Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update this branch with the latest changes from trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | server-process-edition |
Files: | files | file ages | folders |
SHA3-256: |
380a7b7a458b212b0463c8e128c289cc |
User & Date: | dan 2017-08-16 17:06:42.450 |
Context
2017-08-17
| ||
19:32 | Add support for crash recovery in multi-process mode. And add test cases for the same. (check-in: a8115f95e8 user: dan tags: server-process-edition) | |
2017-08-16
| ||
17:06 | Update this branch with the latest changes from trunk. (check-in: 380a7b7a45 user: dan tags: server-process-edition) | |
16:52 | Enhance this branch to support page-level-locking (without MVCC) for multi-process deployments. (check-in: 04e0cb571d user: dan tags: server-process-edition) | |
14:16 | Remove an unnecessary local variable from OP_Column, for a small size reduction and performance increase. (check-in: 3954390328 user: drh tags: trunk) | |
Changes
Changes to src/btree.c.
︙ | ︙ | |||
444 445 446 447 448 449 450 | pLock->eLock = READ_LOCK; } } } #endif /* SQLITE_OMIT_SHARED_CACHE */ | | > | 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | pLock->eLock = READ_LOCK; } } } #endif /* SQLITE_OMIT_SHARED_CACHE */ static void releasePage(MemPage *pPage); static void releasePageNotNull(MemPage *pPage); /* Forward reference */ /* ***** This routine is used inside of assert() only **** ** ** Verify that the cursor holds the mutex on its BtShared */ #ifdef SQLITE_DEBUG |
︙ | ︙ | |||
603 604 605 606 607 608 609 | } /* ** Release all of the apPage[] pages for a cursor. */ static void btreeReleaseAllCursorPages(BtCursor *pCur){ int i; | > | | < | > | > | 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 | } /* ** Release all of the apPage[] pages for a cursor. */ static void btreeReleaseAllCursorPages(BtCursor *pCur){ int i; if( pCur->iPage>=0 ){ for(i=0; i<pCur->iPage; i++){ releasePageNotNull(pCur->apPage[i]); } releasePageNotNull(pCur->pPage); pCur->iPage = -1; } } /* ** The cursor passed as the only argument must point to a valid entry ** when this function is called (i.e. have eState==CURSOR_VALID). This ** function saves the current cursor key in variables pCur->nKey and ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error |
︙ | ︙ | |||
776 777 778 779 780 781 782 | if( pKey ){ assert( nKey==(i64)(int)nKey ); pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo); if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); if( pIdxKey->nField==0 ){ | | | 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 | if( pKey ){ assert( nKey==(i64)(int)nKey ); pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo); if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); if( pIdxKey->nField==0 ){ rc = SQLITE_CORRUPT; goto moveto_done; } }else{ pIdxKey = 0; } rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); moveto_done: |
︙ | ︙ | |||
2054 2055 2056 2057 2058 2059 2060 | MemPage **ppPage, /* Write the page pointer here */ BtCursor *pCur, /* Cursor to receive the page, or NULL */ int bReadOnly /* True for a read-only page */ ){ int rc; DbPage *pDbPage; assert( sqlite3_mutex_held(pBt->mutex) ); | | | 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 | MemPage **ppPage, /* Write the page pointer here */ BtCursor *pCur, /* Cursor to receive the page, or NULL */ int bReadOnly /* True for a read-only page */ ){ int rc; DbPage *pDbPage; assert( sqlite3_mutex_held(pBt->mutex) ); assert( pCur==0 || ppPage==&pCur->pPage ); assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); assert( pCur==0 || pCur->iPage>0 ); if( pgno>btreePagecount(pBt) ){ rc = SQLITE_CORRUPT_BKPT; goto getAndInitPage_error; } |
︙ | ︙ | |||
2088 2089 2090 2091 2092 2093 2094 | rc = SQLITE_CORRUPT_PGNO(pgno); releasePage(*ppPage); goto getAndInitPage_error; } return SQLITE_OK; getAndInitPage_error: | | > > > | 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 | rc = SQLITE_CORRUPT_PGNO(pgno); releasePage(*ppPage); goto getAndInitPage_error; } return SQLITE_OK; getAndInitPage_error: if( pCur ){ pCur->iPage--; pCur->pPage = pCur->apPage[pCur->iPage]; } testcase( pgno==0 ); assert( pgno!=0 || rc==SQLITE_CORRUPT ); return rc; } /* ** Release a MemPage. This should be called once for each prior |
︙ | ︙ | |||
4307 4308 4309 4310 4311 4312 4313 | /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ int sqlite3BtreeCloseCursor(BtCursor *pCur){ Btree *pBtree = pCur->pBtree; if( pBtree ){ | < < < | < | < | < | | 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 | /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ int sqlite3BtreeCloseCursor(BtCursor *pCur){ Btree *pBtree = pCur->pBtree; if( pBtree ){ BtShared *pBt = pCur->pBt; sqlite3BtreeEnter(pBtree); assert( pBt->pCursor!=0 ); if( pBt->pCursor==pCur ){ pBt->pCursor = pCur->pNext; }else{ BtCursor *pPrev = pBt->pCursor; do{ if( pPrev->pNext==pCur ){ pPrev->pNext = pCur->pNext; break; } pPrev = pPrev->pNext; }while( ALWAYS(pPrev) ); } btreeReleaseAllCursorPages(pCur); unlockBtreeIfUnused(pBt); sqlite3_free(pCur->aOverflow); sqlite3_free(pCur->pKey); sqlite3BtreeLeave(pBtree); } return SQLITE_OK; } /* ** Make sure the BtCursor* given in the argument has a valid ** BtCursor.info structure. If it is not already valid, call ** btreeParseCell() to fill it in. ** ** BtCursor.info is a cache of the information in the current cell. ** Using this cache reduces the number of calls to btreeParseCell(). */ #ifndef NDEBUG static void assertCellInfo(BtCursor *pCur){ CellInfo info; memset(&info, 0, sizeof(info)); btreeParseCell(pCur->pPage, pCur->ix, &info); assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 ); } #else #define assertCellInfo(x) #endif static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ if( pCur->info.nSize==0 ){ pCur->curFlags |= BTCF_ValidNKey; btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); }else{ assertCellInfo(pCur); } } #ifndef NDEBUG /* The next routine used only within assert() statements */ /* |
︙ | ︙ | |||
4556 4557 4558 4559 4560 4561 4562 | u32 amt, /* Read this many bytes */ unsigned char *pBuf, /* Write the bytes into this buffer */ int eOp /* zero to read. non-zero to write. */ ){ unsigned char *aPayload; int rc = SQLITE_OK; int iIdx = 0; | | | 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 | u32 amt, /* Read this many bytes */ unsigned char *pBuf, /* Write the bytes into this buffer */ int eOp /* zero to read. non-zero to write. */ ){ unsigned char *aPayload; int rc = SQLITE_OK; int iIdx = 0; MemPage *pPage = pCur->pPage; /* Btree page of current entry */ BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ #ifdef SQLITE_DIRECT_OVERFLOW_READ unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ #endif assert( pPage ); assert( eOp==0 || eOp==1 ); |
︙ | ︙ | |||
4752 4753 4754 4755 4756 4757 4758 | ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); | | | | 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 | ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>=0 && pCur->pPage ); assert( pCur->ix<pCur->pPage->nCell ); return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); } /* ** This variant of sqlite3BtreePayload() works even if the cursor has not ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() ** interface. |
︙ | ︙ | |||
4811 4812 4813 4814 4815 4816 4817 | ** any btree routine is called. */ static const void *fetchPayload( BtCursor *pCur, /* Cursor pointing to entry to read from */ u32 *pAmt /* Write the number of available bytes here */ ){ u32 amt; | | | | | | | 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 | ** any btree routine is called. */ static const void *fetchPayload( BtCursor *pCur, /* Cursor pointing to entry to read from */ u32 *pAmt /* Write the number of available bytes here */ ){ u32 amt; assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); assert( pCur->eState==CURSOR_VALID ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); assert( cursorOwnsBtShared(pCur) ); assert( pCur->ix<pCur->pPage->nCell ); assert( pCur->info.nSize>0 ); assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); amt = (int)(pCur->pPage->aDataEnd - pCur->info.pPayload); if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal; *pAmt = amt; return (void*)pCur->info.pPayload; } /* |
︙ | ︙ | |||
4866 4867 4868 4869 4870 4871 4872 | assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); assert( pCur->iPage>=0 ); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); | | > > | < | 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 | assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); assert( pCur->iPage>=0 ); if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ return SQLITE_CORRUPT_BKPT; } pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->aiIdx[pCur->iPage] = pCur->ix; pCur->apPage[pCur->iPage] = pCur->pPage; pCur->ix = 0; pCur->iPage++; return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); } #ifdef SQLITE_DEBUG /* ** Page pParent is an internal (non-leaf) tree page. This function ** asserts that page number iChild is the left-child if the iIdx'th ** cell in page pParent. Or, if iIdx is equal to the total number of |
︙ | ︙ | |||
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 | ** ** pCur->idx is set to the cell index that contains the pointer ** to the page we are coming from. If we are coming from the ** right-most child page then pCur->idx is set to one more than ** the largest cell index. */ static void moveToParent(BtCursor *pCur){ assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>0 ); | > | | > > | > | | < > | | | > | | | | | | | | > | | 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 | ** ** pCur->idx is set to the cell index that contains the pointer ** to the page we are coming from. If we are coming from the ** right-most child page then pCur->idx is set to one more than ** the largest cell index. */ static void moveToParent(BtCursor *pCur){ MemPage *pLeaf; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>0 ); assert( pCur->pPage ); assertParentIndex( pCur->apPage[pCur->iPage-1], pCur->aiIdx[pCur->iPage-1], pCur->pPage->pgno ); testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); pCur->ix = pCur->aiIdx[pCur->iPage-1]; pLeaf = pCur->pPage; pCur->pPage = pCur->apPage[--pCur->iPage]; releasePageNotNull(pLeaf); } /* ** Move the cursor to point to the root page of its b-tree structure. ** ** If the table has a virtual root page, then the cursor is moved to point ** to the virtual root page instead of the actual root page. A table has a ** virtual root page when the actual root page contains no cells and a ** single child page. This can only happen with the table rooted at page 1. ** ** If the b-tree structure is empty, the cursor state is set to ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, ** the cursor is set to point to the first cell located on the root ** (or virtual root) page and the cursor state is set to CURSOR_VALID. ** ** If this function returns successfully, it may be assumed that the ** page-header flags indicate that the [virtual] root-page is the expected ** kind of b-tree page (i.e. if when opening the cursor the caller did not ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, ** indicating a table b-tree, or if the caller did specify a KeyInfo ** structure the flags byte is set to 0x02 or 0x0A, indicating an index ** b-tree). */ static int moveToRoot(BtCursor *pCur){ MemPage *pRoot; int rc = SQLITE_OK; assert( cursorOwnsBtShared(pCur) ); assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); if( pCur->iPage>=0 ){ if( pCur->iPage ){ releasePageNotNull(pCur->pPage); while( --pCur->iPage ){ releasePageNotNull(pCur->apPage[pCur->iPage]); } pCur->pPage = pCur->apPage[0]; goto skip_init; } }else if( pCur->pgnoRoot==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_EMPTY; }else{ assert( pCur->iPage==(-1) ); if( pCur->eState>=CURSOR_REQUIRESEEK ){ if( pCur->eState==CURSOR_FAULT ){ assert( pCur->skipNext!=SQLITE_OK ); return pCur->skipNext; } sqlite3BtreeClearCursor(pCur); } rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 0, pCur->curPagerFlags); if( rc!=SQLITE_OK ){ pCur->eState = CURSOR_INVALID; return rc; } pCur->iPage = 0; pCur->curIntKey = pCur->pPage->intKey; } pRoot = pCur->pPage; assert( pRoot->pgno==pCur->pgnoRoot ); /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is ** NULL, the caller expects a table b-tree. If this is not the case, ** return an SQLITE_CORRUPT error. ** ** Earlier versions of SQLite assumed that this test could not fail ** if the root page was already loaded when this function was called (i.e. ** if pCur->iPage>=0). But this is not so if the database is corrupted ** in such a way that page pRoot is linked into a second b-tree table ** (or the freelist). */ assert( pRoot->intKey==1 || pRoot->intKey==0 ); if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ return SQLITE_CORRUPT_PGNO(pCur->pPage->pgno); } skip_init: pCur->ix = 0; pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); pRoot = pCur->pPage; if( pRoot->nCell>0 ){ pCur->eState = CURSOR_VALID; }else if( !pRoot->leaf ){ Pgno subpage; if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); pCur->eState = CURSOR_VALID; rc = moveToChild(pCur, subpage); }else{ pCur->eState = CURSOR_INVALID; rc = SQLITE_EMPTY; } return rc; } /* ** Move the cursor down to the left-most leaf entry beneath the ** entry to which it is currently pointing. ** ** The left-most leaf is the one with the smallest key - the first ** in ascending order. */ static int moveToLeftmost(BtCursor *pCur){ Pgno pgno; int rc = SQLITE_OK; MemPage *pPage; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ assert( pCur->ix<pPage->nCell ); pgno = get4byte(findCell(pPage, pCur->ix)); rc = moveToChild(pCur, pgno); } return rc; } |
︙ | ︙ | |||
5056 5057 5058 5059 5060 5061 5062 | static int moveToRightmost(BtCursor *pCur){ Pgno pgno; int rc = SQLITE_OK; MemPage *pPage = 0; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); | | | 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 | static int moveToRightmost(BtCursor *pCur){ Pgno pgno; int rc = SQLITE_OK; MemPage *pPage = 0; assert( cursorOwnsBtShared(pCur) ); assert( pCur->eState==CURSOR_VALID ); while( !(pPage = pCur->pPage)->leaf ){ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); pCur->ix = pPage->nCell; rc = moveToChild(pCur, pgno); if( rc ) return rc; } pCur->ix = pPage->nCell-1; assert( pCur->info.nSize==0 ); |
︙ | ︙ | |||
5079 5080 5081 5082 5083 5084 5085 | int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ int rc; assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); rc = moveToRoot(pCur); if( rc==SQLITE_OK ){ | < | | > | | | | < | 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 | int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ int rc; assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); rc = moveToRoot(pCur); if( rc==SQLITE_OK ){ assert( pCur->pPage->nCell>0 ); *pRes = 0; rc = moveToLeftmost(pCur); }else if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); *pRes = 1; rc = SQLITE_OK; } return rc; } /* Move the cursor to the last entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. |
︙ | ︙ | |||
5110 5111 5112 5113 5114 5115 5116 | #ifdef SQLITE_DEBUG /* This block serves to assert() that the cursor really does point ** to the last entry in the b-tree. */ int ii; for(ii=0; ii<pCur->iPage; ii++){ assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); } | | | < < < < | | | | | | | | | < > > > | 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 | #ifdef SQLITE_DEBUG /* This block serves to assert() that the cursor really does point ** to the last entry in the b-tree. */ int ii; for(ii=0; ii<pCur->iPage; ii++){ assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); } assert( pCur->ix==pCur->pPage->nCell-1 ); assert( pCur->pPage->leaf ); #endif return SQLITE_OK; } rc = moveToRoot(pCur); if( rc==SQLITE_OK ){ assert( pCur->eState==CURSOR_VALID ); *pRes = 0; rc = moveToRightmost(pCur); if( rc==SQLITE_OK ){ pCur->curFlags |= BTCF_AtLast; }else{ pCur->curFlags &= ~BTCF_AtLast; } }else if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); *pRes = 1; rc = SQLITE_OK; } return rc; } /* Move the cursor so that it points to an entry near the key ** specified by pIdxKey or intKey. Return a success code. ** |
︙ | ︙ | |||
5230 5231 5232 5233 5234 5235 5236 | ); }else{ xRecordCompare = 0; /* All keys are integers */ } rc = moveToRoot(pCur); if( rc ){ | | < | < < < | < | | > > | > > > > | | 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 | ); }else{ xRecordCompare = 0; /* All keys are integers */ } rc = moveToRoot(pCur); if( rc ){ if( rc==SQLITE_EMPTY ){ assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); *pRes = -1; return SQLITE_OK; } return rc; } assert( pCur->pPage ); assert( pCur->pPage->isInit ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->pPage->nCell > 0 ); assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); assert( pCur->curIntKey || pIdxKey ); for(;;){ int lwr, upr, idx, c; Pgno chldPg; MemPage *pPage = pCur->pPage; u8 *pCell; /* Pointer to current cell in pPage */ /* pPage->nCell must be greater than zero. If this is the root-page ** the cursor would have been INVALID above and this for(;;) loop ** not run. If this is not the root-page, then the moveToChild() routine ** would have already detected db corruption. Similarly, pPage must ** be the right kind (index or table) of b-tree page. Otherwise |
︙ | ︙ | |||
5384 5385 5386 5387 5388 5389 5390 | assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ } } assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); assert( pPage->isInit ); if( pPage->leaf ){ | | | 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 | assert( lwr+upr>=0 ); idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ } } assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); assert( pPage->isInit ); if( pPage->leaf ){ assert( pCur->ix<pCur->pPage->nCell ); pCur->ix = (u16)idx; *pRes = c; rc = SQLITE_OK; goto moveto_finish; } moveto_next_layer: if( lwr>=pPage->nCell ){ |
︙ | ︙ | |||
5438 5439 5440 5441 5442 5443 5444 | assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); /* Currently this interface is only called by the OP_IfSmaller ** opcode, and it that case the cursor will always be valid and ** will always point to a leaf node. */ if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; | | > | | 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 | assert( cursorOwnsBtShared(pCur) ); assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); /* Currently this interface is only called by the OP_IfSmaller ** opcode, and it that case the cursor will always be valid and ** will always point to a leaf node. */ if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; if( NEVER(pCur->pPage->leaf==0) ) return -1; n = pCur->pPage->nCell; for(i=0; i<pCur->iPage; i++){ n *= pCur->apPage[i]->nCell; } return n; } /* ** Advance the cursor to the next entry in the database. |
︙ | ︙ | |||
5493 5494 5495 5496 5497 5498 5499 | pCur->skipNext = 0; return SQLITE_OK; } pCur->skipNext = 0; } } | | | 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 | pCur->skipNext = 0; return SQLITE_OK; } pCur->skipNext = 0; } } pPage = pCur->pPage; idx = ++pCur->ix; assert( pPage->isInit ); /* If the database file is corrupt, it is possible for the value of idx ** to be invalid here. This can only occur if a second cursor modifies ** the page while cursor pCur is holding a reference to it. Which can ** only happen if the database is corrupt in such a way as to link the |
︙ | ︙ | |||
5516 5517 5518 5519 5520 5521 5522 | } do{ if( pCur->iPage==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_DONE; } moveToParent(pCur); | | | 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 | } do{ if( pCur->iPage==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_DONE; } moveToParent(pCur); pPage = pCur->pPage; }while( pCur->ix>=pPage->nCell ); if( pPage->intKey ){ return sqlite3BtreeNext(pCur, 0); }else{ return SQLITE_OK; } } |
︙ | ︙ | |||
5539 5540 5541 5542 5543 5544 5545 | UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ assert( cursorOwnsBtShared(pCur) ); assert( flags==0 || flags==1 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); | | | 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 | UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ assert( cursorOwnsBtShared(pCur) ); assert( flags==0 || flags==1 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); pPage = pCur->pPage; if( (++pCur->ix)>=pPage->nCell ){ pCur->ix--; return btreeNext(pCur); } if( pPage->leaf ){ return SQLITE_OK; }else{ |
︙ | ︙ | |||
5598 5599 5600 5601 5602 5603 5604 | pCur->skipNext = 0; return SQLITE_OK; } pCur->skipNext = 0; } } | | | | | 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 | pCur->skipNext = 0; return SQLITE_OK; } pCur->skipNext = 0; } } pPage = pCur->pPage; assert( pPage->isInit ); if( !pPage->leaf ){ int idx = pCur->ix; rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); if( rc ) return rc; rc = moveToRightmost(pCur); }else{ while( pCur->ix==0 ){ if( pCur->iPage==0 ){ pCur->eState = CURSOR_INVALID; return SQLITE_DONE; } moveToParent(pCur); } assert( pCur->info.nSize==0 ); assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); pCur->ix--; pPage = pCur->pPage; if( pPage->intKey && !pPage->leaf ){ rc = sqlite3BtreePrevious(pCur, 0); }else{ rc = SQLITE_OK; } } return rc; } int sqlite3BtreePrevious(BtCursor *pCur, int flags){ assert( cursorOwnsBtShared(pCur) ); assert( flags==0 || flags==1 ); assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); pCur->info.nSize = 0; if( pCur->eState!=CURSOR_VALID || pCur->ix==0 || pCur->pPage->leaf==0 ){ return btreePrevious(pCur); } pCur->ix--; return SQLITE_OK; } |
︙ | ︙ | |||
8207 8208 8209 8210 8211 8212 8213 | u8 *pFree = 0; VVA_ONLY( int balance_quick_called = 0 ); VVA_ONLY( int balance_deeper_called = 0 ); do { int iPage = pCur->iPage; | | > | > | 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 | u8 *pFree = 0; VVA_ONLY( int balance_quick_called = 0 ); VVA_ONLY( int balance_deeper_called = 0 ); do { int iPage = pCur->iPage; MemPage *pPage = pCur->pPage; if( iPage==0 ){ if( pPage->nOverflow ){ /* The root page of the b-tree is overfull. In this case call the ** balance_deeper() function to create a new child for the root-page ** and copy the current contents of the root-page to it. The ** next iteration of the do-loop will balance the child page. */ assert( balance_deeper_called==0 ); VVA_ONLY( balance_deeper_called++ ); rc = balance_deeper(pPage, &pCur->apPage[1]); if( rc==SQLITE_OK ){ pCur->iPage = 1; pCur->ix = 0; pCur->aiIdx[0] = 0; pCur->apPage[0] = pPage; pCur->pPage = pCur->apPage[1]; assert( pCur->pPage->nOverflow ); } }else{ break; } }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ break; }else{ |
︙ | ︙ | |||
8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 | pPage->nOverflow = 0; /* The next iteration of the do-loop balances the parent page. */ releasePage(pPage); pCur->iPage--; assert( pCur->iPage>=0 ); } }while( rc==SQLITE_OK ); if( pFree ){ sqlite3PageFree(pFree); } return rc; | > | 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 | pPage->nOverflow = 0; /* The next iteration of the do-loop balances the parent page. */ releasePage(pPage); pCur->iPage--; assert( pCur->iPage>=0 ); pCur->pPage = pCur->apPage[pCur->iPage]; } }while( rc==SQLITE_OK ); if( pFree ){ sqlite3PageFree(pFree); } return rc; |
︙ | ︙ | |||
8434 8435 8436 8437 8438 8439 8440 | }else{ rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); } if( rc ) return rc; } assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); | | | 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 | }else{ rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); } if( rc ) return rc; } assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); pPage = pCur->pPage; assert( pPage->intKey || pX->nKey>=0 ); assert( pPage->leaf || !pPage->intKey ); TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, loc==0 ? "overwrite" : "new entry")); assert( pPage->isInit ); |
︙ | ︙ | |||
8521 8522 8523 8524 8525 8526 8527 | pCur->curFlags &= ~(BTCF_ValidNKey); rc = balance(pCur); /* Must make sure nOverflow is reset to zero even if the balance() ** fails. Internal data structure corruption will result otherwise. ** Also, set the cursor state to invalid. This stops saveCursorPosition() ** from trying to save the current position of the cursor. */ | | | | 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 | pCur->curFlags &= ~(BTCF_ValidNKey); rc = balance(pCur); /* Must make sure nOverflow is reset to zero even if the balance() ** fails. Internal data structure corruption will result otherwise. ** Also, set the cursor state to invalid. This stops saveCursorPosition() ** from trying to save the current position of the cursor. */ pCur->pPage->nOverflow = 0; pCur->eState = CURSOR_INVALID; if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ btreeReleaseAllCursorPages(pCur); if( pCur->pKeyInfo ){ assert( pCur->pKey==0 ); pCur->pKey = sqlite3Malloc( pX->nKey ); if( pCur->pKey==0 ){ rc = SQLITE_NOMEM; }else{ memcpy(pCur->pKey, pX->pKey, pX->nKey); } } pCur->eState = CURSOR_REQUIRESEEK; pCur->nKey = pX->nKey; } } assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); end_insert: return rc; } /* ** Delete the entry that the cursor is pointing to. |
︙ | ︙ | |||
8579 8580 8581 8582 8583 8584 8585 | assert( cursorOwnsBtShared(pCur) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( pCur->curFlags & BTCF_WriteFlag ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); assert( !hasReadConflicts(p, pCur->pgnoRoot) ); | | | | 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 | assert( cursorOwnsBtShared(pCur) ); assert( pBt->inTransaction==TRANS_WRITE ); assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); assert( pCur->curFlags & BTCF_WriteFlag ); assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); assert( !hasReadConflicts(p, pCur->pgnoRoot) ); assert( pCur->ix<pCur->pPage->nCell ); assert( pCur->eState==CURSOR_VALID ); assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); iCellDepth = pCur->iPage; iCellIdx = pCur->ix; pPage = pCur->pPage; pCell = findCell(pPage, iCellIdx); /* If the bPreserve flag is set to true, then the cursor position must ** be preserved following this delete operation. If the current delete ** will cause a b-tree rebalance, then this is done by saving the cursor ** key and leaving the cursor in CURSOR_REQUIRESEEK state before ** returning. |
︙ | ︙ | |||
8651 8652 8653 8654 8655 8656 8657 | /* If the cell deleted was not located on a leaf page, then the cursor ** is currently pointing to the largest entry in the sub-tree headed ** by the child-page of the cell that was just deleted from an internal ** node. The cell from the leaf node needs to be moved to the internal ** node to replace the deleted cell. */ if( !pPage->leaf ){ | | | > > > > > | 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 | /* If the cell deleted was not located on a leaf page, then the cursor ** is currently pointing to the largest entry in the sub-tree headed ** by the child-page of the cell that was just deleted from an internal ** node. The cell from the leaf node needs to be moved to the internal ** node to replace the deleted cell. */ if( !pPage->leaf ){ MemPage *pLeaf = pCur->pPage; int nCell; Pgno n; unsigned char *pTmp; if( iCellDepth<pCur->iPage-1 ){ n = pCur->apPage[iCellDepth+1]->pgno; }else{ n = pCur->pPage->pgno; } pCell = findCell(pLeaf, pLeaf->nCell-1); if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; nCell = pLeaf->xCellSize(pLeaf, pCell); assert( MX_CELL_SIZE(pBt) >= nCell ); pTmp = pBt->pTmpSpace; assert( pTmp!=0 ); rc = sqlite3PagerWrite(pLeaf->pDbPage); |
︙ | ︙ | |||
8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 | ** on the leaf node first. If the balance proceeds far enough up the ** tree that we can be sure that any problem in the internal node has ** been corrected, so be it. Otherwise, after balancing the leaf node, ** walk the cursor up the tree to the internal node and balance it as ** well. */ rc = balance(pCur); if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ while( pCur->iPage>iCellDepth ){ releasePage(pCur->apPage[pCur->iPage--]); } rc = balance(pCur); } if( rc==SQLITE_OK ){ if( bSkipnext ){ assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); | > > > | > | 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 | ** on the leaf node first. If the balance proceeds far enough up the ** tree that we can be sure that any problem in the internal node has ** been corrected, so be it. Otherwise, after balancing the leaf node, ** walk the cursor up the tree to the internal node and balance it as ** well. */ rc = balance(pCur); if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ releasePageNotNull(pCur->pPage); pCur->iPage--; while( pCur->iPage>iCellDepth ){ releasePage(pCur->apPage[pCur->iPage--]); } pCur->pPage = pCur->apPage[pCur->iPage]; rc = balance(pCur); } if( rc==SQLITE_OK ){ if( bSkipnext ){ assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); assert( pPage==pCur->pPage || CORRUPT_DB ); assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); pCur->eState = CURSOR_SKIPNEXT; if( iCellIdx>=pPage->nCell ){ pCur->skipNext = -1; pCur->ix = pPage->nCell-1; }else{ pCur->skipNext = 1; } }else{ rc = moveToRoot(pCur); if( bPreserve ){ btreeReleaseAllCursorPages(pCur); pCur->eState = CURSOR_REQUIRESEEK; } if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; } } return rc; } /* ** Create a new BTree table. Write into *piTable the page |
︙ | ︙ | |||
9175 9176 9177 9178 9179 9180 9181 | ** Otherwise, if an error is encountered (i.e. an IO error or database ** corruption) an SQLite error code is returned. */ int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ i64 nEntry = 0; /* Value to return in *pnEntry */ int rc; /* Return code */ | | > < | | 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 | ** Otherwise, if an error is encountered (i.e. an IO error or database ** corruption) an SQLite error code is returned. */ int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ i64 nEntry = 0; /* Value to return in *pnEntry */ int rc; /* Return code */ rc = moveToRoot(pCur); if( rc==SQLITE_EMPTY ){ *pnEntry = 0; return SQLITE_OK; } /* Unless an error occurs, the following loop runs one iteration for each ** page in the B-Tree structure (not including overflow pages). */ while( rc==SQLITE_OK ){ int iIdx; /* Index of child node in parent */ MemPage *pPage; /* Current page of the b-tree */ /* If this is a leaf page or the tree is not an int-key tree, then ** this page contains countable entries. Increment the entry counter ** accordingly. */ pPage = pCur->pPage; if( pPage->leaf || !pPage->intKey ){ nEntry += pPage->nCell; } /* pPage is a leaf node. This loop navigates the cursor so that it ** points to the first interior cell that it points to the parent of ** the next page in the tree that has not yet been visited. The |
︙ | ︙ | |||
9215 9216 9217 9218 9219 9220 9221 | do { if( pCur->iPage==0 ){ /* All pages of the b-tree have been visited. Return successfully. */ *pnEntry = nEntry; return moveToRoot(pCur); } moveToParent(pCur); | | | | 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 | do { if( pCur->iPage==0 ){ /* All pages of the b-tree have been visited. Return successfully. */ *pnEntry = nEntry; return moveToRoot(pCur); } moveToParent(pCur); }while ( pCur->ix>=pCur->pPage->nCell ); pCur->ix++; pPage = pCur->pPage; } /* Descend to the child node of the cell that the cursor currently ** points at. This is the right-child if (iIdx==pPage->nCell). */ iIdx = pCur->ix; if( iIdx==pPage->nCell ){ |
︙ | ︙ | |||
10109 10110 10111 10112 10113 10114 10115 | if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ return SQLITE_READONLY; } assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 && pCsr->pBt->inTransaction==TRANS_WRITE ); assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); | | | 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 | if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ return SQLITE_READONLY; } assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 && pCsr->pBt->inTransaction==TRANS_WRITE ); assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); assert( pCsr->pPage->intKey ); return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); } /* ** Mark this cursor as an incremental blob cursor. */ |
︙ | ︙ |
Changes to src/btreeInt.h.
︙ | ︙ | |||
518 519 520 521 522 523 524 | ** sqlite3BtreeCursorZero(). Fields that follow must be manually ** initialized. */ i8 iPage; /* Index of current page in apPage */ u8 curIntKey; /* Value of apPage[0]->intKey */ u16 ix; /* Current index for apPage[iPage] */ u16 aiIdx[BTCURSOR_MAX_DEPTH-1]; /* Current index in apPage[i] */ struct KeyInfo *pKeyInfo; /* Arg passed to comparison function */ | > | | 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 | ** sqlite3BtreeCursorZero(). Fields that follow must be manually ** initialized. */ i8 iPage; /* Index of current page in apPage */ u8 curIntKey; /* Value of apPage[0]->intKey */ u16 ix; /* Current index for apPage[iPage] */ u16 aiIdx[BTCURSOR_MAX_DEPTH-1]; /* Current index in apPage[i] */ struct KeyInfo *pKeyInfo; /* Arg passed to comparison function */ MemPage *pPage; /* Current page */ MemPage *apPage[BTCURSOR_MAX_DEPTH-1]; /* Stack of parents of current page */ }; /* ** Legal values for BtCursor.curFlags */ #define BTCF_WriteFlag 0x01 /* True if a write cursor */ #define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */ |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
1969 1970 1971 1972 1973 1974 1975 | switch( op ){ case TK_INTEGER: case TK_STRING: case TK_FLOAT: case TK_BLOB: return 0; case TK_COLUMN: | < > | 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 | switch( op ){ case TK_INTEGER: case TK_STRING: case TK_FLOAT: case TK_BLOB: return 0; case TK_COLUMN: return ExprHasProperty(p, EP_CanBeNull) || p->pTab==0 || /* Reference to column of index on expression */ (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); default: return 1; } } /* |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 | fullName = (db->flags & SQLITE_FullColNames)!=0; srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; sqlite3VdbeSetNumCols(v, pEList->nExpr); for(i=0; i<pEList->nExpr; i++){ Expr *p = pEList->a[i].pExpr; assert( p!=0 ); if( pEList->a[i].zName ){ /* An AS clause always takes first priority */ char *zName = pEList->a[i].zName; sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); }else if( srcName && p->op==TK_COLUMN ){ char *zCol; int iCol = p->iColumn; | > > | 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 | fullName = (db->flags & SQLITE_FullColNames)!=0; srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; sqlite3VdbeSetNumCols(v, pEList->nExpr); for(i=0; i<pEList->nExpr; i++){ Expr *p = pEList->a[i].pExpr; assert( p!=0 ); assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering indexes not yet coded */ if( pEList->a[i].zName ){ /* An AS clause always takes first priority */ char *zName = pEList->a[i].zName; sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); }else if( srcName && p->op==TK_COLUMN ){ char *zCol; int iCol = p->iColumn; |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
428 429 430 431 432 433 434 | #define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ #define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ #define SQLITE_CORRUPT 11 /* The database disk image is malformed */ #define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */ #define SQLITE_FULL 13 /* Insertion failed because database is full */ #define SQLITE_CANTOPEN 14 /* Unable to open the database file */ #define SQLITE_PROTOCOL 15 /* Database lock protocol error */ | | | 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | #define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ #define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ #define SQLITE_CORRUPT 11 /* The database disk image is malformed */ #define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */ #define SQLITE_FULL 13 /* Insertion failed because database is full */ #define SQLITE_CANTOPEN 14 /* Unable to open the database file */ #define SQLITE_PROTOCOL 15 /* Database lock protocol error */ #define SQLITE_EMPTY 16 /* Internal use only */ #define SQLITE_SCHEMA 17 /* The database schema changed */ #define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ #define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ #define SQLITE_MISMATCH 20 /* Data type mismatch */ #define SQLITE_MISUSE 21 /* Library used incorrectly */ #define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ #define SQLITE_AUTH 23 /* Authorization denied */ |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
2383 2384 2385 2386 2387 2388 2389 | ** TK_SELECT_COLUMN: column of the result vector */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ u8 op2; /* TK_REGISTER: original value of Expr.op ** TK_COLUMN: the value of p5 for OP_Column ** TK_AGG_FUNCTION: nesting depth */ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ | | > | 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 | ** TK_SELECT_COLUMN: column of the result vector */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ u8 op2; /* TK_REGISTER: original value of Expr.op ** TK_COLUMN: the value of p5 for OP_Column ** TK_AGG_FUNCTION: nesting depth */ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ Table *pTab; /* Table for TK_COLUMN expressions. Can be NULL ** for a column of an index on an expression */ }; /* ** The following are the meanings of bits in the Expr.flags field. */ #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
2382 2383 2384 2385 2386 2387 2388 | int len; /* The length of the serialized data for the column */ int i; /* Loop counter */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ const u8 *zData; /* Part of the record being decoded */ const u8 *zHdr; /* Next unparsed byte of the header */ const u8 *zEndHdr; /* Pointer to first byte after the header */ | < < | 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 | int len; /* The length of the serialized data for the column */ int i; /* Loop counter */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ const u8 *zData; /* Part of the record being decoded */ const u8 *zHdr; /* Next unparsed byte of the header */ const u8 *zEndHdr; /* Pointer to first byte after the header */ u64 offset64; /* 64-bit offset */ u32 t; /* A type code from the record header */ Mem *pReg; /* PseudoTable input register */ pC = p->apCsr[pOp->p1]; p2 = pOp->p2; /* If the cursor cache is stale (meaning it is not currently point at |
︙ | ︙ | |||
2415 2416 2417 2418 2419 2420 2421 | if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ if( pC->nullRow ){ if( pC->eCurType==CURTYPE_PSEUDO ){ assert( pC->uc.pseudoTableReg>0 ); pReg = &aMem[pC->uc.pseudoTableReg]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); | | | > | < < | < < | < | | | | > | < > > > > > > > > > > | 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 | if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ if( pC->nullRow ){ if( pC->eCurType==CURTYPE_PSEUDO ){ assert( pC->uc.pseudoTableReg>0 ); pReg = &aMem[pC->uc.pseudoTableReg]; assert( pReg->flags & MEM_Blob ); assert( memIsValid(pReg) ); pC->payloadSize = pC->szRow = pReg->n; pC->aRow = (u8*)pReg->z; }else{ sqlite3VdbeMemSetNull(pDest); goto op_column_out; } }else{ pCrsr = pC->uc.pCursor; assert( pC->eCurType==CURTYPE_BTREE ); assert( pCrsr ); assert( sqlite3BtreeCursorIsValid(pCrsr) ); pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); assert( pC->szRow<=pC->payloadSize ); assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } } pC->cacheStatus = p->cacheCtr; pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); pC->nHdrParsed = 0; if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ /* pC->aRow does not have to hold the entire row, but it does at least ** need to cover the header of the record. If pC->aRow does not contain ** the complete header, then set it to zero, forcing the header to be ** dynamically allocated. */ pC->aRow = 0; pC->szRow = 0; /* Make sure a corrupt database has not given us an oversize header. ** Do this now to avoid an oversize memory allocation. ** ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte ** types use so much data space that there can only be 4096 and 32 of ** them, respectively. So the maximum header length results from a ** 3-byte type for each of the maximum of 32768 columns plus three ** extra bytes for the header length itself. 32768*3 + 3 = 98307. */ if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ rc = SQLITE_CORRUPT_BKPT; goto abort_due_to_error; } }else{ /* This is an optimization. By skipping over the first few tests ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a ** measurable performance gain. ** ** This branch is taken even if aOffset[0]==0. Such a record is never ** generated by SQLite, and could be considered corruption, but we ** accept it for historical reasons. When aOffset[0]==0, the code this ** branch jumps to reads past the end of the record, but never more ** than a few bytes. Even if the record occurs at the end of the page ** content area, the "page header" comes after the page content and so ** this overread is harmless. Similar overreads can occur for a corrupt ** database file. */ zData = pC->aRow; assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ testcase( aOffset[0]==0 ); goto op_column_read_header; } } /* Make sure at least the first p2+1 entries of the header have been ** parsed and valid information is in aOffset[] and pC->aType[]. */ |
︙ | ︙ | |||
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 | /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ op_column_read_header: i = pC->nHdrParsed; offset64 = aOffset[i]; zHdr = zData + pC->iHdrOffset; zEndHdr = zData + aOffset[0]; do{ if( (t = zHdr[0])<0x80 ){ zHdr++; offset64 += sqlite3VdbeOneByteSerialTypeLen(t); }else{ zHdr += sqlite3GetVarint32(zHdr, &t); offset64 += sqlite3VdbeSerialTypeLen(t); } pC->aType[i++] = t; aOffset[i] = (u32)(offset64 & 0xffffffff); }while( i<=p2 && zHdr<zEndHdr ); /* The record is corrupt if any of the following are true: ** (1) the bytes of the header extend past the declared header size ** (2) the entire header was used but not all data was used ** (3) the end of the data extends beyond the end of the record. */ if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) || (offset64 > pC->payloadSize) ){ | > > > > > | | | > | 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 | /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ op_column_read_header: i = pC->nHdrParsed; offset64 = aOffset[i]; zHdr = zData + pC->iHdrOffset; zEndHdr = zData + aOffset[0]; testcase( zHdr>=zEndHdr ); do{ if( (t = zHdr[0])<0x80 ){ zHdr++; offset64 += sqlite3VdbeOneByteSerialTypeLen(t); }else{ zHdr += sqlite3GetVarint32(zHdr, &t); offset64 += sqlite3VdbeSerialTypeLen(t); } pC->aType[i++] = t; aOffset[i] = (u32)(offset64 & 0xffffffff); }while( i<=p2 && zHdr<zEndHdr ); /* The record is corrupt if any of the following are true: ** (1) the bytes of the header extend past the declared header size ** (2) the entire header was used but not all data was used ** (3) the end of the data extends beyond the end of the record. */ if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) || (offset64 > pC->payloadSize) ){ if( aOffset[0]==0 ){ i = 0; zHdr = zEndHdr; }else{ if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); rc = SQLITE_CORRUPT_BKPT; goto abort_due_to_error; } } pC->nHdrParsed = i; pC->iHdrOffset = (u32)(zHdr - zData); if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); }else{ t = 0; |
︙ | ︙ |
Changes to test/indexexpr1.test.
︙ | ︙ | |||
375 376 377 378 379 380 381 382 383 | # do_execsql_test indexexpr1-1300.1 { CREATE TABLE t1300(a INTEGER PRIMARY KEY, b); INSERT INTO t1300 VALUES(1,'coffee'),(2,'COFFEE'),(3,'stress'),(4,'STRESS'); CREATE INDEX t1300bexpr ON t1300( substr(b,4) ); SELECT a FROM t1300 WHERE substr(b,4)='ess' COLLATE nocase ORDER BY +a; } {3 4} finish_test | > > > > > > > > > > > > > > > > > > > > > > | 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | # do_execsql_test indexexpr1-1300.1 { CREATE TABLE t1300(a INTEGER PRIMARY KEY, b); INSERT INTO t1300 VALUES(1,'coffee'),(2,'COFFEE'),(3,'stress'),(4,'STRESS'); CREATE INDEX t1300bexpr ON t1300( substr(b,4) ); SELECT a FROM t1300 WHERE substr(b,4)='ess' COLLATE nocase ORDER BY +a; } {3 4} # Ticket https://sqlite.org/src/tktview/aa98619a # Assertion fault using an index on a constant # do_execsql_test indexexpr1-1400 { CREATE TABLE t1400(x TEXT); CREATE INDEX t1400x ON t1400(1); -- Index on a constant SELECT 1 IN (SELECT 2) FROM t1400; } {} do_execsql_test indexexpr1-1410 { INSERT INTO t1400 VALUES('a'),('b'); SELECT 1 IN (SELECT 2) FROM t1400; } {0 0} do_execsql_test indexexpr1-1420 { SELECT 1 IN (SELECT 2 UNION ALL SELECT 1) FROM t1400; } {1 1} do_execsql_test indexexpr1-1430 { DROP INDEX t1400x; CREATE INDEX t1400x ON t1400(abs(15+3)); SELECT abs(15+3) IN (SELECT 17 UNION ALL SELECT 18) FROM t1; } {1 1} finish_test |