SQLite

Check-in [3a5e8ab7dd]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Add the rowid field to the end of sample records stored in the sqlite_stat4 table.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | sqlite_stat4
Files: files | file ages | folders
SHA1: 3a5e8ab7ddbe1d943b35ef329fe4e5a1bfdb0d9d
User & Date: dan 2013-08-10 19:08:30.794
Context
2013-08-12
09:29
Fix minor problems caused by adding the rowid to the records in stat4. (check-in: 088d1ff948 user: dan tags: sqlite_stat4)
2013-08-10
19:08
Add the rowid field to the end of sample records stored in the sqlite_stat4 table. (check-in: 3a5e8ab7dd user: dan tags: sqlite_stat4)
2013-08-09
19:04
Fix a couple of typos in a comment in analyze.c. No code changes. (check-in: 5bcccb93df user: dan tags: sqlite_stat4)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/analyze.c.
233
234
235
236
237
238
239










240
241
242
243
244
245
246
247
248
249


250
251
252
253
254
255
256
# define SQLITE_STAT4_SAMPLES 24
#endif

/*
** Three SQL functions - stat4_init(), stat4_push(), and stat4_pop() -
** share an instance of the following structure to hold their state
** information.










*/
typedef struct Stat4Accum Stat4Accum;
struct Stat4Accum {
  tRowcnt nRow;             /* Number of rows in the entire table */
  tRowcnt nPSample;         /* How often to do a periodic sample */
  int iMin;                 /* Index of entry with minimum nEq and hash */
  int mxSample;             /* Maximum number of samples to accumulate */
  int nSample;              /* Current number of samples */
  int nCol;                 /* Number of columns in the index */
  u32 iPrn;                 /* Pseudo-random number used for sampling */


  struct Stat4Sample {
    i64 iRowid;                /* Rowid in main table of the key */
    tRowcnt *anEq;             /* sqlite_stat4.nEq */
    tRowcnt *anLt;             /* sqlite_stat4.nLt */
    tRowcnt *anDLt;            /* sqlite_stat4.nDLt */
    u8 isPSample;              /* True if a periodic sample */
    u32 iHash;                 /* Tiebreaker hash */







>
>
>
>
>
>
>
>
>
>








|

>
>







233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# define SQLITE_STAT4_SAMPLES 24
#endif

/*
** Three SQL functions - stat4_init(), stat4_push(), and stat4_pop() -
** share an instance of the following structure to hold their state
** information.
**
** bHaveP, bHaveNonP:
**   The stat4_push() user-defined-function may be invoked multiple
**   times with index keys that are identical except for the rowid 
**   field. An argument is passed to stat4_push() to indicate if this
**   is the case or not.
**
**   bHaveP is set to true if a periodic sample corresponding to the
**   current index key has already been added. bHaveNonP is true if a
**   non-periodic sample has been added.
*/
typedef struct Stat4Accum Stat4Accum;
struct Stat4Accum {
  tRowcnt nRow;             /* Number of rows in the entire table */
  tRowcnt nPSample;         /* How often to do a periodic sample */
  int iMin;                 /* Index of entry with minimum nEq and hash */
  int mxSample;             /* Maximum number of samples to accumulate */
  int nSample;              /* Current number of samples */
  int nCol;                 /* Number of columns in the index including rowid */
  u32 iPrn;                 /* Pseudo-random number used for sampling */
  int bHaveP;
  int bHaveNonP;
  struct Stat4Sample {
    i64 iRowid;                /* Rowid in main table of the key */
    tRowcnt *anEq;             /* sqlite_stat4.nEq */
    tRowcnt *anLt;             /* sqlite_stat4.nLt */
    tRowcnt *anDLt;            /* sqlite_stat4.nDLt */
    u8 isPSample;              /* True if a periodic sample */
    u32 iHash;                 /* Tiebreaker hash */
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  int i;                          /* Used to iterate through p->aSample[] */

  /* Decode the three function arguments */
  UNUSED_PARAMETER(argc);
  nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
  nCol = sqlite3_value_int(argv[1]);
  mxSample = sqlite3_value_int(argv[2]);
  assert( nCol>0 );

  /* Allocate the space required for the Stat4Accum object */
  n = sizeof(*p) + (sizeof(p->a[0]) + 3*sizeof(tRowcnt)*nCol)*mxSample;
  p = sqlite3MallocZero( n );
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;







|







293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
  int i;                          /* Used to iterate through p->aSample[] */

  /* Decode the three function arguments */
  UNUSED_PARAMETER(argc);
  nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
  nCol = sqlite3_value_int(argv[1]);
  mxSample = sqlite3_value_int(argv[2]);
  assert( nCol>1 );               /* >1 because it includes the rowid column */

  /* Allocate the space required for the Stat4Accum object */
  n = sizeof(*p) + (sizeof(p->a[0]) + 3*sizeof(tRowcnt)*nCol)*mxSample;
  p = sqlite3MallocZero( n );
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;
347
348
349
350
351
352
353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

373
374
375




376
377
378

379
380
381
382

383





384
385

386

387
388
389
390


391

392
393



394
395

396
397
398
399
400
401
402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417
static void stat4Push(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
  i64 rowid = sqlite3_value_int64(argv[1]);

  struct Stat4Sample *pSample;
  u32 h;
  int iMin = p->iMin;
  int i;
  u8 isPSample = 0;
  u8 doInsert = 0;

  sqlite3_value **aEq = &argv[2];
  sqlite3_value **aLt = &argv[2+p->nCol];
  sqlite3_value **aDLt = &argv[2+p->nCol+p->nCol];

  i64 nEq = sqlite3_value_int64(aEq[p->nCol-1]);
  i64 nLt = sqlite3_value_int64(aLt[p->nCol-1]);

  UNUSED_PARAMETER(context);
  UNUSED_PARAMETER(argc);

  assert( p->nCol>0 );
  assert( argc==(2 + 3*p->nCol) );


  /* Figure out if this sample will be used. There are three reasons a
  ** sample may be used:




  **
  **   1. It may be a periodic sample. In this case set isPSample to true
  **      as well. Or,

  **
  **   2. Less than p->mxSample samples have been collected so far, or
  **
  **   3. It is more desirable than some other non-periodic sample that has

  **      already been collected. Samples are compared based on the values





  **      in the anEq array, starting from last (right-most index column)
  **      to first (left-most index column). If all elements of the anEq

  **      array are equal, samples are compared by hash value.

  **
  **      For both the contents of the anEq[] array and the hash value,
  **      larger values are considered more desirable.
  */


  h = p->iPrn = p->iPrn*1103515245 + 12345;

  if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){
    doInsert = isPSample = 1;



  }else if( p->nSample<p->mxSample ){
    doInsert = 1;

  }else{
    tRowcnt *aMinEq = p->a[iMin].anEq;
    for(i=p->nCol-1; i>=0; i--){
      i64 nEq = sqlite3_value_int64(aEq[i]);
      if( nEq<aMinEq[i] ) break;
      if( nEq>aMinEq[i] ){
        doInsert = 1;
        break;
      }
    }
    if( i<0 && h>p->a[iMin].iHash ){
      doInsert = 1;
    }

  }
  if( !doInsert ) return;

  /* Fill in the new Stat4Sample object. */
  if( p->nSample==p->mxSample ){
    struct Stat4Sample *pMin = &p->a[iMin];
    tRowcnt *anEq = pMin->anEq;
    tRowcnt *anDLt = pMin->anDLt;
    tRowcnt *anLt = pMin->anLt;







>

|





|
|
|

<




<

|
>

<
|
>
>
>
>
|
|
<
>
|
|
<
|
>
|
>
>
>
>
>
|
<
>
|
>
|
|
<
<
>
>
|
>
|
|
>
>
>


>


|










>

|







359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381

382
383
384
385

386
387
388
389
390
391
392

393
394
395

396
397
398
399
400
401
402
403
404

405
406
407
408
409


410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
static void stat4Push(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
  i64 rowid = sqlite3_value_int64(argv[1]);
  int bNewKey = sqlite3_value_int(argv[2]);
  struct Stat4Sample *pSample;
  u32 h;                          /* Hash value for this key */
  int iMin = p->iMin;
  int i;
  u8 isPSample = 0;
  u8 doInsert = 0;

  sqlite3_value **aEq = &argv[3];
  sqlite3_value **aLt = &argv[3+p->nCol];
  sqlite3_value **aDLt = &argv[3+p->nCol+p->nCol];


  i64 nLt = sqlite3_value_int64(aLt[p->nCol-1]);

  UNUSED_PARAMETER(context);
  UNUSED_PARAMETER(argc);

  assert( p->nCol>0 );
  assert( argc==(3 + 3*p->nCol) );
  assert( p->bHaveNonP==0 || p->bHaveP==0 );


  if( bNewKey ){
    p->bHaveP = 0;
    p->bHaveNonP = 0;
  }
  h = p->iPrn = p->iPrn*1103515245 + 12345;

  /* Check if this should be a periodic sample. If this is a periodic

  ** sample and there is already a non-periodic sample for this key,
  ** replace it.  */
  if( (nLt/p->nPSample) != (nLt+1)/p->nPSample ){

    doInsert = isPSample = 1;
    if( p->bHaveNonP ){
      p->nSample--;
      p->bHaveNonP = 0;
      p->bHaveP = 1;
      assert( p->nSample<p->mxSample );
      assert( p->a[p->nSample].isPSample==0 );
    }


  /* Or, if this is not a periodic sample, and there is already at least one
  ** periodic sample, return early. */
  }else if( p->bHaveP ){
    /* no-op */



  /* If there is already a non-periodic sample for the key, but this one
  ** has a higher hash score, replace the existing sample.  */
  }else if( p->bHaveNonP ){
    if( p->a[p->nSample-1].iHash<h ){
      p->nSample--;
      doInsert = 1;
    }

  /* Finally, check if this should be added as a non-periodic sample. */
  }else if( p->nSample<p->mxSample ){
    doInsert = 1;
    p->bHaveNonP = 1;
  }else{
    tRowcnt *aMinEq = p->a[iMin].anEq;
    for(i=p->nCol-2; i>=0; i--){
      i64 nEq = sqlite3_value_int64(aEq[i]);
      if( nEq<aMinEq[i] ) break;
      if( nEq>aMinEq[i] ){
        doInsert = 1;
        break;
      }
    }
    if( i<0 && h>p->a[iMin].iHash ){
      doInsert = 1;
    }
    p->bHaveNonP = doInsert;
  }
  if( doInsert==0 ) return;

  /* Fill in the new Stat4Sample object. */
  if( p->nSample==p->mxSample ){
    struct Stat4Sample *pMin = &p->a[iMin];
    tRowcnt *anEq = pMin->anEq;
    tRowcnt *anDLt = pMin->anDLt;
    tRowcnt *anLt = pMin->anLt;
575
576
577
578
579
580
581

582
583
584
585
586
587
588
589
590
  int regTemp = iMem++;        /* Temporary use register */
  int regNewRowid = iMem++;    /* Rowid for the inserted record */
  int regEof = iMem++;         /* True once cursors are all at EOF */
  int regCnt = iMem++;         /* Row counter */

  int regStat4 = iMem++;       /* Register to hold Stat4Accum object */
  int regRowid = iMem++;       /* Rowid argument passed to stat4_push() */


  pParse->nMem = MAX(pParse->nMem, regRowid);
  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;







>

|







602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
  int regTemp = iMem++;        /* Temporary use register */
  int regNewRowid = iMem++;    /* Rowid for the inserted record */
  int regEof = iMem++;         /* True once cursors are all at EOF */
  int regCnt = iMem++;         /* Row counter */

  int regStat4 = iMem++;       /* Register to hold Stat4Accum object */
  int regRowid = iMem++;       /* Rowid argument passed to stat4_push() */
  int regKeychng = iMem++;     /* True if key has changed */

  pParse->nMem = MAX(pParse->nMem, regKeychng);
  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644
645
646
647
648

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671







672



673
674
675

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804









805




806







807
808
809



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
    int regEq;                    /* First in array of nEq registers */
    int endOfScan;                /* Label to jump to once scan is finished */

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
    if( aChngAddr==0 ) continue;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);

    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

    /*
    ** The following pseudo-code demonstrates the way the VM scans an index 
    ** to call stat4_push() and collect the values for the sqlite_stat1 
    ** entry. The code below is for an index with 2 columns. The actual
    ** VM code generated may be for any number of columns.
    **
    ** One cursor is opened for each column in the index (nCol). All cursors 

    ** scan concurrently the index from start to end. All variables used in
    ** the pseudo-code are initialized to zero.
    **
    **   Rewind csr(0)
    **   Rewind csr(1)

    ** 
    **  next_0:
    **   regPrev(0) = csr(0)[0]
    **   regDLte(0) += 1
    **   regLt(0) += regEq(0)
    **   regEq(0) = 0
    **   do {
    **     regEq(0) += 1
    **     Next csr(0)
    **   }while ( csr(0)[0] == regPrev(0) )
    ** 
    **  next_1:
    **   regPrev(1) = csr(1)[1]
    **   regDLte(1) += 1
    **   regLt(1) += regEq(1)
    **   regEq(1) = 0
    **   regRowid = csr(1)[rowid]        // innermost cursor only
    **   do {
    **     regEq(1) += 1
    **     regCnt += 1                   // innermost cursor only
    **     Next csr(1)
    **   }while ( csr(1)[0..1] == regPrev(0..1) )
    ** 







    **   stat4_push(regRowid, regEq, regLt, regDLte);



    ** 
    **   if( eof( csr(1) ) ) goto endOfScan
    **   if( csr(1)[0] != regPrev(0) ) goto next_0

    **   goto next_1
    **
    **  endOfScan:
    **   // done!
    **
    ** The last two lines above modify the contents of the regDLte array
    ** so that each element contains the number of distinct key prefixes
    ** of the corresponding length. As required to calculate the contents
    ** of the sqlite_stat1 entry.
    **
    ** Currently, the last memory cell allocated (that with the largest 
    ** integer identifier) is regStat4. Immediately following regStat4
    ** we allocate the following:
    **
    **     regEq -    nCol registers
    **     regLt -    nCol registers
    **     regDLte -  nCol registers
    **     regPrev -  nCol registers
    **
    ** The regRowid, regEq, regLt and regDLte registers must be positioned in 
    ** that order immediately following regStat4 so that they can be passed
    ** to the stat4_push() function.
    **
    ** All of the above are initialized to contain integer value 0.
    */
    regEq = regRowid+1;           /* First in array of nEq value registers */
    regLt = regEq+nCol;           /* First in array of nLt value registers */
    regDLte = regLt+nCol;         /* First in array of nDLt value registers */
    regPrev = regDLte+nCol;       /* First in array of prev. value registers */
    pParse->nMem = MAX(pParse->nMem, regPrev+nCol);

    /* Open a read-only cursor for each column of the index. */

    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    iIdxCur = iTab;
    pParse->nTab = MAX(pParse->nTab, iTab+nCol);
    for(i=0; i<nCol; i++){
      int iMode = (i==0 ? P4_KEYINFO_HANDOFF : P4_KEYINFO);
      sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur+i, pIdx->tnum, iDb);
      sqlite3VdbeChangeP4(v, -1, (char*)pKey, iMode); 
      VdbeComment((v, "%s", pIdx->zName));
    }

#ifdef SQLITE_ENABLE_STAT4
    /* Invoke the stat4_init() function. The arguments are:
    ** 
    **     * the number of rows in the index,
    **     * the number of columns in the index,
    **     * the recommended number of samples for the stat4 table.
    */
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+1);
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+2);
    sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT4_SAMPLES, regStat4+3);
    sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4InitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);
#endif /* SQLITE_ENABLE_STAT4 */

    /* Initialize all the memory registers allocated above to 0. */
    for(i=regEq; i<regDLte+nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Integer, 0, i);
    }
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regCnt);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);

    /* Rewind all cursors open on the index. If the table is entry, this
    ** will cause control to jump to address endOfScan immediately.  */
    endOfScan = sqlite3VdbeMakeLabel(v);
    for(i=0; i<nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur+i, endOfScan);
    }

    for(i=0; i<nCol; i++){
      char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      int iCsr = iIdxCur+i;
      int iDo;
      int iNe;                    /* Jump here to exit do{...}while loop */
      int j;
      int bInner = (i==(nCol-1)); /* True for innermost cursor */

      /* Implementation of the following pseudo-code:
      **
      **   regPrev(i) = csr(i)[i]
      **   regDLte(i) += 1
      **   regLt(i) += regEq(i)
      **   regEq(i) = 0
      **   regRowid = csr(i)[rowid]        // innermost cursor only
      */
      aChngAddr[i] = sqlite3VdbeAddOp3(v, OP_Column, iCsr, i, regPrev+i);
      VdbeComment((v, "regPrev(%d) = csr(%d)(%d)", i, i, i));
      sqlite3VdbeAddOp2(v, OP_AddImm, regDLte+i, 1);
      VdbeComment((v, "regDLte(%d) += 1", i));
      sqlite3VdbeAddOp3(v, OP_Add, regEq+i, regLt+i, regLt+i);
      VdbeComment((v, "regLt(%d) += regEq(%d)", i, i));
      sqlite3VdbeAddOp2(v, OP_Integer, 0, regEq+i);
      VdbeComment((v, "regEq(%d) = 0", i));
      if( bInner ) sqlite3VdbeAddOp2(v, OP_IdxRowid, iCsr, regRowid);

      /* This bit:
      **
      **   do {
      **     regEq(i) += 1
      **     regCnt += 1                   // innermost cursor only
      **     Next csr(i)
      **     if( Eof csr(i) ){
      **       regEof = 1                  // innermost cursor only
      **       break
      **     }
      **   }while ( csr(i)[0..i] == regPrev(0..i) )
      */
      iDo = sqlite3VdbeAddOp2(v, OP_AddImm, regEq+i, 1);
      VdbeComment((v, "regEq(%d) += 1", i));
      if( bInner ){
        sqlite3VdbeAddOp2(v, OP_AddImm, regCnt, 1);
        VdbeComment((v, "regCnt += 1"));
      }
      sqlite3VdbeAddOp2(v, OP_Next, iCsr, sqlite3VdbeCurrentAddr(v)+2+bInner);
      if( bInner ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);
      iNe = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iNe);
      for(j=0; j<=i; j++){
        sqlite3VdbeAddOp3(v, OP_Column, iCsr, j, regCol);
        sqlite3VdbeAddOp4(v, OP_Ne, regCol, iNe, regPrev+j, pColl, P4_COLLSEQ);
        sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
        VdbeComment((v, "if( regPrev(%d) != csr(%d)(%d) )", j, i, j));
      }
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iDo);
      sqlite3VdbeResolveLabel(v, iNe);
    }










    /* Invoke stat4_push() */




#ifdef SQLITE_ENABLE_STAT4







    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4PushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2 + 3*nCol);



#endif

    sqlite3VdbeAddOp2(v, OP_If, regEof, endOfScan);
    for(i=0; i<nCol-1; i++){
      char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur+nCol-1, i, regCol);
      sqlite3VdbeAddOp3(v, OP_Ne, regCol, aChngAddr[i], regPrev+i);
      sqlite3VdbeChangeP4(v, -1, pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, aChngAddr[nCol-1]);
    sqlite3DbFree(db, aChngAddr);

    sqlite3VdbeResolveLabel(v, endOfScan);

#ifdef SQLITE_ENABLE_STAT4
    /* Add rows to the sqlite_stat4 table */
    regLoop = regStat4+1;
    sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
    shortJump = sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
    sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2);
    sqlite3VdbeAddOp1(v, OP_IsNull, regTemp);

    sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp);
    for(i=0; i<nCol; i++){
      int iCol = pIdx->aiColumn[i];
      sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regPrev+i);
    }
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regPrev, nCol, regSample);
    sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);

    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regNumEq);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);

    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regNumLt);







|












|
>
|
|



>
















<


<



>
>
>
>
>
>
>
|
>
>
>

<
|
>
|









|
|



|
|
|

<
<
|



|
|
|
|


|
>


|
|










|



|
















|









<

















<





<


<






<
<
<
<
|
<












>
>
>
>
>
>
>
>
>
|
>
>
>
>

>
>
>
>
>
>
>


|
>
>
>



|

|




|









|


|

|


|

|







651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

695
696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732


733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

807
808
809
810
811

812
813

814
815
816
817
818
819




820

821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
    int regEq;                    /* First in array of nEq registers */
    int endOfScan;                /* Label to jump to once scan is finished */

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*(nCol+1));
    if( aChngAddr==0 ) continue;
    pKey = sqlite3IndexKeyinfo(pParse, pIdx);

    /* Populate the register containing the index name. */
    sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

    /*
    ** The following pseudo-code demonstrates the way the VM scans an index 
    ** to call stat4_push() and collect the values for the sqlite_stat1 
    ** entry. The code below is for an index with 2 columns. The actual
    ** VM code generated may be for any number of columns.
    **
    ** One cursor is opened for each column in the index and one for the
    ** rowid column (nCol+1 in total). All cursors scan concurrently the 
    ** index from start to end. All variables used in the pseudo-code are 
    ** initialized to zero.
    **
    **   Rewind csr(0)
    **   Rewind csr(1)
    **   Rewind csr(2)
    ** 
    **  next_0:
    **   regPrev(0) = csr(0)[0]
    **   regDLte(0) += 1
    **   regLt(0) += regEq(0)
    **   regEq(0) = 0
    **   do {
    **     regEq(0) += 1
    **     Next csr(0)
    **   }while ( csr(0)[0] == regPrev(0) )
    ** 
    **  next_1:
    **   regPrev(1) = csr(1)[1]
    **   regDLte(1) += 1
    **   regLt(1) += regEq(1)
    **   regEq(1) = 0

    **   do {
    **     regEq(1) += 1

    **     Next csr(1)
    **   }while ( csr(1)[0..1] == regPrev(0..1) )
    ** 
    **   regKeychng = 1
    **  next_row:
    **   regRowid = csr(2)[rowid]
    **   regEq(2) = 1
    **   regLt(2) = regCnt
    **   regCnt += 1
    **   regDLte(2) = regCnt
    **   stat4_push(regRowid, regKeychng, regEq, regLt, regDLte);
    **   regKeychng = 0
    **   Next csr(2)
    **   if( eof( csr(2) ) ) goto endOfScan
    ** 

    **   if( csr(2)[0] != regPrev(0) ) goto next_0
    **   if( csr(2)[1] != regPrev(1) ) goto next_1
    **   goto next_row
    **
    **  endOfScan:
    **   // done!
    **
    ** The last two lines above modify the contents of the regDLte array
    ** so that each element contains the number of distinct key prefixes
    ** of the corresponding length. As required to calculate the contents
    ** of the sqlite_stat1 entry.
    **
    ** At this point, the last memory cell allocated (that with the largest 
    ** integer identifier) is regKeychng. Immediately following regKeychng
    ** we allocate the following:
    **
    **     regEq -    nCol registers
    **     regLt -    nCol+1 registers
    **     regDLte -  nCol+1 registers
    **     regPrev -  nCol+1 registers
    **


    ** can be passed to the stat4_push() function.
    **
    ** All of the above are initialized to contain integer value 0.
    */
    regEq = regKeychng+1;         /* First in array of nEq value registers */
    regLt = regEq+nCol+1;         /* First in array of nLt value registers */
    regDLte = regLt+nCol+1;       /* First in array of nDLt value registers */
    regPrev = regDLte+nCol+1;     /* First in array of prev. value registers */
    pParse->nMem = MAX(pParse->nMem, regPrev+nCol);

    /* Open a read-only cursor for each column of the index. And one for
    ** the rowid column. A total of (nCol+1) cursors.  */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    iIdxCur = iTab;
    pParse->nTab = MAX(pParse->nTab, iTab+nCol+1);
    for(i=0; i<(nCol+1); i++){
      int iMode = (i==0 ? P4_KEYINFO_HANDOFF : P4_KEYINFO);
      sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur+i, pIdx->tnum, iDb);
      sqlite3VdbeChangeP4(v, -1, (char*)pKey, iMode); 
      VdbeComment((v, "%s", pIdx->zName));
    }

#ifdef SQLITE_ENABLE_STAT4
    /* Invoke the stat4_init() function. The arguments are:
    ** 
    **     * the number of rows in the index,
    **     * the number of columns in the index including the rowid,
    **     * the recommended number of samples for the stat4 table.
    */
    sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+1);
    sqlite3VdbeAddOp2(v, OP_Integer, nCol+1, regStat4+2);
    sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT4_SAMPLES, regStat4+3);
    sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4InitFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);
#endif /* SQLITE_ENABLE_STAT4 */

    /* Initialize all the memory registers allocated above to 0. */
    for(i=regEq; i<regDLte+nCol; i++){
      sqlite3VdbeAddOp2(v, OP_Integer, 0, i);
    }
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regCnt);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);

    /* Rewind all cursors open on the index. If the table is entry, this
    ** will cause control to jump to address endOfScan immediately.  */
    endOfScan = sqlite3VdbeMakeLabel(v);
    for(i=0; i<(nCol+1); i++){
      sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur+i, endOfScan);
    }

    for(i=0; i<nCol; i++){
      char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      int iCsr = iIdxCur+i;
      int iDo;
      int iNe;                    /* Jump here to exit do{...}while loop */
      int j;


      /* Implementation of the following pseudo-code:
      **
      **   regPrev(i) = csr(i)[i]
      **   regDLte(i) += 1
      **   regLt(i) += regEq(i)
      **   regEq(i) = 0
      **   regRowid = csr(i)[rowid]        // innermost cursor only
      */
      aChngAddr[i] = sqlite3VdbeAddOp3(v, OP_Column, iCsr, i, regPrev+i);
      VdbeComment((v, "regPrev(%d) = csr(%d)(%d)", i, i, i));
      sqlite3VdbeAddOp2(v, OP_AddImm, regDLte+i, 1);
      VdbeComment((v, "regDLte(%d) += 1", i));
      sqlite3VdbeAddOp3(v, OP_Add, regEq+i, regLt+i, regLt+i);
      VdbeComment((v, "regLt(%d) += regEq(%d)", i, i));
      sqlite3VdbeAddOp2(v, OP_Integer, 0, regEq+i);
      VdbeComment((v, "regEq(%d) = 0", i));


      /* This bit:
      **
      **   do {
      **     regEq(i) += 1

      **     Next csr(i)
      **     if( Eof csr(i) ){

      **       break
      **     }
      **   }while ( csr(i)[0..i] == regPrev(0..i) )
      */
      iDo = sqlite3VdbeAddOp2(v, OP_AddImm, regEq+i, 1);
      VdbeComment((v, "regEq(%d) += 1", i));




      sqlite3VdbeAddOp2(v, OP_Next, iCsr, sqlite3VdbeCurrentAddr(v)+2);

      iNe = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iNe);
      for(j=0; j<=i; j++){
        sqlite3VdbeAddOp3(v, OP_Column, iCsr, j, regCol);
        sqlite3VdbeAddOp4(v, OP_Ne, regCol, iNe, regPrev+j, pColl, P4_COLLSEQ);
        sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
        VdbeComment((v, "if( regPrev(%d) != csr(%d)(%d) )", j, i, j));
      }
      sqlite3VdbeAddOp2(v, OP_Goto, 0, iDo);
      sqlite3VdbeResolveLabel(v, iNe);
    }

    /* This stuff:
    ** 
    **   regKeychng = 1
    **  next_row:
    **   regRowid = csr(2)[rowid]
    **   regEq(2) = 1
    **   regLt(2) = regCnt
    **   regCnt += 1
    **   regDLte(2) = regCnt
    **   stat4_push(regRowid, regKeychng, regEq, regLt, regDLte);
    **   regKeychng = 0
    **   Next csr(2)
    **   if( eof( csr(2) ) ) goto endOfScan
    */
#ifdef SQLITE_ENABLE_STAT4
    sqlite3VdbeAddOp2(v, OP_Integer, 1, regKeychng);
    aChngAddr[nCol] =
    sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur+nCol, regRowid);
    sqlite3VdbeAddOp2(v, OP_Integer, 1, regEq+nCol);
    sqlite3VdbeAddOp2(v, OP_Copy, regCnt, regLt+nCol);
    sqlite3VdbeAddOp2(v, OP_AddImm, regCnt, 1);
    sqlite3VdbeAddOp2(v, OP_Copy, regCnt, regDLte+nCol);
    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4PushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3 + 3*(nCol+1));
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regKeychng);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur+nCol, sqlite3VdbeCurrentAddr(v)+2);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfScan);
#endif

    sqlite3VdbeAddOp2(v, OP_If, regEof, endOfScan);
    for(i=0; i<nCol; i++){
      char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur+nCol, i, regCol);
      sqlite3VdbeAddOp3(v, OP_Ne, regCol, aChngAddr[i], regPrev+i);
      sqlite3VdbeChangeP4(v, -1, pColl, P4_COLLSEQ);
      sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
    }
    sqlite3VdbeAddOp2(v, OP_Goto, 0, aChngAddr[nCol]);
    sqlite3DbFree(db, aChngAddr);

    sqlite3VdbeResolveLabel(v, endOfScan);

#ifdef SQLITE_ENABLE_STAT4
    /* Add rows to the sqlite_stat4 table */
    regLoop = regStat4+1;
    sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
    shortJump = sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
    sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regEq+nCol);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2);
    sqlite3VdbeAddOp1(v, OP_IsNull, regEq+nCol);

    sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regEq+nCol);
    for(i=0; i<nCol; i++){
      int iCol = pIdx->aiColumn[i];
      sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regEq+i);
    }
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regEq, nCol+1, regSample);
    sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);

    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regNumEq);
    sqlite3VdbeChangeP4(v, -1, (char*)&stat4GetFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 3);

    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regNumLt);
Changes to src/vdbemem.c.
1178
1179
1180
1181
1182
1183
1184

1185
1186
1187
1188
1189
1190

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
  UnpackedRecord *pRec = p->ppRec[0];

  if( pRec==0 ){
    sqlite3 *db = p->pParse->db;  /* Database handle */
    Index *pIdx = p->pIdx;        /* Index being probed */
    int nByte;                    /* Bytes of space to allocate */
    int i;                        /* Counter variable */


    nByte = sizeof(Mem) * pIdx->nColumn + sizeof(UnpackedRecord);
    pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
    if( pRec ){
      pRec->pKeyInfo = sqlite3IndexKeyinfo(p->pParse, pIdx);
      if( pRec->pKeyInfo ){

        pRec->pKeyInfo->enc = ENC(db);
        pRec->flags = UNPACKED_PREFIX_MATCH;
        pRec->aMem = (Mem *)&pRec[1];
        for(i=0; i<pIdx->nColumn; i++){
          pRec->aMem[i].flags = MEM_Null;
          pRec->aMem[i].type = SQLITE_NULL;
          pRec->aMem[i].db = db;
        }
      }else{
        sqlite3DbFree(db, pRec);
        pRec = 0;







>

|




>



|







1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
  UnpackedRecord *pRec = p->ppRec[0];

  if( pRec==0 ){
    sqlite3 *db = p->pParse->db;  /* Database handle */
    Index *pIdx = p->pIdx;        /* Index being probed */
    int nByte;                    /* Bytes of space to allocate */
    int i;                        /* Counter variable */
    int nCol = pIdx->nColumn+1;   /* Number of index columns including rowid */

    nByte = sizeof(Mem) * nCol + sizeof(UnpackedRecord);
    pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
    if( pRec ){
      pRec->pKeyInfo = sqlite3IndexKeyinfo(p->pParse, pIdx);
      if( pRec->pKeyInfo ){
        assert( pRec->pKeyInfo->nField+1==nCol );
        pRec->pKeyInfo->enc = ENC(db);
        pRec->flags = UNPACKED_PREFIX_MATCH;
        pRec->aMem = (Mem *)&pRec[1];
        for(i=0; i<nCol; i++){
          pRec->aMem[i].flags = MEM_Null;
          pRec->aMem[i].type = SQLITE_NULL;
          pRec->aMem[i].db = db;
        }
      }else{
        sqlite3DbFree(db, pRec);
        pRec = 0;
1303
1304
1305
1306
1307
1308
1309

1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
** Unless it is NULL, the argument must be an UnpackedRecord object returned
** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
** the object.
*/
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
  if( pRec ){
    int i;

    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<pRec->pKeyInfo->nField; i++){
      sqlite3DbFree(db, aMem[i].zMalloc);
    }
    sqlite3DbFree(db, pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */







>


|







1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
** Unless it is NULL, the argument must be an UnpackedRecord object returned
** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
** the object.
*/
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
  if( pRec ){
    int i;
    int nCol = pRec->pKeyInfo->nField+1;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      sqlite3DbFree(db, aMem[i].zMalloc);
    }
    sqlite3DbFree(db, pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */
Changes to src/where.c.
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
  int iCol = pRec->nField-1;  /* Index of required stats in anEq[] etc. */
  int iMin = 0;               /* Smallest sample not yet tested */
  int i = pIdx->nSample;      /* Smallest sample larger than or equal to pRec */
  int iTest;                  /* Next sample to test */
  int res;                    /* Result of comparison operation */

  assert( pIdx->nSample>0 );
  assert( pRec->nField>0 && iCol<pIdx->nColumn );
  do{
    iTest = (iMin+i)/2;
    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec);
    if( res<0 ){
      iMin = iTest+1;
    }else{
      i = iTest;







|







2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
  int iCol = pRec->nField-1;  /* Index of required stats in anEq[] etc. */
  int iMin = 0;               /* Smallest sample not yet tested */
  int i = pIdx->nSample;      /* Smallest sample larger than or equal to pRec */
  int iTest;                  /* Next sample to test */
  int res;                    /* Result of comparison operation */

  assert( pIdx->nSample>0 );
  assert( pRec->nField>0 && iCol<=pIdx->nColumn );
  do{
    iTest = (iMin+i)/2;
    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec);
    if( res<0 ){
      iMin = iTest+1;
    }else{
      i = iTest;
2680
2681
2682
2683
2684
2685
2686


2687
2688
2689
2690
2691
2692
2693

  /* If values are not available for all fields of the index to the left
  ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
  if( pBuilder->nRecValid<(nEq-1) ){
    return SQLITE_NOTFOUND;
  }



  if( nEq>p->nColumn ){
    *pnRow = 1;
    return SQLITE_OK;
  }

  aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity;
  rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);







>
>







2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695

  /* If values are not available for all fields of the index to the left
  ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
  if( pBuilder->nRecValid<(nEq-1) ){
    return SQLITE_NOTFOUND;
  }

  /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
  ** below would return the same value.  */
  if( nEq>p->nColumn ){
    *pnRow = 1;
    return SQLITE_OK;
  }

  aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity;
  rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);
Changes to test/analyze3.test.
91
92
93
94
95
96
97



98
99
100
101
102
103
104
105
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t1 VALUES($i+100, $i) }
  }
  execsql {
    COMMIT;
    ANALYZE;
  }



} {}

do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}







>
>
>
|







91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
  for {set i 0} {$i < 1000} {incr i} {
    execsql { INSERT INTO t1 VALUES($i+100, $i) }
  }
  execsql {
    COMMIT;
    ANALYZE;
  }
  execsql {
    SELECT count(*)>0 FROM sqlite_stat4;
  }
} {1}

do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
  }
  for {set i 0} {$i < 100} {incr i} {
    execsql { INSERT INTO t1 VALUES($i, $i, $i) }
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_test analyze3-3.2.1 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b>?" -1 dummy]
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.2 {
  sqlite3_bind_text $S 1 "abc" 3
  sqlite3_expired $S







<







311
312
313
314
315
316
317

318
319
320
321
322
323
324
  }
  for {set i 0} {$i < 100} {incr i} {
    execsql { INSERT INTO t1 VALUES($i, $i, $i) }
  }
  execsql COMMIT
  execsql ANALYZE
} {}

do_test analyze3-3.2.1 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b>?" -1 dummy]
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.2 {
  sqlite3_bind_text $S 1 "abc" 3
  sqlite3_expired $S
Changes to test/analyze5.test.
32
33
34
35
36
37
38


39
40
41
42
43
44
45
  set ret ""
  foreach c [split $blob {}] {
    if {[string is alpha $c]} {append ret $c}
  }
  return $ret
}
db func alpha alpha



unset -nocomplain i t u v w x y z
do_test analyze5-1.0 {
  db eval {CREATE TABLE t1(t,u,v TEXT COLLATE nocase,w,x,y,z)}
  for {set i 0} {$i < 1000} {incr i} {
    set y [expr {$i>=25 && $i<=50}]
    set z [expr {($i>=400) + ($i>=700) + ($i>=875)}]







>
>







32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
  set ret ""
  foreach c [split $blob {}] {
    if {[string is alpha $c]} {append ret $c}
  }
  return $ret
}
db func alpha alpha

db func lindex lindex

unset -nocomplain i t u v w x y z
do_test analyze5-1.0 {
  db eval {CREATE TABLE t1(t,u,v TEXT COLLATE nocase,w,x,y,z)}
  for {set i 0} {$i < 1000} {incr i} {
    set y [expr {$i>=25 && $i<=50}]
    set z [expr {($i>=400) + ($i>=700) + ($i>=875)}]
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    CREATE INDEX t1u ON t1(u);  -- text
    CREATE INDEX t1v ON t1(v);  -- mixed case text
    CREATE INDEX t1w ON t1(w);  -- integers 0, 1, 2 and a few NULLs
    CREATE INDEX t1x ON t1(x);  -- integers 1, 2, 3 and many NULLs
    CREATE INDEX t1y ON t1(y);  -- integers 0 and very few 1s
    CREATE INDEX t1z ON t1(z);  -- integers 0, 1, 2, and 3
    ANALYZE;

    SELECT alpha(sample) FROM sqlite_stat4 WHERE idx='t1u' ORDER BY nlt;
  }
} {alpha bravo charlie delta}

do_test analyze5-1.1 {
  db eval {
    SELECT DISTINCT lower(alpha(sample)) FROM sqlite_stat4 WHERE idx='t1v'
    ORDER BY 1
  }
} {alpha bravo charlie delta}
do_test analyze5-1.2 {
  db eval {SELECT idx, count(*) FROM sqlite_stat4 GROUP BY 1 ORDER BY 1}
} {t1t 4 t1u 4 t1v 4 t1w 4 t1x 4 t1y 2 t1z 4}

# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
    1  {z>=0 AND z<=0}       t1z  400
    2  {z>=1 AND z<=1}       t1z  300
    3  {z>=2 AND z<=2}       t1z  175







>
|





|
|




|







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    CREATE INDEX t1u ON t1(u);  -- text
    CREATE INDEX t1v ON t1(v);  -- mixed case text
    CREATE INDEX t1w ON t1(w);  -- integers 0, 1, 2 and a few NULLs
    CREATE INDEX t1x ON t1(x);  -- integers 1, 2, 3 and many NULLs
    CREATE INDEX t1y ON t1(y);  -- integers 0 and very few 1s
    CREATE INDEX t1z ON t1(z);  -- integers 0, 1, 2, and 3
    ANALYZE;
    SELECT DISTINCT lindex(test_decode(sample),0) 
    FROM sqlite_stat4 WHERE idx='t1u' ORDER BY nlt;
  }
} {alpha bravo charlie delta}

do_test analyze5-1.1 {
  db eval {
    SELECT DISTINCT lower(lindex(test_decode(sample), 0)) 
    FROM sqlite_stat4 WHERE idx='t1v' ORDER BY 1
  }
} {alpha bravo charlie delta}
do_test analyze5-1.2 {
  db eval {SELECT idx, count(*) FROM sqlite_stat4 GROUP BY 1 ORDER BY 1}
} {t1t 8 t1u 8 t1v 8 t1w 8 t1x 8 t1y 9 t1z 8}

# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
    1  {z>=0 AND z<=0}       t1z  400
    2  {z>=1 AND z<=1}       t1z  300
    3  {z>=2 AND z<=2}       t1z  175
Changes to test/analyze9.test.
30
31
32
33
34
35
36
37
38
39
40
41



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
      append ret .
    }
  }
  return $ret
}
db function s s

do_test 1.0 {
  execsql { CREATE TABLE t1(a TEXT, b TEXT); }
  for {set i 0} {$i < 5} {incr i} {
    execsql {INSERT INTO t1 VALUES ('('||($i%10)||')', '('||($i%7)||')')}
  }



  execsql { CREATE INDEX i1 ON t1(a, b) }
} {}


do_execsql_test 1.1 {
  ANALYZE;
} {}

do_execsql_test 1.3 {
  SELECT tbl,idx,nEq,nLt,nDLt,test_decode(sample) FROM sqlite_stat4;
} {
  t1 i1 {1 1} {0 0} {0 0} {(0) (0)}
  t1 i1 {1 1} {1 1} {1 1} {(1) (1)}
  t1 i1 {1 1} {2 2} {2 2} {(2) (2)}
  t1 i1 {1 1} {3 3} {3 3} {(3) (3)}
  t1 i1 {1 1} {4 4} {4 4} {(4) (4)}
}

do_execsql_test 1.2 {
  SELECT tbl,idx,nEq,nLt,nDLt,s(sample) FROM sqlite_stat4;
} {
  t1 i1 {1 1} {0 0} {0 0} ...(0)(0) 
  t1 i1 {1 1} {1 1} {1 1} ...(1)(1) 
  t1 i1 {1 1} {2 2} {2 2} ...(2)(2) 
  t1 i1 {1 1} {3 3} {3 3} ...(3)(3)
  t1 i1 {1 1} {4 4} {4 4} ...(4)(4)
}


#-------------------------------------------------------------------------
# This is really just to test SQL user function "test_decode".
#
reset_db
do_execsql_test 2.1 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1 VALUES('some text', 14, NULL);
  INSERT INTO t1 VALUES(22.0, NULL, x'656667');
  CREATE INDEX i1 ON t1(a, b, c);
  ANALYZE;
  SELECT test_decode(sample) FROM sqlite_stat4;
} {
  {22.0 NULL x'656667'} 
  {{some text} 14 NULL}
}

#-------------------------------------------------------------------------
# 
reset_db
do_execsql_test 3.1 {
  CREATE TABLE t2(a, b);







|
|
|
|
<
>
>
>
|










|
|
|
|
|





|
|
|
|
|















|
|







30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
      append ret .
    }
  }
  return $ret
}
db function s s

do_execsql_test 1.0 {
  CREATE TABLE t1(a TEXT, b TEXT); 
  INSERT INTO t1 VALUES('(0)', '(0)');
  INSERT INTO t1 VALUES('(1)', '(1)');

  INSERT INTO t1 VALUES('(2)', '(2)');
  INSERT INTO t1 VALUES('(3)', '(3)');
  INSERT INTO t1 VALUES('(4)', '(4)');
  CREATE INDEX i1 ON t1(a, b);
} {}


do_execsql_test 1.1 {
  ANALYZE;
} {}

do_execsql_test 1.3 {
  SELECT tbl,idx,nEq,nLt,nDLt,test_decode(sample) FROM sqlite_stat4;
} {
  t1 i1 {1 1 1} {0 0 0} {0 0 0} {(0) (0) 1}
  t1 i1 {1 1 1} {1 1 1} {1 1 1} {(1) (1) 2}
  t1 i1 {1 1 1} {2 2 2} {2 2 2} {(2) (2) 3}
  t1 i1 {1 1 1} {3 3 3} {3 3 3} {(3) (3) 4}
  t1 i1 {1 1 1} {4 4 4} {4 4 4} {(4) (4) 5}
}

do_execsql_test 1.2 {
  SELECT tbl,idx,nEq,nLt,nDLt,s(sample) FROM sqlite_stat4;
} {
  t1 i1 {1 1 1} {0 0 0} {0 0 0} ....(0)(0)
  t1 i1 {1 1 1} {1 1 1} {1 1 1} ....(1)(1).
  t1 i1 {1 1 1} {2 2 2} {2 2 2} ....(2)(2).
  t1 i1 {1 1 1} {3 3 3} {3 3 3} ....(3)(3).
  t1 i1 {1 1 1} {4 4 4} {4 4 4} ....(4)(4).
}


#-------------------------------------------------------------------------
# This is really just to test SQL user function "test_decode".
#
reset_db
do_execsql_test 2.1 {
  CREATE TABLE t1(a, b, c);
  INSERT INTO t1 VALUES('some text', 14, NULL);
  INSERT INTO t1 VALUES(22.0, NULL, x'656667');
  CREATE INDEX i1 ON t1(a, b, c);
  ANALYZE;
  SELECT test_decode(sample) FROM sqlite_stat4;
} {
  {22.0 NULL x'656667' 2} 
  {{some text} 14 NULL 1}
}

#-------------------------------------------------------------------------
# 
reset_db
do_execsql_test 3.1 {
  CREATE TABLE t2(a, b);
113
114
115
116
117
118
119

120























121
122
# The first element in the "nEq" list of all samples should therefore be 10.
#
do_execsql_test 3.3.2 {
  ANALYZE;
  SELECT lindex(nEq, 0) FROM sqlite_stat4;
} [lrange [string repeat "10 " 100] 0 23]


























finish_test








>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# The first element in the "nEq" list of all samples should therefore be 10.
#
do_execsql_test 3.3.2 {
  ANALYZE;
  SELECT lindex(nEq, 0) FROM sqlite_stat4;
} [lrange [string repeat "10 " 100] 0 23]

#-------------------------------------------------------------------------
# 
do_execsql_test 3.4 {
  DROP TABLE IF EXISTS t1;
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c);
  INSERT INTO t1 VALUES(1, 1, 'one-a');
  INSERT INTO t1 VALUES(11, 1, 'one-b');
  INSERT INTO t1 VALUES(21, 1, 'one-c');
  INSERT INTO t1 VALUES(31, 1, 'one-d');
  INSERT INTO t1 VALUES(41, 1, 'one-e');
  INSERT INTO t1 VALUES(51, 1, 'one-f');
  INSERT INTO t1 VALUES(61, 1, 'one-g');
  INSERT INTO t1 VALUES(71, 1, 'one-h');
  INSERT INTO t1 VALUES(81, 1, 'one-i');
  INSERT INTO t1 VALUES(91, 1, 'one-j');
  INSERT INTO t1 SELECT a+1,2,'two' || substr(c,4) FROM t1;
  INSERT INTO t1 SELECT a+2,3,'three'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+3,4,'four'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+4,5,'five'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';
  INSERT INTO t1 SELECT a+5,6,'six'||substr(c,4) FROM t1 WHERE c GLOB 'one-*';	
  CREATE INDEX t1b ON t1(b);
  ANALYZE;
  SELECT c FROM t1 WHERE b=3 AND a BETWEEN 30 AND 60;
} {three-d three-e three-f}

finish_test

Changes to test/tkt-cbd054fa6b.test.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
do_test tkt-cbd05-1.3 {
  execsql { 
    SELECT tbl,idx,group_concat(s(sample),' ') 
    FROM sqlite_stat4 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x {.. ..A ..B ..C ..D ..E ..F ..G ..H ..I}}

do_test tkt-cbd05-2.1 {
  db eval {
    DROP TABLE t1;
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b BLOB UNIQUE NOT NULL);
    CREATE INDEX t1_x ON t1(b);
    INSERT INTO t1 VALUES(NULL, X'');







|







61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
do_test tkt-cbd05-1.3 {
  execsql { 
    SELECT tbl,idx,group_concat(s(sample),' ') 
    FROM sqlite_stat4 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x {... ...A. ...B. ...C. ...D. ...E. ...F. ...G. ...H. ...I.}}

do_test tkt-cbd05-2.1 {
  db eval {
    DROP TABLE t1;
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b BLOB UNIQUE NOT NULL);
    CREATE INDEX t1_x ON t1(b);
    INSERT INTO t1 VALUES(NULL, X'');
93
94
95
96
97
98
99
100
101
102
do_test tkt-cbd05-2.3 {
  execsql { 
    SELECT tbl,idx,group_concat(s(sample),' ') 
    FROM sqlite_stat4 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x {.. ..A ..B ..C ..D ..E ..F ..G ..H ..I}}

finish_test







|


93
94
95
96
97
98
99
100
101
102
do_test tkt-cbd05-2.3 {
  execsql { 
    SELECT tbl,idx,group_concat(s(sample),' ') 
    FROM sqlite_stat4 
    WHERE idx = 't1_x' 
    GROUP BY tbl,idx
  }
} {t1 t1_x {... ...A. ...B. ...C. ...D. ...E. ...F. ...G. ...H. ...I.}}

finish_test