Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | documentation and speed updates (CVS 164) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
356cdd64860b714f52529159fada799d |
User & Date: | drh 2000-10-23 13:16:32.000 |
Context
2000-10-23
| ||
13:20 | Version 1.0.15 (CVS 488) (check-in: d2ad3d2b4e user: drh tags: trunk) | |
13:16 | documentation and speed updates (CVS 164) (check-in: 356cdd6486 user: drh tags: trunk) | |
01:08 | remove unnecessary code when NDEBUG is defined (CVS 163) (check-in: 738e3e49f6 user: drh tags: trunk) | |
Changes
Changes to VERSION.
|
| | | 1 | 1.0.15 |
Changes to src/vdbe.c.
︙ | ︙ | |||
37 38 39 40 41 42 43 | ** inplicit conversion from one type to the other occurs as necessary. ** ** Most of the code in this file is taken up by the sqliteVdbeExec() ** function which does the work of interpreting a VDBE program. ** But other routines are also provided to help in building up ** a program instruction by instruction. ** | | | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | ** inplicit conversion from one type to the other occurs as necessary. ** ** Most of the code in this file is taken up by the sqliteVdbeExec() ** function which does the work of interpreting a VDBE program. ** But other routines are also provided to help in building up ** a program instruction by instruction. ** ** $Id: vdbe.c,v 1.47 2000/10/23 13:16:33 drh Exp $ */ #include "sqliteInt.h" #include <unistd.h> #include <ctype.h> /* ** SQL is translated into a sequence of instructions to be |
︙ | ︙ | |||
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 | int (*xBusy)(void*,const char*,int) /* Called when a file is busy */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc; /* Value to return */ Dbbe *pBe = p->pBe; /* The backend driver */ sqlite *db = p->db; /* The database */ char zBuf[100]; /* Space to sprintf() and integer */ /* No instruction ever pushes more than a single element onto the ** stack. And the stack never grows on successive executions of the ** same loop. So the total number of instructions is an upper bound ** on the maximum stack depth required. ** ** Allocation all the stack space we will ever need. */ NeedStack(p, p->nOp); p->tos = -1; rc = SQLITE_OK; #ifdef MEMORY_DEBUG if( access("vdbe_trace",0)==0 ){ p->trace = stderr; } | > > > > | 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 | int (*xBusy)(void*,const char*,int) /* Called when a file is busy */ ){ int pc; /* The program counter */ Op *pOp; /* Current operation */ int rc; /* Value to return */ Dbbe *pBe = p->pBe; /* The backend driver */ sqlite *db = p->db; /* The database */ char **zStack; Stack *aStack; char zBuf[100]; /* Space to sprintf() and integer */ /* No instruction ever pushes more than a single element onto the ** stack. And the stack never grows on successive executions of the ** same loop. So the total number of instructions is an upper bound ** on the maximum stack depth required. ** ** Allocation all the stack space we will ever need. */ NeedStack(p, p->nOp); zStack = p->zStack; aStack = p->aStack; p->tos = -1; rc = SQLITE_OK; #ifdef MEMORY_DEBUG if( access("vdbe_trace",0)==0 ){ p->trace = stderr; } |
︙ | ︙ | |||
1023 1024 1025 1026 1027 1028 1029 | /* Opcode: Integer P1 * * ** ** The integer value P1 is pushed onto the stack. */ case OP_Integer: { int i = ++p->tos; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) | | | | | | | | | 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 | /* Opcode: Integer P1 * * ** ** The integer value P1 is pushed onto the stack. */ case OP_Integer: { int i = ++p->tos; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) aStack[i].i = pOp->p1; aStack[i].flags = STK_Int; break; } /* Opcode: String * * P3 ** ** The string value P3 is pushed onto the stack. */ case OP_String: { int i = ++p->tos; char *z; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) z = pOp->p3; if( z==0 ) z = ""; zStack[i] = z; aStack[i].n = strlen(z) + 1; aStack[i].flags = STK_Str; break; } /* Opcode: Null * * * ** ** Push a NULL value onto the stack. */ case OP_Null: { int i = ++p->tos; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) zStack[i] = 0; aStack[i].flags = STK_Null; break; } /* Opcode: Pop P1 * * ** ** P1 elements are popped off of the top of stack and discarded. */ |
︙ | ︙ | |||
1078 1079 1080 1081 1082 1083 1084 | ** top of the stack. */ case OP_Dup: { int i = p->tos - pOp->p1; int j = ++p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) | | | | | | | | | | | | | | 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 | ** top of the stack. */ case OP_Dup: { int i = p->tos - pOp->p1; int j = ++p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) aStack[j] = aStack[i]; if( aStack[i].flags & STK_Dyn ){ zStack[j] = sqliteMalloc( aStack[j].n ); if( zStack[j]==0 ) goto no_mem; memcpy(zStack[j], zStack[i], aStack[j].n); }else{ zStack[j] = zStack[i]; } break; } /* Opcode: Pull P1 * * ** ** The P1-th element is removed from its current location on ** the stack and pushed back on top of the stack. The ** top of the stack is element 0, so "Pull 0 0 0" is ** a no-op. */ case OP_Pull: { int from = p->tos - pOp->p1; int to = p->tos; int i; Stack ts; char *tz; VERIFY( if( from<0 ) goto not_enough_stack; ) ts = aStack[from]; tz = zStack[from]; for(i=from; i<to; i++){ aStack[i] = aStack[i+1]; zStack[i] = zStack[i+1]; } aStack[to] = ts; zStack[to] = tz; break; } /* Opcode: ColumnCount P1 * * ** ** Specify the number of column values that will appear in the ** array passed as the 4th parameter to the callback. No checking |
︙ | ︙ | |||
1152 1153 1154 1155 1156 1157 1158 | */ case OP_Callback: { int i = p->tos - pOp->p1 + 1; int j; VERIFY( if( i<0 ) goto not_enough_stack; ) VERIFY( if( NeedStack(p, p->tos+2) ) goto no_mem; ) for(j=i; j<=p->tos; j++){ | | | | | 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 | */ case OP_Callback: { int i = p->tos - pOp->p1 + 1; int j; VERIFY( if( i<0 ) goto not_enough_stack; ) VERIFY( if( NeedStack(p, p->tos+2) ) goto no_mem; ) for(j=i; j<=p->tos; j++){ if( (aStack[j].flags & STK_Null)==0 ){ if( Stringify(p, j) ) goto no_mem; } } zStack[p->tos+1] = 0; if( xCallback!=0 ){ if( xCallback(pArg, pOp->p1, &zStack[i], p->azColName)!=0 ){ rc = SQLITE_ABORT; } } PopStack(p, pOp->p1); break; } |
︙ | ︙ | |||
1192 1193 1194 1195 1196 1197 1198 | nField = pOp->p1; zSep = pOp->p3; if( zSep==0 ) zSep = ""; nSep = strlen(zSep); VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 1 - nSep; for(i=p->tos-nField+1; i<=p->tos; i++){ | | | | | | | | | | 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 | nField = pOp->p1; zSep = pOp->p3; if( zSep==0 ) zSep = ""; nSep = strlen(zSep); VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 1 - nSep; for(i=p->tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ nByte += nSep; }else{ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n - 1 + nSep; } } zNew = sqliteMalloc( nByte ); if( zNew==0 ) goto no_mem; j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNew[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; } if( nSep>0 && i<p->tos ){ memcpy(&zNew[j], zSep, nSep); j += nSep; } } zNew[j] = 0; if( pOp->p2==0 ) PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNew; break; } /* Opcode: Add * * * ** ** Pop the top two elements from the stack, add them together, ** and push the result back onto the stack. If either element |
︙ | ︙ | |||
1261 1262 1263 1264 1265 1266 1267 | case OP_Add: case OP_Subtract: case OP_Multiply: case OP_Divide: { int tos = p->tos; int nos = tos - 1; VERIFY( if( nos<0 ) goto not_enough_stack; ) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 | case OP_Add: case OP_Subtract: case OP_Multiply: case OP_Divide: { int tos = p->tos; int nos = tos - 1; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( (aStack[tos].flags & aStack[nos].flags & STK_Int)==STK_Int ){ int a, b; a = aStack[tos].i; b = aStack[nos].i; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; default: { if( a==0 ) goto divide_by_zero; b /= a; break; } } PopStack(p, 2); p->tos = nos; aStack[nos].i = b; aStack[nos].flags = STK_Int; }else{ double a, b; Realify(p, tos); Realify(p, nos); a = aStack[tos].r; b = aStack[nos].r; switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; case OP_Multiply: b *= a; break; default: { if( a==0.0 ) goto divide_by_zero; b /= a; break; } } PopStack(p, 1); Release(p, nos); aStack[nos].r = b; aStack[nos].flags = STK_Real; } break; divide_by_zero: PopStack(p, 2); p->tos = nos; aStack[nos].flags = STK_Null; break; } /* Opcode: Max * * * ** ** Pop the top two elements from the stack then push back the ** largest of the two. */ case OP_Max: { int tos = p->tos; int nos = tos - 1; int ft, fn; int copy = 0; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; if( fn & STK_Null ){ copy = 1; }else if( (ft & fn & STK_Int)==STK_Int ){ copy = aStack[nos].i<aStack[tos].i; }else if( ( (ft|fn) & (STK_Int|STK_Real) ) !=0 ){ Realify(p, tos); Realify(p, nos); copy = aStack[tos].r>aStack[nos].r; }else{ Stringify(p, tos); Stringify(p, nos); copy = sqliteCompare(zStack[tos],zStack[nos])>0; } if( copy ){ Release(p, nos); aStack[nos] = aStack[tos]; zStack[nos] = zStack[tos]; zStack[tos] = 0; aStack[tos].flags = 0; }else{ Release(p, tos); } p->tos = nos; break; } /* Opcode: Min * * * ** ** Pop the top two elements from the stack then push back the ** smaller of the two. */ case OP_Min: { int tos = p->tos; int nos = tos - 1; int ft, fn; int copy = 0; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; if( fn & STK_Null ){ copy = 1; }else if( ft & STK_Null ){ copy = 0; }else if( (ft & fn & STK_Int)==STK_Int ){ copy = aStack[nos].i>aStack[tos].i; }else if( ( (ft|fn) & (STK_Int|STK_Real) ) !=0 ){ Realify(p, tos); Realify(p, nos); copy = aStack[tos].r<aStack[nos].r; }else{ Stringify(p, tos); Stringify(p, nos); copy = sqliteCompare(zStack[tos],zStack[nos])<0; } if( copy ){ Release(p, nos); aStack[nos] = aStack[tos]; zStack[nos] = zStack[tos]; zStack[tos] = 0; aStack[tos].flags = 0; }else{ Release(p, tos); } p->tos = nos; break; } /* Opcode: AddImm P1 * * ** ** Add the value P1 to whatever is on top of the stack. */ case OP_AddImm: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) Integerify(p, tos); aStack[tos].i += pOp->p1; break; } /* Opcode: Eq * P2 * ** ** Pop the top two elements from the stack. If they are equal, then ** jump to instruction P2. Otherwise, continue to the next instruction. |
︙ | ︙ | |||
1447 1448 1449 1450 1451 1452 1453 | case OP_Gt: case OP_Ge: { int tos = p->tos; int nos = tos - 1; int c; int ft, fn; VERIFY( if( nos<0 ) goto not_enough_stack; ) | | | | | | 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 | case OP_Gt: case OP_Ge: { int tos = p->tos; int nos = tos - 1; int c; int ft, fn; VERIFY( if( nos<0 ) goto not_enough_stack; ) ft = aStack[tos].flags; fn = aStack[nos].flags; if( (ft & fn)==STK_Int ){ c = aStack[nos].i - aStack[tos].i; }else{ Stringify(p, tos); Stringify(p, nos); c = sqliteCompare(zStack[nos], zStack[tos]); } switch( pOp->opcode ){ case OP_Eq: c = c==0; break; case OP_Ne: c = c!=0; break; case OP_Lt: c = c<0; break; case OP_Le: c = c<=0; break; case OP_Gt: c = c>0; break; |
︙ | ︙ | |||
1491 1492 1493 1494 1495 1496 1497 | case OP_Like: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) Stringify(p, tos); Stringify(p, nos); | | | 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 | case OP_Like: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) Stringify(p, tos); Stringify(p, nos); c = sqliteLikeCompare(zStack[tos], zStack[nos]); PopStack(p, 2); if( pOp->p1 ) c = !c; if( c ) pc = pOp->p2-1; break; } /* Opcode: Glob P1 P2 * |
︙ | ︙ | |||
1523 1524 1525 1526 1527 1528 1529 | case OP_Glob: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) Stringify(p, tos); Stringify(p, nos); | | | 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 | case OP_Glob: { int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) Stringify(p, tos); Stringify(p, nos); c = sqliteGlobCompare(zStack[tos], zStack[nos]); PopStack(p, 2); if( pOp->p1 ) c = !c; if( c ) pc = pOp->p2-1; break; } /* Opcode: And * * * |
︙ | ︙ | |||
1551 1552 1553 1554 1555 1556 1557 | int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) Integerify(p, tos); Integerify(p, nos); if( pOp->opcode==OP_And ){ | | | | | | | | | | | | | | | | 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 | int tos = p->tos; int nos = tos - 1; int c; VERIFY( if( nos<0 ) goto not_enough_stack; ) Integerify(p, tos); Integerify(p, nos); if( pOp->opcode==OP_And ){ c = aStack[tos].i && aStack[nos].i; }else{ c = aStack[tos].i || aStack[nos].i; } PopStack(p, 2); p->tos++; aStack[nos].i = c; aStack[nos].flags = STK_Int; break; } /* Opcode: Negative * * * ** ** Treat the top of the stack as a numeric quantity. Replace it ** with its additive inverse. */ case OP_Negative: { int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( aStack[tos].flags & STK_Real ){ Release(p, tos); aStack[tos].r = -aStack[tos].r; aStack[tos].flags = STK_Real; }else if( aStack[tos].flags & STK_Int ){ Release(p, tos); aStack[tos].i = -aStack[tos].i; aStack[tos].flags = STK_Int; }else{ Realify(p, tos); Release(p, tos); aStack[tos].r = -aStack[tos].r; aStack[tos].flags = STK_Real; } break; } /* Opcode: Not * * * ** ** Interpret the top of the stack as a boolean value. Replace it ** with its complement. */ case OP_Not: { int tos = p->tos; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, tos); Release(p, tos); aStack[tos].i = !aStack[tos].i; aStack[tos].flags = STK_Int; break; } /* Opcode: Noop * * * ** ** Do nothing. This instruction is often useful as a jump ** destination. |
︙ | ︙ | |||
1622 1623 1624 1625 1626 1627 1628 | ** An integer is false if zero and true otherwise. A string is ** false if it has zero length and true otherwise. */ case OP_If: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); | | | | | 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 | ** An integer is false if zero and true otherwise. A string is ** false if it has zero length and true otherwise. */ case OP_If: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); c = aStack[p->tos].i; PopStack(p, 1); if( c ) pc = pOp->p2-1; break; } /* Opcode: IsNull * P2 * ** ** Pop a single value from the stack. If the value popped is NULL ** then jump to p2. Otherwise continue to the next ** instruction. */ case OP_IsNull: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) c = (aStack[p->tos].flags & STK_Null)!=0; PopStack(p, 1); if( c ) pc = pOp->p2-1; break; } /* Opcode: NotNull * P2 * ** ** Pop a single value from the stack. If the value popped is not an ** empty string, then jump to p2. Otherwise continue to the next ** instruction. */ case OP_NotNull: { int c; VERIFY( if( p->tos<0 ) goto not_enough_stack; ) c = (aStack[p->tos].flags & STK_Null)==0; PopStack(p, 1); if( c ) pc = pOp->p2-1; break; } /* Opcode: MakeRecord P1 * * ** |
︙ | ︙ | |||
1683 1684 1685 1686 1687 1688 1689 | int i, j; int addr; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ | | | | | | | | | | | | 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 | int i, j; int addr; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n; } } nByte += sizeof(int)*nField; zNewRecord = sqliteMalloc( nByte ); if( zNewRecord==0 ) goto no_mem; j = 0; addr = sizeof(int)*nField; for(i=p->tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ int zero = 0; memcpy(&zNewRecord[j], (char*)&zero, sizeof(int)); }else{ memcpy(&zNewRecord[j], (char*)&addr, sizeof(int)); addr += aStack[i].n; } j += sizeof(int); } for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNewRecord[j], zStack[i], aStack[i].n); j += aStack[i].n; } } PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str | STK_Dyn; zStack[p->tos] = zNewRecord; break; } /* Opcode: MakeKey P1 P2 * ** ** Convert the top P1 entries of the stack into a single entry suitable ** for use as the key in an index or a sort. The top P1 records are |
︙ | ︙ | |||
1744 1745 1746 1747 1748 1749 1750 | int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ | | | | | | | | | | 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 | int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( aStack[i].flags & STK_Null ){ nByte++; }else{ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n; } } zNewKey = sqliteMalloc( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ memcpy(&zNewKey[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; } if( i<p->tos ) zNewKey[j++] = '\t'; } zNewKey[j] = 0; if( pOp->p2==0 ) PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNewKey; break; } /* Opcode: Open P1 P2 P3 ** ** Open a new cursor for the database file named P3. Give the ** cursor an identifier P1. The P1 values need not be |
︙ | ︙ | |||
1860 1861 1862 1863 1864 1865 1866 | ** in the P1 cursor until needed. */ case OP_Fetch: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor ){ | | | | | | | | 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 | ** in the P1 cursor until needed. */ case OP_Fetch: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor ){ if( aStack[tos].flags & STK_Int ){ pBe->Fetch(p->aCsr[i].pCursor, sizeof(int), (char*)&aStack[tos].i); }else{ if( Stringify(p, tos) ) goto no_mem; pBe->Fetch(p->aCsr[i].pCursor, aStack[tos].n, zStack[tos]); } p->nFetch++; } PopStack(p, 1); break; } /* Opcode: Fcnt * * * ** ** Push an integer onto the stack which is the total number of ** OP_Fetch opcodes that have been executed by this virtual machine. ** ** This instruction is used to implement the special fcnt() function ** in the SQL dialect that SQLite understands. fcnt() is used for ** testing purposes. */ case OP_Fcnt: { int i = ++p->tos; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) aStack[i].i = p->nFetch; aStack[i].flags = STK_Int; break; } /* Opcode: Distinct P1 P2 * ** ** Use the top of the stack as a key. If a record with that key ** does not exist in file P1, then jump to P2. If the record |
︙ | ︙ | |||
1926 1927 1928 1929 1930 1931 1932 | case OP_NotFound: case OP_Found: { int i = pOp->p1; int tos = p->tos; int alreadyExists = 0; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor ){ | | | | | | 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 | case OP_NotFound: case OP_Found: { int i = pOp->p1; int tos = p->tos; int alreadyExists = 0; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor ){ if( aStack[tos].flags & STK_Int ){ alreadyExists = pBe->Test(p->aCsr[i].pCursor, sizeof(int), (char*)&aStack[tos].i); }else{ if( Stringify(p, tos) ) goto no_mem; alreadyExists = pBe->Test(p->aCsr[i].pCursor,aStack[tos].n, zStack[tos]); } } if( pOp->opcode==OP_Found ){ if( alreadyExists ) pc = pOp->p2 - 1; }else{ if( !alreadyExists ) pc = pOp->p2 - 1; } |
︙ | ︙ | |||
1961 1962 1963 1964 1965 1966 1967 | if( VERIFY( i<0 || i>=p->nCursor || ) p->aCsr[i].pCursor==0 ){ v = 0; }else{ v = pBe->New(p->aCsr[i].pCursor); } VERIFY( NeedStack(p, p->tos+1); ) p->tos++; | | | | | | | | | | | | | 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 | if( VERIFY( i<0 || i>=p->nCursor || ) p->aCsr[i].pCursor==0 ){ v = 0; }else{ v = pBe->New(p->aCsr[i].pCursor); } VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].i = v; aStack[p->tos].flags = STK_Int; break; } /* Opcode: Put P1 * * ** ** Write an entry into the database file P1. A new entry is ** created if it doesn't already exist, or the data for an existing ** entry is overwritten. The data is the value on the top of the ** stack. The key is the next value down on the stack. The stack ** is popped twice by this instruction. */ case OP_Put: { int tos = p->tos; int nos = p->tos-1; int i = pOp->p1; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor!=0 ){ char *zKey; int nKey; if( (aStack[nos].flags & STK_Int)==0 ){ if( Stringify(p, nos) ) goto no_mem; nKey = aStack[nos].n; zKey = zStack[nos]; }else{ nKey = sizeof(int); zKey = (char*)&aStack[nos].i; } pBe->Put(p->aCsr[i].pCursor, nKey, zKey, aStack[tos].n, zStack[tos]); } PopStack(p, 2); break; } /* Opcode: Delete P1 * * ** ** The top of the stack is a key. Remove this key and its data ** from database file P1. Then pop the stack to discard the key. */ case OP_Delete: { int tos = p->tos; int i = pOp->p1; VERIFY( if( tos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) p->aCsr[i].pCursor!=0 ){ char *zKey; int nKey; if( aStack[tos].flags & STK_Int ){ nKey = sizeof(int); zKey = (char*)&aStack[tos].i; }else{ if( Stringify(p, tos) ) goto no_mem; nKey = aStack[tos].n; zKey = zStack[tos]; } pBe->Delete(p->aCsr[i].pCursor, nKey, zKey); } PopStack(p, 1); break; } |
︙ | ︙ | |||
2073 2074 2075 2076 2077 2078 2079 | char *z; VERIFY( if( NeedStack(p, tos) ) goto no_mem; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ if( p->aCsr[i].keyAsData ){ amt = pBe->KeyLength(pCrsr); if( amt<=sizeof(int)*(p2+1) ){ | | | | | | | | | | | | | | 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 | char *z; VERIFY( if( NeedStack(p, tos) ) goto no_mem; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ if( p->aCsr[i].keyAsData ){ amt = pBe->KeyLength(pCrsr); if( amt<=sizeof(int)*(p2+1) ){ aStack[tos].flags = STK_Null; break; } pAddr = (int*)pBe->ReadKey(pCrsr, sizeof(int)*p2); if( *pAddr==0 ){ aStack[tos].flags = STK_Null; break; } z = pBe->ReadKey(pCrsr, *pAddr); }else{ amt = pBe->DataLength(pCrsr); if( amt<=sizeof(int)*(p2+1) ){ aStack[tos].flags = STK_Null; break; } pAddr = (int*)pBe->ReadData(pCrsr, sizeof(int)*p2); if( *pAddr==0 ){ aStack[tos].flags = STK_Null; break; } z = pBe->ReadData(pCrsr, *pAddr); } zStack[tos] = z; aStack[tos].n = strlen(z) + 1; aStack[tos].flags = STK_Str; } break; } /* Opcode: Key P1 * * ** ** Push onto the stack an integer which is the first 4 bytes of the ** the key to the current entry in a sequential scan of the database ** file P1. The sequential scan should have been started using the ** Next opcode. */ case OP_Key: { int i = pOp->p1; int tos = ++p->tos; DbbeCursor *pCrsr; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ char *z = pBe->ReadKey(pCrsr, 0); if( p->aCsr[i].keyAsData ){ zStack[tos] = z; aStack[tos].flags = STK_Str; aStack[tos].n = pBe->KeyLength(pCrsr); }else{ memcpy(&aStack[tos].i, z, sizeof(int)); aStack[tos].flags = STK_Int; } } break; } /* Opcode: Rewind P1 * * ** |
︙ | ︙ | |||
2195 2196 2197 2198 2199 2200 2201 | */ case OP_NextIdx: { int i = pOp->p1; int tos = ++p->tos; DbbeCursor *pCrsr; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) | | | | | 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 | */ case OP_NextIdx: { int i = pOp->p1; int tos = ++p->tos; DbbeCursor *pCrsr; VERIFY( if( NeedStack(p, p->tos) ) goto no_mem; ) zStack[tos] = 0; if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int *aIdx; int nIdx; int j, k; nIdx = pBe->DataLength(pCrsr)/sizeof(int); aIdx = (int*)pBe->ReadData(pCrsr, 0); if( nIdx>1 ){ k = *(aIdx++); if( k>nIdx-1 ) k = nIdx-1; }else{ k = nIdx; } for(j=p->aCsr[i].index; j<k; j++){ if( aIdx[j]!=0 ){ aStack[tos].i = aIdx[j]; aStack[tos].flags = STK_Int; break; } } if( j>=k ){ j = -1; pc = pOp->p2 - 1; PopStack(p, 1); |
︙ | ︙ | |||
2244 2245 2246 2247 2248 2249 2250 | int nos = tos - 1; DbbeCursor *pCrsr; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int r; int newVal; Integerify(p, nos); | | | | | | | | 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 | int nos = tos - 1; DbbeCursor *pCrsr; VERIFY( if( nos<0 ) goto not_enough_stack; ) if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int r; int newVal; Integerify(p, nos); newVal = aStack[nos].i; if( Stringify(p, tos) ) goto no_mem; r = pBe->Fetch(pCrsr, aStack[tos].n, zStack[tos]); if( r==0 ){ /* Create a new record for this index */ pBe->Put(pCrsr, aStack[tos].n, zStack[tos], sizeof(int), (char*)&newVal); }else{ /* Extend the existing record */ int nIdx; int *aIdx; int k; nIdx = pBe->DataLength(pCrsr)/sizeof(int); if( nIdx==1 ){ aIdx = sqliteMalloc( sizeof(int)*4 ); if( aIdx==0 ) goto no_mem; aIdx[0] = 2; pBe->CopyData(pCrsr, 0, sizeof(int), (char*)&aIdx[1]); aIdx[2] = newVal; pBe->Put(pCrsr, aStack[tos].n, zStack[tos], sizeof(int)*4, (char*)aIdx); sqliteFree(aIdx); }else{ aIdx = (int*)pBe->ReadData(pCrsr, 0); k = aIdx[0]; if( k<nIdx-1 ){ aIdx[k+1] = newVal; aIdx[0]++; pBe->Put(pCrsr, aStack[tos].n, zStack[tos], sizeof(int)*nIdx, (char*)aIdx); }else{ nIdx *= 2; aIdx = sqliteMalloc( sizeof(int)*nIdx ); if( aIdx==0 ) goto no_mem; pBe->CopyData(pCrsr, 0, sizeof(int)*(k+1), (char*)aIdx); aIdx[k+1] = newVal; aIdx[0]++; pBe->Put(pCrsr, aStack[tos].n, zStack[tos], sizeof(int)*nIdx, (char*)aIdx); sqliteFree(aIdx); } } } } PopStack(p, 2); |
︙ | ︙ | |||
2319 2320 2321 2322 2323 2324 2325 | if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int *aIdx; int nIdx; int j, k; int r; int oldVal; Integerify(p, nos); | | | | | | 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 | if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){ int *aIdx; int nIdx; int j, k; int r; int oldVal; Integerify(p, nos); oldVal = aStack[nos].i; if( Stringify(p, tos) ) goto no_mem; r = pBe->Fetch(pCrsr, aStack[tos].n, zStack[tos]); if( r==0 ) break; nIdx = pBe->DataLength(pCrsr)/sizeof(int); aIdx = (int*)pBe->ReadData(pCrsr, 0); if( (nIdx==1 && aIdx[0]==oldVal) || (aIdx[0]==1 && aIdx[1]==oldVal) ){ pBe->Delete(pCrsr, aStack[tos].n, zStack[tos]); }else{ k = aIdx[0]; for(j=1; j<=k && aIdx[j]!=oldVal; j++){} if( j>k ) break; aIdx[j] = aIdx[k]; aIdx[k] = 0; aIdx[0]--; if( aIdx[0]*3 + 1 < nIdx ){ nIdx /= 2; } pBe->Put(pCrsr, aStack[tos].n, zStack[tos], sizeof(int)*nIdx, (char*)aIdx); } } PopStack(p, 2); break; } |
︙ | ︙ | |||
2404 2405 2406 2407 2408 2409 2410 | case OP_ListWrite: { int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( VERIFY( i<p->nList && ) p->apList[i]!=0 ){ int val; Integerify(p, p->tos); | | | 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 | case OP_ListWrite: { int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) VERIFY( if( p->tos<0 ) goto not_enough_stack; ) if( VERIFY( i<p->nList && ) p->apList[i]!=0 ){ int val; Integerify(p, p->tos); val = aStack[p->tos].i; PopStack(p, 1); fwrite(&val, sizeof(int), 1, p->apList[i]); } break; } /* Opcode: ListRewind P1 * * |
︙ | ︙ | |||
2438 2439 2440 2441 2442 2443 2444 | int i = pOp->p1; int val, amt; VERIFY(if( i<0 || i>=p->nList || p->apList[i]==0 )goto bad_instruction;) amt = fread(&val, sizeof(int), 1, p->apList[i]); if( amt==1 ){ p->tos++; if( NeedStack(p, p->tos) ) goto no_mem; | | | | | 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 | int i = pOp->p1; int val, amt; VERIFY(if( i<0 || i>=p->nList || p->apList[i]==0 )goto bad_instruction;) amt = fread(&val, sizeof(int), 1, p->apList[i]); if( amt==1 ){ p->tos++; if( NeedStack(p, p->tos) ) goto no_mem; aStack[p->tos].i = val; aStack[p->tos].flags = STK_Int; zStack[p->tos] = 0; }else{ pc = pOp->p2 - 1; } break; } /* Opcode: ListClose P1 * * |
︙ | ︙ | |||
2495 2496 2497 2498 2499 2500 2501 | VERIFY( if( i<0 || i>=p->nSort ) goto bad_instruction; ) VERIFY( if( tos<1 ) goto not_enough_stack; ) if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; pSorter = sqliteMalloc( sizeof(Sorter) ); if( pSorter==0 ) goto no_mem; pSorter->pNext = p->apSort[i]; p->apSort[i] = pSorter; | | | | | | | | | | 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 | VERIFY( if( i<0 || i>=p->nSort ) goto bad_instruction; ) VERIFY( if( tos<1 ) goto not_enough_stack; ) if( Stringify(p, tos) || Stringify(p, nos) ) goto no_mem; pSorter = sqliteMalloc( sizeof(Sorter) ); if( pSorter==0 ) goto no_mem; pSorter->pNext = p->apSort[i]; p->apSort[i] = pSorter; pSorter->nKey = aStack[tos].n; pSorter->zKey = zStack[tos]; pSorter->nData = aStack[nos].n; pSorter->pData = zStack[nos]; aStack[tos].flags = 0; aStack[nos].flags = 0; zStack[tos] = 0; zStack[nos] = 0; p->tos -= 2; break; } /* Opcode: SortMakeRec P1 * * ** ** The top P1 elements are the arguments to a callback. Form these |
︙ | ︙ | |||
2524 2525 2526 2527 2528 2529 2530 | int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ | | | | | | | | | | 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 | int nField; int i, j; nField = pOp->p1; VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ if( (aStack[i].flags & STK_Null)==0 ){ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n; } } nByte += sizeof(char*)*(nField+1); azArg = sqliteMalloc( nByte ); if( azArg==0 ) goto no_mem; z = (char*)&azArg[nField+1]; for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){ if( aStack[i].flags & STK_Null ){ azArg[j] = 0; }else{ azArg[j] = z; strcpy(z, zStack[i]); z += aStack[i].n; } } PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; zStack[p->tos] = (char*)azArg; aStack[p->tos].flags = STK_Str|STK_Dyn; break; } /* Opcode: SortMakeKey P1 * P3 ** ** Convert the top few entries of the stack into a sort key. The ** number of stack entries consumed is the number of characters in |
︙ | ︙ | |||
2575 2576 2577 2578 2579 2580 2581 | int i, j, k; nField = strlen(pOp->p3); VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 1; for(i=p->tos-nField+1; i<=p->tos; i++){ if( Stringify(p, i) ) goto no_mem; | | | | | | | | 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 | int i, j, k; nField = strlen(pOp->p3); VERIFY( if( p->tos+1<nField ) goto not_enough_stack; ) nByte = 1; for(i=p->tos-nField+1; i<=p->tos; i++){ if( Stringify(p, i) ) goto no_mem; nByte += aStack[i].n+2; } zNewKey = sqliteMalloc( nByte ); if( zNewKey==0 ) goto no_mem; j = 0; k = 0; for(i=p->tos-nField+1; i<=p->tos; i++){ zNewKey[j++] = pOp->p3[k++]; memcpy(&zNewKey[j], zStack[i], aStack[i].n-1); j += aStack[i].n-1; zNewKey[j++] = 0; } zNewKey[j] = 0; PopStack(p, nField); VERIFY( NeedStack(p, p->tos+1); ) p->tos++; aStack[p->tos].n = nByte; aStack[p->tos].flags = STK_Str|STK_Dyn; zStack[p->tos] = zNewKey; break; } /* Opcode: Sort P1 * * ** ** Sort all elements on the given sorter. The algorithm is a ** mergesort. |
︙ | ︙ | |||
2652 2653 2654 2655 2656 2657 2658 | int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) if( VERIFY( i<p->nSort && ) p->apSort[i]!=0 ){ Sorter *pSorter = p->apSort[i]; p->apSort[i] = pSorter->pNext; p->tos++; VERIFY( NeedStack(p, p->tos); ) | | | | | | | | | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 | int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) if( VERIFY( i<p->nSort && ) p->apSort[i]!=0 ){ Sorter *pSorter = p->apSort[i]; p->apSort[i] = pSorter->pNext; p->tos++; VERIFY( NeedStack(p, p->tos); ) zStack[p->tos] = pSorter->pData; aStack[p->tos].n = pSorter->nData; aStack[p->tos].flags = STK_Str|STK_Dyn; sqliteFree(pSorter->zKey); sqliteFree(pSorter); }else{ pc = pOp->p2 - 1; } break; } /* Opcode: SortKey P1 * * ** ** Push the key for the topmost element of the sorter onto the stack. ** But don't change the sorter an any other way. */ case OP_SortKey: { int i = pOp->p1; VERIFY( if( i<0 ) goto bad_instruction; ) if( i<p->nSort && p->apSort[i]!=0 ){ Sorter *pSorter = p->apSort[i]; p->tos++; VERIFY( NeedStack(p, p->tos); ) sqliteSetString(&zStack[p->tos], pSorter->zKey, 0); aStack[p->tos].n = pSorter->nKey; aStack[p->tos].flags = STK_Str|STK_Dyn; } break; } /* Opcode: SortCallback P1 P2 * ** ** The top of the stack contains a callback record built using ** the SortMakeRec operation with the same P1 value as this ** instruction. Pop this record from the stack and invoke the ** callback on it. */ case OP_SortCallback: { int i = p->tos; VERIFY( if( i<0 ) goto not_enough_stack; ) if( xCallback!=0 ){ if( xCallback(pArg, pOp->p1, (char**)zStack[i], p->azColName) ){ rc = SQLITE_ABORT; } } PopStack(p, 1); break; } |
︙ | ︙ | |||
2873 2874 2875 2876 2877 2878 2879 | if( VERIFY( i>=0 && i<p->nField && ) p->azField ){ z = p->azField[i]; }else{ z = 0; } if( z==0 ) z = ""; p->tos++; | | | | | 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 | if( VERIFY( i>=0 && i<p->nField && ) p->azField ){ z = p->azField[i]; }else{ z = 0; } if( z==0 ) z = ""; p->tos++; aStack[p->tos].n = strlen(z) + 1; zStack[p->tos] = z; aStack[p->tos].flags = STK_Str; break; } /* Opcode: MemStore P1 * * ** ** Pop a single value of the stack and store that value into memory ** location P1. P1 should be a small integer since space is allocated |
︙ | ︙ | |||
2906 2907 2908 2909 2910 2911 2912 | } pMem = &p->aMem[i]; if( pMem->s.flags & STK_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } | | | | | | | | | | | | 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 | } pMem = &p->aMem[i]; if( pMem->s.flags & STK_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } pMem->s = aStack[tos]; if( pMem->s.flags & STK_Str ){ pMem->z = sqliteStrNDup(zStack[tos], pMem->s.n); pMem->s.flags |= STK_Dyn; } if( zOld ) sqliteFree(zOld); PopStack(p, 1); break; } /* Opcode: MemLoad P1 * * ** ** Push a copy of the value in memory location P1 onto the stack. */ case OP_MemLoad: { int tos = ++p->tos; int i = pOp->p1; VERIFY( if( NeedStack(p, tos) ) goto no_mem; ) if( i<0 || i>=p->nMem ){ aStack[tos].flags = STK_Null; zStack[tos] = 0; }else{ aStack[tos] = p->aMem[i].s; if( aStack[tos].flags & STK_Str ){ char *z = sqliteMalloc(aStack[tos].n); if( z==0 ) goto no_mem; memcpy(z, p->aMem[i].z, aStack[tos].n); zStack[tos] = z; aStack[tos].flags |= STK_Dyn; } } break; } /* Opcode: AggReset * P2 * ** |
︙ | ︙ | |||
2973 2974 2975 2976 2977 2978 2979 | int tos = p->tos; AggElem *pElem; char *zKey; int nKey; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); | | | | 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 | int tos = p->tos; AggElem *pElem; char *zKey; int nKey; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); zKey = zStack[tos]; nKey = aStack[tos].n; if( p->agg.nHash<=0 ){ pElem = 0; }else{ int h = sqliteHashNoCase(zKey, nKey-1) % p->agg.nHash; for(pElem=p->agg.apHash[h]; pElem; pElem=pElem->pHash){ if( strcmp(pElem->zKey, zKey)==0 ) break; } |
︙ | ︙ | |||
3042 3043 3044 3045 3046 3047 3048 | Mem *pMem = &pFocus->aMem[i]; char *zOld; if( pMem->s.flags & STK_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } | | | | | 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 | Mem *pMem = &pFocus->aMem[i]; char *zOld; if( pMem->s.flags & STK_Dyn ){ zOld = pMem->z; }else{ zOld = 0; } pMem->s = aStack[tos]; if( pMem->s.flags & STK_Str ){ pMem->z = sqliteMalloc( aStack[tos].n ); if( pMem->z==0 ) goto no_mem; memcpy(pMem->z, zStack[tos], pMem->s.n); pMem->s.flags |= STK_Str|STK_Dyn; } if( zOld ) sqliteFree(zOld); } PopStack(p, 1); break; } |
︙ | ︙ | |||
3069 3070 3071 3072 3073 3074 3075 | AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; int tos = ++p->tos; VERIFY( if( NeedStack(p, tos) ) goto no_mem; ) if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; | | | | | 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 | AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; int tos = ++p->tos; VERIFY( if( NeedStack(p, tos) ) goto no_mem; ) if( pFocus==0 ) goto no_mem; if( VERIFY( i>=0 && ) i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; aStack[tos] = pMem->s; zStack[tos] = pMem->z; aStack[tos].flags &= ~STK_Dyn; } break; } /* Opcode: AggNext * P2 * ** ** Make the next aggregate value the current aggregate. The prior |
︙ | ︙ | |||
3144 3145 3146 3147 3148 3149 3150 | } if( pOp->p3 ){ SetInsert(&p->aSet[i], pOp->p3); }else{ int tos = p->tos; if( tos<0 ) goto not_enough_stack; Stringify(p, tos); | | | | | | | | 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 | } if( pOp->p3 ){ SetInsert(&p->aSet[i], pOp->p3); }else{ int tos = p->tos; if( tos<0 ) goto not_enough_stack; Stringify(p, tos); SetInsert(&p->aSet[i], zStack[tos]); PopStack(p, 1); } break; } /* Opcode: SetFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped exists in set P1, ** then jump to P2. Otherwise fall through. */ case OP_SetFound: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); if( VERIFY( i>=0 && i<p->nSet &&) SetTest(&p->aSet[i], zStack[tos])){ pc = pOp->p2 - 1; } PopStack(p, 1); break; } /* Opcode: SetNotFound P1 P2 * ** ** Pop the stack once and compare the value popped off with the ** contents of set P1. If the element popped does not exists in ** set P1, then jump to P2. Otherwise fall through. */ case OP_SetNotFound: { int i = pOp->p1; int tos = p->tos; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); if(VERIFY( i>=0 && i<p->nSet &&) !SetTest(&p->aSet[i], zStack[tos])){ pc = pOp->p2 - 1; } PopStack(p, 1); break; } /* Opcode: Length * * * ** ** Interpret the top of the stack as a string. Replace the top of ** stack with an integer which is the length of the string. */ case OP_Strlen: { int tos = p->tos; int len; VERIFY( if( tos<0 ) goto not_enough_stack; ) Stringify(p, tos); len = aStack[tos].n-1; PopStack(p, 1); p->tos++; aStack[tos].i = len; aStack[tos].flags = STK_Int; break; } /* Opcode: Substr P1 P2 * ** ** This operation pops between 1 and 3 elements from the stack and ** pushes back a single element. The bottom-most element popped from |
︙ | ︙ | |||
3232 3233 3234 3235 3236 3237 3238 | int start; int n; char *z; if( pOp->p2==0 ){ VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); | | | | | | | | | 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 | int start; int n; char *z; if( pOp->p2==0 ){ VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); cnt = aStack[p->tos].i; PopStack(p, 1); }else{ cnt = pOp->p2; } if( pOp->p1==0 ){ VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Integerify(p, p->tos); start = aStack[p->tos].i - 1; PopStack(p, 1); }else{ start = pOp->p1 - 1; } VERIFY( if( p->tos<0 ) goto not_enough_stack; ) Stringify(p, p->tos); n = aStack[p->tos].n - 1; if( start<0 ){ start += n + 1; if( start<0 ){ cnt += start; start = 0; } } if( start>n ){ start = n; } if( cnt<0 ) cnt = 0; if( cnt > n ){ cnt = n; } z = sqliteMalloc( cnt+1 ); if( z==0 ) goto no_mem; strncpy(z, &zStack[p->tos][start], cnt); z[cnt] = 0; PopStack(p, 1); p->tos++; zStack[p->tos] = z; aStack[p->tos].n = cnt + 1; aStack[p->tos].flags = STK_Str|STK_Dyn; break; } /* An other opcode is illegal... */ default: { sprintf(zBuf,"%d",pOp->opcode); |
︙ | ︙ | |||
3298 3299 3300 3301 3302 3303 3304 | sqliteSetString(pzErrMsg, "jump destination out of range", 0); rc = SQLITE_INTERNAL; } if( p->trace && p->tos>=0 ){ int i; fprintf(p->trace, "Stack:"); for(i=p->tos; i>=0 && i>p->tos-5; i--){ | | | | | | | | | | | 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 | sqliteSetString(pzErrMsg, "jump destination out of range", 0); rc = SQLITE_INTERNAL; } if( p->trace && p->tos>=0 ){ int i; fprintf(p->trace, "Stack:"); for(i=p->tos; i>=0 && i>p->tos-5; i--){ if( aStack[i].flags & STK_Null ){ fprintf(p->trace, " NULL"); }else if( aStack[i].flags & STK_Int ){ fprintf(p->trace, " i:%d", aStack[i].i); }else if( aStack[i].flags & STK_Real ){ fprintf(p->trace, " r:%g", aStack[i].r); }else if( aStack[i].flags & STK_Str ){ if( aStack[i].flags & STK_Dyn ){ fprintf(p->trace, " z:[%.11s]", zStack[i]); }else{ fprintf(p->trace, " s:[%.11s]", zStack[i]); } }else{ fprintf(p->trace, " ???"); } } fprintf(p->trace,"\n"); } |
︙ | ︙ |
Changes to www/c_interface.tcl.
1 2 3 | # # Run this Tcl script to generate the sqlite.html file. # | | | 1 2 3 4 5 6 7 8 9 10 11 | # # Run this Tcl script to generate the sqlite.html file. # set rcsid {$Id: c_interface.tcl,v 1.12 2000/10/23 13:16:33 drh Exp $} puts {<html> <head> <title>The C language interface to the SQLite library</title> </head> <body bgcolor=white> <h1 align=center> |
︙ | ︙ | |||
25 26 27 28 29 30 31 | <p>The interface to the SQLite library consists of three core functions, one opaque data structure, and some constants used as return values. The core interface is as follows:</p> <blockquote><pre> typedef struct sqlite sqlite; | | | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | <p>The interface to the SQLite library consists of three core functions, one opaque data structure, and some constants used as return values. The core interface is as follows:</p> <blockquote><pre> typedef struct sqlite sqlite; sqlite *sqlite_open(const char *dbname, int mode, char **errmsg); void sqlite_close(sqlite*); int sqlite_exec( sqlite*, char *sql, int (*)(void*,int,char**,char**), |
︙ | ︙ | |||
130 131 132 133 134 135 136 | database read only. The third argument is a pointer to a string pointer. If the third argument is not NULL and an error occurs while trying to open the database, then an error message will be written to memory obtained from malloc() and *errmsg will be made to point to this error message. The calling function is responsible for freeing the memory when it has finished with it.</p> | | > | | > > > > > > > > > > > > > | 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | database read only. The third argument is a pointer to a string pointer. If the third argument is not NULL and an error occurs while trying to open the database, then an error message will be written to memory obtained from malloc() and *errmsg will be made to point to this error message. The calling function is responsible for freeing the memory when it has finished with it.</p> <p>The name of an SQLite database is normally the name of a directory that contains a collection of GDBM files that comprise the database. There is one GDBM file for each table and index in the database. All GDBM files end with the ".tbl" suffix. Every SQLite database also contains a special database table named <b>sqlite_master</b> stored in its own GDBM file. This special table records the database schema.</p> <p>To create a new SQLite database, all you have to do is call <b>sqlite_open()</b> with the first parameter set to the name of an empty directory and the second parameter set to 0666. The directory is created automatically if it does not already exist.</p> <p>Beginning with SQLite version 1.0.14, SQLite supports database backends other than GDBM. The only backends currently supported are the default GDBM driver and an in-memory hash table database. You may anticipate additional backends in future versions of SQLite.</p> <p>An alternative database backend is specified by prepending the backend name and a colon to the database name argument of the <b>sqlite_open()</b> function. For the GDBM backend, you can prepend "<b>gdbm:</b>" to the directory name. To select the in-memory hash table backend, prepend "<b>memory:</b>" to the database name. Future database drivers will be selected by a similar mechanism.</p> <p>The return value of the <b>sqlite_open()</b> function is a pointer to an opaque <b>sqlite</b> structure. This pointer will be the first argument to all subsequent SQLite function calls that deal with the same database. NULL is returned if the open fails for any reason.</p> |
︙ | ︙ |
Changes to www/changes.tcl.
︙ | ︙ | |||
12 13 14 15 16 17 18 19 20 21 22 23 24 25 | } proc chng {date desc} { puts "<DT><B>$date</B></DT>" puts "<DD><P><UL>$desc</UL></P></DD>" } chng {2000 Oct 19 (1.0.14)} { <li>Added a "memory:" backend driver that stores its database in an in-memory hash table.</li> } chng {2000 Oct 18 (1.0.13)} { | > > > > > > > | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | } proc chng {date desc} { puts "<DT><B>$date</B></DT>" puts "<DD><P><UL>$desc</UL></P></DD>" } chng {2000 Oct 23 (1.0.15)} { <li>Documentation updates</li> <li>Some sanity checking code was removed from the inner loop of vdbe.c to help the library to run a little faster. The code is only removed if you compile with -DNDEBUG.</li> } chng {2000 Oct 19 (1.0.14)} { <li>Added a "memory:" backend driver that stores its database in an in-memory hash table.</li> } chng {2000 Oct 18 (1.0.13)} { |
︙ | ︙ |
Changes to www/tclsqlite.tcl.
1 2 3 | # # Run this Tcl script to generate the tclsqlite.html file. # | | | 1 2 3 4 5 6 7 8 9 10 11 | # # Run this Tcl script to generate the tclsqlite.html file. # set rcsid {$Id: tclsqlite.tcl,v 1.3 2000/10/23 13:16:33 drh Exp $} puts {<html> <head> <title>The Tcl interface to the SQLite library</title> </head> <body bgcolor=white> <h1 align=center> |
︙ | ︙ | |||
26 27 28 29 30 31 32 | tcl command named <b>sqlite</b>. Because there is only this one interface command, the interface is not placed in a separate namespace.</p> <p>The <b>sqlite</b> command is used as follows:</p> <blockquote> | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | tcl command named <b>sqlite</b>. Because there is only this one interface command, the interface is not placed in a separate namespace.</p> <p>The <b>sqlite</b> command is used as follows:</p> <blockquote> <b>sqlite</b> <i>dbcmd database-name</i> </blockquote> <p> The <b>sqlite</b> command opens the database named in the second argument. If the database does not already exist, it is automatically created. The <b>sqlite</b> command also creates a new Tcl command to control the database. The name of the new Tcl command is given by the first argument. This approach is similar to the way widgets are created in Tk. </p> <p> The name of the database is usually either the name of a directory that will contain the GDBM files that comprise the database, or it is the name of the directory prefaced by "<b>gdbm:</b>". The second form of the name is a new feature beginning in SQLite version 1.0.14 that allows you to select alternative database backends. The default backend is GDBM. But you can also select to store the database in a hash table in memory by using the prefix "<b>memory:</b>". Other backends may be added in the future. </p> <p> Every time you open an SQLite database with the <b>memory:</b> prefix on the database name, you get a new in-memory database. This is true even if you open two databases with the same name. Furthermore, an in-memory database is automatically deleted when the database is closed and so is not useful for persistant storage like a normal database. But the use of an in-memory SQL database does give Tcl/Tk a powerful new data storage mechanism that can do things that are difficult to do with only Tcl array variables. In fact, the hash-table backend for SQLite was created for the sole purpose of providing better data structure support to the Tcl language. </p> <p> Once an SQLite database is open, it can be controlled using methods of the <i>dbcmd</i>. There are currently 5 methods defined:</p> <p> <ul> |
︙ | ︙ | |||
201 202 203 204 205 206 207 | <h2>The "timeout" method</h2> <p>The "timeout" method is used to control how long the SQLite library will wait for locks to clear before giving up on a database transaction. The default timeout is 0 millisecond. (In other words, the default behavior is not to wait at all.)</p> | | | 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | <h2>The "timeout" method</h2> <p>The "timeout" method is used to control how long the SQLite library will wait for locks to clear before giving up on a database transaction. The default timeout is 0 millisecond. (In other words, the default behavior is not to wait at all.)</p> <p>The GDBM backend allows multiple simultaneous readers or a single writer but not both. If any process is writing to the database no other process is allows to read or write. If any process is reading the database other processes are allowed to read but not write. Each GDBM file is locked separately. Because each SQL table is stored as a separate file, it is possible for different processes to write to different database tables at the same time, just not the same table.</p> |
︙ | ︙ |