Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Experimental support for speeding up CREATE INDEX commands using an offline merge sort. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | experimental |
Files: | files | file ages | folders |
SHA1: |
30dbf0feab0323250404e0741ac2716b |
User & Date: | dan 2011-07-12 14:28:05.335 |
Context
2011-08-02
| ||
10:56 | Minor fixes to vdbesort.c code in preparation for a major rework. (check-in: 7f339c0e26 user: dan tags: experimental) | |
2011-07-12
| ||
14:28 | Experimental support for speeding up CREATE INDEX commands using an offline merge sort. (check-in: 30dbf0feab user: dan tags: experimental) | |
2011-07-11
| ||
23:45 | Update the TCL commands for setting windows manditory locks. Add test cases for manditory lock delays under windows. (check-in: 03af4c175c user: drh tags: trunk) | |
Changes
Changes to main.mk.
︙ | ︙ | |||
61 62 63 64 65 66 67 | memjournal.o \ mutex.o mutex_noop.o mutex_os2.o mutex_unix.o mutex_w32.o \ notify.o opcodes.o os.o os_os2.o os_unix.o os_win.o \ pager.o parse.o pcache.o pcache1.o pragma.o prepare.o printf.o \ random.o resolve.o rowset.o rtree.o select.o status.o \ table.o tokenize.o trigger.o \ update.o util.o vacuum.o \ | | | | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | memjournal.o \ mutex.o mutex_noop.o mutex_os2.o mutex_unix.o mutex_w32.o \ notify.o opcodes.o os.o os_os2.o os_unix.o os_win.o \ pager.o parse.o pcache.o pcache1.o pragma.o prepare.o printf.o \ random.o resolve.o rowset.o rtree.o select.o status.o \ table.o tokenize.o trigger.o \ update.o util.o vacuum.o \ vdbe.o vdbeapi.o vdbeaux.o vdbeblob.o vdbemem.o vdbesort.o \ vdbetrace.o wal.o walker.o where.o utf.o vtab.o # All of the source code files. # SRC = \ $(TOP)/src/alter.c \ |
︙ | ︙ | |||
151 152 153 154 155 156 157 158 159 160 161 162 163 164 | $(TOP)/src/vacuum.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vtab.c \ $(TOP)/src/wal.c \ $(TOP)/src/wal.h \ $(TOP)/src/walker.c \ $(TOP)/src/where.c | > | 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | $(TOP)/src/vacuum.c \ $(TOP)/src/vdbe.c \ $(TOP)/src/vdbe.h \ $(TOP)/src/vdbeapi.c \ $(TOP)/src/vdbeaux.c \ $(TOP)/src/vdbeblob.c \ $(TOP)/src/vdbemem.c \ $(TOP)/src/vdbesort.c \ $(TOP)/src/vdbetrace.c \ $(TOP)/src/vdbeInt.h \ $(TOP)/src/vtab.c \ $(TOP)/src/wal.c \ $(TOP)/src/wal.h \ $(TOP)/src/walker.c \ $(TOP)/src/where.c |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 | ** the index already exists and must be cleared before being refilled and ** the root page number of the index is taken from pIndex->tnum. */ static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ Table *pTab = pIndex->pTable; /* The table that is indexed */ int iTab = pParse->nTab++; /* Btree cursor used for pTab */ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ int addr1; /* Address of top of loop */ int tnum; /* Root page of index */ Vdbe *v; /* Generate code into this virtual machine */ KeyInfo *pKey; /* KeyInfo for index */ int regIdxKey; /* Registers containing the index key */ int regRecord; /* Register holding assemblied index record */ sqlite3 *db = pParse->db; /* The database connection */ | > | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 | ** the index already exists and must be cleared before being refilled and ** the root page number of the index is taken from pIndex->tnum. */ static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ Table *pTab = pIndex->pTable; /* The table that is indexed */ int iTab = pParse->nTab++; /* Btree cursor used for pTab */ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ int iSorter = pParse->nTab++; /* Btree cursor used for sorting */ int addr1; /* Address of top of loop */ int tnum; /* Root page of index */ Vdbe *v; /* Generate code into this virtual machine */ KeyInfo *pKey; /* KeyInfo for index */ int regIdxKey; /* Registers containing the index key */ int regRecord; /* Register holding assemblied index record */ sqlite3 *db = pParse->db; /* The database connection */ |
︙ | ︙ | |||
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 | } pKey = sqlite3IndexKeyinfo(pParse, pIndex); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO_HANDOFF); if( memRootPage>=0 ){ sqlite3VdbeChangeP5(v, 1); } sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); regRecord = sqlite3GetTempReg(pParse); regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); if( pIndex->onError!=OE_None ){ const int regRowid = regIdxKey + pIndex->nColumn; const int j2 = sqlite3VdbeCurrentAddr(v) + 2; void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); /* The registers accessed by the OP_IsUnique opcode were allocated ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() ** call above. Just before that function was freed they were released ** (made available to the compiler for reuse) using ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique ** opcode use the values stored within seems dangerous. However, since ** we can be sure that no other temp registers have been allocated ** since sqlite3ReleaseTempRange() was called, it is safe to do so. */ sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); sqlite3HaltConstraint( pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); } | > > > > > > > > > > > > > > | | > > | 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 | } pKey = sqlite3IndexKeyinfo(pParse, pIndex); sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, (char *)pKey, P4_KEYINFO_HANDOFF); if( memRootPage>=0 ){ sqlite3VdbeChangeP5(v, 1); } /* Open the sorter cursor. */ sqlite3VdbeAddOp4(v, OP_OpenSorter, iSorter, 0, 0, (char*)pKey, P4_KEYINFO); /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); regRecord = sqlite3GetTempReg(pParse); regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, iSorter, regRecord); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); sqlite3VdbeJumpHere(v, addr1); /* Rewind the sorter. Loop through index records in sorted order. */ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSorter, 0); sqlite3VdbeAddOp2(v, OP_RowKey, iSorter, regRecord); if( pIndex->onError!=OE_None ){ const int regRowid = regIdxKey + pIndex->nColumn; const int j2 = sqlite3VdbeCurrentAddr(v) + 2; void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); /* The registers accessed by the OP_IsUnique opcode were allocated ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() ** call above. Just before that function was freed they were released ** (made available to the compiler for reuse) using ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique ** opcode use the values stored within seems dangerous. However, since ** we can be sure that no other temp registers have been allocated ** since sqlite3ReleaseTempRange() was called, it is safe to do so. */ sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); sqlite3HaltConstraint( pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); } sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3ReleaseTempReg(pParse, regRecord); sqlite3VdbeAddOp2(v, OP_Next, iSorter, addr1+1); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp1(v, OP_Close, iTab); sqlite3VdbeAddOp1(v, OP_Close, iSorter); sqlite3VdbeAddOp1(v, OP_Close, iIdx); } /* ** Create a new index for an SQL table. pName1.pName2 is the name of the index ** and pTblList is the name of the table that is to be indexed. Both will ** be NULL for a primary key or an index that is created to satisfy a |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 | /* Opcode: OpenAutoindex P1 P2 * P4 * ** ** This opcode works the same as OP_OpenEphemeral. It has a ** different name to distinguish its use. Tables created using ** by this opcode will be used for automatically created transient ** indices in joins. */ case OP_OpenAutoindex: case OP_OpenEphemeral: { VdbeCursor *pCx; static const int vfsFlags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TRANSIENT_DB; assert( pOp->p1>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; | > > > > | < | > > > | 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 | /* Opcode: OpenAutoindex P1 P2 * P4 * ** ** This opcode works the same as OP_OpenEphemeral. It has a ** different name to distinguish its use. Tables created using ** by this opcode will be used for automatically created transient ** indices in joins. */ case OP_OpenSorter: case OP_OpenAutoindex: case OP_OpenEphemeral: { VdbeCursor *pCx; static const int vfsFlags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TRANSIENT_DB; int btflags = BTREE_OMIT_JOURNAL | pOp->p5; if( pOp->opcode!=OP_OpenSorter ) btflags |= BTREE_SINGLE; assert( pOp->p1>=0 ); pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); if( pCx==0 ) goto no_mem; pCx->nullRow = 1; rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, btflags, vfsFlags); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); } if( rc==SQLITE_OK ){ /* If a transient index is required, create it by calling ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before ** opening it. If a transient table is required, just use the ** automatically created table with root-page 1 (an BLOB_INTKEY table). */ if( pOp->p4.pKeyInfo ){ int pgno; assert( pOp->p4type==P4_KEYINFO ); rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); if( rc==SQLITE_OK ){ assert( pgno==MASTER_ROOT+1 ); rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, (KeyInfo*)pOp->p4.z, pCx->pCursor); pCx->pKeyInfo = pOp->p4.pKeyInfo; pCx->pKeyInfo->enc = ENC(db); } pCx->isTable = 0; }else{ rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); pCx->isTable = 1; } } pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); pCx->isIndex = !pCx->isTable; if( rc==SQLITE_OK && pOp->opcode==OP_OpenSorter ){ rc = sqlite3VdbeSorterInit(db, pCx); } break; } /* Opcode: OpenPseudo P1 P2 P3 * * ** ** Open a new cursor that points to a fake table that contains a single ** row of data. The content of that one row in the content of memory |
︙ | ︙ | |||
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 | assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC->isTable || pOp->opcode==OP_RowKey ); assert( pC->isIndex || pOp->opcode==OP_RowData ); assert( pC!=0 ); assert( pC->nullRow==0 ); assert( pC->pseudoTableReg==0 ); assert( pC->pCursor!=0 ); pCrsr = pC->pCursor; assert( sqlite3BtreeCursorIsValid(pCrsr) ); /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or ** OP_Rewind/Op_Next with no intervening instructions that might invalidate ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always | > > > > > > | 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 | assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC->isTable || pOp->opcode==OP_RowKey ); assert( pC->isIndex || pOp->opcode==OP_RowData ); assert( pC!=0 ); assert( pC->nullRow==0 ); assert( pC->pseudoTableReg==0 ); if( pC->pSorter ){ rc = sqlite3VdbeSorterRowkey(db, pC, pOut); break; } assert( pC->pCursor!=0 ); pCrsr = pC->pCursor; assert( sqlite3BtreeCursorIsValid(pCrsr) ); /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or ** OP_Rewind/Op_Next with no intervening instructions that might invalidate ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always |
︙ | ︙ | |||
4253 4254 4255 4256 4257 4258 4259 | BtCursor *pCrsr; int res; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); res = 1; | > > | | 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 | BtCursor *pCrsr; int res; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); res = 1; if( pC->pSorter ){ rc = sqlite3VdbeSorterRewind(db, pC, &res); }else if( (pCrsr = pC->pCursor)!=0 ){ rc = sqlite3BtreeFirst(pCrsr, &res); pC->atFirst = res==0 ?1:0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; pC->rowidIsValid = 0; } pC->nullRow = (u8)res; |
︙ | ︙ | |||
4307 4308 4309 4310 4311 4312 4313 | CHECK_FOR_INTERRUPT; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p5<=ArraySize(p->aCounter) ); pC = p->apCsr[pOp->p1]; if( pC==0 ){ break; /* See ticket #2273 */ } | > > > > | | | | | | | | | > > | 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 | CHECK_FOR_INTERRUPT; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p5<=ArraySize(p->aCounter) ); pC = p->apCsr[pOp->p1]; if( pC==0 ){ break; /* See ticket #2273 */ } if( pC->pSorter ){ assert( pOp->opcode==OP_Next ); rc = sqlite3VdbeSorterNext(db, pC, &res); }else{ pCrsr = pC->pCursor; if( pCrsr==0 ){ pC->nullRow = 1; break; } res = 1; assert( pC->deferredMoveto==0 ); rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : sqlite3BtreePrevious(pCrsr, &res); } pC->nullRow = (u8)res; pC->cacheStatus = CACHE_STALE; if( res==0 ){ pc = pOp->p2 - 1; if( pOp->p5 ) p->aCounter[pOp->p5-1]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif } |
︙ | ︙ | |||
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 | BtCursor *pCrsr; int nKey; const char *zKey; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); pCrsr = pC->pCursor; if( ALWAYS(pCrsr!=0) ){ assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc==SQLITE_OK ){ | > > | 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 | BtCursor *pCrsr; int nKey; const char *zKey; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); rc = sqlite3VdbeSorterWrite(db, pC); if( rc!=SQLITE_OK ) goto abort_due_to_error; pIn2 = &aMem[pOp->p2]; assert( pIn2->flags & MEM_Blob ); pCrsr = pC->pCursor; if( ALWAYS(pCrsr!=0) ){ assert( pC->isTable==0 ); rc = ExpandBlob(pIn2); if( rc==SQLITE_OK ){ |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
26 27 28 29 30 31 32 33 34 35 36 37 38 39 | typedef struct VdbeOp Op; /* ** Boolean values */ typedef unsigned char Bool; /* ** A cursor is a pointer into a single BTree within a database file. ** The cursor can seek to a BTree entry with a particular key, or ** loop over all entries of the Btree. You can also insert new BTree ** entries or retrieve the key or data from the entry that the cursor ** is currently pointing to. ** | > > > | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | typedef struct VdbeOp Op; /* ** Boolean values */ typedef unsigned char Bool; /* Opaque type used by code in vdbesort.c */ typedef struct VdbeSorter VdbeSorter; /* ** A cursor is a pointer into a single BTree within a database file. ** The cursor can seek to a BTree entry with a particular key, or ** loop over all entries of the Btree. You can also insert new BTree ** entries or retrieve the key or data from the entry that the cursor ** is currently pointing to. ** |
︙ | ︙ | |||
57 58 59 60 61 62 63 64 65 66 67 68 69 70 | Bool isIndex; /* True if an index containing keys only - no data */ Bool isOrdered; /* True if the underlying table is BTREE_UNORDERED */ sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */ const sqlite3_module *pModule; /* Module for cursor pVtabCursor */ i64 seqCount; /* Sequence counter */ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ i64 lastRowid; /* Last rowid from a Next or NextIdx operation */ /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or ** OP_IsUnique opcode on this cursor. */ int seekResult; /* Cached information about the header for the data record that the ** cursor is currently pointing to. Only valid if cacheStatus matches | > | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | Bool isIndex; /* True if an index containing keys only - no data */ Bool isOrdered; /* True if the underlying table is BTREE_UNORDERED */ sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */ const sqlite3_module *pModule; /* Module for cursor pVtabCursor */ i64 seqCount; /* Sequence counter */ i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ i64 lastRowid; /* Last rowid from a Next or NextIdx operation */ VdbeSorter *pSorter; /* Sorter object for OP_OpenSorter cursors */ /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or ** OP_IsUnique opcode on this cursor. */ int seekResult; /* Cached information about the header for the data record that the ** cursor is currently pointing to. Only valid if cacheStatus matches |
︙ | ︙ | |||
384 385 386 387 388 389 390 391 392 393 394 395 396 397 | const char *sqlite3OpcodeName(int); int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); int sqlite3VdbeCloseStatement(Vdbe *, int); void sqlite3VdbeFrameDelete(VdbeFrame*); int sqlite3VdbeFrameRestore(VdbeFrame *); void sqlite3VdbeMemStoreType(Mem *pMem); #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 void sqlite3VdbeEnter(Vdbe*); void sqlite3VdbeLeave(Vdbe*); #else # define sqlite3VdbeEnter(X) # define sqlite3VdbeLeave(X) #endif | > > > > | 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | const char *sqlite3OpcodeName(int); int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); int sqlite3VdbeCloseStatement(Vdbe *, int); void sqlite3VdbeFrameDelete(VdbeFrame*); int sqlite3VdbeFrameRestore(VdbeFrame *); void sqlite3VdbeMemStoreType(Mem *pMem); int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *); int sqlite3VdbeSorterWrite(sqlite3 *, VdbeCursor *); void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *); #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 void sqlite3VdbeEnter(Vdbe*); void sqlite3VdbeLeave(Vdbe*); #else # define sqlite3VdbeEnter(X) # define sqlite3VdbeLeave(X) #endif |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 | ** Close a VDBE cursor and release all the resources that cursor ** happens to hold. */ void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ if( pCx==0 ){ return; } if( pCx->pBt ){ sqlite3BtreeClose(pCx->pBt); /* The pCx->pCursor will be close automatically, if it exists, by ** the call above. */ }else if( pCx->pCursor ){ sqlite3BtreeCloseCursor(pCx->pCursor); } | > | 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 | ** Close a VDBE cursor and release all the resources that cursor ** happens to hold. */ void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ if( pCx==0 ){ return; } sqlite3VdbeSorterClose(p->db, pCx); if( pCx->pBt ){ sqlite3BtreeClose(pCx->pBt); /* The pCx->pCursor will be close automatically, if it exists, by ** the call above. */ }else if( pCx->pCursor ){ sqlite3BtreeCloseCursor(pCx->pCursor); } |
︙ | ︙ |
Added src/vdbesort.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 | /* ** 2011 July 9 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code for the VdbeSorter object, used in concert with ** a VdbeCursor to sort large numbers of keys (as may be required, for ** example, by CREATE INDEX statements on tables too large to fit in main ** memory). */ #include "sqliteInt.h" #include "vdbeInt.h" typedef struct VdbeSorterIter VdbeSorterIter; /* ** The aIter[] and aTree[] arrays are used to iterate through the sorter ** contents after it has been populated. To iterate through the sorter ** contents, the contents of the nRoot b-trees must be incrementally merged. ** ** The first nRoot elements of the aIter[] array contain cursors open ** on each of the b-trees. An aIter[] element either points to a valid ** key or else is at EOF. For the purposes of the paragraphs below, we ** assume that the array is actually N elements in size, where N is the ** smallest power of 2 greater to or equal to nRoot. The extra aIter[] ** elements are treated as if they are empty trees (always at EOF). ** ** The aTree[] array is N elements in size. The value of N is stored in ** the VdbeSorter.nTree variable. ** ** The final (N/2) elements of aTree[] contain the results of comparing ** pairs of iterator keys together. Element i contains the result of ** comparing aIter[2*i-N] and aIter[2*i-N+1]. Whichever key is smaller, the ** aTree element is set to the index of it. ** ** For the purposes of this comparison, EOF is considered greater than any ** other key value. If the keys are equal (only possible with two EOF ** values), it doesn't matter which index is stored. ** ** The (N/4) elements of aTree[] that preceed the final (N/2) described ** above contains the index of the smallest of each block of 4 iterators. ** And so on. So that aTree[1] contains the index of the iterator that ** currently points to the smallest key value. aTree[0] is unused. ** ** Example: ** ** aIter[0] -> Banana ** aIter[1] -> Feijoa ** aIter[2] -> Elderberry ** aIter[3] -> Currant ** aIter[4] -> Grapefruit ** aIter[5] -> Apple ** aIter[6] -> Durian ** aIter[7] -> EOF ** ** aTree[] = { X, 5 0, 5 0, 3, 5, 6 } ** ** The current element is "Apple" (the value of the key indicated by ** iterator 5). When the Next() operation is invoked, iterator 5 will ** be advanced to the next key in its segment. Say the next key is ** "Eggplant": ** ** aIter[5] -> Eggplant ** ** The contents of aTree[] are updated first by comparing the new iterator ** 5 key to the current key of iterator 4 (still "Grapefruit"). The iterator ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree. ** The value of iterator 6 - "Durian" - is now smaller than that of iterator ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian), ** so the value written into element 1 of the array is 0. As follows: ** ** aTree[] = { X, 0 0, 6 0, 3, 5, 6 } ** ** In other words, each time we advance to the next sorter element, log2(N) ** key comparison operations are required, where N is the number of segments ** being merged (rounded up to the next power of 2). */ struct VdbeSorter { int nWorking; /* Start a new b-tree after this many pages */ int nPage; /* Pages in file when current tree started */ int nRoot; /* Total number of segment b-trees */ int *aRoot; /* Array containing root pages */ int nAlloc; /* Allocated size of aIter[] and aTree[] */ int nTree; /* Used size of aTree/aIter (power of 2) */ VdbeSorterIter *aIter; /* Array of iterators to merge */ int *aTree; /* Current state of incremental merge */ }; /* ** The following type is a simple wrapper around a BtCursor. It caches the ** current key in variables nKey/aKey. If possible, aKey points to memory ** managed by the BtCursor object. In this case variable bFree is zero. ** Otherwise, aKey[] may point to a block of memory allocated using ** sqlite3DbMalloc(). In this case, bFree is non-zero. */ struct VdbeSorterIter { BtCursor *pCsr; /* Cursor open on b-tree */ int bFree; /* True if aKey should be freed */ int nKey; /* Number of bytes in key */ u8 *aKey; /* Pointer to current key */ }; /* Minimum allowable value for the VdbeSorter.nWorking variable */ #define SORTER_MIN_SEGMENT_SIZE 10 /* ** Append integer iRoot to the VdbeSorter.aRoot[] array of the sorter object ** passed as the second argument. SQLITE_NOMEM is returned if an OOM error ** is encountered, or SQLITE_OK if no error occurs. ** ** TODO: The aRoot[] array may grow indefinitely. Fix this. */ static int vdbeSorterAppendRoot(sqlite3 *db, VdbeSorter *p, int iRoot){ int *aNew; /* New VdbeSorter.aRoot[] array */ aNew = sqlite3DbRealloc(db, p->aRoot, (p->nRoot+1)*sizeof(int)); if( !aNew ) return SQLITE_NOMEM; aNew[p->nRoot] = iRoot; p->nRoot++; p->aRoot = aNew; return SQLITE_OK; } /* ** Close any cursor and free all memory belonging to the VdbeSorterIter ** object passed as the second argument. All structure fields are set ** to zero before returning. */ static void vdbeSorterIterZero(sqlite3 *db, VdbeSorterIter *pIter){ if( pIter->bFree ){ sqlite3DbFree(db, pIter->aKey); } if( pIter->pCsr ){ sqlite3BtreeCloseCursor(pIter->pCsr); sqlite3DbFree(db, pIter->pCsr); } memset(pIter, 0, sizeof(VdbeSorterIter)); } /* ** Fetch the current key pointed to by the b-tree cursor managed by pIter ** into variables VdbeSorterIter.aKey and VdbeSorterIter.nKey. Return ** SQLITE_OK if no error occurs, or an SQLite error code otherwise. */ static int vdbeSorterIterLoadkey(sqlite3 *db, VdbeSorterIter *pIter){ int rc = SQLITE_OK; assert( pIter->pCsr ); if( sqlite3BtreeEof(pIter->pCsr) ){ vdbeSorterIterZero(db, pIter); }else{ i64 nByte64; sqlite3BtreeKeySize(pIter->pCsr, &nByte64); if( pIter->bFree ){ sqlite3DbFree(db, pIter->aKey); pIter->aKey = 0; } pIter->nKey = nByte64; pIter->aKey = sqlite3DbMallocRaw(db, pIter->nKey); pIter->bFree = 1; if( pIter->aKey==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3BtreeKey(pIter->pCsr, 0, pIter->nKey, pIter->aKey); } } return rc; } /* ** Initialize iterator pIter to scan through the b-tree with root page ** iRoot. This function leaves the iterator pointing to the first key ** in the b-tree (or EOF if the b-tree is empty). */ static int vdbeSorterIterInit( sqlite3 *db, /* Database handle */ VdbeCursor *pCsr, /* Vdbe cursor handle */ int iRoot, /* Root page of b-tree to iterate */ VdbeSorterIter *pIter /* Pointer to iterator to initialize */ ){ VdbeSorter *pSorter = pCsr->pSorter; int rc; pIter->pCsr = (BtCursor *)sqlite3DbMallocZero(db, sqlite3BtreeCursorSize()); if( !pIter->pCsr ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3BtreeCursor(pCsr->pBt, iRoot, 1, pCsr->pKeyInfo, pIter->pCsr); } if( rc==SQLITE_OK ){ int bDummy; rc = sqlite3BtreeFirst(pIter->pCsr, &bDummy); } if( rc==SQLITE_OK ){ rc = vdbeSorterIterLoadkey(db, pIter); } return rc; } /* ** Advance iterator pIter to the next key in its b-tree. */ static int vdbeSorterIterNext( sqlite3 *db, VdbeCursor *pCsr, VdbeSorterIter *pIter ){ int rc; int bDummy; VdbeSorter *pSorter = pCsr->pSorter; rc = sqlite3BtreeNext(pIter->pCsr, &bDummy); if( rc==SQLITE_OK ){ rc = vdbeSorterIterLoadkey(db, pIter); } return rc; } /* ** This function is called to compare two iterator keys when merging ** multiple b-tree segments. Parameter iOut is the index of the aTree[] ** value to recalculate. */ static int vdbeSorterDoCompare(VdbeCursor *pCsr, int iOut){ VdbeSorter *pSorter = pCsr->pSorter; int i1; int i2; int iRes; VdbeSorterIter *p1; VdbeSorterIter *p2; assert( iOut<pSorter->nTree && iOut>0 ); if( iOut>=(pSorter->nTree/2) ){ i1 = (iOut - pSorter->nTree/2) * 2; i2 = i1 + 1; }else{ i1 = pSorter->aTree[iOut*2]; i2 = pSorter->aTree[iOut*2+1]; } p1 = &pSorter->aIter[i1]; p2 = &pSorter->aIter[i2]; if( p1->pCsr==0 ){ iRes = i2; }else if( p2->pCsr==0 ){ iRes = i1; }else{ char aSpace[150]; UnpackedRecord *r1; r1 = sqlite3VdbeRecordUnpack( pCsr->pKeyInfo, p1->nKey, p1->aKey, aSpace, sizeof(aSpace) ); if( r1==0 ) return SQLITE_NOMEM; if( sqlite3VdbeRecordCompare(p2->nKey, p2->aKey, r1)>=0 ){ iRes = i1; }else{ iRes = i2; } sqlite3VdbeDeleteUnpackedRecord(r1); } pSorter->aTree[iOut] = iRes; return SQLITE_OK; } /* ** Initialize the temporary index cursor just opened as a sorter cursor. */ int sqlite3VdbeSorterInit(sqlite3 *db, VdbeCursor *pCsr){ int rc; /* Return code */ VdbeSorter *pSorter; /* Allocated sorter object */ /* Cursor must be a temp cursor and not open on an intkey table */ assert( pCsr->pKeyInfo && pCsr->pBt ); pSorter = sqlite3DbMallocZero(db, sizeof(VdbeSorter)); if( !pSorter ) return SQLITE_NOMEM; pCsr->pSorter = pSorter; rc = vdbeSorterAppendRoot(db, pSorter, 2); if( rc!=SQLITE_OK ){ sqlite3VdbeSorterClose(db, pCsr); } return rc; } /* ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines. */ void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){ VdbeSorter *pSorter = pCsr->pSorter; if( pSorter ){ sqlite3DbFree(db, pSorter->aRoot); if( pSorter->aIter ){ int i; for(i=0; i<pSorter->nRoot; i++){ vdbeSorterIterZero(db, &pSorter->aIter[i]); } sqlite3DbFree(db, pSorter->aIter); sqlite3DbFree(db, pSorter->aTree); } sqlite3DbFree(db, pSorter); pCsr->pSorter = 0; } } /* ** This function is called on a sorter cursor before each row is inserted. ** If the current b-tree being constructed is already considered "full", ** a new tree is started. */ int sqlite3VdbeSorterWrite(sqlite3 *db, VdbeCursor *pCsr){ int rc = SQLITE_OK; /* Return code */ VdbeSorter *pSorter = pCsr->pSorter; if( pSorter ){ Pager *pPager = sqlite3BtreePager(pCsr->pBt); int nPage; /* Current size of temporary file in pages */ sqlite3PagerPagecount(pPager, &nPage); /* If pSorter->nWorking is still zero, but the temporary file has been ** created in the file-system, then the most recent insert into the ** current b-tree segment probably caused the cache to overflow (it is ** also possible that sqlite3_release_memory() was called). So set the ** size of the working set to a little less than the current size of the ** file in pages. */ if( pSorter->nWorking==0 && sqlite3PagerFile(pPager)->pMethods ){ pSorter->nWorking = nPage-5; if( pSorter->nWorking<SORTER_MIN_SEGMENT_SIZE ){ pSorter->nWorking = SORTER_MIN_SEGMENT_SIZE; } } /* If the number of pages used by the current b-tree segment is greater ** than the size of the working set (VdbeSorter.nWorking), start a new ** segment b-tree. */ if( pSorter->nWorking && nPage>=(pSorter->nPage + pSorter->nWorking) ){ BtCursor *p = pCsr->pCursor;/* Cursor structure to close and reopen */ int iRoot; /* Root page of new tree */ sqlite3BtreeCloseCursor(p); rc = sqlite3BtreeCreateTable(pCsr->pBt, &iRoot, BTREE_BLOBKEY); if( rc==SQLITE_OK ){ rc = vdbeSorterAppendRoot(db, pSorter, iRoot); } if( rc==SQLITE_OK ){ rc = sqlite3BtreeCursor(pCsr->pBt, iRoot, 1, pCsr->pKeyInfo, p); } pSorter->nPage = nPage; } } return rc; } /* ** Extend the pSorter->aIter[] and pSorter->aTree[] arrays using DbRealloc(). ** Return SQLITE_OK if successful, or SQLITE_NOMEM otherwise. */ static int vdbeSorterGrowArrays(sqlite3* db, VdbeSorter *pSorter){ int *aTree; /* New aTree[] allocation */ VdbeSorterIter *aIter; /* New aIter[] allocation */ int nOld = pSorter->nAlloc; /* Current size of arrays */ int nNew = (nOld?nOld*2:64); /* Size of arrays after reallocation */ /* Realloc aTree[]. */ aTree = sqlite3DbRealloc(db, pSorter->aTree, sizeof(int)*nNew); if( !aTree ) return SQLITE_NOMEM; memset(&aTree[nOld], 0, (nNew-nOld) * sizeof(int)); pSorter->aTree = aTree; /* Realloc aIter[]. */ aIter = sqlite3DbRealloc(db, pSorter->aIter, sizeof(VdbeSorterIter)*nNew); if( !aIter ) return SQLITE_NOMEM; memset(&aIter[nOld], 0, (nNew-nOld) * sizeof(VdbeSorterIter)); pSorter->aIter = aIter; /* Set VdbeSorter.nAlloc to the new size of the arrays and return OK. */ pSorter->nAlloc = nNew; return SQLITE_OK; } /* ** Helper function for sqlite3VdbeSorterRewind(). */ static int vdbeSorterInitMerge( sqlite3 *db, VdbeCursor *pCsr, int iFirst, int *piNext ){ Pager *pPager = sqlite3BtreePager(pCsr->pBt); VdbeSorter *pSorter = pCsr->pSorter; int rc = SQLITE_OK; int i; int nMaxRef = (pSorter->nWorking * 9/10); int N = 2; /* Initialize as many iterators as possible. */ for(i=iFirst; rc==SQLITE_OK && i<pSorter->nRoot; i++){ int iIter = i - iFirst; assert( iIter<=pSorter->nAlloc ); if( iIter==pSorter->nAlloc ){ rc = vdbeSorterGrowArrays(db, pSorter); } if( rc==SQLITE_OK ){ VdbeSorterIter *pIter = &pSorter->aIter[iIter]; rc = vdbeSorterIterInit(db, pCsr, pSorter->aRoot[i], pIter); if( i>iFirst+1 ){ int nRef = sqlite3PagerRefcount(pPager) + (i+1-iFirst); if( nRef>=nMaxRef ){ i++; break; } } } } *piNext = i; while( (i-iFirst)>N ) N += N; pSorter->nTree = N; /* Populate the aTree[] array. */ for(i=N-1; rc==SQLITE_OK && i>0; i--){ rc = vdbeSorterDoCompare(pCsr, i); } return rc; } /* ** Once the sorter has been populated, this function is called to prepare ** for iterating through its contents in sorted order. */ int sqlite3VdbeSorterRewind(sqlite3 *db, VdbeCursor *pCsr, int *pbEof){ int rc = SQLITE_OK; /* Return code */ int N; int i; VdbeSorter *pSorter = pCsr->pSorter; BtCursor *p = pCsr->pCursor; /* Cursor structure */ assert( pSorter ); sqlite3BtreeCloseCursor(p); while( rc==SQLITE_OK ){ int iNext = 0; /* Index of next segment to open */ int iRoot = 0; /* aRoot[] slot if merging to a new segment */ do { rc = vdbeSorterInitMerge(db, pCsr, iNext, &iNext); if( rc==SQLITE_OK && (iRoot>0 || iNext<pSorter->nRoot) ){ int pgno; int bEof = 0; rc = sqlite3BtreeCreateTable(pCsr->pBt, &pgno, BTREE_BLOBKEY); if( rc==SQLITE_OK ){ pSorter->aRoot[iRoot] = pgno; rc = sqlite3BtreeCursor(pCsr->pBt, pgno, 1, pCsr->pKeyInfo, p); } while( rc==SQLITE_OK && bEof==0 ){ VdbeSorterIter *pIter = &pSorter->aIter[ pSorter->aTree[1] ]; rc = sqlite3BtreeInsert(p, pIter->aKey, pIter->nKey, 0, 0, 0, 1, 0); if( rc==SQLITE_OK ){ rc = sqlite3VdbeSorterNext(db, pCsr, &bEof); } } sqlite3BtreeCloseCursor(p); iRoot++; } } while( rc==SQLITE_OK && iNext<pSorter->nRoot ); if( iRoot==0 ) break; pSorter->nRoot = iRoot; } *pbEof = (pSorter->aIter[pSorter->aTree[1]].pCsr==0); return rc; } /* ** Advance to the next element in the sorter. */ int sqlite3VdbeSorterNext(sqlite3 *db, VdbeCursor *pCsr, int *pbEof){ VdbeSorter *pSorter = pCsr->pSorter; int iPrev = pSorter->aTree[1]; /* Index of iterator to advance */ int i; /* Index of aTree[] to recalculate */ int rc; /* Return code */ rc = vdbeSorterIterNext(db, pCsr, &pSorter->aIter[iPrev]); for(i=(pSorter->nTree+iPrev)/2; rc==SQLITE_OK && i>0; i=i/2){ rc = vdbeSorterDoCompare(pCsr, i); } *pbEof = (pSorter->aIter[pSorter->aTree[1]].pCsr==0); return rc; } /* ** Copy the current sorter key into the memory cell pOut. */ int sqlite3VdbeSorterRowkey(sqlite3 *db, VdbeCursor *pCsr, Mem *pOut){ VdbeSorter *pSorter = pCsr->pSorter; VdbeSorterIter *pIter; pIter = &pSorter->aIter[ pSorter->aTree[1] ]; if( sqlite3VdbeMemGrow(pOut, pIter->nKey, 0) ){ return SQLITE_NOMEM; } pOut->n = pIter->nKey; MemSetTypeFlag(pOut, MEM_Blob); memcpy(pOut->z, pIter->aKey, pIter->nKey); return SQLITE_OK; } |
Added test/index4.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | # 2011 July 9 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the CREATE INDEX statement. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix index4 do_execsql_test 1.1 { BEGIN; CREATE TABLE t1(x); INSERT INTO t1 VALUES(randomblob(102)); INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 2 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 4 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 8 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 16 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 32 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 64 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 128 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 256 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 512 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 1024 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 2048 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 4096 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 8192 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 16384 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 32768 INSERT INTO t1 SELECT randomblob(102) FROM t1; -- 65536 COMMIT; } do_execsql_test 1.2 { CREATE INDEX i1 ON t1(x); } do_execsql_test 1.3 { PRAGMA integrity_check } {ok} # The same test again - this time with limited memory. # ifcapable memorymanage { set soft_limit [sqlite3_soft_heap_limit 50000] db close sqlite3 db test.db do_execsql_test 1.4 { PRAGMA cache_size = 10; CREATE INDEX i2 ON t1(x); } do_execsql_test 1.5 { PRAGMA integrity_check } {ok} sqlite3_soft_heap_limit $soft_limit } finish_test |