allow the upper bound of a LIKE optimization range constraint ** to mix with a lower range bound from some other source */ if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; pNew->wsFlags = saved_wsFlags; pNew->u.btree.nEq = saved_nEq; pNew->nLTerm = saved_nLTerm; if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ pNew->aLTerm[pNew->nLTerm++] = pTerm; pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; |
︙ | ︙ | |||
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 | pNew->wsFlags |= WHERE_COLUMN_NULL; }else if( eOp & (WO_GT|WO_GE) ){ testcase( eOp & WO_GT ); testcase( eOp & WO_GE ); pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; pBtm = pTerm; pTop = 0; }else{ assert( eOp & (WO_LT|WO_LE) ); testcase( eOp & WO_LT ); testcase( eOp & WO_LE ); pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; pTop = pTerm; pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? | > > > > > > > > > > > | 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 | pNew->wsFlags |= WHERE_COLUMN_NULL; }else if( eOp & (WO_GT|WO_GE) ){ testcase( eOp & WO_GT ); testcase( eOp & WO_GE ); pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; pBtm = pTerm; pTop = 0; if( pTerm->wtFlags & TERM_LIKEOPT ){ /* Range contraints that come from the LIKE optimization are ** always used in pairs. */ pTop = &pTerm[1]; assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); assert( pTop->wtFlags & TERM_LIKEOPT ); assert( pTop->eOperator==WO_LT ); if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ pNew->aLTerm[pNew->nLTerm++] = pTop; pNew->wsFlags |= WHERE_TOP_LIMIT; } }else{ assert( eOp & (WO_LT|WO_LE) ); testcase( eOp & WO_LT ); testcase( eOp & WO_LE ); pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; pTop = pTerm; pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? |
︙ | ︙ | |||
4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 | } rSize = pTab->nRowLogEst; rLogSize = estLog(rSize); #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* Automatic indexes */ if( !pBuilder->pOrSet && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 && pSrc->pIndex==0 && !pSrc->viaCoroutine && !pSrc->notIndexed && HasRowid(pTab) && !pSrc->isCorrelated && !pSrc->isRecursive | > | 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 | } rSize = pTab->nRowLogEst; rLogSize = estLog(rSize); #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* Automatic indexes */ if( !pBuilder->pOrSet && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 && pSrc->pIndex==0 && !pSrc->viaCoroutine && !pSrc->notIndexed && HasRowid(pTab) && !pSrc->isCorrelated && !pSrc->isRecursive |
︙ | ︙ | |||
5687 5688 5689 5690 5691 5692 5693 | memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); } assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); /* Seed the search with a single WherePath containing zero WhereLoops. ** | | | | | 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 | memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); } assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); /* Seed the search with a single WherePath containing zero WhereLoops. ** ** TUNING: Do not let the number of iterations go above 28. If the cost ** of computing an automatic index is not paid back within the first 28 ** rows, then do not use the automatic index. */ aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); nFrom = 1; assert( aFrom[0].isOrdered==0 ); if( nOrderBy ){ /* If nLoop is zero, then there are no FROM terms in the query. Since ** in this case the query may return a maximum of one row, the results ** are already in the requested order. Set isOrdered to nOrderBy to ** indicate this. Or, if nLoop is greater than zero, set isOrdered to |
︙ | ︙ | |||
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 | } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); if( pLevel->addrSkip ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); sqlite3VdbeJumpHere(v, pLevel->addrSkip); sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); } if( pLevel->iLeftJoin ){ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); | > > > > > > > > > > | 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 | } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); if( pLevel->addrSkip ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); sqlite3VdbeJumpHere(v, pLevel->addrSkip); sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); } if( pLevel->addrLikeRep ){ int op; if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){ op = OP_DecrJumpZero; }else{ op = OP_JumpZeroIncr; } sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep); VdbeCoverage(v); } if( pLevel->iLeftJoin ){ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); |
︙ | ︙ |
Changes to src/whereInt.h.
︙ | ︙ | |||
65 66 67 68 69 70 71 72 73 74 75 76 77 78 | int iIdxCur; /* The VDBE cursor used to access pIdx */ int addrBrk; /* Jump here to break out of the loop */ int addrNxt; /* Jump here to start the next IN combination */ int addrSkip; /* Jump here for next iteration of skip-scan */ int addrCont; /* Jump here to continue with the next loop cycle */ int addrFirst; /* First instruction of interior of the loop */ int addrBody; /* Beginning of the body of this loop */ u8 iFrom; /* Which entry in the FROM clause */ u8 op, p3, p5; /* Opcode, P3 & P5 of the opcode that ends the loop */ int p1, p2; /* Operands of the opcode used to ends the loop */ union { /* Information that depends on pWLoop->wsFlags */ struct { int nIn; /* Number of entries in aInLoop[] */ struct InLoop { | > > | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | int iIdxCur; /* The VDBE cursor used to access pIdx */ int addrBrk; /* Jump here to break out of the loop */ int addrNxt; /* Jump here to start the next IN combination */ int addrSkip; /* Jump here for next iteration of skip-scan */ int addrCont; /* Jump here to continue with the next loop cycle */ int addrFirst; /* First instruction of interior of the loop */ int addrBody; /* Beginning of the body of this loop */ int iLikeRepCntr; /* LIKE range processing counter register */ int addrLikeRep; /* LIKE range processing address */ u8 iFrom; /* Which entry in the FROM clause */ u8 op, p3, p5; /* Opcode, P3 & P5 of the opcode that ends the loop */ int p1, p2; /* Operands of the opcode used to ends the loop */ union { /* Information that depends on pWLoop->wsFlags */ struct { int nIn; /* Number of entries in aInLoop[] */ struct InLoop { |
︙ | ︙ | |||
249 250 251 252 253 254 255 | union { int leftColumn; /* Column number of X in "X <op> <expr>" */ WhereOrInfo *pOrInfo; /* Extra information if (eOperator & WO_OR)!=0 */ WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */ } u; LogEst truthProb; /* Probability of truth for this expression */ u16 eOperator; /* A WO_xx value describing <op> */ | | | 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | union { int leftColumn; /* Column number of X in "X <op> <expr>" */ WhereOrInfo *pOrInfo; /* Extra information if (eOperator & WO_OR)!=0 */ WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */ } u; LogEst truthProb; /* Probability of truth for this expression */ u16 eOperator; /* A WO_xx value describing <op> */ u16 wtFlags; /* TERM_xxx bit flags. See below */ u8 nChild; /* Number of children that must disable us */ WhereClause *pWC; /* The clause this term is part of */ Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ }; /* |
︙ | ︙ | |||
271 272 273 274 275 276 277 278 279 280 281 282 283 284 | #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */ #else # define TERM_VNULL 0x00 /* Disabled if not using stat3 */ #endif /* ** An instance of the WhereScan object is used as an iterator for locating ** terms in the WHERE clause that are useful to the query planner. */ struct WhereScan { WhereClause *pOrigWC; /* Original, innermost WhereClause */ | > > > | 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 | #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */ #else # define TERM_VNULL 0x00 /* Disabled if not using stat3 */ #endif #define TERM_LIKEOPT 0x100 /* Virtual terms from the LIKE optimization */ #define TERM_LIKECOND 0x200 /* Conditionally this LIKE operator term */ #define TERM_LIKE 0x400 /* The original LIKE operator */ /* ** An instance of the WhereScan object is used as an iterator for locating ** terms in the WHERE clause that are useful to the query planner. */ struct WhereScan { WhereClause *pOrigWC; /* Original, innermost WhereClause */ |
︙ | ︙ |
Changes to test/analyze3.test.
︙ | ︙ | |||
277 278 279 280 281 282 283 | } {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?)}} do_eqp_test analyze3-2.3 { SELECT count(a) FROM t1 WHERE b LIKE '%a' } {0 0 0 {SCAN TABLE t1}} do_test analyze3-2.4 { sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE 'a%' } | | | | | | | | | | | | | | 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | } {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?)}} do_eqp_test analyze3-2.3 { SELECT count(a) FROM t1 WHERE b LIKE '%a' } {0 0 0 {SCAN TABLE t1}} do_test analyze3-2.4 { sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE 'a%' } } {102 0 100} do_test analyze3-2.5 { sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE '%a' } } {999 999 100} do_test analyze3-2.6 { set like "a%" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {102 0 100} do_test analyze3-2.7 { set like "%a" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {999 999 100} do_test analyze3-2.8 { set like "a" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {102 0 0} do_test analyze3-2.9 { set like "ab" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {12 0 0} do_test analyze3-2.10 { set like "abc" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {3 0 1} do_test analyze3-2.11 { set like "a_c" sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE $like } } {102 0 10} #------------------------------------------------------------------------- # This block of tests checks that statements are correctly marked as # expired when the values bound to any parameters that may affect the # query plan are modified. # |
︙ | ︙ |
Changes to test/analyze9.test.
︙ | ︙ | |||
1129 1130 1131 1132 1133 1134 1135 1136 1137 | } do_eqp_test 25.4.2 { SELECT * FROM t6 WHERE a < 20 AND (b BETWEEN ? AND 60) } { 0 0 0 {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)} } } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 | } do_eqp_test 25.4.2 { SELECT * FROM t6 WHERE a < 20 AND (b BETWEEN ? AND 60) } { 0 0 0 {SEARCH TABLE t6 USING INDEX bb (b>? AND b<?)} } } #------------------------------------------------------------------------- # Check that a problem in they way stat4 data is used has been # resolved (see below). # reset_db do_test 26.1.1 { db transaction { execsql { CREATE TABLE t1(x, y, z); CREATE INDEX t1xy ON t1(x, y); CREATE INDEX t1z ON t1(z); } for {set i 0} {$i < 10000} {incr i} { execsql { INSERT INTO t1(x, y) VALUES($i, $i) } } for {set i 0} {$i < 10} {incr i} { execsql { WITH cnt(x) AS (SELECT 1 UNION ALL SELECT x+1 FROM cnt WHERE x<100) INSERT INTO t1(x, y) SELECT 10000+$i, x FROM cnt; INSERT INTO t1(x, y) SELECT 10000+$i, 100; } } execsql { UPDATE t1 SET z = rowid / 20; ANALYZE; } } } {} do_execsql_test 26.1.2 { SELECT count(*) FROM t1 WHERE x = 10000 AND y < 50; } {49} do_execsql_test 26.1.3 { SELECT count(*) FROM t1 WHERE z = 444; } {20} # The analyzer knows that any (z=?) expression matches 20 rows. So it # will use index "t1z" if the estimate of hits for (x=10000 AND y<50) # is greater than 20 rows. # # And it should be. The analyzer has a stat4 sample as follows: # # sample=(x=10000, y=100) nLt=(10000 10099) # # There should be no other samples that start with (x=10000). So it knows # that (x=10000 AND y<50) must match somewhere between 0 and 99 rows, but # know more than that. Guessing less than 20 is therefore unreasonable. # # At one point though, due to a problem in whereKeyStats(), the planner was # estimating that (x=10000 AND y<50) would match only 2 rows. # do_eqp_test 26.1.4 { SELECT * FROM t1 WHERE x = 10000 AND y < 50 AND z = 444; } { 0 0 0 {SEARCH TABLE t1 USING INDEX t1z (z=?)} } # This test - 26.2.* - tests that another manifestation of the same problem # is no longer present in the library. Assuming: # # CREATE INDEX t1xy ON t1(x, y) # # and that have samples for index t1xy as follows: # # # sample=('A', 70) nEq=(100, 2) nLt=(900, 970) # sample=('B', 70) nEq=(100, 2) nLt=(1000, 1070) # # the planner should estimate that (x = 'B' AND y > 25) matches 76 rows # (70 * 2/3 + 30). Before, due to the problem, the planner was estimating # that this matched 100 rows. # reset_db do_execsql_test 26.2.1 { BEGIN; CREATE TABLE t1(x, y, z); CREATE INDEX i1 ON t1(x, y); CREATE INDEX i2 ON t1(z); WITH cnt(y) AS (SELECT 0 UNION ALL SELECT y+1 FROM cnt WHERE y<99), letters(x) AS ( SELECT 'A' UNION SELECT 'B' UNION SELECT 'C' UNION SELECT 'D' ) INSERT INTO t1(x, y) SELECT x, y FROM letters, cnt; WITH letters(x) AS ( SELECT 'A' UNION SELECT 'B' UNION SELECT 'C' UNION SELECT 'D' ) INSERT INTO t1(x, y) SELECT x, 70 FROM letters; WITH cnt(i) AS (SELECT 0 UNION ALL SELECT i+1 FROM cnt WHERE i<9999) INSERT INTO t1(x, y) SELECT i, i FROM cnt; UPDATE t1 SET z = (rowid / 95); ANALYZE; COMMIT; } do_eqp_test 26.2.2 { SELECT * FROM t1 WHERE x='B' AND y>25 AND z=?; } { 0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x=? AND y>?)} } finish_test |
Added test/analyzeF.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | # 2015-03-12 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # Test that deterministic scalar functions passed constant arguments # are used with stat4 data. # set testdir [file dirname $argv0] source $testdir/tester.tcl set ::testprefix analyzeF ifcapable {!stat4} { finish_test return } proc isqrt {i} { expr { int(sqrt($i)) } } db func isqrt isqrt do_execsql_test 1.0 { CREATE TABLE t1(x INTEGER, y INTEGER); WITH data(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM data ) INSERT INTO t1 SELECT isqrt(i), isqrt(i) FROM data LIMIT 400; CREATE INDEX t1x ON t1(x); CREATE INDEX t1y ON t1(y); ANALYZE; } proc str {a} { return $a } db func str str # Note: tests 7 to 12 might be unstable - as they assume SQLite will # prefer the expression to the right of the AND clause. Which of # course could change. # # Note 2: tests 9 and 10 depend on the tcl interface creating functions # without the SQLITE_DETERMINISTIC flag set. # foreach {tn where idx} { 1 "x = 4 AND y = 19" {t1x (x=?)} 2 "x = 19 AND y = 4" {t1y (y=?)} 3 "x = '4' AND y = '19'" {t1x (x=?)} 4 "x = '19' AND y = '4'" {t1y (y=?)} 5 "x = substr('5195', 2, 2) AND y = substr('145', 2, 1)" {t1y (y=?)} 6 "x = substr('145', 2, 1) AND y = substr('5195', 2, 2)" {t1x (x=?)} 7 "x = substr('5195', 2, 2+0) AND y = substr('145', 2, 1+0)" {t1y (y=?)} 8 "x = substr('145', 2, 1+0) AND y = substr('5195', 2, 2+0)" {t1y (y=?)} 9 "x = str('19') AND y = str('4')" {t1y (y=?)} 10 "x = str('4') AND y = str('19')" {t1y (y=?)} 11 "x = nullif('19', 0) AND y = nullif('4', 0)" {t1y (y=?)} 12 "x = nullif('4', 0) AND y = nullif('19', 0)" {t1y (y=?)} } { set res "0 0 0 {SEARCH TABLE t1 USING INDEX $idx}" do_eqp_test 1.$tn "SELECT * FROM t1 WHERE $where" $res } # Test that functions that do not exist - "func()" - do not cause an error. # do_catchsql_test 2.1 { SELECT * FROM t1 WHERE x = substr('145', 2, 1) AND y = func(1, 2, 3) } {1 {no such function: func}} do_catchsql_test 2.2 { UPDATE t1 SET y=y+1 WHERE x = substr('145', 2, 1) AND y = func(1, 2, 3) } {1 {no such function: func}} # Check that functions that accept zero arguments do not cause problems. # proc ret {x} { return $x } db func det4 -deterministic [list ret 4] db func nondet4 [list ret 4] db func det19 -deterministic [list ret 19] db func nondet19 [list ret 19] foreach {tn where idx} { 1 "x = det4() AND y = det19()" {t1x (x=?)} 2 "x = det19() AND y = det4()" {t1y (y=?)} 3 "x = nondet4() AND y = nondet19()" {t1y (y=?)} 4 "x = nondet19() AND y = nondet4()" {t1y (y=?)} } { set res "0 0 0 {SEARCH TABLE t1 USING INDEX $idx}" do_eqp_test 3.$tn "SELECT * FROM t1 WHERE $where" $res } execsql { DELETE FROM t1 } proc throw_error {err} { error $err } db func error -deterministic throw_error do_catchsql_test 4.1 { SELECT * FROM t1 WHERE x = error('error one') AND y = 4; } {1 {error one}} do_catchsql_test 4.2 { SELECT * FROM t1 WHERE x = zeroblob(2000000000) AND y = 4; } {1 {string or blob too big}} sqlite3_limit db SQLITE_LIMIT_LENGTH 1000000 proc dstr {} { return [string repeat x 1100000] } db func dstr -deterministic dstr do_catchsql_test 4.3 { SELECT * FROM t1 WHERE x = dstr() AND y = 11; } {1 {string or blob too big}} do_catchsql_test 4.4 { SELECT * FROM t1 WHERE x = test_zeroblob(1100000) AND y = 4; } {1 {string or blob too big}} finish_test |
Changes to test/autoindex1.test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # 2010 April 07 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing automatic index creation logic. # set testdir [file dirname $argv0] source $testdir/tester.tcl # If the library is not compiled with automatic index support then # skip all tests in this file. # | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # 2010 April 07 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing automatic index creation logic. # # EVIDENCE-OF: R-34271-33106 PRAGMA automatic_index; PRAGMA # automatic_index = boolean; Query, set, or clear the automatic indexing # capability. set testdir [file dirname $argv0] source $testdir/tester.tcl # If the library is not compiled with automatic index support then # skip all tests in this file. # |
︙ | ︙ |
Added test/crashM.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | # 2015 Mar 13 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Crash tests for the multiplex module with 8.3 filenames enabled. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix crashM ifcapable !crashtest||!8_3_names { finish_test return } db close sqlite3_shutdown sqlite3_config_uri 1 foreach f [glob -nocomplain test1.* test2.*] { forcedelete $f } sqlite3_multiplex_initialize "" 1 sqlite3 db file:test1.db?8_3_names=1 sqlite3_multiplex_control db main chunk_size [expr 64*1024] do_execsql_test 1.0 { ATTACH 'file:test2.db?8_3_names=1' AS aux; CREATE TABLE t1(x, y); CREATE INDEX t1x ON t1(x); CREATE INDEX t1y ON t1(y); CREATE TABLE aux.t2(x, y); CREATE INDEX aux.t2x ON t2(x); CREATE INDEX aux.t2y ON t2(y); WITH s(a) AS ( SELECT 1 UNION ALL SELECT a+1 FROM s WHERE a<1000 ) INSERT INTO t1 SELECT a, randomblob(500) FROM s; WITH s(a) AS ( SELECT 1 UNION ALL SELECT a+1 FROM s WHERE a<1000 ) INSERT INTO t2 SELECT a, randomblob(500) FROM s; } {} for {set i 0} {$i < 20} {incr i} { do_test 2.$i.1 { crashsql -delay 1 -file test1.db -opendb { sqlite3_shutdown sqlite3_config_uri 1 sqlite3_multiplex_initialize crash 1 sqlite3 db file:test1.db?8_3_names=1 sqlite3_multiplex_control db main chunk_size [expr 64*1024] } { ATTACH 'file:test2.db?8_3_names=1' AS aux; BEGIN; UPDATE t1 SET y = randomblob(500) WHERE (x%10)==0; UPDATE t2 SET y = randomblob(500) WHERE (x%10)==0; COMMIT; } } {1 {child process exited abnormally}} do_execsql_test 2.$i.2 { PRAGMA main.integrity_check; PRAGMA aux.integrity_check; } {ok ok} } catch { db close } sqlite3_multiplex_shutdown finish_test |
Changes to test/e_insert.test.
︙ | ︙ | |||
344 345 346 347 348 349 350 | 5.1 "INSERT INTO a1 DEFAULT VALUES" {} 5.2 "SELECT * FROM a1" {{} {}} 6.1 "INSERT INTO a1 DEFAULT VALUES" {} 6.2 "SELECT * FROM a1" {{} {} {} {}} } | | | | | 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 | 5.1 "INSERT INTO a1 DEFAULT VALUES" {} 5.2 "SELECT * FROM a1" {{} {}} 6.1 "INSERT INTO a1 DEFAULT VALUES" {} 6.2 "SELECT * FROM a1" {{} {} {} {}} } # EVIDENCE-OF: R-03235-45250 The "REPLACE" and "INSERT OR action" forms # specify an alternative constraint conflict resolution algorithm to use # during this one INSERT command. # # EVIDENCE-OF: R-23110-47146 the parser allows the use of the single # keyword REPLACE as an alias for "INSERT OR REPLACE". # # The two requirements above are tested by e_select-4.1.* and # e_select-4.2.*, respectively. # |
︙ | ︙ |
Changes to test/fkey5.test.
︙ | ︙ | |||
8 9 10 11 12 13 14 | # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. # # This file tests the PRAGMA foreign_key_check command. # | | | > > > > > | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. # # This file tests the PRAGMA foreign_key_check command. # # EVIDENCE-OF: R-01427-50262 PRAGMA database.foreign_key_check; PRAGMA # database.foreign_key_check(table-name); # # EVIDENCE-OF: R-23918-17301 The foreign_key_check pragma checks the # database, or the table called "table-name", for foreign key # constraints that are violated and returns one row of output for each # violation. set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix fkey5 ifcapable {!foreignkey} { finish_test |
︙ | ︙ | |||
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | } {} do_test fkey5-1.2 { db eval { INSERT INTO c1 VALUES(90),(87),(88); PRAGMA foreign_key_check; } } {c1 87 p1 0 c1 90 p1 0} do_test fkey5-1.3 { db eval { PRAGMA foreign_key_check(c1); } } {c1 87 p1 0 c1 90 p1 0} do_test fkey5-1.4 { db eval { PRAGMA foreign_key_check(c2); } } {} # EVIDENCE-OF: R-45728-08709 There are four columns in each result row. # # EVIDENCE-OF: R-55672-01620 The first column is the name of the table # that contains the REFERENCES clause. # # EVIDENCE-OF: R-25219-25618 The second column is the rowid of the row | > > > > > > > > > > > > > > > > > > > > | 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | } {} do_test fkey5-1.2 { db eval { INSERT INTO c1 VALUES(90),(87),(88); PRAGMA foreign_key_check; } } {c1 87 p1 0 c1 90 p1 0} do_test fkey5-1.2b { db eval { PRAGMA main.foreign_key_check; } } {c1 87 p1 0 c1 90 p1 0} do_test fkey5-1.2c { db eval { PRAGMA temp.foreign_key_check; } } {} do_test fkey5-1.3 { db eval { PRAGMA foreign_key_check(c1); } } {c1 87 p1 0 c1 90 p1 0} do_test fkey5-1.4 { db eval { PRAGMA foreign_key_check(c2); } } {} do_test fkey5-1.5 { db eval { PRAGMA main.foreign_key_check(c2); } } {} do_test fkey5-1.6 { catchsql { PRAGMA temp.foreign_key_check(c2); } } {1 {no such table: temp.c2}} # EVIDENCE-OF: R-45728-08709 There are four columns in each result row. # # EVIDENCE-OF: R-55672-01620 The first column is the name of the table # that contains the REFERENCES clause. # # EVIDENCE-OF: R-25219-25618 The second column is the rowid of the row |
︙ | ︙ |
Changes to test/fts3query.test.
︙ | ︙ | |||
248 249 250 251 252 253 254 255 256 257 | set res [db eval { SELECT rowid FROM t4 WHERE rowid BETWEEN $iFirst AND $iLast } ] do_execsql_test 7.2.$tn.1.[llength $res] { SELECT rowid FROM ft4 WHERE rowid BETWEEN $iFirst AND $iLast } $res do_execsql_test 7.2.$tn.2.[llength $res] { SELECT rowid FROM ft4 WHERE rowid BETWEEN $iFirst AND $iLast ORDER BY rowid DESC | > > > > | > > | | < < | 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | set res [db eval { SELECT rowid FROM t4 WHERE rowid BETWEEN $iFirst AND $iLast } ] do_execsql_test 7.2.$tn.1.[llength $res] { SELECT rowid FROM ft4 WHERE rowid BETWEEN $iFirst AND $iLast } $res set res [db eval { SELECT rowid FROM t4 WHERE rowid BETWEEN $iFirst AND $iLast ORDER BY +rowid DESC } ] do_execsql_test 7.2.$tn.2.[llength $res] { SELECT rowid FROM ft4 WHERE rowid BETWEEN $iFirst AND $iLast ORDER BY rowid DESC } $res } foreach ii [db eval {SELECT rowid FROM t4}] { set res1 [db eval {SELECT rowid FROM t4 WHERE rowid > $ii}] set res2 [db eval {SELECT rowid FROM t4 WHERE rowid < $ii}] set res1s [db eval {SELECT rowid FROM t4 WHERE rowid > $ii ORDER BY +rowid DESC}] set res2s [db eval {SELECT rowid FROM t4 WHERE rowid < $ii ORDER BY +rowid DESC}] do_execsql_test 7.3.$ii.1 { SELECT rowid FROM ft4 WHERE rowid > $ii } $res1 do_execsql_test 7.3.$ii.2 { SELECT rowid FROM ft4 WHERE rowid < $ii } $res2 do_execsql_test 7.3.$ii.3 { SELECT rowid FROM ft4 WHERE rowid > $ii ORDER BY rowid DESC } $res1s do_execsql_test 7.3.$ii.4 { SELECT rowid FROM ft4 WHERE rowid < $ii ORDER BY rowid DESC } $res2s } finish_test |
Changes to test/incrblob2.test.
︙ | ︙ | |||
320 321 322 323 324 325 326 | } {} do_test incrblob2-6.2 { set rdHandle [db incrblob -readonly t1 data 1] sqlite3_blob_read $rdHandle 0 2 } {AB} | > | > > > > > > > > > | | 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 | } {} do_test incrblob2-6.2 { set rdHandle [db incrblob -readonly t1 data 1] sqlite3_blob_read $rdHandle 0 2 } {AB} if {$::tcl_platform(pointerSize)>=8} { do_test incrblob2-6.2b { set rc [catch { # Prior to 2015-02-07, the following caused a segfault due to # integer overflow. sqlite3_blob_read $rdHandle 2147483647 2147483647 } errmsg] lappend rc $errmsg } {1 SQLITE_ERROR} } do_test incrblob2-6.2c { set rc [catch { # Prior to 2015-02-07, the following caused a segfault due to # integer overflow. sqlite3_blob_read $rdHandle 2147483647 100 } errmsg] lappend rc $errmsg } {1 SQLITE_ERROR} do_test incrblob2-6.3 { set wrHandle [db incrblob t1 data 1] sqlite3_blob_write $wrHandle 0 ZZZZZZZZZZ |
︙ | ︙ |
Added test/incrcorrupt.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | # 2001 October 12 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # Test that "PRAGMA incremental_vacuum" detects and reports database # corruption properly. And that "PRAGMA auto_vacuum = INCREMENTAL" # does as well. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix incrcorrupt # If this build of the library does not support auto-vacuum, omit this # whole file. ifcapable {!autovacuum} { finish_test return } do_execsql_test 1.0 { PRAGMA auto_vacuum = 2; CREATE TABLE t1(a PRIMARY KEY, b); WITH data(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM data ) INSERT INTO t1 SELECT i, randomblob(600) FROM data LIMIT 20; PRAGMA page_count; } {24} do_execsql_test 1.1 { PRAGMA incremental_vacuum; } {} do_test 1.2 { db_save hexio_write test.db 36 00000019 catchsql { PRAGMA incremental_vacuum; } } {1 {database disk image is malformed}} do_test 1.3 { set stmt [sqlite3_prepare_v2 db "PRAGMA incremental_vacuum" -1 dummy] sqlite3_step $stmt } {SQLITE_CORRUPT} do_test 1.4 { sqlite3_errcode db } {SQLITE_CORRUPT} do_test 1.5 { sqlite3_errmsg db } {database disk image is malformed} do_test 1.6 { sqlite3_finalize $stmt } {SQLITE_CORRUPT} do_test 1.7 { sqlite3_errcode db } {SQLITE_CORRUPT} do_test 1.8 { sqlite3_errmsg db } {database disk image is malformed} do_test 1.9 { set stmt [sqlite3_prepare_v2 db "PRAGMA incremental_vacuum" -1 dummy] sqlite3_step $stmt } {SQLITE_CORRUPT} do_test 1.10 { sqlite3_errcode db } {SQLITE_CORRUPT} do_test 1.11 { sqlite3_errmsg db } {database disk image is malformed} do_test 1.12 { set stmt2 [sqlite3_prepare_v2 db "SELECT 1" -1 dummy] sqlite3_finalize $stmt2 } {SQLITE_OK} do_test 1.13 { sqlite3_errcode db } {SQLITE_OK} do_test 1.14 { sqlite3_errmsg db } {not an error} do_test 1.15 { sqlite3_finalize $stmt } {SQLITE_CORRUPT} do_test 1.16 { sqlite3_errcode db } {SQLITE_CORRUPT} do_test 1.17 { sqlite3_errmsg db } {database disk image is malformed} #------------------------------------------------------------------------- # reset_db do_execsql_test 2.1 { PRAGMA auto_vacuum = 1; CREATE TABLE t1(a PRIMARY KEY, b); WITH data(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM data ) INSERT INTO t1 SELECT i, randomblob(600) FROM data LIMIT 20; PRAGMA page_count; } {24} do_test 2.2 { db_save set fd [open test.db r+] chan truncate $fd [expr 22*1024] close $fd catchsql { PRAGMA incremental_vacuum; } } {1 {database disk image is malformed}} do_test 2.3 { set stmt [sqlite3_prepare_v2 db "PRAGMA auto_vacuum = INCREMENTAL" -1 dummy] sqlite3_step $stmt } {SQLITE_CORRUPT} do_test 2.4 { sqlite3_errcode db } {SQLITE_CORRUPT} do_test 2.5 { sqlite3_errmsg db } {database disk image is malformed} do_test 2.6 { sqlite3_finalize $stmt } {SQLITE_CORRUPT} do_test 2.7 { sqlite3_errcode db } {SQLITE_CORRUPT} do_test 2.8 { sqlite3_errmsg db } {database disk image is malformed} do_test 2.9 { set stmt [sqlite3_prepare_v2 db "PRAGMA auto_vacuum = INCREMENTAL" -1 dummy] sqlite3_step $stmt } {SQLITE_CORRUPT} do_test 2.10 { sqlite3_errcode db } {SQLITE_CORRUPT} do_test 2.11 { sqlite3_errmsg db } {database disk image is malformed} do_test 2.12 { set stmt2 [sqlite3_prepare_v2 db "SELECT 1" -1 dummy] sqlite3_finalize $stmt2 } {SQLITE_OK} do_test 2.13 { sqlite3_errcode db } {SQLITE_OK} do_test 2.14 { sqlite3_errmsg db } {not an error} do_test 2.15 { sqlite3_finalize $stmt } {SQLITE_CORRUPT} do_test 2.16 { sqlite3_errcode db } {SQLITE_CORRUPT} do_test 2.17 { sqlite3_errmsg db } {database disk image is malformed} finish_test |
Changes to test/index7.test.
︙ | ︙ | |||
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable !vtab { finish_test return } load_static_extension db wholenumber; do_test index7-1.1 { # Able to parse and manage partial indices execsql { CREATE TABLE t1(a,b,c PRIMARY KEY) WITHOUT rowid; CREATE INDEX t1a ON t1(a) WHERE a IS NOT NULL; CREATE INDEX t1b ON t1(b) WHERE b>10; CREATE VIRTUAL TABLE nums USING wholenumber; INSERT INTO t1(a,b,c) SELECT CASE WHEN value%3!=0 THEN value END, value, value FROM nums WHERE value<=20; SELECT count(a), count(b) FROM t1; PRAGMA integrity_check; } } {14 20 ok} # Make sure the count(*) optimization works correctly with # partial indices. Ticket [a5c8ed66cae16243be6] 2013-10-03. # do_execsql_test index7-1.1.1 { SELECT count(*) FROM t1; } {20} | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable !vtab { finish_test return } # Capture the output of a pragma in a TEMP table. # proc capture_pragma {db tabname sql} { $db eval "DROP TABLE IF EXISTS temp.$tabname" set once 1 $db eval $sql x { if {$once} { set once 0 set ins "INSERT INTO $tabname VALUES" set crtab "CREATE TEMP TABLE $tabname " set sep "(" foreach col $x(*) { append ins ${sep}\$x($col) append crtab ${sep}\"$col\" set sep , } append ins ) append crtab ) $db eval $crtab } $db eval $ins } } load_static_extension db wholenumber; do_test index7-1.1 { # Able to parse and manage partial indices execsql { CREATE TABLE t1(a,b,c PRIMARY KEY) WITHOUT rowid; CREATE INDEX t1a ON t1(a) WHERE a IS NOT NULL; CREATE INDEX t1b ON t1(b) WHERE b>10; CREATE VIRTUAL TABLE nums USING wholenumber; INSERT INTO t1(a,b,c) SELECT CASE WHEN value%3!=0 THEN value END, value, value FROM nums WHERE value<=20; SELECT count(a), count(b) FROM t1; PRAGMA integrity_check; } } {14 20 ok} # (The "partial" column of the PRAGMA index_list output is...) # EVIDENCE-OF: R-34457-09668 "1" if the index is a partial index and "0" # if not. # do_test index7-1.1a { capture_pragma db out {PRAGMA index_list(t1)} db eval {SELECT "name", "partial", '|' FROM out ORDER BY "name"} } {sqlite_autoindex_t1_1 0 | t1a 1 | t1b 1 |} # Make sure the count(*) optimization works correctly with # partial indices. Ticket [a5c8ed66cae16243be6] 2013-10-03. # do_execsql_test index7-1.1.1 { SELECT count(*) FROM t1; } {20} |
︙ | ︙ |
Changes to test/indexedby.test.
|
| | < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # 2008-10-04 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl set ::testprefix indexedby # Create a schema with some indexes. # |
︙ | ︙ | |||
54 55 56 57 58 59 60 | 0 1 0 {SCAN TABLE t1} } # Parser tests. Test that an INDEXED BY or NOT INDEX clause can be # attached to a table in the FROM clause, but not to a sub-select or # SQL view. Also test that specifying an index that does not exist or # is attached to a different table is detected as an error. | | > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | 0 1 0 {SCAN TABLE t1} } # Parser tests. Test that an INDEXED BY or NOT INDEX clause can be # attached to a table in the FROM clause, but not to a sub-select or # SQL view. Also test that specifying an index that does not exist or # is attached to a different table is detected as an error. # # EVIDENCE-OF: R-63761-48810 -- syntax diagram qualified-table-name # # EVIDENCE-OF: R-58230-57098 The "INDEXED BY index-name" phrase # specifies that the named index must be used in order to look up values # on the preceding table. # do_test indexedby-2.1 { execsql { SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'} } {} do_test indexedby-2.1b { execsql { SELECT * FROM main.t1 NOT INDEXED WHERE a = 'one' AND b = 'two'} } {} do_test indexedby-2.2 { execsql { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two'} } {} do_test indexedby-2.2b { execsql { SELECT * FROM main.t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two'} } {} do_test indexedby-2.3 { execsql { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two'} } {} # EVIDENCE-OF: R-44699-55558 The INDEXED BY clause does not give the # optimizer hints about which index to use; it gives the optimizer a # requirement of which index to use. # EVIDENCE-OF: R-15800-25719 If index-name does not exist or cannot be # used for the query, then the preparation of the SQL statement fails. # do_test indexedby-2.4 { catchsql { SELECT * FROM t1 INDEXED BY i3 WHERE a = 'one' AND b = 'two'} } {1 {no such index: i3}} # EVIDENCE-OF: R-62112-42456 If the query optimizer is unable to use the # index specified by the INDEX BY clause, then the query will fail with # an error. do_test indexedby-2.4.1 { catchsql { SELECT b FROM t1 INDEXED BY i1 WHERE b = 'two' } } {1 {no query solution}} do_test indexedby-2.5 { catchsql { SELECT * FROM t1 INDEXED BY i5 WHERE a = 'one' AND b = 'two'} } {1 {no such index: i5}} do_test indexedby-2.6 { catchsql { SELECT * FROM t1 INDEXED BY WHERE a = 'one' AND b = 'two'} } {1 {near "WHERE": syntax error}} do_test indexedby-2.7 { catchsql { SELECT * FROM v1 INDEXED BY i1 WHERE a = 'one' } } {1 {no such index: i1}} # Tests for single table cases. # # EVIDENCE-OF: R-37002-28871 The "NOT INDEXED" clause specifies that no # index shall be used when accessing the preceding table, including # implied indices create by UNIQUE and PRIMARY KEY constraints. However, # the rowid can still be used to look up entries even when "NOT INDEXED" # is specified. # do_execsql_test indexedby-3.1 { EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a = 'one' AND b = 'two' } {/SEARCH TABLE t1 USING INDEX/} do_execsql_test indexedby-3.1.1 { EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two' } {0 0 0 {SCAN TABLE t1}} do_execsql_test indexedby-3.1.2 { EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE rowid=1 } {/SEARCH TABLE t1 USING INTEGER PRIMARY KEY .rowid=/} do_execsql_test indexedby-3.2 { EXPLAIN QUERY PLAN SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two' } {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}} do_execsql_test indexedby-3.3 { EXPLAIN QUERY PLAN SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two' |
︙ | ︙ | |||
180 181 182 183 184 185 186 187 188 189 190 191 192 193 | do_execsql_test indexedby-6.1 { EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 10 ORDER BY rowid } {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}} do_execsql_test indexedby-6.2 { EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid } {0 0 0 {SCAN TABLE t1}} # Test that "INDEXED BY" can be used in a DELETE statement. # do_execsql_test indexedby-7.1 { EXPLAIN QUERY PLAN DELETE FROM t1 WHERE a = 5 } {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}} do_execsql_test indexedby-7.2 { EXPLAIN QUERY PLAN DELETE FROM t1 NOT INDEXED WHERE a = 5 | > > > > | 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | do_execsql_test indexedby-6.1 { EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 10 ORDER BY rowid } {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}} do_execsql_test indexedby-6.2 { EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid } {0 0 0 {SCAN TABLE t1}} # EVIDENCE-OF: R-40297-14464 The INDEXED BY phrase forces the SQLite # query planner to use a particular named index on a DELETE, SELECT, or # UPDATE statement. # # Test that "INDEXED BY" can be used in a DELETE statement. # do_execsql_test indexedby-7.1 { EXPLAIN QUERY PLAN DELETE FROM t1 WHERE a = 5 } {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}} do_execsql_test indexedby-7.2 { EXPLAIN QUERY PLAN DELETE FROM t1 NOT INDEXED WHERE a = 5 |
︙ | ︙ |
Changes to test/like.test.
︙ | ︙ | |||
745 746 747 748 749 750 751 | SELECT a FROM t10 WHERE e LIKE '12%' ORDER BY +a; } } {12 123 scan 5 like 6} do_test like-10.5 { count { SELECT a FROM t10 WHERE f LIKE '12%' ORDER BY +a; } | | | 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 | SELECT a FROM t10 WHERE e LIKE '12%' ORDER BY +a; } } {12 123 scan 5 like 6} do_test like-10.5 { count { SELECT a FROM t10 WHERE f LIKE '12%' ORDER BY +a; } } {12 123 scan 4 like 0} do_test like-10.6 { count { SELECT a FROM t10 WHERE a LIKE '12%' ORDER BY +a; } } {12 123 scan 5 like 6} do_test like-10.10 { execsql { |
︙ | ︙ | |||
786 787 788 789 790 791 792 | SELECT a FROM t10b WHERE e GLOB '12*' ORDER BY +a; } } {12 123 scan 5 like 6} do_test like-10.14 { count { SELECT a FROM t10b WHERE f GLOB '12*' ORDER BY +a; } | | | 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 | SELECT a FROM t10b WHERE e GLOB '12*' ORDER BY +a; } } {12 123 scan 5 like 6} do_test like-10.14 { count { SELECT a FROM t10b WHERE f GLOB '12*' ORDER BY +a; } } {12 123 scan 4 like 0} do_test like-10.15 { count { SELECT a FROM t10b WHERE a GLOB '12*' ORDER BY +a; } } {12 123 scan 5 like 6} } |
︙ | ︙ |
Added test/like3.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | # 2015-03-06 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file implements regression tests for SQLite library. The # focus of this file is testing the LIKE and GLOB operators and # in particular the optimizations that occur to help those operators # run faster and that those optimizations work correctly when there # are both strings and blobs being tested. # # Ticket 05f43be8fdda9fbd948d374319b99b054140bc36 shows that the following # SQL was not working correctly: # # CREATE TABLE t1(x TEXT UNIQUE COLLATE nocase); # INSERT INTO t1(x) VALUES(x'616263'); # SELECT 'query-1', x FROM t1 WHERE x LIKE 'a%'; # SELECT 'query-2', x FROM t1 WHERE +x LIKE 'a%'; # # This script verifies that it works right now. # set testdir [file dirname $argv0] source $testdir/tester.tcl do_execsql_test like3-1.1 { PRAGMA encoding=UTF8; CREATE TABLE t1(a,b TEXT COLLATE nocase); INSERT INTO t1(a,b) VALUES(1,'abc'), (2,'ABX'), (3,'BCD'), (4,x'616263'), (5,x'414258'), (6,x'424344'); CREATE INDEX t1ba ON t1(b,a); SELECT a, b FROM t1 WHERE b LIKE 'aB%' ORDER BY +a; } {1 abc 2 ABX 4 abc 5 ABX} do_execsql_test like3-1.2 { SELECT a, b FROM t1 WHERE +b LIKE 'aB%' ORDER BY +a; } {1 abc 2 ABX 4 abc 5 ABX} do_execsql_test like3-2.0 { CREATE TABLE t2(a, b TEXT); INSERT INTO t2 SELECT a, b FROM t1; CREATE INDEX t2ba ON t2(b,a); SELECT a, b FROM t2 WHERE b GLOB 'ab*' ORDER BY +a; } {1 abc 4 abc} do_execsql_test like3-2.1 { SELECT a, b FROM t2 WHERE +b GLOB 'ab*' ORDER BY +a; } {1 abc 4 abc} do_execsql_test like3-2.2 { SELECT a, b FROM t2 WHERE b>=x'6162' AND b GLOB 'ab*' } {4 abc} do_execsql_test like3-2.3 { SELECT a, b FROM t2 WHERE +b>=x'6162' AND +b GLOB 'ab*' } {4 abc} do_execsql_test like3-2.4 { SELECT a, b FROM t2 WHERE b GLOB 'ab*' AND b>=x'6162' } {4 abc} do_execsql_test like3-2.5 { SELECT a, b FROM t2 WHERE +b GLOB 'ab*' AND +b>=x'6162' } {4 abc} do_execsql_test like3-3.0 { CREATE TABLE t3(x TEXT PRIMARY KEY COLLATE nocase); INSERT INTO t3(x) VALUES('aaa'),('abc'),('abd'),('abe'),('acz'); INSERT INTO t3(x) SELECT CAST(x AS blob) FROM t3; SELECT quote(x) FROM t3 WHERE x LIKE 'ab%' ORDER BY x; } {'abc' 'abd' 'abe' X'616263' X'616264' X'616265'} do_execsql_test like3-3.1 { SELECT quote(x) FROM t3 WHERE x LIKE 'ab%' ORDER BY x DESC; } {X'616265' X'616264' X'616263' 'abe' 'abd' 'abc'} do_execsql_test like3-3.1ck { SELECT quote(x) FROM t3 WHERE x LIKE 'ab%' ORDER BY +x DESC; } {X'616265' X'616264' X'616263' 'abe' 'abd' 'abc'} do_execsql_test like3-3.2 { SELECT quote(x) FROM t3 WHERE x LIKE 'ab%' ORDER BY x ASC; } {'abc' 'abd' 'abe' X'616263' X'616264' X'616265'} do_execsql_test like3-3.2ck { SELECT quote(x) FROM t3 WHERE x LIKE 'ab%' ORDER BY +x ASC; } {'abc' 'abd' 'abe' X'616263' X'616264' X'616265'} do_execsql_test like3-4.0 { CREATE TABLE t4(x TEXT COLLATE nocase); CREATE INDEX t4x ON t4(x DESC); INSERT INTO t4(x) SELECT x FROM t3; SELECT quote(x) FROM t4 WHERE x LIKE 'ab%' ORDER BY x; } {'abc' 'abd' 'abe' X'616263' X'616264' X'616265'} do_execsql_test like3-4.1 { SELECT quote(x) FROM t4 WHERE x LIKE 'ab%' ORDER BY x DESC; } {X'616265' X'616264' X'616263' 'abe' 'abd' 'abc'} do_execsql_test like3-4.1ck { SELECT quote(x) FROM t4 WHERE x LIKE 'ab%' ORDER BY +x DESC; } {X'616265' X'616264' X'616263' 'abe' 'abd' 'abc'} do_execsql_test like3-4.2 { SELECT quote(x) FROM t4 WHERE x LIKE 'ab%' ORDER BY x ASC; } {'abc' 'abd' 'abe' X'616263' X'616264' X'616265'} do_execsql_test like3-4.2ck { SELECT quote(x) FROM t4 WHERE x LIKE 'ab%' ORDER BY +x ASC; } {'abc' 'abd' 'abe' X'616263' X'616264' X'616265'} finish_test |
Changes to test/limit.test.
︙ | ︙ | |||
246 247 248 249 250 251 252 253 254 255 256 257 258 259 | execsql { SELECT * FROM t6 LIMIT 0 OFFSET 1 } } {} # Make sure LIMIT works well with compound SELECT statements. # Ticket #393 # ifcapable compound { do_test limit-7.1.1 { catchsql { SELECT x FROM t2 LIMIT 5 UNION ALL SELECT a FROM t6; } } {1 {LIMIT clause should come after UNION ALL not before}} | > > > > > > | 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | execsql { SELECT * FROM t6 LIMIT 0 OFFSET 1 } } {} # Make sure LIMIT works well with compound SELECT statements. # Ticket #393 # # EVIDENCE-OF: R-13512-64012 In a compound SELECT, only the last or # right-most simple SELECT may contain a LIMIT clause. # # EVIDENCE-OF: R-03782-50113 In a compound SELECT, the LIMIT clause # applies to the entire compound, not just the final SELECT. # ifcapable compound { do_test limit-7.1.1 { catchsql { SELECT x FROM t2 LIMIT 5 UNION ALL SELECT a FROM t6; } } {1 {LIMIT clause should come after UNION ALL not before}} |
︙ | ︙ |
Changes to test/lock.test.
︙ | ︙ | |||
236 237 238 239 240 241 242 243 244 245 246 247 248 249 | set r [catch {execsql {SELECT * FROM t1} db2} msg] lappend r $msg lappend r $::callback_value } {0 {2 1} {}} execsql {ROLLBACK} # Test the built-in busy timeout handler # do_test lock-2.8 { db2 timeout 400 execsql BEGIN execsql {UPDATE t1 SET a = 0 WHERE 0} catchsql {BEGIN EXCLUSIVE;} db2 } {1 {database is locked}} | > > > | 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | set r [catch {execsql {SELECT * FROM t1} db2} msg] lappend r $msg lappend r $::callback_value } {0 {2 1} {}} execsql {ROLLBACK} # Test the built-in busy timeout handler # # EVIDENCE-OF: R-23579-05241 PRAGMA busy_timeout; PRAGMA busy_timeout = # milliseconds; Query or change the setting of the busy timeout. # do_test lock-2.8 { db2 timeout 400 execsql BEGIN execsql {UPDATE t1 SET a = 0 WHERE 0} catchsql {BEGIN EXCLUSIVE;} db2 } {1 {database is locked}} |
︙ | ︙ |
Changes to test/lock_common.tcl.
︙ | ︙ | |||
82 83 84 85 86 87 88 | } return $chan } # Execute a command in a child testfixture process, connected by two-way # channel $chan. Return the result of the command, or an error message. # | | > > > | | > | | | | | | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > | 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | } return $chan } # Execute a command in a child testfixture process, connected by two-way # channel $chan. Return the result of the command, or an error message. # proc testfixture {chan cmd args} { if {[llength $args] == 0} { fconfigure $chan -blocking 1 puts $chan $cmd puts $chan OVER set r "" while { 1 } { set line [gets $chan] if { $line == "OVER" } { set res [lindex $r 1] if { [lindex $r 0] } { error $res } return $res } if {[eof $chan]} { return "ERROR: Child process hung up" } append r $line } return $r } else { set ::tfnb($chan) "" fconfigure $chan -blocking 0 -buffering none puts $chan $cmd puts $chan OVER fileevent $chan readable [list testfixture_script_cb $chan [lindex $args 0]] return "" } } proc testfixture_script_cb {chan script} { if {[eof $chan]} { append ::tfnb($chan) "ERROR: Child process hung up" set line "OVER" } else { set line [gets $chan] } if { $line == "OVER" } { uplevel #0 $script [list [lindex $::tfnb($chan) 1]] unset ::tfnb($chan) fileevent $chan readable "" } else { append ::tfnb($chan) $line } } proc testfixture_nb_cb {varname chan} { if {[eof $chan]} { append ::tfnb($chan) "ERROR: Child process hung up" set line "OVER" |
︙ | ︙ |
Changes to test/malloc5.test.
︙ | ︙ | |||
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | do_test malloc5-1.3 { # Call [sqlite3_release_memory] when there is exactly one unused page # in the cache belonging to db2. # set ::pgalloc [sqlite3_release_memory] expr $::pgalloc > 0 } {1} do_test malloc5-1.4 { # Commit the transaction and open a new one. Read 1 page into the cache. # Because the page is not dirty, it is eligible for collection even # before the transaction is concluded. # execsql { COMMIT; BEGIN; SELECT * FROM abc; } | > > > > > > > > > > > > > > > > > | | | | | | | 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | do_test malloc5-1.3 { # Call [sqlite3_release_memory] when there is exactly one unused page # in the cache belonging to db2. # set ::pgalloc [sqlite3_release_memory] expr $::pgalloc > 0 } {1} # The sizes of memory allocations from system malloc() might vary, # depending on the memory allocator algorithms used. The following # routine is designed to support answers that fall within a range # of values while also supplying easy-to-understand "expected" values # when errors occur. # proc value_in_range {target x args} { set v [lindex $args 0] if {$v!=""} { if {$v<$target*$x} {return $v} if {$v>$target/$x} {return $v} } return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]" } set mrange 0.98 ;# plus or minus 2% do_test malloc5-1.4 { # Commit the transaction and open a new one. Read 1 page into the cache. # Because the page is not dirty, it is eligible for collection even # before the transaction is concluded. # execsql { COMMIT; BEGIN; SELECT * FROM abc; } value_in_range $::pgalloc $::mrange [sqlite3_release_memory] } [value_in_range $::pgalloc $::mrange] do_test malloc5-1.5 { # Conclude the transaction opened in the previous [do_test] block. This # causes another page (page 1) to become eligible for recycling. # execsql { COMMIT } value_in_range $::pgalloc $::mrange [sqlite3_release_memory] } [value_in_range $::pgalloc $::mrange] do_test malloc5-1.6 { # Manipulate the cache so that it contains two unused pages. One requires # a journal-sync to free, the other does not. db2 close execsql { BEGIN; SELECT * FROM abc; CREATE TABLE def(d, e, f); } value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500] } [value_in_range $::pgalloc $::mrange] do_test malloc5-1.7 { # Database should not be locked this time. sqlite3 db2 test.db catchsql { SELECT * FROM abc } db2 } {0 {}} do_test malloc5-1.8 { |
︙ | ︙ |
Changes to test/mallocK.test.
︙ | ︙ | |||
138 139 140 141 142 143 144 145 146 147 148 | CREATE TABLE x1(a INTEGER PRIMARY KEY, b); } do_faultsim_test 7.2 -faults oom* -body { execsql { SELECT * FROM x1 WHERE a = (SELECT 1) } } -test { faultsim_test_result [list 0 {}] } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | CREATE TABLE x1(a INTEGER PRIMARY KEY, b); } do_faultsim_test 7.2 -faults oom* -body { execsql { SELECT * FROM x1 WHERE a = (SELECT 1) } } -test { faultsim_test_result [list 0 {}] } reset_db proc isqrt {i} { expr { int(sqrt($i)) } } db func isqrt isqrt do_execsql_test 8.0 { PRAGMA encoding = 'utf-16'; CREATE TABLE x2(x TEXT, y TEXT); WITH data(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM data ) INSERT INTO x2 SELECT isqrt(i), isqrt(i) FROM data LIMIT 400; CREATE INDEX x2x ON x2(x); CREATE INDEX x2y ON x2(y); ANALYZE; DELETE FROM x2; } proc str {a} { return $a } db func str -deterministic str do_faultsim_test 8 -faults oom* -body { execsql { SELECT * FROM x2 WHERE x = str('19') AND y = str('4') } } -test { faultsim_test_result [list 0 {}] } finish_test |
Changes to test/multiplex4.test.
︙ | ︙ | |||
55 56 57 58 59 60 61 62 63 64 65 66 67 68 | db eval { DELETE FROM t1; VACUUM; } multiplex_file_list mx4test } {mx4test.db} do_test multiplex4-1.2 { db eval {PRAGMA multiplex_truncate} } {on} do_test multiplex4-1.3 { db eval {PRAGMA multiplex_truncate=off} } {off} do_test multiplex4-1.4 { | > > > > > > > > | 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | db eval { DELETE FROM t1; VACUUM; } multiplex_file_list mx4test } {mx4test.db} # NB: The PRAGMA multiplex_truncate command is implemented using the # SQLITE_FCNTL_PRAGMA file-control... # # EVIDENCE-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, an # SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file # object corresponding to the database file to which the pragma # statement refers. # do_test multiplex4-1.2 { db eval {PRAGMA multiplex_truncate} } {on} do_test multiplex4-1.3 { db eval {PRAGMA multiplex_truncate=off} } {off} do_test multiplex4-1.4 { |
︙ | ︙ | |||
79 80 81 82 83 84 85 86 87 88 89 90 91 92 | } {off} do_test multiplex4-1.8 { db eval {PRAGMA multiplex_truncate=1} } {on} do_test multiplex4-1.9 { db eval {PRAGMA multiplex_truncate=0} } {off} do_test multiplex4-1.10 { db eval { INSERT INTO t1(x) VALUES(randomblob(250000)); } multiplex_file_list mx4test } {mx4test.001 mx4test.db} | > > > > > > > > > > | 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | } {off} do_test multiplex4-1.8 { db eval {PRAGMA multiplex_truncate=1} } {on} do_test multiplex4-1.9 { db eval {PRAGMA multiplex_truncate=0} } {off} # EVIDENCE-OF: R-26188-08449 If the SQLITE_FCNTL_PRAGMA file control # returns SQLITE_OK, then the parser assumes that the VFS has handled # the PRAGMA itself and the parser generates a no-op prepared statement # if result string is NULL, or that returns a copy of the result string # if the string is non-NULL. # do_test multiplex4-1.9-explain { db eval {EXPLAIN PRAGMA multiplex_truncate=0;} } {/String8 \d \d \d off/} do_test multiplex4-1.10 { db eval { INSERT INTO t1(x) VALUES(randomblob(250000)); } multiplex_file_list mx4test } {mx4test.001 mx4test.db} |
︙ | ︙ |
Changes to test/pragma.test.
︙ | ︙ | |||
79 80 81 82 83 84 85 | # that the "all.test" script does. # db close delete_file test.db test.db-journal delete_file test3.db test3.db-journal sqlite3 db test.db; set DB [sqlite3_connection_pointer db] | > > > > | > > | 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | # that the "all.test" script does. # db close delete_file test.db test.db-journal delete_file test3.db test3.db-journal sqlite3 db test.db; set DB [sqlite3_connection_pointer db] # EVIDENCE-OF: R-24197-42751 PRAGMA database.cache_size; PRAGMA # database.cache_size = pages; PRAGMA database.cache_size = -kibibytes; # Query or change the suggested maximum number of database disk pages # that SQLite will hold in memory at once per open database file. # ifcapable pager_pragmas { set DFLT_CACHE_SZ [db one {PRAGMA default_cache_size}] set TEMP_CACHE_SZ [db one {PRAGMA temp.default_cache_size}] do_test pragma-1.1 { execsql { PRAGMA cache_size; PRAGMA default_cache_size; PRAGMA synchronous; } } [list $DFLT_CACHE_SZ $DFLT_CACHE_SZ 2] do_test pragma-1.2 { # EVIDENCE-OF: R-42059-47211 If the argument N is positive then the # suggested cache size is set to N. execsql { PRAGMA synchronous=OFF; PRAGMA cache_size=1234; PRAGMA cache_size; PRAGMA default_cache_size; PRAGMA synchronous; } |
︙ | ︙ | |||
658 659 660 661 662 663 664 665 666 667 668 669 670 671 | CREATE INDEX t3i1 ON t3(a,b); } capture_pragma db out { pragma index_info(t3i1); } db eval {SELECT seqno, cid, name FROM out ORDER BY seqno} } {0 0 a 1 1 b} do_test pragma-6.5.2 { execsql { pragma index_info(t3i1_bogus); } } {} ifcapable tempdb { | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 | CREATE INDEX t3i1 ON t3(a,b); } capture_pragma db out { pragma index_info(t3i1); } db eval {SELECT seqno, cid, name FROM out ORDER BY seqno} } {0 0 a 1 1 b} # EVIDENCE-OF: R-23114-21695 The auxiliary index-columns are not shown # by the index_info pragma, but they are listed by the index_xinfo # pragma. # do_test pragma-6.5.1b { capture_pragma db out {PRAGMA index_xinfo(t3i1)} db eval {SELECT seqno, cid, name FROM out ORDER BY seqno} } {0 0 a 1 1 b 2 -1 {}} # EVIDENCE-OF: R-62725-03366 PRAGMA database.index_info(index-name); # This pragma returns one row for each key column in the named index. # # (The first column of output from PRAGMA index_info is...) # EVIDENCE-OF: R-34186-52914 The rank of the column within the index. (0 # means left-most.) # # (The second column of output from PRAGMA index_info is...) # EVIDENCE-OF: R-65019-08383 The rank of the column within the table # being indexed. # # (The third column of output from PRAGMA index_info is...) # EVIDENCE-OF: R-09773-34266 The name of the column being indexed. # do_execsql_test pragma-6.5.1c { CREATE INDEX t3i2 ON t3(b,a); PRAGMA index_info='t3i2'; DROP INDEX t3i2; } {0 1 b 1 0 a} do_test pragma-6.5.2 { execsql { pragma index_info(t3i1_bogus); } } {} ifcapable tempdb { |
︙ | ︙ | |||
715 716 717 718 719 720 721 722 723 724 725 726 727 728 | {3 four REAL 0 X'abcdef' 0} \ {4 five {} 0 CURRENT_TIME 0} \ ] } ;# ifcapable schema_pragmas # Miscellaneous tests # ifcapable schema_pragmas { do_test pragma-7.1.1 { # Make sure a pragma knows to read the schema if it needs to db close sqlite3 db test.db capture_pragma db out "PRAGMA index_list(t3)" db eval {SELECT name, "origin" FROM out ORDER BY name DESC} } {t3i1 c sqlite_autoindex_t3_1 u} | > > > | 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 | {3 four REAL 0 X'abcdef' 0} \ {4 five {} 0 CURRENT_TIME 0} \ ] } ;# ifcapable schema_pragmas # Miscellaneous tests # ifcapable schema_pragmas { # EVIDENCE-OF: R-63500-32024 PRAGMA database.index_list(table-name); # This pragma returns one row for each index associated with the given # table. do_test pragma-7.1.1 { # Make sure a pragma knows to read the schema if it needs to db close sqlite3 db test.db capture_pragma db out "PRAGMA index_list(t3)" db eval {SELECT name, "origin" FROM out ORDER BY name DESC} } {t3i1 c sqlite_autoindex_t3_1 u} |
︙ | ︙ | |||
1306 1307 1308 1309 1310 1311 1312 | } ;# ifcapable bloblit ifcapable pager_pragmas { db close forcedelete test.db sqlite3 db test.db | | > > > | | > > | | 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 | } ;# ifcapable bloblit ifcapable pager_pragmas { db close forcedelete test.db sqlite3 db test.db # EVIDENCE-OF: R-13905-26312 PRAGMA database.page_count; Return the # total number of pages in the database file. # do_test pragma-14.1 { execsql { pragma auto_vacuum = 0 } execsql { pragma page_count; pragma main.page_count } } {0 0} do_test pragma-14.2 { execsql { CREATE TABLE abc(a, b, c); PRAGMA page_count; PRAGMA main.page_count; PRAGMA temp.page_count; } } {2 2 0} do_test pragma-14.2uc { execsql {pragma PAGE_COUNT} } {2} do_test pragma-14.3 { execsql { BEGIN; |
︙ | ︙ | |||
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 | sqlite3 db test.db sqlite3 db2 test.db do_test 23.1 { db eval { CREATE TABLE t1(a INTEGER PRIMARY KEY,b,c,d); CREATE INDEX i1 ON t1(b,c); CREATE INDEX i2 ON t1(c,d); CREATE TABLE t2(x INTEGER REFERENCES t1); } db2 eval {SELECT name FROM sqlite_master} | > | | > | > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 | sqlite3 db test.db sqlite3 db2 test.db do_test 23.1 { db eval { CREATE TABLE t1(a INTEGER PRIMARY KEY,b,c,d); CREATE INDEX i1 ON t1(b,c); CREATE INDEX i2 ON t1(c,d); CREATE INDEX i2x ON t1(d COLLATE nocase, c DESC); CREATE TABLE t2(x INTEGER REFERENCES t1); } db2 eval {SELECT name FROM sqlite_master} } {t1 i1 i2 i2x t2} do_test 23.2a { db eval { DROP INDEX i2; CREATE INDEX i2 ON t1(c,d,b); } capture_pragma db2 out {PRAGMA index_info(i2)} db2 eval {SELECT cid, name, '|' FROM out ORDER BY seqno} } {2 c | 3 d | 1 b |} # EVIDENCE-OF: R-44874-46325 PRAGMA database.index_xinfo(index-name); # This pragma returns information about every column in an index. # # EVIDENCE-OF: R-45970-35618 Unlike this index_info pragma, this pragma # returns information about every column in the index, not just the key # columns. # do_test 23.2b { capture_pragma db2 out {PRAGMA index_xinfo(i2)} db2 eval {SELECT cid, name, "desc", coll, "key", '|' FROM out ORDER BY seqno} } {2 c 0 BINARY 1 | 3 d 0 BINARY 1 | 1 b 0 BINARY 1 | -1 {} 0 BINARY 0 |} # (The first column of output from PRAGMA index_xinfo is...) # EVIDENCE-OF: R-00197-14279 The rank of the column within the index. (0 # means left-most. Key columns come before auxiliary columns.) # # (The second column of output from PRAGMA index_xinfo is...) # EVIDENCE-OF: R-40889-06838 The rank of the column within the table # being indexed, or -1 if the index-column is the rowid of the table # being indexed. # # (The third column of output from PRAGMA index_xinfo is...) # EVIDENCE-OF: R-22751-28901 The name of the column being indexed, or # NULL if the index-column is the rowid of the table being indexed. # # (The fourth column of output from PRAGMA index_xinfo is...) # EVIDENCE-OF: R-11847-09179 1 if the index-column is sorted in reverse # (DESC) order by the index and 0 otherwise. # # (The fifth column of output from PRAGMA index_xinfo is...) # EVIDENCE-OF: R-15313-19540 The name for the collating sequence used to # compare values in the index-column. # # (The sixth column of output from PRAGMA index_xinfo is...) # EVIDENCE-OF: R-14310-64553 1 if the index-column is a key column and 0 # if the index-column is an auxiliary column. # do_test 23.2c { db2 eval {PRAGMA index_xinfo(i2)} } {0 2 c 0 BINARY 1 1 3 d 0 BINARY 1 2 1 b 0 BINARY 1 3 -1 {} 0 BINARY 0} do_test 23.2d { db2 eval {PRAGMA index_xinfo(i2x)} } {0 3 d 0 nocase 1 1 2 c 1 BINARY 1 2 -1 {} 0 BINARY 0} # EVIDENCE-OF: R-63500-32024 PRAGMA database.index_list(table-name); # This pragma returns one row for each index associated with the given # table. # # (The first column of output from PRAGMA index_list is...) # EVIDENCE-OF: R-02753-24748 A sequence number assigned to each index # for internal tracking purposes. # # (The second column of output from PRAGMA index_list is...) # EVIDENCE-OF: R-35496-03635 The name of the index. # # (The third column of output from PRAGMA index_list is...) # EVIDENCE-OF: R-57301-64506 "1" if the index is UNIQUE and "0" if not. # # (The fourth column of output from PRAGMA index_list is...) # EVIDENCE-OF: R-36609-39554 "c" if the index was created by a CREATE # INDEX statement, "u" if the index was created by a UNIQUE constraint, # or "pk" if the index was created by a PRIMARY KEY constraint. # do_test 23.3 { db eval { CREATE INDEX i3 ON t1(d,b,c); } capture_pragma db2 out {PRAGMA index_list(t1)} db2 eval {SELECT seq, name, "unique", origin, '|' FROM out ORDER BY seq} } {0 i3 0 c | 1 i2 0 c | 2 i2x 0 c | 3 i1 0 c |} do_test 23.4 { db eval { ALTER TABLE t1 ADD COLUMN e; } db2 eval { PRAGMA table_info(t1); } |
︙ | ︙ |
Changes to test/pragma2.test.
︙ | ︙ | |||
35 36 37 38 39 40 41 42 43 44 45 46 47 48 | # db close delete_file test.db test.db-journal delete_file test3.db test3.db-journal sqlite3 db test.db; set DB [sqlite3_connection_pointer db] db eval {PRAGMA auto_vacuum=0} do_test pragma2-1.1 { execsql { PRAGMA freelist_count; } } {0} do_test pragma2-1.2 { execsql { | > > > > | 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | # db close delete_file test.db test.db-journal delete_file test3.db test3.db-journal sqlite3 db test.db; set DB [sqlite3_connection_pointer db] db eval {PRAGMA auto_vacuum=0} # EVIDENCE-OF: R-17887-14874 PRAGMA database.freelist_count; Return the # number of unused pages in the database file. # do_test pragma2-1.1 { execsql { PRAGMA freelist_count; } } {0} do_test pragma2-1.2 { execsql { |
︙ | ︙ |
Changes to test/rdonly.test.
︙ | ︙ | |||
28 29 30 31 32 33 34 35 36 37 38 39 40 41 | do_test rdonly-1.1 { execsql { CREATE TABLE t1(x); INSERT INTO t1 VALUES(1); SELECT * FROM t1; } } {1} do_test rdonly-1.1.1 { sqlite3_db_readonly db main } {0} # Changes the write version from 1 to 3. Verify that the database # can be read but not written. # | > > > > > | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | do_test rdonly-1.1 { execsql { CREATE TABLE t1(x); INSERT INTO t1 VALUES(1); SELECT * FROM t1; } } {1} # EVIDENCE-OF: R-29639-16887 The sqlite3_db_readonly(D,N) interface # returns 1 if the database N of connection D is read-only, 0 if it is # read/write, or -1 if N is not the name of a database on connection D. # do_test rdonly-1.1.1 { sqlite3_db_readonly db main } {0} # Changes the write version from 1 to 3. Verify that the database # can be read but not written. # |
︙ | ︙ |
Changes to test/select4.test.
︙ | ︙ | |||
101 102 103 104 105 106 107 108 109 110 111 112 113 114 | SELECT log FROM t1 WHERE n IN (SELECT DISTINCT log FROM t1 UNION ALL SELECT n FROM t1 WHERE log=3) ORDER BY log; } } {0 1 2 2 3 3 3 3} } do_test select4-1.3 { set v [catch {execsql { SELECT DISTINCT log FROM t1 ORDER BY log UNION ALL SELECT n FROM t1 WHERE log=3 ORDER BY log; }} msg] | > > > > | 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | SELECT log FROM t1 WHERE n IN (SELECT DISTINCT log FROM t1 UNION ALL SELECT n FROM t1 WHERE log=3) ORDER BY log; } } {0 1 2 2 3 3 3 3} } # EVIDENCE-OF: R-02644-22131 In a compound SELECT statement, only the # last or right-most simple SELECT may have an ORDER BY clause. # do_test select4-1.3 { set v [catch {execsql { SELECT DISTINCT log FROM t1 ORDER BY log UNION ALL SELECT n FROM t1 WHERE log=3 ORDER BY log; }} msg] |
︙ | ︙ |
Changes to test/shell4.test.
︙ | ︙ | |||
8 9 10 11 12 13 14 | # May you share freely, never taking more than you give. # #*********************************************************************** # # The focus of this file is testing the CLI shell tool. # These tests are specific to the .stats command. # | | < > | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | # May you share freely, never taking more than you give. # #*********************************************************************** # # The focus of this file is testing the CLI shell tool. # These tests are specific to the .stats command. # # 2015-03-19: Added tests for .trace # Test plan: # # shell4-1.*: Basic tests specific to the "stats" command. # shell4-2.*: Basic tests for ".trace" # set testdir [file dirname $argv0] source $testdir/tester.tcl if {$tcl_platform(platform)=="windows"} { set CLI "sqlite3.exe" } else { set CLI "./sqlite3" |
︙ | ︙ | |||
108 109 110 111 112 113 114 115 116 | set res [catchcmd "test.db" {.stats ON SELECT 1; }] list [regexp {Memory Used} $res] \ [regexp {Heap Usage} $res] \ [regexp {Autoindex Inserts} $res] } {1 1 1} finish_test | > > > > > > > > > > > > > > > > > > | 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | set res [catchcmd "test.db" {.stats ON SELECT 1; }] list [regexp {Memory Used} $res] \ [regexp {Heap Usage} $res] \ [regexp {Autoindex Inserts} $res] } {1 1 1} do_test shell4-2.1 { catchcmd ":memory:" "CREATE TABLE t1(x);\n.trace" } {1 {Usage: .trace FILE|off}} do_test shell4-2.2 { catchcmd ":memory:" "CREATE TABLE t1(x);\n.trace off\n.trace off\n" } {0 {}} do_test shell4-2.3 { catchcmd ":memory:" ".trace stdout\n.trace\n.trace off\n.dump\n" } {/^1 {PRAGMA.*Usage:.*}$/} do_test shell4-2.4 { catchcmd ":memory:" ".trace stdout\nCREATE TABLE t1(x);SELECT * FROM t1;" } {0 {CREATE TABLE t1(x); SELECT * FROM t1;}} do_test shell4-2.5 { catchcmd ":memory:" "CREATE TABLE t1(x);\n.trace stdout\nSELECT * FROM t1;" } {0 {SELECT * FROM t1;}} finish_test |
Changes to test/shrink.test.
︙ | ︙ | |||
20 21 22 23 24 25 26 27 28 29 30 31 32 33 | do_test shrink-1.1 { db eval { PRAGMA cache_size = 2000; CREATE TABLE t1(x,y); INSERT INTO t1 VALUES(randomblob(1000000),1); } set ::baseline sqlite3_memory_used sqlite3_db_release_memory db expr {$::baseline > [sqlite3_memory_used]+500000} } {1} do_test shrink-1.2 { set baseline [sqlite3_memory_used] db eval { UPDATE t1 SET y=y+1; | > > > | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | do_test shrink-1.1 { db eval { PRAGMA cache_size = 2000; CREATE TABLE t1(x,y); INSERT INTO t1 VALUES(randomblob(1000000),1); } set ::baseline sqlite3_memory_used # EVIDENCE-OF: R-58814-63508 The sqlite3_db_release_memory(D) interface # attempts to free as much heap memory as possible from database # connection D. sqlite3_db_release_memory db expr {$::baseline > [sqlite3_memory_used]+500000} } {1} do_test shrink-1.2 { set baseline [sqlite3_memory_used] db eval { UPDATE t1 SET y=y+1; |
︙ | ︙ |
Changes to test/softheap1.test.
︙ | ︙ | |||
20 21 22 23 24 25 26 27 28 29 30 31 32 33 | source $testdir/tester.tcl ifcapable !integrityck { finish_test return } do_test softheap1-1.0 { execsql {PRAGMA soft_heap_limit} } [sqlite3_soft_heap_limit -1] do_test softheap1-1.1 { execsql {PRAGMA soft_heap_limit=123456; PRAGMA soft_heap_limit;} } {123456 123456} do_test softheap1-1.2 { | > > > > > > > > | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | source $testdir/tester.tcl ifcapable !integrityck { finish_test return } # EVIDENCE-OF: R-26343-45930 This pragma invokes the # sqlite3_soft_heap_limit64() interface with the argument N, if N is # specified and is a non-negative integer. # # EVIDENCE-OF: R-64451-07163 The soft_heap_limit pragma always returns # the same integer that would be returned by the # sqlite3_soft_heap_limit64(-1) C-language function. # do_test softheap1-1.0 { execsql {PRAGMA soft_heap_limit} } [sqlite3_soft_heap_limit -1] do_test softheap1-1.1 { execsql {PRAGMA soft_heap_limit=123456; PRAGMA soft_heap_limit;} } {123456 123456} do_test softheap1-1.2 { |
︙ | ︙ |
Changes to test/sort4.test.
︙ | ︙ | |||
21 22 23 24 25 26 27 | sqlite3_shutdown sqlite3_config_pmasz 10 sqlite3_initialize sqlite3 db test.db # Configure the sorter to use 3 background threads. | > > > > > > | > > > > > > > | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | sqlite3_shutdown sqlite3_config_pmasz 10 sqlite3_initialize sqlite3 db test.db # Configure the sorter to use 3 background threads. # # EVIDENCE-OF: R-19249-32353 SQLITE_LIMIT_WORKER_THREADS The maximum # number of auxiliary worker threads that a single prepared statement # may start. # do_test sort4-init001 { db eval {PRAGMA threads=5} sqlite3_limit db SQLITE_LIMIT_WORKER_THREADS -1 } {5} do_test sort4-init002 { sqlite3_limit db SQLITE_LIMIT_WORKER_THREADS 3 db eval {PRAGMA threads} } {3} # Minimum number of seconds to run for. If the value is 0, each test # is run exactly once. Otherwise, tests are repeated until the timeout # expires. set SORT4TIMEOUT 0 if {[permutation] == "multithread"} { set SORT4TIMEOUT 300 } |
︙ | ︙ |
Changes to test/sqllimits1.test.
︙ | ︙ | |||
246 247 248 249 250 251 252 253 254 255 256 257 258 259 | sqlite3_limit db SQLITE_LIMIT_VARIABLE_NUMBER -1 } $SQLITE_MAX_VARIABLE_NUMBER #-------------------------------------------------------------------- # Test cases sqllimits1-5.* test that the SQLITE_MAX_LENGTH limit # is enforced. # db close sqlite3 db test.db set LARGESIZE 99999 set SQLITE_LIMIT_LENGTH 100000 sqlite3_limit db SQLITE_LIMIT_LENGTH $SQLITE_LIMIT_LENGTH do_test sqllimits1-5.1.1 { | > > > | 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | sqlite3_limit db SQLITE_LIMIT_VARIABLE_NUMBER -1 } $SQLITE_MAX_VARIABLE_NUMBER #-------------------------------------------------------------------- # Test cases sqllimits1-5.* test that the SQLITE_MAX_LENGTH limit # is enforced. # # EVIDENCE-OF: R-61987-00541 SQLITE_LIMIT_LENGTH The maximum size of any # string or BLOB or table row, in bytes. # db close sqlite3 db test.db set LARGESIZE 99999 set SQLITE_LIMIT_LENGTH 100000 sqlite3_limit db SQLITE_LIMIT_LENGTH $SQLITE_LIMIT_LENGTH do_test sqllimits1-5.1.1 { |
︙ | ︙ | |||
401 402 403 404 405 406 407 408 409 410 411 412 413 414 | } {1 {string or blob too big}} } unset strvalue #-------------------------------------------------------------------- # Test cases sqllimits1-6.* test that the SQLITE_MAX_SQL_LENGTH limit # is enforced. # do_test sqllimits1-6.1 { sqlite3_limit db SQLITE_LIMIT_SQL_LENGTH 50000 set sql "SELECT 1 WHERE 1==1" set tail " /* A comment to take up space in order to make the string\ longer without increasing the expression depth */\ AND 1 == 1" | > > > | 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | } {1 {string or blob too big}} } unset strvalue #-------------------------------------------------------------------- # Test cases sqllimits1-6.* test that the SQLITE_MAX_SQL_LENGTH limit # is enforced. # # EVIDENCE-OF: R-09808-17554 SQLITE_LIMIT_SQL_LENGTH The maximum length # of an SQL statement, in bytes. # do_test sqllimits1-6.1 { sqlite3_limit db SQLITE_LIMIT_SQL_LENGTH 50000 set sql "SELECT 1 WHERE 1==1" set tail " /* A comment to take up space in order to make the string\ longer without increasing the expression depth */\ AND 1 == 1" |
︙ | ︙ | |||
562 563 564 565 566 567 568 569 570 571 572 573 574 575 | execsql { DROP TABLE abc; } } {} #-------------------------------------------------------------------- # Test cases sqllimits1-8.* test the SQLITE_MAX_COLUMN limit. # set SQLITE_LIMIT_COLUMN 200 sqlite3_limit db SQLITE_LIMIT_COLUMN $SQLITE_LIMIT_COLUMN do_test sqllimits1-8.1 { # Columns in a table. set cols [list] for {set i 0} {$i <= $SQLITE_LIMIT_COLUMN} {incr i} { | > > > > > | 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 | execsql { DROP TABLE abc; } } {} #-------------------------------------------------------------------- # Test cases sqllimits1-8.* test the SQLITE_MAX_COLUMN limit. # # EVIDENCE-OF: R-43996-29471 SQLITE_LIMIT_COLUMN The maximum number of # columns in a table definition or in the result set of a SELECT or the # maximum number of columns in an index or in an ORDER BY or GROUP BY # clause. # set SQLITE_LIMIT_COLUMN 200 sqlite3_limit db SQLITE_LIMIT_COLUMN $SQLITE_LIMIT_COLUMN do_test sqllimits1-8.1 { # Columns in a table. set cols [list] for {set i 0} {$i <= $SQLITE_LIMIT_COLUMN} {incr i} { |
︙ | ︙ | |||
666 667 668 669 670 671 672 673 674 675 676 677 678 679 | #-------------------------------------------------------------------- # These tests - sqllimits1-9.* - test that the SQLITE_LIMIT_EXPR_DEPTH # limit is enforced. The limit refers to the number of terms in # the expression. # if {$SQLITE_MAX_EXPR_DEPTH==0} { puts -nonewline stderr "WARNING: Compile with -DSQLITE_MAX_EXPR_DEPTH to run " puts stderr "tests sqllimits1-9.X" } else { do_test sqllimits1-9.1 { set max $::SQLITE_MAX_EXPR_DEPTH set expr "(1 [string repeat {AND 1 } $max])" | > > > | 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 | #-------------------------------------------------------------------- # These tests - sqllimits1-9.* - test that the SQLITE_LIMIT_EXPR_DEPTH # limit is enforced. The limit refers to the number of terms in # the expression. # # EVIDENCE-OF: R-12723-08526 SQLITE_LIMIT_EXPR_DEPTH The maximum depth # of the parse tree on any expression. # if {$SQLITE_MAX_EXPR_DEPTH==0} { puts -nonewline stderr "WARNING: Compile with -DSQLITE_MAX_EXPR_DEPTH to run " puts stderr "tests sqllimits1-9.X" } else { do_test sqllimits1-9.1 { set max $::SQLITE_MAX_EXPR_DEPTH set expr "(1 [string repeat {AND 1 } $max])" |
︙ | ︙ | |||
724 725 726 727 728 729 730 731 732 733 734 735 736 737 | # in a single VDBE program. # # TODO #-------------------------------------------------------------------- # Test the SQLITE_LIMIT_FUNCTION_ARG limit works. Test case names # match the pattern "sqllimits1-11.*". # for {set max 5} {$max<=$SQLITE_MAX_FUNCTION_ARG} {incr max} { do_test sqllimits1-11.$max.1 { set vals [list] sqlite3_limit db SQLITE_LIMIT_FUNCTION_ARG $::max for {set i 0} {$i < $::max} {incr i} { lappend vals $i | > > > | 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | # in a single VDBE program. # # TODO #-------------------------------------------------------------------- # Test the SQLITE_LIMIT_FUNCTION_ARG limit works. Test case names # match the pattern "sqllimits1-11.*". # # EVIDENCE-OF: R-59001-45278 SQLITE_LIMIT_FUNCTION_ARG The maximum # number of arguments on a function. # for {set max 5} {$max<=$SQLITE_MAX_FUNCTION_ARG} {incr max} { do_test sqllimits1-11.$max.1 { set vals [list] sqlite3_limit db SQLITE_LIMIT_FUNCTION_ARG $::max for {set i 0} {$i < $::max} {incr i} { lappend vals $i |
︙ | ︙ | |||
758 759 760 761 762 763 764 765 766 767 768 769 770 771 | catchsql "SELECT myfunc([join $vals ,])" } {1 {too many arguments on function myfunc}} } #-------------------------------------------------------------------- # Test cases sqllimits1-12.*: Test the SQLITE_MAX_ATTACHED limit. # ifcapable attach { do_test sqllimits1-12.1 { set max $::SQLITE_MAX_ATTACHED for {set i 0} {$i < ($max)} {incr i} { forcedelete test${i}.db test${i}.db-journal } for {set i 0} {$i < ($max)} {incr i} { | > > > | 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 | catchsql "SELECT myfunc([join $vals ,])" } {1 {too many arguments on function myfunc}} } #-------------------------------------------------------------------- # Test cases sqllimits1-12.*: Test the SQLITE_MAX_ATTACHED limit. # # EVIDENCE-OF: R-41778-26203 SQLITE_LIMIT_ATTACHED The maximum number of # attached databases. # ifcapable attach { do_test sqllimits1-12.1 { set max $::SQLITE_MAX_ATTACHED for {set i 0} {$i < ($max)} {incr i} { forcedelete test${i}.db test${i}.db-journal } for {set i 0} {$i < ($max)} {incr i} { |
︙ | ︙ | |||
781 782 783 784 785 786 787 788 789 790 791 792 793 794 | } {} } #-------------------------------------------------------------------- # Test cases sqllimits1-13.*: Check that the SQLITE_MAX_VARIABLE_NUMBER # limit works. # do_test sqllimits1-13.1 { set max $::SQLITE_MAX_VARIABLE_NUMBER catchsql "SELECT ?[expr {$max+1}] FROM t1" } "1 {variable number must be between ?1 and ?$::SQLITE_MAX_VARIABLE_NUMBER}" do_test sqllimits1-13.2 { set max $::SQLITE_MAX_VARIABLE_NUMBER set vals [list] | > > > | 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 | } {} } #-------------------------------------------------------------------- # Test cases sqllimits1-13.*: Check that the SQLITE_MAX_VARIABLE_NUMBER # limit works. # # EVIDENCE-OF: R-42363-29104 SQLITE_LIMIT_VARIABLE_NUMBER The maximum # index number of any parameter in an SQL statement. # do_test sqllimits1-13.1 { set max $::SQLITE_MAX_VARIABLE_NUMBER catchsql "SELECT ?[expr {$max+1}] FROM t1" } "1 {variable number must be between ?1 and ?$::SQLITE_MAX_VARIABLE_NUMBER}" do_test sqllimits1-13.2 { set max $::SQLITE_MAX_VARIABLE_NUMBER set vals [list] |
︙ | ︙ | |||
802 803 804 805 806 807 808 809 810 811 812 813 814 815 | #-------------------------------------------------------------------- # Test cases sqllimits1-15.* verify that the # SQLITE_MAX_LIKE_PATTERN_LENGTH limit is enforced. This limit only # applies to the built-in LIKE operator, supplying an external # implementation by overriding the like() scalar function bypasses # this limitation. # # These tests check that the limit is not incorrectly applied to # the left-hand-side of the LIKE operator (the string being tested # against the pattern). # set SQLITE_LIMIT_LIKE_PATTERN 1000 sqlite3_limit db SQLITE_LIMIT_LIKE_PATTERN_LENGTH $SQLITE_LIMIT_LIKE_PATTERN do_test sqllimits1-15.1 { | > > > | 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 | #-------------------------------------------------------------------- # Test cases sqllimits1-15.* verify that the # SQLITE_MAX_LIKE_PATTERN_LENGTH limit is enforced. This limit only # applies to the built-in LIKE operator, supplying an external # implementation by overriding the like() scalar function bypasses # this limitation. # # EVIDENCE-OF: R-12940-37052 SQLITE_LIMIT_LIKE_PATTERN_LENGTH The # maximum length of the pattern argument to the LIKE or GLOB operators. # # These tests check that the limit is not incorrectly applied to # the left-hand-side of the LIKE operator (the string being tested # against the pattern). # set SQLITE_LIMIT_LIKE_PATTERN 1000 sqlite3_limit db SQLITE_LIMIT_LIKE_PATTERN_LENGTH $SQLITE_LIMIT_LIKE_PATTERN do_test sqllimits1-15.1 { |
︙ | ︙ |
Changes to test/tclsqlite.test.
︙ | ︙ | |||
114 115 116 117 118 119 120 | do_test tcl-1.14 { set v [catch {db eval} msg] lappend v $msg } {1 {wrong # args: should be "db eval SQL ?ARRAY-NAME? ?SCRIPT?"}} do_test tcl-1.15 { set v [catch {db function} msg] lappend v $msg | | | 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | do_test tcl-1.14 { set v [catch {db eval} msg] lappend v $msg } {1 {wrong # args: should be "db eval SQL ?ARRAY-NAME? ?SCRIPT?"}} do_test tcl-1.15 { set v [catch {db function} msg] lappend v $msg } {1 {wrong # args: should be "db function NAME ?SWITCHES? SCRIPT"}} do_test tcl-1.16 { set v [catch {db last_insert_rowid xyz} msg] lappend v $msg } {1 {wrong # args: should be "db last_insert_rowid "}} do_test tcl-1.17 { set v [catch {db rekey} msg] lappend v $msg |
︙ | ︙ |
Added test/walblock.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | # 2015 Mar 17 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/wal_common.tcl ifcapable !wal {finish_test ; return } if {$::tcl_platform(platform)!="unix"} { finish_test ; return } set testprefix walblock catch { db close } testvfs tvfs -fullshm 1 foreach f [glob test.db*] { forcedelete $f } sqlite3 db test.db -vfs tvfs do_execsql_test 1.1.0 { CREATE TABLE t1(x, y); INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); PRAGMA journal_mode = wal; INSERT INTO t1 VALUES(7, 8); } {wal} do_test 1.1.1 { lsort [glob test.db*] } {test.db test.db-shm test.db-wal} do_test 1.1.2 { set C [launch_testfixture] testfixture $C { sqlite3 db test.db db eval { SELECT * FROM t1 } } } {1 2 3 4 5 6 7 8} do_test 1.1.3 { set ::out [list] testfixture $C { db eval { SELECT * FROM t1 } } [list set ::out] set ::out } {} do_test 1.1.4 { vwait ::out set ::out } {1 2 3 4 5 6 7 8} # # Test that if a read client cannot read the wal-index header because a # write client is in the middle of updating it, the reader blocks until # the writer finishes. # # 1. Open a write transaction using client [db] in this process. # # 2. Attempt to commit the write transaction. Intercept the xShmBarrier() # call made by the writer between updating the two copies of the # wal-index header. # # 3. Within the xShmBarrier() callback, make an asynchronous request to # the other process to read from the database. It should block, as it # cannot get read the wal-index header. # # 4. Still in xShmBarrier(), wait for 5 seconds. Check that the other # process has not answered the request. # # 5: Finish committing the transaction. Then wait for 0.5 seconds more. # Ensure that the second process has by this stage read the database # and that the snapshot it read included the transaction committed in # step (4). # do_execsql_test 1.2.1 { BEGIN; INSERT INTO t1 VALUES(9, 10); } {} tvfs script barrier_callback tvfs filter xShmBarrier proc barrier_callback {method args} { set ::out "" testfixture $::C { db eval { SELECT * FROM t1 } } {set ::out} do_test "1.2.2.(blocking 5 seconds)" { set ::continue 0 after 5000 {set ::continue 1} vwait ::continue set ::out } {} } execsql COMMIT do_test "1.2.3.(blocking 0.5 seconds)" { set ::continue 0 after 500 {set ::continue 1} vwait ::continue set ::out } {1 2 3 4 5 6 7 8 9 10} finish_test |
Changes to test/where8.test.
︙ | ︙ | |||
62 63 64 65 66 67 68 | do_test where8-1.3 { execsql_status2 { SELECT c FROM t1 WHERE a > 8 OR b = 'two' } } {IX X II 0 0 6} do_test where8-1.4 { execsql_status2 { SELECT c FROM t1 WHERE a > 8 OR b GLOB 't*' } | | | | 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | do_test where8-1.3 { execsql_status2 { SELECT c FROM t1 WHERE a > 8 OR b = 'two' } } {IX X II 0 0 6} do_test where8-1.4 { execsql_status2 { SELECT c FROM t1 WHERE a > 8 OR b GLOB 't*' } } {IX X III II 0 0 10} do_test where8-1.5 { execsql_status2 { SELECT c FROM t1 WHERE a > 8 OR b GLOB 'f*' } } {IX X V IV 0 0 10} do_test where8-1.6 { execsql_status { SELECT c FROM t1 WHERE a = 1 OR b = 'three' ORDER BY rowid } } {I III 0 1} do_test where8-1.7 { execsql_status { SELECT c FROM t1 WHERE a = 1 OR b = 'three' ORDER BY a } |
︙ | ︙ |
Added test/whereK.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | # 2015-03-16 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing OR expressions where terms can be # factored from either side of the OR and combined into a single new # AND term that is beneficial to the search. Examples: # # (x>A OR x=A) --> ... AND (x>=A) # (x>A OR (x=A AND y>=B) --> ... AND (x>=A) # set testdir [file dirname $argv0] source $testdir/tester.tcl set ::testprefix whereK do_execsql_test 1.1 { CREATE TABLE t1(a,b,c); WITH RECURSIVE c(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM c WHERE x<99) INSERT INTO t1(a,b,c) SELECT x, x/10, x%10 FROM c; CREATE INDEX t1bc ON t1(b,c); SELECT a FROM t1 WHERE b>9 OR b=9 ORDER BY +a; } {90 91 92 93 94 95 96 97 98 99} do_execsql_test 1.1eqp { EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>9 OR b=9 ORDER BY +a; } {/SEARCH TABLE t1 USING INDEX t1bc/} do_execsql_test 1.2 { SELECT a FROM t1 WHERE b>8 OR (b=8 AND c>7) ORDER BY +a; } {88 89 90 91 92 93 94 95 96 97 98 99} do_execsql_test 1.2eqp { EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>8 OR (b=8 AND c>7) ORDER BY +a; } {/SEARCH TABLE t1 USING INDEX t1bc/} do_execsql_test 1.3 { SELECT a FROM t1 WHERE (b=8 AND c>7) OR b>8 ORDER BY +a; } {88 89 90 91 92 93 94 95 96 97 98 99} do_execsql_test 1.3eqp { EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE (b=8 AND c>7) OR b>8 ORDER BY +a; } {/SEARCH TABLE t1 USING INDEX t1bc/} do_execsql_test 1.4 { SELECT a FROM t1 WHERE (b=8 AND c>7) OR 8<b ORDER BY +a; } {88 89 90 91 92 93 94 95 96 97 98 99} do_execsql_test 1.4eqp { EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE (b=8 AND c>7) OR 8<b ORDER BY +a; } {/SEARCH TABLE t1 USING INDEX t1bc/} do_execsql_test 1.5 { SELECT a FROM t1 WHERE (b=8 AND c>7) OR (b>8 AND c NOT IN (4,5,6)) ORDER BY +a; } {88 89 90 91 92 93 97 98 99} do_execsql_test 1.5eqp { EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE (b=8 AND c>7) OR (b>8 AND c NOT IN (4,5,6)) ORDER BY +a; } {/SEARCH TABLE t1 USING INDEX t1bc/} finish_test |
Changes to tool/mksqlite3c.tcl.
︙ | ︙ | |||
115 116 117 118 119 120 121 122 123 124 125 126 127 128 | sqlite3ext.h sqlite3.h sqliteicu.h sqliteInt.h sqliteLimit.h vdbe.h vdbeInt.h wal.h whereInt.h } { set available_hdr($hdr) 1 } set available_hdr(sqliteInt.h) 0 | > | 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | sqlite3ext.h sqlite3.h sqliteicu.h sqliteInt.h sqliteLimit.h vdbe.h vdbeInt.h vxworks.h wal.h whereInt.h } { set available_hdr($hdr) 1 } set available_hdr(sqliteInt.h) 0 |
︙ | ︙ |