SQLite

Check-in [3967ebe83e]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge in all recent changes from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA1: 3967ebe83e7cbb1dde26e4c9a6713d5c70fefe46
User & Date: drh 2014-09-21 23:08:54.635
Context
2014-10-01
01:46
Merge the latest enhancements from trunk. (check-in: 2078454ac9 user: drh tags: apple-osx)
2014-09-21
23:08
Merge in all recent changes from trunk. (check-in: 3967ebe83e user: drh tags: apple-osx)
22:31
Correctly handle an ORDER BY clause on an outer query when applying the compound-subquery flattening optimization. Ticket [d11a6e908f]. Also add the SQLITE_ENABLE_SELECTTRACE option for additional debugging and analysis information about select statement processing. (check-in: d5880abd63 user: drh tags: trunk)
2014-09-02
15:57
Merge the latest trunk changes into the apple-osx branch. (check-in: 696dc935f7 user: drh tags: apple-osx)
Changes
Unified Diff Ignore Whitespace Patch
Added ext/misc/showauth.c.














































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/*
** 2014-09-21
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension adds a debug "authorizer" callback to the database
** connection.  The callback merely writes the authorization request to
** standard output and returns SQLITE_OK.
**
** This extension can be used (for example) in the command-line shell to
** trace the operation of the authorizer.
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <stdio.h>

/*
** Display the authorization request
*/
static int authCallback(
  void *pClientData,
  int op,
  const char *z1,
  const char *z2,
  const char *z3,
  const char *z4
){
  const char *zOp;
  char zOpSpace[50];
  switch( op ){
    case SQLITE_CREATE_INDEX:        zOp = "CREATE_INDEX";        break;
    case SQLITE_CREATE_TABLE:        zOp = "CREATE_TABLE";        break;
    case SQLITE_CREATE_TEMP_INDEX:   zOp = "CREATE_TEMP_INDEX";   break;
    case SQLITE_CREATE_TEMP_TABLE:   zOp = "CREATE_TEMP_TABLE";   break;
    case SQLITE_CREATE_TEMP_TRIGGER: zOp = "CREATE_TEMP_TRIGGER"; break;
    case SQLITE_CREATE_TEMP_VIEW:    zOp = "CREATE_TEMP_VIEW";    break;
    case SQLITE_CREATE_TRIGGER:      zOp = "CREATE_TRIGGER";      break;
    case SQLITE_CREATE_VIEW:         zOp = "CREATE_VIEW";         break;
    case SQLITE_DELETE:              zOp = "DELETE";              break;
    case SQLITE_DROP_INDEX:          zOp = "DROP_INDEX";          break;
    case SQLITE_DROP_TABLE:          zOp = "DROP_TABLE";          break;
    case SQLITE_DROP_TEMP_INDEX:     zOp = "DROP_TEMP_INDEX";     break;
    case SQLITE_DROP_TEMP_TABLE:     zOp = "DROP_TEMP_TABLE";     break;
    case SQLITE_DROP_TEMP_TRIGGER:   zOp = "DROP_TEMP_TRIGGER";   break;
    case SQLITE_DROP_TEMP_VIEW:      zOp = "DROP_TEMP_VIEW";      break;
    case SQLITE_DROP_TRIGGER:        zOp = "DROP_TRIGGER";        break;
    case SQLITE_DROP_VIEW:           zOp = "DROP_VIEW";           break;
    case SQLITE_INSERT:              zOp = "INSERT";              break;
    case SQLITE_PRAGMA:              zOp = "PRAGMA";              break;
    case SQLITE_READ:                zOp = "READ";                break;
    case SQLITE_SELECT:              zOp = "SELECT";              break;
    case SQLITE_TRANSACTION:         zOp = "TRANSACTION";         break;
    case SQLITE_UPDATE:              zOp = "UPDATE";              break;
    case SQLITE_ATTACH:              zOp = "ATTACH";              break;
    case SQLITE_DETACH:              zOp = "DETACH";              break;
    case SQLITE_ALTER_TABLE:         zOp = "ALTER_TABLE";         break;
    case SQLITE_REINDEX:             zOp = "REINDEX";             break;
    case SQLITE_ANALYZE:             zOp = "ANALYZE";             break;
    case SQLITE_CREATE_VTABLE:       zOp = "CREATE_VTABLE";       break;
    case SQLITE_DROP_VTABLE:         zOp = "DROP_VTABLE";         break;
    case SQLITE_FUNCTION:            zOp = "FUNCTION";            break;
    case SQLITE_SAVEPOINT:           zOp = "SAVEPOINT";           break;
    case SQLITE_COPY:                zOp = "COPY";                break;
    case SQLITE_RECURSIVE:           zOp = "RECURSIVE";           break;


    default: {
      sqlite3_snprintf(sizeof(zOpSpace), zOpSpace, "%d", op);
      zOp = zOpSpace;
      break;
    }
  }
  if( z1==0 ) z1 = "NULL";
  if( z2==0 ) z2 = "NULL";
  if( z3==0 ) z3 = "NULL";
  if( z4==0 ) z4 = "NULL";
  printf("AUTH: %s,%s,%s,%s,%s\n", zOp, z1, z2, z3, z4);
  return SQLITE_OK;
}



#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_showauth_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  int rc = SQLITE_OK;
  SQLITE_EXTENSION_INIT2(pApi);
  (void)pzErrMsg;  /* Unused parameter */
  rc = sqlite3_set_authorizer(db, authCallback, 0);
  return rc;
}
Added ext/userauth/sqlite3userauth.h.
















































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
/*
** 2014-09-08
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the application interface definitions for the
** user-authentication extension feature.
**
** To compile with the user-authentication feature, append this file to
** end of an SQLite amalgamation header file ("sqlite3.h"), then add
** the SQLITE_USER_AUTHENTICATION compile-time option.  See the
** user-auth.txt file in the same source directory as this file for
** additional information.
*/
#ifdef SQLITE_USER_AUTHENTICATION

/*
** If a database contains the SQLITE_USER table, then the
** sqlite3_user_authenticate() interface must be invoked with an
** appropriate username and password prior to enable read and write
** access to the database.
**
** Return SQLITE_OK on success or SQLITE_ERROR if the username/password
** combination is incorrect or unknown.
**
** If the SQLITE_USER table is not present in the database file, then
** this interface is a harmless no-op returnning SQLITE_OK.
*/
int sqlite3_user_authenticate(
  sqlite3 *db,           /* The database connection */
  const char *zUsername, /* Username */
  const char *aPW,       /* Password or credentials */
  int nPW                /* Number of bytes in aPW[] */
);

/*
** The sqlite3_user_add() interface can be used (by an admin user only)
** to create a new user.  When called on a no-authentication-required
** database, this routine converts the database into an authentication-
** required database, automatically makes the added user an
** administrator, and logs in the current connection as that user.
** The sqlite3_user_add() interface only works for the "main" database, not
** for any ATTACH-ed databases.  Any call to sqlite3_user_add() by a
** non-admin user results in an error.
*/
int sqlite3_user_add(
  sqlite3 *db,           /* Database connection */
  const char *zUsername, /* Username to be added */
  const char *aPW,       /* Password or credentials */
  int nPW,               /* Number of bytes in aPW[] */
  int isAdmin            /* True to give new user admin privilege */
);

/*
** The sqlite3_user_change() interface can be used to change a users
** login credentials or admin privilege.  Any user can change their own
** login credentials.  Only an admin user can change another users login
** credentials or admin privilege setting.  No user may change their own 
** admin privilege setting.
*/
int sqlite3_user_change(
  sqlite3 *db,           /* Database connection */
  const char *zUsername, /* Username to change */
  const char *aPW,       /* New password or credentials */
  int nPW,               /* Number of bytes in aPW[] */
  int isAdmin            /* Modified admin privilege for the user */
);

/*
** The sqlite3_user_delete() interface can be used (by an admin user only)
** to delete a user.  The currently logged-in user cannot be deleted,
** which guarantees that there is always an admin user and hence that
** the database cannot be converted into a no-authentication-required
** database.
*/
int sqlite3_user_delete(
  sqlite3 *db,           /* Database connection */
  const char *zUsername  /* Username to remove */
);

#endif /* SQLITE_USER_AUTHENTICATION */
Added ext/userauth/user-auth.txt.








































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
Activate the user authentication logic by including the
ext/userauth/userauth.c source code file in the build and
adding the -DSQLITE_USER_AUTHENTICATION compile-time option.
The ext/userauth/sqlite3userauth.h header file is available to
applications to define the interface.

When using the SQLite amalgamation, it is sufficient to append
the ext/userauth/userauth.c source file onto the end of the
amalgamation.

The following new APIs are available when user authentication is
activated:

   int sqlite3_user_authenticate(
     sqlite3 *db,           /* The database connection */
     const char *zUsername, /* Username */
     const char *aPW,       /* Password or credentials */
     int nPW                /* Number of bytes in aPW[] */
   );
   
   int sqlite3_user_add(
     sqlite3 *db,           /* Database connection */
     const char *zUsername, /* Username to be added */
     const char *aPW,       /* Password or credentials */
     int nPW,               /* Number of bytes in aPW[] */
     int isAdmin            /* True to give new user admin privilege */
   );
   
   int sqlite3_user_change(
     sqlite3 *db,           /* Database connection */
     const char *zUsername, /* Username to change */
     const void *aPW,       /* Modified password or credentials */
     int nPW,               /* Number of bytes in aPW[] */
     int isAdmin            /* Modified admin privilege for the user */
   );
   
   int sqlite3_user_delete(
     sqlite3 *db,           /* Database connection */
     const char *zUsername  /* Username to remove */
   );

With this extension, a database can be marked as requiring authentication.
By default a database does not require authentication.

The sqlite3_open(), sqlite3_open16(), and sqlite3_open_v2() interfaces
work as before: they open a new database connection.  However, if the
database being opened requires authentication, then attempts to read
or write from the database will fail with an SQLITE_AUTH error until 
after sqlite3_user_authenticate() has been called successfully.  The 
sqlite3_user_authenticate() call will return SQLITE_OK if the 
authentication credentials are accepted and SQLITE_ERROR if not.

Calling sqlite3_user_authenticate() on a no-authentication-required
database connection is a harmless no-op.  

If the database is encrypted, then sqlite3_key_v2() must be called first,
with the correct decryption key, prior to invoking sqlite3_user_authenticate().

To recapitulate: When opening an existing unencrypted authentication-
required database, the call sequence is:

    sqlite3_open_v2()
    sqlite3_user_authenticate();
    /* Database is now usable */

To open an existing, encrypted, authentication-required database, the
call sequence is:

    sqlite3_open_v2();
    sqlite3_key_v2();
    sqlite3_user_authenticate();
    /* Database is now usable */

When opening a no-authentication-required database, the database
connection is treated as if it was authenticated as an admin user.

When ATTACH-ing new database files to a connection, each newly attached
database that is an authentication-required database is checked using
the same username and password as supplied to the main database.  If that
check fails, then the ATTACH command fails with an SQLITE_AUTH error.

The sqlite3_user_add() interface can be used (by an admin user only)
to create a new user.  When called on a no-authentication-required
database and when A is true, the sqlite3_user_add(D,U,P,N,A) routine
converts the database into an authentication-required database and
logs in the database connection D as user U with password P,N.
To convert a no-authentication-required database into an authentication-
required database, the isAdmin parameter must be true.  If
sqlite3_user_add(D,U,P,N,A) is called on a no-authentication-required
database and A is false, then the call fails with an SQLITE_AUTH error.

Any call to sqlite3_user_add() by a non-admin user results in an error.

Hence, to create a new, unencrypted, authentication-required database,
the call sequence is:

    sqlite3_open_v2();
    sqlite3_user_add();

And to create a new, encrypted, authentication-required database, the call
sequence is:

    sqlite3_open_v2();
    sqlite3_key_v2();
    sqlite3_user_add();

The sqlite3_user_delete() interface can be used (by an admin user only)
to delete a user.  The currently logged-in user cannot be deleted,
which guarantees that there is always an admin user and hence that
the database cannot be converted into a no-authentication-required
database.

The sqlite3_user_change() interface can be used to change a users
login credentials or admin privilege.  Any user can change their own
password.  Only an admin user can change another users login
credentials or admin privilege setting.  No user may change their own 
admin privilege setting.

The sqlite3_set_authorizer() callback is modified to take a 7th parameter
which is the username of the currently logged in user, or NULL for a
no-authentication-required database.

-----------------------------------------------------------------------------
Implementation notes:

An authentication-required database is identified by the presence of a
new table:

    CREATE TABLE sqlite_user(
      uname TEXT PRIMARY KEY,
      isAdmin BOOLEAN,
      pw BLOB
    ) WITHOUT ROWID;

The sqlite_user table is inaccessible (unreadable and unwriteable) to
non-admin users and is read-only for admin users.  However, if the same
database file is opened by a version of SQLite that omits
the -DSQLITE_USER_AUTHENTICATION compile-time option, then the sqlite_user
table will be readable by anybody and writeable by anybody if
the "PRAGMA writable_schema=ON" statement is run first.

The sqlite_user.pw field is encoded by a built-in SQL function
"sqlite_crypt(X,Y)".  The two arguments are both BLOBs.  The first argument
is the plaintext password supplied to the sqlite3_user_authenticate()
interface.  The second argument is the sqlite_user.pw value and is supplied
so that the function can extract the "salt" used by the password encoder.
The result of sqlite_crypt(X,Y) is another blob which is the value that
ends up being stored in sqlite_user.pw.  To verify credentials X supplied
by the sqlite3_user_authenticate() routine, SQLite runs:

    sqlite_user.pw == sqlite_crypt(X, sqlite_user.pw)

To compute an appropriate sqlite_user.pw value from a new or modified
password X, sqlite_crypt(X,NULL) is run.  A new random salt is selected
when the second argument is NULL.

The built-in version of of sqlite_crypt() uses a simple Ceasar-cypher
which prevents passwords from being revealed by searching the raw database
for ASCII text, but is otherwise trivally broken.  For better password
security, the database should be encrypted using the SQLite Encryption
Extension or similar technology.  Or, the application can use the
sqlite3_create_function() interface to provide an alternative
implementation of sqlite_crypt() that computes a stronger password hash,
perhaps using a cryptographic hash function like SHA1.
Added ext/userauth/userauth.c.






































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
** 2014-09-08
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the bulk of the implementation of the
** user-authentication extension feature.  Some parts of the user-
** authentication code are contained within the SQLite core (in the
** src/ subdirectory of the main source code tree) but those parts
** that could reasonable be separated out are moved into this file.
**
** To compile with the user-authentication feature, append this file to
** end of an SQLite amalgamation, then add the SQLITE_USER_AUTHENTICATION
** compile-time option.  See the user-auth.txt file in the same source
** directory as this file for additional information.
*/
#ifdef SQLITE_USER_AUTHENTICATION
#ifndef _SQLITEINT_H_
# include "sqliteInt.h"
#endif

/*
** Prepare an SQL statement for use by the user authentication logic.
** Return a pointer to the prepared statement on success.  Return a
** NULL pointer if there is an error of any kind.
*/
static sqlite3_stmt *sqlite3UserAuthPrepare(
  sqlite3 *db,
  const char *zFormat,
  ...
){
  sqlite3_stmt *pStmt;
  char *zSql;
  int rc;
  va_list ap;
  int savedFlags = db->flags;

  va_start(ap, zFormat);
  zSql = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  if( zSql==0 ) return 0;
  db->flags |= SQLITE_WriteSchema;
  rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
  db->flags = savedFlags;
  sqlite3_free(zSql);
  if( rc ){
    sqlite3_finalize(pStmt);
    pStmt = 0;
  }
  return pStmt;
}

/*
** Check to see if the sqlite_user table exists in database zDb.
*/
static int userTableExists(sqlite3 *db, const char *zDb){
  int rc;
  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);
  if( db->init.busy==0 ){
    char *zErr = 0;
    sqlite3Init(db, &zErr);
    sqlite3DbFree(db, zErr);
  }
  rc = sqlite3FindTable(db, "sqlite_user", zDb)!=0;
  sqlite3BtreeLeaveAll(db);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Check to see if database zDb has a "sqlite_user" table and if it does
** whether that table can authenticate zUser with nPw,zPw.  Write one of
** the UAUTH_* user authorization level codes into *peAuth and return a
** result code.
*/
static int userAuthCheckLogin(
  sqlite3 *db,               /* The database connection to check */
  const char *zDb,           /* Name of specific database to check */
  u8 *peAuth                 /* OUT: One of UAUTH_* constants */
){
  sqlite3_stmt *pStmt;
  int rc;

  *peAuth = UAUTH_Unknown;
  if( !userTableExists(db, "main") ){
    *peAuth = UAUTH_Admin;  /* No sqlite_user table.  Everybody is admin. */
    return SQLITE_OK;
  }
  if( db->auth.zAuthUser==0 ){
    *peAuth = UAUTH_Fail;
    return SQLITE_OK;
  }
  pStmt = sqlite3UserAuthPrepare(db,
            "SELECT pw=sqlite_crypt(?1,pw), isAdmin FROM \"%w\".sqlite_user"
            " WHERE uname=?2", zDb);
  if( pStmt==0 ) return SQLITE_NOMEM;
  sqlite3_bind_blob(pStmt, 1, db->auth.zAuthPW, db->auth.nAuthPW,SQLITE_STATIC);
  sqlite3_bind_text(pStmt, 2, db->auth.zAuthUser, -1, SQLITE_STATIC);
  rc = sqlite3_step(pStmt);
  if( rc==SQLITE_ROW && sqlite3_column_int(pStmt,0) ){
    *peAuth = sqlite3_column_int(pStmt, 1) + UAUTH_User;
  }else{
    *peAuth = UAUTH_Fail;
  }
  return sqlite3_finalize(pStmt);
}
int sqlite3UserAuthCheckLogin(
  sqlite3 *db,               /* The database connection to check */
  const char *zDb,           /* Name of specific database to check */
  u8 *peAuth                 /* OUT: One of UAUTH_* constants */
){
  int rc;
  u8 savedAuthLevel;
  assert( zDb!=0 );
  assert( peAuth!=0 );
  savedAuthLevel = db->auth.authLevel;
  db->auth.authLevel = UAUTH_Admin;
  rc = userAuthCheckLogin(db, zDb, peAuth);
  db->auth.authLevel = savedAuthLevel;
  return rc;
}

/*
** If the current authLevel is UAUTH_Unknown, the take actions to figure
** out what authLevel should be
*/
void sqlite3UserAuthInit(sqlite3 *db){
  if( db->auth.authLevel==UAUTH_Unknown ){
    u8 authLevel = UAUTH_Fail;
    sqlite3UserAuthCheckLogin(db, "main", &authLevel);
    db->auth.authLevel = authLevel;
    if( authLevel<UAUTH_Admin ) db->flags &= ~SQLITE_WriteSchema;
  }
}

/*
** Implementation of the sqlite_crypt(X,Y) function.
**
** If Y is NULL then generate a new hash for password X and return that
** hash.  If Y is not null, then generate a hash for password X using the
** same salt as the previous hash Y and return the new hash.
*/
void sqlite3CryptFunc(
  sqlite3_context *context,
  int NotUsed,
  sqlite3_value **argv
){
  const char *zIn;
  int nIn, ii;
  u8 *zOut;
  char zSalt[8];
  zIn = sqlite3_value_blob(argv[0]);
  nIn = sqlite3_value_bytes(argv[0]);
  if( sqlite3_value_type(argv[1])==SQLITE_BLOB
   && sqlite3_value_bytes(argv[1])==nIn+sizeof(zSalt)
  ){
    memcpy(zSalt, sqlite3_value_blob(argv[1]), sizeof(zSalt));
  }else{
    sqlite3_randomness(sizeof(zSalt), zSalt);
  }
  zOut = sqlite3_malloc( nIn+sizeof(zSalt) );
  if( zOut==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    memcpy(zOut, zSalt, sizeof(zSalt));
    for(ii=0; ii<nIn; ii++){
      zOut[ii+sizeof(zSalt)] = zIn[ii]^zSalt[ii&0x7];
    }
    sqlite3_result_blob(context, zOut, nIn+sizeof(zSalt), sqlite3_free);
  }
}

/*
** If a database contains the SQLITE_USER table, then the
** sqlite3_user_authenticate() interface must be invoked with an
** appropriate username and password prior to enable read and write
** access to the database.
**
** Return SQLITE_OK on success or SQLITE_ERROR if the username/password
** combination is incorrect or unknown.
**
** If the SQLITE_USER table is not present in the database file, then
** this interface is a harmless no-op returnning SQLITE_OK.
*/
int sqlite3_user_authenticate(
  sqlite3 *db,           /* The database connection */
  const char *zUsername, /* Username */
  const char *zPW,       /* Password or credentials */
  int nPW                /* Number of bytes in aPW[] */
){
  int rc;
  u8 authLevel = UAUTH_Fail;
  db->auth.authLevel = UAUTH_Unknown;
  sqlite3_free(db->auth.zAuthUser);
  sqlite3_free(db->auth.zAuthPW);
  memset(&db->auth, 0, sizeof(db->auth));
  db->auth.zAuthUser = sqlite3_mprintf("%s", zUsername);
  if( db->auth.zAuthUser==0 ) return SQLITE_NOMEM;
  db->auth.zAuthPW = sqlite3_malloc( nPW+1 );
  if( db->auth.zAuthPW==0 ) return SQLITE_NOMEM;
  memcpy(db->auth.zAuthPW,zPW,nPW);
  db->auth.nAuthPW = nPW;
  rc = sqlite3UserAuthCheckLogin(db, "main", &authLevel);
  db->auth.authLevel = authLevel;
  sqlite3ExpirePreparedStatements(db);
  if( rc ){
    return rc;           /* OOM error, I/O error, etc. */
  }
  if( authLevel<UAUTH_User ){
    return SQLITE_AUTH;  /* Incorrect username and/or password */
  }
  return SQLITE_OK;      /* Successful login */
}

/*
** The sqlite3_user_add() interface can be used (by an admin user only)
** to create a new user.  When called on a no-authentication-required
** database, this routine converts the database into an authentication-
** required database, automatically makes the added user an
** administrator, and logs in the current connection as that user.
** The sqlite3_user_add() interface only works for the "main" database, not
** for any ATTACH-ed databases.  Any call to sqlite3_user_add() by a
** non-admin user results in an error.
*/
int sqlite3_user_add(
  sqlite3 *db,           /* Database connection */
  const char *zUsername, /* Username to be added */
  const char *aPW,       /* Password or credentials */
  int nPW,               /* Number of bytes in aPW[] */
  int isAdmin            /* True to give new user admin privilege */
){
  sqlite3_stmt *pStmt;
  int rc;
  sqlite3UserAuthInit(db);
  if( db->auth.authLevel<UAUTH_Admin ) return SQLITE_AUTH;
  if( !userTableExists(db, "main") ){
    if( !isAdmin ) return SQLITE_AUTH;
    pStmt = sqlite3UserAuthPrepare(db, 
              "CREATE TABLE sqlite_user(\n"
              "  uname TEXT PRIMARY KEY,\n"
              "  isAdmin BOOLEAN,\n"
              "  pw BLOB\n"
              ") WITHOUT ROWID;");
    if( pStmt==0 ) return SQLITE_NOMEM;
    sqlite3_step(pStmt);
    rc = sqlite3_finalize(pStmt);
    if( rc ) return rc;
  }
  pStmt = sqlite3UserAuthPrepare(db, 
            "INSERT INTO sqlite_user(uname,isAdmin,pw)"
            " VALUES(%Q,%d,sqlite_crypt(?1,NULL))",
            zUsername, isAdmin!=0);
  if( pStmt==0 ) return SQLITE_NOMEM;
  sqlite3_bind_blob(pStmt, 1, aPW, nPW, SQLITE_STATIC);
  sqlite3_step(pStmt);
  rc = sqlite3_finalize(pStmt);
  if( rc ) return rc;
  if( db->auth.zAuthUser==0 ){
    assert( isAdmin!=0 );
    sqlite3_user_authenticate(db, zUsername, aPW, nPW);
  }
  return SQLITE_OK;
}

/*
** The sqlite3_user_change() interface can be used to change a users
** login credentials or admin privilege.  Any user can change their own
** login credentials.  Only an admin user can change another users login
** credentials or admin privilege setting.  No user may change their own 
** admin privilege setting.
*/
int sqlite3_user_change(
  sqlite3 *db,           /* Database connection */
  const char *zUsername, /* Username to change */
  const char *aPW,       /* Modified password or credentials */
  int nPW,               /* Number of bytes in aPW[] */
  int isAdmin            /* Modified admin privilege for the user */
){
  sqlite3_stmt *pStmt;
  int rc;
  u8 authLevel;

  authLevel = db->auth.authLevel;
  if( authLevel<UAUTH_User ){
    /* Must be logged in to make a change */
    return SQLITE_AUTH;
  }
  if( strcmp(db->auth.zAuthUser, zUsername)!=0 ){
    if( db->auth.authLevel<UAUTH_Admin ){
      /* Must be an administrator to change a different user */
      return SQLITE_AUTH;
    }
  }else if( isAdmin!=(authLevel==UAUTH_Admin) ){
    /* Cannot change the isAdmin setting for self */
    return SQLITE_AUTH;
  }
  db->auth.authLevel = UAUTH_Admin;
  if( !userTableExists(db, "main") ){
    /* This routine is a no-op if the user to be modified does not exist */
  }else{
    pStmt = sqlite3UserAuthPrepare(db,
              "UPDATE sqlite_user SET isAdmin=%d, pw=sqlite_crypt(?1,NULL)"
              " WHERE uname=%Q", isAdmin, zUsername);
    if( pStmt==0 ){
      rc = SQLITE_NOMEM;
    }else{
      sqlite3_bind_blob(pStmt, 1, aPW, nPW, SQLITE_STATIC);
      sqlite3_step(pStmt);
      rc = sqlite3_finalize(pStmt);
    }
  }
  db->auth.authLevel = authLevel;
  return rc;
}

/*
** The sqlite3_user_delete() interface can be used (by an admin user only)
** to delete a user.  The currently logged-in user cannot be deleted,
** which guarantees that there is always an admin user and hence that
** the database cannot be converted into a no-authentication-required
** database.
*/
int sqlite3_user_delete(
  sqlite3 *db,           /* Database connection */
  const char *zUsername  /* Username to remove */
){
  sqlite3_stmt *pStmt;
  if( db->auth.authLevel<UAUTH_Admin ){
    /* Must be an administrator to delete a user */
    return SQLITE_AUTH;
  }
  if( strcmp(db->auth.zAuthUser, zUsername)==0 ){
    /* Cannot delete self */
    return SQLITE_AUTH;
  }
  if( !userTableExists(db, "main") ){
    /* This routine is a no-op if the user to be deleted does not exist */
    return SQLITE_OK;
  }
  pStmt = sqlite3UserAuthPrepare(db,
              "DELETE FROM sqlite_user WHERE uname=%Q", zUsername);
  if( pStmt==0 ) return SQLITE_NOMEM;
  sqlite3_step(pStmt);
  return sqlite3_finalize(pStmt);
}

#endif /* SQLITE_USER_AUTHENTICATION */
Changes to main.mk.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# build the SQLite library and testing tools.
################################################################################

# This is how we compile
#
TCCX =  $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) 
TCCX += -I$(TOP)/ext/rtree -I$(TOP)/ext/icu -I$(TOP)/ext/fts3
TCCX += -I$(TOP)/ext/async

# Object files for the SQLite library.
#
LIBOBJ+= vdbe.o parse.o \
         alter.o analyze.o attach.o auth.o \
         backup.o bitvec.o btmutex.o btree.o build.o \
         callback.o complete.o ctime.o date.o delete.o expr.o fault.o fkey.o \
         fts3.o fts3_aux.o fts3_expr.o fts3_hash.o fts3_icu.o fts3_porter.o \
         fts3_snippet.o fts3_tokenizer.o fts3_tokenizer1.o \
         fts3_tokenize_vtab.o \
	 fts3_unicode.o fts3_unicode2.o \
         fts3_write.o func.o global.o hash.o \
         icu.o insert.o journal.o legacy.o loadext.o \
         main.o malloc.o mem0.o mem1.o mem2.o mem3.o mem5.o \
         memjournal.o \
         mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \
         notify.o opcodes.o os.o os_unix.o os_win.o \
         pager.o pcache.o pcache1.o pragma.o prepare.o printf.o \
         random.o resolve.o rowset.o rtree.o select.o status.o \
         table.o threads.o tokenize.o trigger.o \
         update.o util.o vacuum.o \
         vdbeapi.o vdbeaux.o vdbeblob.o vdbemem.o vdbesort.o \
	 vdbetrace.o wal.o walker.o where.o utf.o vtab.o



# All of the source code files.
#







|




















|







42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# build the SQLite library and testing tools.
################################################################################

# This is how we compile
#
TCCX =  $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) 
TCCX += -I$(TOP)/ext/rtree -I$(TOP)/ext/icu -I$(TOP)/ext/fts3
TCCX += -I$(TOP)/ext/async -I$(TOP)/ext/userauth

# Object files for the SQLite library.
#
LIBOBJ+= vdbe.o parse.o \
         alter.o analyze.o attach.o auth.o \
         backup.o bitvec.o btmutex.o btree.o build.o \
         callback.o complete.o ctime.o date.o delete.o expr.o fault.o fkey.o \
         fts3.o fts3_aux.o fts3_expr.o fts3_hash.o fts3_icu.o fts3_porter.o \
         fts3_snippet.o fts3_tokenizer.o fts3_tokenizer1.o \
         fts3_tokenize_vtab.o \
	 fts3_unicode.o fts3_unicode2.o \
         fts3_write.o func.o global.o hash.o \
         icu.o insert.o journal.o legacy.o loadext.o \
         main.o malloc.o mem0.o mem1.o mem2.o mem3.o mem5.o \
         memjournal.o \
         mutex.o mutex_noop.o mutex_unix.o mutex_w32.o \
         notify.o opcodes.o os.o os_unix.o os_win.o \
         pager.o pcache.o pcache1.o pragma.o prepare.o printf.o \
         random.o resolve.o rowset.o rtree.o select.o status.o \
         table.o threads.o tokenize.o trigger.o \
         update.o userauth.o util.o vacuum.o \
         vdbeapi.o vdbeaux.o vdbeblob.o vdbemem.o vdbesort.o \
	 vdbetrace.o wal.o walker.o where.o utf.o vtab.o



# All of the source code files.
#
212
213
214
215
216
217
218
219


220
221
222
223
224
225
226
  $(TOP)/ext/icu/icu.c
SRC += \
  $(TOP)/ext/rtree/sqlite3rtree.h \
  $(TOP)/ext/rtree/rtree.h \
  $(TOP)/ext/rtree/rtree.c
SRC += \
  $(TOP)/ext/sqlrr/sqlrr.c




# Generated source code files
#
SRC += \
  keywordhash.h \
  opcodes.c \
  opcodes.h \







|
>
>







212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
  $(TOP)/ext/icu/icu.c
SRC += \
  $(TOP)/ext/rtree/sqlite3rtree.h \
  $(TOP)/ext/rtree/rtree.h \
  $(TOP)/ext/rtree/rtree.c
SRC += \
  $(TOP)/ext/sqlrr/sqlrr.c
SRC += \
  $(TOP)/ext/userauth/userauth.c \
  $(TOP)/ext/userauth/sqlite3userauth.h

# Generated source code files
#
SRC += \
  keywordhash.h \
  opcodes.c \
  opcodes.h \
360
361
362
363
364
365
366


367
368
369
370
371
372
373
   $(TOP)/src/vdbeInt.h \
   $(TOP)/src/whereInt.h

# Header files used by extensions
#
EXTHDR += \
  $(TOP)/ext/sqlrr/sqlrr.h



# This is the default Makefile target.  The objects listed here
# are what get build when you type just "make" with no arguments.
#
all:	sqlite3.h libsqlite3.a sqlite3$(EXE)

libsqlite3.a:	$(LIBOBJ)







>
>







362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
   $(TOP)/src/vdbeInt.h \
   $(TOP)/src/whereInt.h

# Header files used by extensions
#
EXTHDR += \
  $(TOP)/ext/sqlrr/sqlrr.h
EXTHDR += \
  $(TOP)/ext/userauth/sqlite3userauth.h

# This is the default Makefile target.  The objects listed here
# are what get build when you type just "make" with no arguments.
#
all:	sqlite3.h libsqlite3.a sqlite3$(EXE)

libsqlite3.a:	$(LIBOBJ)
540
541
542
543
544
545
546



547
548
549
550
551
552
553
	$(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_unicode2.c

fts3_write.o:	$(TOP)/ext/fts3/fts3_write.c $(HDR) $(EXTHDR)
	$(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_write.c

rtree.o:	$(TOP)/ext/rtree/rtree.c $(HDR) $(EXTHDR)
	$(TCCX) -DSQLITE_CORE -c $(TOP)/ext/rtree/rtree.c





# Rules for building test programs and for running tests
#
tclsqlite3:	$(TOP)/src/tclsqlite.c libsqlite3.a
	$(TCCX) $(TCL_FLAGS) -DTCLSH=1 -o tclsqlite3 \
		$(TOP)/src/tclsqlite.c libsqlite3.a $(LIBTCL) $(THREADLIB)







>
>
>







544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
	$(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_unicode2.c

fts3_write.o:	$(TOP)/ext/fts3/fts3_write.c $(HDR) $(EXTHDR)
	$(TCCX) -DSQLITE_CORE -c $(TOP)/ext/fts3/fts3_write.c

rtree.o:	$(TOP)/ext/rtree/rtree.c $(HDR) $(EXTHDR)
	$(TCCX) -DSQLITE_CORE -c $(TOP)/ext/rtree/rtree.c

userauth.o:	$(TOP)/ext/userauth/userauth.c $(HDR) $(EXTHDR)
	$(TCCX) -DSQLITE_CORE -c $(TOP)/ext/userauth/userauth.c


# Rules for building test programs and for running tests
#
tclsqlite3:	$(TOP)/src/tclsqlite.c libsqlite3.a
	$(TCCX) $(TCL_FLAGS) -DTCLSH=1 -o tclsqlite3 \
		$(TOP)/src/tclsqlite.c libsqlite3.a $(LIBTCL) $(THREADLIB)
Changes to src/alter.c.
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  int len = 0;
  char *zRet;
  sqlite3 *db = sqlite3_context_db_handle(context);

  UNUSED_PARAMETER(NotUsed);

  /* The principle used to locate the table name in the CREATE TRIGGER 
  ** statement is that the table name is the first token that is immediatedly
  ** preceded by either TK_ON or TK_DOT and immediatedly followed by one
  ** of TK_WHEN, TK_BEGIN or TK_FOR.
  */
  if( zSql ){
    do {

      if( !*zCsr ){
        /* Ran out of input before finding the table name. Return NULL. */







|
|







170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  int len = 0;
  char *zRet;
  sqlite3 *db = sqlite3_context_db_handle(context);

  UNUSED_PARAMETER(NotUsed);

  /* The principle used to locate the table name in the CREATE TRIGGER 
  ** statement is that the table name is the first token that is immediately
  ** preceded by either TK_ON or TK_DOT and immediately followed by one
  ** of TK_WHEN, TK_BEGIN or TK_FOR.
  */
  if( zSql ){
    do {

      if( !*zCsr ){
        /* Ran out of input before finding the table name. Return NULL. */
Changes to src/analyze.c.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
** is a superset of sqlite_stat2.  The sqlite_stat4 is an enhanced
** version of sqlite_stat3 and is only available when compiled with
** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later.  It is
** not possible to enable both STAT3 and STAT4 at the same time.  If they
** are both enabled, then STAT4 takes precedence.
**
** For most applications, sqlite_stat1 provides all the statisics required
** for the query planner to make good choices.
**
** Format of sqlite_stat1:
**
** There is normally one row per index, with the index identified by the
** name in the idx column.  The tbl column is the name of the table to
** which the index belongs.  In each such row, the stat column will be







|







31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
** is a superset of sqlite_stat2.  The sqlite_stat4 is an enhanced
** version of sqlite_stat3 and is only available when compiled with
** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later.  It is
** not possible to enable both STAT3 and STAT4 at the same time.  If they
** are both enabled, then STAT4 takes precedence.
**
** For most applications, sqlite_stat1 provides all the statistics required
** for the query planner to make good choices.
**
** Format of sqlite_stat1:
**
** There is normally one row per index, with the index identified by the
** name in the idx column.  The tbl column is the name of the table to
** which the index belongs.  In each such row, the stat column will be
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
**
** For indexes on ordinary rowid tables, N==K+1.  But for indexes on
** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
** PRIMARY KEY of the table.  The covering index that implements the
** original WITHOUT ROWID table as N==K as a special case.
**
** This routine allocates the Stat4Accum object in heap memory. The return 
** value is a pointer to the the Stat4Accum object.  The datatype of the
** return value is BLOB, but it is really just a pointer to the Stat4Accum
** object.
*/
static void statInit(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv







|







383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
**
** For indexes on ordinary rowid tables, N==K+1.  But for indexes on
** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
** PRIMARY KEY of the table.  The covering index that implements the
** original WITHOUT ROWID table as N==K as a special case.
**
** This routine allocates the Stat4Accum object in heap memory. The return 
** value is a pointer to the Stat4Accum object.  The datatype of the
** return value is BLOB, but it is really just a pointer to the Stat4Accum
** object.
*/
static void statInit(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
1197
1198
1199
1200
1201
1202
1203

1204
1205
1206
1207
1208
1209
1210
1211
    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);

    /* Add the entry to the stat1 table. */
    callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);

    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);

    /* Add the entries to the stat3 or stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    {







>
|







1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
    sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
    sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, 2+IsStat34);
    sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);

    /* Add the entry to the stat1 table. */
    callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);

    /* Add the entries to the stat3 or stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    {
1260
1261
1262
1263
1264
1265
1266

1267
1268
1269
1270
1271
1272
1273
1274
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);

    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }
}








>
|







1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeJumpHere(v, jZeroRows);
  }
}

1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
      tRowcnt nSum = 0;         /* Number of terms contributing to sumEq */
      tRowcnt avgEq = 0;
      tRowcnt nDLt = pFinal->anDLt[iCol];

      /* Set nSum to the number of distinct (iCol+1) field prefixes that
      ** occur in the stat4 table for this index before pFinal. Set
      ** sumEq to the sum of the nEq values for column iCol for the same
      ** set (adding the value only once where there exist dupicate 
      ** prefixes).  */
      for(i=0; i<(pIdx->nSample-1); i++){
        if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){
          sumEq += aSample[i].anEq[iCol];
          nSum++;
        }
      }







|







1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
      tRowcnt nSum = 0;         /* Number of terms contributing to sumEq */
      tRowcnt avgEq = 0;
      tRowcnt nDLt = pFinal->anDLt[iCol];

      /* Set nSum to the number of distinct (iCol+1) field prefixes that
      ** occur in the stat4 table for this index before pFinal. Set
      ** sumEq to the sum of the nEq values for column iCol for the same
      ** set (adding the value only once where there exist duplicate 
      ** prefixes).  */
      for(i=0; i<(pIdx->nSample-1); i++){
        if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){
          sumEq += aSample[i].anEq[iCol];
          nSum++;
        }
      }
Changes to src/attach.c.
203
204
205
206
207
208
209









210
211
212
213
214
215
216
  ** we found it.
  */
  if( rc==SQLITE_OK ){
    sqlite3BtreeEnterAll(db);
    rc = sqlite3Init(db, &zErrDyn);
    sqlite3BtreeLeaveAll(db);
  }









  if( rc ){
    int iDb = db->nDb - 1;
    assert( iDb>=2 );
    if( db->aDb[iDb].pBt ){
      sqlite3BtreeClose(db->aDb[iDb].pBt);
      db->aDb[iDb].pBt = 0;
      db->aDb[iDb].pSchema = 0;







>
>
>
>
>
>
>
>
>







203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  ** we found it.
  */
  if( rc==SQLITE_OK ){
    sqlite3BtreeEnterAll(db);
    rc = sqlite3Init(db, &zErrDyn);
    sqlite3BtreeLeaveAll(db);
  }
#ifdef SQLITE_USER_AUTHENTICATION
  if( rc==SQLITE_OK ){
    u8 newAuth = 0;
    rc = sqlite3UserAuthCheckLogin(db, zName, &newAuth);
    if( newAuth<db->auth.authLevel ){
      rc = SQLITE_AUTH_USER;
    }
  }
#endif
  if( rc ){
    int iDb = db->nDb - 1;
    assert( iDb>=2 );
    if( db->aDb[iDb].pBt ){
      sqlite3BtreeClose(db->aDb[iDb].pBt);
      db->aDb[iDb].pBt = 0;
      db->aDb[iDb].pSchema = 0;
Changes to src/auth.c.
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
*/
int sqlite3_set_authorizer(
  sqlite3 *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){
  sqlite3_mutex_enter(db->mutex);
  db->xAuth = xAuth;
  db->pAuthArg = pArg;
  sqlite3ExpirePreparedStatements(db);
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*







|







69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
*/
int sqlite3_set_authorizer(
  sqlite3 *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){
  sqlite3_mutex_enter(db->mutex);
  db->xAuth = (sqlite3_xauth)xAuth;
  db->pAuthArg = pArg;
  sqlite3ExpirePreparedStatements(db);
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
104
105
106
107
108
109
110
111




112
113
114
115
116
117
118
  const char *zCol,               /* Column name */
  int iDb                         /* Index of containing database. */
){
  sqlite3 *db = pParse->db;       /* Database handle */
  char *zDb = db->aDb[iDb].zName; /* Name of attached database */
  int rc;                         /* Auth callback return code */

  rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext);




  if( rc==SQLITE_DENY ){
    if( db->nDb>2 || iDb!=0 ){
      sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",zDb,zTab,zCol);
    }else{
      sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited", zTab, zCol);
    }
    pParse->rc = SQLITE_AUTH;







|
>
>
>
>







104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  const char *zCol,               /* Column name */
  int iDb                         /* Index of containing database. */
){
  sqlite3 *db = pParse->db;       /* Database handle */
  char *zDb = db->aDb[iDb].zName; /* Name of attached database */
  int rc;                         /* Auth callback return code */

  rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext
#ifdef SQLITE_USER_AUTHENTICATION
                 ,db->auth.zAuthUser
#endif
                );
  if( rc==SQLITE_DENY ){
    if( db->nDb>2 || iDb!=0 ){
      sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",zDb,zTab,zCol);
    }else{
      sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited", zTab, zCol);
    }
    pParse->rc = SQLITE_AUTH;
204
205
206
207
208
209
210
211




212
213
214
215
216
217
218
  if( db->init.busy || IN_DECLARE_VTAB ){
    return SQLITE_OK;
  }

  if( db->xAuth==0 ){
    return SQLITE_OK;
  }
  rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);




  if( rc==SQLITE_DENY ){
    sqlite3ErrorMsg(pParse, "not authorized");
    pParse->rc = SQLITE_AUTH;
  }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
    rc = SQLITE_DENY;
    sqliteAuthBadReturnCode(pParse);
  }







|
>
>
>
>







208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
  if( db->init.busy || IN_DECLARE_VTAB ){
    return SQLITE_OK;
  }

  if( db->xAuth==0 ){
    return SQLITE_OK;
  }
  rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext
#ifdef SQLITE_USER_AUTHENTICATION
                 ,db->auth.zAuthUser
#endif
                );
  if( rc==SQLITE_DENY ){
    sqlite3ErrorMsg(pParse, "not authorized");
    pParse->rc = SQLITE_AUTH;
  }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
    rc = SQLITE_DENY;
    sqliteAuthBadReturnCode(pParse);
  }
Changes to src/btmutex.c.
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
** and thus help the sqlite3BtreeLock() routine to run much faster
** in the common case.
*/
static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){
  Btree *pLater;

  /* In most cases, we should be able to acquire the lock we
  ** want without having to go throught the ascending lock
  ** procedure that follows.  Just be sure not to block.
  */
  if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
    p->pBt->db = p->db;
    p->locked = 1;
    return;
  }







|







102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
** and thus help the sqlite3BtreeLock() routine to run much faster
** in the common case.
*/
static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){
  Btree *pLater;

  /* In most cases, we should be able to acquire the lock we
  ** want without having to go through the ascending lock
  ** procedure that follows.  Just be sure not to block.
  */
  if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
    p->pBt->db = p->db;
    p->locked = 1;
    return;
  }
Changes to src/btree.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"

/*
** The header string that appears at the beginning of every











|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements an external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"

/*
** The header string that appears at the beginning of every
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 
  ** data.
  */
  if( 0==pCur->apPage[0]->intKey ){
    void *pKey = sqlite3Malloc( (int)pCur->nKey );
    if( pKey ){
      rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }







|







608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 
  ** data.
  */
  if( 0==pCur->apPage[0]->intKey ){
    void *pKey = sqlite3Malloc( pCur->nKey );
    if( pKey ){
      rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
** Defragment the page given.  All Cells are moved to the
** end of the page and all free space is collected into one
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.
*/
static int defragmentPage(MemPage *pPage){
  int i;                     /* Loop counter */
  int pc;                    /* Address of a i-th cell */
  int hdr;                   /* Offset to the page header */
  int size;                  /* Size of a cell */
  int usableSize;            /* Number of usable bytes on a page */
  int cellOffset;            /* Offset to the cell pointer array */
  int cbrk;                  /* Offset to the cell content area */
  int nCell;                 /* Number of cells on the page */
  unsigned char *data;       /* The page data */







|







1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
** Defragment the page given.  All Cells are moved to the
** end of the page and all free space is collected into one
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.
*/
static int defragmentPage(MemPage *pPage){
  int i;                     /* Loop counter */
  int pc;                    /* Address of the i-th cell */
  int hdr;                   /* Offset to the page header */
  int size;                  /* Size of a cell */
  int usableSize;            /* Number of usable bytes on a page */
  int cellOffset;            /* Offset to the cell pointer array */
  int cbrk;                  /* Offset to the cell content area */
  int nCell;                 /* Number of cells on the page */
  unsigned char *data;       /* The page data */
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
** in assert() expressions, so it is only compiled if NDEBUG is not
** defined.
**
** Only write cursors are counted if wrOnly is true.  If wrOnly is
** false then all cursors are counted.
**
** For the purposes of this routine, a cursor is any cursor that
** is capable of reading or writing to the databse.  Cursors that
** have been tripped into the CURSOR_FAULT state are not counted.
*/
static int countValidCursors(BtShared *pBt, int wrOnly){
  BtCursor *pCur;
  int r = 0;
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)







|







2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
** in assert() expressions, so it is only compiled if NDEBUG is not
** defined.
**
** Only write cursors are counted if wrOnly is true.  If wrOnly is
** false then all cursors are counted.
**
** For the purposes of this routine, a cursor is any cursor that
** is capable of reading or writing to the database.  Cursors that
** have been tripped into the CURSOR_FAULT state are not counted.
*/
static int countValidCursors(BtShared *pBt, int wrOnly){
  BtCursor *pCur;
  int r = 0;
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110

/*
** Perform a single step of an incremental-vacuum. If successful, return
** SQLITE_OK. If there is no work to do (and therefore no point in 
** calling this function again), return SQLITE_DONE. Or, if an error 
** occurs, return some other error code.
**
** More specificly, this function attempts to re-organize the database so 
** that the last page of the file currently in use is no longer in use.
**
** Parameter nFin is the number of pages that this database would contain
** were this function called until it returns SQLITE_DONE.
**
** If the bCommit parameter is non-zero, this function assumes that the 
** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 
** or an error. bCommit is passed true for an auto-vacuum-on-commmit 
** operation, or false for an incremental vacuum.
*/
static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
  Pgno nFreeList;           /* Number of pages still on the free-list */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );







|







|







3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110

/*
** Perform a single step of an incremental-vacuum. If successful, return
** SQLITE_OK. If there is no work to do (and therefore no point in 
** calling this function again), return SQLITE_DONE. Or, if an error 
** occurs, return some other error code.
**
** More specifically, this function attempts to re-organize the database so 
** that the last page of the file currently in use is no longer in use.
**
** Parameter nFin is the number of pages that this database would contain
** were this function called until it returns SQLITE_DONE.
**
** If the bCommit parameter is non-zero, this function assumes that the 
** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 
** or an error. bCommit is passed true for an auto-vacuum-on-commit 
** operation, or false for an incremental vacuum.
*/
static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
  Pgno nFreeList;           /* Number of pages still on the free-list */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577

  btreeEndTransaction(p);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Start a statement subtransaction. The subtransaction can can be rolled
** back independently of the main transaction. You must start a transaction 
** before starting a subtransaction. The subtransaction is ended automatically 
** if the main transaction commits or rolls back.
**
** Statement subtransactions are used around individual SQL statements
** that are contained within a BEGIN...COMMIT block.  If a constraint
** error occurs within the statement, the effect of that one statement







|







3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577

  btreeEndTransaction(p);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Start a statement subtransaction. The subtransaction can be rolled
** back independently of the main transaction. You must start a transaction 
** before starting a subtransaction. The subtransaction is ended automatically 
** if the main transaction commits or rolls back.
**
** Statement subtransactions are used around individual SQL statements
** that are contained within a BEGIN...COMMIT block.  If a constraint
** error occurs within the statement, the effect of that one statement
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
** BtCursor.info is a cache of the information in the current cell.
** Using this cache reduces the number of calls to btreeParseCell().
**
** 2007-06-25:  There is a bug in some versions of MSVC that cause the
** compiler to crash when getCellInfo() is implemented as a macro.
** But there is a measureable speed advantage to using the macro on gcc
** (when less compiler optimizations like -Os or -O0 are used and the
** compiler is not doing agressive inlining.)  So we use a real function
** for MSVC and a macro for everything else.  Ticket #2457.
*/
#ifndef NDEBUG
  static void assertCellInfo(BtCursor *pCur){
    CellInfo info;
    int iPage = pCur->iPage;
    memset(&info, 0, sizeof(info));







|







3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
** BtCursor.info is a cache of the information in the current cell.
** Using this cache reduces the number of calls to btreeParseCell().
**
** 2007-06-25:  There is a bug in some versions of MSVC that cause the
** compiler to crash when getCellInfo() is implemented as a macro.
** But there is a measureable speed advantage to using the macro on gcc
** (when less compiler optimizations like -Os or -O0 are used and the
** compiler is not doing aggressive inlining.)  So we use a real function
** for MSVC and a macro for everything else.  Ticket #2457.
*/
#ifndef NDEBUG
  static void assertCellInfo(BtCursor *pCur){
    CellInfo info;
    int iPage = pCur->iPage;
    memset(&info, 0, sizeof(info));
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
** Data is read to or from the buffer pBuf.
**
** The content being read or written might appear on the main page
** or be scattered out on multiple overflow pages.
**
** If the current cursor entry uses one or more overflow pages and the
** eOp argument is not 2, this function may allocate space for and lazily 
** popluates the overflow page-list cache array (BtCursor.aOverflow). 
** Subsequent calls use this cache to make seeking to the supplied offset 
** more efficient.
**
** Once an overflow page-list cache has been allocated, it may be
** invalidated if some other cursor writes to the same table, or if
** the cursor is moved to a different row. Additionally, in auto-vacuum
** mode, the following events may invalidate an overflow page-list cache.







|







4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
** Data is read to or from the buffer pBuf.
**
** The content being read or written might appear on the main page
** or be scattered out on multiple overflow pages.
**
** If the current cursor entry uses one or more overflow pages and the
** eOp argument is not 2, this function may allocate space for and lazily 
** populates the overflow page-list cache array (BtCursor.aOverflow). 
** Subsequent calls use this cache to make seeking to the supplied offset 
** more efficient.
**
** Once an overflow page-list cache has been allocated, it may be
** invalidated if some other cursor writes to the same table, or if
** the cursor is moved to a different row. Additionally, in auto-vacuum
** mode, the following events may invalidate an overflow page-list cache.
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
    return SQLITE_CORRUPT_BKPT;
  }
  return rc;
}

/*
** Read part of the key associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** The caller must ensure that pCur is pointing to a valid row
** in the table.
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than







|







4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
    return SQLITE_CORRUPT_BKPT;
  }
  return rc;
}

/*
** Read part of the key associated with cursor pCur.  Exactly
** "amt" bytes will be transferred into pBuf[].  The transfer
** begins at "offset".
**
** The caller must ensure that pCur is pointing to a valid row
** in the table.
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
        */
        nCell = pCell[0];
        if( nCell<=pPage->max1bytePayload ){
          /* This branch runs if the record-size field of the cell is a
          ** single byte varint and the record fits entirely on the main
          ** b-tree page.  */
          testcase( pCell+nCell+1==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey, 0);
        }else if( !(pCell[1] & 0x80) 
          && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
        ){
          /* The record-size field is a 2 byte varint and the record 
          ** fits entirely on the main b-tree page.  */
          testcase( pCell+nCell+2==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey, 0);
        }else{
          /* The record flows over onto one or more overflow pages. In
          ** this case the whole cell needs to be parsed, a buffer allocated
          ** and accessPayload() used to retrieve the record into the
          ** buffer before VdbeRecordCompare() can be called. */
          void *pCellKey;
          u8 * const pCellBody = pCell - pPage->childPtrSize;
          btreeParseCellPtr(pPage, pCellBody, &pCur->info);
          nCell = (int)pCur->info.nKey;
          pCellKey = sqlite3Malloc( nCell );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM;
            goto moveto_finish;
          }
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey, 0);
          sqlite3_free(pCellKey);
        }
        assert( 
            (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
         && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
        );
        if( c<0 ){







|






|




















|







4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
        */
        nCell = pCell[0];
        if( nCell<=pPage->max1bytePayload ){
          /* This branch runs if the record-size field of the cell is a
          ** single byte varint and the record fits entirely on the main
          ** b-tree page.  */
          testcase( pCell+nCell+1==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
        }else if( !(pCell[1] & 0x80) 
          && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
        ){
          /* The record-size field is a 2 byte varint and the record 
          ** fits entirely on the main b-tree page.  */
          testcase( pCell+nCell+2==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
        }else{
          /* The record flows over onto one or more overflow pages. In
          ** this case the whole cell needs to be parsed, a buffer allocated
          ** and accessPayload() used to retrieve the record into the
          ** buffer before VdbeRecordCompare() can be called. */
          void *pCellKey;
          u8 * const pCellBody = pCell - pPage->childPtrSize;
          btreeParseCellPtr(pPage, pCellBody, &pCur->info);
          nCell = (int)pCur->info.nKey;
          pCellKey = sqlite3Malloc( nCell );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM;
            goto moveto_finish;
          }
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey);
          sqlite3_free(pCellKey);
        }
        assert( 
            (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
         && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
        );
        if( c<0 ){
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
}

/*
** Add a list of cells to a page.  The page should be initially empty.
** The cells are guaranteed to fit on the page.
*/
static void assemblePage(
  MemPage *pPage,   /* The page to be assemblied */
  int nCell,        /* The number of cells to add to this page */
  u8 **apCell,      /* Pointers to cell bodies */
  u16 *aSize        /* Sizes of the cells */
){
  int i;            /* Loop counter */
  u8 *pCellptr;     /* Address of next cell pointer */
  int cellbody;     /* Address of next cell body */







|







5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
}

/*
** Add a list of cells to a page.  The page should be initially empty.
** The cells are guaranteed to fit on the page.
*/
static void assemblePage(
  MemPage *pPage,   /* The page to be assembled */
  int nCell,        /* The number of cells to add to this page */
  u8 **apCell,      /* Pointers to cell bodies */
  u16 *aSize        /* Sizes of the cells */
){
  int i;            /* Loop counter */
  u8 *pCellptr;     /* Address of next cell pointer */
  int cellbody;     /* Address of next cell body */
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
    if( rc ) goto balance_cleanup;
    releasePage(apOld[i]);
    apOld[i] = 0;
    i++;
  }

  /*
  ** Put the new pages in accending order.  This helps to
  ** keep entries in the disk file in order so that a scan
  ** of the table is a linear scan through the file.  That
  ** in turn helps the operating system to deliver pages
  ** from the disk more rapidly.
  **
  ** An O(n^2) insertion sort algorithm is used, but since
  ** n is never more than NB (a small constant), that should







|







6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
    if( rc ) goto balance_cleanup;
    releasePage(apOld[i]);
    apOld[i] = 0;
    i++;
  }

  /*
  ** Put the new pages in ascending order.  This helps to
  ** keep entries in the disk file in order so that a scan
  ** of the table is a linear scan through the file.  That
  ** in turn helps the operating system to deliver pages
  ** from the disk more rapidly.
  **
  ** An O(n^2) insertion sort algorithm is used, but since
  ** n is never more than NB (a small constant), that should
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
         && pPage->aiOvfl[0]==pPage->nCell
         && pParent->pgno!=1
         && pParent->nCell==iIdx
        ){
          /* Call balance_quick() to create a new sibling of pPage on which
          ** to store the overflow cell. balance_quick() inserts a new cell
          ** into pParent, which may cause pParent overflow. If this
          ** happens, the next interation of the do-loop will balance pParent 
          ** use either balance_nonroot() or balance_deeper(). Until this
          ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
          ** buffer. 
          **
          ** The purpose of the following assert() is to check that only a
          ** single call to balance_quick() is made for each call to this
          ** function. If this were not verified, a subtle bug involving reuse







|







6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
         && pPage->aiOvfl[0]==pPage->nCell
         && pParent->pgno!=1
         && pParent->nCell==iIdx
        ){
          /* Call balance_quick() to create a new sibling of pPage on which
          ** to store the overflow cell. balance_quick() inserts a new cell
          ** into pParent, which may cause pParent overflow. If this
          ** happens, the next iteration of the do-loop will balance pParent 
          ** use either balance_nonroot() or balance_deeper(). Until this
          ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
          ** buffer. 
          **
          ** The purpose of the following assert() is to check that only a
          ** single call to balance_quick() is made for each call to this
          ** function. If this were not verified, a subtle bug involving reuse
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
** For an INTKEY table, only the nKey value of the key is used.  pKey is
** ignored.  For a ZERODATA table, the pData and nData are both ignored.
**
** If the seekResult parameter is non-zero, then a successful call to
** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
** been performed. seekResult is the search result returned (a negative
** number if pCur points at an entry that is smaller than (pKey, nKey), or
** a positive value if pCur points at an etry that is larger than 
** (pKey, nKey)). 
**
** If the seekResult parameter is non-zero, then the caller guarantees that
** cursor pCur is pointing at the existing copy of a row that is to be
** overwritten.  If the seekResult parameter is 0, then cursor pCur may
** point to any entry or to no entry at all and so this function has to seek
** the cursor before the new key can be inserted.







|







7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
** For an INTKEY table, only the nKey value of the key is used.  pKey is
** ignored.  For a ZERODATA table, the pData and nData are both ignored.
**
** If the seekResult parameter is non-zero, then a successful call to
** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
** been performed. seekResult is the search result returned (a negative
** number if pCur points at an entry that is smaller than (pKey, nKey), or
** a positive value if pCur points at an entry that is larger than 
** (pKey, nKey)). 
**
** If the seekResult parameter is non-zero, then the caller guarantees that
** cursor pCur is pointing at the existing copy of a row that is to be
** overwritten.  If the seekResult parameter is 0, then cursor pCur may
** point to any entry or to no entry at all and so this function has to seek
** the cursor before the new key can be inserted.
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221

end_insert:
  return rc;
}

/*
** Delete the entry that the cursor is pointing to.  The cursor
** is left pointing at a arbitrary location.
*/
int sqlite3BtreeDelete(BtCursor *pCur){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */







|







7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221

end_insert:
  return rc;
}

/*
** Delete the entry that the cursor is pointing to.  The cursor
** is left pointing at an arbitrary location.
*/
int sqlite3BtreeDelete(BtCursor *pCur){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
  pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
}


/*
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){







|







7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
  pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
}


/*
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 or more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){
Changes to src/btreeInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.
**
** The basic idea is that each page of the file contains N database











|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements an external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.
**
** The basic idea is that each page of the file contains N database
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
**      3       2      number of cells on this page
**      5       2      first byte of the cell content area
**      7       1      number of fragmented free bytes
**      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
**
** The flags define the format of this btree page.  The leaf flag means that
** this page has no children.  The zerodata flag means that this page carries
** only keys and no data.  The intkey flag means that the key is a integer
** which is stored in the key size entry of the cell header rather than in
** the payload area.
**
** The cell pointer array begins on the first byte after the page header.
** The cell pointer array contains zero or more 2-byte numbers which are
** offsets from the beginning of the page to the cell content in the cell
** content area.  The cell pointers occur in sorted order.  The system strives







|







131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
**      3       2      number of cells on this page
**      5       2      first byte of the cell content area
**      7       1      number of fragmented free bytes
**      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
**
** The flags define the format of this btree page.  The leaf flag means that
** this page has no children.  The zerodata flag means that this page carries
** only keys and no data.  The intkey flag means that the key is an integer
** which is stored in the key size entry of the cell header rather than in
** the payload area.
**
** The cell pointer array begins on the first byte after the page header.
** The cell pointer array contains zero or more 2-byte numbers which are
** offsets from the beginning of the page to the cell content in the cell
** content area.  The cell pointers occur in sorted order.  The system strives
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
**   The table that this cursor was opened on still exists, but has been 
**   modified since the cursor was last used. The cursor position is saved
**   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
**   this state, restoreCursorPosition() can be called to attempt to
**   seek the cursor to the saved position.
**
** CURSOR_FAULT:
**   A unrecoverable error (an I/O error or a malloc failure) has occurred
**   on a different connection that shares the BtShared cache with this
**   cursor.  The error has left the cache in an inconsistent state.
**   Do nothing else with this cursor.  Any attempt to use the cursor
**   should return the error code stored in BtCursor.skip
*/
#define CURSOR_INVALID           0
#define CURSOR_VALID             1







|







540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
**   The table that this cursor was opened on still exists, but has been 
**   modified since the cursor was last used. The cursor position is saved
**   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
**   this state, restoreCursorPosition() can be called to attempt to
**   seek the cursor to the saved position.
**
** CURSOR_FAULT:
**   An unrecoverable error (an I/O error or a malloc failure) has occurred
**   on a different connection that shares the BtShared cache with this
**   cursor.  The error has left the cache in an inconsistent state.
**   Do nothing else with this cursor.  Any attempt to use the cursor
**   should return the error code stored in BtCursor.skip
*/
#define CURSOR_INVALID           0
#define CURSOR_VALID             1
Changes to src/build.c.
151
152
153
154
155
156
157











158
159
160
161
162
163
164
  */
  v = sqlite3GetVdbe(pParse);
  assert( !pParse->isMultiWrite 
       || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
  if( v ){
    while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
    sqlite3VdbeAddOp0(v, OP_Halt);












    /* The cookie mask contains one bit for each database file open.
    ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
    ** set for each database that is used.  Generate code to start a
    ** transaction on each used database and to verify the schema cookie
    ** on each used database.
    */







>
>
>
>
>
>
>
>
>
>
>







151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
  */
  v = sqlite3GetVdbe(pParse);
  assert( !pParse->isMultiWrite 
       || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
  if( v ){
    while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
    sqlite3VdbeAddOp0(v, OP_Halt);

#if SQLITE_USER_AUTHENTICATION
    if( pParse->nTableLock>0 && db->init.busy==0 ){
      sqlite3UserAuthInit(db);
      if( db->auth.authLevel<UAUTH_User ){
        pParse->rc = SQLITE_AUTH_USER;
        sqlite3ErrorMsg(pParse, "user not authenticated");
        return;
      }
    }
#endif

    /* The cookie mask contains one bit for each database file open.
    ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
    ** set for each database that is used.  Generate code to start a
    ** transaction on each used database and to verify the schema cookie
    ** on each used database.
    */
267
268
269
270
271
272
273










274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291







292
293
294
295
296
297
298
  sqlite3RunParser(pParse, zSql, &zErrMsg);
  sqlite3DbFree(db, zErrMsg);
  sqlite3DbFree(db, zSql);
  memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
  pParse->nested--;
}











/*
** Locate the in-memory structure that describes a particular database
** table given the name of that table and (optionally) the name of the
** database containing the table.  Return NULL if not found.
**
** If zDatabase is 0, all databases are searched for the table and the
** first matching table is returned.  (No checking for duplicate table
** names is done.)  The search order is TEMP first, then MAIN, then any
** auxiliary databases added using the ATTACH command.
**
** See also sqlite3LocateTable().
*/
Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
  Table *p = 0;
  int i;
  assert( zName!=0 );
  /* All mutexes are required for schema access.  Make sure we hold them. */
  assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );







  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
    if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
    assert( sqlite3SchemaMutexHeld(db, j, 0) );
    p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
    if( p ) break;
  }







>
>
>
>
>
>
>
>
>
>


















>
>
>
>
>
>
>







278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
  sqlite3RunParser(pParse, zSql, &zErrMsg);
  sqlite3DbFree(db, zErrMsg);
  sqlite3DbFree(db, zSql);
  memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
  pParse->nested--;
}

#if SQLITE_USER_AUTHENTICATION
/*
** Return TRUE if zTable is the name of the system table that stores the
** list of users and their access credentials.
*/
int sqlite3UserAuthTable(const char *zTable){
  return sqlite3_stricmp(zTable, "sqlite_user")==0;
}
#endif

/*
** Locate the in-memory structure that describes a particular database
** table given the name of that table and (optionally) the name of the
** database containing the table.  Return NULL if not found.
**
** If zDatabase is 0, all databases are searched for the table and the
** first matching table is returned.  (No checking for duplicate table
** names is done.)  The search order is TEMP first, then MAIN, then any
** auxiliary databases added using the ATTACH command.
**
** See also sqlite3LocateTable().
*/
Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
  Table *p = 0;
  int i;
  assert( zName!=0 );
  /* All mutexes are required for schema access.  Make sure we hold them. */
  assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
#if SQLITE_USER_AUTHENTICATION
  /* Only the admin user is allowed to know that the sqlite_user table
  ** exists */
  if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
    return 0;
  }
#endif
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
    if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
    assert( sqlite3SchemaMutexHeld(db, j, 0) );
    p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
    if( p ) break;
  }
329
330
331
332
333
334
335






336
337
338
339
340
341
342
    if( zDbase ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
    }
    pParse->checkSchema = 1;
  }






  return p;
}

/*
** Locate the table identified by *p.
**
** This is a wrapper around sqlite3LocateTable(). The difference between







>
>
>
>
>
>







357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    if( zDbase ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
    }
    pParse->checkSchema = 1;
  }
#if SQLITE_USER_AUTHENICATION
  else if( pParse->db->auth.authLevel<UAUTH_User ){
    sqlite3ErrorMsg(pParse, "user not authenticated");
    p = 0;
  }
#endif
  return p;
}

/*
** Locate the table identified by *p.
**
** This is a wrapper around sqlite3LocateTable(). The difference between
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
    }
  }

  /* If pszEst is not NULL, store an estimate of the field size.  The
  ** estimate is scaled so that the size of an integer is 1.  */
  if( pszEst ){
    *pszEst = 1;   /* default size is approx 4 bytes */
    if( aff<=SQLITE_AFF_NONE ){
      if( zChar ){
        while( zChar[0] ){
          if( sqlite3Isdigit(zChar[0]) ){
            int v = 0;
            sqlite3GetInt32(zChar, &v);
            v = v/4 + 1;
            if( v>255 ) v = 255;







|







1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    }
  }

  /* If pszEst is not NULL, store an estimate of the field size.  The
  ** estimate is scaled so that the size of an integer is 1.  */
  if( pszEst ){
    *pszEst = 1;   /* default size is approx 4 bytes */
    if( aff<SQLITE_AFF_NUMERIC ){
      if( zChar ){
        while( zChar[0] ){
          if( sqlite3Isdigit(zChar[0]) ){
            int v = 0;
            sqlite3GetInt32(zChar, &v);
            v = v/4 + 1;
            if( v>255 ) v = 255;
1510
1511
1512
1513
1514
1515
1516
1517
1518

1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
  }
  sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
  k = sqlite3Strlen30(zStmt);
  identPut(zStmt, &k, p->zName);
  zStmt[k++] = '(';
  for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
    static const char * const azType[] = {
        /* SQLITE_AFF_TEXT    */ " TEXT",
        /* SQLITE_AFF_NONE    */ "",

        /* SQLITE_AFF_NUMERIC */ " NUM",
        /* SQLITE_AFF_INTEGER */ " INT",
        /* SQLITE_AFF_REAL    */ " REAL"
    };
    int len;
    const char *zType;

    sqlite3_snprintf(n-k, &zStmt[k], zSep);
    k += sqlite3Strlen30(&zStmt[k]);
    zSep = zSep2;
    identPut(zStmt, &k, pCol->zName);
    assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
    assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
    testcase( pCol->affinity==SQLITE_AFF_TEXT );
    testcase( pCol->affinity==SQLITE_AFF_NONE );
    testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
    testcase( pCol->affinity==SQLITE_AFF_INTEGER );
    testcase( pCol->affinity==SQLITE_AFF_REAL );
    
    zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
    len = sqlite3Strlen30(zType);
    assert( pCol->affinity==SQLITE_AFF_NONE 
            || pCol->affinity==sqlite3AffinityType(zType, 0) );
    memcpy(&zStmt[k], zType, len);
    k += len;
    assert( k<=n );
  }







<

>











|
|
|
|




|







1544
1545
1546
1547
1548
1549
1550

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
  }
  sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
  k = sqlite3Strlen30(zStmt);
  identPut(zStmt, &k, p->zName);
  zStmt[k++] = '(';
  for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
    static const char * const azType[] = {

        /* SQLITE_AFF_NONE    */ "",
        /* SQLITE_AFF_TEXT    */ " TEXT",
        /* SQLITE_AFF_NUMERIC */ " NUM",
        /* SQLITE_AFF_INTEGER */ " INT",
        /* SQLITE_AFF_REAL    */ " REAL"
    };
    int len;
    const char *zType;

    sqlite3_snprintf(n-k, &zStmt[k], zSep);
    k += sqlite3Strlen30(&zStmt[k]);
    zSep = zSep2;
    identPut(zStmt, &k, pCol->zName);
    assert( pCol->affinity-SQLITE_AFF_NONE >= 0 );
    assert( pCol->affinity-SQLITE_AFF_NONE < ArraySize(azType) );
    testcase( pCol->affinity==SQLITE_AFF_NONE );
    testcase( pCol->affinity==SQLITE_AFF_TEXT );
    testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
    testcase( pCol->affinity==SQLITE_AFF_INTEGER );
    testcase( pCol->affinity==SQLITE_AFF_REAL );
    
    zType = azType[pCol->affinity - SQLITE_AFF_NONE];
    len = sqlite3Strlen30(zType);
    assert( pCol->affinity==SQLITE_AFF_NONE 
            || pCol->affinity==sqlite3AffinityType(zType, 0) );
    memcpy(&zStmt[k], zType, len);
    k += len;
    assert( k<=n );
  }
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
** are appropriate for a WITHOUT ROWID table instead of a rowid table.
** Changes include:
**
**     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
**          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
**          data storage is a covering index btree.
**     (2)  Bypass the creation of the sqlite_master table entry
**          for the PRIMARY KEY as the the primary key index is now
**          identified by the sqlite_master table entry of the table itself.
**     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
**          schema to the rootpage from the main table.
**     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
**     (5)  Add all table columns to the PRIMARY KEY Index object
**          so that the PRIMARY KEY is a covering index.  The surplus
**          columns are part of KeyInfo.nXField and are not used for
**          sorting or lookup or uniqueness checks.
**     (6)  Replace the rowid tail on all automatically generated UNIQUE
**          indices with the PRIMARY KEY columns.
*/
static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
  Index *pIdx;
  Index *pPk;
  int nPk;
  int i, j;
  sqlite3 *db = pParse->db;
  Vdbe *v = pParse->pVdbe;

  /* Convert the OP_CreateTable opcode that would normally create the
  ** root-page for the table into a OP_CreateIndex opcode.  The index
  ** created will become the PRIMARY KEY index.
  */
  if( pParse->addrCrTab ){
    assert( v );
    sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex;
  }








|




















|







1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
** are appropriate for a WITHOUT ROWID table instead of a rowid table.
** Changes include:
**
**     (1)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
**          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
**          data storage is a covering index btree.
**     (2)  Bypass the creation of the sqlite_master table entry
**          for the PRIMARY KEY as the primary key index is now
**          identified by the sqlite_master table entry of the table itself.
**     (3)  Set the Index.tnum of the PRIMARY KEY Index object in the
**          schema to the rootpage from the main table.
**     (4)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
**     (5)  Add all table columns to the PRIMARY KEY Index object
**          so that the PRIMARY KEY is a covering index.  The surplus
**          columns are part of KeyInfo.nXField and are not used for
**          sorting or lookup or uniqueness checks.
**     (6)  Replace the rowid tail on all automatically generated UNIQUE
**          indices with the PRIMARY KEY columns.
*/
static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
  Index *pIdx;
  Index *pPk;
  int nPk;
  int i, j;
  sqlite3 *db = pParse->db;
  Vdbe *v = pParse->pVdbe;

  /* Convert the OP_CreateTable opcode that would normally create the
  ** root-page for the table into an OP_CreateIndex opcode.  The index
  ** created will become the PRIMARY KEY index.
  */
  if( pParse->addrCrTab ){
    assert( v );
    sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex;
  }

2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
*/
int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
  Table *pSelTab;   /* A fake table from which we get the result set */
  Select *pSel;     /* Copy of the SELECT that implements the view */
  int nErr = 0;     /* Number of errors encountered */
  int n;            /* Temporarily holds the number of cursors assigned */
  sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);

  assert( pTable );

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( sqlite3VtabCallConnect(pParse, pTable) ){
    return SQLITE_ERROR;
  }







|







2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
*/
int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
  Table *pSelTab;   /* A fake table from which we get the result set */
  Select *pSel;     /* Copy of the SELECT that implements the view */
  int nErr = 0;     /* Number of errors encountered */
  int n;            /* Temporarily holds the number of cursors assigned */
  sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
  sqlite3_xauth xAuth;       /* Saved xAuth pointer */

  assert( pTable );

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( sqlite3VtabCallConnect(pParse, pTable) ){
    return SQLITE_ERROR;
  }
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
  int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
  int addr1;                     /* Address of top of loop */
  int addr2;                     /* Address to jump to for next iteration */
  int tnum;                      /* Root page of index */
  int iPartIdxLabel;             /* Jump to this label to skip a row */
  Vdbe *v;                       /* Generate code into this virtual machine */
  KeyInfo *pKey;                 /* KeyInfo for index */
  int regRecord;                 /* Register holding assemblied index record */
  sqlite3 *db = pParse->db;      /* The database connection */
  int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);

#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
      db->aDb[iDb].zName ) ){
    return;







|







2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
  int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
  int addr1;                     /* Address of top of loop */
  int addr2;                     /* Address to jump to for next iteration */
  int tnum;                      /* Root page of index */
  int iPartIdxLabel;             /* Jump to this label to skip a row */
  Vdbe *v;                       /* Generate code into this virtual machine */
  KeyInfo *pKey;                 /* KeyInfo for index */
  int regRecord;                 /* Register holding assembled index record */
  sqlite3 *db = pParse->db;      /* The database connection */
  int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);

#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
2863
2864
2865
2866
2867
2868
2869




2870
2871
2872
2873
2874
2875
2876
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  }
  pDb = &db->aDb[iDb];

  assert( pTab!=0 );
  assert( pParse->nErr==0 );
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 




       && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
  }
#ifndef SQLITE_OMIT_VIEW
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "views may not be indexed");







>
>
>
>







2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  }
  pDb = &db->aDb[iDb];

  assert( pTab!=0 );
  assert( pParse->nErr==0 );
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 
       && db->init.busy==0
#if SQLITE_USER_AUTHENTICATION
       && sqlite3UserAuthTable(pTab->zName)==0
#endif
       && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
  }
#ifndef SQLITE_OMIT_VIEW
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "views may not be indexed");
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
  return pRet;
}

/*
** Fill the Index.aiRowEst[] array with default information - information
** to be used when we have not run the ANALYZE command.
**
** aiRowEst[0] is suppose to contain the number of elements in the index.
** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
** number of rows in the table that match any particular value of the
** first column of the index.  aiRowEst[2] is an estimate of the number
** of rows that match any particular combination of the first 2 columns
** of the index.  And so forth.  It must always be the case that
*
**           aiRowEst[N]<=aiRowEst[N-1]







|







3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
  return pRet;
}

/*
** Fill the Index.aiRowEst[] array with default information - information
** to be used when we have not run the ANALYZE command.
**
** aiRowEst[0] is supposed to contain the number of elements in the index.
** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
** number of rows in the table that match any particular value of the
** first column of the index.  aiRowEst[2] is an estimate of the number
** of rows that match any particular combination of the first 2 columns
** of the index.  And so forth.  It must always be the case that
*
**           aiRowEst[N]<=aiRowEst[N-1]
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
/*
** This routine is called by the parser to add a new term to the
** end of a growing FROM clause.  The "p" parameter is the part of
** the FROM clause that has already been constructed.  "p" is NULL
** if this is the first term of the FROM clause.  pTable and pDatabase
** are the name of the table and database named in the FROM clause term.
** pDatabase is NULL if the database name qualifier is missing - the
** usual case.  If the term has a alias, then pAlias points to the
** alias token.  If the term is a subquery, then pSubquery is the
** SELECT statement that the subquery encodes.  The pTable and
** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
** parameters are the content of the ON and USING clauses.
**
** Return a new SrcList which encodes is the FROM with the new
** term added.







|







3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
/*
** This routine is called by the parser to add a new term to the
** end of a growing FROM clause.  The "p" parameter is the part of
** the FROM clause that has already been constructed.  "p" is NULL
** if this is the first term of the FROM clause.  pTable and pDatabase
** are the name of the table and database named in the FROM clause term.
** pDatabase is NULL if the database name qualifier is missing - the
** usual case.  If the term has an alias, then pAlias points to the
** alias token.  If the term is a subquery, then pSubquery is the
** SELECT statement that the subquery encodes.  The pTable and
** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
** parameters are the content of the ON and USING clauses.
**
** Return a new SrcList which encodes is the FROM with the new
** term added.
Changes to src/callback.c.
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*
** Locate and return an entry from the db.aCollSeq hash table. If the entry
** specified by zName and nName is not found and parameter 'create' is
** true, then create a new entry. Otherwise return NULL.
**
** Each pointer stored in the sqlite3.aCollSeq hash table contains an
** array of three CollSeq structures. The first is the collation sequence
** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
**
** Stored immediately after the three collation sequences is a copy of
** the collation sequence name. A pointer to this string is stored in
** each collation sequence structure.
*/
static CollSeq *findCollSeqEntry(
  sqlite3 *db,          /* Database connection */







|







138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*
** Locate and return an entry from the db.aCollSeq hash table. If the entry
** specified by zName and nName is not found and parameter 'create' is
** true, then create a new entry. Otherwise return NULL.
**
** Each pointer stored in the sqlite3.aCollSeq hash table contains an
** array of three CollSeq structures. The first is the collation sequence
** preferred for UTF-8, the second UTF-16le, and the third UTF-16be.
**
** Stored immediately after the three collation sequences is a copy of
** the collation sequence name. A pointer to this string is stored in
** each collation sequence structure.
*/
static CollSeq *findCollSeqEntry(
  sqlite3 *db,          /* Database connection */
Changes to src/complete.c.
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
**   (2) NORMAL    We are in the middle of statement which ends with a single
**                 semicolon.
**
**   (3) EXPLAIN   The keyword EXPLAIN has been seen at the beginning of 
**                 a statement.
**
**   (4) CREATE    The keyword CREATE has been seen at the beginning of a
**                 statement, possibly preceeded by EXPLAIN and/or followed by
**                 TEMP or TEMPORARY
**
**   (5) TRIGGER   We are in the middle of a trigger definition that must be
**                 ended by a semicolon, the keyword END, and another semicolon.
**
**   (6) SEMI      We've seen the first semicolon in the ";END;" that occurs at
**                 the end of a trigger definition.
**
**   (7) END       We've seen the ";END" of the ";END;" that occurs at the end
**                 of a trigger difinition.
**
** Transitions between states above are determined by tokens extracted
** from the input.  The following tokens are significant:
**
**   (0) tkSEMI      A semicolon.
**   (1) tkWS        Whitespace.
**   (2) tkOTHER     Any other SQL token.







|









|







66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
**   (2) NORMAL    We are in the middle of statement which ends with a single
**                 semicolon.
**
**   (3) EXPLAIN   The keyword EXPLAIN has been seen at the beginning of 
**                 a statement.
**
**   (4) CREATE    The keyword CREATE has been seen at the beginning of a
**                 statement, possibly preceded by EXPLAIN and/or followed by
**                 TEMP or TEMPORARY
**
**   (5) TRIGGER   We are in the middle of a trigger definition that must be
**                 ended by a semicolon, the keyword END, and another semicolon.
**
**   (6) SEMI      We've seen the first semicolon in the ";END;" that occurs at
**                 the end of a trigger definition.
**
**   (7) END       We've seen the ";END" of the ";END;" that occurs at the end
**                 of a trigger definition.
**
** Transitions between states above are determined by tokens extracted
** from the input.  The following tokens are significant:
**
**   (0) tkSEMI      A semicolon.
**   (1) tkWS        Whitespace.
**   (2) tkOTHER     Any other SQL token.
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
     /* 4  CREATE: */ {    1,  4,     2,       2,      2,    4,       5,   2, },
     /* 5 TRIGGER: */ {    6,  5,     5,       5,      5,    5,       5,   5, },
     /* 6    SEMI: */ {    6,  6,     5,       5,      5,    5,       5,   7, },
     /* 7     END: */ {    1,  7,     5,       5,      5,    5,       5,   5, },
  };
#else
  /* If triggers are not supported by this compile then the statement machine
  ** used to detect the end of a statement is much simplier
  */
  static const u8 trans[3][3] = {
                     /* Token:           */
     /* State:       **  SEMI  WS  OTHER */
     /* 0 INVALID: */ {    1,  0,     2, },
     /* 1   START: */ {    1,  1,     2, },
     /* 2  NORMAL: */ {    1,  2,     2, },







|







119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
     /* 4  CREATE: */ {    1,  4,     2,       2,      2,    4,       5,   2, },
     /* 5 TRIGGER: */ {    6,  5,     5,       5,      5,    5,       5,   5, },
     /* 6    SEMI: */ {    6,  6,     5,       5,      5,    5,       5,   7, },
     /* 7     END: */ {    1,  7,     5,       5,      5,    5,       5,   5, },
  };
#else
  /* If triggers are not supported by this compile then the statement machine
  ** used to detect the end of a statement is much simpler
  */
  static const u8 trans[3][3] = {
                     /* Token:           */
     /* State:       **  SEMI  WS  OTHER */
     /* 0 INVALID: */ {    1,  0,     2, },
     /* 1   START: */ {    1,  1,     2, },
     /* 2  NORMAL: */ {    1,  2,     2, },
Changes to src/ctime.c.
363
364
365
366
367
368
369



370
371
372
373
374
375
376
  "TEST",
#endif
#if defined(SQLITE_THREADSAFE)
  "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE),
#endif
#ifdef SQLITE_USE_ALLOCA
  "USE_ALLOCA",



#endif
#ifdef SQLITE_WIN32_MALLOC
  "WIN32_MALLOC",
#endif
#ifdef SQLITE_ZERO_MALLOC
  "ZERO_MALLOC"
#endif







>
>
>







363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
  "TEST",
#endif
#if defined(SQLITE_THREADSAFE)
  "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE),
#endif
#ifdef SQLITE_USE_ALLOCA
  "USE_ALLOCA",
#endif
#ifdef SQLITE_USER_AUTHENTICATION
  "USER_AUTHENTICATION",
#endif
#ifdef SQLITE_WIN32_MALLOC
  "WIN32_MALLOC",
#endif
#ifdef SQLITE_ZERO_MALLOC
  "ZERO_MALLOC"
#endif
Changes to src/date.c.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system. 
**
** 1970-01-01 00:00:00 is JD 2440587.5
** 2000-01-01 00:00:00 is JD 2451544.5
**
** This implemention requires years to be expressed as a 4-digit number
** which means that only dates between 0000-01-01 and 9999-12-31 can
** be represented, even though julian day numbers allow a much wider
** range of dates.
**
** The Gregorian calendar system is used for all dates and times,
** even those that predate the Gregorian calendar.  Historians usually
** use the Julian calendar for dates prior to 1582-10-15 and for some







|







20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system. 
**
** 1970-01-01 00:00:00 is JD 2440587.5
** 2000-01-01 00:00:00 is JD 2451544.5
**
** This implementation requires years to be expressed as a 4-digit number
** which means that only dates between 0000-01-01 and 9999-12-31 can
** be represented, even though julian day numbers allow a much wider
** range of dates.
**
** The Gregorian calendar system is used for all dates and times,
** even those that predate the Gregorian calendar.  Historians usually
** use the Julian calendar for dates prior to 1582-10-15 and for some
Changes to src/delete.c.
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
** pWhere argument is an optional WHERE clause that restricts the
** set of rows in the view that are to be added to the ephemeral table.
*/
void sqlite3MaterializeView(
  Parse *pParse,       /* Parsing context */
  Table *pView,        /* View definition */
  Expr *pWhere,        /* Optional WHERE clause to be added */
  int iCur             /* Cursor number for ephemerial table */
){
  SelectDest dest;
  Select *pSel;
  SrcList *pFrom;
  sqlite3 *db = pParse->db;
  int iDb = sqlite3SchemaToIndex(db, pView->pSchema);
  pWhere = sqlite3ExprDup(db, pWhere, 0);







|







86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
** pWhere argument is an optional WHERE clause that restricts the
** set of rows in the view that are to be added to the ephemeral table.
*/
void sqlite3MaterializeView(
  Parse *pParse,       /* Parsing context */
  Table *pView,        /* View definition */
  Expr *pWhere,        /* Optional WHERE clause to be added */
  int iCur             /* Cursor number for ephemeral table */
){
  SelectDest dest;
  Select *pSel;
  SrcList *pFrom;
  sqlite3 *db = pParse->db;
  int iDb = sqlite3SchemaToIndex(db, pView->pSchema);
  pWhere = sqlite3ExprDup(db, pWhere, 0);
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  int iKey;              /* Memory cell holding key of row to be deleted */
  i16 nKey;              /* Number of memory cells in the row key */
  int iEphCur = 0;       /* Ephemeral table holding all primary key values */
  int iRowSet = 0;       /* Register for rowset of rows to delete */
  int addrBypass = 0;    /* Address of jump over the delete logic */
  int addrLoop = 0;      /* Top of the delete loop */
  int addrDelete = 0;    /* Jump directly to the delete logic */
  int addrEphOpen = 0;   /* Instruction to open the Ephermeral table */
 
#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  Trigger *pTrigger;           /* List of table triggers, if required */
#endif

  memset(&sContext, 0, sizeof(sContext));







|







244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  int iKey;              /* Memory cell holding key of row to be deleted */
  i16 nKey;              /* Number of memory cells in the row key */
  int iEphCur = 0;       /* Ephemeral table holding all primary key values */
  int iRowSet = 0;       /* Register for rowset of rows to delete */
  int addrBypass = 0;    /* Address of jump over the delete logic */
  int addrLoop = 0;      /* Top of the delete loop */
  int addrDelete = 0;    /* Jump directly to the delete logic */
  int addrEphOpen = 0;   /* Instruction to open the Ephemeral table */
 
#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  Trigger *pTrigger;           /* List of table triggers, if required */
#endif

  memset(&sContext, 0, sizeof(sContext));
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

  /* If we are trying to delete from a view, realize that view into
  ** a ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, pWhere, iTabCur);
    iDataCur = iIdxCur = iTabCur;
  }
#endif







|







324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

  /* If we are trying to delete from a view, realize that view into
  ** an ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, pWhere, iTabCur);
    iDataCur = iIdxCur = iTabCur;
  }
#endif
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    if( HasRowid(pTab) ){
      /* For a rowid table, initialize the RowSet to an empty set */
      pPk = 0;
      nPk = 1;
      iRowSet = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    }else{
      /* For a WITHOUT ROWID table, create an ephermeral table used to
      ** hold all primary keys for rows to be deleted. */
      pPk = sqlite3PrimaryKeyIndex(pTab);
      assert( pPk!=0 );
      nPk = pPk->nKeyCol;
      iPk = pParse->nMem+1;
      pParse->nMem += nPk;
      iEphCur = pParse->nTab++;







|







378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    if( HasRowid(pTab) ){
      /* For a rowid table, initialize the RowSet to an empty set */
      pPk = 0;
      nPk = 1;
      iRowSet = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    }else{
      /* For a WITHOUT ROWID table, create an ephemeral table used to
      ** hold all primary keys for rows to be deleted. */
      pPk = sqlite3PrimaryKeyIndex(pTab);
      assert( pPk!=0 );
      nPk = pPk->nKeyCol;
      iPk = pParse->nMem+1;
      pParse->nMem += nPk;
      iEphCur = pParse->nTab++;
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
  sqlite3AuthContextPop(&sContext);
  sqlite3SrcListDelete(db, pTabList);
  sqlite3ExprDelete(db, pWhere);
  sqlite3DbFree(db, aToOpen);
  return;
}
/* Make sure "isView" and other macros defined above are undefined. Otherwise
** thely may interfere with compilation of other functions in this file
** (or in another file, if this file becomes part of the amalgamation).  */
#ifdef isView
 #undef isView
#endif
#ifdef pTrigger
 #undef pTrigger
#endif







|







553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
  sqlite3AuthContextPop(&sContext);
  sqlite3SrcListDelete(db, pTabList);
  sqlite3ExprDelete(db, pWhere);
  sqlite3DbFree(db, aToOpen);
  return;
}
/* Make sure "isView" and other macros defined above are undefined. Otherwise
** they may interfere with compilation of other functions in this file
** (or in another file, if this file becomes part of the amalgamation).  */
#ifdef isView
 #undef isView
#endif
#ifdef pTrigger
 #undef pTrigger
#endif
Changes to src/expr.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
** Return the 'affinity' of the expression pExpr if any.
**
** If pExpr is a column, a reference to a column via an 'AS' alias,
** or a sub-select with a column as the return value, then the 
** affinity of that column is returned. Otherwise, 0x00 is returned,
** indicating no affinity for the expression.
**
** i.e. the WHERE clause expresssions in the following statements all
** have an affinity:
**
** CREATE TABLE t1(a);
** SELECT * FROM t1 WHERE a;
** SELECT a AS b FROM t1 WHERE b;
** SELECT * FROM t1 WHERE (select a from t1);
*/







|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
** Return the 'affinity' of the expression pExpr if any.
**
** If pExpr is a column, a reference to a column via an 'AS' alias,
** or a sub-select with a column as the return value, then the 
** affinity of that column is returned. Otherwise, 0x00 is returned,
** indicating no affinity for the expression.
**
** i.e. the WHERE clause expressions in the following statements all
** have an affinity:
**
** CREATE TABLE t1(a);
** SELECT * FROM t1 WHERE a;
** SELECT a AS b FROM t1 WHERE b;
** SELECT * FROM t1 WHERE (select a from t1);
*/
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
      pRoot->flags |= EP_Collate & pLeft->flags;
    }
    exprSetHeight(pRoot);
  }
}

/*
** Allocate a Expr node which joins as many as two subtrees.
**
** One or both of the subtrees can be NULL.  Return a pointer to the new
** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
** free the subtrees and return NULL.
*/
Expr *sqlite3PExpr(
  Parse *pParse,          /* Parsing context */







|







497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
      pRoot->flags |= EP_Collate & pLeft->flags;
    }
    exprSetHeight(pRoot);
  }
}

/*
** Allocate an Expr node which joins as many as two subtrees.
**
** One or both of the subtrees can be NULL.  Return a pointer to the new
** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
** free the subtrees and return NULL.
*/
Expr *sqlite3PExpr(
  Parse *pParse,          /* Parsing context */
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
**
** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
** sure "nnn" is not too be to avoid a denial of service attack when
** the SQL statement comes from an external source.
**
** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
** as the previous instance of the same wildcard.  Or if this is the first
** instance of the wildcard, the next sequenial variable number is
** assigned.
*/
void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
  sqlite3 *db = pParse->db;
  const char *z;

  if( pExpr==0 ) return;







|







607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
**
** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
** sure "nnn" is not too be to avoid a denial of service attack when
** the SQL statement comes from an external source.
**
** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
** as the previous instance of the same wildcard.  Or if this is the first
** instance of the wildcard, the next sequential variable number is
** assigned.
*/
void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
  sqlite3 *db = pParse->db;
  const char *z;

  if( pExpr==0 ) return;
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
** return value with EP_Reduced|EP_TokenOnly.
**
** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
** (unreduced) Expr objects as they or originally constructed by the parser.
** During expression analysis, extra information is computed and moved into
** later parts of teh Expr object and that extra information might get chopped
** off if the expression is reduced.  Note also that it does not work to
** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
** to reduce a pristine expression tree from the parser.  The implementation
** of dupedExprStructSize() contain multiple assert() statements that attempt
** to enforce this constraint.
*/
static int dupedExprStructSize(Expr *p, int flags){
  int nSize;
  assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */







|







742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
** return value with EP_Reduced|EP_TokenOnly.
**
** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
** (unreduced) Expr objects as they or originally constructed by the parser.
** During expression analysis, extra information is computed and moved into
** later parts of teh Expr object and that extra information might get chopped
** off if the expression is reduced.  Note also that it does not work to
** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
** to reduce a pristine expression tree from the parser.  The implementation
** of dupedExprStructSize() contain multiple assert() statements that attempt
** to enforce this constraint.
*/
static int dupedExprStructSize(Expr *p, int flags){
  int nSize;
  assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
}

/*
** This function is similar to sqlite3ExprDup(), except that if pzBuffer 
** is not NULL then *pzBuffer is assumed to point to a buffer large enough 
** to store the copy of expression p, the copies of p->u.zToken
** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
** if any. Before returning, *pzBuffer is set to the first byte passed the
** portion of the buffer copied into by this function.
*/
static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
  Expr *pNew = 0;                      /* Value to return */
  if( p ){
    const int isReduced = (flags&EXPRDUP_REDUCE);
    u8 *zAlloc;







|







811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
}

/*
** This function is similar to sqlite3ExprDup(), except that if pzBuffer 
** is not NULL then *pzBuffer is assumed to point to a buffer large enough 
** to store the copy of expression p, the copies of p->u.zToken
** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
** if any. Before returning, *pzBuffer is set to the first byte past the
** portion of the buffer copied into by this function.
*/
static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
  Expr *pNew = 0;                      /* Value to return */
  if( p ){
    const int isReduced = (flags&EXPRDUP_REDUCE);
    u8 *zAlloc;
1065
1066
1067
1068
1069
1070
1071

1072
1073
1074
1075
1076
1077
1078
  pNew->iLimit = 0;
  pNew->iOffset = 0;
  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = p->nSelectRow;
  pNew->pWith = withDup(db, p->pWith);

  return pNew;
}
#else
Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  assert( p==0 );
  return 0;
}







>







1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
  pNew->iLimit = 0;
  pNew->iOffset = 0;
  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = p->nSelectRow;
  pNew->pWith = withDup(db, p->pWith);
  sqlite3SelectSetName(pNew, p->zSelName);
  return pNew;
}
#else
Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
  assert( p==0 );
  return 0;
}
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
** An existing b-tree might be used if the RHS expression pX is a simple
** subquery such as:
**
**     SELECT <column> FROM <table>
**
** If the RHS of the IN operator is a list or a more complex subquery, then
** an ephemeral table might need to be generated from the RHS and then
** pX->iTable made to point to the ephermeral table instead of an
** existing table.
**
** The inFlags parameter must contain exactly one of the bits
** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
** fast membership test.  When the IN_INDEX_LOOP bit is set, the
** IN index will be used to loop over all values of the RHS of the







|







1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
** An existing b-tree might be used if the RHS expression pX is a simple
** subquery such as:
**
**     SELECT <column> FROM <table>
**
** If the RHS of the IN operator is a list or a more complex subquery, then
** an ephemeral table might need to be generated from the RHS and then
** pX->iTable made to point to the ephemeral table instead of an
** existing table.
**
** The inFlags parameter must contain exactly one of the bits
** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
** fast membership test.  When the IN_INDEX_LOOP bit is set, the
** IN index will be used to loop over all values of the RHS of the
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
    }
  }

  /* If no preexisting index is available for the IN clause
  ** and IN_INDEX_NOOP is an allowed reply
  ** and the RHS of the IN operator is a list, not a subquery
  ** and the RHS is not contant or has two or fewer terms,
  ** then it is not worth creating an ephermeral table to evaluate
  ** the IN operator so return IN_INDEX_NOOP.
  */
  if( eType==0
   && (inFlags & IN_INDEX_NOOP_OK)
   && !ExprHasProperty(pX, EP_xIsSelect)
   && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
  ){







|







1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
    }
  }

  /* If no preexisting index is available for the IN clause
  ** and IN_INDEX_NOOP is an allowed reply
  ** and the RHS of the IN operator is a list, not a subquery
  ** and the RHS is not contant or has two or fewer terms,
  ** then it is not worth creating an ephemeral table to evaluate
  ** the IN operator so return IN_INDEX_NOOP.
  */
  if( eType==0
   && (inFlags & IN_INDEX_NOOP_OK)
   && !ExprHasProperty(pX, EP_xIsSelect)
   && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
  ){
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
}

/*
** Generate code to move content from registers iFrom...iFrom+nReg-1
** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
*/
void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
  int i;
  struct yColCache *p;
  assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
  sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
    int x = p->iReg;
    if( x>=iFrom && x<iFrom+nReg ){
      p->iReg += iTo-iFrom;
    }
  }
}

#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
/*
** Return true if any register in the range iFrom..iTo (inclusive)
** is used as part of the column cache.
**







<
<


<
<
|
<
<
<







2429
2430
2431
2432
2433
2434
2435


2436
2437


2438



2439
2440
2441
2442
2443
2444
2445
}

/*
** Generate code to move content from registers iFrom...iFrom+nReg-1
** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
*/
void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){


  assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
  sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);


  sqlite3ExprCacheRemove(pParse, iFrom, nReg);



}

#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
/*
** Return true if any register in the range iFrom..iTo (inclusive)
** is used as part of the column cache.
**
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
      pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
      if( pDef==0 || pDef->xFunc==0 ){
        sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
        break;
      }

      /* Attempt a direct implementation of the built-in COALESCE() and
      ** IFNULL() functions.  This avoids unnecessary evalation of
      ** arguments past the first non-NULL argument.
      */
      if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
        int endCoalesce = sqlite3VdbeMakeLabel(v);
        assert( nFarg>=2 );
        sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
        for(i=1; i<nFarg; i++){







|







2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
      pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
      if( pDef==0 || pDef->xFunc==0 ){
        sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
        break;
      }

      /* Attempt a direct implementation of the built-in COALESCE() and
      ** IFNULL() functions.  This avoids unnecessary evaluation of
      ** arguments past the first non-NULL argument.
      */
      if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
        int endCoalesce = sqlite3VdbeMakeLabel(v);
        assert( nFarg>=2 );
        sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
        for(i=1; i<nFarg; i++){
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
    sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
  }else{
    sqlite3ExprCode(pParse, pExpr, target);
  }
}

/*
** Generate code that evalutes the given expression and puts the result
** in register target.
**
** Also make a copy of the expression results into another "cache" register
** and modify the expression so that the next time it is evaluated,
** the result is a copy of the cache register.
**
** This routine is used for expressions that are used multiple 







|







3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
    sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
  }else{
    sqlite3ExprCode(pParse, pExpr, target);
  }
}

/*
** Generate code that evaluates the given expression and puts the result
** in register target.
**
** Also make a copy of the expression results into another "cache" register
** and modify the expression so that the next time it is evaluated,
** the result is a copy of the cache register.
**
** This routine is used for expressions that are used multiple 
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
**    x BETWEEN y AND z
**
** The above is equivalent to 
**
**    x>=y AND x<=z
**
** Code it as such, taking care to do the common subexpression
** elementation of x.
*/
static void exprCodeBetween(
  Parse *pParse,    /* Parsing and code generating context */
  Expr *pExpr,      /* The BETWEEN expression */
  int dest,         /* Jump here if the jump is taken */
  int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
  int jumpIfNull    /* Take the jump if the BETWEEN is NULL */







|







3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
**    x BETWEEN y AND z
**
** The above is equivalent to 
**
**    x>=y AND x<=z
**
** Code it as such, taking care to do the common subexpression
** elimination of x.
*/
static void exprCodeBetween(
  Parse *pParse,    /* Parsing and code generating context */
  Expr *pExpr,      /* The BETWEEN expression */
  int dest,         /* Jump here if the jump is taken */
  int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
  int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
}

/*
** Deallocate a register, making available for reuse for some other
** purpose.
**
** If a register is currently being used by the column cache, then
** the dallocation is deferred until the column cache line that uses
** the register becomes stale.
*/
void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
  if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
    int i;
    struct yColCache *p;
    for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){







|







4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
}

/*
** Deallocate a register, making available for reuse for some other
** purpose.
**
** If a register is currently being used by the column cache, then
** the deallocation is deferred until the column cache line that uses
** the register becomes stale.
*/
void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
  if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
    int i;
    struct yColCache *p;
    for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
Changes to src/fkey.c.
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
**
**   3) No parent key columns were provided explicitly as part of the
**      foreign key definition, and the parent table does not have a
**      PRIMARY KEY, or
**
**   4) No parent key columns were provided explicitly as part of the
**      foreign key definition, and the PRIMARY KEY of the parent table 
**      consists of a a different number of columns to the child key in 
**      the child table.
**
** then non-zero is returned, and a "foreign key mismatch" error loaded
** into pParse. If an OOM error occurs, non-zero is returned and the
** pParse->db->mallocFailed flag is set.
*/
int sqlite3FkLocateIndex(







|







169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
**
**   3) No parent key columns were provided explicitly as part of the
**      foreign key definition, and the parent table does not have a
**      PRIMARY KEY, or
**
**   4) No parent key columns were provided explicitly as part of the
**      foreign key definition, and the PRIMARY KEY of the parent table 
**      consists of a different number of columns to the child key in 
**      the child table.
**
** then non-zero is returned, and a "foreign key mismatch" error loaded
** into pParse. If an OOM error occurs, non-zero is returned and the
** pParse->db->mallocFailed flag is set.
*/
int sqlite3FkLocateIndex(
Changes to src/func.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2002 February 23
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C-language implementions for many of the SQL
** functions of SQLite.  (Some function, and in particular the date and
** time functions, are implemented separately.)
*/
#include "sqliteInt.h"
#include <stdlib.h>
#include <assert.h>
#include "vdbeInt.h"











|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2002 February 23
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C-language implementations for many of the SQL
** functions of SQLite.  (Some function, and in particular the date and
** time functions, are implemented separately.)
*/
#include "sqliteInt.h"
#include <stdlib.h>
#include <assert.h>
#include "vdbeInt.h"
324
325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341
342
343
344
    while( *z && p1 ){
      SQLITE_SKIP_UTF8(z);
      p1--;
    }
    for(z2=z; *z2 && p2; p2--){
      SQLITE_SKIP_UTF8(z2);
    }
    sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT);

  }else{
    if( p1+p2>len ){
      p2 = len-p1;
      if( p2<0 ) p2 = 0;
    }
    sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT);
  }
}

/*
** Implementation of the round() function
*/
#ifndef SQLITE_OMIT_FLOATING_POINT







|
>





|







324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    while( *z && p1 ){
      SQLITE_SKIP_UTF8(z);
      p1--;
    }
    for(z2=z; *z2 && p2; p2--){
      SQLITE_SKIP_UTF8(z2);
    }
    sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
                          SQLITE_UTF8);
  }else{
    if( p1+p2>len ){
      p2 = len-p1;
      if( p2<0 ) p2 = 0;
    }
    sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
  }
}

/*
** Implementation of the round() function
*/
#ifndef SQLITE_OMIT_FLOATING_POINT
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
  assert( nByte>0 );
  testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
  testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    sqlite3_result_error_toobig(context);
    z = 0;
  }else{
    z = sqlite3Malloc((int)nByte);
    if( !z ){
      sqlite3_result_error_nomem(context);
    }
  }
  return z;
}








|







390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
  assert( nByte>0 );
  testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
  testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    sqlite3_result_error_toobig(context);
    z = 0;
  }else{
    z = sqlite3Malloc(nByte);
    if( !z ){
      sqlite3_result_error_nomem(context);
    }
  }
  return z;
}

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
    }else{
      *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
      *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
      *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
      *zOut++ = 0x80 + (u8)(c & 0x3F);
    }                                                    \
  }
  sqlite3_result_text(context, (char*)z, (int)(zOut-z), sqlite3_free);
}

/*
** The hex() function.  Interpret the argument as a blob.  Return
** a hexadecimal rendering as text.
*/
static void hexFunc(







|







1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
    }else{
      *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
      *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
      *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
      *zOut++ = 0x80 + (u8)(c & 0x3F);
    }                                                    \
  }
  sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
}

/*
** The hex() function.  Interpret the argument as a blob.  Return
** a hexadecimal rendering as text.
*/
static void hexFunc(
1490
1491
1492
1493
1494
1495
1496

1497
1498
1499
1500
1501
1502
1503
    cmp = sqlite3MemCompare(pBest, pArg, pColl);
    if( (max && cmp<0) || (!max && cmp>0) ){
      sqlite3VdbeMemCopy(pBest, pArg);
    }else{
      sqlite3SkipAccumulatorLoad(context);
    }
  }else{

    sqlite3VdbeMemCopy(pBest, pArg);
  }
}
static void minMaxFinalize(sqlite3_context *context){
  sqlite3_value *pRes;
  pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
  if( pRes ){







>







1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
    cmp = sqlite3MemCompare(pBest, pArg, pColl);
    if( (max && cmp<0) || (!max && cmp>0) ){
      sqlite3VdbeMemCopy(pBest, pArg);
    }else{
      sqlite3SkipAccumulatorLoad(context);
    }
  }else{
    pBest->db = sqlite3_context_db_handle(context);
    sqlite3VdbeMemCopy(pBest, pArg);
  }
}
static void minMaxFinalize(sqlite3_context *context){
  sqlite3_value *pRes;
  pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
  if( pRes ){
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
  assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
  assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
  *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
  return 1;
}

/*
** All all of the FuncDef structures in the aBuiltinFunc[] array above
** to the global function hash table.  This occurs at start-time (as
** a consequence of calling sqlite3_initialize()).
**
** After this routine runs
*/
void sqlite3RegisterGlobalFunctions(void){
  /*







|







1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
  assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
  assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
  *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
  return 1;
}

/*
** All of the FuncDef structures in the aBuiltinFunc[] array above
** to the global function hash table.  This occurs at start-time (as
** a consequence of calling sqlite3_initialize()).
**
** After this routine runs
*/
void sqlite3RegisterGlobalFunctions(void){
  /*
1661
1662
1663
1664
1665
1666
1667
1668

1669
1670
1671

1672
1673
1674
1675
1676
1677
1678
    FUNCTION(ltrim,              2, 1, 0, trimFunc         ),
    FUNCTION(rtrim,              1, 2, 0, trimFunc         ),
    FUNCTION(rtrim,              2, 2, 0, trimFunc         ),
    FUNCTION(trim,               1, 3, 0, trimFunc         ),
    FUNCTION(trim,               2, 3, 0, trimFunc         ),
    FUNCTION(min,               -1, 0, 1, minmaxFunc       ),
    FUNCTION(min,                0, 0, 1, 0                ),
    AGGREGATE(min,               1, 0, 1, minmaxStep,      minMaxFinalize ),

    FUNCTION(max,               -1, 1, 1, minmaxFunc       ),
    FUNCTION(max,                0, 1, 1, 0                ),
    AGGREGATE(max,               1, 1, 1, minmaxStep,      minMaxFinalize ),

    FUNCTION2(typeof,            1, 0, 0, typeofFunc,  SQLITE_FUNC_TYPEOF),
    FUNCTION2(length,            1, 0, 0, lengthFunc,  SQLITE_FUNC_LENGTH),
    FUNCTION(instr,              2, 0, 0, instrFunc        ),
    FUNCTION(substr,             2, 0, 0, substrFunc       ),
    FUNCTION(substr,             3, 0, 0, substrFunc       ),
    FUNCTION(printf,            -1, 0, 0, printfFunc       ),
    FUNCTION(unicode,            1, 0, 0, unicodeFunc      ),







|
>


|
>







1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
    FUNCTION(ltrim,              2, 1, 0, trimFunc         ),
    FUNCTION(rtrim,              1, 2, 0, trimFunc         ),
    FUNCTION(rtrim,              2, 2, 0, trimFunc         ),
    FUNCTION(trim,               1, 3, 0, trimFunc         ),
    FUNCTION(trim,               2, 3, 0, trimFunc         ),
    FUNCTION(min,               -1, 0, 1, minmaxFunc       ),
    FUNCTION(min,                0, 0, 1, 0                ),
    AGGREGATE2(min,              1, 0, 1, minmaxStep,      minMaxFinalize,
                                          SQLITE_FUNC_MINMAX ),
    FUNCTION(max,               -1, 1, 1, minmaxFunc       ),
    FUNCTION(max,                0, 1, 1, 0                ),
    AGGREGATE2(max,              1, 1, 1, minmaxStep,      minMaxFinalize,
                                          SQLITE_FUNC_MINMAX ),
    FUNCTION2(typeof,            1, 0, 0, typeofFunc,  SQLITE_FUNC_TYPEOF),
    FUNCTION2(length,            1, 0, 0, lengthFunc,  SQLITE_FUNC_LENGTH),
    FUNCTION(instr,              2, 0, 0, instrFunc        ),
    FUNCTION(substr,             2, 0, 0, substrFunc       ),
    FUNCTION(substr,             3, 0, 0, substrFunc       ),
    FUNCTION(printf,            -1, 0, 0, printfFunc       ),
    FUNCTION(unicode,            1, 0, 0, unicodeFunc      ),
1694
1695
1696
1697
1698
1699
1700



1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
    FUNCTION2(likely,            1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
    VFUNCTION(random,            0, 0, 0, randomFunc       ),
    VFUNCTION(randomblob,        1, 0, 0, randomBlob       ),
    FUNCTION(nullif,             2, 0, 1, nullifFunc       ),
    FUNCTION(sqlite_version,     0, 0, 0, versionFunc      ),
    FUNCTION(sqlite_source_id,   0, 0, 0, sourceidFunc     ),
    FUNCTION(sqlite_log,         2, 0, 0, errlogFunc       ),



#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
    FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc  ),
    FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc  ),
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
    FUNCTION(quote,              1, 0, 0, quoteFunc        ),
    VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
    VFUNCTION(changes,           0, 0, 0, changes          ),
    VFUNCTION(total_changes,     0, 0, 0, total_changes    ),
    FUNCTION(replace,            3, 0, 0, replaceFunc      ),
    FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
  #ifdef SQLITE_SOUNDEX
    FUNCTION(soundex,            1, 0, 0, soundexFunc      ),
  #endif
  #ifndef SQLITE_OMIT_LOAD_EXTENSION
    FUNCTION(load_extension,     1, 0, 0, loadExt          ),
    FUNCTION(load_extension,     2, 0, 0, loadExt          ),
  #endif
    AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
    AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
    AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
 /* AGGREGATE(count,             0, 0, 0, countStep,       countFinalize  ), */
    {0,SQLITE_UTF8|SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0},
    AGGREGATE(count,             1, 0, 0, countStep,       countFinalize  ),
    AGGREGATE(group_concat,      1, 0, 0, groupConcatStep, groupConcatFinalize),
    AGGREGATE(group_concat,      2, 0, 0, groupConcatStep, groupConcatFinalize),
  
    LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
  #ifdef SQLITE_CASE_SENSITIVE_LIKE
    LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),







>
>
>




















|
|







1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
    FUNCTION2(likely,            1, 0, 0, noopFunc,  SQLITE_FUNC_UNLIKELY),
    VFUNCTION(random,            0, 0, 0, randomFunc       ),
    VFUNCTION(randomblob,        1, 0, 0, randomBlob       ),
    FUNCTION(nullif,             2, 0, 1, nullifFunc       ),
    FUNCTION(sqlite_version,     0, 0, 0, versionFunc      ),
    FUNCTION(sqlite_source_id,   0, 0, 0, sourceidFunc     ),
    FUNCTION(sqlite_log,         2, 0, 0, errlogFunc       ),
#if SQLITE_USER_AUTHENTICATION
    FUNCTION(sqlite_crypt,       2, 0, 0, sqlite3CryptFunc ),
#endif
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
    FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc  ),
    FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc  ),
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
    FUNCTION(quote,              1, 0, 0, quoteFunc        ),
    VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
    VFUNCTION(changes,           0, 0, 0, changes          ),
    VFUNCTION(total_changes,     0, 0, 0, total_changes    ),
    FUNCTION(replace,            3, 0, 0, replaceFunc      ),
    FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
  #ifdef SQLITE_SOUNDEX
    FUNCTION(soundex,            1, 0, 0, soundexFunc      ),
  #endif
  #ifndef SQLITE_OMIT_LOAD_EXTENSION
    FUNCTION(load_extension,     1, 0, 0, loadExt          ),
    FUNCTION(load_extension,     2, 0, 0, loadExt          ),
  #endif
    AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
    AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
    AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
    AGGREGATE2(count,            0, 0, 0, countStep,       countFinalize,
               SQLITE_FUNC_COUNT  ),
    AGGREGATE(count,             1, 0, 0, countStep,       countFinalize  ),
    AGGREGATE(group_concat,      1, 0, 0, groupConcatStep, groupConcatFinalize),
    AGGREGATE(group_concat,      2, 0, 0, groupConcatStep, groupConcatFinalize),
  
    LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
  #ifdef SQLITE_CASE_SENSITIVE_LIKE
    LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
Changes to src/global.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*
** 2008 June 13
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains definitions of global variables and contants.
*/
#include "sqliteInt.h"

/* An array to map all upper-case characters into their corresponding
** lower-case character. 
**
** SQLite only considers US-ASCII (or EBCDIC) characters.  We do not












|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*
** 2008 June 13
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains definitions of global variables and constants.
*/
#include "sqliteInt.h"

/* An array to map all upper-case characters into their corresponding
** lower-case character. 
**
** SQLite only considers US-ASCII (or EBCDIC) characters.  We do not
Changes to src/insert.c.
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*
** Return a pointer to the column affinity string associated with index
** pIdx. A column affinity string has one character for each column in 
** the table, according to the affinity of the column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT
**  'b'            NONE
**  'c'            NUMERIC
**  'd'            INTEGER
**  'e'            REAL
**
** An extra 'd' is appended to the end of the string to cover the
** rowid that appears as the last column in every index.
**
** Memory for the buffer containing the column index affinity string
** is managed along with the rest of the Index structure. It will be
** released when sqlite3DeleteIndex() is called.
*/
const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){







|
|
|
|
|

|







52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*
** Return a pointer to the column affinity string associated with index
** pIdx. A column affinity string has one character for each column in 
** the table, according to the affinity of the column:
**
**  Character      Column affinity
**  ------------------------------
**  'A'            NONE
**  'B'            TEXT
**  'C'            NUMERIC
**  'D'            INTEGER
**  'F'            REAL
**
** An extra 'D' is appended to the end of the string to cover the
** rowid that appears as the last column in every index.
**
** Memory for the buffer containing the column index affinity string
** is managed along with the rest of the Index structure. It will be
** released when sqlite3DeleteIndex() is called.
*/
const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
** then just set the P4 operand of the previous opcode (which should  be
** an OP_MakeRecord) to the affinity string.
**
** A column affinity string has one character per column:
**
**  Character      Column affinity
**  ------------------------------
**  'a'            TEXT
**  'b'            NONE
**  'c'            NUMERIC
**  'd'            INTEGER
**  'e'            REAL
*/
void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
  int i;
  char *zColAff = pTab->zColAff;
  if( zColAff==0 ){
    sqlite3 *db = sqlite3VdbeDb(v);
    zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);







|
|
|
|
|







107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
** then just set the P4 operand of the previous opcode (which should  be
** an OP_MakeRecord) to the affinity string.
**
** A column affinity string has one character per column:
**
**  Character      Column affinity
**  ------------------------------
**  'A'            NONE
**  'B'            TEXT
**  'C'            NUMERIC
**  'D'            INTEGER
**  'E'            REAL
*/
void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
  int i;
  char *zColAff = pTab->zColAff;
  if( zColAff==0 ){
    sqlite3 *db = sqlite3VdbeDb(v);
    zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
**         insert the select result into <table> from R..R+n
**         goto C
**      D: cleanup
**
** The 4th template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT.  In the third form,
** we have to use a intermediate table to store the results of
** the select.  The template is like this:
**
**         X <- A
**         goto B
**      A: setup for the SELECT
**         loop over the tables in the SELECT
**           load value into register R..R+n







|







406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
**         insert the select result into <table> from R..R+n
**         goto C
**      D: cleanup
**
** The 4th template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT.  In the third form,
** we have to use an intermediate table to store the results of
** the select.  The template is like this:
**
**         X <- A
**         goto B
**      A: setup for the SELECT
**         loop over the tables in the SELECT
**           load value into register R..R+n
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

  /* If this is an AUTOINCREMENT table, look up the sequence number in the
  ** sqlite_sequence table and store it in memory cell regAutoinc.
  */
  regAutoinc = autoIncBegin(pParse, iDb, pTab);

  /* Allocate registers for holding the rowid of the new row,
  ** the content of the new row, and the assemblied row record.
  */
  regRowid = regIns = pParse->nMem+1;
  pParse->nMem += pTab->nCol + 1;
  if( IsVirtual(pTab) ){
    regRowid++;
    pParse->nMem++;
  }







|







571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

  /* If this is an AUTOINCREMENT table, look up the sequence number in the
  ** sqlite_sequence table and store it in memory cell regAutoinc.
  */
  regAutoinc = autoIncBegin(pParse, iDb, pTab);

  /* Allocate registers for holding the rowid of the new row,
  ** the content of the new row, and the assembled row record.
  */
  regRowid = regIns = pParse->nMem+1;
  pParse->nMem += pTab->nCol + 1;
  if( IsVirtual(pTab) ){
    regRowid++;
    pParse->nMem++;
  }
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
  sqlite3ExprListDelete(db, pList);
  sqlite3SelectDelete(db, pSelect);
  sqlite3IdListDelete(db, pColumn);
  sqlite3DbFree(db, aRegIdx);
}

/* Make sure "isView" and other macros defined above are undefined. Otherwise
** thely may interfere with compilation of other functions in this file
** (or in another file, if this file becomes part of the amalgamation).  */
#ifdef isView
 #undef isView
#endif
#ifdef pTrigger
 #undef pTrigger
#endif







|







1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
  sqlite3ExprListDelete(db, pList);
  sqlite3SelectDelete(db, pSelect);
  sqlite3IdListDelete(db, pColumn);
  sqlite3DbFree(db, aRegIdx);
}

/* Make sure "isView" and other macros defined above are undefined. Otherwise
** they may interfere with compilation of other functions in this file
** (or in another file, if this file becomes part of the amalgamation).  */
#ifdef isView
 #undef isView
#endif
#ifdef pTrigger
 #undef pTrigger
#endif
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
  Index *pIdx;         /* Pointer to one of the indices */
  Index *pPk = 0;      /* The PRIMARY KEY index */
  sqlite3 *db;         /* Database connection */
  int i;               /* loop counter */
  int ix;              /* Index loop counter */
  int nCol;            /* Number of columns */
  int onError;         /* Conflict resolution strategy */
  int j1;              /* Addresss of jump instruction */
  int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
  int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
  int ipkTop = 0;      /* Top of the rowid change constraint check */
  int ipkBottom = 0;   /* Bottom of the rowid change constraint check */
  u8 isUpdate;         /* True if this is an UPDATE operation */
  u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
  int regRowid = -1;   /* Register holding ROWID value */







|







1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
  Index *pIdx;         /* Pointer to one of the indices */
  Index *pPk = 0;      /* The PRIMARY KEY index */
  sqlite3 *db;         /* Database connection */
  int i;               /* loop counter */
  int ix;              /* Index loop counter */
  int nCol;            /* Number of columns */
  int onError;         /* Conflict resolution strategy */
  int j1;              /* Address of jump instruction */
  int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
  int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
  int ipkTop = 0;      /* Top of the rowid change constraint check */
  int ipkBottom = 0;   /* Bottom of the rowid change constraint check */
  u8 isUpdate;         /* True if this is an UPDATE operation */
  u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
  int regRowid = -1;   /* Register holding ROWID value */
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
  int appendBias,     /* True if this is likely to be an append */
  int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
){
  Vdbe *v;            /* Prepared statements under construction */
  Index *pIdx;        /* An index being inserted or updated */
  u8 pik_flags;       /* flag values passed to the btree insert */
  int regData;        /* Content registers (after the rowid) */
  int regRec;         /* Register holding assemblied record for the table */
  int i;              /* Loop counter */
  u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){







|







1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
  int appendBias,     /* True if this is likely to be an append */
  int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
){
  Vdbe *v;            /* Prepared statements under construction */
  Index *pIdx;        /* An index being inserted or updated */
  u8 pik_flags;       /* flag values passed to the btree insert */
  int regData;        /* Content registers (after the rowid) */
  int regRec;         /* Register holding assembled record for the table */
  int i;              /* Loop counter */
  u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682


#ifdef SQLITE_TEST
/*
** The following global variable is incremented whenever the
** transfer optimization is used.  This is used for testing
** purposes only - to make sure the transfer optimization really
** is happening when it is suppose to.
*/
int sqlite3_xferopt_count;
#endif /* SQLITE_TEST */


#ifndef SQLITE_OMIT_XFER_OPT
/*







|







1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682


#ifdef SQLITE_TEST
/*
** The following global variable is incremented whenever the
** transfer optimization is used.  This is used for testing
** purposes only - to make sure the transfer optimization really
** is happening when it is supposed to.
*/
int sqlite3_xferopt_count;
#endif /* SQLITE_TEST */


#ifndef SQLITE_OMIT_XFER_OPT
/*
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

/*
** Attempt the transfer optimization on INSERTs of the form
**
**     INSERT INTO tab1 SELECT * FROM tab2;
**
** The xfer optimization transfers raw records from tab2 over to tab1.  
** Columns are not decoded and reassemblied, which greatly improves
** performance.  Raw index records are transferred in the same way.
**
** The xfer optimization is only attempted if tab1 and tab2 are compatible.
** There are lots of rules for determining compatibility - see comments
** embedded in the code for details.
**
** This routine returns TRUE if the optimization is guaranteed to be used.







|







1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749

/*
** Attempt the transfer optimization on INSERTs of the form
**
**     INSERT INTO tab1 SELECT * FROM tab2;
**
** The xfer optimization transfers raw records from tab2 over to tab1.  
** Columns are not decoded and reassembled, which greatly improves
** performance.  Raw index records are transferred in the same way.
**
** The xfer optimization is only attempted if tab1 and tab2 are compatible.
** There are lots of rules for determining compatibility - see comments
** embedded in the code for details.
**
** This routine returns TRUE if the optimization is guaranteed to be used.
Changes to src/legacy.c.
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt);
  sqlite3DbFree(db, azCols);
#ifdef SQLITE_ENABLE_SQLRR
  SRRecExecEnd(db);
#endif

  rc = sqlite3ApiExit(db, rc);
  if( rc!=SQLITE_OK && ALWAYS(rc==sqlite3_errcode(db)) && pzErrMsg ){
    int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db));
    *pzErrMsg = sqlite3Malloc(nErrMsg);
    if( *pzErrMsg ){
      memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
    }else{
      rc = SQLITE_NOMEM;
      sqlite3Error(db, SQLITE_NOMEM);







|







129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt);
  sqlite3DbFree(db, azCols);
#ifdef SQLITE_ENABLE_SQLRR
  SRRecExecEnd(db);
#endif

  rc = sqlite3ApiExit(db, rc);
  if( rc!=SQLITE_OK && pzErrMsg ){
    int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db));
    *pzErrMsg = sqlite3Malloc(nErrMsg);
    if( *pzErrMsg ){
      memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
    }else{
      rc = SQLITE_NOMEM;
      sqlite3Error(db, SQLITE_NOMEM);
Changes to src/lempar.c.
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to Parse and ParseFree.
*/
void *ParseAlloc(void *(*mallocProc)(size_t)){
  yyParser *pParser;
  pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
  if( pParser ){
    pParser->yyidx = -1;
#ifdef YYTRACKMAXSTACKDEPTH
    pParser->yyidxMax = 0;
#endif
#if YYSTACKDEPTH<=0
    pParser->yystack = NULL;







|

|







267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to Parse and ParseFree.
*/
void *ParseAlloc(void *(*mallocProc)(u64)){
  yyParser *pParser;
  pParser = (yyParser*)(*mallocProc)( (u64)sizeof(yyParser) );
  if( pParser ){
    pParser->yyidx = -1;
#ifdef YYTRACKMAXSTACKDEPTH
    pParser->yyidxMax = 0;
#endif
#if YYSTACKDEPTH<=0
    pParser->yystack = NULL;
Changes to src/loadext.c.
386
387
388
389
390
391
392
393













394
395
396
397
398
399
400
  sqlite3_stmt_busy,
  sqlite3_stmt_readonly,
  sqlite3_stricmp,
  sqlite3_uri_boolean,
  sqlite3_uri_int64,
  sqlite3_uri_parameter,
  sqlite3_vsnprintf,
  sqlite3_wal_checkpoint_v2













};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.







|
>
>
>
>
>
>
>
>
>
>
>
>
>







386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
  sqlite3_stmt_busy,
  sqlite3_stmt_readonly,
  sqlite3_stricmp,
  sqlite3_uri_boolean,
  sqlite3_uri_int64,
  sqlite3_uri_parameter,
  sqlite3_vsnprintf,
  sqlite3_wal_checkpoint_v2,
  /* Version 3.8.7 and later */
  sqlite3_auto_extension,
  sqlite3_bind_blob64,
  sqlite3_bind_text64,
  sqlite3_cancel_auto_extension,
  sqlite3_load_extension,
  sqlite3_malloc64,
  sqlite3_msize,
  sqlite3_realloc64,
  sqlite3_reset_auto_extension,
  sqlite3_result_blob64,
  sqlite3_result_text64,
  sqlite3_strglob
};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.
Changes to src/main.c.
984
985
986
987
988
989
990




991
992
993
994
995
996
997
  }
  sqlite3HashClear(&db->aModule);
#endif

  sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */
  sqlite3ValueFree(db->pErr);
  sqlite3CloseExtensions(db);





  db->magic = SQLITE_MAGIC_ERROR;

  /* The temp-database schema is allocated differently from the other schema
  ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
  ** So it needs to be freed here. Todo: Why not roll the temp schema into
  ** the same sqliteMalloc() as the one that allocates the database 







>
>
>
>







984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
  }
  sqlite3HashClear(&db->aModule);
#endif

  sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */
  sqlite3ValueFree(db->pErr);
  sqlite3CloseExtensions(db);
#if SQLITE_USER_AUTHENTICATION
  sqlite3_free(db->auth.zAuthUser);
  sqlite3_free(db->auth.zAuthPW);
#endif

  db->magic = SQLITE_MAGIC_ERROR;

  /* The temp-database schema is allocated differently from the other schema
  ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
  ** So it needs to be freed here. Todo: Why not roll the temp schema into
  ** the same sqliteMalloc() as the one that allocates the database 
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
    }
    sqlite3Error(db, rc);
    goto opendb_out;
  }
  db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
  db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);


  /* The default safety_level for the main database is 'full'; for the temp
  ** database it is 'NONE'. This matches the pager layer defaults.  
  */
  db->aDb[0].zName = "main";
  db->aDb[0].safety_level = 3;
  db->aDb[1].zName = "temp";
  db->aDb[1].safety_level = 1;







<







2665
2666
2667
2668
2669
2670
2671

2672
2673
2674
2675
2676
2677
2678
    }
    sqlite3Error(db, rc);
    goto opendb_out;
  }
  db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
  db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);


  /* The default safety_level for the main database is 'full'; for the temp
  ** database it is 'NONE'. This matches the pager layer defaults.  
  */
  db->aDb[0].zName = "main";
  db->aDb[0].safety_level = 3;
  db->aDb[1].zName = "temp";
  db->aDb[1].safety_level = 1;
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
** by the next COMMIT or ROLLBACK.
*/
int sqlite3_get_autocommit(sqlite3 *db){
  return db->autoCommit;
}

/*
** The following routines are subtitutes for constants SQLITE_CORRUPT,
** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error
** constants.  They server two purposes:
**
**   1.  Serve as a convenient place to set a breakpoint in a debugger
**       to detect when version error conditions occurs.
**
**   2.  Invoke sqlite3_log() to provide the source code location where
**       a low-level error is first detected.
*/







|

|







2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
** by the next COMMIT or ROLLBACK.
*/
int sqlite3_get_autocommit(sqlite3 *db){
  return db->autoCommit;
}

/*
** The following routines are substitutes for constants SQLITE_CORRUPT,
** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error
** constants.  They serve two purposes:
**
**   1.  Serve as a convenient place to set a breakpoint in a debugger
**       to detect when version error conditions occurs.
**
**   2.  Invoke sqlite3_log() to provide the source code location where
**       a low-level error is first detected.
*/
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
    ** Set the PENDING byte to the value in the argument, if X>0.
    ** Make no changes if X==0.  Return the value of the pending byte
    ** as it existing before this routine was called.
    **
    ** IMPORTANT:  Changing the PENDING byte from 0x40000000 results in
    ** an incompatible database file format.  Changing the PENDING byte
    ** while any database connection is open results in undefined and
    ** dileterious behavior.
    */
    case SQLITE_TESTCTRL_PENDING_BYTE: {
      rc = PENDING_BYTE;
#ifndef SQLITE_OMIT_WSD
      {
        unsigned int newVal = va_arg(ap, unsigned int);
        if( newVal ) sqlite3PendingByte = newVal;







|







3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
    ** Set the PENDING byte to the value in the argument, if X>0.
    ** Make no changes if X==0.  Return the value of the pending byte
    ** as it existing before this routine was called.
    **
    ** IMPORTANT:  Changing the PENDING byte from 0x40000000 results in
    ** an incompatible database file format.  Changing the PENDING byte
    ** while any database connection is open results in undefined and
    ** deleterious behavior.
    */
    case SQLITE_TESTCTRL_PENDING_BYTE: {
      rc = PENDING_BYTE;
#ifndef SQLITE_OMIT_WSD
      {
        unsigned int newVal = va_arg(ap, unsigned int);
        if( newVal ) sqlite3PendingByte = newVal;
Changes to src/malloc.c.
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327






328
329
330
331
332
333
334
  return nFull;
}

/*
** Allocate memory.  This routine is like sqlite3_malloc() except that it
** assumes the memory subsystem has already been initialized.
*/
void *sqlite3Malloc(int n){
  void *p;
  if( n<=0               /* IMP: R-65312-04917 */ 
   || n>=0x7fffff00
  ){
    /* A memory allocation of a number of bytes which is near the maximum
    ** signed integer value might cause an integer overflow inside of the
    ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
    ** 255 bytes of overhead.  SQLite itself will never use anything near
    ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
    p = 0;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    mallocWithAlarm(n, &p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    p = sqlite3GlobalConfig.m.xMalloc(n);
  }
  assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-04675-44850 */
  return p;
}

/*
** This version of the memory allocation is for use by the application.
** First make sure the memory subsystem is initialized, then do the
** allocation.
*/
void *sqlite3_malloc(int n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif






  return sqlite3Malloc(n);
}

/*
** Each thread may only have a single outstanding allocation from
** xScratchMalloc().  We verify this constraint in the single-threaded
** case by setting scratchAllocOut to 1 when an allocation







|

<
|
<








|


|














>
>
>
>
>
>







290
291
292
293
294
295
296
297
298

299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
  return nFull;
}

/*
** Allocate memory.  This routine is like sqlite3_malloc() except that it
** assumes the memory subsystem has already been initialized.
*/
void *sqlite3Malloc(u64 n){
  void *p;

  if( n==0 || n>=0x7fffff00 ){

    /* A memory allocation of a number of bytes which is near the maximum
    ** signed integer value might cause an integer overflow inside of the
    ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
    ** 255 bytes of overhead.  SQLite itself will never use anything near
    ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
    p = 0;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    mallocWithAlarm((int)n, &p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    p = sqlite3GlobalConfig.m.xMalloc((int)n);
  }
  assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-04675-44850 */
  return p;
}

/*
** This version of the memory allocation is for use by the application.
** First make sure the memory subsystem is initialized, then do the
** allocation.
*/
void *sqlite3_malloc(int n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return n<=0 ? 0 : sqlite3Malloc(n);
}
void *sqlite3_malloc64(sqlite3_uint64 n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3Malloc(n);
}

/*
** Each thread may only have a single outstanding allocation from
** xScratchMalloc().  We verify this constraint in the single-threaded
** case by setting scratchAllocOut to 1 when an allocation
443
444
445
446
447
448
449
450


451
452
453
454
455
456
457
458
459
460




461
462
463
464
465
466
467
*/
int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
  return sqlite3GlobalConfig.m.xSize(p);
}
int sqlite3DbMallocSize(sqlite3 *db, void *p){
  assert( db!=0 );


  assert( sqlite3_mutex_held(db->mutex) );
  if( isLookaside(db, p) ){
    return db->lookaside.sz;
  }else{
    assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
    assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
    assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
    return sqlite3GlobalConfig.m.xSize(p);
  }
}





/*
** Free memory previously obtained from sqlite3Malloc().
*/
void sqlite3_free(void *p){
  if( p==0 ) return;  /* IMP: R-49053-54554 */
  assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );







|
>
>
|
|
|
|
|
|
|
|
|
|
>
>
>
>







447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
*/
int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
  return sqlite3GlobalConfig.m.xSize(p);
}
int sqlite3DbMallocSize(sqlite3 *db, void *p){
  if( db==0 ){
    return sqlite3MallocSize(p);
  }else{
    assert( sqlite3_mutex_held(db->mutex) );
    if( isLookaside(db, p) ){
      return db->lookaside.sz;
    }else{
      assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
      assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
      assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
      return sqlite3GlobalConfig.m.xSize(p);
    }
  }
}
sqlite3_uint64 sqlite3_msize(void *p){
  return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
}

/*
** Free memory previously obtained from sqlite3Malloc().
*/
void sqlite3_free(void *p){
  if( p==0 ) return;  /* IMP: R-49053-54554 */
  assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  sqlite3_free(p);
}

/*
** Change the size of an existing memory allocation
*/
void *sqlite3Realloc(void *pOld, int nBytes){
  int nOld, nNew, nDiff;
  void *pNew;
  if( pOld==0 ){
    return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
  }
  if( nBytes<=0 ){
    sqlite3_free(pOld); /* IMP: R-31593-10574 */
    return 0;
  }
  if( nBytes>=0x7fffff00 ){
    /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
    return 0;
  }
  nOld = sqlite3MallocSize(pOld);
  /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
  ** argument to xRealloc is always a value returned by a prior call to
  ** xRoundup. */
  nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
    nDiff = nNew - nOld;
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
    }
    assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
    assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm(nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);







|





|











|




|









|







525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  sqlite3_free(p);
}

/*
** Change the size of an existing memory allocation
*/
void *sqlite3Realloc(void *pOld, u64 nBytes){
  int nOld, nNew, nDiff;
  void *pNew;
  if( pOld==0 ){
    return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
  }
  if( nBytes==0 ){
    sqlite3_free(pOld); /* IMP: R-31593-10574 */
    return 0;
  }
  if( nBytes>=0x7fffff00 ){
    /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
    return 0;
  }
  nOld = sqlite3MallocSize(pOld);
  /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
  ** argument to xRealloc is always a value returned by a prior call to
  ** xRoundup. */
  nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
    }
    assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
    assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
571
572
573
574
575
576
577







578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
** The public interface to sqlite3Realloc.  Make sure that the memory
** subsystem is initialized prior to invoking sqliteRealloc.
*/
void *sqlite3_realloc(void *pOld, int n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif







  return sqlite3Realloc(pOld, n);
}


/*
** Allocate and zero memory.
*/ 
void *sqlite3MallocZero(int n){
  void *p = sqlite3Malloc(n);
  if( p ){
    memset(p, 0, n);
  }
  return p;
}

/*
** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
void *sqlite3DbMallocZero(sqlite3 *db, int n){
  void *p = sqlite3DbMallocRaw(db, n);
  if( p ){
    memset(p, 0, n);
  }
  return p;
}

/*
** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.







>
>
>
>
>
>
>







|


|








|


|







581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
** The public interface to sqlite3Realloc.  Make sure that the memory
** subsystem is initialized prior to invoking sqliteRealloc.
*/
void *sqlite3_realloc(void *pOld, int n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  if( n<0 ) n = 0;
  return sqlite3Realloc(pOld, n);
}
void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3Realloc(pOld, n);
}


/*
** Allocate and zero memory.
*/ 
void *sqlite3MallocZero(u64 n){
  void *p = sqlite3Malloc(n);
  if( p ){
    memset(p, 0, (size_t)n);
  }
  return p;
}

/*
** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
  void *p = sqlite3DbMallocRaw(db, n);
  if( p ){
    memset(p, 0, (size_t)n);
  }
  return p;
}

/*
** Allocate and zero memory.  If the allocation fails, make
** the mallocFailed flag in the connection pointer.
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
**         int *a = (int*)sqlite3DbMallocRaw(db, 100);
**         int *b = (int*)sqlite3DbMallocRaw(db, 200);
**         if( b ) a[10] = 9;
**
** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
** that all prior mallocs (ex: "a") worked too.
*/
void *sqlite3DbMallocRaw(sqlite3 *db, int n){
  void *p;
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  assert( db==0 || db->pnBytesFreed==0 );
#ifndef SQLITE_OMIT_LOOKASIDE
  if( db ){
    LookasideSlot *pBuf;
    if( db->mallocFailed ){







|







633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
**         int *a = (int*)sqlite3DbMallocRaw(db, 100);
**         int *b = (int*)sqlite3DbMallocRaw(db, 200);
**         if( b ) a[10] = 9;
**
** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
** that all prior mallocs (ex: "a") worked too.
*/
void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
  void *p;
  assert( db==0 || sqlite3_mutex_held(db->mutex) );
  assert( db==0 || db->pnBytesFreed==0 );
#ifndef SQLITE_OMIT_LOOKASIDE
  if( db ){
    LookasideSlot *pBuf;
    if( db->mallocFailed ){
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
  return p;
}

/*
** Resize the block of memory pointed to by p to n bytes. If the
** resize fails, set the mallocFailed flag in the connection object.
*/
void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
  void *pNew = 0;
  assert( db!=0 );
  assert( sqlite3_mutex_held(db->mutex) );
  if( db->mallocFailed==0 ){
    if( p==0 ){
      return sqlite3DbMallocRaw(db, n);
    }
    if( isLookaside(db, p) ){
      if( n<=db->lookaside.sz ){
        return p;
      }
      pNew = sqlite3DbMallocRaw(db, n);
      if( pNew ){
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
      assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc(p, n);
      if( !pNew ){
        sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
        db->mallocFailed = 1;
      }
      sqlite3MemdebugSetType(pNew, MEMTYPE_DB | 
            (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
    }
  }
  return pNew;
}

/*
** Attempt to reallocate p.  If the reallocation fails, then free p
** and set the mallocFailed flag in the database connection.
*/
void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
  void *pNew;
  pNew = sqlite3DbRealloc(db, p, n);
  if( !pNew ){
    sqlite3DbFree(db, p);
  }
  return pNew;
}







|




















|















|







677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
  return p;
}

/*
** Resize the block of memory pointed to by p to n bytes. If the
** resize fails, set the mallocFailed flag in the connection object.
*/
void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
  void *pNew = 0;
  assert( db!=0 );
  assert( sqlite3_mutex_held(db->mutex) );
  if( db->mallocFailed==0 ){
    if( p==0 ){
      return sqlite3DbMallocRaw(db, n);
    }
    if( isLookaside(db, p) ){
      if( n<=db->lookaside.sz ){
        return p;
      }
      pNew = sqlite3DbMallocRaw(db, n);
      if( pNew ){
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
      assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc64(p, n);
      if( !pNew ){
        sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
        db->mallocFailed = 1;
      }
      sqlite3MemdebugSetType(pNew, MEMTYPE_DB | 
            (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
    }
  }
  return pNew;
}

/*
** Attempt to reallocate p.  If the reallocation fails, then free p
** and set the mallocFailed flag in the database connection.
*/
void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
  void *pNew;
  pNew = sqlite3DbRealloc(db, p, n);
  if( !pNew ){
    sqlite3DbFree(db, p);
  }
  return pNew;
}
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
  assert( (n&0x7fffffff)==n );
  zNew = sqlite3DbMallocRaw(db, (int)n);
  if( zNew ){
    memcpy(zNew, z, n);
  }
  return zNew;
}
char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
  char *zNew;
  if( z==0 ){
    return 0;
  }
  assert( (n&0x7fffffff)==n );
  zNew = sqlite3DbMallocRaw(db, n+1);
  if( zNew ){
    memcpy(zNew, z, n);
    zNew[n] = 0;
  }
  return zNew;
}

/*
** Create a string from the zFromat argument and the va_list that follows.







|







|







744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
  assert( (n&0x7fffffff)==n );
  zNew = sqlite3DbMallocRaw(db, (int)n);
  if( zNew ){
    memcpy(zNew, z, n);
  }
  return zNew;
}
char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
  char *zNew;
  if( z==0 ){
    return 0;
  }
  assert( (n&0x7fffffff)==n );
  zNew = sqlite3DbMallocRaw(db, n+1);
  if( zNew ){
    memcpy(zNew, z, (size_t)n);
    zNew[n] = 0;
  }
  return zNew;
}

/*
** Create a string from the zFromat argument and the va_list that follows.
Changes to src/mem1.c.
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

/*
** Like realloc().  Resize an allocation previously obtained from
** sqlite3MemMalloc().
**
** For this low-level interface, we know that pPrior!=0.  Cases where
** pPrior==0 while have been intercepted by higher-level routine and
** redirected to xMalloc.  Similarly, we know that nByte>0 becauses
** cases where nByte<=0 will have been intercepted by higher-level
** routines and redirected to xFree.
*/
static void *sqlite3MemRealloc(void *pPrior, int nByte){
#ifdef SQLITE_MALLOCSIZE
  void *p = SQLITE_REALLOC(pPrior, nByte);
  if( p==0 ){







|







184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

/*
** Like realloc().  Resize an allocation previously obtained from
** sqlite3MemMalloc().
**
** For this low-level interface, we know that pPrior!=0.  Cases where
** pPrior==0 while have been intercepted by higher-level routine and
** redirected to xMalloc.  Similarly, we know that nByte>0 because
** cases where nByte<=0 will have been intercepted by higher-level
** routines and redirected to xFree.
*/
static void *sqlite3MemRealloc(void *pPrior, int nByte){
#ifdef SQLITE_MALLOCSIZE
  void *p = SQLITE_REALLOC(pPrior, nByte);
  if( p==0 ){
Changes to src/mem5.c.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
**
** This memory allocator uses the following algorithm:
**
**   1.  All memory allocations sizes are rounded up to a power of 2.
**
**   2.  If two adjacent free blocks are the halves of a larger block,
**       then the two blocks are coalesed into the single larger block.
**
**   3.  New memory is allocated from the first available free block.
**
** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
** Concerning Dynamic Storage Allocation". Journal of the Association for
** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
** 







|







24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
**
** This memory allocator uses the following algorithm:
**
**   1.  All memory allocations sizes are rounded up to a power of 2.
**
**   2.  If two adjacent free blocks are the halves of a larger block,
**       then the two blocks are coalesced into the single larger block.
**
**   3.  New memory is allocated from the first available free block.
**
** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
** Concerning Dynamic Storage Allocation". Journal of the Association for
** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
** 
Changes to src/memjournal.c.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
typedef struct FileChunk FileChunk;

/* Space to hold the rollback journal is allocated in increments of
** this many bytes.
**
** The size chosen is a little less than a power of two.  That way,
** the FileChunk object will have a size that almost exactly fills
** a power-of-two allocation.  This mimimizes wasted space in power-of-two
** memory allocators.
*/
#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))

/*
** The rollback journal is composed of a linked list of these structures.
*/







|







22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
typedef struct FileChunk FileChunk;

/* Space to hold the rollback journal is allocated in increments of
** this many bytes.
**
** The size chosen is a little less than a power of two.  That way,
** the FileChunk object will have a size that almost exactly fills
** a power-of-two allocation.  This minimizes wasted space in power-of-two
** memory allocators.
*/
#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))

/*
** The rollback journal is composed of a linked list of these structures.
*/
Changes to src/mutex.h.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
*/


/*
** Figure out what version of the code to use.  The choices are
**
**   SQLITE_MUTEX_OMIT         No mutex logic.  Not even stubs.  The
**                             mutexes implemention cannot be overridden
**                             at start-time.
**
**   SQLITE_MUTEX_NOOP         For single-threaded applications.  No
**                             mutual exclusion is provided.  But this
**                             implementation can be overridden at
**                             start-time.
**







|







21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
*/


/*
** Figure out what version of the code to use.  The choices are
**
**   SQLITE_MUTEX_OMIT         No mutex logic.  Not even stubs.  The
**                             mutexes implementation cannot be overridden
**                             at start-time.
**
**   SQLITE_MUTEX_NOOP         For single-threaded applications.  No
**                             mutual exclusion is provided.  But this
**                             implementation can be overridden at
**                             start-time.
**
Changes to src/os.h.
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
**
** The following #defines specify the range of bytes used for locking.
** SHARED_SIZE is the number of bytes available in the pool from which
** a random byte is selected for a shared lock.  The pool of bytes for
** shared locks begins at SHARED_FIRST. 
**
** The same locking strategy and
** byte ranges are used for Unix.  This leaves open the possiblity of having
** clients on win95, winNT, and unix all talking to the same shared file
** and all locking correctly.  To do so would require that samba (or whatever
** tool is being used for file sharing) implements locks correctly between
** windows and unix.  I'm guessing that isn't likely to happen, but by
** using the same locking range we are at least open to the possibility.
**
** Locking in windows is manditory.  For this reason, we cannot store







|







116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
**
** The following #defines specify the range of bytes used for locking.
** SHARED_SIZE is the number of bytes available in the pool from which
** a random byte is selected for a shared lock.  The pool of bytes for
** shared locks begins at SHARED_FIRST. 
**
** The same locking strategy and
** byte ranges are used for Unix.  This leaves open the possibility of having
** clients on win95, winNT, and unix all talking to the same shared file
** and all locking correctly.  To do so would require that samba (or whatever
** tool is being used for file sharing) implements locks correctly between
** windows and unix.  I'm guessing that isn't likely to happen, but by
** using the same locking range we are at least open to the possibility.
**
** Locking in windows is manditory.  For this reason, we cannot store
Changes to src/os_unix.c.
590
591
592
593
594
595
596








597
598
599
600
601
602
603
# if defined(__linux__) && defined(_GNU_SOURCE)
#  define HAVE_MREMAP 1
# else
#  define HAVE_MREMAP 0
# endif
#endif









/*
** Different Unix systems declare open() in different ways.  Same use
** open(const char*,int,mode_t).  Others use open(const char*,int,...).
** The difference is important when using a pointer to the function.
**
** The safest way to deal with the problem is to always use this wrapper
** which always has the same well-defined interface.







>
>
>
>
>
>
>
>







590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
# if defined(__linux__) && defined(_GNU_SOURCE)
#  define HAVE_MREMAP 1
# else
#  define HAVE_MREMAP 0
# endif
#endif

/*
** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek()
** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined.
*/
#ifdef __ANDROID__
# define lseek lseek64
#endif

/*
** Different Unix systems declare open() in different ways.  Same use
** open(const char*,int,mode_t).  Others use open(const char*,int,...).
** The difference is important when using a pointer to the function.
**
** The safest way to deal with the problem is to always use this wrapper
** which always has the same well-defined interface.
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
}
#endif


#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
/*
** Helper function for printing out trace information from debugging
** binaries. This returns the string represetation of the supplied
** integer lock-type.
*/
static const char *azFileLock(int eFileLock){
  switch( eFileLock ){
    case NO_LOCK: return "NONE";
    case SHARED_LOCK: return "SHARED";
    case RESERVED_LOCK: return "RESERVED";







|







930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
}
#endif


#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
/*
** Helper function for printing out trace information from debugging
** binaries. This returns the string representation of the supplied
** integer lock-type.
*/
static const char *azFileLock(int eFileLock){
  switch( eFileLock ){
    case NO_LOCK: return "NONE";
    case SHARED_LOCK: return "SHARED";
    case RESERVED_LOCK: return "RESERVED";
999
1000
1001
1002
1003
1004
1005




1006
1007
1008









1009
1010
1011
1012
1013
1014
1015
}
#undef osFcntl
#define osFcntl lockTrace
#endif /* SQLITE_LOCK_TRACE */

/*
** Retry ftruncate() calls that fail due to EINTR




*/
static int robust_ftruncate(int h, sqlite3_int64 sz){
  int rc;









  do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
  return rc;
}

/*
** This routine translates a standard POSIX errno code into something
** useful to the clients of the sqlite3 functions.  Specifically, it is







>
>
>
>



>
>
>
>
>
>
>
>
>







1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
}
#undef osFcntl
#define osFcntl lockTrace
#endif /* SQLITE_LOCK_TRACE */

/*
** Retry ftruncate() calls that fail due to EINTR
**
** All calls to ftruncate() within this file should be made through this wrapper.
** On the Android platform, bypassing the logic below could lead to a corrupt
** database.
*/
static int robust_ftruncate(int h, sqlite3_int64 sz){
  int rc;
#ifdef __ANDROID__
  /* On Android, ftruncate() always uses 32-bit offsets, even if 
  ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to
  ** truncate a file to any size larger than 2GiB. Silently ignore any
  ** such attempts.  */
  if( sz>(sqlite3_int64)0x7FFFFFFF ){
    rc = SQLITE_OK;
  }else
#endif
  do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
  return rc;
}

/*
** This routine translates a standard POSIX errno code into something
** useful to the clients of the sqlite3 functions.  Specifically, it is
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
/*
** Seek to the offset passed as the second argument, then read cnt 
** bytes into pBuf. Return the number of bytes actually read.
**
** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
** one system to another.  Since SQLite does not define USE_PREAD
** any any form by default, we will not attempt to define _XOPEN_SOURCE.
** See tickets #2741 and #2681.
**
** To avoid stomping the errno value on a failed read the lastErrno value
** is set before returning.
*/
static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
  int got;







|







3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
/*
** Seek to the offset passed as the second argument, then read cnt 
** bytes into pBuf. Return the number of bytes actually read.
**
** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
** one system to another.  Since SQLite does not define USE_PREAD
** in any form by default, we will not attempt to define _XOPEN_SOURCE.
** See tickets #2741 and #2681.
**
** To avoid stomping the errno value on a failed read the lastErrno value
** is set before returning.
*/
static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
  int got;
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk>0 ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  rc = robust_ftruncate(pFile->h, (off_t)nByte);
  if( rc ){
    storeLastErrno(pFile, errno);
    return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
  }else{
#ifdef SQLITE_DEBUG
    /* If we are doing a normal write to a database file (as opposed to
    ** doing a hot-journal rollback or a write to some file other than a







|







4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk>0 ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  rc = robust_ftruncate(pFile->h, nByte);
  if( rc ){
    storeLastErrno(pFile, errno);
    return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
  }else{
#ifdef SQLITE_DEBUG
    /* If we are doing a normal write to a database file (as opposed to
    ** doing a hot-journal rollback or a write to some file other than a
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452

static int unixLockstatePid(unixFile *, pid_t, int *);

#endif /* (SQLITE_ENABLE_APPLE_SPI>0) && defined(__APPLE__) */


/*
** If *pArg is inititially negative then this is a query.  Set *pArg to
** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
**
** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
*/
static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
  if( *pArg<0 ){
    *pArg = (pFile->ctrlFlags & mask)!=0;







|







4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473

static int unixLockstatePid(unixFile *, pid_t, int *);

#endif /* (SQLITE_ENABLE_APPLE_SPI>0) && defined(__APPLE__) */


/*
** If *pArg is initially negative then this is a query.  Set *pArg to
** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
**
** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
*/
static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
  if( *pArg<0 ){
    *pArg = (pFile->ctrlFlags & mask)!=0;
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
}
#endif /* __QNXNTO__ */

/*
** Return the device characteristics for the file.
**
** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
** However, that choice is contraversial since technically the underlying
** file system does not always provide powersafe overwrites.  (In other
** words, after a power-loss event, parts of the file that were never
** written might end up being altered.)  However, non-PSOW behavior is very,
** very rare.  And asserting PSOW makes a large reduction in the amount
** of required I/O for journaling, since a lot of padding is eliminated.
**  Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
** available to turn it off and URI query parameter available to turn it off.







|







4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
}
#endif /* __QNXNTO__ */

/*
** Return the device characteristics for the file.
**
** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
** However, that choice is controversial since technically the underlying
** file system does not always provide powersafe overwrites.  (In other
** words, after a power-loss event, parts of the file that were never
** written might end up being altered.)  However, non-PSOW behavior is very,
** very rare.  And asserting PSOW makes a large reduction in the amount
** of required I/O for journaling, since a lot of padding is eliminated.
**  Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
** available to turn it off and URI query parameter available to turn it off.
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
** the correct finder-function for that VFS.
**
** Most finder functions return a pointer to a fixed sqlite3_io_methods
** object.  The only interesting finder-function is autolockIoFinder, which
** looks at the filesystem type and tries to guess the best locking
** strategy from that.
**
** For finder-funtion F, two objects are created:
**
**    (1) The real finder-function named "FImpt()".
**
**    (2) A constant pointer to this function named just "F".
**
**
** A pointer to the F pointer is used as the pAppData value for VFS







|







6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
** the correct finder-function for that VFS.
**
** Most finder functions return a pointer to a fixed sqlite3_io_methods
** object.  The only interesting finder-function is autolockIoFinder, which
** looks at the filesystem type and tries to guess the best locking
** strategy from that.
**
** For finder-function F, two objects are created:
**
**    (1) The real finder-function named "FImpt()".
**
**    (2) A constant pointer to this function named just "F".
**
**
** A pointer to the F pointer is used as the pAppData value for VFS
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
}
static const sqlite3_io_methods 
  *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;

#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */

/*
** An abstract type for a pointer to a IO method finder function:
*/
typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);


/****************************************************************************
**************************** sqlite3_vfs methods ****************************
**







|







6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
}
static const sqlite3_io_methods 
  *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;

#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */

/*
** An abstract type for a pointer to an IO method finder function:
*/
typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);


/****************************************************************************
**************************** sqlite3_vfs methods ****************************
**
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
  /* A stat() call may fail for various reasons. If this happens, it is
  ** almost certain that an open() call on the same path will also fail.
  ** For this reason, if an error occurs in the stat() call here, it is
  ** ignored and -1 is returned. The caller will try to open a new file
  ** descriptor on the same path, fail, and return an error to SQLite.
  **
  ** Even if a subsequent open() call does succeed, the consequences of
  ** not searching for a resusable file descriptor are not dire.  */
  if( 0==osStat(zPath, &sStat) ){
    unixInodeInfo *pInode;

    unixEnterMutex();
    pInode = inodeList;
    while( pInode && (pInode->fileId.dev!=sStat.st_dev
                     || pInode->fileId.ino!=sStat.st_ino) ){







|







6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
  /* A stat() call may fail for various reasons. If this happens, it is
  ** almost certain that an open() call on the same path will also fail.
  ** For this reason, if an error occurs in the stat() call here, it is
  ** ignored and -1 is returned. The caller will try to open a new file
  ** descriptor on the same path, fail, and return an error to SQLite.
  **
  ** Even if a subsequent open() call does succeed, the consequences of
  ** not searching for a reusable file descriptor are not dire.  */
  if( 0==osStat(zPath, &sStat) ){
    unixInodeInfo *pInode;

    unixEnterMutex();
    pInode = inodeList;
    while( pInode && (pInode->fileId.dev!=sStat.st_dev
                     || pInode->fileId.ino!=sStat.st_ino) ){
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
/*
** This function is called by unixOpen() to determine the unix permissions
** to create new files with. If no error occurs, then SQLITE_OK is returned
** and a value suitable for passing as the third argument to open(2) is
** written to *pMode. If an IO error occurs, an SQLite error code is 
** returned and the value of *pMode is not modified.
**
** In most cases cases, this routine sets *pMode to 0, which will become
** an indication to robust_open() to create the file using
** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
** But if the file being opened is a WAL or regular journal file, then 
** this function queries the file-system for the permissions on the 
** corresponding database file and sets *pMode to this value. Whenever 
** possible, WAL and journal files are created using the same permissions 
** as the associated database file.







|







6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
/*
** This function is called by unixOpen() to determine the unix permissions
** to create new files with. If no error occurs, then SQLITE_OK is returned
** and a value suitable for passing as the third argument to open(2) is
** written to *pMode. If an IO error occurs, an SQLite error code is 
** returned and the value of *pMode is not modified.
**
** In most cases, this routine sets *pMode to 0, which will become
** an indication to robust_open() to create the file using
** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
** But if the file being opened is a WAL or regular journal file, then 
** this function queries the file-system for the permissions on the 
** corresponding database file and sets *pMode to this value. Whenever 
** possible, WAL and journal files are created using the same permissions 
** as the associated database file.
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
**
** The conch file - to use a proxy file, sqlite must first "hold the conch"
** by taking an sqlite-style shared lock on the conch file, reading the
** contents and comparing the host's unique host ID (see below) and lock
** proxy path against the values stored in the conch.  The conch file is
** stored in the same directory as the database file and the file name
** is patterned after the database file name as ".<databasename>-conch".
** If the conch file does not exist, or it's contents do not match the
** host ID and/or proxy path, then the lock is escalated to an exclusive
** lock and the conch file contents is updated with the host ID and proxy
** path and the lock is downgraded to a shared lock again.  If the conch
** is held by another process (with a shared lock), the exclusive lock
** will fail and SQLITE_BUSY is returned.
**
** The proxy file - a single-byte file used for all advisory file locks







|







7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
**
** The conch file - to use a proxy file, sqlite must first "hold the conch"
** by taking an sqlite-style shared lock on the conch file, reading the
** contents and comparing the host's unique host ID (see below) and lock
** proxy path against the values stored in the conch.  The conch file is
** stored in the same directory as the database file and the file name
** is patterned after the database file name as ".<databasename>-conch".
** If the conch file does not exist, or its contents do not match the
** host ID and/or proxy path, then the lock is escalated to an exclusive
** lock and the conch file contents is updated with the host ID and proxy
** path and the lock is downgraded to a shared lock again.  If the conch
** is held by another process (with a shared lock), the exclusive lock
** will fail and SQLITE_BUSY is returned.
**
** The proxy file - a single-byte file used for all advisory file locks
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
**       lock proxy files, only used when LOCKPROXYDIR is not set.
**    
**    
** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
** force proxy locking to be used for every database file opened, and 0
** will force automatic proxy locking to be disabled for all database
** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
*/

/*
** Proxy locking is only available on MacOSX 
*/
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE







|







7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
**       lock proxy files, only used when LOCKPROXYDIR is not set.
**    
**    
** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
** force proxy locking to be used for every database file opened, and 0
** will force automatic proxy locking to be disabled for all database
** files (explicitly calling the SQLITE_SET_LOCKPROXYFILE pragma or
** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
*/

/*
** Proxy locking is only available on MacOSX 
*/
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
Changes to src/os_win.c.
1282
1283
1284
1285
1286
1287
1288

1289
1290
1291
1292
1293
1294

1295
1296
1297
1298
1299
1300
1301
  assert( sleepObj!=NULL );
  osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE);
#else
  osSleep(milliseconds);
#endif
}


DWORD sqlite3Win32Wait(HANDLE hObject){
  DWORD rc;
  while( (rc = osWaitForSingleObjectEx(hObject, INFINITE,
                                       TRUE))==WAIT_IO_COMPLETION ){}
  return rc;
}


/*
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
** or WinCE.  Return false (zero) for Win95, Win98, or WinME.
**
** Here is an interesting observation:  Win95, Win98, and WinME lack
** the LockFileEx() API.  But we can still statically link against that







>






>







1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
  assert( sleepObj!=NULL );
  osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE);
#else
  osSleep(milliseconds);
#endif
}

#if SQLITE_MAX_WORKER_THREADS>0 && !SQLITE_OS_WINRT && SQLITE_THREADSAFE>0
DWORD sqlite3Win32Wait(HANDLE hObject){
  DWORD rc;
  while( (rc = osWaitForSingleObjectEx(hObject, INFINITE,
                                       TRUE))==WAIT_IO_COMPLETION ){}
  return rc;
}
#endif

/*
** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
** or WinCE.  Return false (zero) for Win95, Win98, or WinME.
**
** Here is an interesting observation:  Win95, Win98, and WinME lack
** the LockFileEx() API.  But we can still statically link against that
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
  pFile->locktype = (u8)locktype;
  OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n",
           pFile->h, pFile->locktype, sqlite3ErrName(rc)));
  return rc;
}

/*
** If *pArg is inititially negative then this is a query.  Set *pArg to
** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
**
** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
*/
static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){
  if( *pArg<0 ){
    *pArg = (pFile->ctrlFlags & mask)!=0;







|







3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
  pFile->locktype = (u8)locktype;
  OSTRACE(("UNLOCK file=%p, lock=%d, rc=%s\n",
           pFile->h, pFile->locktype, sqlite3ErrName(rc)));
  return rc;
}

/*
** If *pArg is initially negative then this is a query.  Set *pArg to
** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
**
** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
*/
static void winModeBit(winFile *pFile, unsigned char mask, int *pArg){
  if( *pArg<0 ){
    *pArg = (pFile->ctrlFlags & mask)!=0;
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
           osGetCurrentProcessId(), pFd, iOff, p));

  if( p ){
    pFd->nFetchOut--;
  }else{
    /* FIXME:  If Windows truly always prevents truncating or deleting a
    ** file while a mapping is held, then the following winUnmapfile() call
    ** is unnecessary can can be omitted - potentially improving
    ** performance.  */
    winUnmapfile(pFd);
  }

  assert( pFd->nFetchOut>=0 );
#endif








|







4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
           osGetCurrentProcessId(), pFd, iOff, p));

  if( p ){
    pFd->nFetchOut--;
  }else{
    /* FIXME:  If Windows truly always prevents truncating or deleting a
    ** file while a mapping is held, then the following winUnmapfile() call
    ** is unnecessary can be omitted - potentially improving
    ** performance.  */
    winUnmapfile(pFd);
  }

  assert( pFd->nFetchOut>=0 );
#endif

Changes to src/pager.c.
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
** 
** (6) If a master journal file is used, then all writes to the database file
**     are synced prior to the master journal being deleted.
** 
** Definition: Two databases (or the same database at two points it time)
** are said to be "logically equivalent" if they give the same answer to
** all queries.  Note in particular the content of freelist leaf
** pages can be changed arbitarily without effecting the logical equivalence
** of the database.
** 
** (7) At any time, if any subset, including the empty set and the total set,
**     of the unsynced changes to a rollback journal are removed and the 
**     journal is rolled back, the resulting database file will be logical
**     equivalent to the database file at the beginning of the transaction.
** 
** (8) When a transaction is rolled back, the xTruncate method of the VFS
**     is called to restore the database file to the same size it was at
**     the beginning of the transaction.  (In some VFSes, the xTruncate
**     method is a no-op, but that does not change the fact the SQLite will
**     invoke it.)







|




|







72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
** 
** (6) If a master journal file is used, then all writes to the database file
**     are synced prior to the master journal being deleted.
** 
** Definition: Two databases (or the same database at two points it time)
** are said to be "logically equivalent" if they give the same answer to
** all queries.  Note in particular the content of freelist leaf
** pages can be changed arbitrarily without affecting the logical equivalence
** of the database.
** 
** (7) At any time, if any subset, including the empty set and the total set,
**     of the unsynced changes to a rollback journal are removed and the 
**     journal is rolled back, the resulting database file will be logically
**     equivalent to the database file at the beginning of the transaction.
** 
** (8) When a transaction is rolled back, the xTruncate method of the VFS
**     is called to restore the database file to the same size it was at
**     the beginning of the transaction.  (In some VFSes, the xTruncate
**     method is a no-op, but that does not change the fact the SQLite will
**     invoke it.)
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
**
** This is usually safe. If an xUnlock fails or appears to fail, there may 
** be a few redundant xLock() calls or a lock may be held for longer than
** required, but nothing really goes wrong.
**
** The exception is when the database file is unlocked as the pager moves
** from ERROR to OPEN state. At this point there may be a hot-journal file 
** in the file-system that needs to be rolled back (as part of a OPEN->SHARED
** transition, by the same pager or any other). If the call to xUnlock()
** fails at this point and the pager is left holding an EXCLUSIVE lock, this
** can confuse the call to xCheckReservedLock() call made later as part
** of hot-journal detection.
**
** xCheckReservedLock() is defined as returning true "if there is a RESERVED 
** lock held by this process or any others". So xCheckReservedLock may 







|







374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
**
** This is usually safe. If an xUnlock fails or appears to fail, there may 
** be a few redundant xLock() calls or a lock may be held for longer than
** required, but nothing really goes wrong.
**
** The exception is when the database file is unlocked as the pager moves
** from ERROR to OPEN state. At this point there may be a hot-journal file 
** in the file-system that needs to be rolled back (as part of an OPEN->SHARED
** transition, by the same pager or any other). If the call to xUnlock()
** fails at this point and the pager is left holding an EXCLUSIVE lock, this
** can confuse the call to xCheckReservedLock() call made later as part
** of hot-journal detection.
**
** xCheckReservedLock() is defined as returning true "if there is a RESERVED 
** lock held by this process or any others". So xCheckReservedLock may 
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
** Bits of the Pager.doNotSpill flag.  See further description below.
*/
#define SPILLFLAG_OFF         0x01      /* Never spill cache.  Set via pragma */
#define SPILLFLAG_ROLLBACK    0x02      /* Current rolling back, so do not spill */
#define SPILLFLAG_NOSYNC      0x04      /* Spill is ok, but do not sync */

/*
** A open page cache is an instance of struct Pager. A description of
** some of the more important member variables follows:
**
** eState
**
**   The current 'state' of the pager object. See the comment and state
**   diagram above for a description of the pager state.
**







|







457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
** Bits of the Pager.doNotSpill flag.  See further description below.
*/
#define SPILLFLAG_OFF         0x01      /* Never spill cache.  Set via pragma */
#define SPILLFLAG_ROLLBACK    0x02      /* Current rolling back, so do not spill */
#define SPILLFLAG_NOSYNC      0x04      /* Spill is ok, but do not sync */

/*
** An open page cache is an instance of struct Pager. A description of
** some of the more important member variables follows:
**
** eState
**
**   The current 'state' of the pager object. See the comment and state
**   diagram above for a description of the pager state.
**
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
  u8 tempFile;                /* zFilename is a temporary or immutable file */
  u8 noLock;                  /* Do not lock (except in WAL mode) */
  u8 readOnly;                /* True for a read-only database */
  u8 memDb;                   /* True to inhibit all file I/O */

  /**************************************************************************
  ** The following block contains those class members that change during
  ** routine opertion.  Class members not in this block are either fixed
  ** when the pager is first created or else only change when there is a
  ** significant mode change (such as changing the page_size, locking_mode,
  ** or the journal_mode).  From another view, these class members describe
  ** the "state" of the pager, while other class members describe the
  ** "configuration" of the pager.
  */
  u8 eState;                  /* Pager state (OPEN, READER, WRITER_LOCKED..) */







|







629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
  u8 tempFile;                /* zFilename is a temporary or immutable file */
  u8 noLock;                  /* Do not lock (except in WAL mode) */
  u8 readOnly;                /* True for a read-only database */
  u8 memDb;                   /* True to inhibit all file I/O */

  /**************************************************************************
  ** The following block contains those class members that change during
  ** routine operation.  Class members not in this block are either fixed
  ** when the pager is first created or else only change when there is a
  ** significant mode change (such as changing the page_size, locking_mode,
  ** or the journal_mode).  From another view, these class members describe
  ** the "state" of the pager, while other class members describe the
  ** "configuration" of the pager.
  */
  u8 eState;                  /* Pager state (OPEN, READER, WRITER_LOCKED..) */
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
  ** sqlite3_malloc() and pointed to by zMasterJournal.   Also obtain
  ** sufficient space (in zMasterPtr) to hold the names of master
  ** journal files extracted from regular rollback-journals.
  */
  rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
  if( rc!=SQLITE_OK ) goto delmaster_out;
  nMasterPtr = pVfs->mxPathname+1;
  zMasterJournal = sqlite3Malloc((int)nMasterJournal + nMasterPtr + 1);
  if( !zMasterJournal ){
    rc = SQLITE_NOMEM;
    goto delmaster_out;
  }
  zMasterPtr = &zMasterJournal[nMasterJournal+1];
  rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0);
  if( rc!=SQLITE_OK ) goto delmaster_out;







|







2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
  ** sqlite3_malloc() and pointed to by zMasterJournal.   Also obtain
  ** sufficient space (in zMasterPtr) to hold the names of master
  ** journal files extracted from regular rollback-journals.
  */
  rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
  if( rc!=SQLITE_OK ) goto delmaster_out;
  nMasterPtr = pVfs->mxPathname+1;
  zMasterJournal = sqlite3Malloc(nMasterJournal + nMasterPtr + 1);
  if( !zMasterJournal ){
    rc = SQLITE_NOMEM;
    goto delmaster_out;
  }
  zMasterPtr = &zMasterJournal[nMasterJournal+1];
  rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0);
  if( rc!=SQLITE_OK ) goto delmaster_out;
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
**
** If the main database file is not open, or the pager is not in either
** DBMOD or OPEN state, this function is a no-op. Otherwise, the size 
** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). 
** If the file on disk is currently larger than nPage pages, then use the VFS
** xTruncate() method to truncate it.
**
** Or, it might might be the case that the file on disk is smaller than 
** nPage pages. Some operating system implementations can get confused if 
** you try to truncate a file to some size that is larger than it 
** currently is, so detect this case and write a single zero byte to 
** the end of the new file instead.
**
** If successful, return SQLITE_OK. If an IO error occurs while modifying
** the database file, return the error code to the caller.







|







2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
**
** If the main database file is not open, or the pager is not in either
** DBMOD or OPEN state, this function is a no-op. Otherwise, the size 
** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). 
** If the file on disk is currently larger than nPage pages, then use the VFS
** xTruncate() method to truncate it.
**
** Or, it might be the case that the file on disk is smaller than 
** nPage pages. Some operating system implementations can get confused if 
** you try to truncate a file to some size that is larger than it 
** currently is, so detect this case and write a single zero byte to 
** the end of the new file instead.
**
** If successful, return SQLITE_OK. If an IO error occurs while modifying
** the database file, return the error code to the caller.
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
  }
  return iRet;
}

/*
** Set the value of the Pager.sectorSize variable for the given
** pager based on the value returned by the xSectorSize method
** of the open database file. The sector size will be used used 
** to determine the size and alignment of journal header and 
** master journal pointers within created journal files.
**
** For temporary files the effective sector size is always 512 bytes.
**
** Otherwise, for non-temporary files, the effective sector size is
** the value returned by the xSectorSize() method rounded up to 32 if







|







2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
  }
  return iRet;
}

/*
** Set the value of the Pager.sectorSize variable for the given
** pager based on the value returned by the xSectorSize method
** of the open database file. The sector size will be used 
** to determine the size and alignment of journal header and 
** master journal pointers within created journal files.
**
** For temporary files the effective sector size is always 512 bytes.
**
** Otherwise, for non-temporary files, the effective sector size is
** the value returned by the xSectorSize() method rounded up to 32 if
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638




3639
3640
3641
3642
3643
3644
3645
    if( rc==SQLITE_OK ){
      pNew = (char *)sqlite3PageMalloc(pageSize);
      if( !pNew ) rc = SQLITE_NOMEM;
    }

    if( rc==SQLITE_OK ){
      pager_reset(pPager);
      pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize);
      pPager->pageSize = pageSize;
      sqlite3PageFree(pPager->pTmpSpace);
      pPager->pTmpSpace = pNew;
      rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
    }




  }

  *pPageSize = pPager->pageSize;
  if( rc==SQLITE_OK ){
    if( nReserve<0 ) nReserve = pPager->nReserve;
    assert( nReserve>=0 && nReserve<1000 );
    pPager->nReserve = (i16)nReserve;







<
<




>
>
>
>







3626
3627
3628
3629
3630
3631
3632


3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
    if( rc==SQLITE_OK ){
      pNew = (char *)sqlite3PageMalloc(pageSize);
      if( !pNew ) rc = SQLITE_NOMEM;
    }

    if( rc==SQLITE_OK ){
      pager_reset(pPager);


      sqlite3PageFree(pPager->pTmpSpace);
      pPager->pTmpSpace = pNew;
      rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
    }
    if( rc==SQLITE_OK ){
      pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize);
      pPager->pageSize = pageSize;
    }
  }

  *pPageSize = pPager->pageSize;
  if( rc==SQLITE_OK ){
    if( nReserve<0 ) nReserve = pPager->nReserve;
    assert( nReserve>=0 && nReserve<1000 );
    pPager->nReserve = (i16)nReserve;
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
** the lock. If the lock is obtained successfully, set the Pager.state 
** variable to locktype before returning.
*/
static int pager_wait_on_lock(Pager *pPager, int locktype){
  int rc;                              /* Return code */

  /* Check that this is either a no-op (because the requested lock is 
  ** already held, or one of the transistions that the busy-handler
  ** may be invoked during, according to the comment above
  ** sqlite3PagerSetBusyhandler().
  */
  assert( (pPager->eLock>=locktype)
       || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK)
       || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK)
  );







|







3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
** the lock. If the lock is obtained successfully, set the Pager.state 
** variable to locktype before returning.
*/
static int pager_wait_on_lock(Pager *pPager, int locktype){
  int rc;                              /* Return code */

  /* Check that this is either a no-op (because the requested lock is 
  ** already held), or one of the transitions that the busy-handler
  ** may be invoked during, according to the comment above
  ** sqlite3PagerSetBusyhandler().
  */
  assert( (pPager->eLock>=locktype)
       || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK)
       || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK)
  );
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
  ** pages belonging to the same sector.
  **
  ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling
  ** regardless of whether or not a sync is required.  This is set during
  ** a rollback or by user request, respectively.
  **
  ** Spilling is also prohibited when in an error state since that could
  ** lead to database corruption.   In the current implementaton it 
  ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3
  ** while in the error state, hence it is impossible for this routine to
  ** be called in the error state.  Nevertheless, we include a NEVER()
  ** test for the error state as a safeguard against future changes.
  */
  if( NEVER(pPager->errCode) ) return SQLITE_OK;
  testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK );







|







4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
  ** pages belonging to the same sector.
  **
  ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling
  ** regardless of whether or not a sync is required.  This is set during
  ** a rollback or by user request, respectively.
  **
  ** Spilling is also prohibited when in an error state since that could
  ** lead to database corruption.   In the current implementation it 
  ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3
  ** while in the error state, hence it is impossible for this routine to
  ** be called in the error state.  Nevertheless, we include a NEVER()
  ** test for the error state as a safeguard against future changes.
  */
  if( NEVER(pPager->errCode) ) return SQLITE_OK;
  testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK );
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
            }
            if( !jrnlOpen ){
              sqlite3OsClose(pPager->jfd);
            }
            *pExists = (first!=0);
          }else if( rc==SQLITE_CANTOPEN ){
            /* If we cannot open the rollback journal file in order to see if
            ** its has a zero header, that might be due to an I/O error, or
            ** it might be due to the race condition described above and in
            ** ticket #3883.  Either way, assume that the journal is hot.
            ** This might be a false positive.  But if it is, then the
            ** automatic journal playback and recovery mechanism will deal
            ** with it under an EXCLUSIVE lock where we do not need to
            ** worry so much with race conditions.
            */







|







4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
            }
            if( !jrnlOpen ){
              sqlite3OsClose(pPager->jfd);
            }
            *pExists = (first!=0);
          }else if( rc==SQLITE_CANTOPEN ){
            /* If we cannot open the rollback journal file in order to see if
            ** it has a zero header, that might be due to an I/O error, or
            ** it might be due to the race condition described above and in
            ** ticket #3883.  Either way, assume that the journal is hot.
            ** This might be a false positive.  But if it is, then the
            ** automatic journal playback and recovery mechanism will deal
            ** with it under an EXCLUSIVE lock where we do not need to
            ** worry so much with race conditions.
            */
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
** A read-lock must be held on the pager when this function is called. If
** the pager is in WAL mode and the WAL file currently contains one or more
** frames, return the size in bytes of the page images stored within the
** WAL frames. Otherwise, if this is not a WAL database or the WAL file
** is empty, return 0.
*/
int sqlite3PagerWalFramesize(Pager *pPager){
  assert( pPager->eState==PAGER_READER );
  return sqlite3WalFramesize(pPager->pWal);
}
#endif

#endif /* SQLITE_OMIT_DISKIO */







|





7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
** A read-lock must be held on the pager when this function is called. If
** the pager is in WAL mode and the WAL file currently contains one or more
** frames, return the size in bytes of the page images stored within the
** WAL frames. Otherwise, if this is not a WAL database or the WAL file
** is empty, return 0.
*/
int sqlite3PagerWalFramesize(Pager *pPager){
  assert( pPager->eState>=PAGER_READER );
  return sqlite3WalFramesize(pPager->pWal);
}
#endif

#endif /* SQLITE_OMIT_DISKIO */
Changes to src/parse.y.
455
456
457
458
459
460
461
462
463
464
























465
466
467
468
469
470
471
  A = pRhs;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP).             {A = @OP;}
multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}
%endif SQLITE_OMIT_COMPOUND_SELECT
oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
                 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
  A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
























}
oneselect(A) ::= values(X).    {A = X;}

%type values {Select*}
%destructor values {sqlite3SelectDelete(pParse->db, $$);}
values(A) ::= VALUES LP nexprlist(X) RP. {
  A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);







|


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
  A = pRhs;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP).             {A = @OP;}
multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}
%endif SQLITE_OMIT_COMPOUND_SELECT
oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y)
                 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
  A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
#if SELECTTRACE_ENABLED
  /* Populate the Select.zSelName[] string that is used to help with
  ** query planner debugging, to differentiate between multiple Select
  ** objects in a complex query.
  **
  ** If the SELECT keyword is immediately followed by a C-style comment
  ** then extract the first few alphanumeric characters from within that
  ** comment to be the zSelName value.  Otherwise, the label is #N where
  ** is an integer that is incremented with each SELECT statement seen.
  */
  if( A!=0 ){
    const char *z = S.z+6;
    int i;
    sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d",
                     ++pParse->nSelect);
    while( z[0]==' ' ) z++;
    if( z[0]=='/' && z[1]=='*' ){
      z += 2;
      while( z[0]==' ' ) z++;
      for(i=0; sqlite3Isalnum(z[i]); i++){}
      sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
    }
  }
#endif /* SELECTRACE_ENABLED */
}
oneselect(A) ::= values(X).    {A = X;}

%type values {Select*}
%destructor values {sqlite3SelectDelete(pParse->db, $$);}
values(A) ::= VALUES LP nexprlist(X) RP. {
  A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);
Changes to src/pcache.c.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# define expensive_assert(X)  assert(X)
#else
# define expensive_assert(X)
#endif

/********************************** Linked List Management ********************/

#if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
/*
** Check that the pCache->pSynced variable is set correctly. If it
** is not, either fail an assert or return zero. Otherwise, return
** non-zero. This is only used in debugging builds, as follows:
**
**   expensive_assert( pcacheCheckSynced(pCache) );
*/
static int pcacheCheckSynced(PCache *pCache){
  PgHdr *p;
  for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){
    assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
  }
  return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
}
#endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */

/* Allowed values for second argument to pcacheManageDirtyList() */
#define PCACHE_DIRTYLIST_REMOVE   1    /* Remove pPage from dirty list */
#define PCACHE_DIRTYLIST_ADD      2    /* Add pPage to the dirty list */
#define PCACHE_DIRTYLIST_FRONT    3    /* Move pPage to the front of the list */

/*
** Manage pPage's participation on the dirty list.  Bits of the addRemove







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







41
42
43
44
45
46
47

















48
49
50
51
52
53
54
# define expensive_assert(X)  assert(X)
#else
# define expensive_assert(X)
#endif

/********************************** Linked List Management ********************/


















/* Allowed values for second argument to pcacheManageDirtyList() */
#define PCACHE_DIRTYLIST_REMOVE   1    /* Remove pPage from dirty list */
#define PCACHE_DIRTYLIST_ADD      2    /* Add pPage to the dirty list */
#define PCACHE_DIRTYLIST_FRONT    3    /* Move pPage to the front of the list */

/*
** Manage pPage's participation on the dirty list.  Bits of the addRemove
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118


119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
      if( p->pDirty==0 && p->bPurgeable ){
        assert( p->eCreate==1 );
        p->eCreate = 2;
      }
    }
    pPage->pDirtyNext = 0;
    pPage->pDirtyPrev = 0;
    expensive_assert( pcacheCheckSynced(p) );
  }
  if( addRemove & PCACHE_DIRTYLIST_ADD ){
    assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
  
    pPage->pDirtyNext = p->pDirty;
    if( pPage->pDirtyNext ){
      assert( pPage->pDirtyNext->pDirtyPrev==0 );
      pPage->pDirtyNext->pDirtyPrev = pPage;


    }else if( p->bPurgeable ){
      assert( p->eCreate==2 );
      p->eCreate = 1;
    }
    p->pDirty = pPage;
    if( !p->pDirtyTail ){
      p->pDirtyTail = pPage;
    }

    if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
      p->pSynced = pPage;
    }
    expensive_assert( pcacheCheckSynced(p) );
  }
}

/*
** Wrapper around the pluggable caches xUnpin method. If the cache is
** being used for an in-memory database, this function is a no-op.
*/







<








>
>
|
|
|
|
<
<
<

>



<







86
87
88
89
90
91
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106



107
108
109
110
111

112
113
114
115
116
117
118
      if( p->pDirty==0 && p->bPurgeable ){
        assert( p->eCreate==1 );
        p->eCreate = 2;
      }
    }
    pPage->pDirtyNext = 0;
    pPage->pDirtyPrev = 0;

  }
  if( addRemove & PCACHE_DIRTYLIST_ADD ){
    assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
  
    pPage->pDirtyNext = p->pDirty;
    if( pPage->pDirtyNext ){
      assert( pPage->pDirtyNext->pDirtyPrev==0 );
      pPage->pDirtyNext->pDirtyPrev = pPage;
    }else{
      p->pDirtyTail = pPage;
      if( p->bPurgeable ){
        assert( p->eCreate==2 );
        p->eCreate = 1;
      }



    }
    p->pDirty = pPage;
    if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
      p->pSynced = pPage;
    }

  }
}

/*
** Wrapper around the pluggable caches xUnpin method. If the cache is
** being used for an in-memory database, this function is a no-op.
*/
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314


  /* Find a dirty page to write-out and recycle. First try to find a 
  ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
  ** cleared), but if that is not possible settle for any other 
  ** unreferenced dirty page.
  */
  expensive_assert( pcacheCheckSynced(pCache) );
  for(pPg=pCache->pSynced; 
      pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 
      pPg=pPg->pDirtyPrev
  );
  pCache->pSynced = pPg;
  if( !pPg ){
    for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);







<







281
282
283
284
285
286
287

288
289
290
291
292
293
294


  /* Find a dirty page to write-out and recycle. First try to find a 
  ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
  ** cleared), but if that is not possible settle for any other 
  ** unreferenced dirty page.
  */

  for(pPg=pCache->pSynced; 
      pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 
      pPg=pPg->pDirtyPrev
  );
  pCache->pSynced = pPg;
  if( !pPg ){
    for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    pCache->pPage1 = pPgHdr;
  }
  return pPgHdr;
}

/*
** Decrement the reference count on a page. If the page is clean and the
** reference count drops to 0, then it is made elible for recycling.
*/
void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
  assert( p->nRef>0 );
  p->nRef--;
  if( p->nRef==0 ){
    p->pCache->nRef--;
    if( (p->flags&PGHDR_DIRTY)==0 ){
      pcacheUnpin(p);
    }else{
      /* Move the page to the head of the dirty list. */
      pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
    }
  }
}

/*







|








|







366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    pCache->pPage1 = pPgHdr;
  }
  return pPgHdr;
}

/*
** Decrement the reference count on a page. If the page is clean and the
** reference count drops to 0, then it is made eligible for recycling.
*/
void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
  assert( p->nRef>0 );
  p->nRef--;
  if( p->nRef==0 ){
    p->pCache->nRef--;
    if( (p->flags&PGHDR_DIRTY)==0 ){
      pcacheUnpin(p);
    }else if( p->pDirtyPrev!=0 ){
      /* Move the page to the head of the dirty list. */
      pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
    }
  }
}

/*
Changes to src/pcache1.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements the default page cache implementation (the
** sqlite3_pcache interface). It also contains part of the implementation
** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
** If the default page cache implementation is overriden, then neither of
** these two features are available.
*/

#include "sqliteInt.h"

typedef struct PCache1 PCache1;
typedef struct PgHdr1 PgHdr1;
typedef struct PgFreeslot PgFreeslot;
typedef struct PGroup PGroup;

/* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set 
** of one or more PCaches that are able to recycle each others unpinned
** pages when they are under memory pressure.  A PGroup is an instance of
** the following object.
**
** This page cache implementation works in one of two modes:
**
**   (1)  Every PCache is the sole member of its own PGroup.  There is
**        one PGroup per PCache.







|











|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements the default page cache implementation (the
** sqlite3_pcache interface). It also contains part of the implementation
** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
** If the default page cache implementation is overridden, then neither of
** these two features are available.
*/

#include "sqliteInt.h"

typedef struct PCache1 PCache1;
typedef struct PgHdr1 PgHdr1;
typedef struct PgFreeslot PgFreeslot;
typedef struct PGroup PGroup;

/* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set 
** of one or more PCaches that are able to recycle each other's unpinned
** pages when they are under memory pressure.  A PGroup is an instance of
** the following object.
**
** This page cache implementation works in one of two modes:
**
**   (1)  Every PCache is the sole member of its own PGroup.  There is
**        one PGroup per PCache.
Changes to src/pragma.c.
1409
1410
1411
1412
1413
1414
1415






1416
1417
1418
1419
1420
1421
1422
    }else{
      int mask = aPragmaNames[mid].iArg;    /* Mask of bits to set or clear. */
      if( db->autoCommit==0 ){
        /* Foreign key support may not be enabled or disabled while not
        ** in auto-commit mode.  */
        mask &= ~(SQLITE_ForeignKeys);
      }







      if( sqlite3GetBoolean(zRight, 0) ){
        db->flags |= mask;
      }else{
        db->flags &= ~mask;
        if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
      }







>
>
>
>
>
>







1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
    }else{
      int mask = aPragmaNames[mid].iArg;    /* Mask of bits to set or clear. */
      if( db->autoCommit==0 ){
        /* Foreign key support may not be enabled or disabled while not
        ** in auto-commit mode.  */
        mask &= ~(SQLITE_ForeignKeys);
      }
#if SQLITE_USER_AUTHENTICATION
      if( db->auth.authLevel==UAUTH_User ){
        /* Do not allow non-admin users to modify the schema arbitrarily */
        mask &= ~(SQLITE_WriteSchema);
      }
#endif

      if( sqlite3GetBoolean(zRight, 0) ){
        db->flags |= mask;
      }else{
        db->flags &= ~mask;
        if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
      }
Changes to src/prepare.c.
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  {
    char *zSql;
    zSql = sqlite3MPrintf(db, 
        "SELECT name, rootpage, sql FROM '%q'.%s ORDER BY rowid",
        db->aDb[iDb].zName, zMasterName);
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
      int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
      xAuth = db->xAuth;
      db->xAuth = 0;
#endif
      rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
#ifndef SQLITE_OMIT_AUTHORIZATION
      db->xAuth = xAuth;
    }







|







327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  {
    char *zSql;
    zSql = sqlite3MPrintf(db, 
        "SELECT name, rootpage, sql FROM '%q'.%s ORDER BY rowid",
        db->aDb[iDb].zName, zMasterName);
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
      sqlite3_xauth xAuth;
      xAuth = db->xAuth;
      db->xAuth = 0;
#endif
      rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
#ifndef SQLITE_OMIT_AUTHORIZATION
      db->xAuth = xAuth;
    }
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
** file was of zero-length, then the DB_Empty flag is also set.
*/
int sqlite3Init(sqlite3 *db, char **pzErrMsg){
  int i, rc;
  int commit_internal = !(db->flags&SQLITE_InternChanges);
  
  assert( sqlite3_mutex_held(db->mutex) );

  rc = SQLITE_OK;
  db->init.busy = 1;
  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
    if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
    rc = sqlite3InitOne(db, i, pzErrMsg);
    if( rc ){
      sqlite3ResetOneSchema(db, i);
    }
  }

  /* Once all the other databases have been initialized, load the schema
  ** for the TEMP database. This is loaded last, as the TEMP database
  ** schema may contain references to objects in other databases.
  */
#ifndef SQLITE_OMIT_TEMPDB
  if( rc==SQLITE_OK && ALWAYS(db->nDb>1)
                    && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
    rc = sqlite3InitOne(db, 1, pzErrMsg);
    if( rc ){
      sqlite3ResetOneSchema(db, 1);
    }
  }
#endif








>















|
|







393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
** file was of zero-length, then the DB_Empty flag is also set.
*/
int sqlite3Init(sqlite3 *db, char **pzErrMsg){
  int i, rc;
  int commit_internal = !(db->flags&SQLITE_InternChanges);
  
  assert( sqlite3_mutex_held(db->mutex) );
  assert( db->init.busy==0 );
  rc = SQLITE_OK;
  db->init.busy = 1;
  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
    if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
    rc = sqlite3InitOne(db, i, pzErrMsg);
    if( rc ){
      sqlite3ResetOneSchema(db, i);
    }
  }

  /* Once all the other databases have been initialized, load the schema
  ** for the TEMP database. This is loaded last, as the TEMP database
  ** schema may contain references to objects in other databases.
  */
#ifndef SQLITE_OMIT_TEMPDB
  assert( db->nDb>1 );
  if( rc==SQLITE_OK && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
    rc = sqlite3InitOne(db, 1, pzErrMsg);
    if( rc ){
      sqlite3ResetOneSchema(db, 1);
    }
  }
#endif

Changes to src/printf.c.
9
10
11
12
13
14
15















16
17
18
19
20
21
22
**
** This file contains code for a set of "printf"-like routines.  These
** routines format strings much like the printf() from the standard C
** library, though the implementation here has enhancements to support
** SQLlite.
*/
#include "sqliteInt.h"
















/*
** Conversion types fall into various categories as defined by the
** following enumeration.
*/
#define etRADIX       1 /* Integer types.  %d, %x, %o, and so forth */
#define etFLOAT       2 /* Floating point.  %f */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
**
** This file contains code for a set of "printf"-like routines.  These
** routines format strings much like the printf() from the standard C
** library, though the implementation here has enhancements to support
** SQLlite.
*/
#include "sqliteInt.h"

/*
** If the strchrnul() library function is available, then set
** HAVE_STRCHRNUL.  If that routine is not available, this module
** will supply its own.  The built-in version is slower than
** the glibc version so the glibc version is definitely preferred.
*/
#if !defined(HAVE_STRCHRNUL)
# if defined(linux)
#  define HAVE_STRCHRNUL 1
# else
#  define HAVE_STRCHRNUL 0
# endif
#endif


/*
** Conversion types fall into various categories as defined by the
** following enumeration.
*/
#define etRADIX       1 /* Integer types.  %d, %x, %o, and so forth */
#define etFLOAT       2 /* Floating point.  %f */
220
221
222
223
224
225
226



227

228
229
230
231
232
233
234
235
236
    useIntern = bFlags & SQLITE_PRINTF_INTERNAL;
  }else{
    bArgList = useIntern = 0;
  }
  for(; (c=(*fmt))!=0; ++fmt){
    if( c!='%' ){
      bufpt = (char *)fmt;



      while( (c=(*++fmt))!='%' && c!=0 ){};

      sqlite3StrAccumAppend(pAccum, bufpt, (int)(fmt - bufpt));
      if( c==0 ) break;
    }
    if( (c=(*++fmt))==0 ){
      sqlite3StrAccumAppend(pAccum, "%", 1);
      break;
    }
    /* Find out what flags are present */
    flag_leftjustify = flag_plussign = flag_blanksign = 







>
>
>
|
>

|







235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    useIntern = bFlags & SQLITE_PRINTF_INTERNAL;
  }else{
    bArgList = useIntern = 0;
  }
  for(; (c=(*fmt))!=0; ++fmt){
    if( c!='%' ){
      bufpt = (char *)fmt;
#if HAVE_STRCHRNUL
      fmt = strchrnul(fmt, '%');
#else
      do{ fmt++; }while( *fmt && *fmt != '%' );
#endif
      sqlite3StrAccumAppend(pAccum, bufpt, (int)(fmt - bufpt));
      if( *fmt==0 ) break;
    }
    if( (c=(*++fmt))==0 ){
      sqlite3StrAccumAppend(pAccum, "%", 1);
      break;
    }
    /* Find out what flags are present */
    flag_leftjustify = flag_plussign = flag_blanksign = 
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
  z = sqlite3VMPrintf(db, zFormat, ap);
  va_end(ap);
  return z;
}

/*
** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting
** the string and before returnning.  This routine is intended to be used
** to modify an existing string.  For example:
**
**       x = sqlite3MPrintf(db, x, "prefix %s suffix", x);
**
*/
char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){
  va_list ap;







|







919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
  z = sqlite3VMPrintf(db, zFormat, ap);
  va_end(ap);
  return z;
}

/*
** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting
** the string and before returning.  This routine is intended to be used
** to modify an existing string.  For example:
**
**       x = sqlite3MPrintf(db, x, "prefix %s suffix", x);
**
*/
char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){
  va_list ap;
Changes to src/resolve.c.
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

735
736
737
738
739
740
741
742
743
744
            ** likelihood(X,0.9375).
            ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent to
            ** likelihood(X,0.9375). */
            /* TUNING: unlikely() probability is 0.0625.  likely() is 0.9375 */
            pExpr->iTable = pDef->zName[0]=='u' ? 62 : 938;
          }             
        }
      }
#ifndef SQLITE_OMIT_AUTHORIZATION
      if( pDef ){
        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
        if( auth!=SQLITE_OK ){
          if( auth==SQLITE_DENY ){
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
                                    pDef->zName);
            pNC->nErr++;
          }
          pExpr->op = TK_NULL;
          return WRC_Prune;
        }

        if( pDef->funcFlags & SQLITE_FUNC_CONSTANT ) ExprSetProperty(pExpr,EP_Constant);
      }
#endif
      if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func && pParse->db->init.busy==0 ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;







<

<










>


<







715
716
717
718
719
720
721

722

723
724
725
726
727
728
729
730
731
732
733
734
735

736
737
738
739
740
741
742
            ** likelihood(X,0.9375).
            ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent to
            ** likelihood(X,0.9375). */
            /* TUNING: unlikely() probability is 0.0625.  likely() is 0.9375 */
            pExpr->iTable = pDef->zName[0]=='u' ? 62 : 938;
          }             
        }

#ifndef SQLITE_OMIT_AUTHORIZATION

        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
        if( auth!=SQLITE_OK ){
          if( auth==SQLITE_DENY ){
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
                                    pDef->zName);
            pNC->nErr++;
          }
          pExpr->op = TK_NULL;
          return WRC_Prune;
        }
#endif
        if( pDef->funcFlags & SQLITE_FUNC_CONSTANT ) ExprSetProperty(pExpr,EP_Constant);
      }

      if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func && pParse->db->init.busy==0 ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
753
754
755
756
757
758
759

760





761
762
763
764
765
766
767
        NameContext *pNC2 = pNC;
        pExpr->op = TK_AGG_FUNCTION;
        pExpr->op2 = 0;
        while( pNC2 && !sqlite3FunctionUsesThisSrc(pExpr, pNC2->pSrcList) ){
          pExpr->op2++;
          pNC2 = pNC2->pNext;
        }

        if( pNC2 ) pNC2->ncFlags |= NC_HasAgg;





        pNC->ncFlags |= NC_AllowAgg;
      }
      /* FIX ME:  Compute pExpr->affinity based on the expected return
      ** type of the function 
      */
      return WRC_Prune;
    }







>
|
>
>
>
>
>







751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
        NameContext *pNC2 = pNC;
        pExpr->op = TK_AGG_FUNCTION;
        pExpr->op2 = 0;
        while( pNC2 && !sqlite3FunctionUsesThisSrc(pExpr, pNC2->pSrcList) ){
          pExpr->op2++;
          pNC2 = pNC2->pNext;
        }
        assert( pDef!=0 );
        if( pNC2 ){
          assert( SQLITE_FUNC_MINMAX==NC_MinMaxAgg );
          testcase( (pDef->funcFlags & SQLITE_FUNC_MINMAX)!=0 );
          pNC2->ncFlags |= NC_HasAgg | (pDef->funcFlags & SQLITE_FUNC_MINMAX);

        }
        pNC->ncFlags |= NC_AllowAgg;
      }
      /* FIX ME:  Compute pExpr->affinity based on the expected return
      ** type of the function 
      */
      return WRC_Prune;
    }
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
      }
    }
  }
  return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType);
}

/*
** Resolve names in the SELECT statement p and all of its descendents.
*/
static int resolveSelectStep(Walker *pWalker, Select *p){
  NameContext *pOuterNC;  /* Context that contains this SELECT */
  NameContext sNC;        /* Name context of this SELECT */
  int isCompound;         /* True if p is a compound select */
  int nCompound;          /* Number of compound terms processed so far */
  Parse *pParse;          /* Parsing context */







|







1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
      }
    }
  }
  return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType);
}

/*
** Resolve names in the SELECT statement p and all of its descendants.
*/
static int resolveSelectStep(Walker *pWalker, Select *p){
  NameContext *pOuterNC;  /* Context that contains this SELECT */
  NameContext sNC;        /* Name context of this SELECT */
  int isCompound;         /* True if p is a compound select */
  int nCompound;          /* Number of compound terms processed so far */
  Parse *pParse;          /* Parsing context */
1218
1219
1220
1221
1222
1223
1224

1225
1226
1227
1228
1229
1230
1231
1232
  
    /* If there are no aggregate functions in the result-set, and no GROUP BY 
    ** expression, do not allow aggregates in any of the other expressions.
    */
    assert( (p->selFlags & SF_Aggregate)==0 );
    pGroupBy = p->pGroupBy;
    if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){

      p->selFlags |= SF_Aggregate;
    }else{
      sNC.ncFlags &= ~NC_AllowAgg;
    }
  
    /* If a HAVING clause is present, then there must be a GROUP BY clause.
    */
    if( p->pHaving && !pGroupBy ){







>
|







1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
  
    /* If there are no aggregate functions in the result-set, and no GROUP BY 
    ** expression, do not allow aggregates in any of the other expressions.
    */
    assert( (p->selFlags & SF_Aggregate)==0 );
    pGroupBy = p->pGroupBy;
    if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){
      assert( NC_MinMaxAgg==SF_MinMaxAgg );
      p->selFlags |= SF_Aggregate | (sNC.ncFlags&NC_MinMaxAgg);
    }else{
      sNC.ncFlags &= ~NC_AllowAgg;
    }
  
    /* If a HAVING clause is present, then there must be a GROUP BY clause.
    */
    if( p->pHaving && !pGroupBy ){
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

1385
1386
1387
1388
1389
1390
1391
** An error message is left in pParse if anything is amiss.  The number
** if errors is returned.
*/
int sqlite3ResolveExprNames( 
  NameContext *pNC,       /* Namespace to resolve expressions in. */
  Expr *pExpr             /* The expression to be analyzed. */
){
  u8 savedHasAgg;
  Walker w;

  if( pExpr==0 ) return 0;
#if SQLITE_MAX_EXPR_DEPTH>0
  {
    Parse *pParse = pNC->pParse;
    if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){
      return 1;
    }
    pParse->nHeight += pExpr->nHeight;
  }
#endif
  savedHasAgg = pNC->ncFlags & NC_HasAgg;
  pNC->ncFlags &= ~NC_HasAgg;
  memset(&w, 0, sizeof(w));
  w.xExprCallback = resolveExprStep;
  w.xSelectCallback = resolveSelectStep;
  w.pParse = pNC->pParse;
  w.u.pNC = pNC;
  sqlite3WalkExpr(&w, pExpr);
#if SQLITE_MAX_EXPR_DEPTH>0
  pNC->pParse->nHeight -= pExpr->nHeight;
#endif
  if( pNC->nErr>0 || w.pParse->nErr>0 ){
    ExprSetProperty(pExpr, EP_Error);
  }
  if( pNC->ncFlags & NC_HasAgg ){
    ExprSetProperty(pExpr, EP_Agg);
  }else if( savedHasAgg ){
    pNC->ncFlags |= NC_HasAgg;
  }

  return ExprHasProperty(pExpr, EP_Error);
}


/*
** Resolve all names in all expressions of a SELECT and in all
** decendents of the SELECT, including compounds off of p->pPrior,







|












|
|














<
<

>







1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386


1387
1388
1389
1390
1391
1392
1393
1394
1395
** An error message is left in pParse if anything is amiss.  The number
** if errors is returned.
*/
int sqlite3ResolveExprNames( 
  NameContext *pNC,       /* Namespace to resolve expressions in. */
  Expr *pExpr             /* The expression to be analyzed. */
){
  u16 savedHasAgg;
  Walker w;

  if( pExpr==0 ) return 0;
#if SQLITE_MAX_EXPR_DEPTH>0
  {
    Parse *pParse = pNC->pParse;
    if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){
      return 1;
    }
    pParse->nHeight += pExpr->nHeight;
  }
#endif
  savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg);
  pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg);
  memset(&w, 0, sizeof(w));
  w.xExprCallback = resolveExprStep;
  w.xSelectCallback = resolveSelectStep;
  w.pParse = pNC->pParse;
  w.u.pNC = pNC;
  sqlite3WalkExpr(&w, pExpr);
#if SQLITE_MAX_EXPR_DEPTH>0
  pNC->pParse->nHeight -= pExpr->nHeight;
#endif
  if( pNC->nErr>0 || w.pParse->nErr>0 ){
    ExprSetProperty(pExpr, EP_Error);
  }
  if( pNC->ncFlags & NC_HasAgg ){
    ExprSetProperty(pExpr, EP_Agg);


  }
  pNC->ncFlags |= savedHasAgg;
  return ExprHasProperty(pExpr, EP_Error);
}


/*
** Resolve all names in all expressions of a SELECT and in all
** decendents of the SELECT, including compounds off of p->pPrior,
Changes to src/rowset.c.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
** value added by the INSERT will not be visible to the second TEST.
** The initial batch number is zero, so if the very first TEST contains
** a non-zero batch number, it will see all prior INSERTs.
**
** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
** that is attempted.
**
** The cost of an INSERT is roughly constant.  (Sometime new memory
** has to be allocated on an INSERT.)  The cost of a TEST with a new
** batch number is O(NlogN) where N is the number of elements in the RowSet.
** The cost of a TEST using the same batch number is O(logN).  The cost
** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
** primitives are constant time.  The cost of DESTROY is O(N).
**
** There is an added cost of O(N) when switching between TEST and







|







46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
** value added by the INSERT will not be visible to the second TEST.
** The initial batch number is zero, so if the very first TEST contains
** a non-zero batch number, it will see all prior INSERTs.
**
** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
** that is attempted.
**
** The cost of an INSERT is roughly constant.  (Sometimes new memory
** has to be allocated on an INSERT.)  The cost of a TEST with a new
** batch number is O(NlogN) where N is the number of elements in the RowSet.
** The cost of a TEST using the same batch number is O(logN).  The cost
** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
** primitives are constant time.  The cost of DESTROY is O(N).
**
** There is an added cost of O(N) when switching between TEST and
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
  }
}

/*
** Check to see if element iRowid was inserted into the rowset as
** part of any insert batch prior to iBatch.  Return 1 or 0.
**
** If this is the first test of a new batch and if there exist entires
** on pRowSet->pEntry, then sort those entires into the forest at
** pRowSet->pForest so that they can be tested.
*/
int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
  struct RowSetEntry *p, *pTree;

  /* This routine is never called after sqlite3RowSetNext() */
  assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );







|
|







439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
  }
}

/*
** Check to see if element iRowid was inserted into the rowset as
** part of any insert batch prior to iBatch.  Return 1 or 0.
**
** If this is the first test of a new batch and if there exist entries
** on pRowSet->pEntry, then sort those entries into the forest at
** pRowSet->pForest so that they can be tested.
*/
int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
  struct RowSetEntry *p, *pTree;

  /* This routine is never called after sqlite3RowSetNext() */
  assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
Changes to src/select.c.
9
10
11
12
13
14
15














16
17
18
19
20
21
22
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
*/
#include "sqliteInt.h"















/*
** An instance of the following object is used to record information about
** how to process the DISTINCT keyword, to simplify passing that information
** into the selectInnerLoop() routine.
*/
typedef struct DistinctCtx DistinctCtx;







>
>
>
>
>
>
>
>
>
>
>
>
>
>







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
*/
#include "sqliteInt.h"

/*
** Trace output macros
*/
#if SELECTTRACE_ENABLED
/***/ int sqlite3SelectTrace = 0;
# define SELECTTRACE(K,P,S,X)  \
  if(sqlite3SelectTrace&(K))   \
    sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\
    sqlite3DebugPrintf X
#else
# define SELECTTRACE(K,P,S,X)
#endif


/*
** An instance of the following object is used to record information about
** how to process the DISTINCT keyword, to simplify passing that information
** into the selectInnerLoop() routine.
*/
typedef struct DistinctCtx DistinctCtx;
121
122
123
124
125
126
127












128
129
130
131
132
133
134
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
  return pNew;
}













/*
** Delete the given Select structure and all of its substructures.
*/
void sqlite3SelectDelete(sqlite3 *db, Select *p){
  if( p ){
    clearSelect(db, p);







>
>
>
>
>
>
>
>
>
>
>
>







135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
  return pNew;
}

#if SELECTTRACE_ENABLED
/*
** Set the name of a Select object
*/
void sqlite3SelectSetName(Select *p, const char *zName){
  if( p && zName ){
    sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
  }
}
#endif


/*
** Delete the given Select structure and all of its substructures.
*/
void sqlite3SelectDelete(sqlite3 *db, Select *p){
  if( p ){
    clearSelect(db, p);
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    pParse->nMem += nBase;
  }
  sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
  if( bSeq ){
    sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
  }
  if( nPrefixReg==0 ){
    sqlite3VdbeAddOp3(v, OP_Move, regData, regBase+nExpr+bSeq, nData);
  }

  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
  if( nOBSat>0 ){
    int regPrevKey;   /* The first nOBSat columns of the previous row */
    int addrFirst;    /* Address of the OP_IfNot opcode */
    int addrJmp;      /* Address of the OP_Jump opcode */







|







510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    pParse->nMem += nBase;
  }
  sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, SQLITE_ECEL_DUP);
  if( bSeq ){
    sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
  }
  if( nPrefixReg==0 ){
    sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
  }

  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
  if( nOBSat>0 ){
    int regPrevKey;   /* The first nOBSat columns of the previous row */
    int addrFirst;    /* Address of the OP_IfNot opcode */
    int addrJmp;      /* Address of the OP_Jump opcode */
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    addrJmp = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
    pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
    pSort->regReturn = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
    sqlite3VdbeJumpHere(v, addrFirst);
    sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat);
    sqlite3VdbeJumpHere(v, addrJmp);
  }
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }







|







546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    addrJmp = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
    pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
    pSort->regReturn = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
    sqlite3VdbeJumpHere(v, addrFirst);
    sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
    sqlite3VdbeJumpHere(v, addrJmp);
  }
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause.  If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.
*/
static KeyInfo *keyInfoFromExprList(
  Parse *pParse,       /* Parsing context */
  ExprList *pList,     /* Form the KeyInfo object from this ExprList */
  int iStart,          /* Begin with this column of pList */







|







1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause.  If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtained from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.
*/
static KeyInfo *keyInfoFromExprList(
  Parse *pParse,       /* Parsing context */
  ExprList *pList,     /* Form the KeyInfo object from this ExprList */
  int iStart,          /* Begin with this column of pList */
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
    }
  }
  generateColumnTypes(pParse, pTabList, pEList);
}

/*
** Given a an expression list (which is really the list of expressions
** that form the result set of a SELECT statement) compute appropriate
** column names for a table that would hold the expression list.
**
** All column names will be unique.
**
** Only the column names are computed.  Column.zType, Column.zColl,
** and other fields of Column are zeroed.







|







1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
    }
  }
  generateColumnTypes(pParse, pTabList, pEList);
}

/*
** Given an expression list (which is really the list of expressions
** that form the result set of a SELECT statement) compute appropriate
** column names for a table that would hold the expression list.
**
** All column names will be unique.
**
** Only the column names are computed.  Column.zType, Column.zColl,
** and other fields of Column are zeroed.
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
    }
    if( db->mallocFailed ){
      sqlite3DbFree(db, zName);
      break;
    }

    /* Make sure the column name is unique.  If the name is not unique,
    ** append a integer to the name so that it becomes unique.
    */
    nName = sqlite3Strlen30(zName);
    for(j=cnt=0; j<i; j++){
      if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
        char *zNewName;
        int k;
        for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}







|







1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
    }
    if( db->mallocFailed ){
      sqlite3DbFree(db, zName);
      break;
    }

    /* Make sure the column name is unique.  If the name is not unique,
    ** append an integer to the name so that it becomes unique.
    */
    nName = sqlite3Strlen30(zName);
    for(j=cnt=0; j<i; j++){
      if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
        char *zNewName;
        int k;
        for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
** optimized.
**
** This routine attempts to rewrite queries such as the above into
** a single flat select, like this:
**
**     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
**
** The code generated for this simpification gives the same result
** but only has to scan the data once.  And because indices might 
** exist on the table t1, a complete scan of the data might be
** avoided.
**
** Flattening is only attempted if all of the following are true:
**
**   (1)  The subquery and the outer query do not both use aggregates.







|







3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
** optimized.
**
** This routine attempts to rewrite queries such as the above into
** a single flat select, like this:
**
**     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
**
** The code generated for this simplification gives the same result
** but only has to scan the data once.  And because indices might 
** exist on the table t1, a complete scan of the data might be
** avoided.
**
** Flattening is only attempted if all of the following are true:
**
**   (1)  The subquery and the outer query do not both use aggregates.
3127
3128
3129
3130
3131
3132
3133


3134
3135
3136
3137
3138
3139
3140
3141
3142
**        single NULL.
**
**   (8)  The subquery does not use LIMIT or the outer query is not a join.
**
**   (9)  The subquery does not use LIMIT or the outer query does not use
**        aggregates.
**


**  (10)  The subquery does not use aggregates or the outer query does not
**        use LIMIT.
**
**  (11)  The subquery and the outer query do not both have ORDER BY clauses.
**
**  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
**        a separate restriction deriving from ticket #350.
**
**  (13)  The subquery and outer query do not both use LIMIT.







>
>
|
|







3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
**        single NULL.
**
**   (8)  The subquery does not use LIMIT or the outer query is not a join.
**
**   (9)  The subquery does not use LIMIT or the outer query does not use
**        aggregates.
**
**  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
**        accidently carried the comment forward until 2014-09-15.  Original
**        text: "The subquery does not use aggregates or the outer query does not
**        use LIMIT."
**
**  (11)  The subquery and the outer query do not both have ORDER BY clauses.
**
**  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
**        a separate restriction deriving from ticket #350.
**
**  (13)  The subquery and outer query do not both use LIMIT.
3191
3192
3193
3194
3195
3196
3197





3198
3199
3200
3201
3202
3203
3204
**  (22)  The subquery is not a recursive CTE.
**
**  (23)  The parent is not a recursive CTE, or the sub-query is not a
**        compound query. This restriction is because transforming the
**        parent to a compound query confuses the code that handles
**        recursive queries in multiSelect().
**





**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
**
** If flattening is not attempted, this routine is a no-op and returns 0.
** If flattening is attempted this routine returns 1.







>
>
>
>
>







3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
**  (22)  The subquery is not a recursive CTE.
**
**  (23)  The parent is not a recursive CTE, or the sub-query is not a
**        compound query. This restriction is because transforming the
**        parent to a compound query confuses the code that handles
**        recursive queries in multiSelect().
**
**  (24)  The subquery is not an aggregate that uses the built-in min() or 
**        or max() functions.  (Without this restriction, a query like:
**        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
**        return the value X for which Y was maximal.)
**
**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
**
** If flattening is not attempted, this routine is a no-op and returns 0.
** If flattening is attempted this routine returns 1.
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
  pSub = pSubitem->pSelect;
  assert( pSub!=0 );
  if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
  if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  ** became arbitrary expressions, we were forced to add restrictions (13)
  ** and (14). */
  if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
  if( pSub->pOffset ) return 0;                          /* Restriction (14) */
  if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
    return 0;                                            /* Restriction (15) */







|







3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
  pSub = pSubitem->pSelect;
  assert( pSub!=0 );
  if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
  if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  ** became arbitrary expressions, we were forced to add restrictions (13)
  ** and (14). */
  if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
  if( pSub->pOffset ) return 0;                          /* Restriction (14) */
  if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
    return 0;                                            /* Restriction (15) */
3263
3264
3265
3266
3267
3268
3269
3270




3271


3272
3273
3274
3275
3276
3277
3278
     return 0;                                           /* Restriction (11) */
  }
  if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
  if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
  if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
     return 0;         /* Restriction (21) */
  }
  if( pSub->selFlags & SF_Recursive ) return 0;          /* Restriction (22)  */




  if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0;       /* (23)  */



  /* OBSOLETE COMMENT 1:
  ** Restriction 3:  If the subquery is a join, make sure the subquery is 
  ** not used as the right operand of an outer join.  Examples of why this
  ** is not allowed:
  **
  **         t1 LEFT OUTER JOIN (t2 JOIN t3)







|
>
>
>
>
|
>
>







3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
     return 0;                                           /* Restriction (11) */
  }
  if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
  if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
  if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
     return 0;         /* Restriction (21) */
  }
  testcase( pSub->selFlags & SF_Recursive );
  testcase( pSub->selFlags & SF_MinMaxAgg );
  if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
    return 0; /* Restrictions (22) and (24) */
  }
  if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
    return 0; /* Restriction (23) */
  }

  /* OBSOLETE COMMENT 1:
  ** Restriction 3:  If the subquery is a join, make sure the subquery is 
  ** not used as the right operand of an outer join.  Examples of why this
  ** is not allowed:
  **
  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3338
3339
3340
3341
3342
3343
3344


3345
3346
3347
3348
3349
3350
3351
      for(ii=0; ii<p->pOrderBy->nExpr; ii++){
        if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
      }
    }
  }

  /***** If we reach this point, flattening is permitted. *****/



  /* Authorize the subquery */
  pParse->zAuthContext = pSubitem->zName;
  TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  testcase( i==SQLITE_DENY );
  pParse->zAuthContext = zSavedAuthContext;








>
>







3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
      for(ii=0; ii<p->pOrderBy->nExpr; ii++){
        if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
      }
    }
  }

  /***** If we reach this point, flattening is permitted. *****/
  SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
                   pSub->zSelName, pSub, iFrom));

  /* Authorize the subquery */
  pParse->zAuthContext = pSubitem->zName;
  TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  testcase( i==SQLITE_DENY );
  pParse->zAuthContext = zSavedAuthContext;

3390
3391
3392
3393
3394
3395
3396

3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408



3409
3410
3411
3412
3413
3414
3415
    Select *pPrior = p->pPrior;
    p->pOrderBy = 0;
    p->pSrc = 0;
    p->pPrior = 0;
    p->pLimit = 0;
    p->pOffset = 0;
    pNew = sqlite3SelectDup(db, p, 0);

    p->pOffset = pOffset;
    p->pLimit = pLimit;
    p->pOrderBy = pOrderBy;
    p->pSrc = pSrc;
    p->op = TK_ALL;
    if( pNew==0 ){
      p->pPrior = pPrior;
    }else{
      pNew->pPrior = pPrior;
      if( pPrior ) pPrior->pNext = pNew;
      pNew->pNext = p;
      p->pPrior = pNew;



    }
    if( db->mallocFailed ) return 1;
  }

  /* Begin flattening the iFrom-th entry of the FROM clause 
  ** in the outer query.
  */







>












>
>
>







3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
    Select *pPrior = p->pPrior;
    p->pOrderBy = 0;
    p->pSrc = 0;
    p->pPrior = 0;
    p->pLimit = 0;
    p->pOffset = 0;
    pNew = sqlite3SelectDup(db, p, 0);
    sqlite3SelectSetName(pNew, pSub->zSelName);
    p->pOffset = pOffset;
    p->pLimit = pLimit;
    p->pOrderBy = pOrderBy;
    p->pSrc = pSrc;
    p->op = TK_ALL;
    if( pNew==0 ){
      p->pPrior = pPrior;
    }else{
      pNew->pPrior = pPrior;
      if( pPrior ) pPrior->pNext = pNew;
      pNew->pNext = p;
      p->pPrior = pNew;
      SELECTTRACE(2,pParse,p,
         ("compound-subquery flattener creates %s.%p as peer\n",
         pNew->zSelName, pNew));
    }
    if( db->mallocFailed ) return 1;
  }

  /* Begin flattening the iFrom-th entry of the FROM clause 
  ** in the outer query.
  */
3531
3532
3533
3534
3535
3536
3537














3538

3539
3540
3541
3542
3543
3544
3545
3546
    }
    substExprList(db, pParent->pEList, iParent, pSub->pEList);
    if( isAgg ){
      substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
      pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
    }
    if( pSub->pOrderBy ){














      assert( pParent->pOrderBy==0 );

      pParent->pOrderBy = pSub->pOrderBy;
      pSub->pOrderBy = 0;
    }else if( pParent->pOrderBy ){
      substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
    }
    if( pSub->pWhere ){
      pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
    }else{







>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
|







3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
    }
    substExprList(db, pParent->pEList, iParent, pSub->pEList);
    if( isAgg ){
      substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
      pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
    }
    if( pSub->pOrderBy ){
      /* At this point, any non-zero iOrderByCol values indicate that the
      ** ORDER BY column expression is identical to the iOrderByCol'th
      ** expression returned by SELECT statement pSub. Since these values
      ** do not necessarily correspond to columns in SELECT statement pParent,
      ** zero them before transfering the ORDER BY clause.
      **
      ** Not doing this may cause an error if a subsequent call to this
      ** function attempts to flatten a compound sub-query into pParent
      ** (the only way this can happen is if the compound sub-query is
      ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
      ExprList *pOrderBy = pSub->pOrderBy;
      for(i=0; i<pOrderBy->nExpr; i++){
        pOrderBy->a[i].u.x.iOrderByCol = 0;
      }
      assert( pParent->pOrderBy==0 );
      assert( pSub->pPrior==0 );
      pParent->pOrderBy = pOrderBy;
      pSub->pOrderBy = 0;
    }else if( pParent->pOrderBy ){
      substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
    }
    if( pSub->pWhere ){
      pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
    }else{
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638

  assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
  return eRet;
}

/*
** The select statement passed as the first argument is an aggregate query.
** The second argment is the associated aggregate-info object. This 
** function tests if the SELECT is of the form:
**
**   SELECT count(*) FROM <tbl>
**
** where table is a database table, not a sub-select or view. If the query
** does match this pattern, then a pointer to the Table object representing
** <tbl> is returned. Otherwise, 0 is returned.







|







3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698

  assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
  return eRet;
}

/*
** The select statement passed as the first argument is an aggregate query.
** The second argument is the associated aggregate-info object. This 
** function tests if the SELECT is of the form:
**
**   SELECT count(*) FROM <tbl>
**
** where table is a database table, not a sub-select or view. If the query
** does match this pattern, then a pointer to the Table object representing
** <tbl> is returned. Otherwise, 0 is returned.
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
**         element of the FROM clause.
**
**    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
**         defines FROM clause.  When views appear in the FROM clause,
**         fill pTabList->a[].pSelect with a copy of the SELECT statement
**         that implements the view.  A copy is made of the view's SELECT
**         statement so that we can freely modify or delete that statement
**         without worrying about messing up the presistent representation
**         of the view.
**
**    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
**         on joins and the ON and USING clause of joins.
**
**    (4)  Scan the list of columns in the result set (pEList) looking
**         for instances of the "*" operator or the TABLE.* operator.
**         If found, expand each "*" to be every column in every table
**         and TABLE.* to be every column in TABLE.
**







|


|







4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
**         element of the FROM clause.
**
**    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
**         defines FROM clause.  When views appear in the FROM clause,
**         fill pTabList->a[].pSelect with a copy of the SELECT statement
**         that implements the view.  A copy is made of the view's SELECT
**         statement so that we can freely modify or delete that statement
**         without worrying about messing up the persistent representation
**         of the view.
**
**    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
**         on joins and the ON and USING clause of joins.
**
**    (4)  Scan the list of columns in the result set (pEList) looking
**         for instances of the "*" operator or the TABLE.* operator.
**         If found, expand each "*" to be every column in every table
**         and TABLE.* to be every column in TABLE.
**
4048
4049
4050
4051
4052
4053
4054

4055
4056
4057
4058
4059
4060
4061
      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );
        pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);

        sqlite3WalkSelect(pWalker, pFrom->pSelect);
      }
#endif
    }

    /* Locate the index named by the INDEXED BY clause, if any. */
    if( sqlite3IndexedByLookup(pParse, pFrom) ){







>







4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );
        pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
        sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
        sqlite3WalkSelect(pWalker, pFrom->pSelect);
      }
#endif
    }

    /* Locate the index named by the INDEXED BY clause, if any. */
    if( sqlite3IndexedByLookup(pParse, pFrom) ){
4582
4583
4584
4585
4586
4587
4588




4589
4590
4591
4592
4593
4594
4595

  db = pParse->db;
  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));





  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
  if( IgnorableOrderby(pDest) ){
    assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 







>
>
>
>







4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660

  db = pParse->db;
  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));
#if SELECTTRACE_ENABLED
  pParse->nSelectIndent++;
  SELECTTRACE(1,pParse,p, ("begin processing\n"));
#endif

  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
  assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
  if( IgnorableOrderby(pDest) ){
    assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
4738
4739
4740
4741
4742
4743
4744




4745
4746
4747
4748
4749
4750
4751

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* If there is are a sequence of queries, do the earlier ones first.
  */
  if( p->pPrior ){
    rc = multiSelect(pParse, p, pDest);
    explainSetInteger(pParse->iSelectId, iRestoreSelectId);




    return rc;
  }
#endif

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:







>
>
>
>







4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* If there is are a sequence of queries, do the earlier ones first.
  */
  if( p->pPrior ){
    rc = multiSelect(pParse, p, pDest);
    explainSetInteger(pParse->iSelectId, iRestoreSelectId);
#if SELECTTRACE_ENABLED
    SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
    pParse->nSelectIndent--;
#endif
    return rc;
  }
#endif

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
5337
5338
5339
5340
5341
5342
5343




5344
5345
5346
5347
5348
5349
5350
  */
  if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
    generateColumnNames(pParse, pTabList, pEList);
  }

  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);




  return rc;
}

#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
void sqlite3PrintExpr(Expr *p);
void sqlite3PrintExprList(ExprList *pList);
void sqlite3PrintSelect(Select *p, int indent);







>
>
>
>







5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
  */
  if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
    generateColumnNames(pParse, pTabList, pEList);
  }

  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);
#if SELECTTRACE_ENABLED
  SELECTTRACE(1,pParse,p,("end processing\n"));
  pParse->nSelectIndent--;
#endif
  return rc;
}

#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
void sqlite3PrintExpr(Expr *p);
void sqlite3PrintExprList(ExprList *pList);
void sqlite3PrintSelect(Select *p, int indent);
Changes to src/shell.c.
29
30
31
32
33
34
35



36
37
38
39
40
41
42
#endif

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include "sqlite3.h"



#include <ctype.h>
#include <stdarg.h>

#if !defined(_WIN32) && !defined(WIN32)
# include <signal.h>
# if !defined(__RTP__) && !defined(_WRS_KERNEL)
#  include <pwd.h>







>
>
>







29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#endif

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include "sqlite3.h"
#if SQLITE_USER_AUTHENTICATION
# include "sqlite3userauth.h"
#endif
#include <ctype.h>
#include <stdarg.h>

#if !defined(_WIN32) && !defined(WIN32)
# include <signal.h>
# if !defined(__RTP__) && !defined(_WRS_KERNEL)
#  include <pwd.h>
3093
3094
3095
3096
3097
3098
3099









3100
3101
3102
3103
3104
3105
3106
    }else if( rc != SQLITE_OK ){
      fprintf(stderr,"Error: querying schema information\n");
      rc = 1;
    }else{
      rc = 0;
    }
  }else










#ifdef SQLITE_DEBUG
  /* Undocumented commands for internal testing.  Subject to change
  ** without notice. */
  if( c=='s' && n>=10 && strncmp(azArg[0], "selftest-", 9)==0 ){
    if( strncmp(azArg[0]+9, "boolean", n-9)==0 ){
      int i, v;







>
>
>
>
>
>
>
>
>







3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
    }else if( rc != SQLITE_OK ){
      fprintf(stderr,"Error: querying schema information\n");
      rc = 1;
    }else{
      rc = 0;
    }
  }else


#if defined(SQLITE_DEBUG) && defined(SQLITE_ENABLE_SELECTTRACE)
  if( c=='s' && n==11 && strncmp(azArg[0], "selecttrace", n)==0 ){
    extern int sqlite3SelectTrace;
    sqlite3SelectTrace = nArg>=2 ? booleanValue(azArg[1]) : 0xff;
  }else
#endif


#ifdef SQLITE_DEBUG
  /* Undocumented commands for internal testing.  Subject to change
  ** without notice. */
  if( c=='s' && n>=10 && strncmp(azArg[0], "selftest-", 9)==0 ){
    if( strncmp(azArg[0]+9, "boolean", n-9)==0 ){
      int i, v;
3431
3432
3433
3434
3435
3436
3437

































































3438
3439
3440
3441
3442
3443
3444
      sqlite3_trace(p->db, 0, 0);
    }else{
      sqlite3_trace(p->db, sql_trace_callback, p->traceOut);
    }
#endif
  }else


































































  if( c=='v' && strncmp(azArg[0], "version", n)==0 ){
    fprintf(p->out, "SQLite %s %s\n" /*extra-version-info*/,
        sqlite3_libversion(), sqlite3_sourceid());
  }else

  if( c=='v' && strncmp(azArg[0], "vfsname", n)==0 ){
    const char *zDbName = nArg==2 ? azArg[1] : "main";







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
      sqlite3_trace(p->db, 0, 0);
    }else{
      sqlite3_trace(p->db, sql_trace_callback, p->traceOut);
    }
#endif
  }else

#if SQLITE_USER_AUTHENTICATION
  if( c=='u' && strncmp(azArg[0], "user", n)==0 ){
    if( nArg<2 ){
      fprintf(stderr, "Usage: .user SUBCOMMAND ...\n");
      rc = 1;
      goto meta_command_exit;
    }
    open_db(p, 0);
    if( strcmp(azArg[1],"login")==0 ){
      if( nArg!=4 ){
        fprintf(stderr, "Usage: .user login USER PASSWORD\n");
        rc = 1;
        goto meta_command_exit;
      }
      rc = sqlite3_user_authenticate(p->db, azArg[2], azArg[3],
                                    (int)strlen(azArg[3]));
      if( rc ){
        fprintf(stderr, "Authentication failed for user %s\n", azArg[2]);
        rc = 1;
      }
    }else if( strcmp(azArg[1],"add")==0 ){
      if( nArg!=5 ){
        fprintf(stderr, "Usage: .user add USER PASSWORD ISADMIN\n");
        rc = 1;
        goto meta_command_exit;
      }
      rc = sqlite3_user_add(p->db, azArg[2],
                            azArg[3], (int)strlen(azArg[3]),
                            booleanValue(azArg[4]));
      if( rc ){
        fprintf(stderr, "User-Add failed: %d\n", rc);
        rc = 1;
      }
    }else if( strcmp(azArg[1],"edit")==0 ){
      if( nArg!=5 ){
        fprintf(stderr, "Usage: .user edit USER PASSWORD ISADMIN\n");
        rc = 1;
        goto meta_command_exit;
      }
      rc = sqlite3_user_change(p->db, azArg[2],
                              azArg[3], (int)strlen(azArg[3]),
                              booleanValue(azArg[4]));
      if( rc ){
        fprintf(stderr, "User-Edit failed: %d\n", rc);
        rc = 1;
      }
    }else if( strcmp(azArg[1],"delete")==0 ){
      if( nArg!=3 ){
        fprintf(stderr, "Usage: .user delete USER\n");
        rc = 1;
        goto meta_command_exit;
      }
      rc = sqlite3_user_delete(p->db, azArg[2]);
      if( rc ){
        fprintf(stderr, "User-Delete failed: %d\n", rc);
        rc = 1;
      }
    }else{
      fprintf(stderr, "Usage: .user login|add|edit|delete ...\n");
      rc = 1;
      goto meta_command_exit;
    }    
  }else
#endif /* SQLITE_USER_AUTHENTICATION */

  if( c=='v' && strncmp(azArg[0], "version", n)==0 ){
    fprintf(p->out, "SQLite %s %s\n" /*extra-version-info*/,
        sqlite3_libversion(), sqlite3_sourceid());
  }else

  if( c=='v' && strncmp(azArg[0], "vfsname", n)==0 ){
    const char *zDbName = nArg==2 ? azArg[1] : "main";
Changes to src/sqlite.h.in.
488
489
490
491
492
493
494

495
496
497
498
499
500
501
#define SQLITE_CONSTRAINT_TRIGGER      (SQLITE_CONSTRAINT | (7<<8))
#define SQLITE_CONSTRAINT_UNIQUE       (SQLITE_CONSTRAINT | (8<<8))
#define SQLITE_CONSTRAINT_VTAB         (SQLITE_CONSTRAINT | (9<<8))
#define SQLITE_CONSTRAINT_ROWID        (SQLITE_CONSTRAINT |(10<<8))
#define SQLITE_NOTICE_RECOVER_WAL      (SQLITE_NOTICE | (1<<8))
#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))
#define SQLITE_WARNING_AUTOINDEX       (SQLITE_WARNING | (1<<8))


/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.







>







488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#define SQLITE_CONSTRAINT_TRIGGER      (SQLITE_CONSTRAINT | (7<<8))
#define SQLITE_CONSTRAINT_UNIQUE       (SQLITE_CONSTRAINT | (8<<8))
#define SQLITE_CONSTRAINT_VTAB         (SQLITE_CONSTRAINT | (9<<8))
#define SQLITE_CONSTRAINT_ROWID        (SQLITE_CONSTRAINT |(10<<8))
#define SQLITE_NOTICE_RECOVER_WAL      (SQLITE_NOTICE | (1<<8))
#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))
#define SQLITE_WARNING_AUTOINDEX       (SQLITE_WARNING | (1<<8))
#define SQLITE_AUTH_USER               (SQLITE_AUTH | (1<<8))

/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
** the handler returns 0 which causes [sqlite3_step()] to return
** [SQLITE_BUSY].
**
** ^Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
**
** ^(There can only be a single busy handler for a particular
** [database connection] any any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.)^
**
** See also:  [PRAGMA busy_timeout]
*/
int sqlite3_busy_timeout(sqlite3*, int ms);








|







2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
** the handler returns 0 which causes [sqlite3_step()] to return
** [SQLITE_BUSY].
**
** ^Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
**
** ^(There can only be a single busy handler for a particular
** [database connection] at any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.)^
**
** See also:  [PRAGMA busy_timeout]
*/
int sqlite3_busy_timeout(sqlite3*, int ms);

2298
2299
2300
2301
2302
2303
2304




2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333














2334

2335
2336
2337
2338
2339
2340
2341
**
** ^The sqlite3_malloc() routine returns a pointer to a block
** of memory at least N bytes in length, where N is the parameter.
** ^If sqlite3_malloc() is unable to obtain sufficient free
** memory, it returns a NULL pointer.  ^If the parameter N to
** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
** a NULL pointer.




**
** ^Calling sqlite3_free() with a pointer previously returned
** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
** that it might be reused.  ^The sqlite3_free() routine is
** a no-op if is called with a NULL pointer.  Passing a NULL pointer
** to sqlite3_free() is harmless.  After being freed, memory
** should neither be read nor written.  Even reading previously freed
** memory might result in a segmentation fault or other severe error.
** Memory corruption, a segmentation fault, or other severe error
** might result if sqlite3_free() is called with a non-NULL pointer that
** was not obtained from sqlite3_malloc() or sqlite3_realloc().
**
** ^(The sqlite3_realloc() interface attempts to resize a
** prior memory allocation to be at least N bytes, where N is the
** second parameter.  The memory allocation to be resized is the first
** parameter.)^ ^ If the first parameter to sqlite3_realloc()
** is a NULL pointer then its behavior is identical to calling
** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
** ^If the second parameter to sqlite3_realloc() is zero or
** negative then the behavior is exactly the same as calling
** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
** ^sqlite3_realloc() returns a pointer to a memory allocation
** of at least N bytes in size or NULL if sufficient memory is unavailable.
** ^If M is the size of the prior allocation, then min(N,M) bytes
** of the prior allocation are copied into the beginning of buffer returned
** by sqlite3_realloc() and the prior allocation is freed.
** ^If sqlite3_realloc() returns NULL, then the prior allocation
** is not freed.
**














** ^The memory returned by sqlite3_malloc() and sqlite3_realloc()

** is always aligned to at least an 8 byte boundary, or to a
** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
** option is used.
**
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
** implementation of these routines to be omitted.  That capability







>
>
>
>












|
|
<
|

|
|

|
|
|


|
|
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>







2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323

2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
**
** ^The sqlite3_malloc() routine returns a pointer to a block
** of memory at least N bytes in length, where N is the parameter.
** ^If sqlite3_malloc() is unable to obtain sufficient free
** memory, it returns a NULL pointer.  ^If the parameter N to
** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
** a NULL pointer.
**
** ^The sqlite3_malloc64(N) routine works just like
** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead
** of a signed 32-bit integer.
**
** ^Calling sqlite3_free() with a pointer previously returned
** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
** that it might be reused.  ^The sqlite3_free() routine is
** a no-op if is called with a NULL pointer.  Passing a NULL pointer
** to sqlite3_free() is harmless.  After being freed, memory
** should neither be read nor written.  Even reading previously freed
** memory might result in a segmentation fault or other severe error.
** Memory corruption, a segmentation fault, or other severe error
** might result if sqlite3_free() is called with a non-NULL pointer that
** was not obtained from sqlite3_malloc() or sqlite3_realloc().
**
** ^The sqlite3_realloc(X,N) interface attempts to resize a
** prior memory allocation X to be at least N bytes.

** ^If the X parameter to sqlite3_realloc(X,N)
** is a NULL pointer then its behavior is identical to calling
** sqlite3_malloc(N).
** ^If the N parameter to sqlite3_realloc(X,N) is zero or
** negative then the behavior is exactly the same as calling
** sqlite3_free(X).
** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation
** of at least N bytes in size or NULL if insufficient memory is available.
** ^If M is the size of the prior allocation, then min(N,M) bytes
** of the prior allocation are copied into the beginning of buffer returned
** by sqlite3_realloc(X,N) and the prior allocation is freed.
** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the
** prior allocation is not freed.
**
** ^The sqlite3_realloc64(X,N) interfaces works the same as
** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead
** of a 32-bit signed integer.
**
** ^If X is a memory allocation previously obtained from sqlite3_malloc(),
** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then
** sqlite3_msize(X) returns the size of that memory allocation in bytes.
** ^The value returned by sqlite3_msize(X) might be larger than the number
** of bytes requested when X was allocated.  ^If X is a NULL pointer then
** sqlite3_msize(X) returns zero.  If X points to something that is not
** the beginning of memory allocation, or if it points to a formerly
** valid memory allocation that has now been freed, then the behavior
** of sqlite3_msize(X) is undefined and possibly harmful.
**
** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(),
** sqlite3_malloc64(), and sqlite3_realloc64()
** is always aligned to at least an 8 byte boundary, or to a
** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
** option is used.
**
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
** implementation of these routines to be omitted.  That capability
2355
2356
2357
2358
2359
2360
2361

2362

2363

2364
2365
2366
2367
2368
2369
2370
** not yet been released.
**
** The application must not read or write any part of
** a block of memory after it has been released using
** [sqlite3_free()] or [sqlite3_realloc()].
*/
void *sqlite3_malloc(int);

void *sqlite3_realloc(void*, int);

void sqlite3_free(void*);


/*
** CAPI3REF: Memory Allocator Statistics
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
** routines, which form the built-in memory allocation subsystem.







>

>

>







2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
** not yet been released.
**
** The application must not read or write any part of
** a block of memory after it has been released using
** [sqlite3_free()] or [sqlite3_realloc()].
*/
void *sqlite3_malloc(int);
void *sqlite3_malloc64(sqlite3_uint64);
void *sqlite3_realloc(void*, int);
void *sqlite3_realloc64(void*, sqlite3_uint64);
void sqlite3_free(void*);
sqlite3_uint64 sqlite3_msize(void*);

/*
** CAPI3REF: Memory Allocator Statistics
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
** routines, which form the built-in memory allocation subsystem.
3365
3366
3367
3368
3369
3370
3371

3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389








3390
3391
3392
3393
3394
3395
3396
** number of <u>bytes</u> in the value, not the number of characters.)^
** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
** is negative, then the length of the string is
** the number of bytes up to the first zero terminator.
** If the fourth parameter to sqlite3_bind_blob() is negative, then
** the behavior is undefined.
** If a non-negative fourth parameter is provided to sqlite3_bind_text()

** or sqlite3_bind_text16() then that parameter must be the byte offset
** where the NUL terminator would occur assuming the string were NUL
** terminated.  If any NUL characters occur at byte offsets less than 
** the value of the fourth parameter then the resulting string value will
** contain embedded NULs.  The result of expressions involving strings
** with embedded NULs is undefined.
**
** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
** string after SQLite has finished with it.  ^The destructor is called
** to dispose of the BLOB or string even if the call to sqlite3_bind_blob(),
** sqlite3_bind_text(), or sqlite3_bind_text16() fails.  
** ^If the fifth argument is
** the special value [SQLITE_STATIC], then SQLite assumes that the
** information is in static, unmanaged space and does not need to be freed.
** ^If the fifth argument has the value [SQLITE_TRANSIENT], then
** SQLite makes its own private copy of the data immediately, before
** the sqlite3_bind_*() routine returns.








**
** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
** is filled with zeroes.  ^A zeroblob uses a fixed amount of memory
** (just an integer to hold its size) while it is being processed.
** Zeroblobs are intended to serve as placeholders for BLOBs whose
** content is later written using
** [sqlite3_blob_open | incremental BLOB I/O] routines.







>
|

















>
>
>
>
>
>
>
>







3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
** number of <u>bytes</u> in the value, not the number of characters.)^
** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
** is negative, then the length of the string is
** the number of bytes up to the first zero terminator.
** If the fourth parameter to sqlite3_bind_blob() is negative, then
** the behavior is undefined.
** If a non-negative fourth parameter is provided to sqlite3_bind_text()
** or sqlite3_bind_text16() or sqlite3_bind_text64() then
** that parameter must be the byte offset
** where the NUL terminator would occur assuming the string were NUL
** terminated.  If any NUL characters occur at byte offsets less than 
** the value of the fourth parameter then the resulting string value will
** contain embedded NULs.  The result of expressions involving strings
** with embedded NULs is undefined.
**
** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
** string after SQLite has finished with it.  ^The destructor is called
** to dispose of the BLOB or string even if the call to sqlite3_bind_blob(),
** sqlite3_bind_text(), or sqlite3_bind_text16() fails.  
** ^If the fifth argument is
** the special value [SQLITE_STATIC], then SQLite assumes that the
** information is in static, unmanaged space and does not need to be freed.
** ^If the fifth argument has the value [SQLITE_TRANSIENT], then
** SQLite makes its own private copy of the data immediately, before
** the sqlite3_bind_*() routine returns.
**
** ^The sixth argument to sqlite3_bind_text64() must be one of
** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
** to specify the encoding of the text in the third parameter.  If
** the sixth argument to sqlite3_bind_text64() is not how of the
** allowed values shown above, or if the text encoding is different
** from the encoding specified by the sixth parameter, then the behavior
** is undefined.
**
** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
** is filled with zeroes.  ^A zeroblob uses a fixed amount of memory
** (just an integer to hold its size) while it is being processed.
** Zeroblobs are intended to serve as placeholders for BLOBs whose
** content is later written using
** [sqlite3_blob_open | incremental BLOB I/O] routines.
3404
3405
3406
3407
3408
3409
3410



3411
3412
3413
3414
3415
3416
3417


3418
3419
3420
3421
3422
3423


3424
3425
3426
3427
3428
3429
3430
** result is undefined and probably harmful.
**
** ^Bindings are not cleared by the [sqlite3_reset()] routine.
** ^Unbound parameters are interpreted as NULL.
**
** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
** [error code] if anything goes wrong.



** ^[SQLITE_RANGE] is returned if the parameter
** index is out of range.  ^[SQLITE_NOMEM] is returned if malloc() fails.
**
** See also: [sqlite3_bind_parameter_count()],
** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
*/
int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));


int sqlite3_bind_double(sqlite3_stmt*, int, double);
int sqlite3_bind_int(sqlite3_stmt*, int, int);
int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
int sqlite3_bind_null(sqlite3_stmt*, int);
int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));


int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);

/*
** CAPI3REF: Number Of SQL Parameters
**
** ^This routine can be used to find the number of [SQL parameters]







>
>
>







>
>




|

>
>







3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
** result is undefined and probably harmful.
**
** ^Bindings are not cleared by the [sqlite3_reset()] routine.
** ^Unbound parameters are interpreted as NULL.
**
** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
** [error code] if anything goes wrong.
** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB
** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or
** [SQLITE_MAX_LENGTH].
** ^[SQLITE_RANGE] is returned if the parameter
** index is out of range.  ^[SQLITE_NOMEM] is returned if malloc() fails.
**
** See also: [sqlite3_bind_parameter_count()],
** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
*/
int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
                        void(*)(void*));
int sqlite3_bind_double(sqlite3_stmt*, int, double);
int sqlite3_bind_int(sqlite3_stmt*, int, int);
int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
int sqlite3_bind_null(sqlite3_stmt*, int);
int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
                         void(*)(void*), unsigned char encoding);
int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);

/*
** CAPI3REF: Number Of SQL Parameters
**
** ^This routine can be used to find the number of [SQL parameters]
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
** extract values from the [sqlite3_value] objects.
**
** These routines work only with [protected sqlite3_value] objects.
** Any attempt to use these routines on an [unprotected sqlite3_value]
** object results in undefined behavior.
**
** ^These routines work just like the corresponding [column access functions]
** except that  these routines take a single [protected sqlite3_value] object
** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
**
** ^The sqlite3_value_text16() interface extracts a UTF-16 string
** in the native byte-order of the host machine.  ^The
** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
** extract UTF-16 strings as big-endian and little-endian respectively.
**







|







4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
** extract values from the [sqlite3_value] objects.
**
** These routines work only with [protected sqlite3_value] objects.
** Any attempt to use these routines on an [unprotected sqlite3_value]
** object results in undefined behavior.
**
** ^These routines work just like the corresponding [column access functions]
** except that these routines take a single [protected sqlite3_value] object
** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
**
** ^The sqlite3_value_text16() interface extracts a UTF-16 string
** in the native byte-order of the host machine.  ^The
** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
** extract UTF-16 strings as big-endian and little-endian respectively.
**
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418




4419
4420
4421
4422
4423
4424
4425
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.
**
** ^The sqlite3_result_null() interface sets the return value
** of the application-defined function to be NULL.
**
** ^The sqlite3_result_text(), sqlite3_result_text16(),
** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
** set the return value of the application-defined function to be
** a text string which is represented as UTF-8, UTF-16 native byte order,
** UTF-16 little endian, or UTF-16 big endian, respectively.




** ^SQLite takes the text result from the application from
** the 2nd parameter of the sqlite3_result_text* interfaces.
** ^If the 3rd parameter to the sqlite3_result_text* interfaces
** is negative, then SQLite takes result text from the 2nd parameter
** through the first zero character.
** ^If the 3rd parameter to the sqlite3_result_text* interfaces
** is non-negative, then as many bytes (not characters) of the text







|



>
>
>
>







4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.
**
** ^The sqlite3_result_null() interface sets the return value
** of the application-defined function to be NULL.
**
** ^The sqlite3_result_text(), sqlite3_result_text16(),
** sqlite3_result_text16le(), and sqlite3_result_text16be()
** set the return value of the application-defined function to be
** a text string which is represented as UTF-8, UTF-16 native byte order,
** UTF-16 little endian, or UTF-16 big endian, respectively.
** ^The sqlite3_result_text64() interface sets the return value of an
** application-defined function to be a text string in an encoding
** specified by the fifth (and last) parameter, which must be one
** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE].
** ^SQLite takes the text result from the application from
** the 2nd parameter of the sqlite3_result_text* interfaces.
** ^If the 3rd parameter to the sqlite3_result_text* interfaces
** is negative, then SQLite takes result text from the 2nd parameter
** through the first zero character.
** ^If the 3rd parameter to the sqlite3_result_text* interfaces
** is non-negative, then as many bytes (not characters) of the text
4455
4456
4457
4458
4459
4460
4461

4462
4463
4464
4465
4466
4467
4468
4469
4470
4471


4472
4473
4474
4475
4476
4477
4478
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
*/
void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));

void sqlite3_result_double(sqlite3_context*, double);
void sqlite3_result_error(sqlite3_context*, const char*, int);
void sqlite3_result_error16(sqlite3_context*, const void*, int);
void sqlite3_result_error_toobig(sqlite3_context*);
void sqlite3_result_error_nomem(sqlite3_context*);
void sqlite3_result_error_code(sqlite3_context*, int);
void sqlite3_result_int(sqlite3_context*, int);
void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
void sqlite3_result_null(sqlite3_context*);
void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));


void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
void sqlite3_result_zeroblob(sqlite3_context*, int n);

/*







>










>
>







4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
*/
void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
void sqlite3_result_blob64(sqlite3_context*,const void*,sqlite3_uint64,void(*)(void*));
void sqlite3_result_double(sqlite3_context*, double);
void sqlite3_result_error(sqlite3_context*, const char*, int);
void sqlite3_result_error16(sqlite3_context*, const void*, int);
void sqlite3_result_error_toobig(sqlite3_context*);
void sqlite3_result_error_nomem(sqlite3_context*);
void sqlite3_result_error_code(sqlite3_context*, int);
void sqlite3_result_int(sqlite3_context*, int);
void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
void sqlite3_result_null(sqlite3_context*);
void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
                           void(*)(void*), unsigned char encoding);
void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
void sqlite3_result_zeroblob(sqlite3_context*, int n);

/*
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
** <dd>This parameter returns the number malloc attempts that might have
** been satisfied using lookaside memory but failed due to all lookaside
** memory already being in use.
** Only the high-water value is meaningful;
** the current value is always zero.)^
**
** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
** <dd>This parameter returns the approximate number of of bytes of heap
** memory used by all pager caches associated with the database connection.)^
** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
**
** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
** <dd>This parameter returns the approximate number of of bytes of heap
** memory used to store the schema for all databases associated
** with the connection - main, temp, and any [ATTACH]-ed databases.)^ 
** ^The full amount of memory used by the schemas is reported, even if the
** schema memory is shared with other database connections due to
** [shared cache mode] being enabled.
** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
**
** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
** <dd>This parameter returns the approximate number of of bytes of heap
** and lookaside memory used by all prepared statements associated with
** the database connection.)^
** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
** </dd>
**
** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt>
** <dd>This parameter returns the number of pager cache hits that have







|




|








|







6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
** <dd>This parameter returns the number malloc attempts that might have
** been satisfied using lookaside memory but failed due to all lookaside
** memory already being in use.
** Only the high-water value is meaningful;
** the current value is always zero.)^
**
** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
** <dd>This parameter returns the approximate number of bytes of heap
** memory used by all pager caches associated with the database connection.)^
** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
**
** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
** <dd>This parameter returns the approximate number of bytes of heap
** memory used to store the schema for all databases associated
** with the connection - main, temp, and any [ATTACH]-ed databases.)^ 
** ^The full amount of memory used by the schemas is reported, even if the
** schema memory is shared with other database connections due to
** [shared cache mode] being enabled.
** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
**
** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
** <dd>This parameter returns the approximate number of bytes of heap
** and lookaside memory used by all prepared statements associated with
** the database connection.)^
** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
** </dd>
**
** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt>
** <dd>This parameter returns the number of pager cache hits that have
Changes to src/sqlite3ext.h.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/*
** The following structure holds pointers to all of the SQLite API
** routines.
**
** WARNING:  In order to maintain backwards compatibility, add new
** interfaces to the end of this structure only.  If you insert new
** interfaces in the middle of this structure, then older different
** versions of SQLite will not be able to load each others' shared
** libraries!
*/
struct sqlite3_api_routines {
  void * (*aggregate_context)(sqlite3_context*,int nBytes);
  int  (*aggregate_count)(sqlite3_context*);
  int  (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
  int  (*bind_double)(sqlite3_stmt*,int,double);







|







24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/*
** The following structure holds pointers to all of the SQLite API
** routines.
**
** WARNING:  In order to maintain backwards compatibility, add new
** interfaces to the end of this structure only.  If you insert new
** interfaces in the middle of this structure, then older different
** versions of SQLite will not be able to load each other's shared
** libraries!
*/
struct sqlite3_api_routines {
  void * (*aggregate_context)(sqlite3_context*,int nBytes);
  int  (*aggregate_count)(sqlite3_context*);
  int  (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
  int  (*bind_double)(sqlite3_stmt*,int,double);
246
247
248
249
250
251
252

















253
254
255
256
257
258
259
260
261
262
263
264
  int (*stmt_readonly)(sqlite3_stmt*);
  int (*stricmp)(const char*,const char*);
  int (*uri_boolean)(const char*,const char*,int);
  sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64);
  const char *(*uri_parameter)(const char*,const char*);
  char *(*vsnprintf)(int,char*,const char*,va_list);
  int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*);

















};

/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
** (part of the main SQLite library - not an extension) so that
** it can get access to the sqlite3_api_routines structure
** definition.  But the main library does not want to redefine
** the API.  So the redefinition macros are only valid if the
** SQLITE_CORE macros is undefined.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|







246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
  int (*stmt_readonly)(sqlite3_stmt*);
  int (*stricmp)(const char*,const char*);
  int (*uri_boolean)(const char*,const char*,int);
  sqlite3_int64 (*uri_int64)(const char*,const char*,sqlite3_int64);
  const char *(*uri_parameter)(const char*,const char*);
  char *(*vsnprintf)(int,char*,const char*,va_list);
  int (*wal_checkpoint_v2)(sqlite3*,const char*,int,int*,int*);
  /* Version 3.8.7 and later */
  int (*auto_extension)(void(*)(void));
  int (*bind_blob64)(sqlite3_stmt*,int,const void*,sqlite3_uint64,
                     void(*)(void*));
  int (*bind_text64)(sqlite3_stmt*,int,const char*,sqlite3_uint64,
                      void(*)(void*),unsigned char);
  int (*cancel_auto_extension)(void(*)(void));
  int (*load_extension)(sqlite3*,const char*,const char*,char**);
  void *(*malloc64)(sqlite3_uint64);
  sqlite3_uint64 (*msize)(void*);
  void *(*realloc64)(void*,sqlite3_uint64);
  void (*reset_auto_extension)(void);
  void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64,
                        void(*)(void*));
  void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64,
                         void(*)(void*), unsigned char);
  int (*strglob)(const char*,const char*);
};

/*
** The following macros redefine the API routines so that they are
** redirected through the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
** (part of the main SQLite library - not an extension) so that
** it can get access to the sqlite3_api_routines structure
** definition.  But the main library does not want to redefine
** the API.  So the redefinition macros are only valid if the
** SQLITE_CORE macros is undefined.
463
464
465
466
467
468
469













470
471
472
473
474
475
476
#define sqlite3_stmt_readonly          sqlite3_api->stmt_readonly
#define sqlite3_stricmp                sqlite3_api->stricmp
#define sqlite3_uri_boolean            sqlite3_api->uri_boolean
#define sqlite3_uri_int64              sqlite3_api->uri_int64
#define sqlite3_uri_parameter          sqlite3_api->uri_parameter
#define sqlite3_uri_vsnprintf          sqlite3_api->vsnprintf
#define sqlite3_wal_checkpoint_v2      sqlite3_api->wal_checkpoint_v2













#endif /* SQLITE_CORE */

#ifndef SQLITE_CORE
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;







>
>
>
>
>
>
>
>
>
>
>
>
>







480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
#define sqlite3_stmt_readonly          sqlite3_api->stmt_readonly
#define sqlite3_stricmp                sqlite3_api->stricmp
#define sqlite3_uri_boolean            sqlite3_api->uri_boolean
#define sqlite3_uri_int64              sqlite3_api->uri_int64
#define sqlite3_uri_parameter          sqlite3_api->uri_parameter
#define sqlite3_uri_vsnprintf          sqlite3_api->vsnprintf
#define sqlite3_wal_checkpoint_v2      sqlite3_api->wal_checkpoint_v2
/* Version 3.8.7 and later */
#define sqlite3_auto_extension         sqlite3_api->auto_extension
#define sqlite3_bind_blob64            sqlite3_api->bind_blob64
#define sqlite3_bind_text64            sqlite3_api->bind_text64
#define sqlite3_cancel_auto_extension  sqlite3_api->cancel_auto_extension
#define sqlite3_load_extension         sqlite3_api->load_extension
#define sqlite3_malloc64               sqlite3_api->malloc64
#define sqlite3_msize                  sqlite3_api->msize
#define sqlite3_realloc64              sqlite3_api->realloc64
#define sqlite3_reset_auto_extension   sqlite3_api->reset_auto_extension
#define sqlite3_result_blob64          sqlite3_api->result_blob64
#define sqlite3_result_text64          sqlite3_api->result_text64
#define sqlite3_strglob                sqlite3_api->strglob
#endif /* SQLITE_CORE */

#ifndef SQLITE_CORE
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;
Changes to src/sqliteInt.h.
43
44
45
46
47
48
49









50
51
52
53
54
55
56
# define _LARGE_FILE       1
# ifndef _FILE_OFFSET_BITS
#   define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif










/*
** For MinGW, check to see if we can include the header file containing its
** version information, among other things.  Normally, this internal MinGW
** header file would [only] be included automatically by other MinGW header
** files; however, the contained version information is now required by this
** header file to work around binary compatibility issues (see below) and
** this is the only known way to reliably obtain it.  This entire #if block







>
>
>
>
>
>
>
>
>







43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# define _LARGE_FILE       1
# ifndef _FILE_OFFSET_BITS
#   define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif

/* Needed for various definitions... */
#if defined(__GNUC__) && !defined(_GNU_SOURCE)
# define _GNU_SOURCE
#endif

#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
# define _BSD_SOURCE
#endif

/*
** For MinGW, check to see if we can include the header file containing its
** version information, among other things.  Normally, this internal MinGW
** header file would [only] be included automatically by other MinGW header
** files; however, the contained version information is now required by this
** header file to work around binary compatibility issues (see below) and
** this is the only known way to reliably obtain it.  This entire #if block
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#pragma warn -rch /* unreachable code */
#pragma warn -ccc /* Condition is always true or false */
#pragma warn -aus /* Assigned value is never used */
#pragma warn -csu /* Comparing signed and unsigned */
#pragma warn -spa /* Suspicious pointer arithmetic */
#endif

/* Needed for various definitions... */
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif

#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
# define _BSD_SOURCE
#endif

/*
** Include standard header files as necessary
*/
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H







<
<
<
<
<
<
<
<
<







109
110
111
112
113
114
115









116
117
118
119
120
121
122
#pragma warn -rch /* unreachable code */
#pragma warn -ccc /* Condition is always true or false */
#pragma warn -aus /* Assigned value is never used */
#pragma warn -csu /* Comparing signed and unsigned */
#pragma warn -spa /* Suspicious pointer arithmetic */
#endif










/*
** Include standard header files as necessary
*/
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# define NEVER(X)       ((X)?(assert(0),1):0)
#else
# define ALWAYS(X)      (X)
# define NEVER(X)       (X)
#endif

/*
** Return true (non-zero) if the input is a integer that is too large
** to fit in 32-bits.  This macro is used inside of various testcase()
** macros to verify that we have tested SQLite for large-file support.
*/
#define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)

/*
** The macro unlikely() is a hint that surrounds a boolean







|







347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# define NEVER(X)       ((X)?(assert(0),1):0)
#else
# define ALWAYS(X)      (X)
# define NEVER(X)       (X)
#endif

/*
** Return true (non-zero) if the input is an integer that is too large
** to fit in 32-bits.  This macro is used inside of various testcase()
** macros to verify that we have tested SQLite for large-file support.
*/
#define IS_BIG_INT(X)  (((X)&~(i64)0xffffffff)!=0)

/*
** The macro unlikely() is a hint that surrounds a boolean
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

/*
** Assert that the pointer X is aligned to an 8-byte boundary.  This
** macro is used only within assert() to verify that the code gets
** all alignment restrictions correct.
**
** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
** underlying malloc() implemention might return us 4-byte aligned
** pointers.  In that case, only verify 4-byte alignment.
*/
#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
# define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
#else
# define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
#endif







|







635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

/*
** Assert that the pointer X is aligned to an 8-byte boundary.  This
** macro is used only within assert() to verify that the code gets
** all alignment restrictions correct.
**
** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
** underlying malloc() implementation might return us 4-byte aligned
** pointers.  In that case, only verify 4-byte alignment.
*/
#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
# define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&3)==0)
#else
# define EIGHT_BYTE_ALIGNMENT(X)   ((((char*)(X) - (char*)0)&7)==0)
#endif
702
703
704
705
706
707
708










709
710
711
712
713
714
715
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
#elif SQLITE_ENABLE_STAT3
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
#elif SQLITE_ENABLE_STAT3_OR_STAT4
# undef SQLITE_ENABLE_STAT3_OR_STAT4
#endif











/*
** An instance of the following structure is used to store the busy-handler
** callback for a given sqlite handle. 
**
** The sqlite.busyHandler member of the sqlite struct contains the busy
** callback for the database handle. Each pager opened via the sqlite
** handle is passed a pointer to sqlite.busyHandler. The busy-handler







>
>
>
>
>
>
>
>
>
>







702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
#elif SQLITE_ENABLE_STAT3
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
#elif SQLITE_ENABLE_STAT3_OR_STAT4
# undef SQLITE_ENABLE_STAT3_OR_STAT4
#endif

/*
** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not
** the Select query generator tracing logic is turned on.
*/
#if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE)
# define SELECTTRACE_ENABLED 1
#else
# define SELECTTRACE_ENABLED 0
#endif

/*
** An instance of the following structure is used to store the busy-handler
** callback for a given sqlite handle. 
**
** The sqlite.busyHandler member of the sqlite struct contains the busy
** callback for the database handle. Each pager opened via the sqlite
** handle is passed a pointer to sqlite.busyHandler. The busy-handler
993
994
995
996
997
998
999







































1000
1001
1002
1003
1004
1005
1006
**
** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
** Collisions are on the FuncDef.pHash chain.
*/
struct FuncDefHash {
  FuncDef *a[23];       /* Hash table for functions */
};








































/*
** Each database connection is an instance of the following structure.
*/
struct sqlite3 {
  sqlite3_vfs *pVfs;            /* OS Interface */
  struct Vdbe *pVdbe;           /* List of active virtual machines */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
**
** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
** Collisions are on the FuncDef.pHash chain.
*/
struct FuncDefHash {
  FuncDef *a[23];       /* Hash table for functions */
};

#ifdef SQLITE_USER_AUTHENTICATION
/*
** Information held in the "sqlite3" database connection object and used
** to manage user authentication.
*/
typedef struct sqlite3_userauth sqlite3_userauth;
struct sqlite3_userauth {
  u8 authLevel;                 /* Current authentication level */
  int nAuthPW;                  /* Size of the zAuthPW in bytes */
  char *zAuthPW;                /* Password used to authenticate */
  char *zAuthUser;              /* User name used to authenticate */
};

/* Allowed values for sqlite3_userauth.authLevel */
#define UAUTH_Unknown     0     /* Authentication not yet checked */
#define UAUTH_Fail        1     /* User authentication failed */
#define UAUTH_User        2     /* Authenticated as a normal user */
#define UAUTH_Admin       3     /* Authenticated as an administrator */

/* Functions used only by user authorization logic */
int sqlite3UserAuthTable(const char*);
int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
void sqlite3UserAuthInit(sqlite3*);
void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);

#endif /* SQLITE_USER_AUTHENTICATION */

/*
** typedef for the authorization callback function.
*/
#ifdef SQLITE_USER_AUTHENTICATION
  typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
                               const char*, const char*);
#else
  typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
                               const char*);
#endif


/*
** Each database connection is an instance of the following structure.
*/
struct sqlite3 {
  sqlite3_vfs *pVfs;            /* OS Interface */
  struct Vdbe *pVdbe;           /* List of active virtual machines */
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
  sqlite3_value *pErr;          /* Most recent error message */
  union {
    volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
    double notUsed1;            /* Spacer */
  } u1;
  Lookaside lookaside;          /* Lookaside malloc configuration */
#ifndef SQLITE_OMIT_AUTHORIZATION
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
                                /* Access authorization function */
  void *pAuthArg;               /* 1st argument to the access auth function */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int (*xProgress)(void *);     /* The progress callback */
  void *pProgressArg;           /* Argument to the progress callback */
  unsigned nProgressOps;        /* Number of opcodes for progress callback */
#endif







<
|







1110
1111
1112
1113
1114
1115
1116

1117
1118
1119
1120
1121
1122
1123
1124
  sqlite3_value *pErr;          /* Most recent error message */
  union {
    volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
    double notUsed1;            /* Spacer */
  } u1;
  Lookaside lookaside;          /* Lookaside malloc configuration */
#ifndef SQLITE_OMIT_AUTHORIZATION

  sqlite3_xauth xAuth;          /* Access authorization function */
  void *pAuthArg;               /* 1st argument to the access auth function */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  int (*xProgress)(void *);     /* The progress callback */
  void *pProgressArg;           /* Argument to the progress callback */
  unsigned nProgressOps;        /* Number of opcodes for progress callback */
#endif
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112



1113
1114
1115
1116
1117
1118
1119
  Savepoint *pSavepoint;        /* List of active savepoints */
  int busyTimeout;              /* Busy handler timeout, in msec */
  int nSavepoint;               /* Number of non-transaction savepoints */
  int nStatement;               /* Number of nested statement-transactions  */
  i64 nDeferredCons;            /* Net deferred constraints this transaction. */
  i64 nDeferredImmCons;         /* Net deferred immediate constraints */
  int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */

#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  /* The following variables are all protected by the STATIC_MASTER 
  ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 
  **
  ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
  ** unlock so that it can proceed.
  **
  ** When X.pBlockingConnection==Y, that means that something that X tried
  ** tried to do recently failed with an SQLITE_LOCKED error due to locks
  ** held by Y.
  */
  sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
  sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
  void *pUnlockArg;                     /* Argument to xUnlockNotify */
  void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
  sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
#endif



};

/*
** A macro to discover the encoding of a database.
*/
#define ENC(db) ((db)->aDb[0].pSchema->enc)








<

















>
>
>







1136
1137
1138
1139
1140
1141
1142

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
  Savepoint *pSavepoint;        /* List of active savepoints */
  int busyTimeout;              /* Busy handler timeout, in msec */
  int nSavepoint;               /* Number of non-transaction savepoints */
  int nStatement;               /* Number of nested statement-transactions  */
  i64 nDeferredCons;            /* Net deferred constraints this transaction. */
  i64 nDeferredImmCons;         /* Net deferred immediate constraints */
  int *pnBytesFreed;            /* If not NULL, increment this in DbFree() */

#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  /* The following variables are all protected by the STATIC_MASTER 
  ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 
  **
  ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
  ** unlock so that it can proceed.
  **
  ** When X.pBlockingConnection==Y, that means that something that X tried
  ** tried to do recently failed with an SQLITE_LOCKED error due to locks
  ** held by Y.
  */
  sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
  sqlite3 *pUnlockConnection;           /* Connection to watch for unlock */
  void *pUnlockArg;                     /* Argument to xUnlockNotify */
  void (*xUnlockNotify)(void **, int);  /* Unlock notify callback */
  sqlite3 *pNextBlocked;        /* Next in list of all blocked connections */
#endif
#ifdef SQLITE_USER_AUTHENTICATION
  sqlite3_userauth auth;        /* User authentication information */
#endif
};

/*
** A macro to discover the encoding of a database.
*/
#define ENC(db) ((db)->aDb[0].pSchema->enc)

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
#define SQLITE_Stat3          0x0800   /* Use the SQLITE_STAT3 table */
#define SQLITE_AdjustOutEst   0x1000   /* Adjust output estimates using WHERE */
#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)







<







1215
1216
1217
1218
1219
1220
1221

1222
1223
1224
1225
1226
1227
1228
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
#define SQLITE_Stat3          0x0800   /* Use the SQLITE_STAT3 table */

#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
1252
1253
1254
1255
1256
1257
1258

1259
1260
1261
1262
1263
1264
1265
#define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
#define SQLITE_FUNC_LENGTH   0x040 /* Built-in length() function */
#define SQLITE_FUNC_TYPEOF   0x080 /* Built-in typeof() function */
#define SQLITE_FUNC_COUNT    0x100 /* Built-in count(*) aggregate */
#define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
#define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */
#define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */


/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
**     Used to create a scalar function definition of a function zName 







>







1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
#define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
#define SQLITE_FUNC_LENGTH   0x040 /* Built-in length() function */
#define SQLITE_FUNC_TYPEOF   0x080 /* Built-in typeof() function */
#define SQLITE_FUNC_COUNT    0x100 /* Built-in count(*) aggregate */
#define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
#define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */
#define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */
#define SQLITE_FUNC_MINMAX  0x1000 /* True for min() and max() aggregates */

/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
**     Used to create a scalar function definition of a function zName 
1298
1299
1300
1301
1302
1303
1304



1305
1306
1307
1308
1309
1310
1311
  {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   pArg, 0, xFunc, 0, 0, #zName, 0, 0}
#define LIKEFUNC(zName, nArg, arg, flags) \
  {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
   (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \



   SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}

/*
** All current savepoints are stored in a linked list starting at
** sqlite3.pSavepoint. The first element in the list is the most recently
** opened savepoint. Savepoints are added to the list by the vdbe
** OP_Savepoint instruction.







>
>
>







1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
  {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
   pArg, 0, xFunc, 0, 0, #zName, 0, 0}
#define LIKEFUNC(zName, nArg, arg, flags) \
  {nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
   (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
#define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
   SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}

/*
** All current savepoints are stored in a linked list starting at
** sqlite3.pSavepoint. The first element in the list is the most recently
** opened savepoint. Savepoints are added to the list by the vdbe
** OP_Savepoint instruction.
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
/*
** Column affinity types.
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
** the speed a little by numbering the values consecutively.  
**
** But rather than start with 0 or 1, we begin with 'a'.  That way,
** when multiple affinity types are concatenated into a string and
** used as the P4 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.
*/
#define SQLITE_AFF_TEXT     'a'
#define SQLITE_AFF_NONE     'b'
#define SQLITE_AFF_NUMERIC  'c'
#define SQLITE_AFF_INTEGER  'd'
#define SQLITE_AFF_REAL     'e'

#define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)

/*
** The SQLITE_AFF_MASK values masks off the significant bits of an
** affinity value. 
*/
#define SQLITE_AFF_MASK     0x67

/*
** Additional bit values that can be ORed with an affinity without
** changing the affinity.
**
** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
** It causes an assert() to fire if either operand to a comparison
** operator is NULL.  It is added to certain comparison operators to
** prove that the operands are always NOT NULL.
*/
#define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
#define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
#define SQLITE_NULLEQ       0x80  /* NULL=NULL */
#define SQLITE_NOTNULL      0x88  /* Assert that operands are never NULL */

/*
** An object of this type is created for each virtual table present in
** the database schema. 
**
** If the database schema is shared, then there is one instance of this
** structure for each database connection (sqlite3*) that uses the shared







|




|

|
|
|
|
|







|










|
|

|







1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
/*
** Column affinity types.
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
** the speed a little by numbering the values consecutively.  
**
** But rather than start with 0 or 1, we begin with 'A'.  That way,
** when multiple affinity types are concatenated into a string and
** used as the P4 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.  And the NONE type is first.
*/
#define SQLITE_AFF_NONE     'A'
#define SQLITE_AFF_TEXT     'B'
#define SQLITE_AFF_NUMERIC  'C'
#define SQLITE_AFF_INTEGER  'D'
#define SQLITE_AFF_REAL     'E'

#define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)

/*
** The SQLITE_AFF_MASK values masks off the significant bits of an
** affinity value. 
*/
#define SQLITE_AFF_MASK     0x47

/*
** Additional bit values that can be ORed with an affinity without
** changing the affinity.
**
** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
** It causes an assert() to fire if either operand to a comparison
** operator is NULL.  It is added to certain comparison operators to
** prove that the operands are always NOT NULL.
*/
#define SQLITE_JUMPIFNULL   0x10  /* jumps if either operand is NULL */
#define SQLITE_STOREP2      0x20  /* Store result in reg[P2] rather than jump */
#define SQLITE_NULLEQ       0x80  /* NULL=NULL */
#define SQLITE_NOTNULL      0x90  /* Assert that operands are never NULL */

/*
** An object of this type is created for each virtual table present in
** the database schema. 
**
** If the database schema is shared, then there is one instance of this
** structure for each database connection (sqlite3*) that uses the shared
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232




2233
2234
2235
2236
2237
2238

2239
2240
2241
2242
2243
2244
2245
  Parse *pParse;       /* The parser */
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  ExprList *pEList;    /* Optional list of result-set columns */
  AggInfo *pAggInfo;   /* Information about aggregates at this level */
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u8 ncFlags;          /* Zero or more NC_* flags defined below */
};

/*
** Allowed values for the NameContext, ncFlags field.




*/
#define NC_AllowAgg  0x01    /* Aggregate functions are allowed here */
#define NC_HasAgg    0x02    /* One or more aggregate functions seen */
#define NC_IsCheck   0x04    /* True if resolving names in a CHECK constraint */
#define NC_InAggFunc 0x08    /* True if analyzing arguments to an agg func */
#define NC_PartIdx   0x10    /* True if resolving a partial index WHERE */


/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
** If there is a LIMIT clause, the parser sets nLimit to the value of the







|




>
>
>
>

|
|
|
|
|
>







2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
  Parse *pParse;       /* The parser */
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  ExprList *pEList;    /* Optional list of result-set columns */
  AggInfo *pAggInfo;   /* Information about aggregates at this level */
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u16 ncFlags;         /* Zero or more NC_* flags defined below */
};

/*
** Allowed values for the NameContext, ncFlags field.
**
** Note:  NC_MinMaxAgg must have the same value as SF_MinMaxAgg and
** SQLITE_FUNC_MINMAX.
** 
*/
#define NC_AllowAgg  0x0001  /* Aggregate functions are allowed here */
#define NC_HasAgg    0x0002  /* One or more aggregate functions seen */
#define NC_IsCheck   0x0004  /* True if resolving names in a CHECK constraint */
#define NC_InAggFunc 0x0008  /* True if analyzing arguments to an agg func */
#define NC_PartIdx   0x0010  /* True if resolving a partial index WHERE */
#define NC_MinMaxAgg 0x1000  /* min/max aggregates seen.  See note above */

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
** If there is a LIMIT clause, the parser sets nLimit to the value of the
2258
2259
2260
2261
2262
2263
2264



2265
2266
2267
2268
2269
2270
2271
** sequences for the ORDER BY clause.
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u16 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */



  int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
  u64 nSelectRow;        /* Estimated number of result rows */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */







>
>
>







2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
** sequences for the ORDER BY clause.
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u16 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
#if SELECTTRACE_ENABLED
  char zSelName[12];     /* Symbolic name of this SELECT use for debugging */
#endif
  int addrOpenEphm[2];   /* OP_OpenEphem opcodes related to this select */
  u64 nSelectRow;        /* Estimated number of result rows */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
*/
#define SF_Distinct        0x0001  /* Output should be DISTINCT */
#define SF_Resolved        0x0002  /* Identifiers have been resolved */
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
                    /*     0x0040  NOT USED */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
                    /*     0x0100  NOT USED */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
#define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
#define SF_Compound        0x1000  /* Part of a compound query */


/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros.  The "SRT" prefix means "SELECT Result
** Type".
**







|





|







2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
*/
#define SF_Distinct        0x0001  /* Output should be DISTINCT */
#define SF_Resolved        0x0002  /* Identifiers have been resolved */
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_Compound        0x0040  /* Part of a compound query */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
                    /*     0x0100  NOT USED */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
#define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
#define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */


/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros.  The "SRT" prefix means "SELECT Result
** Type".
**
2516
2517
2518
2519
2520
2521
2522




2523
2524
2525
2526
2527
2528
2529
  Token constraintName;/* Name of the constraint currently being parsed */
  yDbMask writeMask;   /* Start a write transaction on these databases */
  yDbMask cookieMask;  /* Bitmask of schema verified databases */
  int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
  int regRowid;        /* Register holding rowid of CREATE TABLE entry */
  int regRoot;         /* Register holding root page number for new objects */
  int nMaxArg;         /* Max args passed to user function by sub-program */




#ifndef SQLITE_OMIT_SHARED_CACHE
  int nTableLock;        /* Number of locks in aTableLock */
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */

  /* Information used while coding trigger programs. */







>
>
>
>







2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
  Token constraintName;/* Name of the constraint currently being parsed */
  yDbMask writeMask;   /* Start a write transaction on these databases */
  yDbMask cookieMask;  /* Bitmask of schema verified databases */
  int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
  int regRowid;        /* Register holding rowid of CREATE TABLE entry */
  int regRoot;         /* Register holding root page number for new objects */
  int nMaxArg;         /* Max args passed to user function by sub-program */
#if SELECTTRACE_ENABLED
  int nSelect;         /* Number of SELECT statements seen */
  int nSelectIndent;   /* How far to indent SELECTTRACE() output */
#endif
#ifndef SQLITE_OMIT_SHARED_CACHE
  int nTableLock;        /* Number of locks in aTableLock */
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */

  /* Information used while coding trigger programs. */
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)


/*
** FTS4 is really an extension for FTS3.  It is enabled using the
** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
# define SQLITE_ENABLE_FTS3
#endif

/*
** The ctype.h header is needed for non-ASCII systems.  It is also







|
|







2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)


/*
** FTS4 is really an extension for FTS3.  It is enabled using the
** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also call
** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
# define SQLITE_ENABLE_FTS3
#endif

/*
** The ctype.h header is needed for non-ASCII systems.  It is also
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
*/
#define sqlite3StrICmp sqlite3_stricmp
int sqlite3Strlen30(const char*);
#define sqlite3StrNICmp sqlite3_strnicmp

int sqlite3MallocInit(void);
void sqlite3MallocEnd(void);
void *sqlite3Malloc(int);
void *sqlite3MallocZero(int);
void *sqlite3DbMallocZero(sqlite3*, int);
void *sqlite3DbMallocRaw(sqlite3*, int);
char *sqlite3DbStrDup(sqlite3*,const char*);
char *sqlite3DbStrNDup(sqlite3*,const char*, int);
void *sqlite3Realloc(void*, int);
void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
void *sqlite3DbRealloc(sqlite3 *, void *, int);
void sqlite3DbFree(sqlite3*, void*);
int sqlite3MallocSize(void*);
int sqlite3DbMallocSize(sqlite3*, void*);
void *sqlite3ScratchMalloc(int);
void sqlite3ScratchFree(void*);
void *sqlite3PageMalloc(int);
void sqlite3PageFree(void*);







|
|
|
|

|
|
|
|







3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
*/
#define sqlite3StrICmp sqlite3_stricmp
int sqlite3Strlen30(const char*);
#define sqlite3StrNICmp sqlite3_strnicmp

int sqlite3MallocInit(void);
void sqlite3MallocEnd(void);
void *sqlite3Malloc(u64);
void *sqlite3MallocZero(u64);
void *sqlite3DbMallocZero(sqlite3*, u64);
void *sqlite3DbMallocRaw(sqlite3*, u64);
char *sqlite3DbStrDup(sqlite3*,const char*);
char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
void *sqlite3Realloc(void*, u64);
void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
void *sqlite3DbRealloc(sqlite3 *, void *, u64);
void sqlite3DbFree(sqlite3*, void*);
int sqlite3MallocSize(void*);
int sqlite3DbMallocSize(sqlite3*, void*);
void *sqlite3ScratchMalloc(int);
void sqlite3ScratchFree(void*);
void *sqlite3PageMalloc(int);
void sqlite3PageFree(void*);
3250
3251
3252
3253
3254
3255
3256





3257
3258
3259
3260
3261
3262
3263
void sqlite3UniqueConstraint(Parse*, int, Index*);
void sqlite3RowidConstraint(Parse*, int, Table*);
Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
IdList *sqlite3IdListDup(sqlite3*,IdList*);
Select *sqlite3SelectDup(sqlite3*,Select*,int);





void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
void sqlite3RegisterBuiltinFunctions(sqlite3*);
void sqlite3RegisterDateTimeFunctions(void);
void sqlite3RegisterGlobalFunctions(void);
int sqlite3SafetyCheckOk(sqlite3*);
int sqlite3SafetyCheckSickOrOk(sqlite3*);







>
>
>
>
>







3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
void sqlite3UniqueConstraint(Parse*, int, Index*);
void sqlite3RowidConstraint(Parse*, int, Table*);
Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
IdList *sqlite3IdListDup(sqlite3*,IdList*);
Select *sqlite3SelectDup(sqlite3*,Select*,int);
#if SELECTTRACE_ENABLED
void sqlite3SelectSetName(Select*,const char*);
#else
# define sqlite3SelectSetName(A,B)
#endif
void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
void sqlite3RegisterBuiltinFunctions(sqlite3*);
void sqlite3RegisterDateTimeFunctions(void);
void sqlite3RegisterGlobalFunctions(void);
int sqlite3SafetyCheckOk(sqlite3*);
int sqlite3SafetyCheckSickOrOk(sqlite3*);
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
void sqlite3Stat4ProbeFree(UnpackedRecord*);
int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
#endif

/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(size_t));
void sqlite3ParserFree(void*, void(*)(void*));
void sqlite3Parser(void*, int, Token, Parse*);
#ifdef YYTRACKMAXSTACKDEPTH
  int sqlite3ParserStackPeak(void*);
#endif

void sqlite3AutoLoadExtensions(sqlite3*);







|







3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
void sqlite3Stat4ProbeFree(UnpackedRecord*);
int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
#endif

/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(u64));
void sqlite3ParserFree(void*, void(*)(void*));
void sqlite3Parser(void*, int, Token, Parse*);
#ifdef YYTRACKMAXSTACKDEPTH
  int sqlite3ParserStackPeak(void*);
#endif

void sqlite3AutoLoadExtensions(sqlite3*);
Changes to src/table.c.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*
** This structure is used to pass data from sqlite3_get_table() through
** to the callback function is uses to build the result.
*/
typedef struct TabResult {
  char **azResult;   /* Accumulated output */
  char *zErrMsg;     /* Error message text, if an error occurs */
  int nAlloc;        /* Slots allocated for azResult[] */
  int nRow;          /* Number of rows in the result */
  int nColumn;       /* Number of columns in the result */
  int nData;         /* Slots used in azResult[].  (nRow+1)*nColumn */
  int rc;            /* Return code from sqlite3_exec() */
} TabResult;

/*
** This routine is called once for each row in the result table.  Its job
** is to fill in the TabResult structure appropriately, allocating new
** memory as necessary.







|
|
|
|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*
** This structure is used to pass data from sqlite3_get_table() through
** to the callback function is uses to build the result.
*/
typedef struct TabResult {
  char **azResult;   /* Accumulated output */
  char *zErrMsg;     /* Error message text, if an error occurs */
  u32 nAlloc;        /* Slots allocated for azResult[] */
  u32 nRow;          /* Number of rows in the result */
  u32 nColumn;       /* Number of columns in the result */
  u32 nData;         /* Slots used in azResult[].  (nRow+1)*nColumn */
  int rc;            /* Return code from sqlite3_exec() */
} TabResult;

/*
** This routine is called once for each row in the result table.  Its job
** is to fill in the TabResult structure appropriately, allocating new
** memory as necessary.
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    need = nCol*2;
  }else{
    need = nCol;
  }
  if( p->nData + need > p->nAlloc ){
    char **azNew;
    p->nAlloc = p->nAlloc*2 + need;
    azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc );
    if( azNew==0 ) goto malloc_failed;
    p->azResult = azNew;
  }

  /* If this is the first row, then generate an extra row containing
  ** the names of all columns.
  */
  if( p->nRow==0 ){
    p->nColumn = nCol;
    for(i=0; i<nCol; i++){
      z = sqlite3_mprintf("%s", colv[i]);
      if( z==0 ) goto malloc_failed;
      p->azResult[p->nData++] = z;
    }
  }else if( p->nColumn!=nCol ){
    sqlite3_free(p->zErrMsg);
    p->zErrMsg = sqlite3_mprintf(
       "sqlite3_get_table() called with two or more incompatible queries"
    );
    p->rc = SQLITE_ERROR;
    return 1;
  }







|














|







54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    need = nCol*2;
  }else{
    need = nCol;
  }
  if( p->nData + need > p->nAlloc ){
    char **azNew;
    p->nAlloc = p->nAlloc*2 + need;
    azNew = sqlite3_realloc64( p->azResult, sizeof(char*)*p->nAlloc );
    if( azNew==0 ) goto malloc_failed;
    p->azResult = azNew;
  }

  /* If this is the first row, then generate an extra row containing
  ** the names of all columns.
  */
  if( p->nRow==0 ){
    p->nColumn = nCol;
    for(i=0; i<nCol; i++){
      z = sqlite3_mprintf("%s", colv[i]);
      if( z==0 ) goto malloc_failed;
      p->azResult[p->nData++] = z;
    }
  }else if( (int)p->nColumn!=nCol ){
    sqlite3_free(p->zErrMsg);
    p->zErrMsg = sqlite3_mprintf(
       "sqlite3_get_table() called with two or more incompatible queries"
    );
    p->rc = SQLITE_ERROR;
    return 1;
  }
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
  return rc;
}

/*
** This routine frees the space the sqlite3_get_table() malloced.
*/
void sqlite3_free_table(
  char **azResult            /* Result returned from from sqlite3_get_table() */
){
  if( azResult ){
    int i, n;
    azResult--;
    assert( azResult!=0 );
    n = SQLITE_PTR_TO_INT(azResult[0]);
    for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
    sqlite3_free(azResult);
  }
}

#endif /* SQLITE_OMIT_GET_TABLE */







|












178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
  return rc;
}

/*
** This routine frees the space the sqlite3_get_table() malloced.
*/
void sqlite3_free_table(
  char **azResult            /* Result returned from sqlite3_get_table() */
){
  if( azResult ){
    int i, n;
    azResult--;
    assert( azResult!=0 );
    n = SQLITE_PTR_TO_INT(azResult[0]);
    for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
    sqlite3_free(azResult);
  }
}

#endif /* SQLITE_OMIT_GET_TABLE */
Changes to src/tclsqlite.c.
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
    Tcl_IncrRefCount(pCmd);
    rc = Tcl_EvalObjEx(p->interp, pCmd, 0);
    Tcl_DecrRefCount(pCmd);
  }else{
    /* If there are arguments to the function, make a shallow copy of the
    ** script object, lappend the arguments, then evaluate the copy.
    **
    ** By "shallow" copy, we mean a only the outer list Tcl_Obj is duplicated.
    ** The new Tcl_Obj contains pointers to the original list elements. 
    ** That way, when Tcl_EvalObjv() is run and shimmers the first element
    ** of the list to tclCmdNameType, that alternate representation will
    ** be preserved and reused on the next invocation.
    */
    Tcl_Obj **aArg;
    int nArg;







|







756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
    Tcl_IncrRefCount(pCmd);
    rc = Tcl_EvalObjEx(p->interp, pCmd, 0);
    Tcl_DecrRefCount(pCmd);
  }else{
    /* If there are arguments to the function, make a shallow copy of the
    ** script object, lappend the arguments, then evaluate the copy.
    **
    ** By "shallow" copy, we mean only the outer list Tcl_Obj is duplicated.
    ** The new Tcl_Obj contains pointers to the original list elements. 
    ** That way, when Tcl_EvalObjv() is run and shimmers the first element
    ** of the list to tclCmdNameType, that alternate representation will
    ** be preserved and reused on the next invocation.
    */
    Tcl_Obj **aArg;
    int nArg;
868
869
870
871
872
873
874



875
876
877
878
879
880
881
static int auth_callback(
  void *pArg,
  int code,
  const char *zArg1,
  const char *zArg2,
  const char *zArg3,
  const char *zArg4



){
  const char *zCode;
  Tcl_DString str;
  int rc;
  const char *zReply;
  SqliteDb *pDb = (SqliteDb*)pArg;
  if( pDb->disableAuth ) return SQLITE_OK;







>
>
>







868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
static int auth_callback(
  void *pArg,
  int code,
  const char *zArg1,
  const char *zArg2,
  const char *zArg3,
  const char *zArg4
#ifdef SQLITE_USER_AUTHENTICATION
  ,const char *zArg5
#endif
){
  const char *zCode;
  Tcl_DString str;
  int rc;
  const char *zReply;
  SqliteDb *pDb = (SqliteDb*)pArg;
  if( pDb->disableAuth ) return SQLITE_OK;
920
921
922
923
924
925
926



927
928
929
930
931
932
933
  Tcl_DStringInit(&str);
  Tcl_DStringAppend(&str, pDb->zAuth, -1);
  Tcl_DStringAppendElement(&str, zCode);
  Tcl_DStringAppendElement(&str, zArg1 ? zArg1 : "");
  Tcl_DStringAppendElement(&str, zArg2 ? zArg2 : "");
  Tcl_DStringAppendElement(&str, zArg3 ? zArg3 : "");
  Tcl_DStringAppendElement(&str, zArg4 ? zArg4 : "");



  rc = Tcl_GlobalEval(pDb->interp, Tcl_DStringValue(&str));
  Tcl_DStringFree(&str);
  zReply = rc==TCL_OK ? Tcl_GetStringResult(pDb->interp) : "SQLITE_DENY";
  if( strcmp(zReply,"SQLITE_OK")==0 ){
    rc = SQLITE_OK;
  }else if( strcmp(zReply,"SQLITE_DENY")==0 ){
    rc = SQLITE_DENY;







>
>
>







923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
  Tcl_DStringInit(&str);
  Tcl_DStringAppend(&str, pDb->zAuth, -1);
  Tcl_DStringAppendElement(&str, zCode);
  Tcl_DStringAppendElement(&str, zArg1 ? zArg1 : "");
  Tcl_DStringAppendElement(&str, zArg2 ? zArg2 : "");
  Tcl_DStringAppendElement(&str, zArg3 ? zArg3 : "");
  Tcl_DStringAppendElement(&str, zArg4 ? zArg4 : "");
#ifdef SQLITE_USER_AUTHENTICATION
  Tcl_DStringAppendElement(&str, zArg5 ? zArg5 : "");
#endif  
  rc = Tcl_GlobalEval(pDb->interp, Tcl_DStringValue(&str));
  Tcl_DStringFree(&str);
  zReply = rc==TCL_OK ? Tcl_GetStringResult(pDb->interp) : "SQLITE_DENY";
  if( strcmp(zReply,"SQLITE_OK")==0 ){
    rc = SQLITE_OK;
  }else if( strcmp(zReply,"SQLITE_DENY")==0 ){
    rc = SQLITE_DENY;
1696
1697
1698
1699
1700
1701
1702



1703
1704
1705
1706
1707
1708
1709
1710
1711
      if( zAuth && len>0 ){
        pDb->zAuth = Tcl_Alloc( len + 1 );
        memcpy(pDb->zAuth, zAuth, len+1);
      }else{
        pDb->zAuth = 0;
      }
      if( pDb->zAuth ){



        pDb->interp = interp;
        sqlite3_set_authorizer(pDb->db, auth_callback, pDb);
      }else{
        sqlite3_set_authorizer(pDb->db, 0, 0);
      }
    }
#endif
    break;
  }







>
>
>

|







1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
      if( zAuth && len>0 ){
        pDb->zAuth = Tcl_Alloc( len + 1 );
        memcpy(pDb->zAuth, zAuth, len+1);
      }else{
        pDb->zAuth = 0;
      }
      if( pDb->zAuth ){
        typedef int (*sqlite3_auth_cb)(
           void*,int,const char*,const char*,
           const char*,const char*);
        pDb->interp = interp;
        sqlite3_set_authorizer(pDb->db,(sqlite3_auth_cb)auth_callback,pDb);
      }else{
        sqlite3_set_authorizer(pDb->db, 0, 0);
      }
    }
#endif
    break;
  }
Changes to src/test1.c.
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
**   "test_collate <enc> <lhs> <rhs>"
**
** The <lhs> and <rhs> are the two values being compared, encoded in UTF-8.
** The <enc> parameter is the encoding of the collation function that
** SQLite selected to call. The TCL test script implements the
** "test_collate" proc.
**
** Note that this will only work with one intepreter at a time, as the
** interp pointer to use when evaluating the TCL script is stored in
** pTestCollateInterp.
*/
static Tcl_Interp* pTestCollateInterp;
static int test_collate_func(
  void *pCtx, 
  int nA, const void *zA,







|







2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
**   "test_collate <enc> <lhs> <rhs>"
**
** The <lhs> and <rhs> are the two values being compared, encoded in UTF-8.
** The <enc> parameter is the encoding of the collation function that
** SQLite selected to call. The TCL test script implements the
** "test_collate" proc.
**
** Note that this will only work with one interpreter at a time, as the
** interp pointer to use when evaluating the TCL script is stored in
** pTestCollateInterp.
*/
static Tcl_Interp* pTestCollateInterp;
static int test_collate_func(
  void *pCtx, 
  int nA, const void *zA,
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
  return TCL_OK;
}

/*
** Usage: sqlite3_prepare_tkt3134 DB
**
** Generate a prepared statement for a zero-byte string as a test
** for ticket #3134.  The string should be preceeded by a zero byte.
*/
static int test_prepare_tkt3134(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){







|







3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
  return TCL_OK;
}

/*
** Usage: sqlite3_prepare_tkt3134 DB
**
** Generate a prepared statement for a zero-byte string as a test
** for ticket #3134.  The string should be preceded by a zero byte.
*/
static int test_prepare_tkt3134(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
6685
6686
6687
6688
6689
6690
6691






























































































































6692
6693
6694
6695
6696
6697
6698
  return TCL_OK;
 sql_error:
  Tcl_AppendResult(interp, "sql error: ", sqlite3_errmsg(db), 0);
  return TCL_ERROR;
}
































































































































/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest1_Init(Tcl_Interp *interp){
  extern int sqlite3_search_count;
  extern int sqlite3_found_count;
  extern int sqlite3_interrupt_count;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
  return TCL_OK;
 sql_error:
  Tcl_AppendResult(interp, "sql error: ", sqlite3_errmsg(db), 0);
  return TCL_ERROR;
}


#ifdef SQLITE_USER_AUTHENTICATION
#include "sqlite3userauth.h"
/*
** tclcmd:  sqlite3_user_authenticate DB USERNAME PASSWORD
*/
static int test_user_authenticate(
  ClientData clientData, /* Unused */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  char *zUser = 0;
  char *zPasswd = 0;
  int nPasswd = 0;
  sqlite3 *db;
  int rc;

  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB USERNAME PASSWORD");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
    return TCL_ERROR;
  }
  zUser = Tcl_GetString(objv[2]);
  zPasswd = Tcl_GetStringFromObj(objv[3], &nPasswd);
  rc = sqlite3_user_authenticate(db, zUser, zPasswd, nPasswd);
  Tcl_SetResult(interp, (char *)t1ErrorName(rc), TCL_STATIC);
  return TCL_OK;
}
#endif /* SQLITE_USER_AUTHENTICATION */

#ifdef SQLITE_USER_AUTHENTICATION
/*
** tclcmd:  sqlite3_user_add DB USERNAME PASSWORD ISADMIN
*/
static int test_user_add(
  ClientData clientData, /* Unused */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  char *zUser = 0;
  char *zPasswd = 0;
  int nPasswd = 0;
  int isAdmin = 0;
  sqlite3 *db;
  int rc;

  if( objc!=5 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB USERNAME PASSWORD ISADMIN");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
    return TCL_ERROR;
  }
  zUser = Tcl_GetString(objv[2]);
  zPasswd = Tcl_GetStringFromObj(objv[3], &nPasswd);
  Tcl_GetBooleanFromObj(interp, objv[4], &isAdmin);
  rc = sqlite3_user_add(db, zUser, zPasswd, nPasswd, isAdmin);
  Tcl_SetResult(interp, (char *)t1ErrorName(rc), TCL_STATIC);
  return TCL_OK;
}
#endif /* SQLITE_USER_AUTHENTICATION */

#ifdef SQLITE_USER_AUTHENTICATION
/*
** tclcmd:  sqlite3_user_change DB USERNAME PASSWORD ISADMIN
*/
static int test_user_change(
  ClientData clientData, /* Unused */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  char *zUser = 0;
  char *zPasswd = 0;
  int nPasswd = 0;
  int isAdmin = 0;
  sqlite3 *db;
  int rc;

  if( objc!=5 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB USERNAME PASSWORD ISADMIN");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
    return TCL_ERROR;
  }
  zUser = Tcl_GetString(objv[2]);
  zPasswd = Tcl_GetStringFromObj(objv[3], &nPasswd);
  Tcl_GetBooleanFromObj(interp, objv[4], &isAdmin);
  rc = sqlite3_user_change(db, zUser, zPasswd, nPasswd, isAdmin);
  Tcl_SetResult(interp, (char *)t1ErrorName(rc), TCL_STATIC);
  return TCL_OK;
}
#endif /* SQLITE_USER_AUTHENTICATION */

#ifdef SQLITE_USER_AUTHENTICATION
/*
** tclcmd:  sqlite3_user_delete DB USERNAME
*/
static int test_user_delete(
  ClientData clientData, /* Unused */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  char *zUser = 0;
  sqlite3 *db;
  int rc;

  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB USERNAME");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
    return TCL_ERROR;
  }
  zUser = Tcl_GetString(objv[2]);
  rc = sqlite3_user_delete(db, zUser);
  Tcl_SetResult(interp, (char *)t1ErrorName(rc), TCL_STATIC);
  return TCL_OK;
}
#endif /* SQLITE_USER_AUTHENTICATION */

/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest1_Init(Tcl_Interp *interp){
  extern int sqlite3_search_count;
  extern int sqlite3_found_count;
  extern int sqlite3_interrupt_count;
6929
6930
6931
6932
6933
6934
6935







6936
6937
6938
6939
6940
6941
6942
     { "sqlite3_test_control", test_test_control },
#if SQLITE_OS_UNIX
     { "getrusage", test_getrusage },
#endif
     { "load_static_extension", tclLoadStaticExtensionCmd },
     { "sorter_test_fakeheap", sorter_test_fakeheap },
     { "sorter_test_sort4_helper", sorter_test_sort4_helper },







  };
  static int bitmask_size = sizeof(Bitmask)*8;
  int i;
  extern int sqlite3_sync_count, sqlite3_fullsync_count;
  extern int sqlite3_opentemp_count;
  extern int sqlite3_like_count;
  extern int sqlite3_xferopt_count;







>
>
>
>
>
>
>







7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
     { "sqlite3_test_control", test_test_control },
#if SQLITE_OS_UNIX
     { "getrusage", test_getrusage },
#endif
     { "load_static_extension", tclLoadStaticExtensionCmd },
     { "sorter_test_fakeheap", sorter_test_fakeheap },
     { "sorter_test_sort4_helper", sorter_test_sort4_helper },
#ifdef SQLITE_USER_AUTHENTICATION
     { "sqlite3_user_authenticate", test_user_authenticate, 0 },
     { "sqlite3_user_add",          test_user_add,          0 },
     { "sqlite3_user_change",       test_user_change,       0 },
     { "sqlite3_user_delete",       test_user_delete,       0 },
#endif

  };
  static int bitmask_size = sizeof(Bitmask)*8;
  int i;
  extern int sqlite3_sync_count, sqlite3_fullsync_count;
  extern int sqlite3_opentemp_count;
  extern int sqlite3_like_count;
  extern int sqlite3_xferopt_count;
Changes to src/test_config.c.
618
619
620
621
622
623
624






625
626
627
628
629
630
631
#endif

#ifdef SQLITE_SECURE_DELETE
  Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "0", TCL_GLOBAL_ONLY);
#endif







#ifdef SQLITE_MULTIPLEX_EXT_OVWR
  Tcl_SetVar2(interp, "sqlite_options", "multiplex_ext_overwrite", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "multiplex_ext_overwrite", "0", TCL_GLOBAL_ONLY);
#endif








>
>
>
>
>
>







618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
#endif

#ifdef SQLITE_SECURE_DELETE
  Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_USER_AUTHENTICATION
  Tcl_SetVar2(interp, "sqlite_options", "userauth", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "userauth", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_MULTIPLEX_EXT_OVWR
  Tcl_SetVar2(interp, "sqlite_options", "multiplex_ext_overwrite", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "multiplex_ext_overwrite", "0", TCL_GLOBAL_ONLY);
#endif

Changes to src/test_func.c.
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);

    if( iCurrent==iIdx ){
      sqlite3_result_value(context, &mem);
    }

    sqlite3DbFree(db, mem.zMalloc);
  }
}

/*
** tclcmd: test_decode(record)
**
** This function implements an SQL user-function that accepts a blob







|







500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    pHdr += sqlite3GetVarint(pHdr, &iSerialType);
    pBody += sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);

    if( iCurrent==iIdx ){
      sqlite3_result_value(context, &mem);
    }

    if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc);
  }
}

/*
** tclcmd: test_decode(record)
**
** This function implements an SQL user-function that accepts a blob
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

      default:
        assert( 0 );
    }

    Tcl_ListObjAppendElement(0, pRet, pVal);

    if( mem.zMalloc ){
      sqlite3DbFree(db, mem.zMalloc);
    }
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}







|







587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

      default:
        assert( 0 );
    }

    Tcl_ListObjAppendElement(0, pRet, pVal);

    if( mem.szMalloc ){
      sqlite3DbFree(db, mem.zMalloc);
    }
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}
Changes to src/test_intarray.c.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  void (*xFree)(void*);     /* Function used to free a[] */
};

/* Objects used internally by the virtual table implementation */
typedef struct intarray_vtab intarray_vtab;
typedef struct intarray_cursor intarray_cursor;

/* A intarray table object */
struct intarray_vtab {
  sqlite3_vtab base;            /* Base class */
  sqlite3_intarray *pContent;   /* Content of the integer array */
};

/* A intarray cursor object */
struct intarray_cursor {
  sqlite3_vtab_cursor base;    /* Base class */
  int i;                       /* Current cursor position */
};

/*
** None of this works unless we have virtual tables.







|





|







33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  void (*xFree)(void*);     /* Function used to free a[] */
};

/* Objects used internally by the virtual table implementation */
typedef struct intarray_vtab intarray_vtab;
typedef struct intarray_cursor intarray_cursor;

/* An intarray table object */
struct intarray_vtab {
  sqlite3_vtab base;            /* Base class */
  sqlite3_intarray *pContent;   /* Content of the integer array */
};

/* An intarray cursor object */
struct intarray_cursor {
  sqlite3_vtab_cursor base;    /* Base class */
  int i;                       /* Current cursor position */
};

/*
** None of this works unless we have virtual tables.
Changes to src/test_malloc.c.
692
693
694
695
696
697
698






699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

716
717
718
719
720
721
722
    return TCL_ERROR;
  }
  nPending = faultsimPending();
  Tcl_SetObjResult(interp, Tcl_NewIntObj(nPending));
  return TCL_OK;
}








/*
** Usage:    sqlite3_memdebug_settitle TITLE
**
** Set a title string stored with each allocation.  The TITLE is
** typically the name of the test that was running when the
** allocation occurred.  The TITLE is stored with the allocation
** and can be used to figure out which tests are leaking memory.
**
** Each title overwrite the previous.
*/
static int test_memdebug_settitle(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){

  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "TITLE");
    return TCL_ERROR;
  }
#ifdef SQLITE_MEMDEBUG
  {
    const char *zTitle;







>
>
>
>
>
>

















>







692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
    return TCL_ERROR;
  }
  nPending = faultsimPending();
  Tcl_SetObjResult(interp, Tcl_NewIntObj(nPending));
  return TCL_OK;
}

/*
** The following global variable keeps track of the number of tests
** that have run.  This variable is only useful when running in the
** debugger.
*/
static int sqlite3_memdebug_title_count = 0;

/*
** Usage:    sqlite3_memdebug_settitle TITLE
**
** Set a title string stored with each allocation.  The TITLE is
** typically the name of the test that was running when the
** allocation occurred.  The TITLE is stored with the allocation
** and can be used to figure out which tests are leaking memory.
**
** Each title overwrite the previous.
*/
static int test_memdebug_settitle(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3_memdebug_title_count++;
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "TITLE");
    return TCL_ERROR;
  }
#ifdef SQLITE_MEMDEBUG
  {
    const char *zTitle;
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
}

/*
** Usage:    sqlite3_config_scratch SIZE N
**
** Set the scratch memory buffer using SQLITE_CONFIG_SCRATCH.
** The buffer is static and is of limited size.  N might be
** adjusted downward as needed to accomodate the requested size.
** The revised value of N is returned.
**
** A negative SIZE causes the buffer pointer to be NULL.
*/
static int test_config_scratch(
  void * clientData,
  Tcl_Interp *interp,







|







883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
}

/*
** Usage:    sqlite3_config_scratch SIZE N
**
** Set the scratch memory buffer using SQLITE_CONFIG_SCRATCH.
** The buffer is static and is of limited size.  N might be
** adjusted downward as needed to accommodate the requested size.
** The revised value of N is returned.
**
** A negative SIZE causes the buffer pointer to be NULL.
*/
static int test_config_scratch(
  void * clientData,
  Tcl_Interp *interp,
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
}

/*
** Usage:    sqlite3_config_pagecache SIZE N
**
** Set the page-cache memory buffer using SQLITE_CONFIG_PAGECACHE.
** The buffer is static and is of limited size.  N might be
** adjusted downward as needed to accomodate the requested size.
** The revised value of N is returned.
**
** A negative SIZE causes the buffer pointer to be NULL.
*/
static int test_config_pagecache(
  void * clientData,
  Tcl_Interp *interp,







|







923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
}

/*
** Usage:    sqlite3_config_pagecache SIZE N
**
** Set the page-cache memory buffer using SQLITE_CONFIG_PAGECACHE.
** The buffer is static and is of limited size.  N might be
** adjusted downward as needed to accommodate the requested size.
** The revised value of N is returned.
**
** A negative SIZE causes the buffer pointer to be NULL.
*/
static int test_config_pagecache(
  void * clientData,
  Tcl_Interp *interp,
Changes to src/test_schema.c.
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
      while( SQLITE_ROW!=sqlite3_step(pCur->pDbList) ){
        rc = finalize(&pCur->pDbList);
        goto next_exit;
      }

      /* Set zSql to the SQL to pull the list of tables from the 
      ** sqlite_master (or sqlite_temp_master) table of the database
      ** identfied by the row pointed to by the SQL statement pCur->pDbList
      ** (iterating through a "PRAGMA database_list;" statement).
      */
      if( sqlite3_column_int(pCur->pDbList, 0)==1 ){
        zSql = sqlite3_mprintf(
            "SELECT name FROM sqlite_temp_master WHERE type='table'"
        );
      }else{







|







185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
      while( SQLITE_ROW!=sqlite3_step(pCur->pDbList) ){
        rc = finalize(&pCur->pDbList);
        goto next_exit;
      }

      /* Set zSql to the SQL to pull the list of tables from the 
      ** sqlite_master (or sqlite_temp_master) table of the database
      ** identified by the row pointed to by the SQL statement pCur->pDbList
      ** (iterating through a "PRAGMA database_list;" statement).
      */
      if( sqlite3_column_int(pCur->pDbList, 0)==1 ){
        zSql = sqlite3_mprintf(
            "SELECT name FROM sqlite_temp_master WHERE type='table'"
        );
      }else{
Changes to src/tokenize.c.
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
** allowed in an identifier.  For 7-bit characters, 
** sqlite3IsIdChar[X] must be 1.
**
** For EBCDIC, the rules are more complex but have the same
** end result.
**
** Ticket #1066.  the SQL standard does not allow '$' in the
** middle of identfiers.  But many SQL implementations do. 
** SQLite will allow '$' in identifiers for compatibility.
** But the feature is undocumented.
*/
#ifdef SQLITE_ASCII
#define IdChar(C)  ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
#endif
#ifdef SQLITE_EBCDIC







|







73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
** allowed in an identifier.  For 7-bit characters, 
** sqlite3IsIdChar[X] must be 1.
**
** For EBCDIC, the rules are more complex but have the same
** end result.
**
** Ticket #1066.  the SQL standard does not allow '$' in the
** middle of identifiers.  But many SQL implementations do. 
** SQLite will allow '$' in identifiers for compatibility.
** But the feature is undocumented.
*/
#ifdef SQLITE_ASCII
#define IdChar(C)  ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
#endif
#ifdef SQLITE_EBCDIC
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
  assert( pzErrMsg!=0 );
  pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );







|







394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
  assert( pzErrMsg!=0 );
  pEngine = sqlite3ParserAlloc(sqlite3Malloc);
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
Changes to src/trigger.c.
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

  /* A long-standing parser bug is that this syntax was allowed:
  **
  **    CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab ....
  **                                                 ^^^^^^^^
  **
  ** To maintain backwards compatibility, ignore the database
  ** name on pTableName if we are reparsing our of SQLITE_MASTER.
  */
  if( db->init.busy && iDb!=1 ){
    sqlite3DbFree(db, pTableName->a[0].zDatabase);
    pTableName->a[0].zDatabase = 0;
  }

  /* If the trigger name was unqualified, and the table is a temp table,







|







123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

  /* A long-standing parser bug is that this syntax was allowed:
  **
  **    CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab ....
  **                                                 ^^^^^^^^
  **
  ** To maintain backwards compatibility, ignore the database
  ** name on pTableName if we are reparsing out of SQLITE_MASTER.
  */
  if( db->init.busy && iDb!=1 ){
    sqlite3DbFree(db, pTableName->a[0].zDatabase);
    pTableName->a[0].zDatabase = 0;
  }

  /* If the trigger name was unqualified, and the table is a temp table,
Changes to src/update.c.
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

  /* Start the view context. */
  if( isView ){
    sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
  }

  /* If we are trying to update a view, realize that view into
  ** a ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, pWhere, iDataCur);
  }
#endif








|







323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

  /* Start the view context. */
  if( isView ){
    sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
  }

  /* If we are trying to update a view, realize that view into
  ** an ephemeral table.
  */
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
  if( isView ){
    sqlite3MaterializeView(pParse, pTab, pWhere, iDataCur);
  }
#endif

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    }
    if( chngRowid==0 && pPk==0 ){
      sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid);
    }
  }

  /* Populate the array of registers beginning at regNew with the new
  ** row data. This array is used to check constaints, create the new
  ** table and index records, and as the values for any new.* references
  ** made by triggers.
  **
  ** If there are one or more BEFORE triggers, then do not populate the
  ** registers associated with columns that are (a) not modified by
  ** this UPDATE statement and (b) not accessed by new.* references. The
  ** values for registers not modified by the UPDATE must be reloaded from 







|







484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    }
    if( chngRowid==0 && pPk==0 ){
      sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid);
    }
  }

  /* Populate the array of registers beginning at regNew with the new
  ** row data. This array is used to check constants, create the new
  ** table and index records, and as the values for any new.* references
  ** made by triggers.
  **
  ** If there are one or more BEFORE triggers, then do not populate the
  ** registers associated with columns that are (a) not modified by
  ** this UPDATE statement and (b) not accessed by new.* references. The
  ** values for registers not modified by the UPDATE must be reloaded from 
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
  sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */
  sqlite3SrcListDelete(db, pTabList);
  sqlite3ExprListDelete(db, pChanges);
  sqlite3ExprDelete(db, pWhere);
  return;
}
/* Make sure "isView" and other macros defined above are undefined. Otherwise
** thely may interfere with compilation of other functions in this file
** (or in another file, if this file becomes part of the amalgamation).  */
#ifdef isView
 #undef isView
#endif
#ifdef pTrigger
 #undef pTrigger
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Generate code for an UPDATE of a virtual table.
**
** The strategy is that we create an ephemerial table that contains
** for each row to be changed:
**
**   (A)  The original rowid of that row.
**   (B)  The revised rowid for the row. (note1)
**   (C)  The content of every column in the row.
**
** Then we loop over this ephemeral table and for each row in
** the ephermeral table call VUpdate.
**
** When finished, drop the ephemeral table.
**
** (note1) Actually, if we know in advance that (A) is always the same
** as (B) we only store (A), then duplicate (A) when pulling
** it out of the ephemeral table before calling VUpdate.
*/







|












|







|







664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
  sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */
  sqlite3SrcListDelete(db, pTabList);
  sqlite3ExprListDelete(db, pChanges);
  sqlite3ExprDelete(db, pWhere);
  return;
}
/* Make sure "isView" and other macros defined above are undefined. Otherwise
** they may interfere with compilation of other functions in this file
** (or in another file, if this file becomes part of the amalgamation).  */
#ifdef isView
 #undef isView
#endif
#ifdef pTrigger
 #undef pTrigger
#endif

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Generate code for an UPDATE of a virtual table.
**
** The strategy is that we create an ephemeral table that contains
** for each row to be changed:
**
**   (A)  The original rowid of that row.
**   (B)  The revised rowid for the row. (note1)
**   (C)  The content of every column in the row.
**
** Then we loop over this ephemeral table and for each row in
** the ephemeral table call VUpdate.
**
** When finished, drop the ephemeral table.
**
** (note1) Actually, if we know in advance that (A) is always the same
** as (B) we only store (A), then duplicate (A) when pulling
** it out of the ephemeral table before calling VUpdate.
*/
Changes to src/utf.c.
310
311
312
313
314
315
316

317
318
319
320
321
322

323
324
325
326
327
328
329
      }
    }
    pMem->n = (int)(z - zOut);
  }
  *z = 0;
  assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );


  sqlite3VdbeMemRelease(pMem);
  pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
  pMem->enc = desiredEnc;
  pMem->flags |= (MEM_Term);
  pMem->z = (char*)zOut;
  pMem->zMalloc = pMem->z;


translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "OUTPUT: %s\n", zBuf);







>

|

<


>







310
311
312
313
314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329
330
      }
    }
    pMem->n = (int)(z - zOut);
  }
  *z = 0;
  assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );

  c = pMem->flags;
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask);
  pMem->enc = desiredEnc;

  pMem->z = (char*)zOut;
  pMem->zMalloc = pMem->z;
  pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z);

translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
    fprintf(stderr, "OUTPUT: %s\n", zBuf);
Changes to src/util.c.
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
** is added to the dequoted string.
**
** The return value is -1 if no dequoting occurs or the length of the
** dequoted string, exclusive of the zero terminator, if dequoting does
** occur.
**
** 2002-Feb-14: This routine is extended to remove MS-Access style
** brackets from around identifers.  For example:  "[a-b-c]" becomes
** "a-b-c".
*/
int sqlite3Dequote(char *z){
  char quote;
  int i, j;
  if( z==0 ) return -1;
  quote = z[0];







|







200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
** is added to the dequoted string.
**
** The return value is -1 if no dequoting occurs or the length of the
** dequoted string, exclusive of the zero terminator, if dequoting does
** occur.
**
** 2002-Feb-14: This routine is extended to remove MS-Access style
** brackets from around identifiers.  For example:  "[a-b-c]" becomes
** "a-b-c".
*/
int sqlite3Dequote(char *z){
  char quote;
  int i, j;
  if( z==0 ) return -1;
  quote = z[0];
Changes to src/vacuum.c.
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
**        original database.
**
** The transient database requires temporary disk space approximately
** equal to the size of the original database.  The copy operation of
** step (3) requires additional temporary disk space approximately equal
** to the size of the original database for the rollback journal.
** Hence, temporary disk space that is approximately 2x the size of the
** orginal database is required.  Every page of the database is written
** approximately 3 times:  Once for step (2) and twice for step (3).
** Two writes per page are required in step (3) because the original
** database content must be written into the rollback journal prior to
** overwriting the database with the vacuumed content.
**
** Only 1x temporary space and only 1x writes would be required if
** the copy of step (3) were replace by deleting the original database







|







83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
**        original database.
**
** The transient database requires temporary disk space approximately
** equal to the size of the original database.  The copy operation of
** step (3) requires additional temporary disk space approximately equal
** to the size of the original database for the rollback journal.
** Hence, temporary disk space that is approximately 2x the size of the
** original database is required.  Every page of the database is written
** approximately 3 times:  Once for step (2) and twice for step (3).
** Two writes per page are required in step (3) because the original
** database content must be written into the rollback journal prior to
** overwriting the database with the vacuumed content.
**
** Only 1x temporary space and only 1x writes would be required if
** the copy of step (3) were replace by deleting the original database
Changes to src/vdbe.c.
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
      (isBtreeCursor?sqlite3BtreeCursorSize():0);

  assert( iCur<p->nCursor );
  if( p->apCsr[iCur] ){
    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
    p->apCsr[iCur] = 0;
  }
  if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
    memset(pCx, 0, sizeof(VdbeCursor));
    pCx->iDb = iDb;
    pCx->nField = nField;
    if( isBtreeCursor ){
      pCx->pCursor = (BtCursor*)
          &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];







|







205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
      (isBtreeCursor?sqlite3BtreeCursorSize():0);

  assert( iCur<p->nCursor );
  if( p->apCsr[iCur] ){
    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
    p->apCsr[iCur] = 0;
  }
  if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
    memset(pCx, 0, sizeof(VdbeCursor));
    pCx->iDb = iDb;
    pCx->nField = nField;
    if( isBtreeCursor ){
      pCx->pCursor = (BtCursor*)
          &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
** point or exponential notation, the result is only MEM_Real, even
** if there is an exact integer representation of the quantity.
*/
static void applyNumericAffinity(Mem *pRec, int bTryForInt){
  double rValue;
  i64 iValue;
  u8 enc = pRec->enc;
  if( (pRec->flags&MEM_Str)==0 ) return;
  if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
  if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
    pRec->u.i = iValue;
    pRec->flags |= MEM_Int;
  }else{
    pRec->r = rValue;
    pRec->flags |= MEM_Real;
    if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
  }
}

/*
** Processing is determine by the affinity parameter:







|





|







238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
** point or exponential notation, the result is only MEM_Real, even
** if there is an exact integer representation of the quantity.
*/
static void applyNumericAffinity(Mem *pRec, int bTryForInt){
  double rValue;
  i64 iValue;
  u8 enc = pRec->enc;
  assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
  if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
  if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
    pRec->u.i = iValue;
    pRec->flags |= MEM_Int;
  }else{
    pRec->u.r = rValue;
    pRec->flags |= MEM_Real;
    if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
  }
}

/*
** Processing is determine by the affinity parameter:
273
274
275
276
277
278
279










280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
**    No-op.  pRec is unchanged.
*/
static void applyAffinity(
  Mem *pRec,          /* The value to apply affinity to */
  char affinity,      /* The affinity to be applied */
  u8 enc              /* Use this text encoding */
){










  if( affinity==SQLITE_AFF_TEXT ){
    /* Only attempt the conversion to TEXT if there is an integer or real
    ** representation (blob and NULL do not get converted) but no string
    ** representation.
    */
    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
      sqlite3VdbeMemStringify(pRec, enc, 1);
    }
  }else if( affinity!=SQLITE_AFF_NONE ){
    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
             || affinity==SQLITE_AFF_NUMERIC );
    if( (pRec->flags & MEM_Int)==0 ){
      if( (pRec->flags & MEM_Real)==0 ){
        applyNumericAffinity(pRec,1);
      }else{
        sqlite3VdbeIntegerAffinity(pRec);
      }
    }
  }
}

/*
** Try to convert the type of a function argument or a result column
** into a numeric representation.  Use either INTEGER or REAL whichever
** is appropriate.  But only do the conversion if it is possible without







>
>
>
>
>
>
>
>
>
>
|







<
<
<
<
<
<
<
<
<
<







273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297










298
299
300
301
302
303
304
**    No-op.  pRec is unchanged.
*/
static void applyAffinity(
  Mem *pRec,          /* The value to apply affinity to */
  char affinity,      /* The affinity to be applied */
  u8 enc              /* Use this text encoding */
){
  if( affinity>=SQLITE_AFF_NUMERIC ){
    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
             || affinity==SQLITE_AFF_NUMERIC );
    if( (pRec->flags & MEM_Int)==0 ){
      if( (pRec->flags & MEM_Real)==0 ){
        if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
      }else{
        sqlite3VdbeIntegerAffinity(pRec);
      }
    }
  }else if( affinity==SQLITE_AFF_TEXT ){
    /* Only attempt the conversion to TEXT if there is an integer or real
    ** representation (blob and NULL do not get converted) but no string
    ** representation.
    */
    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
      sqlite3VdbeMemStringify(pRec, enc, 1);
    }










  }
}

/*
** Try to convert the type of a function argument or a result column
** into a numeric representation.  Use either INTEGER or REAL whichever
** is appropriate.  But only do the conversion if it is possible without
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
){
  applyAffinity((Mem *)pVal, affinity, enc);
}

/*
** pMem currently only holds a string type (or maybe a BLOB that we can
** interpret as a string if we want to).  Compute its corresponding
** numeric type, if has one.  Set the pMem->r and pMem->u.i fields
** accordingly.
*/
static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
  assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
  assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
  if( sqlite3AtoF(pMem->z, &pMem->r, pMem->n, pMem->enc)==0 ){
    return 0;
  }
  if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
    return MEM_Int;
  }
  return MEM_Real;
}

/*
** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
** none.  
**
** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
** But it does set pMem->r and pMem->u.i appropriately.
*/
static u16 numericType(Mem *pMem){
  if( pMem->flags & (MEM_Int|MEM_Real) ){
    return pMem->flags & (MEM_Int|MEM_Real);
  }
  if( pMem->flags & (MEM_Str|MEM_Blob) ){
    return computeNumericType(pMem);







|





|













|







325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
){
  applyAffinity((Mem *)pVal, affinity, enc);
}

/*
** pMem currently only holds a string type (or maybe a BLOB that we can
** interpret as a string if we want to).  Compute its corresponding
** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
** accordingly.
*/
static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
  assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
  assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
  if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
    return 0;
  }
  if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
    return MEM_Int;
  }
  return MEM_Real;
}

/*
** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
** none.  
**
** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
** But it does set pMem->u.r and pMem->u.i appropriately.
*/
static u16 numericType(Mem *pMem){
  if( pMem->flags & (MEM_Int|MEM_Real) ){
    return pMem->flags & (MEM_Int|MEM_Real);
  }
  if( pMem->flags & (MEM_Str|MEM_Blob) ){
    return computeNumericType(pMem);
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    printf(" NULL");
  }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
    printf(" si:%lld", p->u.i);
  }else if( p->flags & MEM_Int ){
    printf(" i:%lld", p->u.i);
#ifndef SQLITE_OMIT_FLOATING_POINT
  }else if( p->flags & MEM_Real ){
    printf(" r:%g", p->r);
#endif
  }else if( p->flags & MEM_RowSet ){
    printf(" (rowset)");
  }else{
    char zBuf[200];
    sqlite3VdbeMemPrettyPrint(p, zBuf);
    printf(" %s", zBuf);







|







455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    printf(" NULL");
  }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
    printf(" si:%lld", p->u.i);
  }else if( p->flags & MEM_Int ){
    printf(" i:%lld", p->u.i);
#ifndef SQLITE_OMIT_FLOATING_POINT
  }else if( p->flags & MEM_Real ){
    printf(" r:%g", p->u.r);
#endif
  }else if( p->flags & MEM_RowSet ){
    printf(" (rowset)");
  }else{
    char zBuf[200];
    sqlite3VdbeMemPrettyPrint(p, zBuf);
    printf(" %s", zBuf);
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      VdbeMemReleaseExtern(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );







|







636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
  pOut->flags = MEM_Real;
  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
  pOut->r = *pOp->p4.pReal;
  break;
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**







|







998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
  pOut->flags = MEM_Real;
  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
  pOut->u.r = *pOp->p4.pReal;
  break;
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( rc==SQLITE_TOOBIG ) goto too_big;
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->zMalloc==pOut->z );
    assert( VdbeMemDynamic(pOut)==0 );
    pOut->zMalloc = 0;
    pOut->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;







|

|







1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( rc==SQLITE_TOOBIG ) goto too_big;
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
    assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
    assert( VdbeMemDynamic(pOut)==0 );
    pOut->szMalloc = 0;
    pOut->flags |= MEM_Static;
    if( pOp->p4type==P4_DYNAMIC ){
      sqlite3DbFree(db, pOp->p4.z);
    }
    pOp->p4type = P4_DYNAMIC;
    pOp->p4.z = pOut->z;
    pOp->p1 = pOut->n;
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
  u16 nullFlag;
  cnt = pOp->p3-pOp->p2;
  assert( pOp->p3<=(p->nMem-p->nCursor) );
  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
  while( cnt>0 ){
    pOut++;
    memAboutToChange(p, pOut);
    VdbeMemReleaseExtern(pOut);
    pOut->flags = nullFlag;
    cnt--;
  }
  break;
}

/* Opcode: SoftNull P1 * * * *







|







1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
  u16 nullFlag;
  cnt = pOp->p3-pOp->p2;
  assert( pOp->p3<=(p->nMem-p->nCursor) );
  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
  while( cnt>0 ){
    pOut++;
    memAboutToChange(p, pOut);
    sqlite3VdbeMemSetNull(pOut);
    pOut->flags = nullFlag;
    cnt--;
  }
  break;
}

/* Opcode: SoftNull P1 * * * *
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
** for P3 to be less than 1.
*/
case OP_Move: {
  char *zMalloc;   /* Holding variable for allocated memory */
  int n;           /* Number of registers left to copy */
  int p1;          /* Register to copy from */
  int p2;          /* Register to copy to */

  n = pOp->p3;
  p1 = pOp->p1;
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  do{
    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    sqlite3VdbeMemRelease(pOut);
    zMalloc = pOut->zMalloc;
    memcpy(pOut, pIn1, sizeof(Mem));
#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
      pOut->pScopyFrom += p1 - pOp->p2;
    }
#endif
    pIn1->flags = MEM_Undefined;
    pIn1->xDel = 0;
    pIn1->zMalloc = zMalloc;
    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }while( --n );
  break;
}








<

















|
<
<





<
<
<







1143
1144
1145
1146
1147
1148
1149

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167


1168
1169
1170
1171
1172



1173
1174
1175
1176
1177
1178
1179
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
** left holding a NULL.  It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
** for P3 to be less than 1.
*/
case OP_Move: {

  int n;           /* Number of registers left to copy */
  int p1;          /* Register to copy from */
  int p2;          /* Register to copy to */

  n = pOp->p3;
  p1 = pOp->p1;
  p2 = pOp->p2;
  assert( n>0 && p1>0 && p2>0 );
  assert( p1+n<=p2 || p2+n<=p1 );

  pIn1 = &aMem[p1];
  pOut = &aMem[p2];
  do{
    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
    assert( memIsValid(pIn1) );
    memAboutToChange(p, pOut);
    sqlite3VdbeMemMove(pOut, pIn1);


#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
      pOut->pScopyFrom += p1 - pOp->p2;
    }
#endif



    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }while( --n );
  break;
}

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
#ifdef SQLITE_OMIT_FLOATING_POINT
    pOut->u.i = rB;
    MemSetTypeFlag(pOut, MEM_Int);
#else
    if( sqlite3IsNaN(rB) ){
      goto arithmetic_result_is_null;
    }
    pOut->r = rB;
    MemSetTypeFlag(pOut, MEM_Real);
    if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
      sqlite3VdbeIntegerAffinity(pOut);
    }
#endif
  }
  break;







|







1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
#ifdef SQLITE_OMIT_FLOATING_POINT
    pOut->u.i = rB;
    MemSetTypeFlag(pOut, MEM_Int);
#else
    if( sqlite3IsNaN(rB) ){
      goto arithmetic_result_is_null;
    }
    pOut->u.r = rB;
    MemSetTypeFlag(pOut, MEM_Real);
    if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
      sqlite3VdbeIntegerAffinity(pOut);
    }
#endif
  }
  break;
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
** <li value="100"> INTEGER
** <li value="101"> REAL
** </ul>
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_Cast: {                  /* in1 */
  assert( pOp->p2>=SQLITE_AFF_TEXT && pOp->p2<=SQLITE_AFF_REAL );
  testcase( pOp->p2==SQLITE_AFF_TEXT );
  testcase( pOp->p2==SQLITE_AFF_NONE );
  testcase( pOp->p2==SQLITE_AFF_NUMERIC );
  testcase( pOp->p2==SQLITE_AFF_INTEGER );
  testcase( pOp->p2==SQLITE_AFF_REAL );
  pIn1 = &aMem[pOp->p1];
  memAboutToChange(p, pIn1);







|







1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
** <li value="100"> INTEGER
** <li value="101"> REAL
** </ul>
**
** A NULL value is not changed by this routine.  It remains NULL.
*/
case OP_Cast: {                  /* in1 */
  assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL );
  testcase( pOp->p2==SQLITE_AFF_TEXT );
  testcase( pOp->p2==SQLITE_AFF_NONE );
  testcase( pOp->p2==SQLITE_AFF_NUMERIC );
  testcase( pOp->p2==SQLITE_AFF_INTEGER );
  testcase( pOp->p2==SQLITE_AFF_REAL );
  pIn1 = &aMem[pOp->p1];
  memAboutToChange(p, pIn1);
1901
1902
1903
1904
1905
1906
1907
1908

1909


1910

1911




1912




1913

1914

1915



1916



1917
1918
1919
1920
1921
1922
1923
        }
      }
      break;
    }
  }else{
    /* Neither operand is NULL.  Do a comparison. */
    affinity = pOp->p5 & SQLITE_AFF_MASK;
    if( affinity ){

      applyAffinity(pIn1, affinity, encoding);


      applyAffinity(pIn3, affinity, encoding);

      if( db->mallocFailed ) goto no_mem;




    }






    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );

    ExpandBlob(pIn1);



    ExpandBlob(pIn3);



    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;







|
>
|
>
>
|
>
|
>
>
>
>
|
>
>
>
>
|
>

>
|
>
>
>
|
>
>
>







1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
        }
      }
      break;
    }
  }else{
    /* Neither operand is NULL.  Do a comparison. */
    affinity = pOp->p5 & SQLITE_AFF_MASK;
    if( affinity>=SQLITE_AFF_NUMERIC ){
      if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
        applyNumericAffinity(pIn1,0);
      }
      if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
        applyNumericAffinity(pIn3,0);
      }
    }else if( affinity==SQLITE_AFF_TEXT ){
      if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn1->flags & MEM_Int );
        testcase( pIn1->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn1, encoding, 1);
      }
      if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn3->flags & MEM_Int );
        testcase( pIn3->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn3, encoding, 1);
      }
    }
    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
    if( pIn1->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn1);
      flags1 &= ~MEM_Zero;
    }
    if( pIn3->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn3);
      flags3 &= ~MEM_Zero;
    }
    if( db->mallocFailed ) goto no_mem;
    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
  }else{
    VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
    if( res ){
      pc = pOp->p2-1;
    }
  }
  /* Undo any changes made by applyAffinity() to the input registers. */
  pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
  pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
  break;
}

/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator to be the array
** of integers in P4.







|
|







1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
  }else{
    VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
    if( res ){
      pc = pOp->p2-1;
    }
  }
  /* Undo any changes made by applyAffinity() to the input registers. */
  pIn1->flags = flags1;
  pIn3->flags = flags3;
  break;
}

/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator to be the array
** of integers in P4.
2103
2104
2105
2106
2107
2108
2109
2110
2111

2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129

2130
2131
2132
2133
2134
2135
2136
2137
2138
** Interpret the value in register P1 as a boolean value.  Store the
** boolean complement in register P2.  If the value in register P1 is 
** NULL, then a NULL is stored in P2.
*/
case OP_Not: {                /* same as TK_NOT, in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];
  if( pIn1->flags & MEM_Null ){
    sqlite3VdbeMemSetNull(pOut);

  }else{
    sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
  }
  break;
}

/* Opcode: BitNot P1 P2 * * *
** Synopsis: r[P1]= ~r[P1]
**
** Interpret the content of register P1 as an integer.  Store the
** ones-complement of the P1 value into register P2.  If P1 holds
** a NULL then store a NULL in P2.
*/
case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];
  if( pIn1->flags & MEM_Null ){
    sqlite3VdbeMemSetNull(pOut);

  }else{
    sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
  }
  break;
}

/* Opcode: Once P1 P2 * * *
**
** Check the "once" flag number P1. If it is set, jump to instruction P2. 







<
|
>
|
|














<
|
>
|
|







2117
2118
2119
2120
2121
2122
2123

2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141

2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
** Interpret the value in register P1 as a boolean value.  Store the
** boolean complement in register P2.  If the value in register P1 is 
** NULL, then a NULL is stored in P2.
*/
case OP_Not: {                /* same as TK_NOT, in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];

  sqlite3VdbeMemSetNull(pOut);
  if( (pIn1->flags & MEM_Null)==0 ){
    pOut->flags = MEM_Int;
    pOut->u.i = !sqlite3VdbeIntValue(pIn1);
  }
  break;
}

/* Opcode: BitNot P1 P2 * * *
** Synopsis: r[P1]= ~r[P1]
**
** Interpret the content of register P1 as an integer.  Store the
** ones-complement of the P1 value into register P2.  If P1 holds
** a NULL then store a NULL in P2.
*/
case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];

  sqlite3VdbeMemSetNull(pOut);
  if( (pIn1->flags & MEM_Null)==0 ){
    pOut->flags = MEM_Int;
    pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
  }
  break;
}

/* Opcode: Once P1 P2 * * *
**
** Check the "once" flag number P1. If it is set, jump to instruction P2. 
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261

2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
  i64 payloadSize64; /* Number of bytes in the record */
  int p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  const u8 *zData;   /* Part of the record being decoded */
  const u8 *zHdr;    /* Next unparsed byte of the header */
  const u8 *zEndHdr; /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  u32 avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */

  Mem *pReg;         /* PseudoTable input register */

  p2 = pOp->p2;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( p2<pC->nField );
  aType = pC->aType;
  aOffset = aType + pC->nField;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
#endif
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
  assert( pCrsr!=0 || pC->nullRow );          /* pC->nullRow on PseudoTables */








<












>










<
|







2256
2257
2258
2259
2260
2261
2262

2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285

2286
2287
2288
2289
2290
2291
2292
2293
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
  i64 payloadSize64; /* Number of bytes in the record */
  int p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */
  BtCursor *pCrsr;   /* The BTree cursor */

  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  const u8 *zData;   /* Part of the record being decoded */
  const u8 *zHdr;    /* Next unparsed byte of the header */
  const u8 *zEndHdr; /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  u32 avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */
  u16 fx;            /* pDest->flags value */
  Mem *pReg;         /* PseudoTable input register */

  p2 = pOp->p2;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( p2<pC->nField );

  aOffset = pC->aType + pC->nField;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
#endif
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
  assert( pCrsr!=0 || pC->nullRow );          /* pC->nullRow on PseudoTables */

2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
    if( offset > 98307 || offset > pC->payloadSize ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_error;
    }
  }

  /* Make sure at least the first p2+1 entries of the header have been
  ** parsed and valid information is in aOffset[] and aType[].
  */
  if( pC->nHdrParsed<=p2 ){
    /* If there is more header available for parsing in the record, try
    ** to extract additional fields up through the p2+1-th field 
    */
    if( pC->iHdrOffset<aOffset[0] ){
      /* Make sure zData points to enough of the record to cover the header. */
      if( pC->aRow==0 ){
        memset(&sMem, 0, sizeof(sMem));
        rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 
                                     !pC->isTable, &sMem);
        if( rc!=SQLITE_OK ){
          goto op_column_error;
        }
        zData = (u8*)sMem.z;
      }else{
        zData = pC->aRow;
      }
  
      /* Fill in aType[i] and aOffset[i] values through the p2-th field. */
      i = pC->nHdrParsed;
      offset = aOffset[i];
      zHdr = zData + pC->iHdrOffset;
      zEndHdr = zData + aOffset[0];
      assert( i<=p2 && zHdr<zEndHdr );
      do{
        if( zHdr[0]<0x80 ){
          t = zHdr[0];
          zHdr++;
        }else{
          zHdr += sqlite3GetVarint32(zHdr, &t);
        }
        aType[i] = t;
        szField = sqlite3VdbeSerialTypeLen(t);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zHdr = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
        i++;







|



















|












|







2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
    if( offset > 98307 || offset > pC->payloadSize ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_error;
    }
  }

  /* Make sure at least the first p2+1 entries of the header have been
  ** parsed and valid information is in aOffset[] and pC->aType[].
  */
  if( pC->nHdrParsed<=p2 ){
    /* If there is more header available for parsing in the record, try
    ** to extract additional fields up through the p2+1-th field 
    */
    if( pC->iHdrOffset<aOffset[0] ){
      /* Make sure zData points to enough of the record to cover the header. */
      if( pC->aRow==0 ){
        memset(&sMem, 0, sizeof(sMem));
        rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 
                                     !pC->isTable, &sMem);
        if( rc!=SQLITE_OK ){
          goto op_column_error;
        }
        zData = (u8*)sMem.z;
      }else{
        zData = pC->aRow;
      }
  
      /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
      i = pC->nHdrParsed;
      offset = aOffset[i];
      zHdr = zData + pC->iHdrOffset;
      zEndHdr = zData + aOffset[0];
      assert( i<=p2 && zHdr<zEndHdr );
      do{
        if( zHdr[0]<0x80 ){
          t = zHdr[0];
          zHdr++;
        }else{
          zHdr += sqlite3GetVarint32(zHdr, &t);
        }
        pC->aType[i] = t;
        szField = sqlite3VdbeSerialTypeLen(t);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zHdr = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
        i++;
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439


2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452

2453

2454

2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487


2488












2489
2490
2491
2492
2493
2494
2495
        MemSetTypeFlag(pDest, MEM_Null);
      }
      goto op_column_out;
    }
  }

  /* Extract the content for the p2+1-th column.  Control can only
  ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are
  ** all valid.
  */
  assert( p2<pC->nHdrParsed );
  assert( rc==SQLITE_OK );
  assert( sqlite3VdbeCheckMemInvariants(pDest) );


  if( pC->szRow>=aOffset[p2+1] ){
    /* This is the common case where the desired content fits on the original
    ** page - where the content is not on an overflow page */
    VdbeMemReleaseExtern(pDest);
    sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest);
  }else{
    /* This branch happens only when content is on overflow pages */
    t = aType[p2];
    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
          && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
     || (len = sqlite3VdbeSerialTypeLen(t))==0
    ){
      /* Content is irrelevant for the typeof() function and for

      ** the length(X) function if X is a blob.  So we might as well use

      ** bogus content rather than reading content from disk.  NULL works

      ** for text and blob and whatever is in the payloadSize64 variable
      ** will work for everything else.  Content is also irrelevant if
      ** the content length is 0. */
      zData = t<=13 ? (u8*)&payloadSize64 : 0;
      sMem.zMalloc = 0;
    }else{
      memset(&sMem, 0, sizeof(sMem));
      sqlite3VdbeMemMove(&sMem, pDest);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
                                   &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_error;
      }
      zData = (u8*)sMem.z;
    }
    sqlite3VdbeSerialGet(zData, t, pDest);
    /* If we dynamically allocated space to hold the data (in the
    ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
    ** dynamically allocated space over to the pDest structure.
    ** This prevents a memory copy. */
    if( sMem.zMalloc ){
      assert( sMem.z==sMem.zMalloc );
      assert( VdbeMemDynamic(pDest)==0 );
      assert( (pDest->flags & (MEM_Blob|MEM_Str))==0 || pDest->z==sMem.z );
      pDest->flags &= ~(MEM_Ephem|MEM_Static);
      pDest->flags |= MEM_Term;
      pDest->z = sMem.z;
      pDest->zMalloc = sMem.zMalloc;
    }
  }
  pDest->enc = encoding;

op_column_out:


  Deephemeralize(pDest);












op_column_error:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *







|





>
>



<
|


<




|
>
|
>
|
>
|
|
<
|
<

<
<

|



<
<
|
<
<
<
<
<
<
<
<
|
<
<
<





>
>
|
>
>
>
>
>
>
>
>
>
>
>
>







2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457

2458
2459
2460

2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472

2473

2474


2475
2476
2477
2478
2479


2480








2481



2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
        MemSetTypeFlag(pDest, MEM_Null);
      }
      goto op_column_out;
    }
  }

  /* Extract the content for the p2+1-th column.  Control can only
  ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
  ** all valid.
  */
  assert( p2<pC->nHdrParsed );
  assert( rc==SQLITE_OK );
  assert( sqlite3VdbeCheckMemInvariants(pDest) );
  if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
  t = pC->aType[p2];
  if( pC->szRow>=aOffset[p2+1] ){
    /* This is the common case where the desired content fits on the original
    ** page - where the content is not on an overflow page */

    sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
  }else{
    /* This branch happens only when content is on overflow pages */

    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
          && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
     || (len = sqlite3VdbeSerialTypeLen(t))==0
    ){
      /* Content is irrelevant for
      **    1. the typeof() function,
      **    2. the length(X) function if X is a blob, and
      **    3. if the content length is zero.
      ** So we might as well use bogus content rather than reading
      ** content from disk.  NULL will work for the value for strings
      ** and blobs and whatever is in the payloadSize64 variable
      ** will work for everything else. */

      sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);

    }else{


      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
                                   pDest);
      if( rc!=SQLITE_OK ){
        goto op_column_error;
      }


      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);








      pDest->flags &= ~MEM_Ephem;



    }
  }
  pDest->enc = encoding;

op_column_out:
  /* If the column value is an ephemeral string, go ahead and persist
  ** that string in case the cursor moves before the column value is
  ** used.  The following code does the equivalent of Deephemeralize()
  ** but does it faster. */
  if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
    fx = pDest->flags & (MEM_Str|MEM_Blob);
    assert( fx!=0 );
    zData = (const u8*)pDest->z;
    len = pDest->n;
    if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
    memcpy(pDest->z, zData, len);
    pDest->z[len] = 0;
    pDest->z[len+1] = 0;
    pDest->flags = fx|MEM_Term;
  }
op_column_error:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
  ** like this:
  **
  ** ------------------------------------------------------------------------
  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  ** ------------------------------------------------------------------------
  **
  ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
  ** and so froth.
  **
  ** Each type field is a varint representing the serial type of the 
  ** corresponding data element (see sqlite3VdbeSerialType()). The
  ** hdr-size field is also a varint which is the offset from the beginning
  ** of the record to data0.
  */
  nData = 0;         /* Number of bytes of data space */







|







2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
  ** like this:
  **
  ** ------------------------------------------------------------------------
  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  ** ------------------------------------------------------------------------
  **
  ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
  ** and so forth.
  **
  ** Each type field is a varint representing the serial type of the 
  ** corresponding data element (see sqlite3VdbeSerialType()). The
  ** hdr-size field is also a varint which is the offset from the beginning
  ** of the record to data0.
  */
  nData = 0;         /* Number of bytes of data space */
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  /* Make sure the output register has a buffer large enough to store 
  ** the new record. The output register (pOp->p3) is not allowed to
  ** be one of the input registers (because the following call to
  ** sqlite3VdbeMemGrow() could clobber the value before it is used).
  */
  if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
    goto no_mem;
  }
  zNewRecord = (u8 *)pOut->z;

  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
    j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob;
  pOut->xDel = 0;
  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);







|

|




















<







2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674

2675
2676
2677
2678
2679
2680
2681
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  /* Make sure the output register has a buffer large enough to store 
  ** the new record. The output register (pOp->p3) is not allowed to
  ** be one of the input registers (because the following call to
  ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
  */
  if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
    goto no_mem;
  }
  zNewRecord = (u8 *)pOut->z;

  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
    i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
    j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob;

  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
  pC->nullRow = 0;
#ifdef SQLITE_DEBUG
  pC->seekOp = pOp->opcode;
#endif
  if( pC->isTable ){
    /* The input value in P3 might be of any type: integer, real, string,
    ** blob, or NULL.  But it needs to be an integer before we can do
    ** the seek, so covert it. */
    pIn3 = &aMem[pOp->p3];
    if( (pIn3->flags & (MEM_Int|MEM_Real))==0 ){
      applyNumericAffinity(pIn3, 0);
    }
    iKey = sqlite3VdbeIntValue(pIn3);
    pC->rowidIsValid = 0;

    /* If the P3 value could not be converted into an integer without
    ** loss of information, then special processing is required... */







|

|







3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
  pC->nullRow = 0;
#ifdef SQLITE_DEBUG
  pC->seekOp = pOp->opcode;
#endif
  if( pC->isTable ){
    /* The input value in P3 might be of any type: integer, real, string,
    ** blob, or NULL.  But it needs to be an integer before we can do
    ** the seek, so convert it. */
    pIn3 = &aMem[pOp->p3];
    if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
      applyNumericAffinity(pIn3, 0);
    }
    iKey = sqlite3VdbeIntValue(pIn3);
    pC->rowidIsValid = 0;

    /* If the P3 value could not be converted into an integer without
    ** loss of information, then special processing is required... */
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
      /* If the approximation iKey is larger than the actual real search
      ** term, substitute >= for > and < for <=. e.g. if the search term
      ** is 4.9 and the integer approximation 5:
      **
      **        (x >  4.9)    ->     (x >= 5)
      **        (x <= 4.9)    ->     (x <  5)
      */
      if( pIn3->r<(double)iKey ){
        assert( OP_SeekGE==(OP_SeekGT-1) );
        assert( OP_SeekLT==(OP_SeekLE-1) );
        assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
        if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
      }

      /* If the approximation iKey is smaller than the actual real search
      ** term, substitute <= for < and > for >=.  */
      else if( pIn3->r>(double)iKey ){
        assert( OP_SeekLE==(OP_SeekLT+1) );
        assert( OP_SeekGT==(OP_SeekGE+1) );
        assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
        if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
      }
    } 
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);







|








|







3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
      /* If the approximation iKey is larger than the actual real search
      ** term, substitute >= for > and < for <=. e.g. if the search term
      ** is 4.9 and the integer approximation 5:
      **
      **        (x >  4.9)    ->     (x >= 5)
      **        (x <= 4.9)    ->     (x <  5)
      */
      if( pIn3->u.r<(double)iKey ){
        assert( OP_SeekGE==(OP_SeekGT-1) );
        assert( OP_SeekLT==(OP_SeekLE-1) );
        assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
        if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
      }

      /* If the approximation iKey is smaller than the actual real search
      ** term, substitute <= for < and > for >=.  */
      else if( pIn3->u.r>(double)iKey ){
        assert( OP_SeekLE==(OP_SeekLT+1) );
        assert( OP_SeekGT==(OP_SeekGE+1) );
        assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
        if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
      }
    } 
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
  }else{
    VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
    assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
  }
  if( sqlite3VdbeMemGrow(pOut, n, 0) ){
    goto no_mem;
  }
  pOut->n = n;
  MemSetTypeFlag(pOut, MEM_Blob);
  if( pC->isTable==0 ){
    rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
  }else{







|







4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
  }else{
    VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
    assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
  }
  if( sqlite3VdbeMemClearAndResize(pOut, n) ){
    goto no_mem;
  }
  pOut->n = n;
  MemSetTypeFlag(pOut, MEM_Blob);
  if( pC->isTable==0 ){
    rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
  }else{
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
    r.default_rc = 0;
  }
  r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  res = 0;  /* Not needed.  Only used to silence a warning. */
  rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
  assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
  if( (pOp->opcode&1)==(OP_IdxLT&1) ){
    assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
    res = -res;
  }else{
    assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
    res++;







|







4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
    r.default_rc = 0;
  }
  r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  res = 0;  /* Not needed.  Only used to silence a warning. */
  rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
  assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
  if( (pOp->opcode&1)==(OP_IdxLT&1) ){
    assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
    res = -res;
  }else{
    assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
    res++;
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
    apVal[i] = pRec;
    memAboutToChange(p, pRec);
  }
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  t.flags = MEM_Null;
  t.z = 0;
  t.zMalloc = 0;
  t.xDel = 0;
  t.db = db;
  ctx.pOut = &t;
  ctx.isError = 0;
  ctx.pColl = 0;
  ctx.skipFlag = 0;
  if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );







|
<
<
<
<







5631
5632
5633
5634
5635
5636
5637
5638




5639
5640
5641
5642
5643
5644
5645
    apVal[i] = pRec;
    memAboutToChange(p, pRec);
  }
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  sqlite3VdbeMemInit(&t, db, MEM_Null);




  ctx.pOut = &t;
  ctx.isError = 0;
  ctx.pColl = 0;
  ctx.skipFlag = 0;
  if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );
Changes to src/vdbe.h.
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*,int);
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);

typedef int (*RecordCompare)(int,const void*,UnpackedRecord*,int);
RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);

#ifndef SQLITE_OMIT_TRIGGER
void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif

/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on







|


|







208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);

typedef int (*RecordCompare)(int,const void*,UnpackedRecord*);
RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);

#ifndef SQLITE_OMIT_TRIGGER
void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif

/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on
Changes to src/vdbeInt.h.
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176








177
178
179
180
181
182
183
184
185
186
187
188
189

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value.
*/
struct Mem {
  sqlite3 *db;        /* The associated database connection */
  char *z;            /* String or BLOB value */
  double r;           /* Real value */
  union {
    i64 i;              /* Integer value used when MEM_Int is set in flags */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;
  int n;              /* Number of characters in string value, excluding '\0' */
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */








#ifdef SQLITE_DEBUG
  Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
  void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
#endif
  void (*xDel)(void *);  /* If not null, call this function to delete Mem.z */
  char *zMalloc;      /* Dynamic buffer allocated by sqlite3_malloc() */
};

/* One or more of the following flags are set to indicate the validOK
** representations of the value stored in the Mem struct.
**
** If the MEM_Null flag is set, then the value is an SQL NULL value.
** No other flags may be set in this case.







<
|
|
<






<


>
>
>
>
>
>
>
>




<
<







157
158
159
160
161
162
163

164
165

166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185


186
187
188
189
190
191
192

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value.
*/
struct Mem {

  union MemValue {
    double r;           /* Real value used when MEM_Real is set in flags */

    i64 i;              /* Integer value used when MEM_Int is set in flags */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;

  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
  int n;              /* Number of characters in string value, excluding '\0' */
  char *z;            /* String or BLOB value */
  /* ShallowCopy only needs to copy the information above */
  char *zMalloc;      /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */
  int szMalloc;       /* Size of the zMalloc allocation */
  int iPadding1;      /* Padding for 8-byte alignment */
  sqlite3 *db;        /* The associated database connection */
  void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */
#ifdef SQLITE_DEBUG
  Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
  void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
#endif


};

/* One or more of the following flags are set to indicate the validOK
** representations of the value stored in the Mem struct.
**
** If the MEM_Null flag is set, then the value is an SQL NULL value.
** No other flags may be set in this case.
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
** is for use inside assert() statements only.
*/
#ifdef SQLITE_DEBUG
#define memIsValid(M)  ((M)->flags & MEM_Undefined)==0
#endif

/*
** Each auxilliary data pointer stored by a user defined function 
** implementation calling sqlite3_set_auxdata() is stored in an instance
** of this structure. All such structures associated with a single VM
** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed
** when the VM is halted (if not before).
*/
struct AuxData {
  int iOp;                        /* Instruction number of OP_Function opcode */
  int iArg;                       /* Index of function argument. */
  void *pAux;                     /* Aux data pointer */
  void (*xDelete)(void *);        /* Destructor for the aux data */
  AuxData *pNext;                 /* Next element in list */
};

/*
** The "context" argument for a installable function.  A pointer to an
** instance of this structure is the first argument to the routines used
** implement the SQL functions.
**
** There is a typedef for this structure in sqlite.h.  So all routines,
** even the public interface to SQLite, can use a pointer to this structure.
** But this file is the only place where the internal details of this
** structure are known.
**
** This structure is defined inside of vdbeInt.h because it uses substructures
** (Mem) which are only defined there.
*/
struct sqlite3_context {
  Mem *pOut;            /* The return value is stored here */
  FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */
  Mem *pMem;            /* Memory cell used to store aggregate context */
  CollSeq *pColl;       /* Collating sequence */
  Vdbe *pVdbe;          /* The VM that owns this context */
  int iOp;              /* Instruction number of OP_Function */
  int isError;          /* Error code returned by the function. */
  u8 skipFlag;          /* Skip skip accumulator loading if true */
  u8 fErrorOrAux;       /* isError!=0 or pVdbe->pAuxData modified */
};

/*
** An Explain object accumulates indented output which is helpful
** in describing recursive data structures.
*/







|














|













|





|







237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
** is for use inside assert() statements only.
*/
#ifdef SQLITE_DEBUG
#define memIsValid(M)  ((M)->flags & MEM_Undefined)==0
#endif

/*
** Each auxiliary data pointer stored by a user defined function 
** implementation calling sqlite3_set_auxdata() is stored in an instance
** of this structure. All such structures associated with a single VM
** are stored in a linked list headed at Vdbe.pAuxData. All are destroyed
** when the VM is halted (if not before).
*/
struct AuxData {
  int iOp;                        /* Instruction number of OP_Function opcode */
  int iArg;                       /* Index of function argument. */
  void *pAux;                     /* Aux data pointer */
  void (*xDelete)(void *);        /* Destructor for the aux data */
  AuxData *pNext;                 /* Next element in list */
};

/*
** The "context" argument for an installable function.  A pointer to an
** instance of this structure is the first argument to the routines used
** implement the SQL functions.
**
** There is a typedef for this structure in sqlite.h.  So all routines,
** even the public interface to SQLite, can use a pointer to this structure.
** But this file is the only place where the internal details of this
** structure are known.
**
** This structure is defined inside of vdbeInt.h because it uses substructures
** (Mem) which are only defined there.
*/
struct sqlite3_context {
  Mem *pOut;            /* The return value is stored here */
  FuncDef *pFunc;       /* Pointer to function information */
  Mem *pMem;            /* Memory cell used to store aggregate context */
  CollSeq *pColl;       /* Collating sequence */
  Vdbe *pVdbe;          /* The VM that owns this context */
  int iOp;              /* Instruction number of OP_Function */
  int isError;          /* Error code returned by the function. */
  u8 skipFlag;          /* Skip accumulator loading if true */
  u8 fErrorOrAux;       /* isError!=0 or pVdbe->pAuxData modified */
};

/*
** An Explain object accumulates indented output which is helpful
** in describing recursive data structures.
*/
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

439
440
441
442
443
444
445
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeHalt(Vdbe*);
int sqlite3VdbeChangeEncoding(Mem *, int);
int sqlite3VdbeMemTooBig(Mem*);
int sqlite3VdbeMemCopy(Mem*, const Mem*);
void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
void sqlite3VdbeMemMove(Mem*, Mem*);
int sqlite3VdbeMemNulTerminate(Mem*);
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
void sqlite3VdbeMemSetInt64(Mem*, i64);
#ifdef SQLITE_OMIT_FLOATING_POINT
# define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64
#else
  void sqlite3VdbeMemSetDouble(Mem*, double);
#endif

void sqlite3VdbeMemSetNull(Mem*);
void sqlite3VdbeMemSetZeroBlob(Mem*,int);
void sqlite3VdbeMemSetRowSet(Mem*);
int sqlite3VdbeMemMakeWriteable(Mem*);
int sqlite3VdbeMemStringify(Mem*, u8, u8);
i64 sqlite3VdbeIntValue(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
void sqlite3VdbeMemCast(Mem*,u8,u8);
int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
void sqlite3VdbeMemReleaseExternal(Mem *p);
#define VdbeMemDynamic(X)  \
  (((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0)
#define VdbeMemReleaseExtern(X)  \
  if( VdbeMemDynamic(X) ) sqlite3VdbeMemReleaseExternal(X);
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);

int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
int sqlite3VdbeTransferError(Vdbe *p);

int sqlite3VdbeSorterInit(sqlite3 *, int, VdbeCursor *);
void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);







|
|
















>














<


<
<



>







395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

435
436


437
438
439
440
441
442
443
444
445
446
447
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeHalt(Vdbe*);
int sqlite3VdbeChangeEncoding(Mem *, int);
int sqlite3VdbeMemTooBig(Mem*);
int sqlite3VdbeMemCopy(Mem*, const Mem*);
void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
void sqlite3VdbeMemMove(Mem*, Mem*);
int sqlite3VdbeMemNulTerminate(Mem*);
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
void sqlite3VdbeMemSetInt64(Mem*, i64);
#ifdef SQLITE_OMIT_FLOATING_POINT
# define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64
#else
  void sqlite3VdbeMemSetDouble(Mem*, double);
#endif
void sqlite3VdbeMemInit(Mem*,sqlite3*,u16);
void sqlite3VdbeMemSetNull(Mem*);
void sqlite3VdbeMemSetZeroBlob(Mem*,int);
void sqlite3VdbeMemSetRowSet(Mem*);
int sqlite3VdbeMemMakeWriteable(Mem*);
int sqlite3VdbeMemStringify(Mem*, u8, u8);
i64 sqlite3VdbeIntValue(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
void sqlite3VdbeMemCast(Mem*,u8,u8);
int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);

#define VdbeMemDynamic(X)  \
  (((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0)


int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeMemClearAndResize(Mem *pMem, int n);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
int sqlite3VdbeTransferError(Vdbe *p);

int sqlite3VdbeSorterInit(sqlite3 *, int, VdbeCursor *);
void sqlite3VdbeSorterReset(sqlite3 *, VdbeSorter *);
Changes to src/vdbeapi.c.
224
225
226
227
228
229
230
231
232
233



234
235
236
237
238
239
240
241
242
243
244
















245
246
247
248
249
250
251
252
253
254














255
256
257
258
259
260
261
  return aType[pVal->flags&MEM_AffMask];
}

/**************************** sqlite3_result_  *******************************
** The following routines are used by user-defined functions to specify
** the function result.
**
** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
** result as a string or blob but if the string or blob is too large, it
** then sets the error code to SQLITE_TOOBIG



*/
static void setResultStrOrError(
  sqlite3_context *pCtx,  /* Function context */
  const char *z,          /* String pointer */
  int n,                  /* Bytes in string, or negative */
  u8 enc,                 /* Encoding of z.  0 for BLOBs */
  void (*xDel)(void*)     /* Destructor function */
){
  if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
    sqlite3_result_error_toobig(pCtx);
  }
















}
void sqlite3_result_blob(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( n>=0 );
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, 0, xDel);














}
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
}
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );







|


>
>
>











>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










>
>
>
>
>
>
>
>
>
>
>
>
>
>







224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
  return aType[pVal->flags&MEM_AffMask];
}

/**************************** sqlite3_result_  *******************************
** The following routines are used by user-defined functions to specify
** the function result.
**
** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
** result as a string or blob but if the string or blob is too large, it
** then sets the error code to SQLITE_TOOBIG
**
** The invokeValueDestructor(P,X) routine invokes destructor function X()
** on value P is not going to be used and need to be destroyed.
*/
static void setResultStrOrError(
  sqlite3_context *pCtx,  /* Function context */
  const char *z,          /* String pointer */
  int n,                  /* Bytes in string, or negative */
  u8 enc,                 /* Encoding of z.  0 for BLOBs */
  void (*xDel)(void*)     /* Destructor function */
){
  if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
    sqlite3_result_error_toobig(pCtx);
  }
}
static int invokeValueDestructor(
  const void *p,             /* Value to destroy */
  void (*xDel)(void*),       /* The destructor */
  sqlite3_context *pCtx      /* Set a SQLITE_TOOBIG error if no NULL */
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( xDel==0 ){
    /* noop */
  }else if( xDel==SQLITE_TRANSIENT ){
    /* noop */
  }else{
    xDel((void*)p);
  }
  if( pCtx ) sqlite3_result_error_toobig(pCtx);
  return SQLITE_TOOBIG;
}
void sqlite3_result_blob(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( n>=0 );
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, 0, xDel);
}
void sqlite3_result_blob64(
  sqlite3_context *pCtx, 
  const void *z, 
  sqlite3_uint64 n,
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  assert( xDel!=SQLITE_DYNAMIC );
  if( n>0x7fffffff ){
    (void)invokeValueDestructor(z, xDel, pCtx);
  }else{
    setResultStrOrError(pCtx, z, (int)n, 0, xDel);
  }
}
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
}
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
287
288
289
290
291
292
293















294
295
296
297
298
299
300
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);















}
#ifndef SQLITE_OMIT_UTF16
void sqlite3_result_text16(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
}
void sqlite3_result_text64(
  sqlite3_context *pCtx, 
  const char *z, 
  sqlite3_uint64 n,
  void (*xDel)(void *),
  unsigned char enc
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  assert( xDel!=SQLITE_DYNAMIC );
  if( n>0x7fffffff ){
    (void)invokeValueDestructor(z, xDel, pCtx);
  }else{
    setResultStrOrError(pCtx, z, (int)n, enc, xDel);
  }
}
#ifndef SQLITE_OMIT_UTF16
void sqlite3_result_text16(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
** Create a new aggregate context for p and return a pointer to
** its pMem->z element.
*/
static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
  Mem *pMem = p->pMem;
  assert( (pMem->flags & MEM_Agg)==0 );
  if( nByte<=0 ){
    sqlite3VdbeMemReleaseExternal(pMem);
    pMem->flags = MEM_Null;
    pMem->z = 0;
  }else{
    sqlite3VdbeMemGrow(pMem, nByte, 0);
    pMem->flags = MEM_Agg;
    pMem->u.pDef = p->pFunc;
    if( pMem->z ){
      memset(pMem->z, 0, nByte);
    }
  }
  return (void*)pMem->z;







|
<


|







674
675
676
677
678
679
680
681

682
683
684
685
686
687
688
689
690
691
** Create a new aggregate context for p and return a pointer to
** its pMem->z element.
*/
static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
  Mem *pMem = p->pMem;
  assert( (pMem->flags & MEM_Agg)==0 );
  if( nByte<=0 ){
    sqlite3VdbeMemSetNull(pMem);

    pMem->z = 0;
  }else{
    sqlite3VdbeMemClearAndResize(pMem, nByte);
    pMem->flags = MEM_Agg;
    pMem->u.pDef = p->pFunc;
    if( pMem->z ){
      memset(pMem->z, 0, nByte);
    }
  }
  return (void*)pMem->z;
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
    return createAggContext(p, nByte);
  }else{
    return (void*)p->pMem->z;
  }
}

/*
** Return the auxilary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
*/
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
  AuxData *pAuxData;

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
    if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
  }

  return (pAuxData ? pAuxData->pAux : 0);
}

/*
** Set the auxilary data pointer and delete function, for the iArg'th
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.
*/
void sqlite3_set_auxdata(
  sqlite3_context *pCtx, 
  int iArg, 
  void *pAux, 







|














|







704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
    return createAggContext(p, nByte);
  }else{
    return (void*)p->pMem->z;
  }
}

/*
** Return the auxiliary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
*/
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
  AuxData *pAuxData;

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
    if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
  }

  return (pAuxData ? pAuxData->pAux : 0);
}

/*
** Set the auxiliary data pointer and delete function, for the iArg'th
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.
*/
void sqlite3_set_auxdata(
  sqlite3_context *pCtx, 
  int iArg, 
  void *pAux, 
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
  if( xDelete ){
    xDelete(pAux);
  }
}

#ifndef SQLITE_OMIT_DEPRECATED
/*
** Return the number of times the Step function of a aggregate has been 
** called.
**
** This function is deprecated.  Do not use it for new code.  It is
** provide only to avoid breaking legacy code.  New aggregate function
** implementations should keep their own counts within their aggregate
** context.
*/







|







765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
  if( xDelete ){
    xDelete(pAux);
  }
}

#ifndef SQLITE_OMIT_DEPRECATED
/*
** Return the number of times the Step function of an aggregate has been 
** called.
**
** This function is deprecated.  Do not use it for new code.  It is
** provide only to avoid breaking legacy code.  New aggregate function
** implementations should keep their own counts within their aggregate
** context.
*/
767
768
769
770
771
772
773


774








775
776

777
778
779
780
781
782
783
784
785
  ** these assert()s from failing, when building with SQLITE_DEBUG defined
  ** using gcc, we force nullMem to be 8-byte aligned using the magical
  ** __attribute__((aligned(8))) macro.  */
  static const Mem nullMem 
#if defined(SQLITE_DEBUG) && defined(__GNUC__)
    __attribute__((aligned(8))) 
#endif


    = {0, "", (double)0, {0}, 0, MEM_Null, 0,








#ifdef SQLITE_DEBUG
       0, 0,  /* pScopyFrom, pFiller */

#endif
       0, 0 };
  return &nullMem;
}

/*
** Check to see if column iCol of the given statement is valid.  If
** it is, return a pointer to the Mem for the value of that column.
** If iCol is not valid, return a pointer to a Mem which has a value







>
>
|
>
>
>
>
>
>
>
>

|
>

|







814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
  ** these assert()s from failing, when building with SQLITE_DEBUG defined
  ** using gcc, we force nullMem to be 8-byte aligned using the magical
  ** __attribute__((aligned(8))) macro.  */
  static const Mem nullMem 
#if defined(SQLITE_DEBUG) && defined(__GNUC__)
    __attribute__((aligned(8))) 
#endif
    = {
        /* .u          = */ {0},
        /* .flags      = */ MEM_Null,
        /* .enc        = */ 0,
        /* .n          = */ 0,
        /* .z          = */ 0,
        /* .zMalloc    = */ 0,
        /* .szMalloc   = */ 0,
        /* .iPadding1  = */ 0,
        /* .db         = */ 0,
        /* .xDel       = */ 0,
#ifdef SQLITE_DEBUG
        /* .pScopyFrom = */ 0,
        /* .pFiller    = */ 0,
#endif
      };
  return &nullMem;
}

/*
** Check to see if column iCol of the given statement is valid.  If
** it is, return a pointer to the Mem for the value of that column.
** If iCol is not valid, return a pointer to a Mem which has a value
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_DECLTYPE */

#ifdef SQLITE_ENABLE_COLUMN_METADATA
/*
** Return the name of the database from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unabiguous reference to a database column.
*/
const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unabiguous reference to a database column.
*/
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table column from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unabiguous reference to a database column.
*/
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){







|















|















|







1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_DECLTYPE */

#ifdef SQLITE_ENABLE_COLUMN_METADATA
/*
** Return the name of the database from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table column from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1139
1140
1141
1142
1143
1144
1145














1146
1147
1148
1149
1150
1151
1152
  int nData, 
  void (*xDel)(void*)
){
#ifdef SQLITE_ENABLE_SQLRR
  SRRecBindBlob(pStmt, i, zData, nData);
#endif
  return bindText(pStmt, i, zData, nData, xDel, 0);














}
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
#ifdef SQLITE_ENABLE_SQLRR
  SRRecBindDouble(pStmt, i, rValue);
#endif







>
>
>
>
>
>
>
>
>
>
>
>
>
>







1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
  int nData, 
  void (*xDel)(void*)
){
#ifdef SQLITE_ENABLE_SQLRR
  SRRecBindBlob(pStmt, i, zData, nData);
#endif
  return bindText(pStmt, i, zData, nData, xDel, 0);
}
int sqlite3_bind_blob64(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  sqlite3_uint64 nData, 
  void (*xDel)(void*)
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( nData>0x7fffffff ){
    return invokeValueDestructor(zData, xDel, 0);
  }else{
    return bindText(pStmt, i, zData, (int)nData, xDel, 0);
  }
}
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
#ifdef SQLITE_ENABLE_SQLRR
  SRRecBindDouble(pStmt, i, rValue);
#endif
1195
1196
1197
1198
1199
1200
1201
















1202
1203
1204
1205
1206
1207
1208
  int nData, 
  void (*xDel)(void*)
){
#ifdef SQLITE_ENABLE_SQLRR
  SRRecBindText(pStmt, i, zData, nData);
#endif
  return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
















}
#ifndef SQLITE_OMIT_UTF16
int sqlite3_bind_text16(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  int nData, 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
  int nData, 
  void (*xDel)(void*)
){
#ifdef SQLITE_ENABLE_SQLRR
  SRRecBindText(pStmt, i, zData, nData);
#endif
  return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
}
int sqlite3_bind_text64( 
  sqlite3_stmt *pStmt, 
  int i, 
  const char *zData, 
  sqlite3_uint64 nData, 
  void (*xDel)(void*),
  unsigned char enc
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( nData>0x7fffffff ){
    return invokeValueDestructor(zData, xDel, 0);
  }else{
    if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
    return bindText(pStmt, i, zData, (int)nData, xDel, enc);
  }
}
#ifndef SQLITE_OMIT_UTF16
int sqlite3_bind_text16(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  int nData, 
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
  int rc;
  switch( sqlite3_value_type((sqlite3_value*)pValue) ){
    case SQLITE_INTEGER: {
      rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
      break;
    }
    case SQLITE_FLOAT: {
      rc = sqlite3_bind_double(pStmt, i, pValue->r);
      break;
    }
    case SQLITE_BLOB: {
      if( pValue->flags & MEM_Zero ){
        rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
      }else{
        rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);







|







1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
  int rc;
  switch( sqlite3_value_type((sqlite3_value*)pValue) ){
    case SQLITE_INTEGER: {
      rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
      break;
    }
    case SQLITE_FLOAT: {
      rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
      break;
    }
    case SQLITE_BLOB: {
      if( pValue->flags & MEM_Zero ){
        rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
      }else{
        rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
}

#ifndef SQLITE_OMIT_DEPRECATED
/*
** Deprecated external interface.  Internal/core SQLite code
** should call sqlite3TransferBindings.
**
** Is is misuse to call this routine with statements from different
** database connections.  But as this is a deprecated interface, we
** will not bother to check for that condition.
**
** If the two statements contain a different number of bindings, then
** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
** SQLITE_OK is returned.
*/







|







1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
}

#ifndef SQLITE_OMIT_DEPRECATED
/*
** Deprecated external interface.  Internal/core SQLite code
** should call sqlite3TransferBindings.
**
** It is misuse to call this routine with statements from different
** database connections.  But as this is a deprecated interface, we
** will not bother to check for that condition.
**
** If the two statements contain a different number of bindings, then
** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
** SQLITE_OK is returned.
*/
Changes to src/vdbeaux.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*
** 2003 September 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** Create a new virtual database engine.
*/












|
<
<







1
2
3
4
5
6
7
8
9
10
11
12
13


14
15
16
17
18
19
20
/*
** 2003 September 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 


*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** Create a new virtual database engine.
*/
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
        break;
      }
      case P4_MEM: {
        if( db->pnBytesFreed==0 ){
          sqlite3ValueFree((sqlite3_value*)p4);
        }else{
          Mem *p = (Mem*)p4;
          sqlite3DbFree(db, p->zMalloc);
          sqlite3DbFree(db, p);
        }
        break;
      }
      case P4_VTAB : {
        if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
        break;







|







692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
        break;
      }
      case P4_MEM: {
        if( db->pnBytesFreed==0 ){
          sqlite3ValueFree((sqlite3_value*)p4);
        }else{
          Mem *p = (Mem*)p4;
          if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
          sqlite3DbFree(db, p);
        }
        break;
      }
      case P4_VTAB : {
        if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
        break;
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
** Return the opcode for a given address.  If the address is -1, then
** return the most recently inserted opcode.
**
** If a memory allocation error has occurred prior to the calling of this
** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
** is readable but not writable, though it is cast to a writable value.
** The return of a dummy opcode allows the call to continue functioning
** after a OOM fault without having to check to see if the return from 
** this routine is a valid pointer.  But because the dummy.opcode is 0,
** dummy will never be written to.  This is verified by code inspection and
** by running with Valgrind.
*/
VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
  /* C89 specifies that the constant "dummy" will be initialized to all
  ** zeros, which is correct.  MSVC generates a warning, nevertheless. */







|







889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
** Return the opcode for a given address.  If the address is -1, then
** return the most recently inserted opcode.
**
** If a memory allocation error has occurred prior to the calling of this
** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
** is readable but not writable, though it is cast to a writable value.
** The return of a dummy opcode allows the call to continue functioning
** after an OOM fault without having to check to see if the return from 
** this routine is a valid pointer.  But because the dummy.opcode is 0,
** dummy will never be written to.  This is verified by code inspection and
** by running with Valgrind.
*/
VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
  /* C89 specifies that the constant "dummy" will be initialized to all
  ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
    case P4_MEM: {
      Mem *pMem = pOp->p4.pMem;
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
      }else if( pMem->flags & MEM_Null ){
        sqlite3_snprintf(nTemp, zTemp, "NULL");
      }else{
        assert( pMem->flags & MEM_Blob );
        zP4 = "(blob)";
      }
      break;







|







1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
    case P4_MEM: {
      Mem *pMem = pOp->p4.pMem;
      if( pMem->flags & MEM_Str ){
        zP4 = pMem->z;
      }else if( pMem->flags & MEM_Int ){
        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
      }else if( pMem->flags & MEM_Real ){
        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
      }else if( pMem->flags & MEM_Null ){
        sqlite3_snprintf(nTemp, zTemp, "NULL");
      }else{
        assert( pMem->flags & MEM_Blob );
        zP4 = "(blob)";
      }
      break;
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
#endif

/*
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
  if( p && N ){
    Mem *pEnd;
    sqlite3 *db = p->db;
    u8 malloc_failed = db->mallocFailed;
    if( db->pnBytesFreed ){
      for(pEnd=&p[N]; p<pEnd; p++){
        sqlite3DbFree(db, p->zMalloc);
      }
      return;
    }
    for(pEnd=&p[N]; p<pEnd; p++){
      assert( (&p[1])==pEnd || p[0].db==p[1].db );
      assert( sqlite3VdbeCheckMemInvariants(p) );

      /* This block is really an inlined version of sqlite3VdbeMemRelease()
      ** that takes advantage of the fact that the memory cell value is 
      ** being set to NULL after releasing any dynamic resources.
      **







|



|
|
|


|







1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
#endif

/*
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
  if( p && N ){
    Mem *pEnd = &p[N];
    sqlite3 *db = p->db;
    u8 malloc_failed = db->mallocFailed;
    if( db->pnBytesFreed ){
      do{
        if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
      }while( (++p)<pEnd );
      return;
    }
    do{
      assert( (&p[1])==pEnd || p[0].db==p[1].db );
      assert( sqlite3VdbeCheckMemInvariants(p) );

      /* This block is really an inlined version of sqlite3VdbeMemRelease()
      ** that takes advantage of the fact that the memory cell value is 
      ** being set to NULL after releasing any dynamic resources.
      **
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
      */
      testcase( p->flags & MEM_Agg );
      testcase( p->flags & MEM_Dyn );
      testcase( p->flags & MEM_Frame );
      testcase( p->flags & MEM_RowSet );
      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
        sqlite3VdbeMemRelease(p);
      }else if( p->zMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->zMalloc = 0;
      }

      p->flags = MEM_Undefined;
    }
    db->mallocFailed = malloc_failed;
  }
}

/*
** Delete a VdbeFrame object and its contents. VdbeFrame objects are
** allocated by the OP_Program opcode in sqlite3VdbeExec().







|

|



|







1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
      */
      testcase( p->flags & MEM_Agg );
      testcase( p->flags & MEM_Dyn );
      testcase( p->flags & MEM_Frame );
      testcase( p->flags & MEM_RowSet );
      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
        sqlite3VdbeMemRelease(p);
      }else if( p->szMalloc ){
        sqlite3DbFree(db, p->zMalloc);
        p->szMalloc = 0;
      }

      p->flags = MEM_Undefined;
    }while( (++p)<pEnd );
    db->mallocFailed = malloc_failed;
  }
}

/*
** Delete a VdbeFrame object and its contents. VdbeFrame objects are
** allocated by the OP_Program opcode in sqlite3VdbeExec().
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
    pMem->u.i = pOp->p2;                          /* P2 */
    pMem++;

    pMem->flags = MEM_Int;
    pMem->u.i = pOp->p3;                          /* P3 */
    pMem++;

    if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
      assert( p->db->mallocFailed );
      return SQLITE_ERROR;
    }
    pMem->flags = MEM_Str|MEM_Term;
    zP4 = displayP4(pOp, pMem->z, 32);
    if( zP4!=pMem->z ){
      sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
    }else{
      assert( pMem->z!=0 );
      pMem->n = sqlite3Strlen30(pMem->z);
      pMem->enc = SQLITE_UTF8;
    }
    pMem++;

    if( p->explain==1 ){
      if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
        assert( p->db->mallocFailed );
        return SQLITE_ERROR;
      }
      pMem->flags = MEM_Str|MEM_Term;
      pMem->n = 2;
      sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
      pMem->enc = SQLITE_UTF8;
      pMem++;
  
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
      if( sqlite3VdbeMemGrow(pMem, 500, 0) ){
        assert( p->db->mallocFailed );
        return SQLITE_ERROR;
      }
      pMem->flags = MEM_Str|MEM_Term;
      pMem->n = displayComment(pOp, zP4, pMem->z, 500);
      pMem->enc = SQLITE_UTF8;
#else







|















|










|







1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
    pMem->u.i = pOp->p2;                          /* P2 */
    pMem++;

    pMem->flags = MEM_Int;
    pMem->u.i = pOp->p3;                          /* P3 */
    pMem++;

    if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
      assert( p->db->mallocFailed );
      return SQLITE_ERROR;
    }
    pMem->flags = MEM_Str|MEM_Term;
    zP4 = displayP4(pOp, pMem->z, 32);
    if( zP4!=pMem->z ){
      sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
    }else{
      assert( pMem->z!=0 );
      pMem->n = sqlite3Strlen30(pMem->z);
      pMem->enc = SQLITE_UTF8;
    }
    pMem++;

    if( p->explain==1 ){
      if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
        assert( p->db->mallocFailed );
        return SQLITE_ERROR;
      }
      pMem->flags = MEM_Str|MEM_Term;
      pMem->n = 2;
      sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
      pMem->enc = SQLITE_UTF8;
      pMem++;
  
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
      if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
        assert( p->db->mallocFailed );
        return SQLITE_ERROR;
      }
      pMem->flags = MEM_Str|MEM_Term;
      pMem->n = displayComment(pOp, zP4, pMem->z, 500);
      pMem->enc = SQLITE_UTF8;
#else
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
  }
#endif
}

/*
** Prepare a virtual machine for execution for the first time after
** creating the virtual machine.  This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().  
**
** This function may be called exact once on a each virtual machine.
** After this routine is called the VM has been "packaged" and is ready
** to run.  After this routine is called, futher calls to 
** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
** the Vdbe from the Parse object that helped generate it so that the
** the Vdbe becomes an independent entity and the Parse object can be
** destroyed.
**
** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
** to its initial state after it has been run.







|



|

|







1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
  }
#endif
}

/*
** Prepare a virtual machine for execution for the first time after
** creating the virtual machine.  This involves things such
** as allocating registers and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().  
**
** This function may be called exactly once on each virtual machine.
** After this routine is called the VM has been "packaged" and is ready
** to run.  After this routine is called, further calls to 
** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
** the Vdbe from the Parse object that helped generate it so that the
** the Vdbe becomes an independent entity and the Parse object can be
** destroyed.
**
** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
** to its initial state after it has been run.
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834

  /* Delete any auxdata allocations made by the VM */
  sqlite3VdbeDeleteAuxData(p, -1, 0);
  assert( p->pAuxData==0 );
}

/*
** Clean up the VM after execution.
**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open.  It also deletes the values of
** variables in the aVar[] array.
*/
static void Cleanup(Vdbe *p){
  sqlite3 *db = p->db;

#ifdef SQLITE_DEBUG
  /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 
  ** Vdbe.aMem[] arrays have already been cleaned up.  */







|
<
<
<
<







1814
1815
1816
1817
1818
1819
1820
1821




1822
1823
1824
1825
1826
1827
1828

  /* Delete any auxdata allocations made by the VM */
  sqlite3VdbeDeleteAuxData(p, -1, 0);
  assert( p->pAuxData==0 );
}

/*
** Clean up the VM after a single run.




*/
static void Cleanup(Vdbe *p){
  sqlite3 *db = p->db;

#ifdef SQLITE_DEBUG
  /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 
  ** Vdbe.aMem[] arrays have already been cleaned up.  */
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
    if( rc==SQLITE_OK ){
      sqlite3VtabCommit(db);
    }
  }

  /* The complex case - There is a multi-file write-transaction active.
  ** This requires a master journal file to ensure the transaction is
  ** committed atomicly.
  */
#ifndef SQLITE_OMIT_DISKIO
  else{
    sqlite3_vfs *pVfs = db->pVfs;
    int needSync = 0;
    char *zMaster = 0;   /* File-name for the master journal */
    char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);







|







1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
    if( rc==SQLITE_OK ){
      sqlite3VtabCommit(db);
    }
  }

  /* The complex case - There is a multi-file write-transaction active.
  ** This requires a master journal file to ensure the transaction is
  ** committed atomically.
  */
#ifndef SQLITE_OMIT_DISKIO
  else{
    sqlite3_vfs *pVfs = db->pVfs;
    int needSync = 0;
    char *zMaster = 0;   /* File-name for the master journal */
    char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
** function invoked by the OP_Function opcode at instruction iOp of 
** VM pVdbe, and only then if:
**
**    * the associated function parameter is the 32nd or later (counting
**      from left to right), or
**
**    * the corresponding bit in argument mask is clear (where the first
**      function parameter corrsponds to bit 0 etc.).
*/
void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
  AuxData **pp = &pVdbe->pAuxData;
  while( *pp ){
    AuxData *pAux = *pp;
    if( (iOp<0)
     || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))







|







2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
** function invoked by the OP_Function opcode at instruction iOp of 
** VM pVdbe, and only then if:
**
**    * the associated function parameter is the 32nd or later (counting
**      from left to right), or
**
**    * the corresponding bit in argument mask is clear (where the first
**      function parameter corresponds to bit 0 etc.).
*/
void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
  AuxData **pp = &pVdbe->pAuxData;
  while( *pp ){
    AuxData *pAux = *pp;
    if( (iOp<0)
     || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
  return SQLITE_OK;
}

/*
** Something has moved cursor "p" out of place.  Maybe the row it was
** pointed to was deleted out from under it.  Or maybe the btree was
** rebalanced.  Whatever the cause, try to restore "p" to the place it
** is suppose to be pointing.  If the row was deleted out from under the
** cursor, set the cursor to point to a NULL row.
*/
static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
  int isDifferentRow, rc;
  assert( p->pCursor!=0 );
  assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
  rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);







|







2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
  return SQLITE_OK;
}

/*
** Something has moved cursor "p" out of place.  Maybe the row it was
** pointed to was deleted out from under it.  Or maybe the btree was
** rebalanced.  Whatever the cause, try to restore "p" to the place it
** is supposed to be pointing.  If the row was deleted out from under the
** cursor, set the cursor to point to a NULL row.
*/
static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
  int isDifferentRow, rc;
  assert( p->pCursor!=0 );
  assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
  rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
  u32 len;

  /* Integer and Real */
  if( serial_type<=7 && serial_type>0 ){
    u64 v;
    u32 i;
    if( serial_type==7 ){
      assert( sizeof(v)==sizeof(pMem->r) );
      memcpy(&v, &pMem->r, sizeof(v));
      swapMixedEndianFloat(v);
    }else{
      v = pMem->u.i;
    }
    len = i = sqlite3VdbeSerialTypeLen(serial_type);
    assert( i>0 );
    do{







|
|







2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
  u32 len;

  /* Integer and Real */
  if( serial_type<=7 && serial_type>0 ){
    u64 v;
    u32 i;
    if( serial_type==7 ){
      assert( sizeof(v)==sizeof(pMem->u.r) );
      memcpy(&v, &pMem->u.r, sizeof(v));
      swapMixedEndianFloat(v);
    }else{
      v = pMem->u.i;
    }
    len = i = sqlite3VdbeSerialTypeLen(serial_type);
    assert( i>0 );
    do{
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
    */
    static const u64 t1 = ((u64)0x3ff00000)<<32;
    static const double r1 = 1.0;
    u64 t2 = t1;
    swapMixedEndianFloat(t2);
    assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
    assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
    swapMixedEndianFloat(x);
    memcpy(&pMem->r, &x, sizeof(x));
    pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
  }
  return 8;
}
u32 sqlite3VdbeSerialGet(
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */







|

|
|







3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
    */
    static const u64 t1 = ((u64)0x3ff00000)<<32;
    static const double r1 = 1.0;
    u64 t2 = t1;
    swapMixedEndianFloat(t2);
    assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
    assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
    swapMixedEndianFloat(x);
    memcpy(&pMem->u.r, &x, sizeof(x));
    pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
  }
  return 8;
}
u32 sqlite3VdbeSerialGet(
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
      pMem->flags = MEM_Int;
      return 0;
    }
    default: {
      static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
      pMem->z = (char *)buf;
      pMem->n = (serial_type-12)/2;
      pMem->xDel = 0;
      pMem->flags = aFlag[serial_type&1];
      return pMem->n;
    }
  }
  return 0;
}
/*







<







3077
3078
3079
3080
3081
3082
3083

3084
3085
3086
3087
3088
3089
3090
      pMem->flags = MEM_Int;
      return 0;
    }
    default: {
      static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
      pMem->z = (char *)buf;
      pMem->n = (serial_type-12)/2;

      pMem->flags = aFlag[serial_type&1];
      return pMem->n;
    }
  }
  return 0;
}
/*
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
  Mem *pMem = p->aMem;

  p->default_rc = 0;
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  idx = getVarint32(aKey, szHdr);
  d = szHdr;
  u = 0;
  while( idx<szHdr && u<p->nField && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
}

#if SQLITE_DEBUG
/*







|






|


|







3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
  Mem *pMem = p->aMem;

  p->default_rc = 0;
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  idx = getVarint32(aKey, szHdr);
  d = szHdr;
  u = 0;
  while( idx<szHdr && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->szMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    if( (++u)>=p->nField ) break;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
}

#if SQLITE_DEBUG
/*
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
  Mem mem1;

  pKeyInfo = pPKey2->pKeyInfo;
  if( pKeyInfo->db==0 ) return 1;
  mem1.enc = pKeyInfo->enc;
  mem1.db = pKeyInfo->db;
  /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */

  /* Compilers may complain that mem1.u.i is potentially uninitialized.
  ** We could initialize it, as shown here, to silence those complaints.
  ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 
  ** the unnecessary initialization has a measurable negative performance
  ** impact, since this routine is a very high runner.  And so, we choose
  ** to ignore the compiler warnings and leave this variable uninitialized.







|







3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
  Mem mem1;

  pKeyInfo = pPKey2->pKeyInfo;
  if( pKeyInfo->db==0 ) return 1;
  mem1.enc = pKeyInfo->enc;
  mem1.db = pKeyInfo->db;
  /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
  VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */

  /* Compilers may complain that mem1.u.i is potentially uninitialized.
  ** We could initialize it, as shown here, to silence those complaints.
  ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 
  ** the unnecessary initialization has a measurable negative performance
  ** impact, since this routine is a very high runner.  And so, we choose
  ** to ignore the compiler warnings and leave this variable uninitialized.
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);

    /* Do the comparison
    */
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
    if( rc!=0 ){
      assert( mem1.zMalloc==0 );  /* See comment below */
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;  /* Invert the result for DESC sort order. */
      }
      goto debugCompareEnd;
    }
    i++;
  }while( idx1<szHdr1 && i<pPKey2->nField );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
  */
  assert( mem1.zMalloc==0 );

  /* rc==0 here means that one of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the the default_rc
  ** value.  */
  rc = pPKey2->default_rc;

debugCompareEnd:
  if( desiredResult==0 && rc==0 ) return 1;
  if( desiredResult<0 && rc<0 ) return 1;
  if( desiredResult>0 && rc>0 ) return 1;







|












|


|







3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);

    /* Do the comparison
    */
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
    if( rc!=0 ){
      assert( mem1.szMalloc==0 );  /* See comment below */
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;  /* Invert the result for DESC sort order. */
      }
      goto debugCompareEnd;
    }
    i++;
  }while( idx1<szHdr1 && i<pPKey2->nField );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
  */
  assert( mem1.szMalloc==0 );

  /* rc==0 here means that one of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  rc = pPKey2->default_rc;

debugCompareEnd:
  if( desiredResult==0 && rc==0 ) return 1;
  if( desiredResult<0 && rc<0 ) return 1;
  if( desiredResult>0 && rc>0 ) return 1;
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322












3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
  }else{
    int rc;
    const void *v1, *v2;
    int n1, n2;
    Mem c1;
    Mem c2;
    memset(&c1, 0, sizeof(c1));
    memset(&c2, 0, sizeof(c2));
    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
    sqlite3VdbeMemRelease(&c1);
    sqlite3VdbeMemRelease(&c2);
    if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
    return rc;
  }
}













/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
  int rc;
  int f1, f2;
  int combined_flags;

  f1 = pMem1->flags;
  f2 = pMem2->flags;
  combined_flags = f1|f2;
  assert( (combined_flags & MEM_RowSet)==0 );







|
|













>
>
>
>
>
>
>
>
>
>
>
>











<







3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338

3339
3340
3341
3342
3343
3344
3345
    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
  }else{
    int rc;
    const void *v1, *v2;
    int n1, n2;
    Mem c1;
    Mem c2;
    sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
    sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
    sqlite3VdbeMemRelease(&c1);
    sqlite3VdbeMemRelease(&c2);
    if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
    return rc;
  }
}

/*
** Compare two blobs.  Return negative, zero, or positive if the first
** is less than, equal to, or greater than the second, respectively.
** If one blob is a prefix of the other, then the shorter is the lessor.
*/
static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
  int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
  if( c ) return c;
  return pB1->n - pB2->n;
}


/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){

  int f1, f2;
  int combined_flags;

  f1 = pMem1->flags;
  f2 = pMem2->flags;
  combined_flags = f1|f2;
  assert( (combined_flags & MEM_RowSet)==0 );
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
    double r1, r2;
    if( (f1 & f2 & MEM_Int)!=0 ){
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return 1;
      return 0;
    }
    if( (f1&MEM_Real)!=0 ){
      r1 = pMem1->r;
    }else if( (f1&MEM_Int)!=0 ){
      r1 = (double)pMem1->u.i;
    }else{
      return 1;
    }
    if( (f2&MEM_Real)!=0 ){
      r2 = pMem2->r;
    }else if( (f2&MEM_Int)!=0 ){
      r2 = (double)pMem2->u.i;
    }else{
      return -1;
    }
    if( r1<r2 ) return -1;
    if( r1>r2 ) return 1;







|






|







3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
    double r1, r2;
    if( (f1 & f2 & MEM_Int)!=0 ){
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return 1;
      return 0;
    }
    if( (f1&MEM_Real)!=0 ){
      r1 = pMem1->u.r;
    }else if( (f1&MEM_Int)!=0 ){
      r1 = (double)pMem1->u.i;
    }else{
      return 1;
    }
    if( (f2&MEM_Real)!=0 ){
      r2 = pMem2->u.r;
    }else if( (f2&MEM_Int)!=0 ){
      r2 = (double)pMem2->u.i;
    }else{
      return -1;
    }
    if( r1<r2 ) return -1;
    if( r1>r2 ) return 1;
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
      return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
    }
    /* If a NULL pointer was passed as the collate function, fall through
    ** to the blob case and use memcmp().  */
  }
 
  /* Both values must be blobs.  Compare using memcmp().  */
  rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
  if( rc==0 ){
    rc = pMem1->n - pMem2->n;
  }
  return rc;
}


/*
** The first argument passed to this function is a serial-type that
** corresponds to an integer - all values between 1 and 9 inclusive 
** except 7. The second points to a buffer containing an integer value







<
<
<
<
|







3406
3407
3408
3409
3410
3411
3412




3413
3414
3415
3416
3417
3418
3419
3420
      return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
    }
    /* If a NULL pointer was passed as the collate function, fall through
    ** to the blob case and use memcmp().  */
  }
 
  /* Both values must be blobs.  Compare using memcmp().  */




  return sqlite3BlobCompare(pMem1, pMem2);
}


/*
** The first argument passed to this function is a serial-type that
** corresponds to an integer - all values between 1 and 9 inclusive 
** except 7. The second points to a buffer containing an integer value
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
}

/*
** This function compares the two table rows or index records
** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
** or positive integer if key1 is less than, equal to or 
** greater than key2.  The {nKey1, pKey1} key must be a blob
** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
** key must be a parsed key such as obtained from
** sqlite3VdbeParseRecord.
**
** If argument bSkip is non-zero, it is assumed that the caller has already
** determined that the first fields of the keys are equal.
**
** Key1 and Key2 do not have to contain the same number of fields. If all 
** fields that appear in both keys are equal, then pPKey2->default_rc is 
** returned.
**
** If database corruption is discovered, set pPKey2->errCode to 
** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 
** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
*/
int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1,   /* Left key */
  UnpackedRecord *pPKey2,         /* Right key */
  int bSkip                       /* If true, skip the first field */
){
  u32 d1;                         /* Offset into aKey[] of next data element */
  int i;                          /* Index of next field to compare */
  u32 szHdr1;                     /* Size of record header in bytes */







|















|







3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
}

/*
** This function compares the two table rows or index records
** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
** or positive integer if key1 is less than, equal to or 
** greater than key2.  The {nKey1, pKey1} key must be a blob
** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
** key must be a parsed key such as obtained from
** sqlite3VdbeParseRecord.
**
** If argument bSkip is non-zero, it is assumed that the caller has already
** determined that the first fields of the keys are equal.
**
** Key1 and Key2 do not have to contain the same number of fields. If all 
** fields that appear in both keys are equal, then pPKey2->default_rc is 
** returned.
**
** If database corruption is discovered, set pPKey2->errCode to 
** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 
** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
*/
static int vdbeRecordCompareWithSkip(
  int nKey1, const void *pKey1,   /* Left key */
  UnpackedRecord *pPKey2,         /* Right key */
  int bSkip                       /* If true, skip the first field */
){
  u32 d1;                         /* Offset into aKey[] of next data element */
  int i;                          /* Index of next field to compare */
  u32 szHdr1;                     /* Size of record header in bytes */
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
    if( d1>(unsigned)nKey1 ){ 
      pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
      return 0;  /* Corruption */
    }
    i = 0;
  }

  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 
       || CORRUPT_DB );
  assert( pPKey2->pKeyInfo->aSortOrder!=0 );
  assert( pPKey2->pKeyInfo->nField>0 );
  assert( idx1<=szHdr1 || CORRUPT_DB );
  do{
    u32 serial_type;

    /* RHS is an integer */
    if( pRhs->flags & MEM_Int ){
      serial_type = aKey1[idx1];
      testcase( serial_type==12 );
      if( serial_type>=12 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else if( serial_type==7 ){
        double rhs = (double)pRhs->u.i;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( mem1.r<rhs ){
          rc = -1;
        }else if( mem1.r>rhs ){
          rc = +1;
        }
      }else{
        i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
        i64 rhs = pRhs->u.i;
        if( lhs<rhs ){
          rc = -1;







|



















|

|







3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
    if( d1>(unsigned)nKey1 ){ 
      pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
      return 0;  /* Corruption */
    }
    i = 0;
  }

  VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 
       || CORRUPT_DB );
  assert( pPKey2->pKeyInfo->aSortOrder!=0 );
  assert( pPKey2->pKeyInfo->nField>0 );
  assert( idx1<=szHdr1 || CORRUPT_DB );
  do{
    u32 serial_type;

    /* RHS is an integer */
    if( pRhs->flags & MEM_Int ){
      serial_type = aKey1[idx1];
      testcase( serial_type==12 );
      if( serial_type>=12 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else if( serial_type==7 ){
        double rhs = (double)pRhs->u.i;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( mem1.u.r<rhs ){
          rc = -1;
        }else if( mem1.u.r>rhs ){
          rc = +1;
        }
      }else{
        i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
        i64 rhs = pRhs->u.i;
        if( lhs<rhs ){
          rc = -1;
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
    else if( pRhs->flags & MEM_Real ){
      serial_type = aKey1[idx1];
      if( serial_type>=12 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else{
        double rhs = pRhs->r;
        double lhs;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( serial_type==7 ){
          lhs = mem1.r;
        }else{
          lhs = (double)mem1.u.i;
        }
        if( lhs<rhs ){
          rc = -1;
        }else if( lhs>rhs ){
          rc = +1;







|



|







3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
    else if( pRhs->flags & MEM_Real ){
      serial_type = aKey1[idx1];
      if( serial_type>=12 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else{
        double rhs = pRhs->u.r;
        double lhs;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( serial_type==7 ){
          lhs = mem1.u.r;
        }else{
          lhs = (double)mem1.u.i;
        }
        if( lhs<rhs ){
          rc = -1;
        }else if( lhs>rhs ){
          rc = +1;
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660







3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
    }

    if( rc!=0 ){
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
      assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
      assert( mem1.zMalloc==0 );  /* See comment below */
      return rc;
    }

    i++;
    pRhs++;
    d1 += sqlite3VdbeSerialTypeLen(serial_type);
    idx1 += sqlite3VarintLen(serial_type);
  }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
  assert( mem1.zMalloc==0 );

  /* rc==0 here means that one or both of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the the default_rc
  ** value.  */
  assert( CORRUPT_DB 
       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
       || pKeyInfo->db->mallocFailed
  );
  return pPKey2->default_rc;
}








/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is an integer, and (b) the 
** size-of-header varint at the start of (pKey1/nKey1) fits in a single
** byte (i.e. is less than 128).
**
** To avoid concerns about buffer overreads, this routine is only used
** on schemas where the maximum valid header size is 63 bytes or less.
*/
static int vdbeRecordCompareInt(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2,       /* Right key */
  int bSkip                     /* Ignored */
){
  const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
  int serial_type = ((const u8*)pKey1)[1];
  int res;
  u32 y;
  u64 x;
  i64 v = pPKey2->aMem[0].u.i;
  i64 lhs;
  UNUSED_PARAMETER(bSkip);

  assert( bSkip==0 );
  assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
  switch( serial_type ){
    case 1: { /* 1-byte signed integer */
      lhs = ONE_BYTE_INT(aKey);
      testcase( lhs<0 );
      break;
    }







|












|


|







>
>
>
>
>
>
>












|
<








<

<







3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680

3681
3682
3683
3684
3685
3686
3687
3688

3689

3690
3691
3692
3693
3694
3695
3696
    }

    if( rc!=0 ){
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
      assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
      assert( mem1.szMalloc==0 );  /* See comment below */
      return rc;
    }

    i++;
    pRhs++;
    d1 += sqlite3VdbeSerialTypeLen(serial_type);
    idx1 += sqlite3VarintLen(serial_type);
  }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
  assert( mem1.szMalloc==0 );

  /* rc==0 here means that one or both of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  assert( CORRUPT_DB 
       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
       || pKeyInfo->db->mallocFailed
  );
  return pPKey2->default_rc;
}
int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1,   /* Left key */
  UnpackedRecord *pPKey2          /* Right key */
){
  return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
}


/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is an integer, and (b) the 
** size-of-header varint at the start of (pKey1/nKey1) fits in a single
** byte (i.e. is less than 128).
**
** To avoid concerns about buffer overreads, this routine is only used
** on schemas where the maximum valid header size is 63 bytes or less.
*/
static int vdbeRecordCompareInt(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */

){
  const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
  int serial_type = ((const u8*)pKey1)[1];
  int res;
  u32 y;
  u64 x;
  i64 v = pPKey2->aMem[0].u.i;
  i64 lhs;



  assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
  switch( serial_type ){
    case 1: { /* 1-byte signed integer */
      lhs = ONE_BYTE_INT(aKey);
      testcase( lhs<0 );
      break;
    }
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
    /* This case could be removed without changing the results of running
    ** this code. Including it causes gcc to generate a faster switch 
    ** statement (since the range of switch targets now starts at zero and
    ** is contiguous) but does not cause any duplicate code to be generated
    ** (as gcc is clever enough to combine the two like cases). Other 
    ** compilers might be similar.  */ 
    case 0: case 7:
      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0);

    default:
      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0);
  }

  if( v>lhs ){
    res = pPKey2->r1;
  }else if( v<lhs ){
    res = pPKey2->r2;
  }else if( pPKey2->nField>1 ){
    /* The first fields of the two keys are equal. Compare the trailing 
    ** fields.  */
    res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1);
  }else{
    /* The first fields of the two keys are equal and there are no trailing
    ** fields. Return pPKey2->default_rc in this case. */
    res = pPKey2->default_rc;
  }

  assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
  return res;
}

/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint 
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2,       /* Right key */
  int bSkip
){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;
  UNUSED_PARAMETER(bSkip);

  assert( bSkip==0 );
  getVarint32(&aKey1[1], serial_type);

  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{
    int nCmp;
    int nStr;







|


|









|


















|
<




<

<

<







3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771

3772
3773
3774
3775

3776

3777

3778
3779
3780
3781
3782
3783
3784
    /* This case could be removed without changing the results of running
    ** this code. Including it causes gcc to generate a faster switch 
    ** statement (since the range of switch targets now starts at zero and
    ** is contiguous) but does not cause any duplicate code to be generated
    ** (as gcc is clever enough to combine the two like cases). Other 
    ** compilers might be similar.  */ 
    case 0: case 7:
      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);

    default:
      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
  }

  if( v>lhs ){
    res = pPKey2->r1;
  }else if( v<lhs ){
    res = pPKey2->r2;
  }else if( pPKey2->nField>1 ){
    /* The first fields of the two keys are equal. Compare the trailing 
    ** fields.  */
    res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
  }else{
    /* The first fields of the two keys are equal and there are no trailing
    ** fields. Return pPKey2->default_rc in this case. */
    res = pPKey2->default_rc;
  }

  assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
  return res;
}

/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint 
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */

){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;



  getVarint32(&aKey1[1], serial_type);

  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{
    int nCmp;
    int nStr;
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
    nCmp = MIN( pPKey2->aMem[0].n, nStr );
    res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);

    if( res==0 ){
      res = nStr - pPKey2->aMem[0].n;
      if( res==0 ){
        if( pPKey2->nField>1 ){
          res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1);
        }else{
          res = pPKey2->default_rc;
        }
      }else if( res>0 ){
        res = pPKey2->r2;
      }else{
        res = pPKey2->r1;







|







3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
    nCmp = MIN( pPKey2->aMem[0].n, nStr );
    res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);

    if( res==0 ){
      res = nStr - pPKey2->aMem[0].n;
      if( res==0 ){
        if( pPKey2->nField>1 ){
          res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
        }else{
          res = pPKey2->default_rc;
        }
      }else if( res>0 ){
        res = pPKey2->r2;
      }else{
        res = pPKey2->r1;
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
  i64 nCellKey = 0;
  int rc;
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */
  u32 lenRowid;     /* Size of the rowid */
  Mem m, v;

  UNUSED_PARAMETER(db);

  /* Get the size of the index entry.  Only indices entries of less
  ** than 2GiB are support - anything large must be database corruption.
  ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
  ** this code can safely assume that nCellKey is 32-bits  
  */
  assert( sqlite3BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );

  /* Read in the complete content of the index entry */
  memset(&m, 0, sizeof(m));
  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);







<
<











|







3874
3875
3876
3877
3878
3879
3880


3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
  i64 nCellKey = 0;
  int rc;
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */
  u32 lenRowid;     /* Size of the rowid */
  Mem m, v;



  /* Get the size of the index entry.  Only indices entries of less
  ** than 2GiB are support - anything large must be database corruption.
  ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
  ** this code can safely assume that nCellKey is 32-bits  
  */
  assert( sqlite3BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );

  /* Read in the complete content of the index entry */
  sqlite3VdbeMemInit(&m, db, 0);
  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953

3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
  *rowid = v.u.i;
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;

  /* Jump here if database corruption is detected after m has been
  ** allocated.  Free the m object and return SQLITE_CORRUPT. */
idx_rowid_corruption:
  testcase( m.zMalloc!=0 );
  sqlite3VdbeMemRelease(&m);
  return SQLITE_CORRUPT_BKPT;
}

/*
** Compare the key of the index entry that cursor pC is pointing to against
** the key string in pUnpacked.  Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pUnpacked.  Return SQLITE_OK on success.
**
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.  Hence, this routine only compares the prefixes 
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite3VdbeIdxKeyCompare(

  VdbeCursor *pC,                  /* The cursor to compare against */
  UnpackedRecord *pUnpacked,       /* Unpacked version of key */
  int *res                         /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
  Mem m;

  assert( sqlite3BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the way
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  memset(&m, 0, sizeof(m));
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked, 0);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'. 







|
















>


















|




|







3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
  *rowid = v.u.i;
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;

  /* Jump here if database corruption is detected after m has been
  ** allocated.  Free the m object and return SQLITE_CORRUPT. */
idx_rowid_corruption:
  testcase( m.szMalloc!=0 );
  sqlite3VdbeMemRelease(&m);
  return SQLITE_CORRUPT_BKPT;
}

/*
** Compare the key of the index entry that cursor pC is pointing to against
** the key string in pUnpacked.  Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pUnpacked.  Return SQLITE_OK on success.
**
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.  Hence, this routine only compares the prefixes 
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite3VdbeIdxKeyCompare(
  sqlite3 *db,                     /* Database connection */
  VdbeCursor *pC,                  /* The cursor to compare against */
  UnpackedRecord *pUnpacked,       /* Unpacked version of key */
  int *res                         /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
  Mem m;

  assert( sqlite3BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the way
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  sqlite3VdbeMemInit(&m, db, 0);
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'. 
Changes to src/vdbemem.c.
22
23
24
25
26
27
28
29
30
31
32


33







34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/*
** Check invariants on a Mem object.
**
** This routine is intended for use inside of assert() statements, like
** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
*/
int sqlite3VdbeCheckMemInvariants(Mem *p){
  /* The MEM_Dyn bit is set if and only if Mem.xDel is a non-NULL destructor
  ** function for Mem.z 
  */
  assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );


  assert( (p->flags & MEM_Dyn)!=0 || p->xDel==0 );








  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **
  **   (1) Memory in Mem.zMalloc and managed by the Mem object
  **   (2) Memory to be freed using Mem.xDel
  **   (3) An ephermal string or blob
  **   (4) A static string or blob
  */
  if( (p->flags & (MEM_Str|MEM_Blob)) && p->z!=0 ){
    assert( 
      ((p->z==p->zMalloc)? 1 : 0) +
      ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
      ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
      ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
    );
  }

  return 1;
}
#endif


/*
** If pMem is an object with a valid string representation, this routine







|
|


>
>
|
>
>
>
>
>
>
>






|


|

|





<







22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
/*
** Check invariants on a Mem object.
**
** This routine is intended for use inside of assert() statements, like
** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
*/
int sqlite3VdbeCheckMemInvariants(Mem *p){
  /* If MEM_Dyn is set then Mem.xDel!=0.  
  ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
  */
  assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );

  /* MEM_Dyn may only be set if Mem.szMalloc==0 */
  assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );

  /* Cannot be both MEM_Int and MEM_Real at the same time */
  assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );

  /* The szMalloc field holds the correct memory allocation size */
  assert( p->szMalloc==0
       || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );

  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **
  **   (1) Memory in Mem.zMalloc and managed by the Mem object
  **   (2) Memory to be freed using Mem.xDel
  **   (3) An ephemeral string or blob
  **   (4) A static string or blob
  */
  if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
    assert( 
      ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
      ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
      ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
      ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
    );
  }

  return 1;
}
#endif


/*
** If pMem is an object with a valid string representation, this routine
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114

115
116
117
118
119
120
121
122
123
124
125
126
127


128
129
130
131
132
133
134
135
136
137
138
139
140


141





















142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
** min(n,32) bytes.
**
** If the bPreserve argument is true, then copy of the content of
** pMem->z into the new allocation.  pMem must be either a string or
** blob if bPreserve is true.  If bPreserve is false, any prior content
** in pMem->z is discarded.
*/
int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
  assert( sqlite3VdbeCheckMemInvariants(pMem) );
  assert( (pMem->flags&MEM_RowSet)==0 );

  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );


  if( pMem->zMalloc==0 || sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){

    if( n<32 ) n = 32;
    if( bPreserve && pMem->z==pMem->zMalloc ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      bPreserve = 0;
    }else{
      sqlite3DbFree(pMem->db, pMem->zMalloc);
      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    }
    if( pMem->zMalloc==0 ){
      VdbeMemReleaseExtern(pMem);
      pMem->z = 0;
      pMem->flags = MEM_Null;  
      return SQLITE_NOMEM;


    }
  }

  if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
  if( (pMem->flags&MEM_Dyn)!=0 ){
    assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
    pMem->xDel((void *)(pMem->z));
  }

  pMem->z = pMem->zMalloc;
  pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);


  pMem->xDel = 0;





















  return SQLITE_OK;
}

/*
** Make the given Mem object MEM_Dyn.  In other words, make it so
** that any TEXT or BLOB content is stored in memory obtained from
** malloc().  In this way, we know that the memory is safe to be
** overwritten or altered.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
  int f;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  ExpandBlob(pMem);
  f = pMem->flags;
  if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
    if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
      return SQLITE_NOMEM;
    }
    pMem->z[pMem->n] = 0;
    pMem->z[pMem->n+1] = 0;
    pMem->flags |= MEM_Term;
#ifdef SQLITE_DEBUG







|








>
|
>

|



|



|

|

>
>













>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|
|
<
<









|







106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182


183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
** min(n,32) bytes.
**
** If the bPreserve argument is true, then copy of the content of
** pMem->z into the new allocation.  pMem must be either a string or
** blob if bPreserve is true.  If bPreserve is false, any prior content
** in pMem->z is discarded.
*/
SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
  assert( sqlite3VdbeCheckMemInvariants(pMem) );
  assert( (pMem->flags&MEM_RowSet)==0 );

  /* If the bPreserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
  testcase( bPreserve && pMem->z==0 );

  assert( pMem->szMalloc==0
       || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
  if( pMem->szMalloc<n ){
    if( n<32 ) n = 32;
    if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      bPreserve = 0;
    }else{
      if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    }
    if( pMem->zMalloc==0 ){
      sqlite3VdbeMemSetNull(pMem);
      pMem->z = 0;
      pMem->szMalloc = 0;
      return SQLITE_NOMEM;
    }else{
      pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
    }
  }

  if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
  if( (pMem->flags&MEM_Dyn)!=0 ){
    assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
    pMem->xDel((void *)(pMem->z));
  }

  pMem->z = pMem->zMalloc;
  pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
  return SQLITE_OK;
}

/*
** Change the pMem->zMalloc allocation to be at least szNew bytes.
** If pMem->zMalloc already meets or exceeds the requested size, this
** routine is a no-op.
**
** Any prior string or blob content in the pMem object may be discarded.
** The pMem->xDel destructor is called, if it exists.  Though MEM_Str
** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
** values are preserved.
**
** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
** if unable to complete the resizing.
*/
int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
  assert( szNew>=0 );
  if( pMem->szMalloc<szNew ){
    return sqlite3VdbeMemGrow(pMem, szNew, 0);
  }
  assert( (pMem->flags & MEM_Dyn)==0 );
  pMem->z = pMem->zMalloc;
  pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
  return SQLITE_OK;
}

/*
** Change pMem so that its MEM_Str or MEM_Blob value is stored in
** MEM.zMalloc, where it can be safely written.


**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
  int f;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  ExpandBlob(pMem);
  f = pMem->flags;
  if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){
    if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
      return SQLITE_NOMEM;
    }
    pMem->z[pMem->n] = 0;
    pMem->z[pMem->n+1] = 0;
    pMem->flags |= MEM_Term;
#ifdef SQLITE_DEBUG
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
** Existing representations MEM_Int and MEM_Real are invalidated if
** bForce is true but are retained if bForce is false.
**
** A MEM_Null value will never be passed to this function. This function is
** used for converting values to text for returning to the user (i.e. via
** sqlite3_value_text()), or for ensuring that values to be used as btree
** keys are strings. In the former case a NULL pointer is returned the
** user and the later is an internal programming error.
*/
int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
  int fg = pMem->flags;
  const int nByte = 32;

  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( !(fg&MEM_Zero) );
  assert( !(fg&(MEM_Str|MEM_Blob)) );
  assert( fg&(MEM_Int|MEM_Real) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );


  if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
    return SQLITE_NOMEM;
  }

  /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
  ** string representation of the value. Then, if the required encoding
  ** is UTF-16le or UTF-16be do a translation.
  ** 
  ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
  */
  if( fg & MEM_Int ){
    sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
  }else{
    assert( fg & MEM_Real );
    sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
  }
  pMem->n = sqlite3Strlen30(pMem->z);
  pMem->enc = SQLITE_UTF8;
  pMem->flags |= MEM_Str|MEM_Term;
  if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
  sqlite3VdbeChangeEncoding(pMem, enc);
  return SQLITE_OK;







|













|













|







269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
** Existing representations MEM_Int and MEM_Real are invalidated if
** bForce is true but are retained if bForce is false.
**
** A MEM_Null value will never be passed to this function. This function is
** used for converting values to text for returning to the user (i.e. via
** sqlite3_value_text()), or for ensuring that values to be used as btree
** keys are strings. In the former case a NULL pointer is returned the
** user and the latter is an internal programming error.
*/
int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
  int fg = pMem->flags;
  const int nByte = 32;

  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( !(fg&MEM_Zero) );
  assert( !(fg&(MEM_Str|MEM_Blob)) );
  assert( fg&(MEM_Int|MEM_Real) );
  assert( (pMem->flags&MEM_RowSet)==0 );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );


  if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
    return SQLITE_NOMEM;
  }

  /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
  ** string representation of the value. Then, if the required encoding
  ** is UTF-16le or UTF-16be do a translation.
  ** 
  ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
  */
  if( fg & MEM_Int ){
    sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
  }else{
    assert( fg & MEM_Real );
    sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
  }
  pMem->n = sqlite3Strlen30(pMem->z);
  pMem->enc = SQLITE_UTF8;
  pMem->flags |= MEM_Str|MEM_Term;
  if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
  sqlite3VdbeChangeEncoding(pMem, enc);
  return SQLITE_OK;
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

317
318
319
320
321

322
323
324
325

326
327
328
329
330
331
332
333
334


335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360





361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    memset(&t, 0, sizeof(t));
    t.flags = MEM_Null;
    t.db = pMem->db;
    ctx.pOut = &t;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
    sqlite3DbFree(pMem->db, pMem->zMalloc);
    memcpy(pMem, &t, sizeof(t));
    rc = ctx.isError;
  }
  return rc;
}

/*
** If the memory cell contains a string value that must be freed by
** invoking an external callback, free it now. Calling this function
** does not free any Mem.zMalloc buffer.
**

** The VdbeMemReleaseExtern() macro invokes this routine if only if there
** is work for this routine to do.
*/
void sqlite3VdbeMemReleaseExternal(Mem *p){
  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );

  if( p->flags&MEM_Agg ){
    sqlite3VdbeMemFinalize(p, p->u.pDef);
    assert( (p->flags & MEM_Agg)==0 );
    sqlite3VdbeMemRelease(p);

  }else if( p->flags&MEM_Dyn ){
    assert( (p->flags&MEM_RowSet)==0 );
    assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
    p->xDel((void *)p->z);
    p->xDel = 0;
  }else if( p->flags&MEM_RowSet ){
    sqlite3RowSetClear(p->u.pRowSet);
  }else if( p->flags&MEM_Frame ){
    sqlite3VdbeMemSetNull(p);


  }

}

/*
** Release memory held by the Mem p, both external memory cleared
** by p->xDel and memory in p->zMalloc.
**
** This is a helper routine invoked by sqlite3VdbeMemRelease() in
** the uncommon case when there really is memory in p that is
** need of freeing.
*/
static SQLITE_NOINLINE void vdbeMemRelease(Mem *p){
  if( VdbeMemDynamic(p) ){
    sqlite3VdbeMemReleaseExternal(p);
  }
  if( p->zMalloc ){
    sqlite3DbFree(p->db, p->zMalloc);
    p->zMalloc = 0;
  }
  p->z = 0;
}

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.flags==MEM_Str).





*/
void sqlite3VdbeMemRelease(Mem *p){
  assert( sqlite3VdbeCheckMemInvariants(p) );
  if( VdbeMemDynamic(p) || p->zMalloc ){
    vdbeMemRelease(p);
  }else{
    p->z = 0;
  }
  assert( p->xDel==0 );
}

/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is out of range of a 64-bit signed integer then
** return the closest available 64-bit signed integer.
*/







|
|







|
|
|

>
|
|

|

>



|
>
|



<



|
>
>

>







|
|

|

|

|

|





|
|
|
>
>
>
>
>



|
|
<
<

<







330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408


409

410
411
412
413
414
415
416
    memset(&t, 0, sizeof(t));
    t.flags = MEM_Null;
    t.db = pMem->db;
    ctx.pOut = &t;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    assert( (pMem->flags & MEM_Dyn)==0 );
    if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
    memcpy(pMem, &t, sizeof(t));
    rc = ctx.isError;
  }
  return rc;
}

/*
** If the memory cell contains a value that must be freed by
** invoking the external callback in Mem.xDel, then this routine
** will free that value.  It also sets Mem.flags to MEM_Null.
**
** This is a helper routine for sqlite3VdbeMemSetNull() and
** for sqlite3VdbeMemRelease().  Use those other routines as the
** entry point for releasing Mem resources.
*/
static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
  assert( VdbeMemDynamic(p) );
  if( p->flags&MEM_Agg ){
    sqlite3VdbeMemFinalize(p, p->u.pDef);
    assert( (p->flags & MEM_Agg)==0 );
    testcase( p->flags & MEM_Dyn );
  }
  if( p->flags&MEM_Dyn ){
    assert( (p->flags&MEM_RowSet)==0 );
    assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
    p->xDel((void *)p->z);

  }else if( p->flags&MEM_RowSet ){
    sqlite3RowSetClear(p->u.pRowSet);
  }else if( p->flags&MEM_Frame ){
    VdbeFrame *pFrame = p->u.pFrame;
    pFrame->pParent = pFrame->v->pDelFrame;
    pFrame->v->pDelFrame = pFrame;
  }
  p->flags = MEM_Null;
}

/*
** Release memory held by the Mem p, both external memory cleared
** by p->xDel and memory in p->zMalloc.
**
** This is a helper routine invoked by sqlite3VdbeMemRelease() in
** the unusual case where there really is memory in p that needs
** to be freed.
*/
static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
  if( VdbeMemDynamic(p) ){
    vdbeMemClearExternAndSetNull(p);
  }
  if( p->szMalloc ){
    sqlite3DbFree(p->db, p->zMalloc);
    p->szMalloc = 0;
  }
  p->z = 0;
}

/*
** Release any memory resources held by the Mem.  Both the memory that is
** free by Mem.xDel and the Mem.zMalloc allocation are freed.
**
** Use this routine prior to clean up prior to abandoning a Mem, or to
** reset a Mem back to its minimum memory utilization.
**
** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
** prior to inserting new content into the Mem.
*/
void sqlite3VdbeMemRelease(Mem *p){
  assert( sqlite3VdbeCheckMemInvariants(p) );
  if( VdbeMemDynamic(p) || p->szMalloc ){
    vdbeMemClear(p);


  }

}

/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is out of range of a 64-bit signed integer then
** return the closest available 64-bit signed integer.
*/
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

/*
** Return some kind of integer value which is the best we can do
** at representing the value that *pMem describes as an integer.
** If pMem is an integer, then the value is exact.  If pMem is
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
** it into a integer and return that.  If pMem represents an
** an SQL-NULL value, return 0.
**
** If pMem represents a string value, its encoding might be changed.
*/
i64 sqlite3VdbeIntValue(Mem *pMem){
  int flags;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  flags = pMem->flags;
  if( flags & MEM_Int ){
    return pMem->u.i;
  }else if( flags & MEM_Real ){
    return doubleToInt64(pMem->r);
  }else if( flags & (MEM_Str|MEM_Blob) ){
    i64 value = 0;
    assert( pMem->z || pMem->n==0 );
    sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
    return value;
  }else{
    return 0;
  }
}

/*
** Return the best representation of pMem that we can get into a
** double.  If pMem is already a double or an integer, return its
** value.  If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
double sqlite3VdbeRealValue(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  if( pMem->flags & MEM_Real ){
    return pMem->r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->u.i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    double val = (double)0;
    sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
    return val;
  }else{
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    return (double)0;
  }
}

/*
** The MEM structure is already a MEM_Real.  Try to also make it a
** MEM_Int if we can.
*/
void sqlite3VdbeIntegerAffinity(Mem *pMem){

  assert( pMem->flags & MEM_Real );
  assert( (pMem->flags & MEM_RowSet)==0 );
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );

  pMem->u.i = doubleToInt64(pMem->r);

  /* Only mark the value as an integer if
  **
  **    (1) the round-trip conversion real->int->real is a no-op, and
  **    (2) The integer is neither the largest nor the smallest
  **        possible integer (ticket #3922)
  **
  ** The second and third terms in the following conditional enforces
  ** the second condition under the assumption that addition overflow causes
  ** values to wrap around.
  */
  if( pMem->r==(double)pMem->u.i
   && pMem->u.i>SMALLEST_INT64
   && pMem->u.i<LARGEST_INT64
  ){
    pMem->flags |= MEM_Int;
  }
}

/*
** Convert pMem to type integer.  Invalidate any prior representations.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){







|












|




















|


















>





|











<
|
|
<
|







441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

519
520

521
522
523
524
525
526
527
528

/*
** Return some kind of integer value which is the best we can do
** at representing the value that *pMem describes as an integer.
** If pMem is an integer, then the value is exact.  If pMem is
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
** it into an integer and return that.  If pMem represents an
** an SQL-NULL value, return 0.
**
** If pMem represents a string value, its encoding might be changed.
*/
i64 sqlite3VdbeIntValue(Mem *pMem){
  int flags;
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  flags = pMem->flags;
  if( flags & MEM_Int ){
    return pMem->u.i;
  }else if( flags & MEM_Real ){
    return doubleToInt64(pMem->u.r);
  }else if( flags & (MEM_Str|MEM_Blob) ){
    i64 value = 0;
    assert( pMem->z || pMem->n==0 );
    sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
    return value;
  }else{
    return 0;
  }
}

/*
** Return the best representation of pMem that we can get into a
** double.  If pMem is already a double or an integer, return its
** value.  If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
double sqlite3VdbeRealValue(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  if( pMem->flags & MEM_Real ){
    return pMem->u.r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->u.i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    double val = (double)0;
    sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
    return val;
  }else{
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    return (double)0;
  }
}

/*
** The MEM structure is already a MEM_Real.  Try to also make it a
** MEM_Int if we can.
*/
void sqlite3VdbeIntegerAffinity(Mem *pMem){
  i64 ix;
  assert( pMem->flags & MEM_Real );
  assert( (pMem->flags & MEM_RowSet)==0 );
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );

  ix = doubleToInt64(pMem->u.r);

  /* Only mark the value as an integer if
  **
  **    (1) the round-trip conversion real->int->real is a no-op, and
  **    (2) The integer is neither the largest nor the smallest
  **        possible integer (ticket #3922)
  **
  ** The second and third terms in the following conditional enforces
  ** the second condition under the assumption that addition overflow causes
  ** values to wrap around.
  */

  if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
    pMem->u.i = ix;

    MemSetTypeFlag(pMem, MEM_Int);
  }
}

/*
** Convert pMem to type integer.  Invalidate any prior representations.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
** Convert pMem so that it is of type MEM_Real.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemRealify(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );

  pMem->r = sqlite3VdbeRealValue(pMem);
  MemSetTypeFlag(pMem, MEM_Real);
  return SQLITE_OK;
}

/*
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
** Invalidate any prior representations.
**
** Every effort is made to force the conversion, even if the input
** is a string that does not look completely like a number.  Convert
** as much of the string as we can and ignore the rest.
*/
int sqlite3VdbeMemNumerify(Mem *pMem){
  if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
    assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
    assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
      MemSetTypeFlag(pMem, MEM_Int);
    }else{
      pMem->r = sqlite3VdbeRealValue(pMem);
      MemSetTypeFlag(pMem, MEM_Real);
      sqlite3VdbeIntegerAffinity(pMem);
    }
  }
  assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
  pMem->flags &= ~(MEM_Str|MEM_Blob);
  return SQLITE_OK;







|



















|







539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
** Convert pMem so that it is of type MEM_Real.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemRealify(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );

  pMem->u.r = sqlite3VdbeRealValue(pMem);
  MemSetTypeFlag(pMem, MEM_Real);
  return SQLITE_OK;
}

/*
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
** Invalidate any prior representations.
**
** Every effort is made to force the conversion, even if the input
** is a string that does not look completely like a number.  Convert
** as much of the string as we can and ignore the rest.
*/
int sqlite3VdbeMemNumerify(Mem *pMem){
  if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
    assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
    assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
      MemSetTypeFlag(pMem, MEM_Int);
    }else{
      pMem->u.r = sqlite3VdbeRealValue(pMem);
      MemSetTypeFlag(pMem, MEM_Real);
      sqlite3VdbeIntegerAffinity(pMem);
    }
  }
  assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
  pMem->flags &= ~(MEM_Str|MEM_Blob);
  return SQLITE_OK;
574
575
576
577
578
579
580












581
582
583









584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
      assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
      pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
      break;
    }
  }
}














/*
** Delete any previous value and set the value stored in *pMem to NULL.









*/
void sqlite3VdbeMemSetNull(Mem *pMem){
  if( pMem->flags & MEM_Frame ){
    VdbeFrame *pFrame = pMem->u.pFrame;
    pFrame->pParent = pFrame->v->pDelFrame;
    pFrame->v->pDelFrame = pFrame;
  }
  if( pMem->flags & MEM_RowSet ){
    sqlite3RowSetClear(pMem->u.pRowSet);
  }
  MemSetTypeFlag(pMem, MEM_Null);
}
void sqlite3ValueSetNull(sqlite3_value *p){
  sqlite3VdbeMemSetNull((Mem*)p); 
}

/*
** Delete any previous value and set the value to be a BLOB of length
** n containing all zeros.
*/
void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Blob|MEM_Zero;
  pMem->n = 0;
  if( n<0 ) n = 0;
  pMem->u.nZero = n;
  pMem->enc = SQLITE_UTF8;

#ifdef SQLITE_OMIT_INCRBLOB
  sqlite3VdbeMemGrow(pMem, n, 0);
  if( pMem->z ){
    pMem->n = n;
    memset(pMem->z, 0, n);
  }
#endif
}

/*
** The pMem is known to contain content that needs to be destroyed prior
** to a value change.  So invoke the destructor, then set the value to
** a 64-bit integer.
*/
static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
  sqlite3VdbeMemReleaseExternal(pMem);
  pMem->u.i = val;
  pMem->flags = MEM_Int;
}

/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.







>
>
>
>
>
>
>
>
>
>
>
>



>
>
>
>
>
>
>
>
>


|
|
<
<
|
|
<

<
















<
<
<
|
<
<
<
<








|







613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647


648
649

650

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666



667




668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
      assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
      pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
      break;
    }
  }
}

/*
** Initialize bulk memory to be a consistent Mem object.
**
** The minimum amount of initialization feasible is performed.
*/
void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
  assert( (flags & ~MEM_TypeMask)==0 );
  pMem->flags = flags;
  pMem->db = db;
  pMem->szMalloc = 0;
}


/*
** Delete any previous value and set the value stored in *pMem to NULL.
**
** This routine calls the Mem.xDel destructor to dispose of values that
** require the destructor.  But it preserves the Mem.zMalloc memory allocation.
** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
** routine to invoke the destructor and deallocates Mem.zMalloc.
**
** Use this routine to reset the Mem prior to insert a new value.
**
** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
*/
void sqlite3VdbeMemSetNull(Mem *pMem){
  if( VdbeMemDynamic(pMem) ){
    vdbeMemClearExternAndSetNull(pMem);


  }else{
    pMem->flags = MEM_Null;

  }

}
void sqlite3ValueSetNull(sqlite3_value *p){
  sqlite3VdbeMemSetNull((Mem*)p); 
}

/*
** Delete any previous value and set the value to be a BLOB of length
** n containing all zeros.
*/
void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Blob|MEM_Zero;
  pMem->n = 0;
  if( n<0 ) n = 0;
  pMem->u.nZero = n;
  pMem->enc = SQLITE_UTF8;



  pMem->z = 0;




}

/*
** The pMem is known to contain content that needs to be destroyed prior
** to a value change.  So invoke the destructor, then set the value to
** a 64-bit integer.
*/
static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
  sqlite3VdbeMemSetNull(pMem);
  pMem->u.i = val;
  pMem->flags = MEM_Int;
}

/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

673
674

675
676
677
678
679
680
681
682
683

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
  if( sqlite3IsNaN(val) ){
    sqlite3VdbeMemSetNull(pMem);
  }else{
    sqlite3VdbeMemRelease(pMem);
    pMem->r = val;
    pMem->flags = MEM_Real;
  }
}
#endif

/*
** Delete any previous value and set the value of pMem to be an
** empty boolean index.
*/
void sqlite3VdbeMemSetRowSet(Mem *pMem){
  sqlite3 *db = pMem->db;
  assert( db!=0 );
  assert( (pMem->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemRelease(pMem);
  pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
  if( db->mallocFailed ){
    pMem->flags = MEM_Null;

  }else{
    assert( pMem->zMalloc );

    pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, 
                                       sqlite3DbMallocSize(db, pMem->zMalloc));
    assert( pMem->u.pRowSet!=0 );
    pMem->flags = MEM_RowSet;
  }
}

/*
** Return true if the Mem object contains a TEXT or BLOB that is







<
|
<
|
|

















>


>
|
<







693
694
695
696
697
698
699

700

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

725
726
727
728
729
730
731

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){

  sqlite3VdbeMemSetNull(pMem);

  if( !sqlite3IsNaN(val) ){
    pMem->u.r = val;
    pMem->flags = MEM_Real;
  }
}
#endif

/*
** Delete any previous value and set the value of pMem to be an
** empty boolean index.
*/
void sqlite3VdbeMemSetRowSet(Mem *pMem){
  sqlite3 *db = pMem->db;
  assert( db!=0 );
  assert( (pMem->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemRelease(pMem);
  pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
  if( db->mallocFailed ){
    pMem->flags = MEM_Null;
    pMem->szMalloc = 0;
  }else{
    assert( pMem->zMalloc );
    pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
    pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);

    assert( pMem->u.pRowSet!=0 );
    pMem->flags = MEM_RowSet;
  }
}

/*
** Return true if the Mem object contains a TEXT or BLOB that is
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
    return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
  }
  return 0; 
}

#ifdef SQLITE_DEBUG
/*
** This routine prepares a memory cell for modication by breaking
** its link to a shallow copy and by marking any current shallow
** copies of this cell as invalid.
**
** This is used for testing and debugging only - to make sure shallow
** copies are not misused.
*/
void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){







|







741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
  }
  return 0; 
}

#ifdef SQLITE_DEBUG
/*
** This routine prepares a memory cell for modification by breaking
** its link to a shallow copy and by marking any current shallow
** copies of this cell as invalid.
**
** This is used for testing and debugging only - to make sure shallow
** copies are not misused.
*/
void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
726
727
728
729
730
731
732

733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749

750
751
752
753
754
755
756
757
758
759
760
761
762
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are freed.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
  assert( (pFrom->flags & MEM_RowSet)==0 );

  VdbeMemReleaseExtern(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->xDel = 0;
  if( (pFrom->flags&MEM_Static)==0 ){
    pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
    assert( srcType==MEM_Ephem || srcType==MEM_Static );
    pTo->flags |= srcType;
  }
}

/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
  int rc = SQLITE_OK;


  assert( (pFrom->flags & MEM_RowSet)==0 );
  VdbeMemReleaseExtern(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->flags &= ~MEM_Dyn;
  pTo->xDel = 0;

  if( pTo->flags&(MEM_Str|MEM_Blob) ){
    if( 0==(pFrom->flags&MEM_Static) ){
      pTo->flags |= MEM_Ephem;
      rc = sqlite3VdbeMemMakeWriteable(pTo);
    }
  }








>
|

<














>

|


<
<







774
775
776
777
778
779
780
781
782
783

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802


803
804
805
806
807
808
809
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are freed.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
  assert( (pFrom->flags & MEM_RowSet)==0 );
  assert( pTo->db==pFrom->db );
  if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);

  if( (pFrom->flags&MEM_Static)==0 ){
    pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
    assert( srcType==MEM_Ephem || srcType==MEM_Static );
    pTo->flags |= srcType;
  }
}

/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
  int rc = SQLITE_OK;

  assert( pTo->db==pFrom->db );
  assert( (pFrom->flags & MEM_RowSet)==0 );
  if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->flags &= ~MEM_Dyn;


  if( pTo->flags&(MEM_Str|MEM_Blob) ){
    if( 0==(pFrom->flags&MEM_Static) ){
      pTo->flags |= MEM_Ephem;
      rc = sqlite3VdbeMemMakeWriteable(pTo);
    }
  }

773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
  assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
  assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
  assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );

  sqlite3VdbeMemRelease(pTo);
  memcpy(pTo, pFrom, sizeof(Mem));
  pFrom->flags = MEM_Null;
  pFrom->xDel = 0;
  pFrom->zMalloc = 0;
}

/*
** Change the value of a Mem to be a string or a BLOB.
**
** The memory management strategy depends on the value of the xDel
** parameter. If the value passed is SQLITE_TRANSIENT, then the 







<
|







820
821
822
823
824
825
826

827
828
829
830
831
832
833
834
  assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
  assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
  assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );

  sqlite3VdbeMemRelease(pTo);
  memcpy(pTo, pFrom, sizeof(Mem));
  pFrom->flags = MEM_Null;

  pFrom->szMalloc = 0;
}

/*
** Change the value of a Mem to be a string or a BLOB.
**
** The memory management strategy depends on the value of the xDel
** parameter. If the value passed is SQLITE_TRANSIENT, then the 
821
822
823
824
825
826
827

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
  }else{
    iLimit = SQLITE_MAX_LENGTH;
  }
  flags = (enc==0?MEM_Blob:MEM_Str);
  if( nByte<0 ){
    assert( enc!=0 );
    if( enc==SQLITE_UTF8 ){

      for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
    }else{
      for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
    }
    flags |= MEM_Term;
  }

  /* The following block sets the new values of Mem.z and Mem.xDel. It
  ** also sets a flag in local variable "flags" to indicate the memory
  ** management (one of MEM_Dyn or MEM_Static).
  */
  if( xDel==SQLITE_TRANSIENT ){
    int nAlloc = nByte;
    if( flags&MEM_Term ){
      nAlloc += (enc==SQLITE_UTF8?1:2);
    }
    if( nByte>iLimit ){
      return SQLITE_TOOBIG;
    }
    if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
      return SQLITE_NOMEM;
    }
    memcpy(pMem->z, z, nAlloc);
  }else if( xDel==SQLITE_DYNAMIC ){
    sqlite3VdbeMemRelease(pMem);
    pMem->zMalloc = pMem->z = (char *)z;
    pMem->xDel = 0;
  }else{
    sqlite3VdbeMemRelease(pMem);
    pMem->z = (char *)z;
    pMem->xDel = xDel;
    flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
  }








>
|


















|






|







867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
  }else{
    iLimit = SQLITE_MAX_LENGTH;
  }
  flags = (enc==0?MEM_Blob:MEM_Str);
  if( nByte<0 ){
    assert( enc!=0 );
    if( enc==SQLITE_UTF8 ){
      nByte = sqlite3Strlen30(z);
      if( nByte>iLimit ) nByte = iLimit+1;
    }else{
      for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
    }
    flags |= MEM_Term;
  }

  /* The following block sets the new values of Mem.z and Mem.xDel. It
  ** also sets a flag in local variable "flags" to indicate the memory
  ** management (one of MEM_Dyn or MEM_Static).
  */
  if( xDel==SQLITE_TRANSIENT ){
    int nAlloc = nByte;
    if( flags&MEM_Term ){
      nAlloc += (enc==SQLITE_UTF8?1:2);
    }
    if( nByte>iLimit ){
      return SQLITE_TOOBIG;
    }
    if( sqlite3VdbeMemClearAndResize(pMem, nAlloc) ){
      return SQLITE_NOMEM;
    }
    memcpy(pMem->z, z, nAlloc);
  }else if( xDel==SQLITE_DYNAMIC ){
    sqlite3VdbeMemRelease(pMem);
    pMem->zMalloc = pMem->z = (char *)z;
    pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
  }else{
    sqlite3VdbeMemRelease(pMem);
    pMem->z = (char *)z;
    pMem->xDel = xDel;
    flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
  }

879
880
881
882
883
884
885
886



887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903

904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919


920
921
922
923
924
925
926
927
928
929
930
931
932

933
934
935
936
937
938
939
/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data.  The result is written
** into the pMem element.
**
** The pMem structure is assumed to be uninitialized.  Any prior content



** is overwritten without being freed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite3VdbeMemFromBtree(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  u32 offset,       /* Offset from the start of data to return bytes from. */
  u32 amt,          /* Number of bytes to return. */
  int key,          /* If true, retrieve from the btree key, not data. */
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;        /* Data from the btree layer */
  u32 available = 0;  /* Number of bytes available on the local btree page */
  int rc = SQLITE_OK; /* Return code */

  assert( sqlite3BtreeCursorIsValid(pCur) );


  /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 
  ** that both the BtShared and database handle mutexes are held. */
  assert( (pMem->flags & MEM_RowSet)==0 );
  if( key ){
    zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
  }else{
    zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
  }
  assert( zData!=0 );

  if( offset+amt<=available ){
    sqlite3VdbeMemRelease(pMem);
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
    pMem->n = (int)amt;


  }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
    if( key ){
      rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
    }else{
      rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
    }
    if( rc==SQLITE_OK ){
      pMem->z[amt] = 0;
      pMem->z[amt+1] = 0;
      pMem->flags = MEM_Blob|MEM_Term;
      pMem->n = (int)amt;
    }else{
      sqlite3VdbeMemRelease(pMem);

    }
  }

  return rc;
}

/*







|
>
>
>
|
















>












<



>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
>







926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data.  The result is written
** into the pMem element.
**
** The pMem object must have been initialized.  This routine will use
** pMem->zMalloc to hold the content from the btree, if possible.  New
** pMem->zMalloc space will be allocated if necessary.  The calling routine
** is responsible for making sure that the pMem object is eventually
** destroyed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite3VdbeMemFromBtree(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  u32 offset,       /* Offset from the start of data to return bytes from. */
  u32 amt,          /* Number of bytes to return. */
  int key,          /* If true, retrieve from the btree key, not data. */
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;        /* Data from the btree layer */
  u32 available = 0;  /* Number of bytes available on the local btree page */
  int rc = SQLITE_OK; /* Return code */

  assert( sqlite3BtreeCursorIsValid(pCur) );
  assert( !VdbeMemDynamic(pMem) );

  /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 
  ** that both the BtShared and database handle mutexes are held. */
  assert( (pMem->flags & MEM_RowSet)==0 );
  if( key ){
    zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
  }else{
    zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
  }
  assert( zData!=0 );

  if( offset+amt<=available ){

    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
    pMem->n = (int)amt;
  }else{
    pMem->flags = MEM_Null;
    if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){
      if( key ){
        rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
      }else{
        rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
      }
      if( rc==SQLITE_OK ){
        pMem->z[amt] = 0;
        pMem->z[amt+1] = 0;
        pMem->flags = MEM_Blob|MEM_Term;
        pMem->n = (int)amt;
      }else{
        sqlite3VdbeMemRelease(pMem);
      }
    }
  }

  return rc;
}

/*
1149
1150
1151
1152
1153
1154
1155


1156
1157
1158
1159

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
    }
  }else if( op==TK_UMINUS ) {
    /* This branch happens for multiple negative signs.  Ex: -(-5) */
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) 
     && pVal!=0
    ){
      sqlite3VdbeMemNumerify(pVal);


      if( pVal->u.i==SMALLEST_INT64 ){
        pVal->flags &= ~MEM_Int;
        pVal->flags |= MEM_Real;
        pVal->r = (double)SMALLEST_INT64;

      }else{
        pVal->u.i = -pVal->u.i;
      }
      pVal->r = -pVal->r;
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_NULL ){
    pVal = valueNew(db, pCtx);
    if( pVal==0 ) goto no_mem;
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL







>
>
|
<
<
|
>



<







1202
1203
1204
1205
1206
1207
1208
1209
1210
1211


1212
1213
1214
1215
1216

1217
1218
1219
1220
1221
1222
1223
    }
  }else if( op==TK_UMINUS ) {
    /* This branch happens for multiple negative signs.  Ex: -(-5) */
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) 
     && pVal!=0
    ){
      sqlite3VdbeMemNumerify(pVal);
      if( pVal->flags & MEM_Real ){
        pVal->u.r = -pVal->u.r;
      }else if( pVal->u.i==SMALLEST_INT64 ){


        pVal->u.r = -(double)SMALLEST_INT64;
        MemSetTypeFlag(pVal, MEM_Real);
      }else{
        pVal->u.i = -pVal->u.i;
      }

      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_NULL ){
    pVal = valueNew(db, pCtx);
    if( pVal==0 ) goto no_mem;
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
  if( pRec ){
    int i;
    int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      sqlite3DbFree(db, aMem[i].zMalloc);
    }
    sqlite3KeyInfoUnref(pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */








|







1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
  if( pRec ){
    int i;
    int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
    Mem *aMem = pRec->aMem;
    sqlite3 *db = aMem[0].db;
    for(i=0; i<nCol; i++){
      if( aMem[i].szMalloc ) sqlite3DbFree(db, aMem[i].zMalloc);
    }
    sqlite3KeyInfoUnref(pRec->pKeyInfo);
    sqlite3DbFree(db, pRec);
  }
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */

Changes to src/vdbesort.c.
598
599
600
601
602
603
604


605
606

607
608
609
610
611
612
613
**
** Or, if an error occurs, return an SQLite error code. The final value of
** *pp is undefined in this case.
*/
static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){
  int rc = SQLITE_OK;
  if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){


    rc = sqlite3OsFetch(pFile->pFd, 0, (int)pFile->iEof, (void**)pp);
    testcase( rc!=SQLITE_OK );

  }
  return rc;
}

/*
** Attach PmaReader pReadr to file pFile (if it is not already attached to
** that file) and seek it to offset iOff within the file.  Return SQLITE_OK 







>
>
|
|
>







598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
**
** Or, if an error occurs, return an SQLite error code. The final value of
** *pp is undefined in this case.
*/
static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){
  int rc = SQLITE_OK;
  if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){
    sqlite3_file *pFd = pFile->pFd;
    if( pFd->pMethods->iVersion>=3 ){
      rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp);
      testcase( rc!=SQLITE_OK );
    }
  }
  return rc;
}

/*
** Attach PmaReader pReadr to file pFile (if it is not already attached to
** that file) and seek it to offset iOff within the file.  Return SQLITE_OK 
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
  const void *pKey1, int nKey1,   /* Left side of comparison */
  const void *pKey2, int nKey2    /* Right side of comparison */
){
  UnpackedRecord *r2 = pTask->pUnpacked;
  if( pKey2 ){
    sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
  }
  return sqlite3VdbeRecordCompare(nKey1, pKey1, r2, 0);
}

/*
** Initialize the temporary index cursor just opened as a sorter cursor.
**
** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nField)
** to determine the number of fields that should be compared from the







|







757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
  const void *pKey1, int nKey1,   /* Left side of comparison */
  const void *pKey2, int nKey2    /* Right side of comparison */
){
  UnpackedRecord *r2 = pTask->pUnpacked;
  if( pKey2 ){
    sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
  }
  return sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
}

/*
** Initialize the temporary index cursor just opened as a sorter cursor.
**
** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nField)
** to determine the number of fields that should be compared from the
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
** attempts to extend the file to nByte bytes in size and to ensure that
** the VFS has memory mapped it.
**
** Whether or not the file does end up memory mapped of course depends on
** the specific VFS implementation.
*/
static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
  if( nByte<=(i64)(db->nMaxSorterMmap) ){
    int rc = sqlite3OsTruncate(pFd, nByte);
    if( rc==SQLITE_OK ){
      void *p = 0;
      sqlite3OsFetch(pFd, 0, (int)nByte, &p);
      sqlite3OsUnfetch(pFd, 0, p);
    }
  }







|







1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
** attempts to extend the file to nByte bytes in size and to ensure that
** the VFS has memory mapped it.
**
** Whether or not the file does end up memory mapped of course depends on
** the specific VFS implementation.
*/
static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
  if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){
    int rc = sqlite3OsTruncate(pFd, nByte);
    if( rc==SQLITE_OK ){
      void *p = 0;
      sqlite3OsFetch(pFd, 0, (int)nByte, &p);
      sqlite3OsUnfetch(pFd, 0, p);
    }
  }
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
               );
  pReader->pIncr->pTask->bDone = 1;
  return pRet;
}

/*
** Use a background thread to invoke vdbePmaReaderIncrMergeInit(INCRINIT_TASK) 
** on the the PmaReader object passed as the first argument.
**
** This call will initialize the various fields of the pReadr->pIncr 
** structure and, if it is a multi-threaded IncrMerger, launch a 
** background thread to populate aFile[1].
*/
static int vdbePmaReaderBgIncrInit(PmaReader *pReadr){
  void *pCtx = (void*)pReadr;







|







2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
               );
  pReader->pIncr->pTask->bDone = 1;
  return pRet;
}

/*
** Use a background thread to invoke vdbePmaReaderIncrMergeInit(INCRINIT_TASK) 
** on the PmaReader object passed as the first argument.
**
** This call will initialize the various fields of the pReadr->pIncr 
** structure and, if it is a multi-threaded IncrMerger, launch a 
** background thread to populate aFile[1].
*/
static int vdbePmaReaderBgIncrInit(PmaReader *pReadr){
  void *pCtx = (void*)pReadr;
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
** Copy the current sorter key into the memory cell pOut.
*/
int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to copy into pOut */

  pKey = vdbeSorterRowkey(pSorter, &nKey);
  if( sqlite3VdbeMemGrow(pOut, nKey, 0) ){
    return SQLITE_NOMEM;
  }
  pOut->n = nKey;
  MemSetTypeFlag(pOut, MEM_Blob);
  memcpy(pOut->z, pKey, nKey);

  return SQLITE_OK;







|







2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
** Copy the current sorter key into the memory cell pOut.
*/
int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to copy into pOut */

  pKey = vdbeSorterRowkey(pSorter, &nKey);
  if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){
    return SQLITE_NOMEM;
  }
  pOut->n = nKey;
  MemSetTypeFlag(pOut, MEM_Blob);
  memcpy(pOut->z, pKey, nKey);

  return SQLITE_OK;
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
  for(i=0; i<nKeyCol; i++){
    if( r2->aMem[i].flags & MEM_Null ){
      *pRes = -1;
      return SQLITE_OK;
    }
  }

  *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2, 0);
  return SQLITE_OK;
}







|


2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
  for(i=0; i<nKeyCol; i++){
    if( r2->aMem[i].flags & MEM_Null ){
      *pRes = -1;
      return SQLITE_OK;
    }
  }

  *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2);
  return SQLITE_OK;
}
Changes to src/vdbetrace.c.
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
**
** The calling function is responsible for making sure the memory returned
** is eventually freed.
**
** ALGORITHM:  Scan the input string looking for host parameters in any of
** these forms:  ?, ?N, $A, @A, :A.  Take care to avoid text within
** string literals, quoted identifier names, and comments.  For text forms,
** the host parameter index is found by scanning the perpared
** statement for the corresponding OP_Variable opcode.  Once the host
** parameter index is known, locate the value in p->aVar[].  Then render
** the value as a literal in place of the host parameter name.
*/
char *sqlite3VdbeExpandSql(
  Vdbe *p,                 /* The prepared statement being evaluated */
  const char *zRawSql      /* Raw text of the SQL statement */







|







60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
**
** The calling function is responsible for making sure the memory returned
** is eventually freed.
**
** ALGORITHM:  Scan the input string looking for host parameters in any of
** these forms:  ?, ?N, $A, @A, :A.  Take care to avoid text within
** string literals, quoted identifier names, and comments.  For text forms,
** the host parameter index is found by scanning the prepared
** statement for the corresponding OP_Variable opcode.  Once the host
** parameter index is known, locate the value in p->aVar[].  Then render
** the value as a literal in place of the host parameter name.
*/
char *sqlite3VdbeExpandSql(
  Vdbe *p,                 /* The prepared statement being evaluated */
  const char *zRawSql      /* Raw text of the SQL statement */
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
      assert( idx>0 && idx<=p->nVar );
      pVar = &p->aVar[idx-1];
      if( pVar->flags & MEM_Null ){
        sqlite3StrAccumAppend(&out, "NULL", 4);
      }else if( pVar->flags & MEM_Int ){
        sqlite3XPrintf(&out, 0, "%lld", pVar->u.i);
      }else if( pVar->flags & MEM_Real ){
        sqlite3XPrintf(&out, 0, "%!.15g", pVar->r);
      }else if( pVar->flags & MEM_Str ){
        int nOut;  /* Number of bytes of the string text to include in output */
#ifndef SQLITE_OMIT_UTF16
        u8 enc = ENC(db);
        Mem utf8;
        if( enc!=SQLITE_UTF8 ){
          memset(&utf8, 0, sizeof(utf8));







|







123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
      assert( idx>0 && idx<=p->nVar );
      pVar = &p->aVar[idx-1];
      if( pVar->flags & MEM_Null ){
        sqlite3StrAccumAppend(&out, "NULL", 4);
      }else if( pVar->flags & MEM_Int ){
        sqlite3XPrintf(&out, 0, "%lld", pVar->u.i);
      }else if( pVar->flags & MEM_Real ){
        sqlite3XPrintf(&out, 0, "%!.15g", pVar->u.r);
      }else if( pVar->flags & MEM_Str ){
        int nOut;  /* Number of bytes of the string text to include in output */
#ifndef SQLITE_OMIT_UTF16
        u8 enc = ENC(db);
        Mem utf8;
        if( enc!=SQLITE_UTF8 ){
          memset(&utf8, 0, sizeof(utf8));
Changes to src/wal.c.
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
  return (volatile WalIndexHdr*)pWal->apWiData[0];
}

/*
** The argument to this macro must be of type u32. On a little-endian
** architecture, it returns the u32 value that results from interpreting
** the 4 bytes as a big-endian value. On a big-endian architecture, it
** returns the value that would be produced by intepreting the 4 bytes
** of the input value as a little-endian integer.
*/
#define BYTESWAP32(x) ( \
    (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
  + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
)








|







570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
  return (volatile WalIndexHdr*)pWal->apWiData[0];
}

/*
** The argument to this macro must be of type u32. On a little-endian
** architecture, it returns the u32 value that results from interpreting
** the 4 bytes as a big-endian value. On a big-endian architecture, it
** returns the value that would be produced by interpreting the 4 bytes
** of the input value as a little-endian integer.
*/
#define BYTESWAP32(x) ( \
    (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
  + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
)

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
    int idx;                      /* Value to write to hash-table slot */
    int nCollide;                 /* Number of hash collisions */

    idx = iFrame - iZero;
    assert( idx <= HASHTABLE_NSLOT/2 + 1 );
    
    /* If this is the first entry to be added to this hash-table, zero the
    ** entire hash table and aPgno[] array before proceding. 
    */
    if( idx==1 ){
      int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
      memset((void*)&aPgno[1], 0, nByte);
    }

    /* If the entry in aPgno[] is already set, then the previous writer







|







984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
    int idx;                      /* Value to write to hash-table slot */
    int nCollide;                 /* Number of hash collisions */

    idx = iFrame - iZero;
    assert( idx <= HASHTABLE_NSLOT/2 + 1 );
    
    /* If this is the first entry to be added to this hash-table, zero the
    ** entire hash table and aPgno[] array before proceeding. 
    */
    if( idx==1 ){
      int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
      memset((void*)&aPgno[1], 0, nByte);
    }

    /* If the entry in aPgno[] is already set, then the previous writer
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
**
** Fsync is also called on the database file if (and only if) the entire
** WAL content is copied into the database file.  This second fsync makes
** it safe to delete the WAL since the new content will persist in the
** database file.
**
** This routine uses and updates the nBackfill field of the wal-index header.
** This is the only routine tha will increase the value of nBackfill.  
** (A WAL reset or recovery will revert nBackfill to zero, but not increase
** its value.)
**
** The caller must be holding sufficient locks to ensure that no other
** checkpoint is running (in any other thread or process) at the same
** time.
*/







|







1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
**
** Fsync is also called on the database file if (and only if) the entire
** WAL content is copied into the database file.  This second fsync makes
** it safe to delete the WAL since the new content will persist in the
** database file.
**
** This routine uses and updates the nBackfill field of the wal-index header.
** This is the only routine that will increase the value of nBackfill.  
** (A WAL reset or recovery will revert nBackfill to zero, but not increase
** its value.)
**
** The caller must be holding sufficient locks to ensure that no other
** checkpoint is running (in any other thread or process) at the same
** time.
*/
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968

/*
** Read the wal-index header from the wal-index and into pWal->hdr.
** If the wal-header appears to be corrupt, try to reconstruct the
** wal-index from the WAL before returning.
**
** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
** changed by this opertion.  If pWal->hdr is unchanged, set *pChanged
** to 0.
**
** If the wal-index header is successfully read, return SQLITE_OK. 
** Otherwise an SQLite error code.
*/
static int walIndexReadHdr(Wal *pWal, int *pChanged){
  int rc;                         /* Return code */







|







1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968

/*
** Read the wal-index header from the wal-index and into pWal->hdr.
** If the wal-header appears to be corrupt, try to reconstruct the
** wal-index from the WAL before returning.
**
** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
** to 0.
**
** If the wal-index header is successfully read, return SQLITE_OK. 
** Otherwise an SQLite error code.
*/
static int walIndexReadHdr(Wal *pWal, int *pChanged){
  int rc;                         /* Return code */
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
    walShmBarrier(pWal);
    if( rc==SQLITE_OK ){
      if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
        /* It is not safe to allow the reader to continue here if frames
        ** may have been appended to the log before READ_LOCK(0) was obtained.
        ** When holding READ_LOCK(0), the reader ignores the entire log file,
        ** which implies that the database file contains a trustworthy
        ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
        ** happening, this is usually correct.
        **
        ** However, if frames have been appended to the log (or if the log 
        ** is wrapped and written for that matter) before the READ_LOCK(0)
        ** is obtained, that is not necessarily true. A checkpointer may
        ** have started to backfill the appended frames but crashed before
        ** it finished. Leaving a corrupt image in the database file.







|







2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
    walShmBarrier(pWal);
    if( rc==SQLITE_OK ){
      if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
        /* It is not safe to allow the reader to continue here if frames
        ** may have been appended to the log before READ_LOCK(0) was obtained.
        ** When holding READ_LOCK(0), the reader ignores the entire log file,
        ** which implies that the database file contains a trustworthy
        ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
        ** happening, this is usually correct.
        **
        ** However, if frames have been appended to the log (or if the log 
        ** is wrapped and written for that matter) before the READ_LOCK(0)
        ** is obtained, that is not necessarily true. A checkpointer may
        ** have started to backfill the appended frames but crashed before
        ** it finished. Leaving a corrupt image in the database file.
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
  }

  /* If this is the end of a transaction, then we might need to pad
  ** the transaction and/or sync the WAL file.
  **
  ** Padding and syncing only occur if this set of frames complete a
  ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
  ** or synchonous==OFF, then no padding or syncing are needed.
  **
  ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
  ** needed and only the sync is done.  If padding is needed, then the
  ** final frame is repeated (with its commit mark) until the next sector
  ** boundary is crossed.  Only the part of the WAL prior to the last
  ** sector boundary is synced; the part of the last frame that extends
  ** past the sector boundary is written after the sync.







|







2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
  }

  /* If this is the end of a transaction, then we might need to pad
  ** the transaction and/or sync the WAL file.
  **
  ** Padding and syncing only occur if this set of frames complete a
  ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
  ** or synchronous==OFF, then no padding or syncing are needed.
  **
  ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
  ** needed and only the sync is done.  If padding is needed, then the
  ** final frame is repeated (with its commit mark) until the next sector
  ** boundary is crossed.  Only the part of the WAL prior to the last
  ** sector boundary is synced; the part of the last frame that extends
  ** past the sector boundary is written after the sync.
Changes to src/walker.c.
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include "sqliteInt.h"
#include <stdlib.h>
#include <string.h>


/*
** Walk an expression tree.  Invoke the callback once for each node
** of the expression, while decending.  (In other words, the callback
** is invoked before visiting children.)
**
** The return value from the callback should be one of the WRC_*
** constants to specify how to proceed with the walk.
**
**    WRC_Continue      Continue descending down the tree.
**







|







15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include "sqliteInt.h"
#include <stdlib.h>
#include <string.h>


/*
** Walk an expression tree.  Invoke the callback once for each node
** of the expression, while descending.  (In other words, the callback
** is invoked before visiting children.)
**
** The return value from the callback should be one of the WRC_*
** constants to specify how to proceed with the walk.
**
**    WRC_Continue      Continue descending down the tree.
**
Changes to src/where.c.
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        Vdbe *v = pParse->pVdbe;
        sqlite3VdbeSetVarmask(v, pRight->iColumn);
        if( *pisComplete && pRight->u.zToken[1] ){
          /* If the rhs of the LIKE expression is a variable, and the current
          ** value of the variable means there is no need to invoke the LIKE
          ** function, then no OP_Variable will be added to the program.
          ** This causes problems for the sqlite3_bind_parameter_name()
          ** API. To workaround them, add a dummy OP_Variable here.
          */ 
          int r1 = sqlite3GetTempReg(pParse);
          sqlite3ExprCodeTarget(pParse, pRight, r1);
          sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
          sqlite3ReleaseTempReg(pParse, r1);
        }
      }







|







697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        Vdbe *v = pParse->pVdbe;
        sqlite3VdbeSetVarmask(v, pRight->iColumn);
        if( *pisComplete && pRight->u.zToken[1] ){
          /* If the rhs of the LIKE expression is a variable, and the current
          ** value of the variable means there is no need to invoke the LIKE
          ** function, then no OP_Variable will be added to the program.
          ** This causes problems for the sqlite3_bind_parameter_name()
          ** API. To work around them, add a dummy OP_Variable here.
          */ 
          int r1 = sqlite3GetTempReg(pParse);
          sqlite3ExprCodeTarget(pParse, pRight, r1);
          sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
          sqlite3ReleaseTempReg(pParse, r1);
        }
      }
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
** From another point of view, "indexable" means that the subterm could
** potentially be used with an index if an appropriate index exists.
** This analysis does not consider whether or not the index exists; that
** is decided elsewhere.  This analysis only looks at whether subterms
** appropriate for indexing exist.
**
** All examples A through E above satisfy case 2.  But if a term
** also statisfies case 1 (such as B) we know that the optimizer will
** always prefer case 1, so in that case we pretend that case 2 is not
** satisfied.
**
** It might be the case that multiple tables are indexable.  For example,
** (E) above is indexable on tables P, Q, and R.
**
** Terms that satisfy case 2 are candidates for lookup by using







|







817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
** From another point of view, "indexable" means that the subterm could
** potentially be used with an index if an appropriate index exists.
** This analysis does not consider whether or not the index exists; that
** is decided elsewhere.  This analysis only looks at whether subterms
** appropriate for indexing exist.
**
** All examples A through E above satisfy case 2.  But if a term
** also satisfies case 1 (such as B) we know that the optimizer will
** always prefer case 1, so in that case we pretend that case 2 is not
** satisfied.
**
** It might be the case that multiple tables are indexable.  For example,
** (E) above is indexable on tables P, Q, and R.
**
** Terms that satisfy case 2 are candidates for lookup by using
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }
        if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){
          /* This term must be of the form t1.a==t2.b where t2 is in the
          ** chngToIN set but t1 is not.  This term will be either preceeded
          ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term 
          ** and use its inversion. */
          testcase( pOrTerm->wtFlags & TERM_COPIED );
          testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
          assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
          continue;
        }







|







975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }
        if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){
          /* This term must be of the form t1.a==t2.b where t2 is in the
          ** chngToIN set but t1 is not.  This term will be either preceded
          ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term 
          ** and use its inversion. */
          testcase( pOrTerm->wtFlags & TERM_COPIED );
          testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
          assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
          continue;
        }
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
  ** an index for tables to the left of the join.
  */
  pTerm->prereqRight |= extraRight;
}

/*
** This function searches pList for a entry that matches the iCol-th column
** of index pIdx.
**
** If such an expression is found, its index in pList->a[] is returned. If
** no expression is found, -1 is returned.
*/
static int findIndexCol(
  Parse *pParse,                  /* Parse context */







|







1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
  ** an index for tables to the left of the join.
  */
  pTerm->prereqRight |= extraRight;
}

/*
** This function searches pList for an entry that matches the iCol-th column
** of index pIdx.
**
** If such an expression is found, its index in pList->a[] is returned. If
** no expression is found, -1 is returned.
*/
static int findIndexCol(
  Parse *pParse,                  /* Parse context */
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
#endif
  assert( pRec!=0 );
  iCol = pRec->nField - 1;
  assert( pIdx->nSample>0 );
  assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
  do{
    iTest = (iMin+i)/2;
    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec, 0);
    if( res<0 ){
      iMin = iTest+1;
    }else{
      i = iTest;
    }
  }while( res && iMin<i );

#ifdef SQLITE_DEBUG
  /* The following assert statements check that the binary search code
  ** above found the right answer. This block serves no purpose other
  ** than to invoke the asserts.  */
  if( res==0 ){
    /* If (res==0) is true, then sample $i must be equal to pRec */
    assert( i<pIdx->nSample );
    assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)
         || pParse->db->mallocFailed );
  }else{
    /* Otherwise, pRec must be smaller than sample $i and larger than
    ** sample ($i-1).  */
    assert( i==pIdx->nSample 
         || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)>0
         || pParse->db->mallocFailed );
    assert( i==0
         || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec, 0)<0
         || pParse->db->mallocFailed );
  }
#endif /* ifdef SQLITE_DEBUG */

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then res==0.







|














|





|


|







1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
#endif
  assert( pRec!=0 );
  iCol = pRec->nField - 1;
  assert( pIdx->nSample>0 );
  assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
  do{
    iTest = (iMin+i)/2;
    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec);
    if( res<0 ){
      iMin = iTest+1;
    }else{
      i = iTest;
    }
  }while( res && iMin<i );

#ifdef SQLITE_DEBUG
  /* The following assert statements check that the binary search code
  ** above found the right answer. This block serves no purpose other
  ** than to invoke the asserts.  */
  if( res==0 ){
    /* If (res==0) is true, then sample $i must be equal to pRec */
    assert( i<pIdx->nSample );
    assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
         || pParse->db->mallocFailed );
  }else{
    /* Otherwise, pRec must be smaller than sample $i and larger than
    ** sample ($i-1).  */
    assert( i==pIdx->nSample 
         || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
         || pParse->db->mallocFailed );
    assert( i==0
         || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
         || pParse->db->mallocFailed );
  }
#endif /* ifdef SQLITE_DEBUG */

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then res==0.
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
**
** then nEq is set to 0.
**
** When this function is called, *pnOut is set to the sqlite3LogEst() of the
** number of rows that the index scan is expected to visit without 
** considering the range constraints. If nEq is 0, this is the number of 
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
** to account for the range contraints pLower and pUpper.
** 
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
** used, a single range inequality reduces the search space by a factor of 4. 
** and a pair of constraints (x>? AND x<?) reduces the expected number of
** rows visited by a factor of 64.
*/
static int whereRangeScanEst(







|







2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
**
** then nEq is set to 0.
**
** When this function is called, *pnOut is set to the sqlite3LogEst() of the
** number of rows that the index scan is expected to visit without 
** considering the range constraints. If nEq is 0, this is the number of 
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
** to account for the range constraints pLower and pUpper.
** 
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
** used, a single range inequality reduces the search space by a factor of 4. 
** and a pair of constraints (x>? AND x<?) reduces the expected number of
** rows visited by a factor of 64.
*/
static int whereRangeScanEst(
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
    **       A: <loop body>                 # Return data, whatever.
    **
    **          Return     2                # Jump back to the Gosub
    **
    **       B: <after the loop>
    **
    ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
    ** use an ephermeral index instead of a RowSet to record the primary
    ** keys of the rows we have already seen.
    **
    */
    WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
    SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
    Index *pCov = 0;             /* Potential covering index (or NULL) */
    int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */







|







3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
    **       A: <loop body>                 # Return data, whatever.
    **
    **          Return     2                # Jump back to the Gosub
    **
    **       B: <after the loop>
    **
    ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
    ** use an ephemeral index instead of a RowSet to record the primary
    ** keys of the rows we have already seen.
    **
    */
    WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
    SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
    Index *pCov = 0;             /* Potential covering index (or NULL) */
    int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
        memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
      }
    }else{
      pOrTab = pWInfo->pTabList;
    }

    /* Initialize the rowset register to contain NULL. An SQL NULL is 
    ** equivalent to an empty rowset.  Or, create an ephermeral index
    ** capable of holding primary keys in the case of a WITHOUT ROWID.
    **
    ** Also initialize regReturn to contain the address of the instruction 
    ** immediately following the OP_Return at the bottom of the loop. This
    ** is required in a few obscure LEFT JOIN cases where control jumps
    ** over the top of the loop into the body of it. In this case the 
    ** correct response for the end-of-loop code (the OP_Return) is to 







|







3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
        memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
      }
    }else{
      pOrTab = pWInfo->pTabList;
    }

    /* Initialize the rowset register to contain NULL. An SQL NULL is 
    ** equivalent to an empty rowset.  Or, create an ephemeral index
    ** capable of holding primary keys in the case of a WITHOUT ROWID.
    **
    ** Also initialize regReturn to contain the address of the instruction 
    ** immediately following the OP_Return at the bottom of the loop. This
    ** is required in a few obscure LEFT JOIN cases where control jumps
    ** over the top of the loop into the body of it. In this case the 
    ** correct response for the end-of-loop code (the OP_Return) is to 
4217
4218
4219
4220
4221
4222
4223
4224




4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243




4244








4245
4246
4247
4248
4249
4250
4251
** WHERE clause that reference the loop but which are not used by an
** index.
**
** In the current implementation, the first extra WHERE clause term reduces
** the number of output rows by a factor of 10 and each additional term
** reduces the number of output rows by sqrt(2).
*/
static void whereLoopOutputAdjust(WhereClause *pWC, WhereLoop *pLoop){




  WhereTerm *pTerm, *pX;
  Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
  int i, j;

  if( !OptimizationEnabled(pWC->pWInfo->pParse->db, SQLITE_AdjustOutEst) ){
    return;
  }
  for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
    if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
    if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
    if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
    for(j=pLoop->nLTerm-1; j>=0; j--){
      pX = pLoop->aLTerm[j];
      if( pX==0 ) continue;
      if( pX==pTerm ) break;
      if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
    }
    if( j<0 ){
      pLoop->nOut += (pTerm->truthProb<=0 ? pTerm->truthProb : -1);




    }








  }
}

/*
** Adjust the cost C by the costMult facter T.  This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/







|
>
>
>
>



|
<
<
|











|
>
>
>
>
|
>
>
>
>
>
>
>
>







4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232


4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
** WHERE clause that reference the loop but which are not used by an
** index.
**
** In the current implementation, the first extra WHERE clause term reduces
** the number of output rows by a factor of 10 and each additional term
** reduces the number of output rows by sqrt(2).
*/
static void whereLoopOutputAdjust(
  WhereClause *pWC,      /* The WHERE clause */
  WhereLoop *pLoop,      /* The loop to adjust downward */
  LogEst nRow            /* Number of rows in the entire table */
){
  WhereTerm *pTerm, *pX;
  Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
  int i, j;
  int nEq = 0;    /* Number of = constraints not within likely()/unlikely() */



  for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
    if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
    if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
    if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
    for(j=pLoop->nLTerm-1; j>=0; j--){
      pX = pLoop->aLTerm[j];
      if( pX==0 ) continue;
      if( pX==pTerm ) break;
      if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
    }
    if( j<0 ){
      if( pTerm->truthProb<=0 ){
        pLoop->nOut += pTerm->truthProb;
      }else{
        pLoop->nOut--;
        if( pTerm->eOperator&WO_EQ ) nEq++;
      }
    }
  }
  /* TUNING:  If there is at least one equality constraint in the WHERE
  ** clause that does not have a likelihood() explicitly assigned to it
  ** then do not let the estimated number of output rows exceed half 
  ** the number of rows in the table. */
  if( nEq && pLoop->nOut>nRow-10 ){
    pLoop->nOut = nRow - 10;
  }
}

/*
** Adjust the cost C by the costMult facter T.  This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/
4284
4285
4286
4287
4288
4289
4290

4291
4292
4293
4294
4295
4296
4297
  u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
  u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
  u16 saved_nSkip;                /* Original value of pNew->u.btree.nSkip */
  u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
  LogEst saved_nOut;              /* Original value of pNew->nOut */
  int iCol;                       /* Index of the column in the table */
  int rc = SQLITE_OK;             /* Return code */

  LogEst rLogSize;                /* Logarithm of table size */
  WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */

  pNew = pBuilder->pNew;
  if( db->mallocFailed ) return SQLITE_NOMEM;

  assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );







>







4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
  u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
  u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
  u16 saved_nSkip;                /* Original value of pNew->u.btree.nSkip */
  u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
  LogEst saved_nOut;              /* Original value of pNew->nOut */
  int iCol;                       /* Index of the column in the table */
  int rc = SQLITE_OK;             /* Return code */
  LogEst rSize;                   /* Number of rows in the table */
  LogEst rLogSize;                /* Logarithm of table size */
  WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */

  pNew = pBuilder->pNew;
  if( db->mallocFailed ) return SQLITE_NOMEM;

  assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
4313
4314
4315
4316
4317
4318
4319

4320
4321
4322
4323
4324
4325
4326
4327
  saved_nEq = pNew->u.btree.nEq;
  saved_nSkip = pNew->u.btree.nSkip;
  saved_nLTerm = pNew->nLTerm;
  saved_wsFlags = pNew->wsFlags;
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pNew->rSetup = 0;

  rLogSize = estLog(pProbe->aiRowLogEst[0]);

  /* Consider using a skip-scan if there are no WHERE clause constraints
  ** available for the left-most terms of the index, and if the average
  ** number of repeats in the left-most terms is at least 18. 
  **
  ** The magic number 18 is selected on the basis that scanning 17 rows
  ** is almost always quicker than an index seek (even though if the index







>
|







4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
  saved_nEq = pNew->u.btree.nEq;
  saved_nSkip = pNew->u.btree.nSkip;
  saved_nLTerm = pNew->nLTerm;
  saved_wsFlags = pNew->wsFlags;
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pNew->rSetup = 0;
  rSize = pProbe->aiRowLogEst[0];
  rLogSize = estLog(rSize);

  /* Consider using a skip-scan if there are no WHERE clause constraints
  ** available for the left-most terms of the index, and if the average
  ** number of repeats in the left-most terms is at least 18. 
  **
  ** The magic number 18 is selected on the basis that scanning 17 rows
  ** is almost always quicker than an index seek (even though if the index
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
      pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
    }
    ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);

    nOutUnadjusted = pNew->nOut;
    pNew->rRun += nInMul + nIn;
    pNew->nOut += nInMul + nIn;
    whereLoopOutputAdjust(pBuilder->pWC, pNew);
    rc = whereLoopInsert(pBuilder, pNew);

    if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
      pNew->nOut = saved_nOut;
    }else{
      pNew->nOut = nOutUnadjusted;
    }







|







4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
      pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
    }
    ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);

    nOutUnadjusted = pNew->nOut;
    pNew->rRun += nInMul + nIn;
    pNew->nOut += nInMul + nIn;
    whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
    rc = whereLoopInsert(pBuilder, pNew);

    if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
      pNew->nOut = saved_nOut;
    }else{
      pNew->nOut = nOutUnadjusted;
    }
4540
4541
4542
4543
4544
4545
4546

4547
4548
4549
4550
4551
4552
4553

  if( pIndex->bUnordered ) return 0;
  if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
  for(ii=0; ii<pOB->nExpr; ii++){
    Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
    if( pExpr->op!=TK_COLUMN ) return 0;
    if( pExpr->iTable==iCursor ){

      for(jj=0; jj<pIndex->nKeyCol; jj++){
        if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
      }
    }
  }
  return 0;
}







>







4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570

  if( pIndex->bUnordered ) return 0;
  if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
  for(ii=0; ii<pOB->nExpr; ii++){
    Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
    if( pExpr->op!=TK_COLUMN ) return 0;
    if( pExpr->iTable==iCursor ){
      if( pExpr->iColumn<0 ) return 1;
      for(jj=0; jj<pIndex->nKeyCol; jj++){
        if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
      }
    }
  }
  return 0;
}
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
        /* TUNING: One-time cost for computing the automatic index is
        ** approximately 7*N*log2(N) where N is the number of rows in
        ** the table being indexed. */
        pNew->rSetup = rLogSize + rSize + 28;  assert( 28==sqlite3LogEst(7) );
        ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
        /* TUNING: Each index lookup yields 20 rows in the table.  This
        ** is more than the usual guess of 10 rows, since we have no way
        ** of knowning how selective the index will ultimately be.  It would
        ** not be unreasonable to make this value much larger. */
        pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
        pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
        pNew->wsFlags = WHERE_AUTO_INDEX;
        pNew->prereq = mExtra | pTerm->prereqRight;
        rc = whereLoopInsert(pBuilder, pNew);
      }







|







4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
        /* TUNING: One-time cost for computing the automatic index is
        ** approximately 7*N*log2(N) where N is the number of rows in
        ** the table being indexed. */
        pNew->rSetup = rLogSize + rSize + 28;  assert( 28==sqlite3LogEst(7) );
        ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
        /* TUNING: Each index lookup yields 20 rows in the table.  This
        ** is more than the usual guess of 10 rows, since we have no way
        ** of knowing how selective the index will ultimately be.  It would
        ** not be unreasonable to make this value much larger. */
        pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
        pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
        pNew->wsFlags = WHERE_AUTO_INDEX;
        pNew->prereq = mExtra | pTerm->prereqRight;
        rc = whereLoopInsert(pBuilder, pNew);
      }
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
      pNew->wsFlags = WHERE_IPK;

      /* Full table scan */
      pNew->iSortIdx = b ? iSortIdx : 0;
      /* TUNING: Cost of full table scan is (N*3.0). */
      pNew->rRun = rSize + 16;
      ApplyCostMultiplier(pNew->rRun, pTab->costMult);
      whereLoopOutputAdjust(pWC, pNew);
      rc = whereLoopInsert(pBuilder, pNew);
      pNew->nOut = rSize;
      if( rc ) break;
    }else{
      Bitmask m;
      if( pProbe->isCovering ){
        pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;







|







4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
      pNew->wsFlags = WHERE_IPK;

      /* Full table scan */
      pNew->iSortIdx = b ? iSortIdx : 0;
      /* TUNING: Cost of full table scan is (N*3.0). */
      pNew->rRun = rSize + 16;
      ApplyCostMultiplier(pNew->rRun, pTab->costMult);
      whereLoopOutputAdjust(pWC, pNew, rSize);
      rc = whereLoopInsert(pBuilder, pNew);
      pNew->nOut = rSize;
      if( rc ) break;
    }else{
      Bitmask m;
      if( pProbe->isCovering ){
        pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
        ** index and table rows. If this is a non-covering index scan,
        ** also add the cost of visiting table rows (N*3.0).  */
        pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
        if( m!=0 ){
          pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
        }
        ApplyCostMultiplier(pNew->rRun, pTab->costMult);
        whereLoopOutputAdjust(pWC, pNew);
        rc = whereLoopInsert(pBuilder, pNew);
        pNew->nOut = rSize;
        if( rc ) break;
      }
    }

    rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);







|







4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
        ** index and table rows. If this is a non-covering index scan,
        ** also add the cost of visiting table rows (N*3.0).  */
        pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
        if( m!=0 ){
          pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
        }
        ApplyCostMultiplier(pNew->rRun, pTab->costMult);
        whereLoopOutputAdjust(pWC, pNew, rSize);
        rc = whereLoopInsert(pBuilder, pNew);
        pNew->nOut = rSize;
        if( rc ) break;
      }
    }

    rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
**   N==0:  No terms of the ORDER BY clause are satisfied
**   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.   
**
** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
** strict.  With GROUP BY and DISTINCT the only requirement is that
** equivalent rows appear immediately adjacent to one another.  GROUP BY
** and DISTINCT do not require rows to appear in any particular order as long
** as equivelent rows are grouped together.  Thus for GROUP BY and DISTINCT
** the pOrderBy terms can be matched in any order.  With ORDER BY, the 
** pOrderBy terms must be matched in strict left-to-right order.
*/
static i8 wherePathSatisfiesOrderBy(
  WhereInfo *pWInfo,    /* The WHERE clause */
  ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
  WherePath *pPath,     /* The WherePath to check */







|







5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
**   N==0:  No terms of the ORDER BY clause are satisfied
**   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.   
**
** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
** strict.  With GROUP BY and DISTINCT the only requirement is that
** equivalent rows appear immediately adjacent to one another.  GROUP BY
** and DISTINCT do not require rows to appear in any particular order as long
** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
** the pOrderBy terms can be matched in any order.  With ORDER BY, the 
** pOrderBy terms must be matched in strict left-to-right order.
*/
static i8 wherePathSatisfiesOrderBy(
  WhereInfo *pWInfo,    /* The WHERE clause */
  ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
  WherePath *pPath,     /* The WherePath to check */
Changes to src/whereInt.h.
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
** Then a WherePath object is a path through the graph that visits some
** or all of the WhereLoop objects once.
**
** The "solver" works by creating the N best WherePath objects of length
** 1.  Then using those as a basis to compute the N best WherePath objects
** of length 2.  And so forth until the length of WherePaths equals the
** number of nodes in the FROM clause.  The best (lowest cost) WherePath
** at the end is the choosen query plan.
*/
struct WherePath {
  Bitmask maskLoop;     /* Bitmask of all WhereLoop objects in this path */
  Bitmask revLoop;      /* aLoop[]s that should be reversed for ORDER BY */
  LogEst nRow;          /* Estimated number of rows generated by this path */
  LogEst rCost;         /* Total cost of this path */
  LogEst rUnsorted;     /* Total cost of this path ignoring sorting costs */







|







172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
** Then a WherePath object is a path through the graph that visits some
** or all of the WhereLoop objects once.
**
** The "solver" works by creating the N best WherePath objects of length
** 1.  Then using those as a basis to compute the N best WherePath objects
** of length 2.  And so forth until the length of WherePaths equals the
** number of nodes in the FROM clause.  The best (lowest cost) WherePath
** at the end is the chosen query plan.
*/
struct WherePath {
  Bitmask maskLoop;     /* Bitmask of all WhereLoop objects in this path */
  Bitmask revLoop;      /* aLoop[]s that should be reversed for ORDER BY */
  LogEst nRow;          /* Estimated number of rows generated by this path */
  LogEst rCost;         /* Total cost of this path */
  LogEst rUnsorted;     /* Total cost of this path ignoring sorting costs */
Changes to test/aggnested.test.
152
153
154
155
156
157
158






159
160
161
162
163
164
165
166
167
    INSERT INTO t2 VALUES(1);
    SELECT
     (SELECT sum(value2==xyz) FROM t2)
    FROM
     (SELECT value1 as xyz, max(x1) AS pqr
        FROM t1
       GROUP BY id1);






  }
} {0}
do_test aggnested-3.3 {
  db eval {
    DROP TABLE IF EXISTS t1;
    DROP TABLE IF EXISTS t2;
    CREATE TABLE t1(id1, value1);
    INSERT INTO t1 VALUES(4469,2),(4469,1);
    CREATE TABLE t2 (value2);







>
>
>
>
>
>

|







152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    INSERT INTO t2 VALUES(1);
    SELECT
     (SELECT sum(value2==xyz) FROM t2)
    FROM
     (SELECT value1 as xyz, max(x1) AS pqr
        FROM t1
       GROUP BY id1);
    SELECT
     (SELECT sum(value2<>xyz) FROM t2)
    FROM
     (SELECT value1 as xyz, max(x1) AS pqr
        FROM t1
       GROUP BY id1);
  }
} {1 0}
do_test aggnested-3.3 {
  db eval {
    DROP TABLE IF EXISTS t1;
    DROP TABLE IF EXISTS t2;
    CREATE TABLE t1(id1, value1);
    INSERT INTO t1 VALUES(4469,2),(4469,1);
    CREATE TABLE t2 (value2);
Changes to test/auth.test.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    db authorizer ::auth
  }
}

do_test auth-1.1.1 {
  db close
  set ::DB [sqlite3 db test.db]
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  db authorizer ::auth
  catchsql {CREATE TABLE t1(a,b,c)}







|







32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    db authorizer ::auth
  }
}

do_test auth-1.1.1 {
  db close
  set ::DB [sqlite3 db test.db]
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  db authorizer ::auth
  catchsql {CREATE TABLE t1(a,b,c)}
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
    SELECT x;
  }
} {1 {no such column: x}}
do_test auth-1.2 {
  execsql {SELECT name FROM sqlite_master}
} {}
do_test auth-1.3.1 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE TABLE t1(a,b,c)}
} {1 {not authorized}}
do_test auth-1.3.2 {
  db errorcode
} {23}
do_test auth-1.3.3 {
  set ::authargs
} {t1 {} main {}}
do_test auth-1.4 {
  execsql {SELECT name FROM sqlite_master}
} {}

ifcapable tempdb {
  do_test auth-1.5 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMP TABLE t1(a,b,c)}
  } {1 {not authorized}}
  do_test auth-1.6 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {}
  do_test auth-1.7.1 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_CREATE_TEMP_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMP TABLE t1(a,b,c)}
  } {1 {not authorized}}
  do_test auth-1.7.2 {
     set ::authargs
  } {t1 {} temp {}}
  do_test auth-1.8 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {}
}

do_test auth-1.9 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE TABLE t1(a,b,c)}
} {0 {}}
do_test auth-1.10 {
  execsql {SELECT name FROM sqlite_master}
} {}
do_test auth-1.11 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE TABLE t1(a,b,c)}
} {0 {}}
do_test auth-1.12 {
  execsql {SELECT name FROM sqlite_master}
} {}

ifcapable tempdb {
  do_test auth-1.13 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMP TABLE t1(a,b,c)}
  } {0 {}}
  do_test auth-1.14 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {}
  do_test auth-1.15 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_CREATE_TEMP_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMP TABLE t1(a,b,c)}
  } {0 {}}
  do_test auth-1.16 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {}
  
  do_test auth-1.17 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_CREATE_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMP TABLE t1(a,b,c)}
  } {0 {}}
  do_test auth-1.18 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.19.1 {
  set ::authargs {}
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_TEMP_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE TABLE t2(a,b,c)}
} {0 {}}
do_test auth-1.19.2 {
  set ::authargs
} {}
do_test auth-1.20 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

do_test auth-1.21.1 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {1 {not authorized}}
do_test auth-1.21.2 {
  set ::authargs
} {t2 {} main {}}
do_test auth-1.22 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.23.1 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {0 {}}
do_test auth-1.23.2 {
  set ::authargs
} {t2 {} main {}}
do_test auth-1.24 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.25 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DROP_TEMP_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {1 {not authorized}}
  do_test auth-1.26 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.27 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DROP_TEMP_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {0 {}}
  do_test auth-1.28 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.29 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="t2"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {INSERT INTO t2 VALUES(1,2,3)}
} {1 {not authorized}}
do_test auth-1.30 {
  execsql {SELECT * FROM t2}
} {}
do_test auth-1.31 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="t2"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {INSERT INTO t2 VALUES(1,2,3)}
} {0 {}}
do_test auth-1.32 {
  execsql {SELECT * FROM t2}
} {}
do_test auth-1.33 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="t1"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {INSERT INTO t2 VALUES(1,2,3)}
} {0 {}}
do_test auth-1.34 {
  execsql {SELECT * FROM t2}
} {1 2 3}

do_test auth-1.35.1 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2}
} {1 {access to t2.b is prohibited}}
ifcapable attach {
  do_test auth-1.35.2 {
    execsql {ATTACH DATABASE 'test.db' AS two}
    catchsql {SELECT * FROM two.t2}
  } {1 {access to two.t2.b is prohibited}}
  execsql {DETACH DATABASE two}
}
do_test auth-1.36 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2}
} {0 {1 {} 3}}
do_test auth-1.37 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2 WHERE b=2}
} {0 {}}
do_test auth-1.38 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="a"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2 WHERE b=2}
} {0 {{} 2 3}}
do_test auth-1.39 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2 WHERE b IS NULL}
} {0 {1 {} 3}}
do_test auth-1.40 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {SELECT a,c FROM t2 WHERE b IS NULL}
} {1 {access to t2.b is prohibited}}
  
do_test auth-1.41 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_UPDATE" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {UPDATE t2 SET a=11}
} {0 {}}
do_test auth-1.42 {
  execsql {SELECT * FROM t2}
} {11 2 3}
do_test auth-1.43 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_UPDATE" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {UPDATE t2 SET b=22, c=33}
} {1 {not authorized}}
do_test auth-1.44 {
  execsql {SELECT * FROM t2}
} {11 2 3}
do_test auth-1.45 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_UPDATE" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {UPDATE t2 SET b=22, c=33}
} {0 {}}
do_test auth-1.46 {
  execsql {SELECT * FROM t2}
} {11 2 33}

do_test auth-1.47 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="t2"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DELETE FROM t2 WHERE a=11}
} {1 {not authorized}}
do_test auth-1.48 {
  execsql {SELECT * FROM t2}
} {11 2 33}
do_test auth-1.49 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="t2"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DELETE FROM t2 WHERE a=11}
} {0 {}}
do_test auth-1.50 {
  execsql {SELECT * FROM t2}
} {}
do_test auth-1.50.2 {
  execsql {INSERT INTO t2 VALUES(11, 2, 33)}
} {}

do_test auth-1.51 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_SELECT"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2}
} {1 {not authorized}}
do_test auth-1.52 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_SELECT"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2}
} {0 {}}
do_test auth-1.53 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_SELECT"} {
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2}
} {0 {11 2 33}}

# Update for version 3: There used to be a handful of test here that
# tested the authorisation callback with the COPY command. The following
# test makes the same database modifications as they used to.
do_test auth-1.54 {
  execsql {INSERT INTO t2 VALUES(7, 8, 9);}
} {}
do_test auth-1.55 {
  execsql {SELECT * FROM t2}
} {11 2 33 7 8 9}

do_test auth-1.63 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
       return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {1 {not authorized}}
do_test auth-1.64 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.65 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="t2"} {
       return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {1 {not authorized}}
do_test auth-1.66 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.67 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
         return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {1 {not authorized}}
  do_test auth-1.68 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.69 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DELETE" && $arg1=="t1"} {
         return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {1 {not authorized}}
  do_test auth-1.70 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.71 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
       return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {0 {}}
do_test auth-1.72 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.73 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="t2"} {
       return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {0 {}}
do_test auth-1.74 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.75 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
         return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {0 {}}
  do_test auth-1.76 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.77 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DELETE" && $arg1=="t1"} {
         return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {0 {}}
  do_test auth-1.78 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

# Test cases auth-1.79 to auth-1.124 test creating and dropping views.
# Omit these if the library was compiled with views omitted.
ifcapable view {
do_test auth-1.79 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_VIEW"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4] 
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2}
} {1 {not authorized}}
do_test auth-1.80 {
  set ::authargs
} {v1 {} main {}}
do_test auth-1.81 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.82 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_VIEW"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4] 
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2}
} {0 {}}
do_test auth-1.83 {
  set ::authargs
} {v1 {} main {}}
do_test auth-1.84 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.85 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_CREATE_TEMP_VIEW"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4] 
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2}
  } {1 {not authorized}}
  do_test auth-1.86 {
    set ::authargs
  } {v1 {} temp {}}
  do_test auth-1.87 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.88 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_CREATE_TEMP_VIEW"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4] 
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2}
  } {0 {}}
  do_test auth-1.89 {
    set ::authargs
  } {v1 {} temp {}}
  do_test auth-1.90 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.91 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2}
} {1 {not authorized}}
do_test auth-1.92 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.93 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2}
} {0 {}}
do_test auth-1.94 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.95 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2}
  } {1 {not authorized}}
  do_test auth-1.96 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.97 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2}
  } {0 {}}
  do_test auth-1.98 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.99 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE VIEW v2 AS SELECT a+1,b+1 FROM t2;
    DROP VIEW v2
  }
} {1 {not authorized}}
do_test auth-1.100 {
  execsql {SELECT name FROM sqlite_master}
} {t2 v2}
do_test auth-1.101 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_VIEW"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP VIEW v2}
} {1 {not authorized}}
do_test auth-1.102 {
  set ::authargs
} {v2 {} main {}}
do_test auth-1.103 {
  execsql {SELECT name FROM sqlite_master}
} {t2 v2}
do_test auth-1.104 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP VIEW v2}
} {0 {}}
do_test auth-1.105 {
  execsql {SELECT name FROM sqlite_master}
} {t2 v2}
do_test auth-1.106 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_VIEW"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP VIEW v2}
} {0 {}}
do_test auth-1.107 {
  set ::authargs
} {v2 {} main {}}
do_test auth-1.108 {
  execsql {SELECT name FROM sqlite_master}
} {t2 v2}
do_test auth-1.109 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_VIEW"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {DROP VIEW v2}
} {0 {}}
do_test auth-1.110 {
  set ::authargs
} {v2 {} main {}}
do_test auth-1.111 {
  execsql {SELECT name FROM sqlite_master}
} {t2}


ifcapable tempdb {
  do_test auth-1.112 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {
      CREATE TEMP VIEW v1 AS SELECT a+1,b+1 FROM t1;
      DROP VIEW v1
    }
  } {1 {not authorized}}
  do_test auth-1.113 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 v1}
  do_test auth-1.114 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DROP_TEMP_VIEW"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP VIEW v1}
  } {1 {not authorized}}
  do_test auth-1.115 {
    set ::authargs
  } {v1 {} temp {}}
  do_test auth-1.116 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 v1}
  do_test auth-1.117 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP VIEW v1}
  } {0 {}}
  do_test auth-1.118 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 v1}
  do_test auth-1.119 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DROP_TEMP_VIEW"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP VIEW v1}
  } {0 {}}
  do_test auth-1.120 {
    set ::authargs
  } {v1 {} temp {}}
  do_test auth-1.121 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 v1}
  do_test auth-1.122 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DROP_TEMP_VIEW"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_OK
      }
      return SQLITE_OK
    }
    catchsql {DROP VIEW v1}







|




















|











|

















|











|














|











|













|















|
















|















|

















|












|














|











|











|












|















|








|








|








|








|









|











|











|












|











|















|








|








|



















|











|













|











|













|











|













|











|
















|















|

















|















|

















|











|













|











|













|














|















|











|















|


















|














|















|











|















|







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
    SELECT x;
  }
} {1 {no such column: x}}
do_test auth-1.2 {
  execsql {SELECT name FROM sqlite_master}
} {}
do_test auth-1.3.1 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE TABLE t1(a,b,c)}
} {1 {not authorized}}
do_test auth-1.3.2 {
  db errorcode
} {23}
do_test auth-1.3.3 {
  set ::authargs
} {t1 {} main {}}
do_test auth-1.4 {
  execsql {SELECT name FROM sqlite_master}
} {}

ifcapable tempdb {
  do_test auth-1.5 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMP TABLE t1(a,b,c)}
  } {1 {not authorized}}
  do_test auth-1.6 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {}
  do_test auth-1.7.1 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_CREATE_TEMP_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMP TABLE t1(a,b,c)}
  } {1 {not authorized}}
  do_test auth-1.7.2 {
     set ::authargs
  } {t1 {} temp {}}
  do_test auth-1.8 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {}
}

do_test auth-1.9 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE TABLE t1(a,b,c)}
} {0 {}}
do_test auth-1.10 {
  execsql {SELECT name FROM sqlite_master}
} {}
do_test auth-1.11 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE TABLE t1(a,b,c)}
} {0 {}}
do_test auth-1.12 {
  execsql {SELECT name FROM sqlite_master}
} {}

ifcapable tempdb {
  do_test auth-1.13 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMP TABLE t1(a,b,c)}
  } {0 {}}
  do_test auth-1.14 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {}
  do_test auth-1.15 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_CREATE_TEMP_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMP TABLE t1(a,b,c)}
  } {0 {}}
  do_test auth-1.16 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {}
  
  do_test auth-1.17 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_CREATE_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMP TABLE t1(a,b,c)}
  } {0 {}}
  do_test auth-1.18 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.19.1 {
  set ::authargs {}
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_TEMP_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE TABLE t2(a,b,c)}
} {0 {}}
do_test auth-1.19.2 {
  set ::authargs
} {}
do_test auth-1.20 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

do_test auth-1.21.1 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {1 {not authorized}}
do_test auth-1.21.2 {
  set ::authargs
} {t2 {} main {}}
do_test auth-1.22 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.23.1 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {0 {}}
do_test auth-1.23.2 {
  set ::authargs
} {t2 {} main {}}
do_test auth-1.24 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.25 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DROP_TEMP_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {1 {not authorized}}
  do_test auth-1.26 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.27 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DROP_TEMP_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {0 {}}
  do_test auth-1.28 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.29 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="t2"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {INSERT INTO t2 VALUES(1,2,3)}
} {1 {not authorized}}
do_test auth-1.30 {
  execsql {SELECT * FROM t2}
} {}
do_test auth-1.31 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="t2"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {INSERT INTO t2 VALUES(1,2,3)}
} {0 {}}
do_test auth-1.32 {
  execsql {SELECT * FROM t2}
} {}
do_test auth-1.33 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="t1"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {INSERT INTO t2 VALUES(1,2,3)}
} {0 {}}
do_test auth-1.34 {
  execsql {SELECT * FROM t2}
} {1 2 3}

do_test auth-1.35.1 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2}
} {1 {access to t2.b is prohibited}}
ifcapable attach {
  do_test auth-1.35.2 {
    execsql {ATTACH DATABASE 'test.db' AS two}
    catchsql {SELECT * FROM two.t2}
  } {1 {access to two.t2.b is prohibited}}
  execsql {DETACH DATABASE two}
}
do_test auth-1.36 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2}
} {0 {1 {} 3}}
do_test auth-1.37 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2 WHERE b=2}
} {0 {}}
do_test auth-1.38 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="a"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2 WHERE b=2}
} {0 {{} 2 3}}
do_test auth-1.39 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2 WHERE b IS NULL}
} {0 {1 {} 3}}
do_test auth-1.40 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {SELECT a,c FROM t2 WHERE b IS NULL}
} {1 {access to t2.b is prohibited}}
  
do_test auth-1.41 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_UPDATE" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {UPDATE t2 SET a=11}
} {0 {}}
do_test auth-1.42 {
  execsql {SELECT * FROM t2}
} {11 2 3}
do_test auth-1.43 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_UPDATE" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {UPDATE t2 SET b=22, c=33}
} {1 {not authorized}}
do_test auth-1.44 {
  execsql {SELECT * FROM t2}
} {11 2 3}
do_test auth-1.45 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_UPDATE" && $arg1=="t2" && $arg2=="b"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {UPDATE t2 SET b=22, c=33}
} {0 {}}
do_test auth-1.46 {
  execsql {SELECT * FROM t2}
} {11 2 33}

do_test auth-1.47 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="t2"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DELETE FROM t2 WHERE a=11}
} {1 {not authorized}}
do_test auth-1.48 {
  execsql {SELECT * FROM t2}
} {11 2 33}
do_test auth-1.49 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="t2"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DELETE FROM t2 WHERE a=11}
} {0 {}}
do_test auth-1.50 {
  execsql {SELECT * FROM t2}
} {}
do_test auth-1.50.2 {
  execsql {INSERT INTO t2 VALUES(11, 2, 33)}
} {}

do_test auth-1.51 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_SELECT"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2}
} {1 {not authorized}}
do_test auth-1.52 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_SELECT"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2}
} {0 {}}
do_test auth-1.53 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_SELECT"} {
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2}
} {0 {11 2 33}}

# Update for version 3: There used to be a handful of test here that
# tested the authorisation callback with the COPY command. The following
# test makes the same database modifications as they used to.
do_test auth-1.54 {
  execsql {INSERT INTO t2 VALUES(7, 8, 9);}
} {}
do_test auth-1.55 {
  execsql {SELECT * FROM t2}
} {11 2 33 7 8 9}

do_test auth-1.63 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
       return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {1 {not authorized}}
do_test auth-1.64 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.65 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="t2"} {
       return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {1 {not authorized}}
do_test auth-1.66 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.67 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
         return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {1 {not authorized}}
  do_test auth-1.68 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.69 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DELETE" && $arg1=="t1"} {
         return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {1 {not authorized}}
  do_test auth-1.70 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.71 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
       return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {0 {}}
do_test auth-1.72 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.73 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="t2"} {
       return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TABLE t2}
} {0 {}}
do_test auth-1.74 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.75 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
         return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {0 {}}
  do_test auth-1.76 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.77 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DELETE" && $arg1=="t1"} {
         return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP TABLE t1}
  } {0 {}}
  do_test auth-1.78 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

# Test cases auth-1.79 to auth-1.124 test creating and dropping views.
# Omit these if the library was compiled with views omitted.
ifcapable view {
do_test auth-1.79 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_VIEW"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4] 
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2}
} {1 {not authorized}}
do_test auth-1.80 {
  set ::authargs
} {v1 {} main {}}
do_test auth-1.81 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.82 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_VIEW"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4] 
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2}
} {0 {}}
do_test auth-1.83 {
  set ::authargs
} {v1 {} main {}}
do_test auth-1.84 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.85 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_CREATE_TEMP_VIEW"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4] 
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2}
  } {1 {not authorized}}
  do_test auth-1.86 {
    set ::authargs
  } {v1 {} temp {}}
  do_test auth-1.87 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.88 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_CREATE_TEMP_VIEW"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4] 
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2}
  } {0 {}}
  do_test auth-1.89 {
    set ::authargs
  } {v1 {} temp {}}
  do_test auth-1.90 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.91 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2}
} {1 {not authorized}}
do_test auth-1.92 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.93 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE VIEW v1 AS SELECT a+1,b+1 FROM t2}
} {0 {}}
do_test auth-1.94 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.95 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2}
  } {1 {not authorized}}
  do_test auth-1.96 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.97 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE TEMPORARY VIEW v1 AS SELECT a+1,b+1 FROM t2}
  } {0 {}}
  do_test auth-1.98 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.99 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE VIEW v2 AS SELECT a+1,b+1 FROM t2;
    DROP VIEW v2
  }
} {1 {not authorized}}
do_test auth-1.100 {
  execsql {SELECT name FROM sqlite_master}
} {t2 v2}
do_test auth-1.101 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_VIEW"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP VIEW v2}
} {1 {not authorized}}
do_test auth-1.102 {
  set ::authargs
} {v2 {} main {}}
do_test auth-1.103 {
  execsql {SELECT name FROM sqlite_master}
} {t2 v2}
do_test auth-1.104 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP VIEW v2}
} {0 {}}
do_test auth-1.105 {
  execsql {SELECT name FROM sqlite_master}
} {t2 v2}
do_test auth-1.106 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_VIEW"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP VIEW v2}
} {0 {}}
do_test auth-1.107 {
  set ::authargs
} {v2 {} main {}}
do_test auth-1.108 {
  execsql {SELECT name FROM sqlite_master}
} {t2 v2}
do_test auth-1.109 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_VIEW"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {DROP VIEW v2}
} {0 {}}
do_test auth-1.110 {
  set ::authargs
} {v2 {} main {}}
do_test auth-1.111 {
  execsql {SELECT name FROM sqlite_master}
} {t2}


ifcapable tempdb {
  do_test auth-1.112 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {
      CREATE TEMP VIEW v1 AS SELECT a+1,b+1 FROM t1;
      DROP VIEW v1
    }
  } {1 {not authorized}}
  do_test auth-1.113 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 v1}
  do_test auth-1.114 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DROP_TEMP_VIEW"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP VIEW v1}
  } {1 {not authorized}}
  do_test auth-1.115 {
    set ::authargs
  } {v1 {} temp {}}
  do_test auth-1.116 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 v1}
  do_test auth-1.117 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP VIEW v1}
  } {0 {}}
  do_test auth-1.118 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 v1}
  do_test auth-1.119 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DROP_TEMP_VIEW"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP VIEW v1}
  } {0 {}}
  do_test auth-1.120 {
    set ::authargs
  } {v1 {} temp {}}
  do_test auth-1.121 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 v1}
  do_test auth-1.122 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DROP_TEMP_VIEW"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_OK
      }
      return SQLITE_OK
    }
    catchsql {DROP VIEW v1}
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
} ;# ifcapable view

# Test cases auth-1.125 to auth-1.176 test creating and dropping triggers.
# Omit these if the library was compiled with triggers omitted.
#
ifcapable trigger&&tempdb {
do_test auth-1.125 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r2 DELETE on t2 BEGIN
        SELECT NULL;
    END;
  }
} {1 {not authorized}}
do_test auth-1.126 {
  set ::authargs
} {r2 t2 main {}}
do_test auth-1.127 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.128 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r2 DELETE on t2 BEGIN
        SELECT NULL;
    END;
  }
} {1 {not authorized}}
do_test auth-1.129 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.130 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r2 DELETE on t2 BEGIN
        SELECT NULL;
    END;
  }
} {0 {}}
do_test auth-1.131 {
  set ::authargs
} {r2 t2 main {}}
do_test auth-1.132 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.133 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r2 DELETE on t2 BEGIN
        SELECT NULL;
    END;
  }
} {0 {}}
do_test auth-1.134 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.135 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {







|



















|















|



















|















|







845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
} ;# ifcapable view

# Test cases auth-1.125 to auth-1.176 test creating and dropping triggers.
# Omit these if the library was compiled with triggers omitted.
#
ifcapable trigger&&tempdb {
do_test auth-1.125 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r2 DELETE on t2 BEGIN
        SELECT NULL;
    END;
  }
} {1 {not authorized}}
do_test auth-1.126 {
  set ::authargs
} {r2 t2 main {}}
do_test auth-1.127 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.128 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r2 DELETE on t2 BEGIN
        SELECT NULL;
    END;
  }
} {1 {not authorized}}
do_test auth-1.129 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.130 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r2 DELETE on t2 BEGIN
        SELECT NULL;
    END;
  }
} {0 {}}
do_test auth-1.131 {
  set ::authargs
} {r2 t2 main {}}
do_test auth-1.132 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.133 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r2 DELETE on t2 BEGIN
        SELECT NULL;
    END;
  }
} {0 {}}
do_test auth-1.134 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.135 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
} {r2 t2 main {}}
do_test auth-1.136.2 {
  execsql {
    SELECT name FROM sqlite_master WHERE type='trigger'
  }
} {r2}
do_test auth-1.136.3 {
  proc auth {code arg1 arg2 arg3 arg4} {
    lappend ::authargs $code $arg1 $arg2 $arg3 $arg4
    return SQLITE_OK
  }
  set ::authargs {}
  execsql {
    INSERT INTO t2 VALUES(1,2,3);
  }
  set ::authargs 
} {SQLITE_INSERT t2 {} main {} SQLITE_INSERT tx {} main r2 SQLITE_READ t2 ROWID main r2}
do_test auth-1.136.4 {
  execsql {
    SELECT * FROM tx;
  }
} {3}
do_test auth-1.137 {
  execsql {SELECT name FROM sqlite_master}
} {t2 tx r2}
do_test auth-1.138 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r1 DELETE on t1 BEGIN
        SELECT NULL;
    END;
  }
} {1 {not authorized}}
do_test auth-1.139 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.140 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1}
do_test auth-1.141 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r1 DELETE on t1 BEGIN
        SELECT NULL;
    END;
  }
} {1 {not authorized}}
do_test auth-1.142 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1}
do_test auth-1.143 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r1 DELETE on t1 BEGIN
        SELECT NULL;
    END;
  }
} {0 {}}
do_test auth-1.144 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.145 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1}
do_test auth-1.146 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r1 DELETE on t1 BEGIN
        SELECT NULL;
    END;
  }
} {0 {}}
do_test auth-1.147 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1}
do_test auth-1.148 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r1 DELETE on t1 BEGIN
        SELECT NULL;
    END;
  }
} {0 {}}
do_test auth-1.149 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.150 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1 r1}

do_test auth-1.151 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r2}
} {1 {not authorized}}
do_test auth-1.152 {
  execsql {SELECT name FROM sqlite_master}
} {t2 tx r2}
do_test auth-1.153 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r2}
} {1 {not authorized}}
do_test auth-1.154 {
  set ::authargs
} {r2 t2 main {}}
do_test auth-1.155 {
  execsql {SELECT name FROM sqlite_master}
} {t2 tx r2}
do_test auth-1.156 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r2}
} {0 {}}
do_test auth-1.157 {
  execsql {SELECT name FROM sqlite_master}
} {t2 tx r2}
do_test auth-1.158 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r2}
} {0 {}}
do_test auth-1.159 {
  set ::authargs
} {r2 t2 main {}}
do_test auth-1.160 {
  execsql {SELECT name FROM sqlite_master}
} {t2 tx r2}
do_test auth-1.161 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r2}
} {0 {}}
do_test auth-1.162 {
  set ::authargs
} {r2 t2 main {}}
do_test auth-1.163 {
  execsql {
    DROP TABLE tx;
    DELETE FROM t2 WHERE a=1 AND b=2 AND c=3;
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test auth-1.164 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r1}
} {1 {not authorized}}
do_test auth-1.165 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1 r1}
do_test auth-1.166 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r1}
} {1 {not authorized}}
do_test auth-1.167 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.168 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1 r1}
do_test auth-1.169 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r1}
} {0 {}}
do_test auth-1.170 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1 r1}
do_test auth-1.171 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r1}
} {0 {}}
do_test auth-1.172 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.173 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1 r1}
do_test auth-1.174 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r1}
} {0 {}}
do_test auth-1.175 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.176 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1}
} ;# ifcapable trigger

do_test auth-1.177 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE INDEX i2 ON t2(a)}
} {1 {not authorized}}
do_test auth-1.178 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.179 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.180 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE INDEX i2 ON t2(a)}
} {1 {not authorized}}
do_test auth-1.181 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.182 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE INDEX i2 ON t2(b)}
} {0 {}}
do_test auth-1.183 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.184 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.185 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE INDEX i2 ON t2(b)}
} {0 {}}
do_test auth-1.186 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.187 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_CREATE_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {CREATE INDEX i2 ON t2(a)}
} {0 {}}
do_test auth-1.188 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.189 {
  execsql {SELECT name FROM sqlite_master}
} {t2 i2}

ifcapable tempdb {
  do_test auth-1.190 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_CREATE_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE INDEX i1 ON t1(a)}
  } {1 {not authorized}}
  do_test auth-1.191 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.192 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.193 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE INDEX i1 ON t1(b)}
  } {1 {not authorized}}
  do_test auth-1.194 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.195 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_CREATE_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE INDEX i1 ON t1(b)}
  } {0 {}}
  do_test auth-1.196 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.197 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.198 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE INDEX i1 ON t1(c)}
  } {0 {}}
  do_test auth-1.199 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.200 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_CREATE_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_OK
      }
      return SQLITE_OK
    }
    catchsql {CREATE INDEX i1 ON t1(a)}
  } {0 {}}
  do_test auth-1.201 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.202 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 i1}
}

do_test auth-1.203 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP INDEX i2}
} {1 {not authorized}}
do_test auth-1.204 {
  execsql {SELECT name FROM sqlite_master}
} {t2 i2}
do_test auth-1.205 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP INDEX i2}
} {1 {not authorized}}
do_test auth-1.206 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.207 {
  execsql {SELECT name FROM sqlite_master}
} {t2 i2}
do_test auth-1.208 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP INDEX i2}
} {0 {}}
do_test auth-1.209 {
  execsql {SELECT name FROM sqlite_master}
} {t2 i2}
do_test auth-1.210 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP INDEX i2}
} {0 {}}
do_test auth-1.211 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.212 {
  execsql {SELECT name FROM sqlite_master}
} {t2 i2}
do_test auth-1.213 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_DROP_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {DROP INDEX i2}
} {0 {}}
do_test auth-1.214 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.215 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.216 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP INDEX i1}
  } {1 {not authorized}}
  do_test auth-1.217 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 i1}
  do_test auth-1.218 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DROP_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP INDEX i1}
  } {1 {not authorized}}
  do_test auth-1.219 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.220 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 i1}
  do_test auth-1.221 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP INDEX i1}
  } {0 {}}
  do_test auth-1.222 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 i1}
  do_test auth-1.223 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DROP_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP INDEX i1}
  } {0 {}}
  do_test auth-1.224 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.225 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 i1}
  do_test auth-1.226 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DROP_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_OK
      }
      return SQLITE_OK
    }
    catchsql {DROP INDEX i1}
  } {0 {}}
  do_test auth-1.227 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.228 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.229 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_PRAGMA"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {PRAGMA full_column_names=on}
} {1 {not authorized}}
do_test auth-1.230 {
  set ::authargs
} {full_column_names on {} {}}
do_test auth-1.231 {
  execsql2 {SELECT a FROM t2}
} {a 11 a 7}
do_test auth-1.232 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_PRAGMA"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {PRAGMA full_column_names=on}
} {0 {}}
do_test auth-1.233 {
  set ::authargs
} {full_column_names on {} {}}
do_test auth-1.234 {
  execsql2 {SELECT a FROM t2}
} {a 11 a 7}
do_test auth-1.235 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_PRAGMA"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {PRAGMA full_column_names=on}
} {0 {}}
do_test auth-1.236 {
  execsql2 {SELECT a FROM t2}
} {t2.a 11 t2.a 7}
do_test auth-1.237 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_PRAGMA"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {PRAGMA full_column_names=OFF}
} {0 {}}
do_test auth-1.238 {
  set ::authargs
} {full_column_names OFF {} {}}
do_test auth-1.239 {
  execsql2 {SELECT a FROM t2}
} {a 11 a 7}

do_test auth-1.240 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_TRANSACTION"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {BEGIN}
} {1 {not authorized}}
do_test auth-1.241 {
  set ::authargs
} {BEGIN {} {} {}}
do_test auth-1.242 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_TRANSACTION" && $arg1!="BEGIN"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {BEGIN; INSERT INTO t2 VALUES(44,55,66); COMMIT}







|


















|



















|















|



















|















|




















|











|















|











|















|




















|











|















|











|















|

















|















|











|















|











|

















|















|











|















|











|

















|











|















|











|















|

















|











|















|











|















|

















|















|















|












|
















|












|







940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
} {r2 t2 main {}}
do_test auth-1.136.2 {
  execsql {
    SELECT name FROM sqlite_master WHERE type='trigger'
  }
} {r2}
do_test auth-1.136.3 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    lappend ::authargs $code $arg1 $arg2 $arg3 $arg4
    return SQLITE_OK
  }
  set ::authargs {}
  execsql {
    INSERT INTO t2 VALUES(1,2,3);
  }
  set ::authargs 
} {SQLITE_INSERT t2 {} main {} SQLITE_INSERT tx {} main r2 SQLITE_READ t2 ROWID main r2}
do_test auth-1.136.4 {
  execsql {
    SELECT * FROM tx;
  }
} {3}
do_test auth-1.137 {
  execsql {SELECT name FROM sqlite_master}
} {t2 tx r2}
do_test auth-1.138 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r1 DELETE on t1 BEGIN
        SELECT NULL;
    END;
  }
} {1 {not authorized}}
do_test auth-1.139 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.140 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1}
do_test auth-1.141 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r1 DELETE on t1 BEGIN
        SELECT NULL;
    END;
  }
} {1 {not authorized}}
do_test auth-1.142 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1}
do_test auth-1.143 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r1 DELETE on t1 BEGIN
        SELECT NULL;
    END;
  }
} {0 {}}
do_test auth-1.144 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.145 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1}
do_test auth-1.146 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r1 DELETE on t1 BEGIN
        SELECT NULL;
    END;
  }
} {0 {}}
do_test auth-1.147 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1}
do_test auth-1.148 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {
    CREATE TRIGGER r1 DELETE on t1 BEGIN
        SELECT NULL;
    END;
  }
} {0 {}}
do_test auth-1.149 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.150 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1 r1}

do_test auth-1.151 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r2}
} {1 {not authorized}}
do_test auth-1.152 {
  execsql {SELECT name FROM sqlite_master}
} {t2 tx r2}
do_test auth-1.153 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r2}
} {1 {not authorized}}
do_test auth-1.154 {
  set ::authargs
} {r2 t2 main {}}
do_test auth-1.155 {
  execsql {SELECT name FROM sqlite_master}
} {t2 tx r2}
do_test auth-1.156 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r2}
} {0 {}}
do_test auth-1.157 {
  execsql {SELECT name FROM sqlite_master}
} {t2 tx r2}
do_test auth-1.158 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r2}
} {0 {}}
do_test auth-1.159 {
  set ::authargs
} {r2 t2 main {}}
do_test auth-1.160 {
  execsql {SELECT name FROM sqlite_master}
} {t2 tx r2}
do_test auth-1.161 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r2}
} {0 {}}
do_test auth-1.162 {
  set ::authargs
} {r2 t2 main {}}
do_test auth-1.163 {
  execsql {
    DROP TABLE tx;
    DELETE FROM t2 WHERE a=1 AND b=2 AND c=3;
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test auth-1.164 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r1}
} {1 {not authorized}}
do_test auth-1.165 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1 r1}
do_test auth-1.166 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r1}
} {1 {not authorized}}
do_test auth-1.167 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.168 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1 r1}
do_test auth-1.169 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r1}
} {0 {}}
do_test auth-1.170 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1 r1}
do_test auth-1.171 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r1}
} {0 {}}
do_test auth-1.172 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.173 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1 r1}
do_test auth-1.174 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_TEMP_TRIGGER"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {DROP TRIGGER r1}
} {0 {}}
do_test auth-1.175 {
  set ::authargs
} {r1 t1 temp {}}
do_test auth-1.176 {
  execsql {SELECT name FROM sqlite_temp_master}
} {t1}
} ;# ifcapable trigger

do_test auth-1.177 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE INDEX i2 ON t2(a)}
} {1 {not authorized}}
do_test auth-1.178 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.179 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.180 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {CREATE INDEX i2 ON t2(a)}
} {1 {not authorized}}
do_test auth-1.181 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.182 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE INDEX i2 ON t2(b)}
} {0 {}}
do_test auth-1.183 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.184 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.185 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_INSERT" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {CREATE INDEX i2 ON t2(b)}
} {0 {}}
do_test auth-1.186 {
  execsql {SELECT name FROM sqlite_master}
} {t2}
do_test auth-1.187 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_CREATE_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {CREATE INDEX i2 ON t2(a)}
} {0 {}}
do_test auth-1.188 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.189 {
  execsql {SELECT name FROM sqlite_master}
} {t2 i2}

ifcapable tempdb {
  do_test auth-1.190 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_CREATE_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE INDEX i1 ON t1(a)}
  } {1 {not authorized}}
  do_test auth-1.191 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.192 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.193 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {CREATE INDEX i1 ON t1(b)}
  } {1 {not authorized}}
  do_test auth-1.194 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.195 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_CREATE_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE INDEX i1 ON t1(b)}
  } {0 {}}
  do_test auth-1.196 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.197 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.198 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_INSERT" && $arg1=="sqlite_temp_master"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {CREATE INDEX i1 ON t1(c)}
  } {0 {}}
  do_test auth-1.199 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
  do_test auth-1.200 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_CREATE_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_OK
      }
      return SQLITE_OK
    }
    catchsql {CREATE INDEX i1 ON t1(a)}
  } {0 {}}
  do_test auth-1.201 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.202 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 i1}
}

do_test auth-1.203 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP INDEX i2}
} {1 {not authorized}}
do_test auth-1.204 {
  execsql {SELECT name FROM sqlite_master}
} {t2 i2}
do_test auth-1.205 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {DROP INDEX i2}
} {1 {not authorized}}
do_test auth-1.206 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.207 {
  execsql {SELECT name FROM sqlite_master}
} {t2 i2}
do_test auth-1.208 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DELETE" && $arg1=="sqlite_master"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP INDEX i2}
} {0 {}}
do_test auth-1.209 {
  execsql {SELECT name FROM sqlite_master}
} {t2 i2}
do_test auth-1.210 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {DROP INDEX i2}
} {0 {}}
do_test auth-1.211 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.212 {
  execsql {SELECT name FROM sqlite_master}
} {t2 i2}
do_test auth-1.213 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_DROP_INDEX"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {DROP INDEX i2}
} {0 {}}
do_test auth-1.214 {
  set ::authargs
} {i2 t2 main {}}
do_test auth-1.215 {
  execsql {SELECT name FROM sqlite_master}
} {t2}

ifcapable tempdb {
  do_test auth-1.216 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP INDEX i1}
  } {1 {not authorized}}
  do_test auth-1.217 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 i1}
  do_test auth-1.218 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DROP_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {DROP INDEX i1}
  } {1 {not authorized}}
  do_test auth-1.219 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.220 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 i1}
  do_test auth-1.221 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DELETE" && $arg1=="sqlite_temp_master"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP INDEX i1}
  } {0 {}}
  do_test auth-1.222 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 i1}
  do_test auth-1.223 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DROP_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {DROP INDEX i1}
  } {0 {}}
  do_test auth-1.224 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.225 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1 i1}
  do_test auth-1.226 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DROP_TEMP_INDEX"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_OK
      }
      return SQLITE_OK
    }
    catchsql {DROP INDEX i1}
  } {0 {}}
  do_test auth-1.227 {
    set ::authargs
  } {i1 t1 temp {}}
  do_test auth-1.228 {
    execsql {SELECT name FROM sqlite_temp_master}
  } {t1}
}

do_test auth-1.229 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_PRAGMA"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {PRAGMA full_column_names=on}
} {1 {not authorized}}
do_test auth-1.230 {
  set ::authargs
} {full_column_names on {} {}}
do_test auth-1.231 {
  execsql2 {SELECT a FROM t2}
} {a 11 a 7}
do_test auth-1.232 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_PRAGMA"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {PRAGMA full_column_names=on}
} {0 {}}
do_test auth-1.233 {
  set ::authargs
} {full_column_names on {} {}}
do_test auth-1.234 {
  execsql2 {SELECT a FROM t2}
} {a 11 a 7}
do_test auth-1.235 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_PRAGMA"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {PRAGMA full_column_names=on}
} {0 {}}
do_test auth-1.236 {
  execsql2 {SELECT a FROM t2}
} {t2.a 11 t2.a 7}
do_test auth-1.237 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_PRAGMA"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {PRAGMA full_column_names=OFF}
} {0 {}}
do_test auth-1.238 {
  set ::authargs
} {full_column_names OFF {} {}}
do_test auth-1.239 {
  execsql2 {SELECT a FROM t2}
} {a 11 a 7}

do_test auth-1.240 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_TRANSACTION"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {BEGIN}
} {1 {not authorized}}
do_test auth-1.241 {
  set ::authargs
} {BEGIN {} {} {}}
do_test auth-1.242 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_TRANSACTION" && $arg1!="BEGIN"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {BEGIN; INSERT INTO t2 VALUES(44,55,66); COMMIT}
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
} {11 2 33 7 8 9}

# ticket #340 - authorization for ATTACH and DETACH.
#
ifcapable attach {
  do_test auth-1.251 {
    db authorizer ::auth
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_ATTACH"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      }
      return SQLITE_OK
    }
    catchsql {
      ATTACH DATABASE ':memory:' AS test1







|







1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
} {11 2 33 7 8 9}

# ticket #340 - authorization for ATTACH and DETACH.
#
ifcapable attach {
  do_test auth-1.251 {
    db authorizer ::auth
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_ATTACH"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      }
      return SQLITE_OK
    }
    catchsql {
      ATTACH DATABASE ':memory:' AS test1
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
  do_test auth-1.252c {
    db eval {DETACH test1}
    db eval {ATTACH ':mem' || 'ory:' AS test1}
    set ::authargs
  } {{} {} {} {}}
  do_test auth-1.253 {
    catchsql {DETACH DATABASE test1}
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_ATTACH"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {
      ATTACH DATABASE ':memory:' AS test1;
    }
  } {1 {not authorized}}
  do_test auth-1.254 {
    lindex [execsql {PRAGMA database_list}] 7
  } {}
  do_test auth-1.255 {
    catchsql {DETACH DATABASE test1}
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_ATTACH"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {
      ATTACH DATABASE ':memory:' AS test1;
    }
  } {0 {}}
  do_test auth-1.256 {
    lindex [execsql {PRAGMA database_list}] 7
  } {}
  do_test auth-1.257 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DETACH"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_OK
      }
      return SQLITE_OK
    }
    execsql {ATTACH DATABASE ':memory:' AS test1}
    catchsql {
      DETACH DATABASE test1;
    }
  } {0 {}}
  do_test auth-1.258 {
    lindex [execsql {PRAGMA database_list}] 7
  } {}
  do_test auth-1.259 {
    execsql {ATTACH DATABASE ':memory:' AS test1}
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_DETACH"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {
      DETACH DATABASE test1;
    }
  } {0 {}}
  ifcapable tempdb {
    ifcapable schema_pragmas {
    do_test auth-1.260 {
      lindex [execsql {PRAGMA database_list}] 7
    } {test1}
    } ;# ifcapable schema_pragmas
    do_test auth-1.261 {
      proc auth {code arg1 arg2 arg3 arg4} {
        if {$code=="SQLITE_DETACH"} {
          set ::authargs [list $arg1 $arg2 $arg3 $arg4]
          return SQLITE_DENY
        }
        return SQLITE_OK
      }
      catchsql {







|















|














|
















|

















|







1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
  do_test auth-1.252c {
    db eval {DETACH test1}
    db eval {ATTACH ':mem' || 'ory:' AS test1}
    set ::authargs
  } {{} {} {} {}}
  do_test auth-1.253 {
    catchsql {DETACH DATABASE test1}
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_ATTACH"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {
      ATTACH DATABASE ':memory:' AS test1;
    }
  } {1 {not authorized}}
  do_test auth-1.254 {
    lindex [execsql {PRAGMA database_list}] 7
  } {}
  do_test auth-1.255 {
    catchsql {DETACH DATABASE test1}
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_ATTACH"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {
      ATTACH DATABASE ':memory:' AS test1;
    }
  } {0 {}}
  do_test auth-1.256 {
    lindex [execsql {PRAGMA database_list}] 7
  } {}
  do_test auth-1.257 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DETACH"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_OK
      }
      return SQLITE_OK
    }
    execsql {ATTACH DATABASE ':memory:' AS test1}
    catchsql {
      DETACH DATABASE test1;
    }
  } {0 {}}
  do_test auth-1.258 {
    lindex [execsql {PRAGMA database_list}] 7
  } {}
  do_test auth-1.259 {
    execsql {ATTACH DATABASE ':memory:' AS test1}
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_DETACH"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {
      DETACH DATABASE test1;
    }
  } {0 {}}
  ifcapable tempdb {
    ifcapable schema_pragmas {
    do_test auth-1.260 {
      lindex [execsql {PRAGMA database_list}] 7
    } {test1}
    } ;# ifcapable schema_pragmas
    do_test auth-1.261 {
      proc auth {code arg1 arg2 arg3 arg4 args} {
        if {$code=="SQLITE_DETACH"} {
          set ::authargs [list $arg1 $arg2 $arg3 $arg4]
          return SQLITE_DENY
        }
        return SQLITE_OK
      }
      catchsql {
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
    db authorizer ::auth
    
    # Authorization for ALTER TABLE. These tests are omitted if the library
    # was built without ALTER TABLE support.
    ifcapable altertable {
    
      do_test auth-1.263 {
        proc auth {code arg1 arg2 arg3 arg4} {
          if {$code=="SQLITE_ALTER_TABLE"} {
            set ::authargs [list $arg1 $arg2 $arg3 $arg4]
            return SQLITE_OK
          }
          return SQLITE_OK
        }
        catchsql {
          ALTER TABLE t1 RENAME TO t1x
        }
      } {0 {}}
      do_test auth-1.264 {
        execsql {SELECT name FROM sqlite_temp_master WHERE type='table'}
      } {t1x}
      do_test auth-1.265 {
        set authargs
      } {temp t1 {} {}}
      do_test auth-1.266 {
        proc auth {code arg1 arg2 arg3 arg4} {
          if {$code=="SQLITE_ALTER_TABLE"} {
            set ::authargs [list $arg1 $arg2 $arg3 $arg4]
            return SQLITE_IGNORE
          }
          return SQLITE_OK
        }
        catchsql {
          ALTER TABLE t1x RENAME TO t1
        }
      } {0 {}}
      do_test auth-1.267 {
        execsql {SELECT name FROM sqlite_temp_master WHERE type='table'}
      } {t1x}
      do_test auth-1.268 {
        set authargs
      } {temp t1x {} {}}
      do_test auth-1.269 {
        proc auth {code arg1 arg2 arg3 arg4} {
          if {$code=="SQLITE_ALTER_TABLE"} {
            set ::authargs [list $arg1 $arg2 $arg3 $arg4]
            return SQLITE_DENY
          }
          return SQLITE_OK
        }
        catchsql {







|

















|

















|







1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
    db authorizer ::auth
    
    # Authorization for ALTER TABLE. These tests are omitted if the library
    # was built without ALTER TABLE support.
    ifcapable altertable {
    
      do_test auth-1.263 {
        proc auth {code arg1 arg2 arg3 arg4 args} {
          if {$code=="SQLITE_ALTER_TABLE"} {
            set ::authargs [list $arg1 $arg2 $arg3 $arg4]
            return SQLITE_OK
          }
          return SQLITE_OK
        }
        catchsql {
          ALTER TABLE t1 RENAME TO t1x
        }
      } {0 {}}
      do_test auth-1.264 {
        execsql {SELECT name FROM sqlite_temp_master WHERE type='table'}
      } {t1x}
      do_test auth-1.265 {
        set authargs
      } {temp t1 {} {}}
      do_test auth-1.266 {
        proc auth {code arg1 arg2 arg3 arg4 args} {
          if {$code=="SQLITE_ALTER_TABLE"} {
            set ::authargs [list $arg1 $arg2 $arg3 $arg4]
            return SQLITE_IGNORE
          }
          return SQLITE_OK
        }
        catchsql {
          ALTER TABLE t1x RENAME TO t1
        }
      } {0 {}}
      do_test auth-1.267 {
        execsql {SELECT name FROM sqlite_temp_master WHERE type='table'}
      } {t1x}
      do_test auth-1.268 {
        set authargs
      } {temp t1x {} {}}
      do_test auth-1.269 {
        proc auth {code arg1 arg2 arg3 arg4 args} {
          if {$code=="SQLITE_ALTER_TABLE"} {
            set ::authargs [list $arg1 $arg2 $arg3 $arg4]
            return SQLITE_DENY
          }
          return SQLITE_OK
        }
        catchsql {
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
}

ifcapable  altertable {
db authorizer {}
catchsql {ALTER TABLE t1x RENAME TO t1}
db authorizer ::auth
do_test auth-1.272 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_ALTER_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {
    ALTER TABLE t2 RENAME TO t2x
  }
} {0 {}}
do_test auth-1.273 {
  execsql {SELECT name FROM sqlite_master WHERE type='table'}
} {t2x}
do_test auth-1.274 {
  set authargs
} {main t2 {} {}}
do_test auth-1.275 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_ALTER_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {
    ALTER TABLE t2x RENAME TO t2
  }
} {0 {}}
do_test auth-1.276 {
  execsql {SELECT name FROM sqlite_master WHERE type='table'}
} {t2x}
do_test auth-1.277 {
  set authargs
} {main t2x {} {}}
do_test auth-1.278 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_ALTER_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {







|

















|

















|







1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
}

ifcapable  altertable {
db authorizer {}
catchsql {ALTER TABLE t1x RENAME TO t1}
db authorizer ::auth
do_test auth-1.272 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_ALTER_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_OK
    }
    return SQLITE_OK
  }
  catchsql {
    ALTER TABLE t2 RENAME TO t2x
  }
} {0 {}}
do_test auth-1.273 {
  execsql {SELECT name FROM sqlite_master WHERE type='table'}
} {t2x}
do_test auth-1.274 {
  set authargs
} {main t2 {} {}}
do_test auth-1.275 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_ALTER_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {
    ALTER TABLE t2x RENAME TO t2
  }
} {0 {}}
do_test auth-1.276 {
  execsql {SELECT name FROM sqlite_master WHERE type='table'}
} {t2x}
do_test auth-1.277 {
  set authargs
} {main t2x {} {}}
do_test auth-1.278 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_ALTER_TABLE"} {
      set ::authargs [list $arg1 $arg2 $arg3 $arg4]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  catchsql {
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
} ;# ifcapable altertable

# Test the authorization callbacks for the REINDEX command.
ifcapable reindex {

proc auth {code args} {
  if {$code=="SQLITE_REINDEX"} {
    set ::authargs [concat $::authargs $args]
  }
  return SQLITE_OK
}
db authorizer auth
do_test auth-1.281 {
  execsql {
    CREATE TABLE t3(a PRIMARY KEY, b, c);







|







1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
} ;# ifcapable altertable

# Test the authorization callbacks for the REINDEX command.
ifcapable reindex {

proc auth {code args} {
  if {$code=="SQLITE_REINDEX"} {
    set ::authargs [concat $::authargs [lrange $args 0 3]]
  }
  return SQLITE_OK
}
db authorizer auth
do_test auth-1.281 {
  execsql {
    CREATE TABLE t3(a PRIMARY KEY, b, c);
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
    execsql {
      REINDEX temp.t3;
    }
    set ::authargs
  } {t3_idx2 {} temp {} t3_idx1 {} temp {} sqlite_autoindex_t3_1 {} temp {}}
  proc auth {code args} {
    if {$code=="SQLITE_REINDEX"} {
      set ::authargs [concat $::authargs $args]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  do_test auth-1.292 {
    set ::authargs {}
    catchsql {







|







1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
    execsql {
      REINDEX temp.t3;
    }
    set ::authargs
  } {t3_idx2 {} temp {} t3_idx1 {} temp {} sqlite_autoindex_t3_1 {} temp {}}
  proc auth {code args} {
    if {$code=="SQLITE_REINDEX"} {
      set ::authargs [concat $::authargs [lrange $args 0 3]]
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  do_test auth-1.292 {
    set ::authargs {}
    catchsql {
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
}

} ;# ifcapable reindex 

ifcapable analyze {
  proc auth {code args} {
    if {$code=="SQLITE_ANALYZE"} {
      set ::authargs [concat $::authargs $args]
    }
    return SQLITE_OK
  }
  do_test auth-1.294 {
    set ::authargs {}
    execsql {
      CREATE TABLE t4(a,b,c);







|







1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
}

} ;# ifcapable reindex 

ifcapable analyze {
  proc auth {code args} {
    if {$code=="SQLITE_ANALYZE"} {
      set ::authargs [concat $::authargs [lrange $args 0 3]]
    }
    return SQLITE_OK
  }
  do_test auth-1.294 {
    set ::authargs {}
    execsql {
      CREATE TABLE t4(a,b,c);
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068

# Authorization for ALTER TABLE ADD COLUMN.
# These tests are omitted if the library
# was built without ALTER TABLE support.
ifcapable {altertable} {
  do_test auth-1.300 {
    execsql {CREATE TABLE t5(x)}
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_ALTER_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_OK
      }
      return SQLITE_OK
    }
    catchsql {
      ALTER TABLE t5 ADD COLUMN new_col_1;
    }
  } {0 {}}
  do_test auth-1.301 {
    set x [execsql {SELECT sql FROM sqlite_master WHERE name='t5'}]
    regexp new_col_1 $x
  } {1}
  do_test auth-1.302 {
    set authargs
  } {main t5 {} {}}
  do_test auth-1.303 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_ALTER_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {
      ALTER TABLE t5 ADD COLUMN new_col_2;
    }
  } {0 {}}
  do_test auth-1.304 {
    set x [execsql {SELECT sql FROM sqlite_master WHERE name='t5'}]
    regexp new_col_2 $x
  } {0}
  do_test auth-1.305 {
    set authargs
  } {main t5 {} {}}
  do_test auth-1.306 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_ALTER_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {







|


















|


















|







2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068

# Authorization for ALTER TABLE ADD COLUMN.
# These tests are omitted if the library
# was built without ALTER TABLE support.
ifcapable {altertable} {
  do_test auth-1.300 {
    execsql {CREATE TABLE t5(x)}
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_ALTER_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_OK
      }
      return SQLITE_OK
    }
    catchsql {
      ALTER TABLE t5 ADD COLUMN new_col_1;
    }
  } {0 {}}
  do_test auth-1.301 {
    set x [execsql {SELECT sql FROM sqlite_master WHERE name='t5'}]
    regexp new_col_1 $x
  } {1}
  do_test auth-1.302 {
    set authargs
  } {main t5 {} {}}
  do_test auth-1.303 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_ALTER_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    catchsql {
      ALTER TABLE t5 ADD COLUMN new_col_2;
    }
  } {0 {}}
  do_test auth-1.304 {
    set x [execsql {SELECT sql FROM sqlite_master WHERE name='t5'}]
    regexp new_col_2 $x
  } {0}
  do_test auth-1.305 {
    set authargs
  } {main t5 {} {}}
  do_test auth-1.306 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_ALTER_TABLE"} {
        set ::authargs [list $arg1 $arg2 $arg3 $arg4]
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    catchsql {
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
    set authargs
  } {main t5 {} {}}
  execsql {DROP TABLE t5}
} ;# ifcapable altertable

ifcapable {cte} {
  do_test auth-1.310 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_RECURSIVE"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    db eval {
       DROP TABLE IF EXISTS t1;







|







2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
    set authargs
  } {main t5 {} {}}
  execsql {DROP TABLE t5}
} ;# ifcapable altertable

ifcapable {cte} {
  do_test auth-1.310 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_RECURSIVE"} {
        return SQLITE_DENY
      }
      return SQLITE_OK
    }
    db eval {
       DROP TABLE IF EXISTS t1;
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
    WITH RECURSIVE
       auth1314(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM auth1314 WHERE x<5)
    SELECT * FROM t1 LEFT JOIN auth1314;
  } {1 {not authorized}}
} ;# ifcapable cte

do_test auth-2.1 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t3" && $arg2=="x"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  db authorizer ::auth
  execsql {CREATE TABLE t3(x INTEGER PRIMARY KEY, y, z)}
  catchsql {SELECT * FROM t3}
} {1 {access to t3.x is prohibited}}
do_test auth-2.1 {
  catchsql {SELECT y,z FROM t3}
} {0 {}}
do_test auth-2.2 {
  catchsql {SELECT ROWID,y,z FROM t3}
} {1 {access to t3.x is prohibited}}
do_test auth-2.3 {
  catchsql {SELECT OID,y,z FROM t3}
} {1 {access to t3.x is prohibited}}
do_test auth-2.4 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t3" && $arg2=="x"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  execsql {INSERT INTO t3 VALUES(44,55,66)}
  catchsql {SELECT * FROM t3}
} {0 {{} 55 66}}
do_test auth-2.5 {
  catchsql {SELECT rowid,y,z FROM t3}
} {0 {{} 55 66}}
do_test auth-2.6 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t3" && $arg2=="ROWID"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t3}
} {0 {44 55 66}}
do_test auth-2.7 {
  catchsql {SELECT ROWID,y,z FROM t3}
} {0 {44 55 66}}
do_test auth-2.8 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="ROWID"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT ROWID,b,c FROM t2}
} {0 {{} 2 33 {} 8 9}}
do_test auth-2.9.1 {
  # We have to flush the cache here in case the Tcl interface tries to
  # reuse a statement compiled with sqlite3_prepare_v2(). In this case,
  # the first error encountered is an SQLITE_SCHEMA error. Then, when
  # trying to recompile the statement, the authorization error is encountered.
  # If we do not flush the cache, the correct error message is returned, but
  # the error code is SQLITE_SCHEMA, not SQLITE_ERROR as required by the test
  # case after this one.
  #
  db cache flush

  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="ROWID"} {
      return bogus
    }
    return SQLITE_OK
  }
  catchsql {SELECT ROWID,b,c FROM t2}
} {1 {authorizer malfunction}}
do_test auth-2.9.2 {
  db errorcode
} {1}
do_test auth-2.10 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_SELECT"} {
      return bogus
    }
    return SQLITE_OK
  }
  catchsql {SELECT ROWID,b,c FROM t2}
} {1 {authorizer malfunction}}
do_test auth-2.11.1 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg2=="a"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2, t3}
} {0 {{} 2 33 44 55 66 {} 8 9 44 55 66}}
do_test auth-2.11.2 {
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_READ" && $arg2=="x"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2, t3}
} {0 {11 2 33 {} 55 66 7 8 9 {} 55 66}}

# Make sure the OLD and NEW pseudo-tables of a trigger get authorized.
#
ifcapable trigger {
  do_test auth-3.1 {
    proc auth {code arg1 arg2 arg3 arg4} {
      return SQLITE_OK
    }
    execsql {
      CREATE TABLE tx(a1,a2,b1,b2,c1,c2);
      CREATE TRIGGER r1 AFTER UPDATE ON t2 FOR EACH ROW BEGIN
        INSERT INTO tx VALUES(OLD.a,NEW.a,OLD.b,NEW.b,OLD.c,NEW.c);
      END;
      UPDATE t2 SET a=a+1;
      SELECT * FROM tx;
    }
  } {11 12 2 2 33 33 7 8 8 8 9 9}
  do_test auth-3.2 {
    proc auth {code arg1 arg2 arg3 arg4} {
      if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="c"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    execsql {
      DELETE FROM tx;
      UPDATE t2 SET a=a+100;
      SELECT * FROM tx;
    }
  } {12 112 2 2 {} {} 8 108 8 8 {} {}}
} ;# ifcapable trigger

# Make sure the names of views and triggers are passed on on arg4.
#
ifcapable trigger {
do_test auth-4.1 {
  proc auth {code arg1 arg2 arg3 arg4} {
    lappend ::authargs $code $arg1 $arg2 $arg3 $arg4
    return SQLITE_OK
  }
  set authargs {}
  execsql {
    UPDATE t2 SET a=a+1;
  }







|



















|












|











|


















|











|








|








|












|












|

















|







2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
    WITH RECURSIVE
       auth1314(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM auth1314 WHERE x<5)
    SELECT * FROM t1 LEFT JOIN auth1314;
  } {1 {not authorized}}
} ;# ifcapable cte

do_test auth-2.1 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t3" && $arg2=="x"} {
      return SQLITE_DENY
    }
    return SQLITE_OK
  }
  db authorizer ::auth
  execsql {CREATE TABLE t3(x INTEGER PRIMARY KEY, y, z)}
  catchsql {SELECT * FROM t3}
} {1 {access to t3.x is prohibited}}
do_test auth-2.1 {
  catchsql {SELECT y,z FROM t3}
} {0 {}}
do_test auth-2.2 {
  catchsql {SELECT ROWID,y,z FROM t3}
} {1 {access to t3.x is prohibited}}
do_test auth-2.3 {
  catchsql {SELECT OID,y,z FROM t3}
} {1 {access to t3.x is prohibited}}
do_test auth-2.4 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t3" && $arg2=="x"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  execsql {INSERT INTO t3 VALUES(44,55,66)}
  catchsql {SELECT * FROM t3}
} {0 {{} 55 66}}
do_test auth-2.5 {
  catchsql {SELECT rowid,y,z FROM t3}
} {0 {{} 55 66}}
do_test auth-2.6 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t3" && $arg2=="ROWID"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t3}
} {0 {44 55 66}}
do_test auth-2.7 {
  catchsql {SELECT ROWID,y,z FROM t3}
} {0 {44 55 66}}
do_test auth-2.8 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="ROWID"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT ROWID,b,c FROM t2}
} {0 {{} 2 33 {} 8 9}}
do_test auth-2.9.1 {
  # We have to flush the cache here in case the Tcl interface tries to
  # reuse a statement compiled with sqlite3_prepare_v2(). In this case,
  # the first error encountered is an SQLITE_SCHEMA error. Then, when
  # trying to recompile the statement, the authorization error is encountered.
  # If we do not flush the cache, the correct error message is returned, but
  # the error code is SQLITE_SCHEMA, not SQLITE_ERROR as required by the test
  # case after this one.
  #
  db cache flush

  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="ROWID"} {
      return bogus
    }
    return SQLITE_OK
  }
  catchsql {SELECT ROWID,b,c FROM t2}
} {1 {authorizer malfunction}}
do_test auth-2.9.2 {
  db errorcode
} {1}
do_test auth-2.10 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_SELECT"} {
      return bogus
    }
    return SQLITE_OK
  }
  catchsql {SELECT ROWID,b,c FROM t2}
} {1 {authorizer malfunction}}
do_test auth-2.11.1 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg2=="a"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2, t3}
} {0 {{} 2 33 44 55 66 {} 8 9 44 55 66}}
do_test auth-2.11.2 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_READ" && $arg2=="x"} {
      return SQLITE_IGNORE
    }
    return SQLITE_OK
  }
  catchsql {SELECT * FROM t2, t3}
} {0 {11 2 33 {} 55 66 7 8 9 {} 55 66}}

# Make sure the OLD and NEW pseudo-tables of a trigger get authorized.
#
ifcapable trigger {
  do_test auth-3.1 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      return SQLITE_OK
    }
    execsql {
      CREATE TABLE tx(a1,a2,b1,b2,c1,c2);
      CREATE TRIGGER r1 AFTER UPDATE ON t2 FOR EACH ROW BEGIN
        INSERT INTO tx VALUES(OLD.a,NEW.a,OLD.b,NEW.b,OLD.c,NEW.c);
      END;
      UPDATE t2 SET a=a+1;
      SELECT * FROM tx;
    }
  } {11 12 2 2 33 33 7 8 8 8 9 9}
  do_test auth-3.2 {
    proc auth {code arg1 arg2 arg3 arg4 args} {
      if {$code=="SQLITE_READ" && $arg1=="t2" && $arg2=="c"} {
        return SQLITE_IGNORE
      }
      return SQLITE_OK
    }
    execsql {
      DELETE FROM tx;
      UPDATE t2 SET a=a+100;
      SELECT * FROM tx;
    }
  } {12 112 2 2 {} {} 8 108 8 8 {} {}}
} ;# ifcapable trigger

# Make sure the names of views and triggers are passed on on arg4.
#
ifcapable trigger {
do_test auth-4.1 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    lappend ::authargs $code $arg1 $arg2 $arg3 $arg4
    return SQLITE_OK
  }
  set authargs {}
  execsql {
    UPDATE t2 SET a=a+1;
  }
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350

} ;# ifcapable view && trigger

# Ticket #1338:  Make sure authentication works in the presence of an AS
# clause.
#
do_test auth-5.1 {
  proc auth {code arg1 arg2 arg3 arg4} {
    return SQLITE_OK
  }
  execsql {
    SELECT count(a) AS cnt FROM t4 ORDER BY cnt
  }
} {1}








|







2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350

} ;# ifcapable view && trigger

# Ticket #1338:  Make sure authentication works in the presence of an AS
# clause.
#
do_test auth-5.1 {
  proc auth {code arg1 arg2 arg3 arg4 args} {
    return SQLITE_OK
  }
  execsql {
    SELECT count(a) AS cnt FROM t4 ORDER BY cnt
  }
} {1}

2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
      CREATE TRIGGER t5_tr1 AFTER INSERT ON t5 BEGIN 
        UPDATE t5 SET x = 1 WHERE NEW.x = 0;
      END;
    }
  } {}
  set ::authargs [list]
  proc auth {args} {
    eval lappend ::authargs $args
    return SQLITE_OK
  }
  do_test auth-5.3.2 {
    execsql { INSERT INTO t5 (x) values(0) }
    set ::authargs
  } [list SQLITE_INSERT t5 {} main {}    \
          SQLITE_UPDATE t5 x main t5_tr1 \







|







2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
      CREATE TRIGGER t5_tr1 AFTER INSERT ON t5 BEGIN 
        UPDATE t5 SET x = 1 WHERE NEW.x = 0;
      END;
    }
  } {}
  set ::authargs [list]
  proc auth {args} {
    eval lappend ::authargs [lrange $args 0 4]
    return SQLITE_OK
  }
  do_test auth-5.3.2 {
    execsql { INSERT INTO t5 (x) values(0) }
    set ::authargs
  } [list SQLITE_INSERT t5 {} main {}    \
          SQLITE_UPDATE t5 x main t5_tr1 \
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
  execsql {
    CREATE TABLE t6(a,b,c,d,e,f,g,h);
    INSERT INTO t6 VALUES(1,2,3,4,5,6,7,8);
  }
} {}
set ::authargs [list]
proc auth {args} {
  eval lappend ::authargs $args
  return SQLITE_OK
}
do_test auth-6.2 {
  execsql {UPDATE t6 SET rowID=rowID+100}
  set ::authargs
} [list SQLITE_READ   t6 ROWID main {} \
        SQLITE_UPDATE t6 ROWID main {} \







|







2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
  execsql {
    CREATE TABLE t6(a,b,c,d,e,f,g,h);
    INSERT INTO t6 VALUES(1,2,3,4,5,6,7,8);
  }
} {}
set ::authargs [list]
proc auth {args} {
  eval lappend ::authargs [lrange $args 0 4]
  return SQLITE_OK
}
do_test auth-6.2 {
  execsql {UPDATE t6 SET rowID=rowID+100}
  set ::authargs
} [list SQLITE_READ   t6 ROWID main {} \
        SQLITE_UPDATE t6 ROWID main {} \
Changes to test/auth2.test.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

do_test auth2-1.1 {
  execsql {
    CREATE TABLE t1(a,b,c);
    INSERT INTO t1 VALUES(1,2,3);
  }
  set ::flist {}
  proc auth {code arg1 arg2 arg3 arg4} {
    if {$code=="SQLITE_FUNCTION"} {
      lappend ::flist $arg2
      if {$arg2=="max"} {
        return SQLITE_DENY
      } elseif {$arg2=="min"} {
        return SQLITE_IGNORE
      } else {







|







27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

do_test auth2-1.1 {
  execsql {
    CREATE TABLE t1(a,b,c);
    INSERT INTO t1 VALUES(1,2,3);
  }
  set ::flist {}
  proc auth {code arg1 arg2 arg3 arg4 args} {
    if {$code=="SQLITE_FUNCTION"} {
      lappend ::flist $arg2
      if {$arg2=="max"} {
        return SQLITE_DENY
      } elseif {$arg2=="min"} {
        return SQLITE_IGNORE
      } else {
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# and when computing the result set of a view.
#
db close
sqlite3 db test.db
sqlite3 db2 test.db
proc auth {args} {
  global authargs
  append authargs $args\n
  return SQLITE_OK
}
db auth auth
do_test auth2-2.1 {
  set ::authargs {}
  db eval {
    CREATE TABLE t2(x,y,z);







|







76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# and when computing the result set of a view.
#
db close
sqlite3 db test.db
sqlite3 db2 test.db
proc auth {args} {
  global authargs
  append authargs [lrange $args 0 4]\n
  return SQLITE_OK
}
db auth auth
do_test auth2-2.1 {
  set ::authargs {}
  db eval {
    CREATE TABLE t2(x,y,z);
Changes to test/auth3.test.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
}

# Disable the statement cache for these tests.
# 
db cache size 0

db authorizer ::auth
proc auth {code arg1 arg2 arg3 arg4} {
  if {$code=="SQLITE_DELETE"} {
    return $::authcode
  }
  return SQLITE_OK
}

#--------------------------------------------------------------------------







|







26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
}

# Disable the statement cache for these tests.
# 
db cache size 0

db authorizer ::auth
proc auth {code arg1 arg2 arg3 arg4 args} {
  if {$code=="SQLITE_DELETE"} {
    return $::authcode
  }
  return SQLITE_OK
}

#--------------------------------------------------------------------------
Changes to test/fkey2.test.
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
    execsql {
      CREATE TABLE long(a, b PRIMARY KEY, c);
      CREATE TABLE short(d, e, f REFERENCES long);
      CREATE TABLE mid(g, h, i REFERENCES long DEFERRABLE INITIALLY DEFERRED);
    }
  } {}

  proc auth {args} {eval lappend ::authargs $args ; return SQLITE_OK}
  db auth auth

  # An insert on the parent table must read the child key of any deferred
  # foreign key constraints. But not the child key of immediate constraints.
  set authargs {}
  do_test fkey2-18.2 {
    execsql { INSERT INTO long VALUES(1, 2, 3) }







|







1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
    execsql {
      CREATE TABLE long(a, b PRIMARY KEY, c);
      CREATE TABLE short(d, e, f REFERENCES long);
      CREATE TABLE mid(g, h, i REFERENCES long DEFERRABLE INITIALLY DEFERRED);
    }
  } {}

  proc auth {args} {eval lappend ::authargs [lrange $args 0 4]; return SQLITE_OK}
  db auth auth

  # An insert on the parent table must read the child key of any deferred
  # foreign key constraints. But not the child key of immediate constraints.
  set authargs {}
  do_test fkey2-18.2 {
    execsql { INSERT INTO long VALUES(1, 2, 3) }
Changes to test/fts4aa.test.
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    db eval {SELECT docid FROM t1 WHERE words MATCH $::q ORDER BY docid}
  } $r
}

# Should get the same search results when an authorizer prevents
# all PRAGMA statements.
#
proc no_pragma_auth {code arg1 arg2 arg3 arg4} {
  if {$code=="SQLITE_PRAGMA"} {return SQLITE_DENY}
  return SQLITE_OK;
}
do_test fts4aa-4.0 {
  db auth ::no_pragma_auth
  db eval {
    DROP TABLE t1;







|







166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    db eval {SELECT docid FROM t1 WHERE words MATCH $::q ORDER BY docid}
  } $r
}

# Should get the same search results when an authorizer prevents
# all PRAGMA statements.
#
proc no_pragma_auth {code arg1 arg2 arg3 arg4 args} {
  if {$code=="SQLITE_PRAGMA"} {return SQLITE_DENY}
  return SQLITE_OK;
}
do_test fts4aa-4.0 {
  db auth ::no_pragma_auth
  db eval {
    DROP TABLE t1;
Changes to test/minmax4.test.
52
53
54
55
56
57
58

59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
    INSERT INTO t1 VALUES(3,4);
    SELECT p, max(q) FROM t1;
  }
} {3 4}
do_test minmax4-1.6 {
  db eval {
    SELECT p, min(q) FROM t1;

  }
} {1 2}
do_test minmax4-1.7 {
  db eval {
    INSERT INTO t1 VALUES(5,0);
    SELECT p, max(q) FROM t1;

  }
} {3 4}
do_test minmax4-1.8 {
  db eval {
    SELECT p, min(q) FROM t1;
  }
} {5 0}
do_test minmax4-1.9 {
  db eval {
    INSERT INTO t1 VALUES(6,1);
    SELECT p, max(q) FROM t1;

  }
} {3 4}
do_test minmax4-1.10 {
  db eval {
    SELECT p, min(q) FROM t1;
  }
} {5 0}
do_test minmax4-1.11 {
  db eval {







>

|




>

|









>

|







52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    INSERT INTO t1 VALUES(3,4);
    SELECT p, max(q) FROM t1;
  }
} {3 4}
do_test minmax4-1.6 {
  db eval {
    SELECT p, min(q) FROM t1;
    SELECT p FROM (SELECT p, min(q) FROM t1);
  }
} {1 2 1}
do_test minmax4-1.7 {
  db eval {
    INSERT INTO t1 VALUES(5,0);
    SELECT p, max(q) FROM t1;
    SELECT p FROM (SELECT max(q), p FROM t1);
  }
} {3 4 3}
do_test minmax4-1.8 {
  db eval {
    SELECT p, min(q) FROM t1;
  }
} {5 0}
do_test minmax4-1.9 {
  db eval {
    INSERT INTO t1 VALUES(6,1);
    SELECT p, max(q) FROM t1;
    SELECT p FROM (SELECT max(q), p FROM t1);
  }
} {3 4 3}
do_test minmax4-1.10 {
  db eval {
    SELECT p, min(q) FROM t1;
  }
} {5 0}
do_test minmax4-1.11 {
  db eval {
Changes to test/orderby1.test.
476
477
478
479
480
481
482














483
484
485
  SELECT (
    SELECT 'hardware' FROM ( 
      SELECT 'software' ORDER BY 'firmware' ASC, 'sportswear' DESC 
    ) GROUP BY 1 HAVING length(b)
  )
  FROM abc;
} {hardware hardware hardware}
















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>



476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
  SELECT (
    SELECT 'hardware' FROM ( 
      SELECT 'software' ORDER BY 'firmware' ASC, 'sportswear' DESC 
    ) GROUP BY 1 HAVING length(b)
  )
  FROM abc;
} {hardware hardware hardware}

# Here is a test for a query-planner problem reported on the SQLite
# mailing list on 2014-09-18 by "Merike".  Beginning with version 3.8.0,
# a separate sort was being used rather than using the single-column
# index.  This was due to an oversight in the indexMightHelpWithOrderby()
# routine in where.c.
#
do_execsql_test 7.0 {
  CREATE TABLE t7(a,b);
  CREATE INDEX t7a ON t7(a);
  CREATE INDEX t7ab ON t7(a,b);
  EXPLAIN QUERY PLAN
  SELECT * FROM t7 WHERE a=?1 ORDER BY rowid;
} {~/ORDER BY/}


finish_test
Changes to test/savepoint.test.
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
  execsql { RELEASE "including Whitespace " }
} {}

# Test that the authorization callback works.
#
ifcapable auth {
  proc auth {args} {
    eval lappend ::authdata $args
    return SQLITE_OK
  }
  db auth auth

  do_test savepoint-9.1 {
    set ::authdata [list]
    execsql { SAVEPOINT sp1 }







|







557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
  execsql { RELEASE "including Whitespace " }
} {}

# Test that the authorization callback works.
#
ifcapable auth {
  proc auth {args} {
    eval lappend ::authdata [lrange $args 0 4]
    return SQLITE_OK
  }
  db auth auth

  do_test savepoint-9.1 {
    set ::authdata [list]
    execsql { SAVEPOINT sp1 }
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
  do_test savepoint-9.3 {
    set ::authdata [list]
    execsql { RELEASE sp1 }
    set ::authdata
  } {SQLITE_SAVEPOINT RELEASE sp1 {} {}}

  proc auth {args} {
    eval lappend ::authdata $args
    return SQLITE_DENY
  }
  db auth auth

  do_test savepoint-9.4 {
    set ::authdata [list]
    set res [catchsql { SAVEPOINT sp1 }]







|







579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
  do_test savepoint-9.3 {
    set ::authdata [list]
    execsql { RELEASE sp1 }
    set ::authdata
  } {SQLITE_SAVEPOINT RELEASE sp1 {} {}}

  proc auth {args} {
    eval lappend ::authdata [lrange $args 0 4]
    return SQLITE_DENY
  }
  db auth auth

  do_test savepoint-9.4 {
    set ::authdata [list]
    set res [catchsql { SAVEPOINT sp1 }]
Added test/sort5.test.


























































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# 2014 September 15.
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. 
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix sort5


#-------------------------------------------------------------------------
# Verify that sorting works with a version 1 sqlite3_io_methods structure.
#
testvfs tvfs -iversion 1 -default true
reset_db
do_execsql_test 1.0 {
  PRAGMA mmap_size = 10000000;
  PRAGMA cache_size = 10;
  CREATE TABLE t1(a, b);
} {0}

do_test 1.1 {
  execsql BEGIN
  for {set i 0} {$i < 2000} {incr i} {
    execsql { INSERT INTO t1 VALUES($i, randomblob(2000)) }
  }
  execsql COMMIT
} {}

do_execsql_test 1.2 {
  CREATE INDEX i1 ON t1(b);
}

db close
tvfs delete
finish_test

Changes to test/subquery2.test.
98
99
100
101
102
103
104













































105
106
107
}

do_execsql_test 2.2 {
  SELECT * 
  FROM (SELECT * FROM t4 ORDER BY a LIMIT -1 OFFSET 1) 
  LIMIT (SELECT a FROM t5)
} {2 3   3 6   4 10}















































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
}

do_execsql_test 2.2 {
  SELECT * 
  FROM (SELECT * FROM t4 ORDER BY a LIMIT -1 OFFSET 1) 
  LIMIT (SELECT a FROM t5)
} {2 3   3 6   4 10}

############################################################################
# Ticket http://www.sqlite.org/src/info/d11a6e908f (2014-09-20)
# Query planner fault on three-way nested join with compound inner SELECT 
#
do_execsql_test 3.0 {
  DROP TABLE IF EXISTS t1;
  DROP TABLE IF EXISTS t2;
  CREATE TABLE t1 (id INTEGER PRIMARY KEY, data TEXT);
  INSERT INTO t1(id,data) VALUES(9,'nine-a');
  INSERT INTO t1(id,data) VALUES(10,'ten-a');
  INSERT INTO t1(id,data) VALUES(11,'eleven-a');
  CREATE TABLE t2 (id INTEGER PRIMARY KEY, data TEXT);
  INSERT INTO t2(id,data) VALUES(9,'nine-b');
  INSERT INTO t2(id,data) VALUES(10,'ten-b');
  INSERT INTO t2(id,data) VALUES(11,'eleven-b');
  
  SELECT id FROM (
    SELECT id,data FROM (
       SELECT * FROM t1 UNION ALL SELECT * FROM t2
    )
    WHERE id=10 ORDER BY data
  );
} {10 10}
do_execsql_test 3.1 {
  SELECT data FROM (
     SELECT 'dummy', data FROM (
       SELECT data FROM t1 UNION ALL SELECT data FROM t1
     ) ORDER BY data
  );
} {eleven-a eleven-a nine-a nine-a ten-a ten-a}
do_execsql_test 3.2 {
  DROP TABLE IF EXISTS t3;
  DROP TABLE IF EXISTS t4;
  CREATE TABLE t3(id INTEGER, data TEXT);
  CREATE TABLE t4(id INTEGER, data TEXT);
  INSERT INTO t3 VALUES(4, 'a'),(2,'c');
  INSERT INTO t4 VALUES(3, 'b'),(1,'d');

  SELECT data, id FROM (
    SELECT id, data FROM (
       SELECT * FROM t3 UNION ALL SELECT * FROM t4
    ) ORDER BY data
  );
} {a 4 b 3 c 2 d 1}


finish_test
Added test/userauth01.test.


































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# 2014-09-10
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# 
# This file implements tests of the SQLITE_USER_AUTHENTICATION extension.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix userauth01

ifcapable !userauth {
  finish_test
  return
}

# Create a no-authentication-required database
#
do_execsql_test userauth01-1.0 {
  CREATE TABLE t1(x);
  INSERT INTO t1 VALUES(1),(2.5),('three'),(x'4444'),(NULL);
  SELECT quote(x) FROM t1 ORDER BY x;
  SELECT name FROM sqlite_master;
} {NULL 1 2.5 'three' X'4444' t1}

# Calling sqlite3_user_authenticate() on a no-authentication-required
# database connection is a harmless no-op.  
#
do_test userauth01-1.1 {
  sqlite3_user_authenticate db alice pw-4-alice
  execsql {
    SELECT quote(x) FROM t1 ORDER BY x;
    SELECT name FROM sqlite_master;
  }
} {NULL 1 2.5 'three' X'4444' t1}

# If sqlite3_user_add(D,U,P,N,A) is called on a no-authentication-required
# database and A is false, then the call fails with an SQLITE_AUTH error.
#
do_test userauth01-1.2 {
  sqlite3_user_add db bob pw-4-bob 0
} {SQLITE_AUTH}
do_test userauth01-1.3 {
  execsql {
    SELECT quote(x) FROM t1 ORDER BY x;
    SELECT name FROM sqlite_master;
  }
} {NULL 1 2.5 'three' X'4444' t1}

# When called on a no-authentication-required
# database and when A is true, the sqlite3_user_add(D,U,P,N,A) routine
# converts the database into an authentication-required database and
# logs the database connection D in using user U with password P,N.
#  
do_test userauth01-1.4 {
  sqlite3_user_add db alice pw-4-alice 1
} {SQLITE_OK}
do_test userauth01-1.5 {
  execsql {
    SELECT quote(x) FROM t1 ORDER BY x;
    SELECT uname, isadmin FROM sqlite_user ORDER BY uname;
    SELECT name FROM sqlite_master ORDER BY name;
  }
} {NULL 1 2.5 'three' X'4444' alice 1 sqlite_user t1}

# The sqlite3_user_add() interface can be used (by an admin user only)
# to create a new user.
#
do_test userauth01-1.6 {
  sqlite3_user_add db bob pw-4-bob 0
  sqlite3_user_add db cindy pw-4-cindy 0
  sqlite3_user_add db david pw-4-david 0
  execsql {
    SELECT uname, isadmin FROM sqlite_user ORDER BY uname;
  }
} {alice 1 bob 0 cindy 0 david 0}

# The sqlite_user table is inaccessible (unreadable and unwriteable) to
# non-admin users and is read-only for admin users.  However, if the same
#
do_test userauth01-1.7 {
  sqlite3 db2 test.db
  sqlite3_user_authenticate db2 cindy pw-4-cindy
  db2 eval {
    SELECT quote(x) FROM t1 ORDER BY x;
    SELECT name FROM sqlite_master ORDER BY name;
  }
} {NULL 1 2.5 'three' X'4444' sqlite_user t1}
do_test userauth01-1.8 {
  catchsql {
    SELECT uname, isadmin FROM sqlite_user ORDER BY uname;
  } db2
} {1 {no such table: sqlite_user}}

# Any user can change their own password.  
#
do_test userauth01-1.9 {
  sqlite3_user_change db2 cindy xyzzy-cindy 0
} {SQLITE_OK}
do_test userauth01-1.10 {
  sqlite3_user_authenticate db2 cindy pw-4-cindy
} {SQLITE_AUTH}
do_test userauth01-1.11 {
  sqlite3_user_authenticate db2 cindy xyzzy-cindy
} {SQLITE_OK}
do_test userauth01-1.12 {
  sqlite3_user_change db alice xyzzy-alice 1
} {SQLITE_OK}
do_test userauth01-1.13 {
  sqlite3_user_authenticate db alice pw-4-alice
} {SQLITE_AUTH}
do_test userauth01-1.14 {
  sqlite3_user_authenticate db alice xyzzy-alice
} {SQLITE_OK}

# No user may change their own admin privilege setting.
#
do_test userauth01-1.15 {
  sqlite3_user_change db alice xyzzy-alice 0
} {SQLITE_AUTH}
do_test userauth01-1.16 {
  db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname}
} {alice 1 bob 0 cindy 0 david 0}
do_test userauth01-1.17 {
  sqlite3_user_change db2 cindy xyzzy-cindy 1
} {SQLITE_AUTH}
do_test userauth01-1.18 {
  db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname}
} {alice 1 bob 0 cindy 0 david 0}

# The sqlite3_user_change() interface can be used to change a users
# login credentials or admin privilege.
#
do_test userauth01-1.20 {
  sqlite3_user_change db david xyzzy-david 1
} {SQLITE_OK}
do_test userauth01-1.21 {
  db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname}
} {alice 1 bob 0 cindy 0 david 1}
do_test userauth01-1.22 {
  sqlite3_user_authenticate db2 david xyzzy-david
} {SQLITE_OK}
do_test userauth01-1.23 {
  db2 eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname}
} {alice 1 bob 0 cindy 0 david 1}
do_test userauth01-1.24 {
  sqlite3_user_change db david pw-4-david 0
} {SQLITE_OK}
do_test userauth01-1.25 {
  sqlite3_user_authenticate db2 david pw-4-david
} {SQLITE_OK}
do_test userauth01-1.26 {
  db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname}
} {alice 1 bob 0 cindy 0 david 0}
do_test userauth01-1.27 {
  catchsql {SELECT uname, isadmin FROM sqlite_user ORDER BY uname} db2
} {1 {no such table: sqlite_user}}

# Only an admin user can change another users login
# credentials or admin privilege setting.
#
do_test userauth01-1.30 {
  sqlite3_user_change db2 bob xyzzy-bob 1
} {SQLITE_AUTH}
do_test userauth01-1.31 {
  db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname}
} {alice 1 bob 0 cindy 0 david 0}

# The sqlite3_user_delete() interface can be used (by an admin user only)
# to delete a user.
#
do_test userauth01-1.40 {
  sqlite3_user_delete db bob
} {SQLITE_OK}
do_test userauth01-1.41 {
  db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname}
} {alice 1 cindy 0 david 0}
do_test userauth01-1.42 {
  sqlite3_user_delete db2 cindy
} {SQLITE_AUTH}
do_test userauth01-1.43 {
  sqlite3_user_delete db2 alice
} {SQLITE_AUTH}
do_test userauth01-1.44 {
  db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname}
} {alice 1 cindy 0 david 0}

# The currently logged-in user cannot be deleted
#
do_test userauth01-1.50 {
  sqlite3_user_delete db alice
} {SQLITE_AUTH}
do_test userauth01-1.51 {
  db eval {SELECT uname, isadmin FROM sqlite_user ORDER BY uname}
} {alice 1 cindy 0 david 0}

# When ATTACH-ing new database files to a connection, each newly attached
# database that is an authentication-required database is checked using
# the same username and password as supplied to the main database.  If that
# check fails, then the ATTACH command fails with an SQLITE_AUTH error.
#
do_test userauth01-1.60 {
  forcedelete test3.db
  sqlite3 db3 test3.db
  sqlite3_user_add db3 alice xyzzy-alice 1
} {SQLITE_OK}
do_test userauth01-1.61 {
  db3 eval {
    CREATE TABLE t3(a,b,c); INSERT INTO t3 VALUES(1,2,3);
    SELECT * FROM t3;
  }
} {1 2 3}
do_test userauth01-1.62 {
  db eval {
    ATTACH 'test3.db' AS aux;
    SELECT * FROM t1, t3 ORDER BY x LIMIT 1;
    DETACH aux;
  }
} {{} 1 2 3}
do_test userauth01-1.63 {
  sqlite3_user_change db alice pw-4-alice 1
  sqlite3_user_authenticate db alice pw-4-alice
  catchsql {
    ATTACH 'test3.db' AS aux;
  }
} {1 {unable to open database: test3.db}}
do_test userauth01-1.64 {
  sqlite3_extended_errcode db
} {SQLITE_AUTH}
do_test userauth01-1.65 {
  db eval {PRAGMA database_list}
} {~/test3.db/}

# The sqlite3_set_authorizer() callback is modified to take a 7th parameter
# which is the username of the currently logged in user, or NULL for a
# no-authentication-required database.
#
proc auth {args} {
  lappend ::authargs $args
  return SQLITE_OK
}
do_test authuser01-2.1 {
  unset -nocomplain ::authargs
  db auth auth
  db eval {SELECT x FROM t1}
  set ::authargs
} {/SQLITE_SELECT {} {} {} {} alice/}  


finish_test
Changes to test/vtab3.test.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
  return
}

set ::auth_fail 0
set ::auth_log [list]
set ::auth_filter [list SQLITE_READ SQLITE_UPDATE SQLITE_SELECT SQLITE_PRAGMA]

proc auth {code arg1 arg2 arg3 arg4} {
  if {[lsearch $::auth_filter $code]>-1} {
    return SQLITE_OK
  }
  lappend ::auth_log $code $arg1 $arg2 $arg3 $arg4
  incr ::auth_fail -1
  if {$::auth_fail == 0} {
    return SQLITE_DENY







|







21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
  return
}

set ::auth_fail 0
set ::auth_log [list]
set ::auth_filter [list SQLITE_READ SQLITE_UPDATE SQLITE_SELECT SQLITE_PRAGMA]

proc auth {code arg1 arg2 arg3 arg4 args} {
  if {[lsearch $::auth_filter $code]>-1} {
    return SQLITE_OK
  }
  lappend ::auth_log $code $arg1 $arg2 $arg3 $arg4
  incr ::auth_fail -1
  if {$::auth_fail == 0} {
    return SQLITE_DENY
Changes to test/whereJ.test.
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419






























































































































































































































420
421
422
     AND t3b.id BETWEEN t2b.minChild AND t2b.maxChild
     AND t4.id BETWEEN t3a.minChild AND t3b.maxChild
  ORDER BY t4.x;
} {~/SCAN/}

############################################################################

ifcapable stat4 {
  # Create and populate table.
  do_execsql_test 3.1 { CREATE TABLE t1(a, b, c) }
  for {set i 0} {$i < 32} {incr i 2} {
    for {set x 0} {$x < 100} {incr x} {
      execsql { INSERT INTO t1 VALUES($i, $x, $c) }
      incr c
    }
    execsql { INSERT INTO t1 VALUES($i+1, 5, $c) }
    incr c
  }
  
  do_execsql_test 3.2 {
    SELECT a, count(*) FROM t1 GROUP BY a HAVING a < 8;
  } {
    0 100 1 1 2 100 3 1 4 100 5 1 6 100 7 1
  }
  
  do_execsql_test 3.3 {
    CREATE INDEX idx_ab ON t1(a, b);
    CREATE INDEX idx_c ON t1(c);
    ANALYZE;
  } {}
  
  # This one should use index "idx_c".
  do_eqp_test 3.4 {
    SELECT * FROM t1 WHERE 
      a = 4 AND b BETWEEN 20 AND 80           -- Matches 80 rows
        AND
      c BETWEEN 150 AND 160                   -- Matches 10 rows
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX idx_c (c>? AND c<?)}
  }
  
  # This one should use index "idx_ab".
  do_eqp_test 3.5 {
    SELECT * FROM t1 WHERE 
      a = 5 AND b BETWEEN 20 AND 80           -- Matches 1 row
        AND
      c BETWEEN 150 AND 160                   -- Matches 10 rows
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX idx_ab (a=? AND b>? AND b<?)}
  }
}
































































































































































































































finish_test







<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



369
370
371
372
373
374
375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
     AND t3b.id BETWEEN t2b.minChild AND t2b.maxChild
     AND t4.id BETWEEN t3a.minChild AND t3b.maxChild
  ORDER BY t4.x;
} {~/SCAN/}

############################################################################


# Create and populate table.
do_execsql_test 3.1 { CREATE TABLE t1(a, b, c) }
for {set i 0} {$i < 32} {incr i 2} {
  for {set x 0} {$x < 100} {incr x} {
    execsql { INSERT INTO t1 VALUES($i, $x, $c) }
    incr c
  }
  execsql { INSERT INTO t1 VALUES($i+1, 5, $c) }
  incr c
}

do_execsql_test 3.2 {
  SELECT a, count(*) FROM t1 GROUP BY a HAVING a < 8;
} {
  0 100 1 1 2 100 3 1 4 100 5 1 6 100 7 1
}

do_execsql_test 3.3 {
  CREATE INDEX idx_ab ON t1(a, b);
  CREATE INDEX idx_c ON t1(c);
  ANALYZE;
} {}

# This one should use index "idx_c".
do_eqp_test 3.4 {
  SELECT * FROM t1 WHERE 
    a = 4 AND b BETWEEN 20 AND 80           -- Matches 80 rows
      AND
    c BETWEEN 150 AND 160                   -- Matches 10 rows
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX idx_c (c>? AND c<?)}
}

# This one should use index "idx_ab".
do_eqp_test 3.5 {
  SELECT * FROM t1 WHERE 
    a = 5 AND b BETWEEN 20 AND 80           -- Matches 1 row
      AND
    c BETWEEN 150 AND 160                   -- Matches 10 rows
} {
  0 0 0 {SEARCH TABLE t1 USING INDEX idx_ab (a=? AND b>? AND b<?)}
}

###########################################################################################

# Reset the database and setup for a test case derived from actual SQLite users
#
db close
sqlite3 db test.db
do_execsql_test 4.1 {
  CREATE TABLE le(
    le_id largeint,
    xid char(31),
    type smallint,
    name char(255) DEFAULT '',
    mtime largeint DEFAULT 0,
    muuid int DEFAULT 0
  );
  CREATE TABLE cx(
    cx_id largeint,
    code char(31),
    type smallint,
    name char(31),
    description varchar,
    role smallint,
    mtime largeint DEFAULT 0,
    muuid int DEFAULT 0,
    le_id largeint DEFAULT 0,
    imco smallint DEFAULT 0
  );
  CREATE TABLE px(
    px_id largeint,
    cx_id largeint,
    px_tid largeint,
    name char(31),
    description varchar DEFAULT '',
    ia smallint,
    sl smallint,
    le_id largeint DEFAULT 0,
    mtime largeint DEFAULT 0,
    muuid int DEFAULT 0
  );
  CREATE INDEX le_id on le (le_id);
  CREATE INDEX c_id on cx (cx_id);
  CREATE INDEX c_leid on cx (le_id);
  CREATE INDEX p_id on px (px_id);
  CREATE INDEX p_cid0 on px (cx_id);
  CREATE INDEX p_pt on px (px_tid);
  CREATE INDEX p_leid on px (le_id);
} {}
do_execsql_test 4.2 {
  ANALYZE sqlite_master;
  INSERT INTO sqlite_stat1 VALUES('le','le_id','1979 1');
  INSERT INTO sqlite_stat1 VALUES('cx','c_leid','852 171');
  INSERT INTO sqlite_stat1 VALUES('cx','c_id','852 1');
  INSERT INTO sqlite_stat1 VALUES('px','p_leid','114443 63');
  INSERT INTO sqlite_stat1 VALUES('px','p_pt','114443 22889');
  INSERT INTO sqlite_stat1 VALUES('px','p_cid0','114443 181');
  INSERT INTO sqlite_stat1 VALUES('px','p_id','114443 1');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','162 162','162 162',X'030202013903fb');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','208 208','208 208',X'0302020253012d');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','219 219','219 219',X'030202025e0131');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','248 248','248 248',X'030202027b014e');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','265 265','265 265',X'030202028c015f');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','358 358','358 358',X'03020202e901bc');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','439 439','439 439',X'030202033a020d');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','657 657','657 657',X'030202041402b4');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','659 659','659 659',X'030202041602b6');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','681 681','681 681',X'030202042c02cc');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','831 831','831 831',X'03020204c20482');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','852 852','852 852',X'03020204d70497');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','870 870','870 870',X'03020204e904a9');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','879 879','879 879',X'03020204f204b2');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1099 1099','1099 1099',X'03020205ce058e');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1273 1273','1273 1273',X'030202067c05a9');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1319 1319','1319 1319',X'03020206e30730');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1330 1330','1330 1330',X'0302020700035b');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1539 1539','1539 1539',X'03020207d105d8');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1603 1603','1603 1603',X'03020208390780');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1759 1759','1759 1759',X'030202092f0618');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1843 1843','1843 1843',X'03020209880650');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1915 1915','1915 1915',X'03020209d0068b');
  INSERT INTO sqlite_stat4 VALUES('le','le_id','1 1','1927 1927','1927 1927',X'03020209dc0697');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 94','0 94',X'0308015f');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 189','0 189',X'03080200be');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 284','0 284',X'0308020120');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 379','0 379',X'030802017f');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 474','0 474',X'03080201de');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 569','0 569',X'030802023d');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 664','0 664',X'030802029f');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','846 1','0 759','0 759',X'03080202fe');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','3 1','846 847','1 847',X'0301024500e6');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','1 1','849 849','2 849',X'03010246027e');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','1 1','850 850','3 850',X'0301024700c9');
  INSERT INTO sqlite_stat4 VALUES('cx','c_leid','1 1','851 851','4 851',X'03010248027f');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','94 94','94 94',X'03020200b801a8');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','113 113','113 113',X'03020200d101ad');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','171 171','171 171',X'030201011d2a');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','177 177','177 177',X'030202012600f2');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','189 189','189 189',X'030202013501c8');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','206 206','206 206',X'030201014f2d');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','231 231','231 231',X'030202016d00fc');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','284 284','284 284',X'03020201b702d0');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','291 291','291 291',X'03020101c042');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','311 311','311 311',X'03020201d801e7');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','339 339','339 339',X'03020101f74b');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','347 347','347 347',X'03020202030118');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','379 379','379 379',X'030202022f01fa');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','393 393','393 393',X'030201023f55');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','407 407','407 407',X'03020202500201');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','413 413','413 413',X'03020102565a');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','468 468','468 468',X'030201029468');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','474 474','474 474',X'030202029a0211');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','517 517','517 517',X'03020102cc76');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','548 548','548 548',X'03020202f00223');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','569 569','569 569',X'03020203090087');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','664 664','664 664',X'03020203740163');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','759 759','759 759',X'03020203e800b3');
  INSERT INTO sqlite_stat4 VALUES('cx','c_id','1 1','803 803','803 803',X'030202041b026f');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 12715','0 12715',X'030802345b');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 25431','0 25431',X'0308026718');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 38147','0 38147',X'030803009a5c');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 50863','0 50863',X'03080300cdbe');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 63579','0 63579',X'0308030100e8');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 76295','0 76295',X'03080301351d');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 89011','0 89011',X'03080301674c');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','110728 1','0 101727','0 101727',X'030803019b99');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','28 1','110824 110843','16 110843',X'0301037a0107f1');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','53 1','110873 110875','25 110875',X'0302020095275a');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','32 1','110927 110936','27 110936',X'030203009b009b4a');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','51 1','110980 111017','30 111017',X'03020300a4016c00');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','67 1','111047 111059','38 111059',X'03020200af2611');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','60 1','111136 111156','43 111156',X'03020300bc009aeb');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','42 1','111222 111239','59 111239',X'03020300d200b17b');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','36 1','111264 111266','60 111266',X'03020200d426d6');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','27 1','111733 111757','159 111757',X'030203014e017e1b');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','36 1','111760 111773','160 111773',X'030203014f00a2b9');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','29 1','111822 111833','167 111833',X'0302030176009c22');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','75 1','113031 113095','1190 113095',X'030203068501912c');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','132 1','113230 113263','1252 113263',X'0302030711009ee6');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','110 1','113851 113918','1572 113918',X'03020308e9011ca2');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','78 1','114212 114217','1791 114217',X'03020209e13b24');
  INSERT INTO sqlite_stat4 VALUES('px','p_leid','112 1','114303 114351','1799 114351',X'03020309ea0128f2');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 12715','0 12715',X'030802477e');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 25431','0 25431',X'0308027c20');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 38147','0 38147',X'03080300c211');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 50863','0 50863',X'03080300fbe5');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 63579','0 63579',X'0308030140ff');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 76295','0 76295',X'03080301792d');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','89824 1','0 89011','0 89011',X'03080301bb68');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','24217 1','89824 101727','1 101727',X'03090300da12');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','154 1','114041 114154','2 114154',X'0301030200e5e9');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','198 1','114195 114351','3 114351',X'03010303015cb1');
  INSERT INTO sqlite_stat4 VALUES('px','p_pt','50 1','114393 114441','4 114441',X'0301030401b2ef');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','3867 1','3 3736','2 3736',X'03010337015c6a');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','4194 1','4177 8209','5 8209',X'0301033b015075');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','4335 1','8371 11129','6 11129',X'0301033d0156fc');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1740 1','12706 12715','7 12715',X'0301023e34b9');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1680 1','14446 15487','8 15487',X'0301033f011694');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','7163 1','20116 25431','32 25431',X'03020300a400ed26');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1525 1','29100 29302','42 29302',X'03020200bb00d1');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','3703 1','30655 33323','45 33323',X'03020300be013fa5');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','2612 1','37767 38147','61 38147',X'03020200e32828');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1882 1','40545 41584','63 41584',X'03020300ea01a35a');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','6984 1','44110 50863','73 50863',X'0302030102017467');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1728 1','51230 51680','75 51680',X'030203010400b3e0');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','2805 1','55491 57936','95 57936',X'030203014101a004');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','2837 1','58934 59506','103 59506',X'030203015900a283');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','94 1','63492 63579','137 63579',X'0302030191016319');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','3573 1','63591 64497','140 64497',X'030203019c00822e');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','5037 1','70917 73033','160 73033',X'03020301c70091d9');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1940 1','75954 76295','161 76295',X'03020201c817f1');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1927 1','83926 84371','209 84371',X'03020202114295');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1522 1','86601 88117','213 88117',X'030203021b01b7b5');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','210 1','88906 89011','226 89011',X'030203022800dbbb');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','6165 1','92125 98066','258 98066',X'030203024d0189ac');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','2900 1','100721 101727','293 101727',X'030203027500cf39');
  INSERT INTO sqlite_stat4 VALUES('px','p_cid0','1501 1','110012 110154','503 110154',X'0302020380493a');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','11129 11129','11129 11129',X'03030300d84e014d51');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','12715 12715','12715 12715',X'03030200de816f51');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','13030 13030','13030 13030',X'03030200e05b6fc4');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','25431 25431','25431 25431',X'0303030123df00efb0');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','29302 29302','29302 29302',X'030302013a2812c7');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','35463 35463','35463 35463',X'03030301666e00f866');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','38147 38147','38147 38147',X'030302017a391b74');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','38525 38525','38525 38525',X'030303017c6e00fb58');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','50863 50863','50863 50863',X'03030201b68724dd');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','58461 58461','58461 58461',X'03030201d95b2e1e');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','59506 59506','59506 59506',X'03030301dd7000a0fb');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','63468 63468','63468 63468',X'03030301ecea011405');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','63579 63579','63579 63579',X'03030201ed5932d5');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','64497 64497','64497 64497',X'03030301f0ef00a680');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','73033 73033','73033 73033',X'0303030225b90190e5');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','75650 75650','75650 75650',X'030303023a19019362');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','76295 76295','76295 76295',X'030303023e9801940c');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','79152 79152','79152 79152',X'030303024be50196b9');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','83249 83249','83249 83249',X'0303030261750123b1');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','89011 89011','89011 89011',X'030303027b3900c3af');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','98066 98066','98066 98066',X'03030302a76500ce54');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','101590 101590','101590 101590',X'03030302b63d00d3b5');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','101727 101727','101727 101727',X'03030202b6f24e9b');
  INSERT INTO sqlite_stat4 VALUES('px','p_id','1 1','107960 107960','107960 107960',X'03030302d8ce0136ad');
  ANALYZE sqlite_master;
} {}

# The following query should do a full table scan of cx in the outer loop.
# It is not correct to search table px using indx p_pt in the outer loop
# with cx in the middle loop.  Test case from Bloomberg on 2014-09-05.
#
do_execsql_test 4.2 {
  EXPLAIN QUERY PLAN
  SELECT
     px.name,
     px.description
  FROM
     le,
     cx,
     px
  WHERE
     cx.code = '2990'
     AND cx.type=2
     AND px.cx_id = cx.cx_id
     AND px.px_tid = 0
     AND px.le_id = le.le_id;
} {/.*SCAN TABLE cx.*SEARCH TABLE px.*SEARCH TABLE le.*/}


finish_test
Changes to test/without_rowid3.test.
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
    execsql {
      CREATE TABLE long(a, b PRIMARY KEY, c) WITHOUT rowid;
      CREATE TABLE short(d, e, f REFERENCES long);
      CREATE TABLE mid(g, h, i REFERENCES long DEFERRABLE INITIALLY DEFERRED);
    }
  } {}

  proc auth {args} {eval lappend ::authargs $args ; return SQLITE_OK}
  db auth auth

  # An insert on the parent table must read the child key of any deferred
  # foreign key constraints. But not the child key of immediate constraints.
  set authargs {}
  do_test without_rowid3-18.2 {
    execsql { INSERT INTO long VALUES(1, 2, 3) }







|







1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
    execsql {
      CREATE TABLE long(a, b PRIMARY KEY, c) WITHOUT rowid;
      CREATE TABLE short(d, e, f REFERENCES long);
      CREATE TABLE mid(g, h, i REFERENCES long DEFERRABLE INITIALLY DEFERRED);
    }
  } {}

  proc auth {args} {eval lappend ::authargs [lrange $args 0 4]; return SQLITE_OK}
  db auth auth

  # An insert on the parent table must read the child key of any deferred
  # foreign key constraints. But not the child key of immediate constraints.
  set authargs {}
  do_test without_rowid3-18.2 {
    execsql { INSERT INTO long VALUES(1, 2, 3) }
Changes to tool/showwal.c.
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    }
    free(zMap);
  }  
}

int main(int argc, char **argv){
  struct stat sbuf;
  unsigned char zPgSz[2];
  if( argc<2 ){
    fprintf(stderr,"Usage: %s FILENAME ?PAGE? ...\n", argv[0]);
    exit(1);
  }
  fd = open(argv[1], O_RDONLY);
  if( fd<0 ){
    fprintf(stderr,"%s: can't open %s\n", argv[0], argv[1]);
    exit(1);
  }
  zPgSz[0] = 0;
  zPgSz[1] = 0;
  lseek(fd, 10, SEEK_SET);
  read(fd, zPgSz, 2);
  pagesize = zPgSz[0]*256 + zPgSz[1];
  if( pagesize==0 ) pagesize = 1024;
  printf("Pagesize: %d\n", pagesize);
  fstat(fd, &sbuf);
  if( sbuf.st_size<32 ){
    printf("file too small to be a WAL\n");
    return 0;
  }







|











|
|
|







506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    }
    free(zMap);
  }  
}

int main(int argc, char **argv){
  struct stat sbuf;
  unsigned char zPgSz[4];
  if( argc<2 ){
    fprintf(stderr,"Usage: %s FILENAME ?PAGE? ...\n", argv[0]);
    exit(1);
  }
  fd = open(argv[1], O_RDONLY);
  if( fd<0 ){
    fprintf(stderr,"%s: can't open %s\n", argv[0], argv[1]);
    exit(1);
  }
  zPgSz[0] = 0;
  zPgSz[1] = 0;
  lseek(fd, 8, SEEK_SET);
  read(fd, zPgSz, 4);
  pagesize = zPgSz[1]*65536 + zPgSz[2]*256 + zPgSz[3];
  if( pagesize==0 ) pagesize = 1024;
  printf("Pagesize: %d\n", pagesize);
  fstat(fd, &sbuf);
  if( sbuf.st_size<32 ){
    printf("file too small to be a WAL\n");
    return 0;
  }